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About This Manual

This KA640 CPU Module Technical Manual documents the functional, physical,
and environmental characteristics of the KA640 CPU module, and also
includes some information on the MS650 memory expansion modules. This
manual also covers the KA640-BA CPU module, designed for workstations
and VAXservers. The KA640-BA is functionally equivalent to the KA640-
AA, except that it does not support multiuser VMS and ULTRIX operating
system licenses.

This document is intended for a design engineer or applications
programmer who is familiar with Digital’s extended LSI-11 bus (Q22-bus)
and the VAX instruction set. This manual should be used along with the VAX
Architecture Reference Manual as a programmer’s reference to the module.

The manual is divided into four chapters and four appendices.

Chapter 1, Overview, introduces the KA640 MicroVAX CPU module and
MS650 memory modules, including module features and specifications.

Chapter 2, Configuration and Installation, describes the configuration and
installation of the KA640 and MS650 modules in Q22-bus backplanes and
system enclosures.

Chapter 3, Architecture, provides a description of KA640 registers,
instruction set and memory.

Chapter 4, KA640 Firmware, describes the entry/dispatch code, boot
diagnostics, device booting sequence, console program and console
commands.

Appendix A, KA640 Specifications, describes the physical, elécttical, and
environmental specifications for the KA640 CPU module.

Appendix B, Address Assignments, provides a map of VAX memory space.

Appendix C, Q22-bus Specification, describes the low end member
of Digital’s bus family. All of Digital’s microcomputers, such as the
MicroVAX I, MicroVAX II, MicroVAX 3300, MicroVAX 3400, MicroVAX
3500, MicroVAX 3600, and MicroPDP-11, use the Q22-bus.

Appendix D, Acronyms, provides a list of the acronyms used in this manual.

xvii



_xvili. About This Manual

CONVENTIONS
The following table lists the conventions used in this manual.

Convention Meaning

<xy> Represents a bit field, a set of lines, or signals, ranging
from x through y. For example. RO <7:4> indicates bits 7
through 4 in general purpose register RO0.

[x:y] Represents a range of bytes, from y through x.
A label enclosed in a box represents a key (usually a control

or special character key) on the keyboard (in this case, the
carriage return key).

Note Contains general information.
Caution Contains information to prevent damage to equipment.
n Indicates variables. '

RELATED DOCUMENTS

Manual Order Number
Microcomputer Interfaces Handbook EB-20175-20
Microcomputers and Memories Handbook EB-18451-20
VAX Architecture Handbook ' EB-19580-20
VAX Architecture Reference Manual EY-3459E-DP
BA213 Enclosure Maintenance EK-189AA-MG
BA215 Enclosure Maintenance EK-191AA-MG

You can order these documents from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008

Nashua, NH 03061

Attention: Documentation Products
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vfe"r'\'/iew

- This: chapter provxdes a bnef overview of he~ KA640 CPU module and
‘ M5650 memory modules , :

1 1 |ntroduct|on

 The KA640 shown in: Fxgur ';; is a quad hexght VAX processor module

for the Q22-bus (extended LSI-ll bus) with built-in DSSI and Ethernet
controllers. It is designed for use in high speed, real-time applications and
for multiuser, multitasking environments. There are two variants, KA640-
AA and the KA640-BA. The KA640-AA runs muln-user software, the KA640-

BA runs. smgle-user software.

' The KA640 is used in two systems, the M1croVAX 3300 and the MicroVAX
13400. The MicroVAX 3300 is in a BA215 enclosure. The MicroVAX 3400 -
“is in a BA213 enclosure. Refer to the BA215 Enclosure Maintenance and the
‘ BA213 Enclosure Maintenance for a detailed description of each enclosure.

~ The KA640 CPU module and MS650 memory modules combine to form
a VAX CPU/memory subsystem that uses the Q22-bus, DSSI bus, and
Ethernet to communicate with mass storage and I/O devices. The KA640 and
MS650 modules mount in standard Q22-bus backplane slots that implement
the Q22-bus in the AB rows and the CD interconnect in the CD rows. A
single KA640 can support up to three MS650 modules; if enough QZZ/CD
slots are available.
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Figure 1-1 KA640 CPU Module

The KA640 communicates with the console device via the H3602-SA CPU
cover panel, which also contains configuration switches, an LED display,
and DESTA (Ethernet connector).

The major functional blocks of the KA640 CPU module are shown in
Figure 1-2, and are described in the following paragraphs.
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1.2 Central Processing Unit

The central processing unit (CPU) is implemented by the CVAX chip.
The CVAX chip contains approximately 180,000 transistors in an 84-pin
CERQUAD surface mount package. It achieves a 100 ns microcycle and
a 200 ns bus cycle at an operating frequency of 20 MHz. The CVAX chip
supports full VAX memory management and a 4 Gigabyte virtual address

space.
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4 Overview

The CVAX chip contains all VAX visible general purpose registers (GPRs),
several system registers (MSER, CADR, SCBB, etc.), the cache memory
(1 Kbyte), and all memory management hardware including a 28-entry
translation buffer. _

The CVAX chip provides the following functions:

¢ Fetches all VAX instructions

* Executes 181 VAX instructions

® Assists in the execution of 21 additional instructions
* Passes 70 floating point instructions to the CFPA chip

The remaining 32 VAX instructions (including H-floating and octaword) must
be emulated in macrocode.

The CVAX chip provides the following subset of the VAX data types:

° Byte

¢  Word

* Longword
¢  Quadword

* Character string
® Variable length bit field

Support for the remaining VAX data types can be provided via macrocode
emulation. '

1.3 Floating Point Accelerator

The floating point accelerator is implemented by the CFPA chip. The
CFPA chip contains approximately 60,000 transistors in a 68-pin CERQUAD
surface mount package. It executes 70 floating point instructions.
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The CFPA chip receives opcode information from the CVAX chip, and
receives operands directly from memory or from the CVAX chip. The
floating point result is always returned to the CVAX chip.

1.4 Cache Memory

The KA640 module incorporates a cache memory within the CVAX chip to
maximize CPU performance. The cache is a 1 Kbyte, two-way associative,
write through cache memory, with a 100 ns cycle time.

1.5 Memory Controller

The main memory controller is implemented by a VLSI chip called the
CMCTL. The CMCTL contains approximately 25,000 transistors in a 132-
pin CERQUAD surface mount package. It supports up to 64 Mbytes of
ECC memory, of which only 52 MBytes can be used on a KA640, with a 400
ns cycle time for longword transfers and a 600 ns cycle time for quadword
transfers. This memory resides on the KA640 CPU module, and depending
on the system configuration, one to three MS650 memory modules.

1.6 MS650-AA Memory Modules

The MS650-AA memory modules are 8 Mbyte, 450 ns, 39-bit wide arrays
(32-bit data and 7-bit ECC) implemented with 256 Kb dynamic RAMs in
zig-zag in-line packages (ZIPs). MS650-AA memory modules are single,
quad-height, Q22-bus modules, as shown in Figure 1-3.

The MS650 modules communicate with the KA640 via the MS650 memory
interconnect, which utilizes the CD rows of backplane slots 2 through 4, and
a 50-pin ribbon cable. The KA640 memory subsystem supports a maximum
of 3 memory modules.

1.7 DSSI ln_terface

An on-board digital small storage interconnect (DSSI) bus interface is
implemented by the SII chip and four 32K by 8 static RAMs. The DSSI
interface allows the KA640 to transmit packets of data to, and receive
packets of data from up to seven other DSSI devices. The KA640 system
configurations contain one or more RF30 fixed disk devices, connected
through the DSSI bus.
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Figure 1-3 MS650-AA Memory Module

1.8 Ethernet Interface

The KA640 CPU module features an on-board network interface that is
implemented via the LANCE chip and two 32K by 8 static RAMs. When
used in conjunction with the H3602-SA CPU cover panel, this interface
allows the KA640 to be connected to either a ThinWire or standard Ethernet
network.

The Ethernet interface includes registers for control and status reporting as
well as a DMA controller, a 24 word transmit silo and a 24 word receive
silo.
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1.9 Q22-bus Interface

The Q22-bus interface is implemented by the CQBIC chip. The CQBIC chip
contains approximately 40,870 transistors in a 132-pin CERQUAD surface
mount package. It supports up to 16-word, block mode transfers between
a Q22-bus DMA device and main memory, and up to 2-word, block mode
transfers between the CPU and Q22-bus devices. The Q22-bus interface
contains the following:

¢ A l6-entry map cache for the 8,192-entry, main memory-resident
"scatter-gather” map, used for translating 22-bit Q22-bus addresses into
26-bit main memory addresses

¢ Interrupt arbitration logic that recognizes Q22-bus interrupt requests
BR7-BR4

¢ (Q22-bus termination (240 12)

1.10 MicroVAX System Support Functions

System support functions are implemented by the system support chip
(SSC). The SSC contains approximately 83,000 transistors in an 84-pin
CERQUAD surface mount package. The SSC provides console and boot
code support functions, operating system support functions, timers, and
many extra features, including the following:

¢  Word-wide ROM unpacking

¢ 1 Kbyte battery backed-up RAM

* Halt arbitration logic

¢ Console serial line

* Interval timer with 10 ms interrupts

¢ VAX standard time of year (TOY) clock with support for battery back-up
* IORESET register

e Programmable CDAL bus timeout

¢ Two programmable timers similar in function to the VAX standard
interval timer

* A register for controlling the dignostic LEDs
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1.11 Firmware

The firmware consists of 128 Kbytes of 16 bit-wide ROM, located on two
27512 EPROMs. The firmware gains control when the processor halts, and
contains programs that provide the following services:

Board initialization
Power-up self-testing of the KA640 and MS650 modules

Emulation of a subset of the VAX standard console (automatic/manual
bootstrap, automatic/manual restart, and a simple command language
for examining/altering the state of the processor)

Booting from supported Q22-bus devices
Multilingual capability
MOP support

1.12 Clock Functions

All clock functions are implemented by the CVAX clock chip. The
CVAX clock chip is a 44-pin CERQUAD surface mount chip that contains
approximately 350 transistors, and provides the following functions:

Generates two MOS clocks for the CPU, the floating pomt accelerator,
and the main memory controller

Generates three auxiliary clocks for other miscellaneous TTL logic

Synchronizes reset signal for the CPU, the floating point accelerator,
and the main memory controller

Synchronizes data ready and data error signals for the CPU, floating
point accelerator, and the main memory controller
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Installation and Configuration

2.1 Introduction

This chapter contains information required to install the KA640 in a system.
The following topics are discussed:

¢ [nstalling the KA640

¢ Configuring the KA640

¢ KA640 connectors

e H3602-SA CPU cover panel

e Compatible system enclosures

2.2 Installing the KA640

The KA640 and MS650 modules must be installed in system enclosures
having Q22/CD slots. These modules are not compatible with Q/Q
backplane slots, and therefore should only be installed in Q22/CD backplane
slots.

The KA640 CPU module must be installed in slot 1 of the Q22/CD
backplane (Figure 2-1). MS650 memory modules must be installed in slots
immediately adjacent to the CPU module. Up to three MS650 modules
can be installed, occupying slots 2, 3, and 4 respectively. A 50-pin ribbon
cable is used to connect the KA640 CPU module and the MS650 memory
module(s), as shown in Figure 2-2.
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2.3 Configuring the KA640

The following parameters must be configured on the KA640:
* Power-up mode

* - Break enable switch

¢ Console serial line baud rate

¢ DSSI node ID

¢ Ethernet port connector selection

These parameters are configured using the H3602-SA CPU cover panel.

2.4 KA640 Connectors

The KA640 uses two connectors (J1 and J2) and four rows of module fingers
(A,B,C, and D) to communicate with the console device, main memory,
the Q22-bus, the DSSI controller, and the Ethernet controller.. The contact
finger identification of the KA640 module is described in Appendix C.

The orientation of connectors J1 and J2, and the LED indicators is shown in
Figure 2-3.

0SS! PORT

MEMORY CONNECTOR
MA-X0095-88

Figure 2-3 KAG640 Pin and LED Orientation
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Installation and Configuration

2.4.1 System Support Connector (J1)

The system support connector (J1) is a 40-pin connector used to provide
the connection to the Ethernet controller and the system console, and for
configuration and display purposes. Table 2-1 gives the pinouts for the

system support connector.

Table 2-1 System Support Connector (J1) Pinouts

Pin Mnemonic Meaning

01 XMIT- H Transmit - output to the LAN interface
02 XMIT+ H Transmit + output to the LAN interface
03 GND Ground

04 GND Ground

05 GND Ground

06 RCV-H Receive - input from the LAN interface
07 RCV+ H Receive + input from the LAN interface
08 GND Ground

09 GND Ground

10 GND Ground

11 COL-H Collision

12 COL+ H Collision

13 GND Ground

14 GND Ground

15 GND Ground

16 GND Ground

17 +12V Fused +12 Vdc

18 GND Ground

19 DTRH Data Terminal Ready.

20 GND Ground

21 TXD L Transmit Data.

22 SPIDO L Not used with H3602-SA.

23 SPID1 L Not used with H3602-SA.

24 RXD L Receive Data.

25 RXD H Receive Data.

26 SPID2 L Not used with H3602-SA.

27 +5V Fused +5 Vdc

28 CONBITRATE2 L Console Bit Rate <02:00>. These three bits
29 CONBITRATE1 L determine the console baud rate. They are
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Table 2-1 (Cont.) System Support Connector (J1) Pinouts

Pin  Mnemonic Meaning

30 CONBITRATEO L configured using the select switch on the inside of
the H3602-SA.

31 LEDCODEO L LED Code register bits <03:00>.

32 LEDCODE1 L When asserted each of these four

33 LEDCODE2 L output signals lights a

34 LEDCODE3 L corresponding LED on the module.

11 DSFLO3 L DSPL <03:00> are asserted (low) by power-up and
by the negation of DCOK when the processor is
halted. They are updated by boot and diagnostic
programs from the BDR. :

35 ENBHALT L Halt Enable.

35 ENBHALT L Halt Enable. This input signal controls the response
to an external halt condition. If ENBHALT is
asserted (low), then the KA640 halts and enters
the console program if any of the following occur:

e The program executes a halt instruction in

’ kernel mode
~e  The console detects a break character

*  The Q22-bus halt line is asserted

If ENBHALT is negated (high), then the halt line
and break character are ignored and the ROM
program responds to a halt instruction by restarting
or rebooting the system. ENBHALT is read by
software from the BDR.

36 BDCODE1 L Boot and Diagnostic code <01:00>. This 2-bit code

37 BDCODEQO L indicates power-up mode, and is read by software

. from the BDR.

38 VBAT H Battery Backup Voltage for the TOY clock.

39 CPUCODE1 L CPU Code <01:00>. This 2-bit code

40 CPUCODEO L is read by software from the BDR.

The configuration for the CPU code is as follows:
00 Normal operation

01 Reserved

10 Reserved

11 Reserved
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2.4.2 Memory/DSSI Connector (J2)

J2 is a dual 50-pin connector (100 pins total) that provides two interfaces.
The lower 50 pins are used as the memory interface between the KA640
and the MS650 memory modules; the upper 50 pins are used for the DSSI
controller. The cables and connectors are keyed to prevent the memory
cable from being installed into the DSSI connector and/or the DSSI cable
from being installed into the memory connector.

Table 2-2 lists the pinouts for the memory portion of J2 (lower 50 pins).
Table 2-3 lists the pinouts for the DSSI portion of J2 (upper 50 pins).

Table 2-2 Memory/DSSI Connector (J2-Lower) Pinouts .

Pin Mnemeonic ' Pin Mnemonic
01 GND 26 D MD10 H
02 D MD9 H 27 GND

03 D MD8 H 28 D MD29 H
04 D MD7 H 29 D MD28 H
05 GND : 30 D MD27 H
06 D MDé6 H : 31 GND

07 D MDS H 32 D MD26 H
08 D MD4 H 33 D MD25 H
09 D MD3 H 34 D MD24 H
10 GND 35 D MD23 H
11 D MD2 H 36 GND

12 D MD1H 37 D MD22 H
13 D MDO H 38 D MD21 H
14 D MD19 H 39 D MD20 H
15 GND 40 D MD38 H
16 D MD18 H 41 GND

17 D MD17 H 42 D MD37 H
18 D MD16 H 43 D MD36 H
19 D MD15 H 44 D MD35 H
20 GND 45 D MD34 H
21 D MD14 H 46 GND

22 D MD13 H 47 D MD33 H
23 D MD12 H 48 D MD32 H
24 GND 49 D MD31 H

25 D MD11 H 50 D MD30 H
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Table 2-3 DSSI Connector (J2-Upper) Pinouts

Pin Mnemonic Pin Mnemonic
- 51 DSSIDATAQO L 76 VTERM H

52 GND 77 VTERM H

53 DSSIDATAL1 L 78 VTERM H

54 GND 79 GND

55 DSSIDATA2 L 80 Unused

56 GND 81 GND

57 DSSIDATA3 L 82 Unused

58 GND 83 GND

59 DSSIDATA4 L 84 Unused

60 GND 85 GND

61 DSSIDATAS L 86 DSSIBSY L

62 GND 87 GND

63 DSSIDATA6 L 88 DSSIACK L

64 GND 89 GND

65 DSSIDATA7 L 0 DSSIRST L

66 GND 91 GND

67 DSSIPARITY L ’ 92 Unused

68 GND 93 GND

69 Unused 94 DSSISEL L

70 GND 95 GND

71 Unused 96 DSSIC/D L

72 GND 97 GND

73 VTERM H 98 DSSIREQ L

74 VTERM H 99 GND

75 VTERM H 100 DSSIllO L

2.5 H3602-SA CPU Cover Panel

The H3602-SA CPU cover panel is a special I/O panel that is used in BA213
and BA215 enclosures. A one-piece ribbon cable on the H3602-SA plugs
into the system support connector (J1) on the KA640. The H3602-SA fits
over backplane slots 1 and 2, covering both the KA640 CPU module and
the first of three possible M5650 memory modules.



16 Installation and Configuration

The H3602-SA CPU cover panel (Flgure 2-4) includes the features and
controls specified in Table 2-4

Table 2-4 H3602-SA Features and Controls

Qutside Inside
Modified modular jack (MM]) SLU Baud rate rotary switch
connector ,
Power-up mode switch Battery backup unit (BBU) for TOY clock
Hexadecimal LED display 40-pin cable connector
Break enable switch List of baud rate switch settings
Standard/ThinWire Ethernet
connectors
Standard/ ThinWire Ethernet
selector
Indicator LEDs
\y
s ==
g
3

N/ N

MA:-X0787-88

Figure 2-4 H3602-SA CPU Cover Panel
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2. 6 Compattble System Enclosures
The KA640 is compatible with the followmg Dtgltal enclosures.
BA213 :

The BA213 contains a 4 row by 12 slot backplane, with the Q22-bus
-implemented in the AB rows of slots 1 through 12. The CD interconnect is
implemented in the CD rows of slots 1 through 12, allowmg up to 3 memory
modules to be used. The BA213 has: mounting space for up to four 13.2 cm
(5.25 inch) mass storage devices. The BA213 is equipped with two modular
power supplies. Each power supply delivers 7.0 A (maximum) at +12 Vdc
and 33.0 A (maximum) at +5 Vdc. The combined maximum current at +12
Vdc and +5 Vdc must not exceed 230 watts of power for each supply.

BA215

The BA215 contains a 4 row by 6 slot backplane, with the Q22-bus
implemented in the AB rows of slots 1 through 6. The CD interconnect is
implemented in the CD rows of slots 1 through 6, allowing up to 3 memory
modules to be used. The BA215 has mounting space for up to 3 mass storage
devices (one full-height and two half-height). The BA215 is equipped with
one power supply that delivers 7.0 A (maximum) at +12 Vdc and 33.0 A
(maximum) at +5 Vdc. The maximum current at +12 Vdc and +5 Vdc must
not consume more than 230 watts of power.



Architecture

This chapter describes the KA640 registers, instruction set, and memory.
The chapter covers the following KA640 topics:

e Central processor

* Floating-point accéleratbr

*  Cache memory |

* Main memory system

4 Conéole serial line

* Time of year clock and timers
* Boot and diagnostic facility
¢ (Q22-bus interface

* Mass storage interface

¢ Network interface

3.1 Central Processor

The central processor of the KA640 supports the MicroVAX chip subset
(plus six additional string instructions) of the VAX instruction set and data
types and full VAX memory management. It is implemented by a single
VLSI chip called the CVAX. : .

18
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3.1.1 Processor State

The processor state consists of that portion of the state of a process that is
stored in processor registers rather than in memory. The processor state is
composed of sixteen general purpose registers (GPRs), the processor status
longword (PSL), and the internal processor registers (IPRs).

Non-privileged software can access the GPRs and the processor status word
(bits <15:00> of the PSL). The IPRs and bits <31:16> of the PSL can only
be accessed by privileged software. The IPRs are explicitly accessible only
by the move to processor register (MTPR) and move from processor register
(MFPR) instructions that can be executed only while running in kernel mode.

3.1.1.1 General Purpose Registers

The KA640 implements 16 GPRs as specified in the VAX Architecture
Reference Manual. These registers are used for temporary storage, as
accumulators, and as base and index registers for addressing. These
registers are denoted R0 - R15. The bits of a register are numbered from
the right <0> through <31> (Figure 3-1).

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2.1 0

INNRRRNENRRERRNRRENENRRERRRARERY

MA-1100-87

Figure 3-1 General Purpose Register Bit Map

Certain of these registers have been assigned special meaning by the VAX-
11 architecture:

e RI15 is the program counter (PC). The PC contains the address of the
next instruction byte of the program.

e R14 is the stack pointer (SP). The SP contains the address of the top of
the processor defined stack.

e R13 is the frame pointer (FP). The VAX-11 procedure call convention
builds a data structure on the stack called a stack frame. The FP contains
the address of the base of this data structure.

e R12is the argument pointer (AP). The VAX-11 procedure call convention
uses a data structure called an argument list. The AP contains the address
of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the
operation and use of these registers.
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3.1.1.2 Processor Status Longword

The KA640 processor status longword (PSL) is implemented per the VAX
Architecture Reference Manual, which should be consulted for a detailed
description of the operation of this register. The PSL is saved on the stack
when an exception or interrupt occurs and is saved in the process control
block (PCB) on a process context switch. Bits <15:00> may be accessed
by non-privileged software, while bits <31:16> may only be accessed by
privileged software. Processor initialization sets the PSL to 041F 0000 ¢.
Figure 3-2 shows the processor status longword bit map.

3130292827262524232221 20 1615 876543210
1PL M8z . T{N|Z}V]|C

cud | =

™ FU

MBZ == ov

FPD

s

CUR MOD

PRV MOD

MBZ

RLALIA ]
MA-1088.87

Figure 3-2 PSL Bit Map

Data Bit Definition

PSL <31> - (CM) Compatibility mode. This bit always reads as zero;
loading a 1 into this bit is a NOP.

PSL <30> (TP) Trace pending

PSL <29:28 > Unused, must be written as zero. -

PSL <27> (FPD) First part done

PSL <26> (IS) Interrupt stack

PSL <25:24> (CUR) Current mode
PSL <23:22$ (PRV) Previous mode
PSL <21> Unused, must be written as zero.

PSL <20:16> (IPL) Interrupt priority level
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Data Bit Definition
PSL <15:8> Unused, must be written as zero.
PSL <7> (DV) Decimal overflow trap enable. This read/write bit has no

effect on KA640 hardware; it can be used by macrocode which
emulates VAX decimal instructions.

PSL <6> (FU) Floating underflow fault enable
PSL <5> (IV) Integer overflow trap enable
PSL <4> (T) Trace trap enable

PSL <3> (N) Negative condition code

PSL <2> (Z) Zero condition code

PSL <1> (V) Overflow condition code

PSL <0> (C) Carry condition code

NOTE

VAX compatibility mode instructions can be emulated by macrocode, but
the emulation software runs in native mode, so the CM bit is never set.

3.1.1.3 Internal Processor Registers

The KA640 IPRs can be accessed by using the MFPR and MTPR privileged
instructions. Each IPR falls into one of the following seven categories:

1. Implemented by KA640 (in the CVAX chip) as specified in the VAX
Architecture Reference Manual

2. Implemented by KA640 (in the SSC) as specified in the VAX Architecture
Reference Manual

3. Implemented by KA640 (and all designs that use the CVAX chip)
uniquely .

4. Implemented by KA640 (and all designs that use the SSC) uniquely

Not implemented, timed out by the CDAL bus timer (in the SSC) after
4 us. Read as zero, NOP on write.

Access not allowed; accesses result in a reserved operand fault

Accessible, but not fully implemented; accesses yield unpredictable
resuits
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Refer to Table 3-1 for a listing of each of the KA640 IPRs, along with its
mnemonic, its access type (read or write) and its category number.

Table 3-1 KA640 Internal Processor Registers

Decimal Hex Register Name Mnemonic Type Category
0 0 Kernel stack pointer KSP RIW 1

1 1 Executive stack pointer ESP RIW 1

2 2 Supervisor stack pointer SSP RIW 1

3 3 User stack pointer usP RwW 1

4 4 Interrupt stack pointer ISP RIW 1
7:5 7:5 Reserved . 5

8 8 PO base register POBR RW 1

9 9 PO length register POLR RiwW 1
10 A P1 base register P1BR RwW 1
11 B P1 length register P1LR RIW 1
12 C System base register . SBR RiwW 1
13 D Systern length register SLR RIwW 1
15:14 F:E  Reserved 5
16 10 Process control block base PCBB RW 1
17 11 System control block base SCBB RIW 1
18 12 Interrupt priority level IPL RW 11
19 13 AST level ASTLVL RW 11
20 14 Software interrupt request SIRR w 1
21 15 Software interrupt summary SISR RW 11
23:22 17:16 Reserved 5
24 18 Interval clock control/status ICCS RW 31
25 19 Next interval count NICR w 5
26 1A Interval count ICR R 5
27 1B Time of year TODR RIW 2
28 1C  Console storage receiver status CSRS RW 71
29 1D Console storage receiver data CSRD R 71
30 1E Console storage transmit status CSTS RW 71
31 1F  Console storage transmit data CSTD w 7r
32 20  Console receiver control/status ~ RXCS  R/W 4T
33 21 Console receiver data buffer RXDB R 4TI
34 22 ' Console transmit control/status  TXCS RW 4I"
35 23 Console transmit data buffer TXDB w a1

“An I following the category number indicates that the register is initialized on power-up
and by the negation of DCOK when the processor is halted.
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Table 3-1 (Cont.) KAG640 Internal Processor Registers

Decimal Hex Register Name Mnemonic Type Category
36 24 Translation buffer disable TBDR RIW 5
37 25  Cache disable CADR  RW 3T
38 26 Machine check error summary MCESR  R/W 5
39 27 Memory system error MSER RW 31
41:40 29:28 Reserved 5
42 2A Console saved PC SAVPC = R 3
43 2B Console saved PSL SAVPSL R 3
47:44 2F:2C Reserved , 5
48 30 SBI fault/status SBIFS RIW 5
49 31 SBI silo SBIS R 5
50 32 SBI silo comparator SBISC RIW 5
51 33 SBI maintenance SBIMT RIW 5
52 34 SBI error register SBIER RIW 5
53 35 SBI timeout address register SBITA R 5
54 36 SBI quadword clear SBIQC w 5
55 37 /O bus reset IORESET W 4
56 38 Memory management enable MAPEN R/W 1
57 39 TB invalidate all TBIA w 1
58 3A TB invalidate single TBIS w 1
59 3B TB data TBDATA R/W 5
60 3C  Microprogram break MBRK RIW 5
61 3D Performance monitor enable PMR RIW 5
62 3E System identification SID R 1
63 3F Translation buffer check TBCHK W 1
64:127  40:7F Reserved 6

. "An I following the category number indicates that the register is initialized on power-up
and by the negation of DCOK when the processor is halted.

KA640 VAX Standard IPRs

The KA640 implements VAX standard IPRs as specified in the VAX
Architecture Reference Manual. The VAX Architecture Reference Manual should
be consulted for details on the operation and use of these registers.

The VAX standard IPRs listed in Table 3-2 are also referenced in other
sections of this manual.



24 Architecture

Table 3-2 VAX Standard IPRs

- Number Register Name Mnemonic Section
12 System base register SBR Section 3.1.5.3
13 System length register SLR Section 3.1.5.3
16 Process control block base PCBB Section 3.1.5
17 System control block base SCBB Section 3.1.5.4
18 Interrupt priority level IPL Section 3.1.5:1
20 Software interrupt request SIRR Section 3.1.5.1
21 Software interrupt summary SISR Section 3.1.5.1
27 Time of year clock TODR Section 3.6.1
56 Memory management enable MAPEN"  Section 3.1.4.2
57 Translation buffer invalidate all TBIA Section 3.1.4.2
58 Translation buffer invalidate single  TBIS Section 3.1.4.2
62 System identification SID Section 3.1.6

63 Translation buffer check TBCHK Section 3.1.4.2

KA640 Unique: IPRs

IPRs that are implemented uniquely on the KA640 (i.e., those that are not
contained in, or do not fully conform to the standards in the VAX Architecture
Reference Manual) are described in detail in this manual. Refer to the sections
listed in Table 3-3 for a description of these registers.

Table 3-3 KAG640 Unique IPRs

Number Register Name Mnemonic Section

24 Interval clock control/status ICCS Section 3.6.2
32 Console receiver control/status RXCS Section 3.5.1.1
33 Console receiver data buffer RXDB Section 3.5.1.2
34 Console transmit control/status TXCS Section 3.5.1.3
35 Console transmit data buffer TXDB Section 3.5.1.4
37 Cache disable CADR Section 3.3.2.5
39 Memory system error MSER Section 3.3.2.6
42 Console saved PC SAVPC Section 3.1.5
43 Console saved PSL SAVPSL Section 3.1.5

55 /O bus reset IORESET  Section 3.7.5.3
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3.1.2 Data Types
The KA640 CPU supports the following subset of the VAX data types:

[

Byte

Word

Longword

Quadword

Character string
Variable length bit field

Support for the remaining VAX data types can be provided via macrocode
emulation.

3.1.3 Instruction Set

The KA640 CPU implements the following subset of the VAX mstructxon
set types in microcode:

Integer arithmetic and logical
Address '
Variable length bit field
Control

Procedure call

Miscellaneous

Queue”

Character string moves (MOVC3, Movcs CMPC3 CMPC5”,
LOCC", SCANC", SKPC", and SPANC")

Operating system support
F_ﬂoaiing
G_floating
D_floating

“ These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX [I) and therefore had to be emulated.
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The KA640 CVAX chip provides special microcode assistance to aid the
macrocode emulation of the following instruction groups:

e Character string (except MOVC3, MOVC5, CMPC3* CMPC5”, LOCC”,
SCANC", SKPC", and SPANC")

¢ Decimal string
e CRC
¢ EDITPC

The following instruction groups are not implemented, but may be emulated
by macrocode: :

¢  QOctaword

¢ Compatibility mode instructions

3.1.4 Memory Management

The KA640 implements full VAX memory management as defined in the
VAX Architecture Reference Manual. System space addresses are virtually
mapped through single-level page tables, and process space addresses are
virtually mapped through two-level page tables. See the VAX Architecture
Reference Manual for descriptions of the virtual to physical address translation
process, and the format for VAX page table entries (PTEs).

3.1.4.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses to
physical addresses, the KA640 employs a 28-entry, fully associative,
translation buffer for caching VAX PTEs in modified form. Each entry can
store a modified PTE for translating virtual addresses in either the VAX
process space, or VAX system space. The translation buffer is flushed
whenever memory management is enabled or disabled (i.e., by writes to
IPR 56), any page table base or length registers are modified (i.e., by writes
to IPRs 8 - 13) and by writing to IPR 57 (TBIA) or IPR 58 (TBIS).

Each entry is divided into two parts: a 23-bit tag register and a 31-bit PTE
register. The tag register is used to store the virtual page number (VPN)
of the virtual page that the corresponding PTE register maps. The PTE
register stores the 21-bit PFN field, the PTE.V bit, the PTE.M bit and an 8-
bit partially decoded representation of the 4-bit VAX PTE PROT field, from
the corresponding VAX PTE, as well as a translation buffer valid (TB.V) bit.

" These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX M) and therefore had to be emulated.
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During virtual to physical address translation, the contents of the 28 tag
registers are compared with the virtual page number field (bits <31:9>) of
the virtual address of the reference. If there is a match with one of the tag
registers, then a translation buffer hit has occurred, and the contents of the
corresponding PTE register is used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and the
PTE must be fetched from memory. Upon fetching the PTE, the translation
buffer is updated by replacing the entry that is selected by the replacement
pointer. Since this pointer is moved to the next sequential translation buffer
entry whenever it is pointing to an entry that is accessed, the replacement
algorithm is not last used (NLU).

3.1.4.2 Memory Management Control Registers

There are four IPRs that control the memory management unit (MMU): IPR
56 (MAPEN), IPR 57 (TBIA), IPR 58 (TBIS), and IPR 63 (TBCHK). »

Memory management can be enabled/disabled via IPR 56 (MAPEN). Writing
a 0 to this register with a MTPR instruction disables memory management,
and writing a 1 to this register with a MTPR instruction enables memory
management. Writes to this register flush the translation buffer. To
determine whether or not memory management is enabled, IPR 56 is read
using the MFPR instruction. Translation buffer entries that map a particular
virtual address can be invalidated by writing the virtual address to IPR 58
(TBIS) using the MTPR instruction.

NOTE
Whenever software changes a valid PTE for the system or current process
region, or a system PTE that maps any part of the current process page table,
all process pages mapped by the PTE must be invalidated in the translation
buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57
(TBIA) using the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation
for a particular virtual page by writing a virtual address within that page
to IPR 63 (TBCHK) using the MTPR instruction. If the translation buffer
contains a valid translation for the page, the condition code V bit (bit <1>
of the PSL) is set.

NOTE
The TBIS, TBIA, and TBCHK IPRs are write only. The operation of a MFPR
instruction from any of these registers is undefined.
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3.1.5 Exceptions and Interrupts

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is caused by the execution of the current instruction
and is typically handled by the current process (e.g. an arithmetic overflow),
while an interrupt is caused by some activity outside the current process
and typically transfers control outside the process (e.g. an interrupt from
an external hardware device).

3.1.5.1 Interrupts
Interrupts can be divided into two classes: non-maskable, and maskable.

Non-maskable interrupts cause a halt via the hardware halt procedure which
saves the PC, PSL, MAPEN < 0> and a halt code in IPRs, raises the processor -
IPL to 1F and then passes control to the resident firmware. The firmware
dispatches the interrupt to the appropriate service routine based on the halt
code and hardware event indicators. Non-maskable interrupts cannot be
blocked by raising the processor IPL, but can be blocked by running out of
the hait protected address space (except those non-maskable interrupts that
generate a halt code of 3). Non-maskable interrupts with a halt code of 3
cannot be blocked since this halt code is generated after a hardware reset.

Maskable interrupts cause the PC and PSL to be saved, the processor IPL to
be raised to the priority level of the interrupt (except for Q22-bus interrupts
where the processor IPL is set to 17 independent of the level at which the
interrupt was received) and the interrupt to be dispatched to the appropriate
service routine through the system control block (SCB).

The various interrupt conditions for the KA640 are listed in Table 3-4 Falong
with their associated priority levels and SCB offsets.

Table 3-4 Interrupts
Priority Level  Interrupt Condition SCB Offset

Non-maskable BDCOK and BPOK negated then asserted
on Q22-bus (Power up)
BDCOK negated then asserted while BPOK
asserted on Q22-bus (SCR<7> clear)

BDCOK negated then asserted while BPOK
asserted on Q22-bus (SCR<7> set)

BHALT asserted on Q22-bus t
BREAK generated by the console device t

" These conditions generate a hardware halt procedure with a halt code of 3 (hardware
reset).
tThese conditions generate a hardware halt procedure with a halt code of 2 (external halt).
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Priority Level ~ Interrupt Condition SCB Offset’
1F Unused
1E BPOK negated on Q22-bus 0C
1D CDAL bus parity error 60
Q22-bus NXM on a write 60
CDAL bus timeout during DMA 60
Main memory NXM errors 60
Uncorrectable main memory errors 60
1C-1B Unused
1A Correctable main memory errors 54
19-18 Unused
17 BR7 L asserted Q22-bus vector plus
. 200 16
16 Interval timer interrupt Co
BR6 L asserted Q22-bus vector plus
200 15
15 BR5 L asserted Q22-bus vector plus
) 200 16
14 Console terminal F8,F6 15
Programmable timers 78,7C
Mass storage interface Cs
Network interface D4
BR4 L asserted Q22-bus vector plus
200 16 :
13-10 Unused
OF - 01 Software interrupt requests 84-BC
NOTE

Because the Q22-bus does not allow differentiation between the four bus
grant levels (i.e., a level 7 device could respond to a level 4 bus grant), the
KA640 CPU raises the IPL to 17 after responding to interrupts generated by
the assertion of either BR7 L, BR6 L, BR5 L, or BR4 L. The KA640 maintains
the IPL at the priority of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs: IPR 18, the interrupt
priority level register (IPL), IPR 20, the software interrupt request register
(SIRR), and IPR 21, the software interrupt summary register (SISR).
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The IPL is used for loading the processor priority field in the PSL (bits
<20:16>). The SIRR is used for creating software interrupt requests. The
SISR records pending software interrupt requests at leveis 1 through 15.
The format of these registers is shown in Figure 3-3. Refer to the VAX
Architecture Reference Manual for more information on these registers.

3 5 4 0
IGNORED. RETURNS 0 PsL<20:163 1Pt
3 43 o
IGNORED REQUEST| SIRR
3 1615 0
PENDING SOFTWARE INTERRUPTS SISR
FEDCBAS8 7654332

MmBz

CLAETAL ]
MA-1086-87

Figure 3-3 Interrupt Registers

3.1.5.2 Exceptions
Exceptions can be divided into three types:

¢ Trap
¢ Fault
e Abort

A trap is an exception that occurs at the end of the instruction that caused
the exception. After an instruction traps, the PC saved on the stack is the
address of the next instruction that would have normally been executed and
the instruction can be restarted.
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A fault is an exception that occurs during an instruction, and that leaves the
registers and memory in a consistent state such that the elimination of the
fault condition and restarting the instruction will give correct results. After
an instruction faults, the PC saved on the stack points to the instruction that
faulted.

An abort is an exception that occurs during an instruction, leaving the value
of the registers and memory unpredictable, such that the instruction cannot
necessarily be correctly restarted, completed, simulated or undone. After
an instruction aborts, the PC saved on the stack points to the instruction
that was aborted (which may or may not be the instruction that caused the
abort) and the instruction may or may not be restarted depending on the
class of the exception and the contents of the parameters that were saved.

Exceptions are grouped into six classes:
*  Arithmetic exceptions

- Memory management exceptions

¢ Operand reference exceptions

¢ Instruction execution exceptions

¢ Tracing exception

e System failure exceptions

A list of exceptions grouped by class is given in Table 3-5. Exceptions
save the PC and PSL and in some cases, one or more parameters, on the
stack. Most exceptions do not change the IPL of the processor (except the
exceptions in serious system failures class, which set the processor IPL to
1F) and cause the exception to be dispatched to the appropriate service
routine through the SCB (except for the interrupt stack not valid exception,
and exceptions that occur while an interrupt or another exception are being
serviced, which cause the exception to be dispatched to the appropriate
service routine by the resident firmware).

The exceptions listed in Table 3-5 (except machine check) are described in
greater detail in the VAX Architecture Reference Manual. The machine check
exception is described in greater detail in Section 3.1.5.3. Exceptions that
can occur while servicing an interrupt or another exception are listed in
Table 3-8 in Section 3.1.5.6.
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Table 3-5 Exceptions

Arithmetic Exceptions Type SCB Offset

Integer overflow Trap 34

Integer divide-by-zero Trap 34

Subscript range Trap 34

Floating overflow Fault 34

Floating divide-by-zero Fault 34

Floating underflow Fault 34

Memory Management Exceptions Type SCB Offset-

Access control violation Fault 20

Translation not valid Fault 24

Operand Reference Exceptions Type SCB Offset

Reserved addreséing mbode Fault 1C

Reserved operand fault Abort 18

Instruction Execution Exceptions Type SCB Offset

Reserved/privileged instruction Fault 10

Emulated instruction Fault C8, CC

Change mode Trap 40-4C

Breakpoint Fault 2C

Tracing Exception Type SCB Offset
" Trace Fault 28

System Failure Exceptions Type Offset

Interrupt stack not valid Abort

Kernel stack not valid Abort 08

" Dispatched by resident firmware rather than through the SCB
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Table:3-5 (Cont.) - Exceptions:

System Failure Exceptions ‘ Type Offset
Machine check ' Abort 04
CDAL bus parity errors:

Cache parity errors:

Q22-bus: NXM errors:

Q22-bus device parity errors
Q22-bus:NO GRANT errors

CDAL bus timeout errors

Main memory NXM errors:

Main memory uncorrectable errors

3.1.5.3 Information Saved On A Machine Check Exception

In response to a machine check exception the PSL, PC, four parameters,
and a byte count are pushed onto the stack, as shown in Figure 3-4.

BYTE COUNT : SP

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION 1

INTERNAL STATE INFORMATION 2

PC

PSL

MA-1121-87

Figure 3-4 Information Saved On: A Machine Check Exception

The meaning of this information and how it effects the recovery procedure
is described in the following paragraphs.

Byte Count

<31:0> = 0000 0010 {5, 16 1. This value indicates the number of bytes of
information that follow on the stack (not including the PC and PSL).
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* Machine: Check Code Parameter
Machine Check Code <31:0>—A code value that indicates the . type of

machine check that occurred. A list of the possible machine check codes
(in hex) and theu: assocxated causes follows.

Floatmg Point Errors-These codes indicate that the floating point accelerator
(FPA) chip detected an error while commumcatmg with the CVAX CPU chip
during the execution ofa floating point instruction. The most likely cause(s)
of these types of machine checks are: a problem internal to the CVAX CPU
chip; a problem internal to the FPA, or a problem with the interconnect
between: the two' chips. Machine checks due to floating point errors may
be recoverable, depending on the state of the VAX CAN'T RESTART flag
(captured in Internal State Information 2 <15>) and the FIRST PART DONE
flag (captured in PSL <27 >). If the FIRST PART DONE flag is set, the error
is recoverable. ' If the FIRST PART DONE flag is cleared, then the VAX
CAN'T RESTART ﬂag must also be cleared for the error to be recoverable.

Otherwise, the error is unrecoverable and depending on the current mode,
either the current process or the operating system should be terminated..
The information pushed onto the stack by this type of machine check is
from the instruction that caused the machine check.

Hex

Code Error Description 7

1 A protocol error was detected by the FPA chip while attempting to
execute a floating point instruction.

2 A reserved instruction was detected by the FPA while attempting to
execute a floating point instruction.

3 An illegal status code was returned by the FPA while attemptmg to
execute a floating point instruction. CPSTA<1:0>=10 .

4 An illegal status code was returned by the FPA while attempting to

execute a floating point instruction. CPSTA<1:0> =01

Memory Management Errors—These codes indicate that the microcode in
the CVAX CPU chip detected an impossible situation while performing
functions associated with memory management. The most likely cause
of this type of a machine check is a problem internal to the CVAX chip.
Machine checks due to memory management errors are non-recoverable.
Depending on the current mode, either the current process or the operating
system should be terminated. The state of the POBR, POLR, P1BR, P1LR,
SBR, and SLR should be logged.
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Hex
Code Error Description

5 The calculated virtual address for a process PTE was in the PO space
instead of the system space when the CPU attempted to access a process
PTE after a translation buffer miss.

6 The calculated virtual address space for a process PTE was in the P1
space instead of the system space when the CPU attempted to access a
process PTE after a translation buffer miss.

7 The calculated virtual address for a process PTE was in the PO space
instead of the system space when the CPU attempted to access a
process PTE to change the PTE <M > bit before writing to a previously
unmodified page.

8 The calculated virtual address for a process PTE was in the P1 space
instead of the system space when the CPU attempted to access a
process PTE to change the PTE <M > bit before writing to a previously
unmodified page. '

Interrupt Errors—This code indicates that the interrupt controller in the CVAX
CPU requested a hardware interrupt at an unused hardware IPL. The most
likely cause of this type of a machine check is a problem internal to the
CVAX chip. Machine checks due to unused IPL errors are non-recoverable.
A non-vectored interrupt generated by a serious error condition (memory
error, power fail, or processor halt) has probably been lost. The operating
system should be terminated.

Hex

Code Error Description

9 A hardware interrupt was requested at an unused Interrupt Priority
Level (IPL).

Microcode Errors—This code indicates that an impossible situation was
detected by the microcode during instruction execution. Note that
most erroneous branches in the CVAX CPU microcode cause random
microinstructions to be executed. The most likely cause of this type of
machine check is a problem internal to the CVAX chip. Machine checks due
to microcode errors are non-recoverable. Depending on the current mode,
either the current process or the operating system should be terminated.
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Hex
Code Error Description

A An impossible state was detected during a MOVC3 or MOVCS
instruction (not move forward, move backward, or fill).

Read Errors—These codes indicate that an error was detected while the
CVAX CPU was attempting to read from either the cache, main memory,
or the Q22-bus. The most likely cause of this type of machine check
must be determined from the state of the MSER, DSER, MEMCSR16,
QBEAR, DEAR, and CBTCR. Machine checks due to read errors may be
recoverable, depending on the state of the VAX CAN'T RESTART flag
(captured in Internal State Information 2 <15>) and the FIRST PART DONE
flag (captured in PSL <27>). If the FIRST PART DONE flag is set, the error
is recoverable. If the FIRST PART DONE flag is cleared, then the VAX
CAN'T RESTART flag must also be cleared for the error to be recoverable.
Otherwise, the error is unrecoverable and depending on the current mode,
either the current process or the operating system should be terminated.
The information pushed onto the stack by this type of machine check is
from the instruction that caused the machine check.

Hex

Code Error Description

80 An error occurred while reading an operand, a process PTE during
address translation, or on any read generated as part of an interlocked
instruction. .

81 An error occurred while reading a system page table entry (SPTE),

during address translation, a process control block (PCB) entry during a
context switch, or a system control block (SCB) entry while processing
an interrupt.

Write Errors—These codes indicate that an error was detected while the
CVAX CPU was attempting to write to either the cache, main memory,
or the Q22-bus. The most likely cause of this type of machine check must
be determined from the state of the MSER, DSER, MEMCSR16, QBEAR,
DEAR, and CBTCR. Machine checks due to write errors are non-recoverable
because the CPU is capable of performing many read operations out of the
cache before a write c:geration completes. For this reason, the information
that is pushed onto the stack by this type of machine check cannot be
guaranteed to be from the instruction that caused the machine check.
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Hex

Code Error Description

82 An error occurred while writing an operand, or a process page table
entry (PPTE) to change the PTE <M > bit before writing a previously
unmodified page.

83 - An error occurred while writing a system page table entry (SPTE) to

change the PTE <M > bit before writing a previously unmodified page,
or a PCB entry during a context switch or during the execution of
instructions that modify any stack pointers stored in the PCB.

Most Recent Virtual Address Parameter

Most Recent Virtual Address <31:0>—This field captures the contents of
the virtual address pointer register at the time of the machine check. If a
machine check other than a machine check 81 occurred on a read operation,
this field represents the virtual address of the location that was being read
when the error occurred, plus four. If machine check 81 occurred, this field
represents the physical address of the location that was being read when
the error occurred, plus four.

If a machine check other than a machine check 83 occurred on a write
operation, this field represents the virtual address of a location that was
being referenced either when the error occurred, or sometime after the error
occurred, plus four. If a machine check 83 occurred, this field represents
the physical address of the location that was being referenced either when the
error occurred, or sometime after the error occurred, plus four. In other
words, if the machine check occurred on a write operation, the contents of
this field cannot be used for error recovery.

Internal State Information 1 Parameter

Internal State Information 1 is divided into four fields. The contents of these
fields is described below.

<31:24> —This field captures the o‘pcode of the instruction that was being
read or executed at the time of the machine check.

<23:16>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The four most significant bits are equal to
<1110> and the four least significant bits contain highest priority software
interrupt <3:0>.

<15:8>—This field captures the state of CADR <7:0> at the time of the
machine check. See Section 3.3.2.5 for an interpretation of the contents of
this register.
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<7:0>—This field captures the state of the MSER <7:0> at the time of the
machine check. See Section 3.3.2.6 for an interpretation of the contents of
this register.

Internal State Information 2 Parameter

Internal State Information 2 is divided into five fields. Thre contents of these
fields is described below.

<31:24>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. This field contains SC register <7:0>.

<23:16>~—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The two most significant bits are equal to
11 (binary) and the six least significant bits contain state flags <5:0>.

<15>—This field captures the state of the VAX CAN'T RESTART flag at
the time of the machine check.

<14:8>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The three most significant bits are equal
to <111> (binary) and the four least significant bits contain ALU condition
codes. '

<7:0>—This field captures the offset between the virtual address of the
start of the instruction being executed at the time of the machine check
(saved PC) and the virtual address of the location being accessed (PC) at the
time of the machine check.

PC

PC <31:0>—This field captures the virtual address of the start of the
instruction being executed at the time of the machine check.

PSL

PSL <31:0>—This field captures the contents of the PSL at the time of the
machine check.
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3.1.5.4 System Control Block

The system control block (SCB) consists of two pages in main memory that
contain the vectors by which interrupts and exceptions are dispatched to the
appropriate service routines. The SCB is pointed to by IPR 17, the system
control block base register (SCBB), represented in Figure 3-5. The SCB
format is presented in Table 3-6.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 Q

MBZ PHYSICAL LONGWORD ADDRESS OF PCB MBz scss

e sra2
Ma.1081.87

Figure 3-5 System Control Block Base Register

Table 3-6 System Control Block Format

SCB
Offset  Interrupt/Exception Type Parameter Notes
00 Unused IRQ passive release
on other VAXes
04 Machine check Abort 4 Parameters depend
on error type
08 Kernel stack not valid Abort 0 Must be serviced on
interrupt stack
0C Power fail Interrupt 0 IPL is raised to 1E
10 Reserved/privileged Fault 0 '
instruction
14 Customer reserved Fault 0 XFC instruction
instruction .
18 Reserved operand Fault/Abort 0 Not always
: recoverable
1C Reserved addressing Fault 0
mode .
20 Access control violation  Fault 2 Parameters are
virtual address,
. status code
24 Translation not valid Fault 2 parameters are
virtual address,
status code
28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0
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Table 3-6 (Cont.) System Control Block Format

SCB
Offset  Interrupt/Exception Type Parameter Notes
30 Unused Compatibility mode
in other VAXes
34 Arithmetic Trap/Fault 1 Parameter is type
code
38:3C Unused
40 CHMK Trap 1 Parameter is sign-
extended operand-
word
44 CHME Trap 1 Parameter is sign-
extended operand
word
48 CHMS Trap 1 Parameter is sign-
extended operand
word
4C CHMU Trap 1 Parameter is sign-
extended operand
, word
50 Unused
54 Corrected read data Interrupt 0 IPL is 1A (CRD L)
58:5C Unused
60 Memory error Interrupt 0 IPL is 1D
(MEMERR L)
64:6C Unused '
78 Programmable timer 0 Interrupt 0 IPL is 14
7C Programmable timer 1 Interrupt = 0 IPL is 14
80. Unused
84 Software level 1 Interrupt 0
88 Software level 2 Interrupt 0 Ordinarily used for
AST delivery
8C Software level 3 Interrupt 0 "Ordinarily used for
: process scheduling
90:BC ~ Software levels 4-15 Interrupt 0
Co0 Interval timer Interrupt 0 IPL is 16 (INTTIM L)
C4 Mass storage interface Interrupt. 0 IPL is 14
cs8 Emulation start Fault 10 Same mode

exception, FPD =0;
parameters are

‘opcode; PC,

specifiers
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SCB ‘

Offset ~ Interrupt/Exception Type Parameter Notes

CcC Emulation continue Fault 0 Same mode
exception, FPD=1:
no parameters

Do Unused

D4 Network interface Interrupt 0 [PLis 14

D8:DC  Unused

EO:EC  Reserved for customer

or CSS use .

FO:F4 Unused Console storage
registers on 11/750
and 11/730

F8 Console receiver Interrupt 0 IPLis 14

EC Console transmitter Interrupt 0 IPL is 14 ,

100:1FC  Adapter vectors Interrupt 0 Not implemented by

. the KA640

200:3FC  Device vectors Interrupt 0 Correspond to Q22-
bus Vectors 000:1FC;
KA640 appends
the assertion of bit

: <9,0>
400:FFC Unused Interrupt =~ 0

3.1.5.5 Hardware Detected Errors
The KA640 is capable of detecting eleven types of error conditions during

program execution.

1. CDAL bus parity errors indicated by MSER <6> (on a read) or

MEMCSR16 <7> (on a write) being set.
Cache tag parity errors indicated by MSER <0> bei'ng set.

® NG oe W N

set.

Cache data parity errors indicated by MSER <1> being set.

Q22-bus NXM errors indicated by DSER <7> being set.

Q22-bus NO SACK errofs (no indicator).

QZZ-bus NO GRANT errors indicated by DSER <2> being set.
Q22-bus device parity errors indicated by DSER <5> being set.
CDAL bus timeout errors indicated by DSER <4 > (only on DMA) being
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9. Main memory NXM errors indicated by DSER <0> (only on DMA)
being set.

10. Main memory correctable errors indicated by MEMCSR16 <29> being
set.

11. Main memory uncorrectable errors indicated by MEMCSR16 <31> and
DSER <4> (only on DMA) being set.

These errors will cause either a machine check exception, a memory error
interrupt, or a corrected read data interrupt, depending on the severity of
the error and the reference type that caused the error.

3.1,5.6' Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware
assists the firmware in emulating a processor halt. The hardware halt
procedure saves the current value of the PC in IPR 42 (SAVPC), and the
current value of the PSL, MAPEN <0 >, and a halt code in IPR 43 (SAVPSL).
The current stack pointer is saved in the appropriate internal register. The
PSL is set to 041F 0000 ¢ (IPL=1F, kernel mode, using the interrupt stack)
and the current stack pointer is loaded from the interrupt stack pointer.
Control is then passed to the resident firmware at physical address 2004
0000 14 with the state of the CPU as follows:

Register New Contents
SAVPC Saved PC
SAVPSL<31:16, 7:0> Saved PSL<31:16,7:0> _ ..
SAVPSL <15> Saved MAPEN <0>
SAVPSL <14> Valid PSL flag (unknown for halt code of 3)
SAVPSL <13:8> Saved restart code
SP Current interrupt stack
- PSL 041F 0000 6
PC ‘ 2004 0000 ¢
MAPEN 0
ICCS 0 (for a halt code of 3)
MSER 0 (for a halt code of 3)
CADR 0 (for a halt code of 3, cache is also flushed)
SISR 0 (for a hait code of 3)
ASTLVL 0 (for a halt code of 3)
All else Undefined

The firmware uses the halt code in combination with any hardware event
indicators to dispatch the execution or interrupt that caused the halt to the
appropriate firmware routine (either console emulation, power-up, reboot,
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or restart). Table 3-7 and Table 3-8 list the interrupts and exceptions
that can cause halts along with their corresponding halt codes and event
indicators.

Table 3-7 Unmaskable Interrupts That Can Cause a Hait

Halt Code Interrupt Condition Event Indicators
2 External Halt (CVAX HALTIN pin asserted)
BHALT asserted on the Q22-bus. DSER< 15>

BDCOK negated and asserted on the Q22- DSER <14>
bus while BPOK stays asserted (Q22-bus
REBOOT/RESTART) and SCR <7> is set.

BREAK generated by the console RXDB <11>

3 Hardware Reset (CVAX RESET pin negated)
BDCOK and BPOK negated then asserted -
on the Q22-bus (Power-up)

BDCOK negated and asserted on the Q22- -

bus while BPOK stays asserted (Q22-bus
REBOOT/RESTART) and SCR <7> is clear.

Table 3-8 Exceptions That Can Cause A Hait
Halt Code Exception Condition

6 HALT instruction executed in kernel mode

Exceptions While Servicing An Interrupt Or Exception

4 Interrupt stack not valid during exception
5 Machine check during normal exception
7 SCB vector bits <1:0> = 11

8 SCB vector bits <1:0> = 10

A CHMx executed while on interrupt stack
B CHMx executed to the interrupt stack

10 ACV or TNV during machine check exception

11 ACYV or TNV during kernel stack not valid exception
12 Machine check during machine check exception

13 Machine check during kernel stack not valid exception
19 PSL <26:24> = 101 during interrupt or exception
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Table 3-8 (Cont.) “ Exceptions That Can Cause A Halt
Halt Code Exception Condition

1A PSL <26:24> = 110 during interrupt or exception
1B PSL <26:24> = 111 during interrupt or exception
1D PSL <26:24> = 101 during REI'
1E PSL <26:24> = 110 during REI
1F PSL <26:24> = 111 during REI

3.1.6 System Identification

The system identification register (SID), IPR 62, is a read-only register
implemented in the CVAX chip, as specified in the VAX Architecture Reference
Manual. This 32-bit, read-only register is used to identify the processor type
and its microcode revision level (Figure 3-6).

3 2423 87 Q
L TYPE - ’ RESERVED Mcaocooe REV. ]

MA-1101-87

Figure 3-6 System Identification Register

Data Bit Definition

SID <31:24> (TYPE) Processor type. This field always reads #x 10 4,
indicating that the processor is implemented using the CVAX
chip.

SID. <23:8> Reserved for future use. - ‘

SID <7:0> (MICROCODE REV.) Microcode revision. This field reflects

the microcode revision level of the CVAX chip.

In order to distinguish between different CPU implementations that use the
same CPU chip, the KA640, as must all VAX processors that use the CVAX
chip, implements a MicroVAX system type register (SYS_TYPE) at physical
address 2004 0004 1¢5. This 32-bit read-only register is implemented in the
KA640 ROM. The format of this register is shown in Figure 3-7.
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31 2423 1615 87 Q

[ SYS_TYPE l REV LEVEL l SYS~SUB-TYPE RESERVED ]

MA.1102.87

Figure 3-7 System Type Register

Data Bit Definition

SYS_TYPE «<31:24> (SYS_TYPE) System type code. This field reads as 01 ;5 for
all single-processor Q22-bus based systems.

SYS_TYPE <«<23:16> (REV LEVEL) Revision level. This field reflects the revision
level of the KA640 firmware. '

SYS_TYPE <15:8> (SYS_SUB_TYPE) System sub-type code. This field reads as
10 4 for the KA640.

SYS_TYPE <7:0> Reserved for Digital use.

3.1.7 CPU References

All references by the CPU can be classified into one of three groups:
¢ Request instruction-stream read references

* Demand data-stream read references

e  Write references

3.1.7.7 Instruction-Stream Read Referencses

The CPU has an instruction prefetcher with a 12-byte (3 longword)
instruction prefetch queue (IPQ) for prefetching program instructions from
either cache or main memory. Whenever there is an empty longword in
the IPQ, and the prefetcher is not halted due to an error, the instruction
prefetcher generates an aligned longword, request instruction-stream (I-
stream) read reference.
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3.1.7.8 Data-Stream Read References

Whenever data is immediately needed by the CPU to continue processing,
a demand data-stream (D-stream) read reference is generated.” More
specifically, demand D-stream references are generated on operand, PTE,
SCB, and PCB references. :

When interlocked instructions, such as branch on bit set and set interlock
(BBSSI) are executed, a demand D-stream read-lock reference is generated.
Since the CPU does not impose any restrictions on data alignment (other
than the aligned operands of the add aligned word interlocked (ADAWI) and
interlocked queue instructions) and since memory can only be accessed one
aligned longword at a time, all data read references are translated into an
appropriate combination of masked and unmasked, aligned longword read
references. ‘

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, demand D-stream read reference
is generated. If the required data is a word that crosses a longword
boundary, or an unaligned longword, then two successive aligned longword
demand D-stream read references are generated. Data larger than a

longword is divided into a number of successive aligned longword demand
D-stream reads, with no optimization.

3.1.7.9 Write References

Whenever data is stored or moved, a write reference is generated. Since
the CPU does not impose any restrictions on data alignment (other than the
aligned operands of the ADAWI and interlocked queue instructions) and
since memory can only be accessed one aligned longword at a time, all data
write references are translated into an appropriate combination of masked
and unmasked aligned longword write references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, write reference is generated.
If the required data is a word that crosses a longword boundary, or an
unaligned longword, then two successive aligned longword write references
are generated. Data larger than a longword is divided into a number of
successive aligned longword writes.

3.2 Floating Point Accelerator

The KA640 floating point accelerator is implemented via a single VLSI chip
called the CFPA.
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3.2.1 Floatmg Pomt Accelerator Instructlons

The KA640 floating point accelerator processes F_Floating; D Floatmg and
G_Floating format instructions: and: accelerates the: execunon of MULL,
DIVL, and EMUL mteger instructions. , :

3.2.2 Flaating Peint Accelerator Data Types

The KA640 floatmg point accelerator supports byte, word, longword,
quadword, F_Floating, D_Floating, and G_Floating data types. The H_
Floating data type is not supported, but may be 1mplemented by macrocode
emulation.

3.3 Cache Memdry

To maximize CPU performance, the KA640 mcorporates a cache memory,
implemented within the CVAX chip.

3.3.1 Cacheable References

Any reference that can be stored by the cache is called a cacheable reference.
The cache stores CPU read references to the VAX memory space (bit <29>
of the physical address equals 0) only. It does not store references to the
VAX T/O space, or DMA references by the Q22-bus interface. The type(s) of
CPU references that can be stored (either request I-stream read references,
or demand D-stream read references other than read-lock references) is
determined by the state of cache disable register (CADR) bits <5:4>. The
normal operating mode is for both I-stream and D-stream references to be
stored.

Whenever the CPU generates a non-cacheable reference, a single longword
reference of the same type is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is stored in the
cache, no reference is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is not stored in
the cache, a quadword transfer is generated on the CDAL bus. If the CPU
reference was a request I-stream read, then the quadword transfer consists
of two indivisible longword transfers, the first being a request I-stream read
(prefetch), and the second being a request [-stream read (fill). If the CPU
reference was a demand D-stream read, then the quadword transfer consists
of two indivisible longword transfers, the first being a demand D-stream
read, and the second being a request D-stream read (fill).



3.3.2 Cacheﬂf

The KA640 includes a 1 KB, two-way associative, write through cache with a
100 ns cycle time. CPU read references access one longword at a time, while
CPU writes can access one byte at a time. A single parity bit is generated,
stored, and checked for each byte of data and each tag. The cache can be
enabled/disabled by setnnglcleanng the appropriate bits in the CADR. The
cache is flushed by any write to the CADR as long as it is not in dxagnosuc
mode: .

3.3.2.1 Cache Organization

The cache is divided into two independent storage arrays called set 1 and
set 2. Each set contains a 64 row x 22-bit tag array and a 64 row x 72-bit data
array. The two sets are organized as shown in Figure 3-8.

Set1: - e Set2
g | omwm || g amE
ATA:-A . " T RAY
84ROWS ARRAY ARRAY . DATA ARRA
e-C.
93 72 7 0 93 72N 0
MA-1103-87

Figure 3-8 CacheOrganizetion

A row within a set corresponds to a cache entry, so there are 64 entries in
each set and a total of 128 entries in the entire cache. Each entry contains
a 22-bit tag block and a 72-bit (eight-byte) data block. A cache entry is
organized as shown in Figure 3-9.

A tag block consists of a parity bit, a valid bit, and a 20-bit tag. A tag block
is organized as shown in Figure 3-10.

A data block consists of eight bytes of data, each with an associated parity
bit. The total data capacity of the cache is 128 eight-byte blocks, or 1024
bytes. A data block is organized as shown in Figure 3-11. :

3 27n . 0

[ TAG BLOCK L DATA BLOCK ' ‘ J

MA-110887

Figure 3-8 Cache Entry
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19 0
[|v] TAG j
PARITY BIT
MA-1108-87
VALID BIT .

Figure 3-10 Cache Tag Block
<+ DATA BITS

63 56 55 48 47 40 39 32 24 23 16 15

HNHSG!PY%HE‘H"HlelB'llaﬂ

7

< PARITY BITS

MA-1110-87

Figure 3-11 Cache Data Block

3.3.2.2 Cache Address Translation

Whenever the CPU requires an instruction or data, the contents of the cache
is checked to determine if the referenced location is stored there. The cache
contents is checked by translating the physical address as described in the
following paragraphs.

On non-cacheable references, the reference is never stored in the cache, so
a cache miss occurs and a single longword reference is generated on the
CDAL bus.

On cacheable references, the physu:al address must be translated to
determine if the contents of the referenced location is resident in the cache.
The cache index field, bits <8:3> of the physical address, is used to select
one of the 64 rows of the cache, with each row containing a single entry
from each set. The cache tag field, bits <28:9> of the physical address; is
then compared to the tag block of the entry from both sets in the selected
row. I

If a match occurs with the tag block of one of the set entries, and the
valid bit within the entry is set, the contents of the referenced location is
contained in the cache and a cache hit occurs. On a cache hit, the set
match signals generated by the compare operation select the data block
from the appropriate set. The cache displacement field, bits <2:0> of the
physical address, is used to select the byte(s) within the block. No CDAL
bus transfers are initiated on CPU references that hif the cache.
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If no match occurs, then the contents of the referenced location is not
contained in the cache and a cache miss occurs. In this case, the data must
be obtained from the main memory controller, so a quadword transfer is
initiated on the CDAL bus (Figure 3-12).

2928 98 32 0
l J CACHE TAG l [ ]
L—-uo SPACE CACHE INDEX e
CACHE DISPLACEMENT —ef
VALID BIT VALID BIT
) seTe SET 2
20 |648IT 20 |eaBIT
8IT | DATA BLOCK 8IT |DATA BLOCK
TAG TAG
SET | 1MATCH? SET | 2MATCH?

/— .

DATA
MA.1108-87

Figure 3-12 Cache Address Translation

3.3.2.3 Cache Data Block Allocation

Cacheable references that miss the cache, cause a quadword read to be
initiated on the CDAL bus. When the requested quadword is supplied by
the main memory controller, the requested longword is passed on to the
CPU, and a data block is allocated in the cache to store the entire quadword.

Due to the fact that the cache is fwo-way associative, there are only two data
blocks (one in each set) that can be allocated to a given quadword. These
two data blocks are determined by the cache index field of the address of
the quadword, which selects a unique row within the cache. Selection of
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a data block within the row (i.e., set selection) for storing the new entry is
random.

Since the KA640 supports 52MB (6.5M quadwords) of physical memory,
up to 104K quadwords share each row (two data blocks) of the cache.
Contiguous programs larger than 512 bytes or any non-contiguous programs
separated by 512 bytes have a 50% chance of over-writing themselves when
cache data blocks are allocated for the first time for data separated by 512
bytes (one page). After six allocations, there is a 97% probability both sets
in a row will be filled.

3.3.2.4 Cache Behavior on Writes

On CPU generated write references, the cache is write through. All CPU write
references that hit the cache cause the contents of the referenced location
in main memory to be updated as well as the copy in the cache.

On DMA write references that hit the cache, the cache entry containing the
copy of the referenced location is invalidated. If the cache is configured to
store only I-stream references, then the entire cache is also flushed whenever
an REI instruction is executed. (The VAX Architecture requires that an
REI instruction be executed before executing instructions out of a page of
memory that has been updated.)

3.3.2.5 Cache Disable Register

The cache disable register (CADR), IPR 37, controls the cache, and is unique
to CPU designs that use the CVAX chip (Figure 3-13).

31 876543210
[ o L TRE]

S2E,

S1E

ISE

OSE

ww

DIA

MaA.1107.87

Figure 3-13 Cache Disable Register
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Data 'Blt Definition

CADR <31:8> Unused. Always read as zeros. Writes have no effect.

CADR <7> (S2E) Read/Write. This bit is used to selectively enable or
disable set 2 within the cache. When set, set 2 of the cache is
enabled. When cleared, set 2 of the cache is disabled. Cleared
on power-up and by the negation of DCOK when the processor
is halted.

CADR <6> (S1E) Read/Write. This bit is used to selectively enable or
disable set.1 within the cache. When set, set 1 of the cache is
enabled. When cleared, set 1 of the cache is disabled. Cleared
on power-up and by the negation of DCOK when the processor
is halted.

CADR <5> (ISE) Read/Write. This bit is used to selectively enable or
disable storing I-stream references in the cache. When set,
I-stream, memory space references are stored in the cache, if it
is enabled. When cleared, I-stream memory references are not
stored in the cache. Cleared on power-up and by the negation
of DCOK when the processor is halted.

CADR <4> (DSE) Read/Write. This bit is used to selectively enable or

disable storing D-stream references in the cache.- When set,
D-stream, memory space references are stored in the cache,
if it is enabled. When cleared, D-stream memory references
are not stored in the cache. Cleared on power-up and by the
negation of DCOK when the processor is halted.

NOTE v

The cache can be disabled by either disabling both set
1 and set 2 (clearing CADR <7:6>), or by not storing

either I-stream or D-stream references (clearing CADR
<5:4>).

For maximum performance, the cache should be configured
to store both I- and D-stream references. I-stream only mode
suffers from a degradation in performance from what would
normally be expected relative to I- and D-stream mode and
D-stream only mode, due to the fact that invalidation of cache
entries due to writes to memory by a DMA device are handled
less efficiently.
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Data Bit

Definition

CADR <3:2>
CADR <1>

CADR <0>

In [-stream only mode, the entire cache is flushed whenever
an REI instruction is executed. (The VAX Architecture Reference
Manual states that an REI instruction must be executed before
executing instructions out of a page of memory that has been
updated.) Whereas in the other two modes of operation, cache
entries are invalidated on an individual basis, only if a DMA
write operation results in a cache hit.

Unused. Always read as 1s.

(WWP) Write wrong parity. Read/Write. When set, incorrect
parity is stored in the cache whenever it is written. When
cleared, correct parity is stored in the cache whenever the
cache is written. Cleared on power-up and by the negation of
DCOK when the processor is halted.

(DIA) Diagnostic mode. Read/Write. When cleared, the cache
is in normal operating mode and writes to the CADR will
cause the cache to be flushed, (all valid bits set to the invalid
state) and the cache is configured for write-through operation.
When set, the cache is in diagnostic mode and writes to

the CADR will not cause the cache to be flushed. CPU write
references with a longword destination (e.g., MOVL) will write
the data into main memory (if it exists) as well as invalidate
the corresponding cache entry regardless of whether or not a
cache hit occurred. ‘

CPU write references with a quadword destination (e.g.
MOVQ) will write the data into main memory (if it exists)

as well as cause the SECOND longword of the quadword

to be written into the longword of the cache data array

that corresponds to the address of the FIRST longword of
the destination, regardless of whether or not a cache hit
occurred. The data in the longword of the cache data array
that corresponds to the address of the second longword of the
destination remains unaltered.

In addition, errors generated during write references, that
would normally cause a machine check, are ignored (they do
not cause a machine check trap to be generated, or prevent
data from being stored in the cache). Diagnostic mode is
intended to allow the cache tag store to be fully tested without
requiring 512 megabytes of main memory.
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Data Bit

Definition

This mode makes it possible for the tag block in a particular
cache entry to be written with any pattern by executing

a MOVQ instruction with bits <28:9> of the destination
address equal to the desired pattern. Two MOVQ instructions,
one with a quadword aligned destination address and one with
the next longword aligned destination address, are required

to write to both longwords in the data block of a cache entry.
Diagnostic mode does not affect read references. Cleared on
power-up and by the negation of DCOK when the processor is
halted.

NOTE

At least one read reference must occur between all write
references made in diagnostic mode.

Diagnostic mode should only be selected when one and
only one of the two sets are enabled. Operation of this
mode with both sets enabled or both sets disabled yields
unpredictable results.

3.3.2.6 Memory System Error Register

The memory system error register (MSER), IPR 39, records the occurrence of
cache hits, as well as parity errors on the CDAL bus and in the cache. This
register is unique to CPU designs that use the CVAX chip. MSER <6:4,1:0>
are sticky in the sense that they remain set until explicitly cleared. Each
bit is set on the first occurrence of the error it logs, and remains set for
subsequent occurrences of that error. The MSER is explicitly cleared via the
MTPR MSER instruction regardless of the write data (Figure 3-14).

31

876543210
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MA-1108-87

Figure 3-14 Memory System Error Register

N
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Data Bit

Definition

MSER <31:8>
MSER <7>

MSER <6>

MSER <5>

MSER <4>

MSER <3:2>
MSER <1>

MSER <0>

Unused. Always read as zeros. Writes have no effect.

(HM) Hit/Miss. Read only. Writes have no effect. Cleared on
all cacheable references that hit the cache. Set on all cacheable
references that miss the cache. Cleared on power-up and by
the negation of DCOK when the processor is halted.

(DAL) DAL parity error. Read/Write to clear. This bit is set
whenever a CDAL bus data store parity error is detected.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

(MCD) Machine check - DAL parity error. Read/Write to clear.
This bit is set whenever a machine check is caused by a CDAL
bus data parity error. These errors will only generate machine
checks on demand D-stream read references. Cleared on
power-up and by the negation of DCOK when the processor is
halted.

(MCC) Machine check - cache parity error. Read/Write to
clear. This bit is set whenever a machine check is caused by

a cache parity error in the tag or data store. These errors

will only generate machine checks on demand D-stream read
references. Cleared on power-up and by the negation of DCOK
when the processor is halted.

Unused. Always read zero. Writes have no effect.

(DAT) Data parity error. Read/Write to clear. This bit is set
when a parity error is detected in the data store of the cache.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

(TAG) Tag parity error. Read/Write to clear. This bit is set
when a parity error is detected in the tag store of the cache.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

3.3.2.7 Cache Error Detection

Both the tag and data arrays in the cache are protected by parity. Each
8-bit byte of data and the 20-bit tag is stored with an associated parity bit.
The valid bit in the tag is not covered by parity. Odd data bytes are stored
with odd parity and even data bytes are stored with even parity. The tag is
stored with odd parity. The stored parity is valid only when the valid bit
associated with the cache entry is set. Tag and data parity (on the entire
longword) are checked on read references that hit the cache, while only tag
parity is checked on CPU and DMA write references that hit the cache.
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The action taken following the detection of a cache parity error depends on
the reference type:

During a demand D-stream read reference, the entire cache is flushed, the
CADR is cleared (which disables the cache). The cause of the error is logged
in MSER <4,3:0> and a machine check abort is initiated.

During a request [-stream read reference, the entire cache is flushed (unless
CADR <0> is set), the cause of the error is logged in MSER <1:0>, the
prefetch is halted, but no machine check abort occurs, and both caches
remain enabled.

During a masked or unmasked write reference, the entire cache is flushed
(unless CADR < 0> is set), the cause of the error is logged in MSER <0>
(only tag parity is checked on CPU writes that hit the cache), there is no
effect on CPU execution, and both caches remain enabled.

During a DMA write reference the cause of the error is logged in MSER<0>
(only tag parity is checked on DMA writes that hit the cache), there is no
effect on CPU execution, both caches remain enabled, and no invalidate
operation occurs.

3.4 Main Memory System

The KA640 includes a main memory controller implemented via a single
VLSI chip called the CMCTL. The KA640 main memory controller
communicates with the MS650 memory boards over the MS650 memory
interconnect, which utilizes the CD interconnect for the address and control
lines and a 50-pin, ribbon cable for the data lines. It supports up to three
MS650 memory boards, for a maximum of 52MB of ECC memory.

The controller supports synchronous longword read references, and masked
or unmasked synchronous write references generated by the CPU as well
as synchronous quadword read references generated by cacheable CPU
references that miss the cache. Table 3-9 gives CPU read reference timing.
Table 3-10 gives CPU write reference timing.
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Table 3-9 CPU Read Reference Timing

Data Type Timing
Longword 400ns
Quadword 600ns

First longword " 400ns

Second longword 200ns
Aborted reference 400ns
Longword (locked) 900ns minimum
Aborted reference 400ns
Retry (locked) 500ns

Table 3-10 CPU Write Reference Timing

Data Type Timing
Longword 200ns
Longword (masked) 500ns

The controller also supports asynchronous longword and quadword DMA
read references and masked and unmasked asynchronous longword,
quadword, hexword, and octaword DMA write references from the Q22-
bus interface. Table 3-11 gives Q22-bus interface read reference timing.
Table 3-12 gives Q22-bus interface write reference timing.

Table 3-11 Q22-bus Interface Read Reference Timing

Data Type Timing

Longword 500ns

Quadword 800ns
First longword 500ns
Second longword 300ns

Longword (locked) 600ns
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Table 3-12 Q22-bus Interface Write Reference Timing

Data Type Timing
Longword 400ns
Longword (masked) 600ns
Quadword 700ns
First longword 400ns
Second longword 300ns
Quadword (masked) 1100ns
First longword 400ns
Second longword 700ns
Hexword 1000ns
First longword 400ns
Second longword 300ns
Third longword 300ns
Hexword (masked) 1400ns
First longword 400ns
Second longword 300ns
Third longword . 700ns
Octaword 1300ns
First longword 400ns
Second longword » 300ns
Third longword 300ns
Fourth longword 300ns
Octaword (masked) 1700ns
First longword 400ns
Second longword 300ns
Third longword 300ns
Fourth longword 700ns

The timing in Table 3-12 assumes no exception conditions are encountered
during the reference. Exception conditions will add the following amount
of time if they are encountered during a reference:
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Exception Condition Time Added
Correctable error 100ns
Uncorrectable error 200ns-read
Uncorrectable error 100ns-write
CDAL parity error 100ns-write
Refresh collision 400ns

The main memory controller contains eighteen registers. Sixteen registers
are used to configure each of the sixteen possible banks in main memory.
One register is used to control the operating mode of all memory banks and
one register captures state on main memory errors.

3.4.1 Main Memory Organization

Main memory is logically and physically divided into 4 boards that
correspond to the 3 possible MS650 memory expansion modules that can
be attached to a KA640, plus the 4 Mbytes of on-board memory. Each board
can contain zero (no memory module present), 1 (as on the KA640), or 2
(MS650-AA present) memory bank(s). Each bank contains 1,048,576 (1M)
aligned longwords. Each aligned longword is divided into 4 data bytes and
is stored with 7 ECC check bits, resulting in a memory array width of 39
bits.

3.4.2 Main Memory Addressing

The KA640 main memory controller is capable of controlling up to 13 banks

of RAM, each bank containing 4MB of storage. Each bank of main memory

has a programmable base address, determined by the state of bits <25:22>
of the main memory configuration register associated with each bank.

A 4MB bank is accessed when bit <29> of the physical address is equal
to 0, indicating a VAX memory space read/write reference, bits <28:26>
of the physical address are equal to zero, indicating a reference within
the range of the main memory controller, and the bank number of the -
bank matches bits <25:22> of the physical address. The remainder of the -
physical address (bits <21:2>) are used to determine the row and column
of the desired longword within the bank. The byte mask lines are ignored on
read operations, but are used to select the proper byte(s) within a longword
during masked longword write references.
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3.4.3 Main Memory Behavior on Writes

On unmasked CPU write references, the main memory controller operates
in dump and run mode, terminating the CDAL bus transaction after latching
the data, but before checking CDAL bus parity, calculating the ECC check
bits, and transferring the data to main memory.

On unmasked DMA write references by the Q22-bus interface, the data is
latched, CDAL bus parity is NOT checked, the CDAL bus transaction is
terminated, the ECC check bits are calculated, and the data is transferred
to main memory.

On single masked CPU or DMA write references, CDAL bus parity is
checked (for CPU writes only), the referenced longword is read from main
memory, the ECC code checked, the check bits recalculated to account for
the new data byte(s), the CDAL transaction is terminated, and the longword
is rewritten.

On multiple transfer masked DMA writes, each longword write is
acknowledged, then the CDAL transaction is terminated.
3.4.4 Main Memory Error Status Register

The main memory status register (MEMCSR16), address 2008 0140 ¢, is
used to capture main memory error data. This register is unique to CPU
designs that use the CMCTL memory controller chip (Figure 3-15).

31302928 98756 0
I [ I I PAGE ADDRESS OF ERROR l ] L SYNDROME ]
RDS ERROR DMA ERROR
RDS HIGH ERROR RATE CDAL BUS ERROR |
CRD ERROR ECC ERROR SYNDROME

Ma.1112.87

Figure 3-15 Format for MEMCSR16
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Data Bit

Definition

MEMCSR16<31>

MEMCSR16<30>

MEMCSR16<29>

MEMCSR16<28:9>

RDS error. Read/Write to clear. When set, an
uncorrectable ECC error occurred during a memory read
or masked write reference. Cleared by writing a 1 to it.
Writing a 0 has no effect. Undefined if MEMCSR16<7>
(CDAL bus error) is set. Cleared on power-up and the
negation of DCOK when the processor is halted.

RDS high error rate. Read/Write to clear. When set, an
uncorrectable ECC error occurred while the RDS error
log request bit was set, indicating muitiple uncorrectable
memory errors. Cleared by writing a 1 to jt. Writinga 0
has no effect. Undefined if MEMCSR16<7 > (CDAL bus
error) is set. Cleared on power-up and the negation of
DCOK when the processor is halted.

CRD error. Read/Write to clear. When set, a correctable
(single bit) error occurred during a memory read or
masked write reference. Cleared by writing a 1 to it.
Writing a 0 has no effect. Undefined if MEMCSR16<7>
(CDAL bus error) is set. Cleared by writing a 1, on power-
up and the negation of DCOK when the processor is
halted.

Page address of error. Read only. This field identifies the
page {512 byte block) containing the-location that caused
the memory error. In the event of multiple memory
errors, the types of errors are prioritized and the page
address of the error with the highest priorty is captured.
Errors with equal priority do not overwrite previous
contents. Writes have no effect. Cleared on power-up and
the negation of DCOK when the processor is halted.

The types of-error conditions follow in order of priority:

1. CDAL bus parity errors during a CPU write reference,
as logged by the CDAL bus error bit.

2. Uncorrectable ECC errors during a CPU or DMA read
or masked write reference, as logged by the RDS error
log bit.

3. Correctable ECC errors during a CPU or DMA read or
masked write reference, as logged by CRD error bit.
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Data Bit

Definition

MEMCSR16<8>

MEMCSR16<7>

MEMCSR16<6:0>

DMA error. Read/Write to clear. When set, an error
occurred during a DMA read or write reference. Cleared
by writing a 1 to it. Writing a 0 has no effect. Cleared-on
power-up and the negation of DCOK when the processor
is halted.

CDAL bus error. Read/Write to clear. When set, a CDAL
bus parity error occurred on a CPU write reference.
Cleared by writing a 1 to it. Writing a 0 has no effect.
Cleared on power-up and the negation of DCOK when the
processor is halted.

Error syndrome. Read only. This field stores the error
syndrome. A non-zero syndrome indicates a detectable
error has occurred. A unique syndrome is generated for
each possible single bit (correctable) error. A list of these
syndromes and their associated single bit errors is given in
Table 3-13. Any non-zero syndrome that is not contained
in Table 3-13 indicates a multiple bit (uncorrectable)
error has occurred. This field handles muitiple errors in
the same manner as MEMCSR16<28:9>. Cleared on
power-up and the negation of DCOK when the processor
is halted.
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Table 3-13 Error Syndromes

Syndrome
<6:0> Bit Position in Error
0000000 no error detected
Data: Bits (0-32 decimal)
1011000 0
0011100 1
0011010. 2
1011110 3
0011111 4
1011011 5
1011101 6
0011001 7
1101000 8
0101100 9
0101010 10
1101110 11
0101111 12
1101011 13
1101101 14
0101001 15
1110000 16
0110100 17
0110010 18
1110110 19
0110111 20
1110011 21
1110101 22
0110001 23
0111000 24
1111100 25
1111010 26
0111110 27
1111111 28
0111011 29
0111101 30
1111001 3

Check Bits (32-38 decimal)
0000001 32
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Table:3-13 (Cont.) Er‘r‘or“-s‘yhcl'iom'e‘s*-‘

Syndrome ~ 4

<6:0> Bit: Position in: Error

0000010 3300 '

0000100 38

0001000 35

0010000. 36

0100000 37

1000000 38

0000111 - Result of incorrect check bits written on detection of a CDAL
parity error..

All others Multi-bit errors

3.4.5 Main Memory Control and Diagnostic Status
Register

The main memory control and diagnostic status register (MEMCSR17),

address 2008 0144 1, is used to control the operating mode of the main -

memory controller as well as to store diagnostic status information. This
register is unique to CPU designs that use the CMCTL memory controller
chip (Figure 3-16).

3

13121110987 6543210

ez [[ ez | |

CRDINTERRUPTENABLE
FORCE REFRESH REQUEST
ERROR DETECT DISABLE

DIAGNOSTIC CHECK MODE
CHECK BITS

MA-1122-87

Figure 3-16 Format for MEMCSR17
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Data Bit

Definition

MEMCSR17<31:13>

MEMCSR17< 12>

MEMCSR17 <11>

MEMCSR17 <10>

MEMCSR17 <9:8>

MEMCSR17 <7>

Unused. This field reads as zero and must be written as
zero.

CRD interrupt enable. Read/Write. When cleared, single-bit
errors are corrected by the ECC logic, but no interrupt is
generated. When set, single-bit errors are corrected by the
ECC logic and they cause an interrupt to be generated at
IPL 1A with a vector of 54 ;6. This bit has no effect on the
capturing of error information in MEMCSR16, or on the
reporting of uncorrectable errors. Cleared on power-up and
the negation of DCOK when the processor is halted.

Force refresh request. Read/Write. When cleared, the
refresh control logic operates in normal mode (refresh
every 11.3 us). When set, one memory refresh operation
occurs immediately after the MEMCSR write reference

that set this bit. Setting this bit provides a mechanism

for speeding up the testing of the refresh logic during
manufacturing test of the controller chip. This bit is cleared
by the memory controller upon completion of the refresh
operation. Cleared on power-up and the negation of DCOK
when the processor is halted.

Memory error detect disable. Read/Write. When set, error
detection and correction (ECC) is disabled, so all memory
errors go undetected. When cleared, error detection,
correction, state capture and reporting (via MEMCSR16)

is enabled. Cleared on power-up and the negation of DCOK
when the processor is halted.

Unused. This field reads as zero and must be written as
zero.

Diagnostic check mode. Read/Write. When set, the
contents of MEMCSR17 <6:0> are written into the 7 ECC
check bits of the location (even if a CDAL parity error is
detected) during a memory write reference. When cleared,
the 7 check bits calculated by the ECC generation logic are
loaded into the 7 ECC check bits of the location during a
write reference and a memory read reference will load the
state of the 7 ECC check bits of the location that was read
into MEMCSR17 <6:0>. Cleared on power-up and the
negation of DCOK when the processor is halted.
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Data Bit Definition

NOTE

Diagnostic check mode is restricted to unmasked
memory write references. No masked write
references are allowed when diagnostic check mode
is enabled.

MEMCSR17 <6:0>  Check bits. Read/Write. When the diagnostic check mode
bit is set, these bits are substituted for the check bits that
are generated by the ECC generation logic during a write
reference. When the diagnostic check mode bit is cleared,
memory read references load the state of the 7 ECC check
bits of the location that was read into MEMCSR16 <6:0>.
Cleared on power-up and the negation of DCOK when the
processor is haited..

3.4.6 Main Memory Error Detection and Correction

The KA640 main memory controller generates CDAL bus parity on CPU
read references, and checks CDAL bus parity on CPU write references.

The actions taken fdllowing the detection of a CDAL bus parity error depend
on the type of write reference.

For unmasked CPU write references, incorrect check bits are written to main
memory (potentially masking an as yet undetected memory error) along with
the data and an interrupt is generated at IPL 1D through vector 60 4 on the
next cycle and MCSR16 <7 > is set. The incorrect check bits are determined
by calculating the seven correct check bits, and complementing the three
least significant bits.

For masked CPU write references, incorrect check bits are written to main
memory (potentially masking an as yet undetected memory error) along
with the data, unless an uncorrectable error is detected during the read
portion, MEMCSR16 <7> is set, and a machine check abort is initiated. [f
an uncorrectable error is detected on the read portion, no write operation
takes place. The incorrect check bits are determined by calculating the seven
correct check bits, and complementing the three least significant bits.

The memory controller protects main memory by using a 32-bit modified
Hamming code to encode the 32-bit data longword with seven check bits.
This allows the controller to detect and correct single-bit errors in the data
field and detect single bit errors in the check bit field and double-bit errors
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in the data field. The most likely causes of these errors are failures in either
the memory array or the 50-pin cable.

Upon detecting a correctable error on a read reference or the read portion
of a masked write reference, the data is corrected (if it is in the data field),
before placing it on the CDAL bus, or back in main memory, an interrupt
is generated at IPL 1A through vector 54 14, bit <29> of MEMCSR16 is
set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates which bit was in error. If the error
was detected on a DMA reference, MEMCSR16 <8> is also set.

NOTE
The corrected data is not rewritten to main memory, so the single bit error
will remain there until rewritten by software.

Upon detecting an uncorrectable error, the action depends on the type of
reference being performed.

On a demand read reference, the affected row of the cache is invalidated,
bit <31> of MEMCSR16 is set, bits <28:9> of MEMCSR16 are loaded with
the address of the page containing the location that caused the error, and
bits <6:0> are loaded with the error syndrome which indicates that the
error was uncorrectable and a machine check abort is initiated. If the read
was a local-miss, global- hit read, or a read of the Q22-bus map, MEMCSR16
<8> and DSER <4> are also set, and DEAR <12:0> are loaded with the
address of the page containing the location that caused the error.

On a request read reference, the prefetch or fill cycle is aborted, but no
machine check occurs, bit <31> of MEMCSRI16 is set, bits <28:9> of
MEMCSR16 are loaded with the address of the page containing the location
that caused the error, and bits <6:0> are loaded with the error syndrome
which indicates that the error was uncorrectable. ‘

On the read portion of masked write reference, bit <31> of MEMCSR16
is set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable
and a machine check abort is initiated.

On a DMA read reference, bit <31> and bit <8> of MEMCSR16 are
set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable,
DSER <4> is set, DEAR <12:0> are loaded with the address of the page
containing the location that caused the error, BDAL <17:16> are asserted
on the Q22-bus along with the data to notify the receiving device (unless it
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was a map read by the Q22-bus interface during translation), and an interrupt
is generated at IPL 1D through vector 60 4.

On a DMA masked write reference, bit <31> and bit <8> of MEMCSR16
are set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable,
DSER <4> is set, DEAR <12:0> are loaded with the address of the page
containing the location that caused the error, IPCR <15> is set to notify the
initiating device, and an interrupt is generated at IPL 1D through vector 60

16-

3.5 Console Serial Line

The console serial line provides the KA640 processor with a full duplex, RS-
423 EIA, serial line interface, which is also RS-232C compatible. The only
data format supported is 8-bit data with no parity and one stop bit. The
four IPRs that control the operation of the console serial line are a superset
of the VAX console serial line registers described in the VAX Architecture
Reference Manual.

3.5.1 Console Registers

There are four registers associated with the console serial line unit. They
are implemented in the SSC and are accessed as [PRs 32 y through 35 1.
Refer to Table 3-14.

Table 3-14 Console Registers

IPR Number Register Name ' Mnemonic
32 Console receiver control/status RXCS
33 Console receiver data buffer RXDB
34. Console transmit control/status - TXCS
35 Console transmit data buffer TXDB

3.5.1.1 Console Recsiver Control/Status Register

The console receiver control/status register (RXCS), IPR 32, is used to
control and report the status of incoming data on the console serial line
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RX DONE
RX IE

MA-1118.87

Figure 3-17 Console Receiver Control/Status Register

Data Bit

Definition

RXCS <31:8>
RXCS <7>

RXCS <6>

RXCS <5:0>

Unused. Read as zeros. Writes have no effect.

(RX DONE) Receiver done. Read only. Writes have no effect.
This bit is set when an entire character has been received
and is ready to be read from the RXDB Register. This bit is
automatically cleared when RXDB is read. It is also cleared on
power-up and the negation of DCOK when the processor is
halted.

(RX [E) Receiver interrupt enable. Read/Write. When set,
this bit causes an interrupt to be requested at IPL 14 with an
SCB offset of F8 if RX DONE is set. When cleared, interrupts
from the console receiver are disabled. This bit is cleared on
power-up and the negation of DCOK when the processor is
halted.

Unused. Read as zeros. Writes have no effect.

3.5.1.2 Console Receiver Data Buffer

The console receiver data buffer (RXDB), IPR 33, is used to buffer incoming
data on the serial line and capture error information (Figure 3-18).

kil 16151413121110 8 7 0
L ° L1 o] Joefe] B
" ERR
OVR ERR
FRM ERR
RCV BRK
RECEIVED DATA BITS

MA 1119.87

Figure 3-18 Console Receiver Data Buffer
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Data Bit

Definition

RXDB <31:16>
RXDB <15>

RXDB <14>

RXDB <13>

RXDB <12>
RXDB <11>

RXDB <10:8>
RXDB <7:0>

Unused. Always read as zero. Writes have no effect.

(ERR) Error. Read only. Writes have no effect. This bit is set
if RBUF <14> or <13> is set. It is clear if these two bits are
clear. This bit cannot generate a program interrupt. Cleared
on power-up and the negation of DCOK when the processor is
halted.

(OVR ERR) Overrun error. Read only. Writes have no effect.
This bit is set if a previously received character was not read
before being overwritten by the present character. Cleared by
reading the RXDB, on power-up and the negation of DCOK

"~ when the processor is halted.

(FRM ERR) Framing error. Read only. Writes have no effect.
This bit is set if the present character did not have a valid
stop bit. Cleared by reading the RXDB, on power-up and the
negation of DCOK when the processor is halted.

NOTE

Error conditions remain present until the next character
is received, at which point, the error bits are updated.

Unused. This bit always reads as 0. Writes have no effect.

(RCV BRK) Received break. Read only. Writes have no effect.
This bit.is set at the end of a received character for which the
serial data input remained in the space condition for 20 bit
times. Cleared by reading the RXDB, on power-up and the
negation of DCOK when the processor is halted.

Unused. These bits always read as 0. Writes have no effect.

Received data bits. Read only. Writes have no effect. These
bits contain the last received character.

3.5.1.3 Console Transmitter Control/Status Register

The console transmitter control/status register (TXCS), internal processor
register 34, is used to control and report the status of outgoing data on the
console serial line (Figure 3-19).
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Figure 3-19 Console Transmitter Control/Status Register

Data Bit

Definition

TXCS <31:8>
TXCS <7>

TXCS <6>

TXCS <5:3>
TXCS <2>

TXCS<1>
TXCS<0>

Unused. Read as zeros. Writes have no effect.

(TX RDY) Transmitter ready. Read only. Writes have no
effect. This bit is cleared when TXDB is loaded and set
when TXDB can receive another character. This bit is set

on power-up and the negation of DCOK when the processor is
halted.

(TX IE) Transmitter interrupt enable. Read/Write. When set,
this bit causes an interrupt to be requested at [PL 14 with an
SCB offset of FC if TX RDY is set. When cleared, interrupts
from the console receiver are disabled. This bit is cleared on
power-up and the negation of DCOK when the processor is

halted.

Unused. Read as zeros. Writes have no effect.

(MAINT) Maintenance. Read/Write. This bit is used to
facilitate a maintenance self-test. When MAINT is set, the
external serial input is set to MARK and the serial output is
used as the serial input. This bit is cleared on power-up and
the negation of DCOK when the processor is halted.

Unused. Read as zero. Writes have no effect.

(XMIT BRK) Transmit break. Read/Write. When this bit is
set, the serial output is forced to the space condition after the
character in TXB<7:0> is sent.. While XMIT BRK is set, the
transmitter will operate normally, but the output line will
remain low. Thus, software can transmit dummy characters
to time the break. This bit is cleared on power-up and the
negation of DCOK when the processor is halted.
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3.5.1.4 Console Transmitter Data Buffer

The console transmitter data buffer (TXDB), internal processor regjster 35,
is used to buffer outgoing data on the serial line (Figure 3-20).

3 876543210
I M8z [ l

TRANSMITTED DATA EITST

MA.1123.87

Figure 3-20 Console Transmitter Data Butfer

Data Bit Definition
TXDB<31:8> Unused. Writes have no effect.
TXDB<7:0> - Transmitted data bits. Write only. These bits are used to load

the character to be transmitted on the console serial line.

3.5.2 Break Respohse

The console serial line unit recognizes a break condition which consists of
20 consecutively received space bits. If the console detects a valid break
condition, the RCV BRK bit is set in the RXDB register. If the break was the
result of 20 consecutively received space bits, the FRM ERR bit is also set.
If halts are enabled (HLT ENB asserted on the 20-pin connector), the KA640
will halt and transfer program control to ROM location 2004 0000 when the
RCV BRK bit is set. RCV BRK is cleared by reading RXDB. Another mark
followed by 20 consecutive space bits must be received to set RCV BRK
again.

3.5.3 Baud Rate

The receive and transmit baud rates are always identical and are controlled
by the SSC configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select signals
(BRS <2:0> L) which are received from an external 8-position switch via the
20-pin connector mounted at the top of the module. The KA640 firmware
reads this code from boot and diagnostic register bits <6:4> and loads it
into SSC configuration register bits <14:12>. Operating systems will not
cause the baud rate to be transferred. The baud rate is only set on power

up.
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Table 3-15 shows the baud rate select signal voltage levels (H or L), the
corresponding INVERTED code as read in the boot and diagnostic register
bits <6:4>, and the code that should be loaded into SSC configuration
register bits <14:12>.

Table 3-15 Baud Rate Select
Baud Rate BRS <2:0> BDR <«<6:4> SSC <14:12>

300 HHH 000 000
600 HHL 001 . 001
1200 HLH 010 010
2400 HLL 011 011
4800 LHH 100 100
9600 LHL 101 101
19200 LLH 110 110
38400 LLL 11 111

3.5.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts at
IPL 14. The receiver interrupts with a vector of F8 15, while the transmitter
interrupts with a vector of FC 4.

3.6 Time of Year Clock and Timers

The KA640 clocks include time of year clock (TODR) as defined in the
VAX Architecture Reference Manual, a subset interval clock (subset ICCS),
as defined in the VAX Architecture Reference Manual, and two additional
programmable timers modeled after the VAX standard interval clock.



7‘} Architecture

3.6.1 Time of Year Clock

The KA640 time of year clock (TODR), internal processor register 27, forms
an unsigned 32-bit binary counter that is driven from a 100Hz oscillator,
so that the least significant bit of the clock represents a resolution of 10
miilliseconds, with less than .0025% error. The register counts only when
it contains a non-zero value. This register is implemented in the SSC
(Figure 3-21). ‘

) ' 0

| TIME OF YEAR SINCE SETTING |

-
MA-1126-87

Figure 3-21 Time of Year Clock

The time of year clock is maintained during power failure by battery backup
circuitry which interfaces, via the external connector, to a set of batteries
which are mounted on the H3602-SA. The (TODR) will remain valid for
greater than 162 hours when using the NiCad battery pack (three batteries
in series).

The SSC configuration register contains a battery low (BLO) bit which, if

set after initialization, the TODR is cleared, and will remain at zero until -

software writes a non-zero value into it.

NOTE
After writing a non-zero value into the TODR, software should clear the
BLO bit by writing a 1 to it. '

3.6.2 Interval Timer

The KA640 interval timer (ICCS), internal processor register 24, is
implemented according to the VAX Architecture Reference Manual for subset
processors. The interval clock control/status register (ICCS) is implemented
as the standard subset of the standard VAX ICCS in the CVAX CPU chip,
while NICR and ICR are not implemented (Figure 3-22).

3 765 Q

| - e

Figure 3-22 Interval Timer

S
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Data Bit Definition
ICCS<31:7> Unused. Read as zeros, must be written as zeros.
ICCS<6> (IE) Interrupt enable. Read/Write. This bit enables and

disables the interval timer interrupts. When the bit is set,

an interval timer interrupt is requested every 10 msec with an
error of less than .01%. When the bit is clear, interval timer
interrupts are disabled. This bit is cleared on power-up and
the negation of DCOK when the processor is halted.

ICCS<5:0> Unused. Read as zeros, must be written as zeros.

Interval timer requests are posted at IPL 16 with a vector of CO: the interval
timer is the highest priority device at this IPL.

3.6.3 Programmable Timers

The KA640 features two programmable timers. Although they are modeled
after the VAX standard interval clock, they are accessed as I/O space
registers (rather than as internal processor registers) and a control bit has
been added which stops the timer upon overflow. If so enabled, the
timers will interrupt at IPL 14 upon overflow. The interrupt vectors are
programmable and are set to 78 and 7C by the firmware.

Each timer is composed of four registers: a timer n control register, a timer
n interval register, a timer n next interval register, and a timer n interrupt
vector register, where n represents the timer number (0 or 1).

3.6.3.1 Timer Control Registers

The KA640 has two timer control registers, one for controlling timer 0
(TCRO), and one for controlling timer 1 (TCR1). TCRO is accessible at
address 2014 0100 ¢, and TCR1 is accessible at 2014 0110 1¢. These registers
are implemented in the SSC (Figure 3-23).
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Figure 3-23 Timer Control Registers

Data Bit Definition

TCRn<31> (ERR) Error. Read/Write to clear. This bit is set whenever

the timer interval register overflows and INT is already set.
Thus, the ERR indicates a missed overflow. Writing a 1 to this
bit clears it. Cleared on power-up and the negation of DCOK
when the processor is halted.

TCRn<30:8> Unused. Read as zeros, must be written as zeros.

TCRn<7> (INT) Read/Write to clear. This bit is set whenever the timer
interval register overflows. If IE is set when INT is set, an
interrupt is posted at IPL 14. Writing a 1 to this bit clears it.
Cleared on power-up and the negation of DCOK when the
processor is halted.

TCRn< 6> (IE) Read/Write. When this bit is set, the timer will interrupt
at [PL 14 when the INT bit is set. Cleared on power-up and
the negation of DCOK when the processor is haited.

TCRn<5> (SGL) Read/Write. Setting this bit causes the timer interval
register to be incremented by 1 if the RUN bit is cleared. If the
RUN bit is set, then writes to the SGL bit are ignored. This bit
always reads as 0. Cleared on power-up and the negation of
DCOK when the processor is halted.

TCRn<4> (XFR) Read/Write. Setting this bit causes the timer next
interval register to be copied into the timer interval register.
This bit is always read as 0. Cleared on power-up and the
negation of DCOK when the processor is halted.
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Data Bit Definition
TCRn<3> Unused. Read as zeros, must be written as zeros.
TCRn<2> (STP) Read/Write. This bit determines whether the timer stops

after an overflow when the RUN bit is set. If the STP bit is
set at overflow, the RUN bit is cleared by the hardware at
overflow and counting stops. Cleared on power-up and the
negation of DCOK when the processor is halted.

TCRa<1> Unused. Read as zeros, must be written as zeros.

TCRn<0> (RUN) Read/Write. When set, the timer interval register is
incremented once every microsecond. The INT bit is set when
the timer overflows. If the STP bit is set at overflow, the
RUN bit is cleared by the hardware at overflow and counting
stops. When the RUN bit is clear, the timer interval register is
not incremented automatically. Cleared on power-up and the
negation of DCOK when the processor is haited.

3.6.3.2 Timer Interval Registers

The KA640 has two timer interval registers, one for timer 0 (TIR0), and one
for timer 1 (TIR1). TIRO'is accessible at address 2014 0104 4, and TIR1 is
accessible at 2014 0114 (.

The timer interval register is a read only register containing the interval
count. When the run bit is 0, writing a 1 increments the register. When
the RUN bit is 1, the register is incremented once every microsecond.
When the counter overflows, the INT bit is set, and an interrupt is posted
at IPL 14 if the IE bit is set. Then, if the RUN and STP bits are both
set, the RUN bit is cleared and counting stops. Otherwise, the counter is
reloaded. The maximum delay that can be specified is approximately 1.2
hours. This register is cleared on power-up and the negation of DCOK when
the processor is halted (Figure 3-24).

3 0

[ TIMER INTERVAL REGISTER J

MA=X1448-87

Figure 3-24 Timer Interval Register
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3.6.3.3 Timer Next Interval Registers

The KA640 has two timer next interval registers, one for timer 0 (TNIR0),
and one for timer 1 (TNIR1). TNIRO is accessible at address 2014 0108 y,
and TNIRI1 is accessible at 2014 0118 14, These registers are implemented
in the SSC.

This read/write register contains the value which is written into the timer
interval register after overflow, or in response to a 1 written to the XFR bit.
This register is cleared on power-up and the negation of DCOK when the
processor is halted (Figure 3-25).

3 Q
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Figure 3-25 Timer Next Interval Register

3.6.3.4 Timer Interrupt Vector Registers

The KA640 has two.timer interrupt vector registers, one for timer 0 (TTVRO0),
and one for timer 1 (TIVR1). TIVRO is accessible at address 2014 010C ¢,
and TIVR1 is accessible at 2014 011C ;4. These registers are implemented
in the SSC and are set to 78 and 7C respectively by the resident firmware.

This read/write register contains the timer’s interrupt vector. Bits <31:10>
and <1:0> are read as 0 and must be written as 0. When TCRn<6>
(IE) and TCRn<7> (INT) transition to 1, an interrupt is posted at IPL 14.
When a timer’s interrupt is acknowledged, the content of the interrupt vector
register is passed to the CPU, and the INT bit is cleared. Interrupt requests
can also be cleared by clearing either the IE or the INT bit. This register
is cleared on power-up and the negation of DCOK when the processor is
halted (Figure 3-26).

31 109 210
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MA.1128-87

Figure 3-26 Timer Interrupt Vector Register

NOTE

Note that both timers interrupt at the same IPL (IPL 14) as the console serial
line unit. When multiple interrupts are pending, the console serial line has
priority over the timers, and timer 0 has priority over timer 1.
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3.7 Boot and Diagnostic Facility
The KA640 boot and dlagnostlc fac111ty features two registers, two 28-pin
ROM sockets containing 128K bytes of EPROM, and 1KB of battery backed

up RAM. The ROM and battery backed up- RAM may be accessed via
longword, word or. byte references.

The KA640 CPU module populates the ROM sockets with 64K bytes of 16-
bit ROM (or EPROM). This:ROM: contains:the KA640 resident firmware. If
this ROM is replaced for special applications, the new ROM must initialize
and configure the board, provide halt and console emulation, as well as
provide boot dxagnosnc functlonalxty

3.7.1 Boot and Dlagnostlc Reglster

The boot and diagnostic register (BDR) is a byte-wide register located in the
VAX 1/O page at physical address 2008 4004 1¢. It is implemented uniquely
on the KA640. It can be accessed by KA640 software, but not by external
Q22-bus devices. The BDR allows the boot and diagnostic ROM programs
to read various KA640 configuration bits. Only the low byte of the BDR
should be accessed, bits <31:8> are undefined (Figure 3-27).

3 876 43210
| T 1]

HLT ENB
8RS CD
CcPU CO
80G CO

MA= X1 44187

Figure 3-27 Boot and Diagnostic Register
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Data Bit

Definition' .

BDR<31:8>
BDR<7>

CPU:

Uhdéﬁ?r'te'd Shdﬁld‘ not be read or written.

‘ ,(HLT ENB) Halt enable Read only. Writes have no effect.

s bit reflects the state of pin 15 (HLT ENB L) of the 20-pin
connector The assertion of this signal enables the halting of the

von: detection: of a console break condition. On a power-
640 resident. firmware reads the HLT ENB bit to decide

“up;: thi
whether to enter the console emulation program (HLT ENB

BDR<6:4>

BDR<3:2>

set).or to: boot: the operating system (HLT ENB clear). On the
execution of a HALT instruction while in kernel mode, the KA640
resident firmware reads the HLT ENB bit to decide whether to
enter the console emulation program (HLT ENB set) or to restart
the operating system (HLT ENB clear).

(BRS CD)-Baud rate select <2:0>. Read only. Writes have no
effect. These three bits originate from pins <19:17> (BRS<2:0>)
of the 20-pin connector. They reflect the setting of the baud rate
select switch on the H3602-SA. These bits are read only on power

up:

BDR<6:4> = Baud Rate

000 300
001 600
010 1200
o1 2400
100 4800
101 9600
110 19200
11 38400

(CPU CD) CPU code <1:0>. Read only. Writes have no
effect. These two bits originate from connector pins <5:4> (CPU
CD<1:0>).

AN
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Data Bit Definition

CPUCD <1:0>  Configuration

00 Normal operation
01 Reserved
10 Reserved
11 Reserved
BDR<1:0> (BDG CD) Boot and

diagnostic code <1:0>. Read only. Writes have no effect. This 2-
bit code reflects the status of configuration and display connector
pins <14:13> (BDG CD<1:0>). The KA640 ROM programs use
BDG CD <1:0> to determine the power up mode as defined in
the following:

BDG CD <1:0> Power Up Mode

00 Run

01 Language inquiry
10 Test

11 Manufacturing

3.7.2 Diagnostic LED Register

The diagnostic LED register (DLEDR), address 2014 0030 ¢4, is implemented
in the SSC and contains four read/write bits that control the external LED
display. A 0 in a bit lights the corresponding LED; all four bits are cleared -
on power-up and the negation of DCOK when the processor is haited to
provide a power-up lamp test (Figure 3-28).

3 43210

l MBZ osPL ]

MA=X1447~87

Figure 3-28 Diagnostic LED Register
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Data Bit Definition

DLEDR<31:4> Unused. Read as zeros, must be written as zeros.

DLEDR <3:0> (DSPL) Display <3:0>. Read/Write. These four bits update
an external LED display. Writing a O to a bit lights the
corresponding LED. Writing a 1 to a bit turns its LED off.
The display bits are cleared (all LEDs are lit) on power-up and
the negation of DCOK when the processor is haited.

3.7.3 ROM Memory

The KA640 supports up to 128KB of ROM memory for storing code for
board initialization, VAX standard console emulation, board self-tests, and
boot code. ROM memory may be accessed via byte, word and longword
references. ROM accesses take 1300ns. ROM is organized as a 64K x 8-bit
array for one 64KB ROM, as a 32K by 16-bit array for two 32KB ROMSs, and
as a 64K by 16-bit array for two 64KB ROMs (ship configuration). CDAL
bus parity is neither checked nor generated on ROM references.

3.7.3.1 ROM Socket
The KA640 provides two ROM sockets which contain two 64K by 8 EPROMs.

3.7.3.2 ROM Address Spacs

The entire 128KB boot and diagnostic ROM may be read from either the
128KB halt mode ROM space (hex addresses: 2004 0000 - 2005 FFFF), or
the 128KB run mode ROM space (hex addresses: 2006 0000 - 2007 FFFF)
Note that the run mode ROM space reads exactly the same ROM code as
the halt mode ROM space.

Writes to either of these address spaces will result in a machine check.

Any [-stream read from the halt mode ROM space places the KA640 in halt
mode. The Q22-bus SRUN signal is deasserted causing the front panel RUN
light to extinguish and the CPU is protected from further halts.

Any I-stream read which does not access the halt mode ROM space,
including reads from the run mode ROM space, places the KA640 in run
mode. The Q22-bus SRUN signal is toggled causing the front panel RUN
light to be lit and the CPU can be halted by asserting the Q22-bus BHALT
line or by generating a break condition on the console serial line if BDR<7>
(halt enable) is set.

Writes and D-stream reads to any address space have no effect on run
mode/halt mode status.
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3.7.3.3 KA640 Resident Firmware Operation

The KA640 CPU module populates the ROM socket with 128K bytes of
16-bit ROM (or EPROM). This ROM contains the KA640 resident firmware
which can be entered by transferring program control to location 2004 0000

16
Section 3.1.5 lists the various halt conditions which cause the CVAX CPU
to transfer program control to location 2004 0000 4.

When running, the KA640 resident firmware provides the services expected
of a VAX-11 console system. In particular, the following services are
available:

* Automatic restart or bootstrap following processor halts or initial power
up

¢ Aninteractive command language allowing the user to examine and alter
the state of the processor

* Diagnostic tests executed on power up that check out the CPU, the
memory system and the Q22-bus map

* Support of video or hardcopy terminals as the console terminal

Power Up Modes

The boot and diagnostic ROM programs use bits <1:0> of the BDR
(Section 3.7.1) to determine the power up modes as follows:

Code Mode

00 Run (factory setting). If the console terminal supports the multi-national
character set (MCS), the user will be prompted for language only if the
time-of-year clock battery backup has failed. Full startup diagnostics are
run.

01 Language inquiry. If the console terminal supports MCS, ‘the user will

.- be prompted for language on every power up and restart. Full startup
diagnostics are run.

10 Test. ROM programs run wrap-around serial line unit (SLU) tests.

11 Manufacturing. To provide for rapid startup during certain
manufacturing test procedures, the ROM programs omit the power up
memory diagnostics and set up the memory bit map on the assumption
that all available memory is functional.
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3.7.4 Battery Backed-Up RAM

The KA640 contains 1KB of battery backed-up static RAM, for use as a
console scratchpad. The power for the RAM is provided via pins 10 (BTRY
VCC) and 12 (GND) of the 20-pin connector.

This RAM supports byte, word and longword references. Read operations
take 700ns to complete while write operations require 600ns.

The RAM is organized as a 256 X 32-bit (one longword) array. The array
appears in a 1KB block of the VAX I/O page at addresses 2014 0400 - 2014
07FF. :

This array is not protected by parity, and CDAL bus parity is neither checked
nor generated on reads or writes to this RAM.

3.7.5 KA640 Initialization

The VAX Architecture defines three kinds of hardware initialization:
1. Power-up initialization

2. Processor initialization

3. T/O bus initialization

3.7.5.1 Power-Up Initialization

Power-up initialization is the resuit of the restoration of power and includes a
hardware reset, a processor initialization, an [/O bus initialization, as well as
the initialization of several registers defined in the VAX Architecture Reference
Manual.

3.7.5.2 Hardware Reset

A KA640 hardware reset occurs on power-up and the negation of DCOK
when the processor is halted. A hardware reset causes the hardware hait
procedure (Section 3.1.5.6) to be initiated with a halt code of 03. It also
initializes some IPRs and most [/O page registers to a known state. Those
IPRs that are affected by a module reset are noted in Section 3.1.1.3. The
effect a hardware reset has on I/O space registers is documented in the
description of the register.
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3.7.5.3 I/O Bus Initialization

An I/O bus initialization occurs on power-up, the negation of DCOK when
the processor is halted, or as the result of a MTPR to IPR 55 (IORESET) or
console UNJAM command.

1/0 Bus Reset Register

The I/O bus reset register (IORESET), internal processor register 55, is
implemented in the SSC. A MTPR of any value to IORESET causes an /O
bus initialization.

3.7.5.4 Processor Initialization

A processor initialization occurs on power-up, the negation of DCOK when
the processor is halted, as the result of a console INITIALIZE command,
and after a halt caused by an error condition.

In addition to initializing those registers defined in the VAX Architecture
Reference Manual, the KA640 firmware also configures main memory, the
local I/O page, and the Q22-bus map during a processor initialization.

3.8 Q22-bus Interface

The KA640 includes a Q22-bus interface implemented via a single VLSI
chip called the CQBIC. It contains a CDAL bus to Q22-bus interface that
supports the following functions: '

* A programmable mapping function (scatter-gather map) for translating
22-bit, Q22-bus addresses into 29-bit CDAL bus addresses that allows
any page in the Q22-bus memory space to be mapped to any page in
main memory.

¢ A direct mapping function for translating 29-bit CDAL addresses in the
local Q22-bus address space and local Q22-bus I/O page into 22-bit, -
Q22-bus addresses.

¢ Masked and unmasked longword reads and writes from the CPU to the
Q22-bus memory and /O space and the Q22-bus interface registers.
Longword reads and writes of the local Q22-bus memory space are
buffered and translated into two-word, block mode, transfers on the
Q22-bus. Longword reads and writes of the local Q22-bus I/O space are
buffered and translated into two, single-word transfers on the Q22-bus.

¢ Up to sixteen-word, block mode, writes from the Q22-bus to main
memory. These words are buffered then transferred to main memory
using two asynchronous DMA octaword transfers. For block mode
writes of less than sixteen words, the words are buffered and transferred
to main memory using the most efficient combination of octaword,
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quadword, and longword asynchronous DMA transfers. The maximum
write bandwidth for block mode references is 3.3 MB per second. Block
mode reads of main memory from the Q22-bus cause the Q22-bus
interface to perform an asynchronous DMA quadword read of main
memory and buffer all four words, so that on block mode reads, the
next three words of the block mode read can be delivered without any
additional CDAL bus cycles. The maximum read bandwidth for Q22-
bus block mode references is 2.4 MB per second. Q22-bus burst mode
DMA transfers result in single-word reads and writes of main memory.

¢ Transfers from the CPU to the local Q22-bus memory space, that result
in the Q22-bus map translating the address back into main memory
(local-miss, global-hit transactions).

The Q22-bus interface contains several registers for Q22-bus control and
configuration, and error reporting.

The interface also contains Q22-bus interrupt arbitration logic that
recognizes Q22-bus interrupt requests BR7-BR4 and translates them into
CPU interrupts at levels 17-14.

The Q22-bus interface detects Q22-bus no sack timeouts, Q22-bus interrupt
acknowledge timeouts, Q22-bus non-existent memory timeouts, main
memory errors on DMA accesses from the Q22-bus and Q22-bus parity
errors.

3.8.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit, Q22-bus address must be
translated into a 29-bit main memory address. This translation process is
performed by the Q22-bus interface by using the Q22-bus ma% This map
contains 8192 mapping registers, (one for each page in the Q22-bus memory
space), each of which can map a page (512 bytes) of the Q22-bus memory
address space into any of the 128K pages in main memory. Since local /O
space addresses cannot be mapped to Q22-bus pages, the local I/O page is
inaccessible to devices on the Q22-bus.

Q22-bus addresses are translated to main memory addresses as shown in
Figure 3-29.
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Figure 3-29 Q22-bus to Main Memory Address Translation

ower up time, the Q22-bus map registers, including the valid bits, are

efined. External access to main memory is disabled as long as the
mterprocessor communication register LM EAE bit is cleared. The Q22-
bus interface monitors each Q22-bus cycle and responds if the following
three conditions are met:

1. The interprocessor communication register LM EAE bit is set.
2. The valid bit of the selected mapping register is set.

3. During read operations, the mapping register must map into existént -
main memory, or a Q22-bus timeout occurs. (During write operations, *
the Q22-bus interface returns Q22-bus BRPLY before checking for
existent local memory; the response depends only on conditions 1 and
2 above.)

NOTE
In the case of local-miss, global-hit, the state of the LM EAE bit is ignored.
If the map cache does not contain the needed Q22-bus map register, then

the Q22-bus interface will perform an asychronous DMA read of the Q22-
bus map register before proceeding with the Q22-bus DMA transfer.
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3.8.1.1 Q22-bus Map Registers

The Q22-bus map contains 8192 registers (QMRs) that control the mapping
of Q22-bus addresses into main memory. Each register maps a page of
the Q22-bus memory space into a page of main memory (Table 3-16).
These registers are implemented in a 32KB block of main memory, but
are accessed through the CQBIC chip via a block of addresses in the I/O
page.

The local /O space address of each register was chosen so that register

address bits <14:2> are identical to Q22-bus address bits <21:9> of the
Q22-bus page which the register maps.

The Q22-bus map registers (QMRs) have the format shown in Figure 3-30.

31 30 20 19 Q

[\J MBZ [ A28 - A9 ]
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Figure 3-30 Q22-bus Map Registers

Table 3-16 Q22-bus Map

Register Q22-bus Addresses Mapped Q22-bus Addresses Mapped
Address (Hex) (Octal)

2008 8000 00 0000 - 00 O1FF 00 000 000 - 00 000 777
2008 8004 00 0200 - 00 O3FF 00 001 000 - 00 001 777
2008 8008 00 0400 - 00 OSFF 00002 000 - 00 002 777
2008 800C 00 0600 - 00 O7FF 00 003 000 - 00 003 777
2008 8010 00 0800 - 00 O9FF 00 004 000 - 00 004 777
2008 8014 00 OAQO - 00 OBFF 00 005 000 - 00 005 777

2008 8018 00 0C00 - 00 ODFF 00 006 000 - 00 006 777
2008 801C 00 OEQO - 00 OFFF 00 007 000 - 00 007 777
2008 FFFO 3F F800 - 3F FI9FF 17 774 000 - 17 774 777
2008 FFF4 3F FAQO - 3F FBFF 17 775 000 - 17 775 777
2008 FFF8 3F FCO00 - 3F FDFF 17 776 000 - 17 776 777 -
2008 FFFC 3F FEQO - 3F FFFF 17 776 000 - 17 777 777
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Data Bit Definition

QMR <31> (V) Valid. Read/Write. When a Q22-bus map register is
selected by bits <21:9> of the Q22-bus address; the valid
bit determines whether mapping is enabled for that Q22-
bus page. If the valid bit is set, the mapping is enabled,
and Q22-bus addresses within the page controlled by the
register are mapped into the main memory page determined
by bits <28:9>. If the valid bit is clear, the mapping register
is disabled, and the Q22-bus interface does not respond to
addresses within that page. This bit is undefined on power-up
and the negation of DCOK when the processor is halted.

QMR < 30:20> Unused. These bits always read as zero and must be written
as zero.
QMR <19:0> (A28-A9) Address bits <28:9>. Read/Write. When a QZZ-bus

map register is selected by a Q22-bus address, and if that
register’s valid bit is set, then these 20 bits are used as main
memory address bits <28:9>. Q22-bus address bits <8:0>
are used as main memory address bits <8:0>. These bits are
undefined on power-up and the negation of DCOK when the
processor is halted.

3.8.1.2 Accessing the Q22-bus Map Registers

Although the CPU accesses the Q22-bus map registers via aligned, masked
longword references to the local /O page (addresses 2008 8000 ;4 through
2008 FFFC 1), the map actually resides in a 32KB block of main memory.
The starting address of this block is controlled by the contents of the Q22.
bus map base register. The Q22-bus interface also contains a 16-entry, fully
associative, Q22-bus map cache to reduce the number of main memory
accesses required for address translation.

NOTE

The system software must protect the pages of memory that contain the Q22-
bus map from direct accesses that will corrupt the map or cause the entries
in the Q22-bus map cache to become stale. Either of these conditions will
result in the incorrect operation of the mapping function.

When the CPU accesses the Q22-bus map through the local I/O page
addresses, the Q22-bus interface reads or writes the map in main memory.
The Q22-bus interface does not have to gain Q22-bus mastership when
accessing the Q22-bus map. Since these addresses are in the local [/O
space, they are not accessible from the Q22-bus.
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“On a Q22-bus map read by the CPU, the Q22-bus interface decodes the
local I/O space address (2008 8000 - 2008 FFFC). If the register is in the Q22-
bus map cache, the Q22-bus interface will internally resolve any conflicts
between CPU and Q22-bus transactions (if both are attempting to access the
Q22-bus map cache entries at the same time), then return the data. If the
map register is not in the map cache, the Q22-bus interface will force the
CPU to retry, acquire the CDAL bus, perform an asynchronous DMA read
of the map register. On completion of the read, the CPU is provided with
the data when its read operation is retried. A map read by the CPU does
not cause the register that was read to be stored in the map cache.

On a Q22-bus map write by the CPU, the Q22-bus interface latches the
data, then on the completion of the CPU write, acquires the CDAL bus
and performs an asynchronous DMA write to the map register. If the map
register is in the Q22-bus map cache, then the Cam Valid bit for that entry
will be cleared to prevent the entry from becoming stale. A Q22-bus map
write by the CPU does not update any cached copies of the Q22-bus map
register.

3.8.1.3 Q22-bus Map Cache

To speed up the process of translating Q22-bus address to main memory
addresses, the Q22-bus interface utilizes a fully associative, sixteen entry,
Q22-bus map cache, which is implemented in the CQBIC chip.

If a DMA transfer ends on a page boundary, the Q22-bus interface will
prefetch the mapping register required to translate the next page and load
it into the cache, before starting a new DMA transfer. This allows Q22-bus
block mode DMA transfers that cross page boundaries to proceed without
delay. The replacement algorithm for updating the Q22-bus map cache is
FIFO.

The cached copy of the Q22-bus map register is used for the address
translation process. If the required map entry for a Q22-bus address (as
determined by bits <21:9> of the Q22-bus address) is not in the map cache,
then the Q22-bus interface uses the contents of the map base register to
access main memory and retrieve the required entry. After obtaining the
entry from main memory, the valid bit is checked. If it is set, the entry is
stored in the cache and the Q22-bus cycle continues.

The format of a Q22-bus map cache entry is as shown in Figure 3-31.



v Architecture

91
33 32 20 19 o]
.I_CV{ Q22-bus ADR<21:9> L A28 - Ag
MA=X)481-87
Figure 3-31 Q22-bus Map Cache Entry
Data Bit Definition
CQMR<33> (Cam Valid). When a mapping register is selected by a Q22-bus

address, the Cam Valid bif determines whethér the cached

copy of the mapping register for that address is valid. If the

) Cam Valid bit is set, the mapping register is enabled, and

addresses within that page can be mapped. If the Cam Valid
bit is clear, the Q22-bus interface must-read the map in local
memory to determine if the mapping register is enabled. This

bit is cleared on power-up, the negation of DCOK when the

processor is halted, by setting the QMCIA (Q22-bus map cache
invalidate all) bit in the interprocessor communication register,
on writes to IPR 55 (IORESET), by a write to the Q22-bus map

base register, or by writing to the QMR that is being cached.

CQOMR<32:20> (QBUS ADR). These bits contain the Q22-bus address bits

- <21:9> of the page that this entry maps. This is the content
> addressable field of the 16 entry cache for determining if the

map register for a particular Q22-bus address is in the map
cache. These bits are undefined on power-up.

CQMR<19:0> (Address bits A28-A9). When a mapping register is selected by
a Q22-bus address, and if that register’s Cam Valid bit is set,

then these 20 bits are used as main memory address bits 28

through 9. Q22-bus address bits 8 through 0 are used as local
memory address bits 8 through 0. These bits are undefined on

power-up.

) 3.8.2 CDAL Bus to Q22-bus Address Transiation

CDAL bus addresses within the local Q22-bus I/O space, addresses 2000

0000 - 2000 1FFF 14, are translated into Q22-bus /O space addresses

by

using bits <12:0> of the CDAL address as bits <12:0> of the Q22-bus

address and asserting BBS7. Q22-bus address bits <21:13> are driven
zeros.

as
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CDAL bus addresses within the local Q22-bus memory space, addresses
3000 0000 - 303F FFFF ¢, are translated into Q22-bus memory space
addresses by using bits <21:0> of the CDAL address as bits <21:0> of
the Q22-bus address.

3.8.3 Interprocessor Communication Register

The interprocessor communication register (IPCR), address 2000 1F40 1,
is a 16-bit register which resides in the Q22-bus I/O page address space
and can be accessed by any device which can become Q22-bus master
(including the KA640 itself). The IPCR, implemented in the CQBIC chip, is
byte accessible, meaning that a write byte instruction can write to either the
low or high byte without affecting the other byte. ‘ '

The IPCR also appears at Q22-bus address 17 777 500 (Figure 3-32).

151413 987654 10

L]~ v L1111 e |

OMA QME
QMCIA
RESEAVED
T3
RESEAVED
M EAE
RESEAVED

MA-X1452-87

Figure 3-32 The Interprocessor Communication Register
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Data Bit

Definition

IPCR<15>

IPCR< 14>

IPCR<13:9>
IPCR<8>
[PCR<7>
IPCR<6>
IPCR<5>

I[IPCR<4:1>
IPCR<0>

(DMA QME) DMA Q22-bus address space memory error.
Read/Write to clear. This bit indicates that an error occurred
when a Q22-bus device was attempting to read main memory.
It is set if DMA system error register bit DSER<4> (main
memory error) is set, or the CDAL bus timer expires. The main
memory error bit indicates that an uncorrectable error occurred
when an external device (or CPU) was accessing the KA640
local memory. The CDAL bus timer expiring indicates that the
memory controller did not respond when the Q22-bus interface
initiated a DMA transfer. This bit is cleared by writing a 1 to it,
on power-up, by the negation of DCOK when the processor is
halted, by writes to [PR 55 (IORESET), and whenever DSER<4>
is cleared. .

(QMCIA) Q22-bus invalidate all. Write only. Writing a 1 to this
bit clears the Cam Valid bits in the cached copy of the map. This
bit always reads as zero. Writing a 0 has no effect.

(Unused) Read as zeros. Must be written as zeros.
Reserved for Digjtal use.

Unused. Read as zero. /Must be written as zero.
Reserved for Digital use.

(LM EAE) Local memory external éccess enable. Read/Write when
the KA640 is Q22-bus master. Read only when another device
is Q22-bus master. When set, this bit enables external access to

" local memory (via the Q22-bus map). Cleared on power-up and

by the negation of DCOK when the processor is halted.
Unused. Read as zeros. Must be written as zeros.

Reserved for Digital use:

3.8.4 Q22-bus Interrupt Handling

The KA640 responds to interrupt requests BR7-4 with the standard Q22-
bus interrupt acknowledge protocol (DIN followed by IAK). The console
serial line unit, the programmable timers, and the interprocessor doorbell
request interrupts at IPL 14 and have priority over all Q22-bus BR4 interrupt
requests. After responding to any interrupt request BR7-4, the CPU sets
the processor priority to IPL 17. All BR7-4 interrupt requests are disabled
unless software lowers the interrupt priority level.
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Interrupt requests from the KA640 interval timer are handled directly by
the CPU. Interval timer interrupt requests have a higher priority than BR6
interrupt requests. After responding to an interval timer interrupt request,
the CPU sets the processor priority to IPL 16. Thus, BR7 interrupt requests
remain enabled.

3.8.5 Configuring the Q22-bus Map

The KA640 implements the Q22-bus map in an 8K longword (32KB) block of
main memory. This map must be configured by the KA640 firmware during
a processor initialization by writing the base address of the uppermost 32KB
block of good main memory into the Q22-bus map base register. The base
of this map must be located on a 32KB boundary. ’

NOTE . ‘ ‘ , :
This 32KB block of main memory must be protected by the system software.

The only access to the map should be through local 1/0 page addresses 2008
8000 - 2008 FFFC .

3.8.5.1 Q22-bus Map Base Address Register :

The Q22-bus map base address register (QBMBR), address 2008 0010 16
controls the main memory location in of the 32KB block of Q22-bus map
registers.

This read/write registér is accessible by the CPU on a longword boundary
only. Bits <31:29,14:0> are unused and should be written as zero and will
return zero when read.

A write to the map base register will flush the Q22-bus map cache by clearing
the Cam Valid bits in all the entries.

The contents of this register are undefined on power up and the negation of
DCOK when the processor is halted, and are not affected by BINIT being
asserted on the Q22-bus (Figure 3-33). ‘

31 29 28 15 14 o]

Ii [ MAP BASE I vez ]

MA=X1483-87

Figure 3-33 Q22-bus Map Base Address Register



Architecture 95

3.8.6 System Configuration Register

The system configuration register (SCR), address 2008 0000 ¢, contains a
BHALT enable bit and a power OK flag.

The system configuration register (SCR) is longword, word, and byte
accessible. Programmable option fields are cleared on power-up and by
the negation of DCOK when the: processor is halted. The format of the
SCR register is'shown in Figure 3-34.

3

151413121109 8 7 65 4 3 2 1 0

[

wr [ [ Twoe [Tl [ |14

POK:

|

8HALT ENB

RESERVED

ACTION.- ON- -DCOK- NEGATION

RESERVED

MUST BE ZERQ

MA=X1454-87

Figure 3-34 System Configuration Register

Data Bit Definition

SCR<31:16>  Unused. Read as zero. Must be written as zero.

SCR«<15> (POK) Power OK. Read only. Writes have no effect. This bit
is set if the Q22-bus BPOK signal is asserted and clear if it is
negated. This bit is cleared on power-up and by the negation of
DCOK when the processor is halted.

SCR<14> (BHALT EN) BHALT enable. Read/Write. This bit controls the

v effect the Q22-bus BHALT signal has on the CPU. When set,

asserting the Q22-bus BHALT signal will halt the CPU and assert
DSER<15>. When cleared, the Q22-bus BHALT signal will have
no effect. This bit is cleared on power-up and by the negation of
DCOK when the processor is halted.

SCR<13:11>  Unused. Read as zero. Must be written as zero.

SCR<10> Reserved for Digital use.

SCR<9:8> Unused. Read as zero. Must be written as zero.
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Data Bit. Definition

SCR<7>: (ACTION ON DCOK NEGATION) Read/Write. When cleared,
the Q22-bus interface asserts SYSRESET (causing a hardware reset
of the board and control to be passed to the resident firmware via

- the hardware halt procedure with a halt code of 3) when DCOK is

- negated on the Q22-bus. When set, the Q22-bus interface asserts

- -HAETIN (causing control to be passed to the resident firmware
via the hardware halt procedure with a halt code of 2) when
DCOK is negated on the Q22-bus. Cleared on power-up and the
negation of DCOK when the processor is halted.

SCR<6:4> - Unused. Read as zero. Must be written as zero.
SCR<3:1> Reserved for Digital use.
SCR<0> Unused. Read as 0. Must be written as 0.

3.8.7 DMA System Error Register

The DMA system error register (DSER), address 2008 0004 1, is one of three
registers associated with Q22-bus Interface error reporting. These registers
are located in the local VAX /O address space and can only be accessed by
the local processor.

The DMA system error register is implemented in the CQBIC chip, and logs
main memory errors on DMA transfers, Q22-bus parity errors, Q22-bus non-
existent memory errors, and Q22-bus no-grant errors. The Q22-bus error
address register contains the address of the page in Q22-bus space which
caused a parity error during an access by the local processor. The DMA
error address register contains the address of the page in local memory
which caused a memory error during an access by an external device or the
processor during a local miss global hit transaction. An access by the local
processor which the Q22-bus interface maps into main memory will provide
error status to the processor when the processor does a RETRY for a READ
local miss-global hit, or by an interrupt in the case of a local-miss global-hit
write. ’

The DSER is a longword, word, or byte accessable read/write register
available to the local processor. The bits in this register are cleared to 0
on power-up, by the negation of DCOK when the processor is halted, and
by writes to IPR 55 (IORESET). All bits are set to 1 to record the occurrence
of an event. They are cleared by writing a 1, writing zeros has no effect)

(Figure 3-35).
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Figure 3-35 DMA System Error Register

Data Bit

Definition

DSER <31:16>
DSER<15>

- DSER< 14>

DSER<13:8>
DSER<7>

DSER<6>

Unused. -Read as 0. Must be written'as 0.

Q22-bus BHALT detected. Read/Write to clear. Set when the
Q22-bus interface detects that the Q22-bus BHALT line was
asserted and SCR<14> (BHALT ENABLE) is set. Cleared by
writing a 1, writes to IPR 55 (IORESET), on power-up and the
negation of DCOK when the processor is halted.

Q22-bus DCOK negation detected. Read/Write to clear. Set when
the Q22-bus interface detects the negation of DCOK on the Q22-
bus and SCR<7> (action on DCOK negation) is set. Cleared by
writing a 1, writes to IPR 55 (IORESET), on power-up and the
negation of DCOK when the processor is halted.

Unused. Read as zero. Must be written as zero.

Master DMA NXM. Read/Write to clear. This bit is set when the
CPU performs a demand Q22-bus read cycle or write cycle that
does not reply after 10 us. During interrupt acknowledge cycles,
or request read cycles, this bit is not set. It is cleared by writing a
1, on power-up, by the negation of DCOK when the processor is
haited and by writes to [PR 55 (IORESET).

Unused. Read as zero. Must be written as zero.
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Data Bit

Definition

DSER<5>

DSER<4>

DSER<3>

DSER<2>

DSER<1>
DSER<0>

Q22-bus parity error. Read/Write to clear. This bit is set when
the CPU performs a Q22-bus demand read cycle which returns

a parity error. During interrupt acknowledge cycles or request
read cycles, this bit is not set. It is cleared by writing a 1, on
power-up, by the negation of DCOK when the processor is halted
and by writes to IPR 55 (IORESET).

Main memory error. Read/Write to clear. This bit is set if an )
external Q22-bus device or local miss global hit receives a memory
error while reading local memory. The IPCR< 15> reports the
memory error to the external Q22-bus device. It is cleared by
writing a 1, on power-up, by the negation of DCOK when the
processor is halted and by writes to IPR 55 (IORESET).

Lost error. Read/Write to clear. This bit indicates that an error
address has been lost because of DSER<7,5,4,0> having been
previously set and a subsequent error of either type occurs
which would have normally captured an address and set either
DSER<7,5,4,0> flag. It is cleared by writing a 1, on power-up,
by the negation of DCOK when the processor is halted and by
writes to IPR 55 (IORESET).

No grant timeout. Read/Write to clear. This bit is set if the Q22-
bus does not return a bus grant within 10ms of the bus request
from a CPU demand read cycle, or write cycle. During interrupt
acknowledge or request read cycles this bit is not set. It is cleared
by writing a 1, on power-up, by the negation of DCOK when the
processor is halted and by writes to [PR 55 (IORESET).

Unused. Read as zero. Must be written as zero.

DMA NXM. Read/Write to clear. This bit is set on a DMA
transfer to a non-existent main memory location. This includes
local-miss global-hit cycles and map accesses to non-existent
memory. It is cleared by writing a 1, on power-up, by the
negation of DCOK when the processor is halted and by writes
to [PR 55 (IORESET).

3.8.8 Q22-b

us Error Address Hegister

The Q22-bus error address register (QBEAR), address 2008 0008 ¢, is a read

only, longword

accessible register which is implemented in the CQBIC chip.

Its contents are valid only if DSER <5> (Q22-bus parity error) is set or if
DSER«< 7> (Q22-bus timeout) is set.



Architecture 99

Reading this register when DSER<5> and DSER<7> are clear will return
undefined results. Additional Q22-bus parity errors that could have set
DSER<5> or Q22-bus timeout errors that could have caused DSER<7 >
to set, will cause DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space which caused
a parity error during an access by the on-board CPU which set DSER<5>
or a master timeout which set DSER<7>.

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR
bits <31:13> always read as zeros (Figure 3-36).

31 13 12 -0

I MBZ T Q22-bus ADDRESS BITS <21:9> l

MA=X1 48887

Figure 3-36 Q22-bus Error Address Register

NOTE

This is a read only register, if a write is attempted a machine check will be
generated.

3.8.9 DMA Error Address Register

The DMA error address register (DEAR), address 2008 000C ¢, is a read
only, longword accessible register which is implemented in the CQBIC chip.
It contains valid information only when DSER <4 > (main memory error) is
set or when DSER<0> (DMA NXM) is set. Reading this register when
DSER <4> and DSER<0> are clear will return undefined data.

The DEAR contains the map translated address of the page in local memory
which caused a memory error or non existent memory error during an access
by an external device or the Q22-bus interface for the CPU during a local-
miss global-hit transaction or Q22-bus map access.

The contents of this register are latched when DSER<4> or DSER<0> is
set. Additional main memory errors or non-existent memory errors have no
effect on the DEAR until software clears DSER<4> and DSER<0>.

Mapped Q22-bus address bits <28:9> are loaded into DEAR bits <19:0>.
DEAR bits <31:20> always read as zeros (Figure 3-37).
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Figure 3-37 DMA Error Address Register

NOTE
This is a read only register, if a write is attempted a machine check will be
generated.

3.8.10 Error Handling
The Q22-bus interface does not generate or check CDAL bus parity.

The Q22-bus interface checks all CPU references to Q22-bus memory and
I/O spaces to insure that nothing but masked and unmasked longword
accesses are attempted. Any other type of reference will cause a machine
check abort to be initiated.

The Q22-bus interface maintains several timers to prevent incomplete
accesses from hanging the system indefinitely. These include a 10 us non-
existent memory timer for accesses to the Q22-bus memory and I/O spaces,
a 10 us no sack timer for acknowledgement of Q22-bus DMA grants, and a
10 ms no grant timer for acquiring the Q22-bus.

If there is a non-existent memory (INXM) error (10 us timeout) while
accessing the Q22-bus on a demand read reference, the associated row in
the cache is invalidated, DSER <7 > is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort
is initiated.

If there is a NXM error on a prefetch read, or an interrupt acknowledge
vector read, then the prefetch or interrupt acknowledge reference is aborted
but no information is captured and no machine check occurs.

If there is a NXM error on a masked write reference, then DSER<7>
is set, the address of the Q22-bus page being accessed is captured in
QBEAR<12:0>, and an interrupt is generated at [PL 1D through vector
60 1¢.

If the Q22-bus interface does not receive an acknowledgement within 10 us
after it has granted the Q22-bus, then the grant is withdrawn, no errors are
reported, and the Q22-bus interface waits 500 ns to clear the Q22-bus grant
daisy chain before beginning arbitration again.
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If the Q22-bus interface tries to obtain Q22-bus mastership on a CPU
demand read reference and does not obtain it within 10 ms, then the
associated row in the cache is invalidated, DSER <2 > is set, and a machine
check abort is initiated. '

The Q22-bus interface also monitors Q22-bus signals BDAL<17:16> while
reading information over the Q22-bus so that parity errors detected by the
device being read from are recognized.

If a parity error is detected by another Q22-bus device on a CPU demand
read reference to Q22-bus memory or I/O space, then the associated row in
the cache is invalidated, DSER< 5> is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort
is initiated.

If a parity error is detected by another Q22-bus device on a prefetch request
read by the CPU, the prefetch is aborted, the associated row in the cache
is invalidated, DSER<5> is set, the address of the Q22-bus page being
accessed is captured in QBEAR <12:0 >, but no machine check is generated.

The Q22-bus interface also monitors the backplane BPOK signal to detect
power failures. If BPOK is negated on the Q22-bus, a power fail trap is
generated, and the CPU traps through vector 0C 1¢. The state of the Q22-bus
BPOK signal can be read from SCR<15>. The Q22-bus interface continues
to operate after generating the powerfail trap, until DCOK is negated.

3.9 Network I»nterface

The KA640 includes a network interface that is implemented via the LANCE
chip, a 32 by 8 bit ROM and two 32Kx8 static RAMs. When used. in
conjunction with the H3602-SA, this interface allows the KA640 to be
connected to either a thinwire or standard Ethernet network. It supports
the Ethernet data link layer.

The network interface includes a word-wide 64KB NI buffer (the two 32x8
statics RAMs) as well as four registers for control and status reporting, a -
DMA controller, a 24 word transmit silo and a 24 word receive silo (all -
resident in the LANCE chip). The DMA controller reads control information -
and writes status information from/to the 64 KB NI buffer as well as transfers
data between the NI buffer and either the transmit or receive silo. The DMA
controller can perform bursts of up to eight longword references.

Each reference (between the LANCE and the NI buffer) takes 600ns and
contains either a byte or word of data, resulting in a maximum burst duration
of 4.8 us. The minimum time between bus requests is 8 us.

The CPU moves data between main memory and the NI buffer via
programmed transfers. :
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3.9.1 Ethernet Overview

Ethernet is a serial bus that can support up to 1,024 nodes with a maximum
separation of 2.8 kilometers (1.7 miles). Data is passed over the Ethernet
in Manchester encoded format at a rate of 10 million bits per second in
variable-length packets. Each packet has the format shown in Figure 3-38.

8 BYTES DESTINATION AOORESS
6 BYTES SQURCE ADDRESS
TYPE

46 to 1500 BYTES
DATA

b . ~—~
°
*—r" E ~r
4 BYTES CRC CHECX COOE
MA-K0043-08

Figure 3-38 Ethernet Data Packet Format

The minimum size of a packet is 64 bytes, which implies a minimum data
length of 46 bytes. Packets shorter than this are called runt packets and are
treated as erroneous when received by the network controller.

All nodes on the Ethernet have equal priority. The technique used to control
access to the bus is carrier sense, multiple access, with collision detection
(CSMAI/CD). To access the bus, devices must first wait for the bus to clear
(no carrier sensed). Once the bus is clear, all devices that want to access
the bus have equal priority (multi-access), so they all attempt to transmit.
After starting transmission, devices must monitor the bus for collisions
(collision detection). If no collision is detected, the device may continue
with transmission. If a collision is detected, then the device waits for a
random amount of time and repeats the access sequence.
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Ethernet allows point to point communication between two devices, as well
as simultaneous communication between multiple devices. To support
these two modes of communication, there are two types of network
addresses, physical and multicast. These two types of addresses are both
48 bits (6 bytes) long and are described below.

A Physical address is the unique address associated with a particular station
on the Ethernet, which should be distinct from the physical address of any
other station on any other Ethernet.

A Multicast address is a multi-destination address associated with one or
more stations on a given Ethernet (sometimes called a logical address).

Further, there are two kinds of multicast addresses, the - Muiticast-group
address and the Broadcast address.

The Muiticast-group address is an address associated by higher-level
convention with a group of logically related stations.

The Broadcast address is a predefined multicast address which denotes the
set of all the stations on the Ethernet.

Bit 0 (the least significant bit of the first byte) of an address denotes the
type: it is 0 for physical addresses and 1 for multicast addresses. In either
case the remaining 47 bits form the address value. A value of 48 ones is
always treated as the broadcast address.

The hardware address of the KA640 module is determined at the time of
manufacture and is stored in the network interface station address (INISA)
ROM. Since every device that is intended to connect to an Ethernet network
must have a unique physical address, the bit pattern blasted into the NISA
ROM must be unique for each KA640. The multicast addresses to which
the KA640 will respond are determined by the multicast address filter mask .
in the network interface initialization block. )

3.9.2 Network Interface Station Address ROM

The network interface includes a byte-wide, 32-byte, socketed ROM called
the network interface station address ROM (NISA ROM). One byte of this
ROM appears in the low-order byte of each of 32 consecutive longwords in
the address range 2008 4200 - 2008 427C 15. Bytes two and three of each
longword are undefined. The low-order byte of the first six longwords contain
the 48-bit network physical address (NPA) of the KA640. The low-order byte
in the remaining 26 longwords are unused. This address range is read only.
Writes to this address range will result in a CDAL bus timeout and a machine
check 83. The format for the NISA ROM is shown in Figure 3-39.
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31302928272625242322212019181716151413121110 98 7 6 S 4 3 21 Q

NIBAER < 7:0 > UNDEFINED NPA < 7:0 >
NIBAER < 7:0 > UNDEFINED NPA < 15:8 >
NIBAER < 7:0 > UNDEFINED NPA < 23:18 >
NIBAER < 7:0 > UNDEFINED NPA < 31:17 >
NIBAER < 7:0 > UNDEFINED NPA <'39:32 >
NIBAER < 7:0 > UNDEFINED NPA < 47:40 >
NIBAER < 7:0 > UNDEFINED UNUSED

AN N N A

" ~— N N
NIBAER < 7:Q )L UNDEFINED [ UNUSED

Ma-X0046-00

Figure 3-39 Network Interface Station Address ROM Format

3.9.3 LANCE Chip Overview

The LANCE chip is a microprogrammed controller which can conduct

extensive operations independently of the central processor. There are

four control and status registers (CSRs) within the LANCE chip which are
programmed by the central processor (i.e. the MicroVAX CgU chip) to
initialize the LANCE chip and start its independent operation. Once started,
the LANCE uses its built-in DMA controller to directly access NI buffer RAM
to get additional operating parameters and to manage the buffers it uses to
transfer packets to and from the Ethernet. The LANCE uses three structures
in the NI buffer: ‘

1. Network Interface Initialization Block—24 bytes of contiguous memory
starting on a word boundary. The initialization block is set up by the
central processor and is read by the LANCE when the processor starts
the LANCE's initialization process. The initialization block contains
the system’s network address and pointers to the receive and transmit
descriptor rings.

2. Descriptor Rings—two logically circular rings of buffer descriptors, one
ring used by theé chip receiver for incoming data (the network interface
receive descriptor ring) and one ring used by the chip transmitter for
outgoing data (the network interface transmit descriptor ring). Each
buffer descriptor in a ring is 8 bytes long and starts on a quadword
boundary. It points to a data buffer elsewhere in memory, contains
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the size of that buffer, and holds various status information about the
buffer’s contents. :

3. Data Buffers—contiguous portions of memory to buffer incoming
packets (Receive Data Buffers) or outgoing packets (transmit data
buffers). Data buffers must be at least 64 bytes long (100 bytes for
the first buffer of a packet to be transmitted) and may begin on any byte
boundary.

When the system is ready to begin network operation, the central processor
sets up the network interface initialization block, the network interface
receive descriptor ring, the network interface transmit descriptor ring, and
their data buffers in the NI buffer RAM, and then starts the LANCE by
writing to its CSRs. The LANCE performs its initialization process and then
enters its polling loop. In this loop, it listens to the network for packets
whose destination addresses are of interest and it scans the network interface
transmit descriptor ring for descriptors which have been marked by the
central processor to indicate that they contain outgoing data packets.

When the LANCE detects a network packet of interest, it receives and
stores that packet in one or more receive buffers and marks their descriptors
accordingly. When the LANCE finds a packet to be transmitted, it transmits
the packet to the network and marks its descriptor when transmission
is complete. ~Whenever the LANCE chip completes a reception or
transmission (or encounters an error condition), it sets flags in NICSRO
to signal the central processor (usually by an interrupt) that it has done
something of interest.

3.9.4 Network Interface Register Address Port

The network interface register address port (NIRAP), address 2008 4404
16, is a word-wide register that is implemented on all designs that use the
LANCE chip. It is used to select which of the four CSRs is accessed via the

network interface register data port. The format for the NIRAP is shown in
~ Figure 3-40.

31302928272625242322212019181716151413121110 98 7 6 § 4. 3 2.1 0

[ UNDEFINED RESERVED ‘ l ]

CSR _J
SEL
- XD067-00

Figure 3-40 Network Interface Register Address Port
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Data Bit Definition

NIRAP <31:16> Undefined. Should not be read or written.
NIRAP <15:2> Reserved. Ignored on write; read as zeros.

NIRAP <1:0> (CSRSEL) CSR select <1:0>. Read/Write. These bits select
which: of the four control and status registers (NICSRO-
NICSR3) is accessible via the register data port. Cleared on
power-up, by writing NICSR0 <2>, and by the negation of
DCOK when SCR <7> is clear. Values are-as follows:

Bits 1:0 Register
00 ' NICSRO
01 NICSR1
10 NICSR2
11 NICSR3

3.9.5 Network Interface Register Data Port

The network interface register data port (NIRDP), address 2008 4400 , is a
word-wide register that is implemented on all designs that use the LANCE
chip. It is used as a 16-bit window through which the CPU can read and
write the control and status register (NICSRO-NICSR3) designated by the
NIRAP.

Note that registers NICSR1, NICSR2, and NICSR3 are accessible only while
NICSRO <2>(STOP) is set. If NICSR0 <2> is clear (i.e., the LANCE chip
is active), attempts to read from those registers will return undefined data
and attempts to write to them will be ignored. Accesses to a command and
status register via the NIRDP do not alter the contents of the NIRAP. In
normal operation only NICSR0 can be accessed, so the NIRAP should be
configured so that NICSRO is accessible through the NIRDP and left that
way.
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3.9.6 Network Interface Control and Status Register 0

The network interface control and status register 0 (NICSR0), address 2008
4600 15 when NIRAP <1:0> are set to 00, is a word-wide register that is
implemented on all designs that use the LANCE chip. This register is used
to start and stop the operation of the LANCE chip and to monitor its status.
All of its bits can be read at any time and none of its bits are affected
by reading the register. The effects of a write operation are described
individually for each bit. When power is applied to the system, all the
bits in this register are cleared except the STOP bit which is set. The format
for NICSRO0 is shown in Figure 3-41.

31302928272625242322212019181718151413121110.98 7.8 54 3 21 ©

I noerweD [EENERERERERRREND
AR
BABL ,
CERR ]
wss |
MERR
RINT
T
100N
INTR
INEA
RXON
XN
TOMD -
sToP
SNRT
INIT

|

MA=X0048-08

Figure 3-41 Network Interface Control and Status Register
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Data Bit

Definition
NICSRO Undefined. Should not be read or written.
<31:16>

NICSRO <15>

NICSRO <14>

NICSR0O <13>

NICSRO <12>

(ERR) Error summary. Read only. Writes have no effect.
This bit is set whenever NICSR0 <14> (BABL), NICSRO
<13>(CERR), NICSRO <12> (MISS), or NICSRO <11>
(MERR) are set. Cleared by clearing BABL, CERR, MISS
and MERR, by setting NICSR0 <2>, on power-up and the
negation of DCOK when SCR <7> is clear.

(BABL) Transmitter timeout error. Read/Write to clear. This
bit is set when the transmitter has been on the channel longer
than the time required to send the maximum length packet.

It will be set after 1519 data bytes have been transmitted

(the LANCE will continue to transmit until the whole packet
is transmitted or there is a failure). When this bit is set,
NICSRO <15> (ERR) and NICSRO <7> (INTR) will also be
set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(CERR) Collision error. Read/Write to clear. This bit is set
when the collision input to the LANCE chip failed to activate
within 2 microseconds after a LANCE initiated transmission is
completed. ‘This collision after transmission is a transceiver test
feature. This function is also known as heartbeat or signal
quality error test (SQE). When this bit is set, NICSR0 < 15> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(MISS) Missed packet. Read/Write to clear. This bit is set
when the receiver loses a packet because it does not own a
receive buffer. The MISS bit is not valid in internal loopback
mode. When this bit is set, NICSRO <15> and NICSR0 <7>
bits are also set. Writing a 0 has no effect. Cleared by writing
a 1, by setting NICSRO <2>, on power-up and the negation of
DCOK when SCR <7> is clear.
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Data Bit

Definition

NICSRO <11>

NICSRO <10>

NICSR0O <9>

NICSRO <8>

NICSRO <7>

(MERR) Memory error. Read/Write to clear. This bit is set
when the LANCE chip attempts a DMA transfer and does not
receive a ready response from the network interface buffer
RAM within 25.6 microseconds after beginning the memory
cycle. When MERR is set, the receiver and transmitter are
turned off (NICSRO <5:4> cleared). When this bit is set,
NICSRO <15> and NICSR0O <7 > bits are also set. Writinga 0
has no effect. Cleared by writing a 1, by setting NICSR0 <2>,
on power-up and the negation of DCOK when SCR <7> is
clear.

(RINT) Receive interrupt. Read/Write to clear. This bit is

set when the LANCE chip updates an entry in- the receive
descriptor ring for the last buffer received or when reception is
stopped due to a failure. When this bit is set, NICSR0 <7> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(TINT) Transmitter interrupt. Read/Write to clear. This bit is
set when the LANCE chip updates an entry in the transmit
descriptor ring for the last buffer sent or when transmission is
stopped due to a failure. When this bit is set, NICSR0 <7> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear. '

(IDON) Initialization done. Read/Write to clear. This bit is
set when the LANCE chip completes the initialization process
which was started by setting NICSRO <0> (INIT). When
IDON is set, the LANCE chip has read the initialization block
from memory and stored the new parameters. When this bit
is set, NICSRO <7> is also set. Writing a 0 has no effect.
Cleared by writing a 1, by setting NICSR0 <2>, on power-up
and the negation of DCOK when SCR <7> is clear.

(INTR) Interrupt request. Read only. This bit is set whenever
any of the bits NICSR0O <14> (BABL), NICSR0 <12> (MISS),
NICSRO <11> (MERR), NICSR0 <10> (RINT), NICSR0 <9>
(TINT), or NICSRO <8> (IDON) are set. When both this

bit and NICSRO <6> (INEA) are set, an interrupt request is
posted at IPL 14 with vector offset of D4 ;5. Writing to this bit
has no effect. Cleared by clearing BABL, MISS, MERR, RINT,
TINT, and IDON, by setting NICSR0 <2>, on power-up and
the negation of DCOK when SCR <7> is clear.
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Data Bit

Definition

NICSRO <6>

NICSR0O <5>

NICSRO <4>

NICSRO <3>

(INEA) Interrupt enable. Read/Write. This bit controls
whether the setting of the NICSR0 <7> (INTR) bit generates
an interrupt request. When both this bit and NICSR0 <6>
(INEA) are set, an interrupt request is posted at IPL 14 with
vector offset of D4 5. Cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.

(RXON) Receiver on. Read only. When set, this bit indicates
that the receiver is enabled. This bit is set when initialization
is completed (i.e., when IDON is set, unless the DRX bit of the
initialization block mode register was one) and then NICSR0
<1> (STRT) is set. Writing to this bit has no effect. Cleared
by setting NICSRO <2> or NICSR0O <11>, on power-up and
the negation of DCOK when SCR <7> is clear.

(TXON) Transmitter on. Read only. When set, this bit
indicates that the transmitter is enabled. This bit is set when
initialization is completed (i.e., when IDON is set, unless

the DTX bit of the initialization block mode register was one)
and then NICSRO <1> (STRT) is set. Writing to this bit has
no effect. Cleared by setting NICSRO <2>, NICSRO <11>,
NITMD2 <31> (UFLO), NITMD2 <30> (BUFF), or NITMD2
<26> (RTRY), on power-up and the negation of DCOK when
SCR <7> is clear.

(TDMD) Transmit demand. Read/Write. Setting this bit
signals the LANCE chip to access the transmit descriptor ring
without waiting for the polltime interval to elapse. This bit
need not be set to transmit a packet; setting it merely hastens
the chip’s response to the insertion of a transmit descriptor
ring entry by the host program. This bit is cleared by the
LANCE chip when it recognizes the bit has been set (the bit
may read as one for a short time after it is set, depending upon
the level of activity in the LANCE chip). Writing a zero has
no effect. This bit is also cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear. -
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 Data Bit

~ Definition

NICSRO <2>

NICSRO <1>

NICSRO <0>

(STOP) Stop external activity. Read/Write. Setting this bit

-stops:all external activity and clears the internal logic of the

EANCE chip; this has the same effect on the LANCE chip as

- a-hardware-reset does. When set, the LANCE chip remains
. inactive until NICSR0 <1> (STRT) or NICSR0 <0> (INIT)

are set. Setting STOP clears all the other bits in this register.
After STOP has been set, the other three command and status
registers' (NICSR1, NICSR2, and NICSR3) must be reloaded
before: setting INIT or STRT (note that NICSR1, NICSR2,

and NICSR3 may be accessed only. while-STOP is set). If the
processor: attempts to set STOP, INIT, and STRT at the same
time, STOP takes precedence and neither STRT nor INIT is
set:. Writing zero has no effect. This bit is set on power-up and
the negation of DCOK when SCR <7> is clear. It is cleared
by setting either INIT or STRT.

(STRT) Start operation. Read/Write. Setting this bit enables
the'LANCE chip to send and receive packets, perform DMA
and manage its buffers. The STOP bit must be set prior

to setting the STRT bit (setting STRT then clears STOP).
Writing a 0-has no effect. Cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.

(INIT) I[nitialize. Read/Write. Setting this bit causes the
LANCE chip to perform its initialization process, which reads
the initialization block from the area in the network interface
buffer RAM addressed by the contents of NICSR1 and NICSR2
via DMA. The STOP bit must be set prior to setting the INIT
bit (setting INIT then clears STOP). Writing a zero has no
effect. Cleared by setting NICSRO <2>, on power-up and the
negation of DCOK when SCR <7> is clear.

NOTE

The INIT and STRT bits must not be set at the same time. The proper
initialization procedure is as follows:

* Set STOP in NICSRO
¢ Set up the initialization block in memory
e Load NICSR1 and NICSR2 with the starting address of the initialization

block

e Set INIT in NICSRO
e Wait for IDON in NICSRO to become set
e Set STRT in NICSRO to begin operation



112 Architecture-

397 N'etwork' Interface Control and Status Register 1

The network interface control and status register 1 (NICSR1), address 2008
4604 1 when NIRAP <1:.0> are set to 01, is a word-wide register that is
1mplemented on all designs that use the LANCE chip. This register is used
in: conjunction with NICSR2 to supply the network interface buffer RAM
‘address. of the initialization block which the chip reads when it performs

- its initialization process. This register is accessible only if the STOP bit in

NICSRO0 is set. Bits <31:16> are undefined and bits <15:0> are read/write.
~ On power-up, all the bits in this register are undefined.

The format NICSR1 is shown in Figure 3-42.

31302928272625242322212019181716151413121110 98 7 6 § 4 3 2 1 ‘0

[‘ UNDEFINED : l IAOR 15:0 ]

HA-X004S-00

Figure:3-42 Network Interface Control and Status Register

Data Bit Definition
NICSR1 Undefined. Should not be read or written.
<31:16>

NICSR1 <15:0> . (IADR15:0) Initialization block address bits <15:0>.

‘ Read/Write. These are the low-order sixteen bits of the
network interface buffer RAM- address of the first byte of
the initialization block. Note that since the block must be
aligned on a word boundary bit <0> must be zero.

3.9.8 Network Interface Control and Status Register 2

The network interface control and status register 2 (NICSR2), address 2008
4608 15 when NIRAP <1:0> are set to 10, is a word-wide register that is
implemented on all designs that use the LANCE chip. This register is used
in conjunction with NICSR1 to supply the network interface buffer RAM
address of the initialization block which the chip reads when it performs
its initialization process. This register is accessible only if the STOP bit in
NICSRO is set. Bits <31:16> are undefined bits <15:8> are reserved and
bits <15:0> are read/write. On power-up, all the bits in this register are

undefined.
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The format for NICSR2 is shown in Figure 3-43.

31302928272625242322212019181716151413121110 98 7 6 5 4 3 21 0

’ UNDEFINED [ RESERVED I IADR 23:16 J

MA-X0030-08

Figure 3-43 Network Interface Control and Status Register 2

Data Bit Definition
NICSR2 Undefined. Should not be read or written.
<31:16> :

NICSR2 <15:8> Reserved. Should not be read or writt_en.

NICSR2 <7:0> (IADR23:16) Initialization block address bits <23:16>.
Read/Write. These are bits 23:16 of the network interface
buffer RAM address of the first byte of the initialization block.

3.9.9 Network Interface Control and Status Register 3

The network interface control and status register 3 (NICSR3), address 2008
460C 15 when NIRAP <1:0> are set to 11, is a word-wide register that
is implemented on all designs that use the LANCE chip. This register
controls certain aspects of the electrical interface between the LANCE chip
and the system. It must be set by the on-board firmware as indicated for
each bit. This register is accessible only if the STOP bit in NICSRO is set.
Bits <31:16> are undefined, bits <15:3> are reserved and bits <3:0> are
read/write.

The format for NICSR3 is shown in Figure 3-44.

’

31302928272625242322212019181716151413121110 98 76 S 4 3 21 Q

[ UNDEFINED : [ RESERVED [ [ l l
gswe |
ACON
BCOM

A= X00S1- 08

Figure 3-44 Network Interface Control and Status Register 3
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Data Bit

Definition

NICSR3
<31:16>

NICSR3 <15:3>
NICSR3 <2>

NICSR3 <1>

NICSR3 <0>

Undefined. Should not be read or written.

Reserved. Read as zeros. Writes have no effect.

(BSWP) Byte swap. Read/Write. When this bit is set, the
LANCE chip will swap the high and low bytes for DMA data
transfers between the silo and the network interface buffer
RAM in order to accomodate processors which consider address

‘bits <15:08 > to be the least significant byte of data. Cleared

by setting NICSR0 <2>, on power-up and the negation of
DCOK when SCR <7> is clear. This bit must be set to 0 by
the on-board firmware.

(ACON) ALE controi. Read/Write. This bit controls the
polarity of the signal emitted on the LANCE chip’s ALE/AS pin
during DMA operation. Cleared by setting NICSRO <2>, on
power-up and the negation of DCOK when SCR <7> is clear.
This bit must be set to 0 by the on-board firmware.

(BCON) Byte control.. Read/Write. This bit controls the
configuration of the byte mask and hold signais on the LANCE
chip’s pins during DMA operation. Cleared by setting NICSRO
<2>, on power-up and the negation of DCOK when SCR
<7> is clear. This bit must be set to 0 by the on-board
firmware.

3.9.10 Network Interface Initialization Block

When the LANCE chip is initialized (by setting the INIT bit in NICSRO0),
it reads a 24-byte block of data called the network interface initialization
block (NIIB) from the network interface buffer RAM using DMA accesses.
The base address of the initialization block is formed by concatenating the
contenits of the NICSR1 and NICSR2. Since the NIIB must start on a word
boundary, the low-order bit of the address must be zero. The initialization
block is made up of twelve 16-bit words, (NIIBW0-NIIBW11), arranged as
shown in Figure 3-45.



NIBWO

NIBWI
NIBW2
NIBW3
NiiBW4

NIBWS

NIBWS

NiIgw?

NiIBwWS

NIIgw9

Nigwio

Nigwit

!514131’21110 9876543210

MODE

NETWORK
PHYSICAL
ADDRESS
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——t

MULTICAST
ADDRESS
FILTER
MASK

L

RECEIVE
OESCRIPTOR RING
POINTER

TRANMIT
DESCRIPTOR RING
POINTER

:BASE

(BASE + 2
:BASE + 4
:BASE + 6
:BASE + 8
(BASE + 10
:BASE + 12
SBASE + 14
:BASE + 18
{BASE + 18
(BASE + 20
‘BASE + 22

MA-XOGSI-08

Figure 3-45 Network Interface Initialization Block

3.9.10.1 Network Interface Initialization Block Word 0

Architecture 115

Word 0 of the network interface initialization block (NIIBWO), also referred
to as the mode word, resides in the network interface buffer RAM at the
base address of the initialization block. The mode word of the initialization

block allows alteration of the LANCE chi

p’s normal operation for testing

and special applications. For normal operation the mode word is entirely

zZero.

The format for NIIBWO is shown in Figure 3-46.

151413121“0 9876543210

L

1]

L]

PROM _l

INTL

ORTY

couL

DOTCR
LooeP

o™
ORX

MA=X00S4-08

Figure 3-46 Network Interface Initialization Block Word 0
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Data Bit

Definition

NIIBW0<15>

NIIBW0<14:7>
NIIBW0< 6>

NIIBW0O<5>

NIIBWO0<4>

NIIBW0<3>

(PROM) Promiscuous mode. When set, all incoming
packets are accepted regardless of their destination
addresses. When cleared, only incoming packets with
a destination address that matches the KA640’s address
are accepted (normal operating mode).

Reserved. Should be written with zeros.

(INTL) Internal loopback. This bit is used in conjunction
with the NIIBW0<2> (LOOP) to control loopback
operation. See the description of the LOOP bit, below.

(DRTY) Disable retry. When set, the LANCE chip will

attempt only one transmission of a packet. If there is a
collision on the first transmission attempt, a retry error
(RTE) will be reported in the transmit buffer descriptor.

(COLL) Force collision. When set, the collision logic can

"be tested. The LANCE chip must be in internal loopback

mode for COLL to be used. When COLL is set to one, a
collision will be forced during the subsequent transmission

. attempt. This will result in 16 transmission attempts and

a retry error (RTE) being reported in the transmit buffer -
descriptor.

(DTCR) Disable transmit CRC. When cleared, the
transmitter will generate and append a 4-byte CRC to
each transmitted packet (normal operation). When DTCR
is one the CRC logic is allocated instead to the receiver
and no CRC is sent with a transmitted packet.

During loopback, setting DTCR to zero will cause-a CRC
to be generated and sent with the transmitted packet, but
no CRC check can be done by the receiver since the CRC
logic is shared and cannot both generate and check a CRC
at the same time. The CRC transmitted with the packet
will be received and written into memory following the
data where it can be checked by software.

If DTCR is set to one during loopback, the driving software
must compute and append a CRC value to the data to be
transmitted. The receiver will check this CRC upon
reception and report any error.
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Data Bit

Definition

NIIBWO <2>

(LOOP) Loopback control. This bit is used in conjunction
with NIIBWO <6> to perform internal loopback tests

on the LANCE chip. During loopback the LANCE chip
operates in full duplex mode. The maximum packet size is
limited to 32 data bytes (in addition to which 4 CRC bytes
may be appended). During loopback, the runt packet filter
is disabled because the maximum packet is forced to be
smaller than the minimum size Ethernet packet (64 bytes).

Setting LOOP to one allows simultaneous transmission
and reception for a packet constrained to fit within the
silo. The chip waits until the entire packet is in the silo
before beginning serial transmission. The incoming data
stream fills the silo from behind as it is being emptied.
Moving the received packet out of the silo into memory
does not begin until reception has ceased.

In loopback mode, transmit data chaining is not possible.
Receive data chaining is allowed regardless of the receive
buffer length. (In normal operation, the receive buffers
must be 64 bytes long, to allow time for buffer lookahead.)

Valid loopback bit settings are:

LOOP INTL Operation

0 X Normal on-line operation
1 0 External loopback
1 1 Internal loopback

Internal loopback allows the LANCE chip to receive its
own transmitted packet without disturbing the network.
The LANCE chip will not receive any packets from the
network while it is in internal loopback mode.

External loopback allows the LANCE chip to transmit a
packet through the transceiver out to the network cable
to check the operability of all circuits and connections
between the LANCE chip and the network cable.
Multicast addressing in external loopback is valid only
when DTCR is one (user needs to append the 4 CRC
bytes). In external loopback, the LANCE chip also receives
packets from other nodes.
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Data Bit Definition

NIIBWO<1> (DTX) Disable transmitter. When set, the LANCE chip
will not set the TXON bit in NICSRO at the completion
of initialization. This will prevent the LANCE chip from
attempting to access the transmit descriptor ring, hence
no transmissions will be attempted.

NIIBW0<0> {DRX) Disable receiver. When set, the LANCE chip will
not set the RXON bit in NICSRO at the completion of
initialization. This will cause the LANCE chip to reject all
incoming packets and to not attempt to access the receive
descriptor ring.

3.9.10.2 Network Interface Initialization Block Words 1-3

Words 1-3 of the network interface initialization block (NIIBW1-3), reside in
the network interface buffer RAM at the base address of the NIIB plus 2, 4,
and 6 respectively. These three words contain the 48-bit NPA of the KA640
and are loaded by the resident firmware from the NISA ROM.

This address identifies the KA640 to the Ethernet network and must be
unique within the domain of the network. The low-order bit (bit 0) of
this address must be zero to indicate it is a physical rather than multicast
address.

The format for network interface initialization block words 1 through 3 is
shown in Figure 3-47.

151413121110 98 78 5 4 3 21 0

NIIBW |NETWORK PHYSICAL ADDRESS < 15:0 >| :BASE + 2

NIBW2 |[NETWORK PHYSICAL ADDRESS < 31:16>f :BASE + 4

NIIBW3 |NETWORK PHYSICAL AODRESS < 47:17>| :BASE + 6

RA-XRIT-08

Figure 3-47 Network Interface Initialization Block Words 1-3

3.9.10.3 Network Interface Initialization Block Words 4-7

Words 4-7 of the network interface initialization block (NIIBW4-7), reside in
network interface buffer RAM at the base address of the NIIB plus 8, 10, 12,
and 14 respectively. These four words contain the 64-bit multicast address
filter mask.
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The format for network interface initialization block words 4 through 7 is
shown in Figure 3-48.

1514131211098 76 543210

NIIBW4 | MULTICAST ADD FILTER < 15:0 > : BASE + 8

NIIBWS | MULTICAST ADD FILTER MSK <31:16> | : BASE + 10

NIIBWS | MULTICAST AQD FILTER MSK <47:17> | : BASE + 12

NIBW7 | MULTICAST ACD FILTER MSK <48:18> | : SASE + 14

A= X00SE-08.

Figure 3-48 Network interface Initialization Block Words 4-7

Multicast Ethernet addresses are distinguished from physical network
addresses by the presence of a one in bit 0 of the 48-bit address field.
If an incoming packet contains a physical destination address (bit 0 is zero),
then its entire 48 bits are compared with the network physical address and
the packet is ignored if they are not equal. If the packet contains a multicast
destination address which is all ones (the broadcast address), it is always
accepted and stored regardless of the contents of the multicast address filter
mask.

All other multicast addresses are processed through the multicast address
filter to determine whether the incoming packet will be stored in a receive
buffer. This filtering is performed by passing the multicast address field
through the CRC generator. The high-order 6 bits of the resulting 32-bit
CRC are used to select one of the 64 bits of the multicast address filter
mask. (These high-order six bits represent in binary the number of the bit
in the multicast address filter mask.) If the bit selected from the multicast
address filter mask is one, the packet is stored in a receive buffer; otherwise
it is ignored. This mechanism effectively splits the entire domain of 2**47
multicast addresses into 64 parts, and multicast addresses falling into each
part will be accepted or ignored according to the value of the corresponding
bit in the multicast address filter mask. The driver program must examine
the addresses of the packets accepted by this partial filtering to complete
the filtering task.
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3.9.10.4 Network Interface Initialization Block Words 8,9

Words 8 and 9 of the network interface initialization block (NIIBW8,9), also
- referred to as the receive descriptor ring pointer, reside in network interface
buffer RAM at the base address of the NIIB plus 16 and 18 respectively.
These two words contain the starting address and the number of descriptors
in the receive descriptor ring.

The format for NIIBW8 is shown in Figure 3-49.

151413121110 98 76 5 4 3 21 0

NIIBWS L RORA < 15:0 > l :BASE + 16

MA=X00S7-88

Figure 3-49 Network Interfaceklnitialization Block Word 8

Data Bit Definition

NIIBW8 <15:0> (RDRA <15:0>) Receive descriptor ring address <15:0>. This
field contains bits <15:0> of the base address of the receive
descriptor ring. Since the receive descriptor ring must start on
a a quadword boundary, bits <2:0> of this field must be zero.

The format for NIIBW9 is shown in Figure 3-50.

1514131211098 78 5S4 3 21 0

NIIBWS INRBD ]RESERVEDT RORA < 23:18 )I :BASE + 18

MA-XOCS6-08

Figure 3-50 Network Interface Initialization Block Word 9
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Data Bit Definition

NIIBW9<15:13>  (NRBD) Number of receive buffer descriptors. This field
gives the-number: of receive buffer descriptors in the receive
descriptor ring, expressed as a power of two:

Value Number of Descriptors

000 1
001 2
010 4
011 8
100 16
101 32
110 64
111 128

NIIBW9<12:8> Reserved; should be zeros.

NIIBW9<7:0> (RDRA , <23:16>) Receive descriptor
ring address <23:16>. This field contains bits <23:16> of the
base address of the receive descriptor ring.

3.9.10.5 Network Interface Initialization Block Words 10,11

Words 10 and 11 of the network interface initialization block (NIIBW10,11),
also referred to as the transmit descriptor ring pointer, reside in network
interface buffer RAM at the base address of the NIIB plus 20 and 22
respectively. These two words contain the starting address and the number
of transmit buffer descriptors in the transmit descriptor ring.

The format for NIIBW10 is shown in Figure 3-51.

1514131211098 76 S 4321 0

NIgwo F TORA < 15:0 > l :BASE + 20

MA=X0039-00

Figure 3-51  Network Interface-Initialization Block Word 10
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Data Bit Definition

NIIBW10<15:0> (TDRA <15:0>) Transmit descriptor ring address <15:0>.
This field contains bits <15:0> of the base address of the
transmit descriptor ring. Since the transmit descriptor ring
must start on a a quadword boundary, bits <2:0> of this field
must be zero.

The format for NIIBW11 is shown in Figure 3-52.

151413121110 98 78 S 4 3 21 0

NHBWI1 INTBD LNESERVED [ TORA < 23:18 > ] :BASE + 22

MA=X0060-08

Figure 3-52 Network Interface Initialization Block Word 11

Data Bit Definition

NIIBW11<15:13> (NTBD) Number of transmit buffer descriptors. This field
gives the number of transmit buffer descriptors in the transmit
descriptor ring, expressed as a power of two:

Value Number of Descriptors

000 1
001 2.
010 4
o1 8
100 16
101 32
110 64
m 128

NIIBW11 Reserved; should be zeros.
<12:8> .

NIBW11 <7:0> (TDRA <23:16>) Transmit descriptor ring address <23:16>.
This field contains bits <23:16> of the base address of the
transmit descriptor ring.
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3.9.11 Buffer Management

The LANCE chip manages its data buffers by using two rings of buffer
descriptors which are stored in the network interface buffer RAM: the
network interface receive descriptor ring and the network interface transmit
descriptor ring. Each buffer descriptor points to a data buffer elsewhere
in the network interface buffer RAM, contains the size of that buffer, and
contains status information about that buffer’s contents.

The starting location in the network interface buffer RAM of each ring and
the number of descriptors in it are given to the LANCE chip via the NIIB
during the chip initialization process. Each descriptor is 8 bytes long and
must be aligned on a quadword boundary (the three low-order bits of its
address must be zero). The descriptors in a ring are physically contiguous
in the network interface buffer RAM and the number of descriptors must be
a power of two. The LANCE keeps an internal index to its current position
in each ring which it increments modulo the number of descriptors in the
ring as it advances around each ring.

Once started, the LANCE chip polls each ring to find descriptors for
buffers in which to receive incoming packets and-from which to transmit
outgoing packets, and revises the status information in buffer descriptors
as it processes their associated buffers. When polling, the LANCE chip is
limited to looking only one ahead of the descriptor with which it is currently
working. The high speed of the data stream requires that each buffer be at
least 64 bytes long to allow time to chain buffers for packets which are larger
than one buffer. (The first buffer of a packet to be transmitted should be at
least 100 bytes to avoid problems in case a late collision is detected.)

Each descriptor in a ring is "owned” either by the LANCE chip or by the
host processor; this status is indicated by the OWN bit in each descriptor.
Mutual exclusion is accomplished by the rule that each device can only
relinquish ownership of a descriptor to the other device, it can never take
ownership; and that each device cannot change any field in a descriptor
or its associated buffer after it has relinquished ownership. When the host
processor sets up the rings of descriptors before starting the LANCE chip, it
sets the OWN bits such that the LANCE chip will own all the descriptors in
the network interface receive descriptor ring (to be used by the LANCE to
receive packets from the network) and the host will own all the descriptors
in the network interface transmit descriptor ring (to be used by the host to
set up packets to be transmitted to the network).
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3.9.12 Network Interface Receive Descriptor Ring

The network interface receive descriptor ring (NIRDR) contains a receive
buffer descriptor for each receive buffer (Figure 3-53). It is located in a
contiguous block of the network interface buffer RAM whose base address
is formed by concatenating the contents of NIIBW8 and NIIBW9 <7:0>
(RDRA <23:0). Since the NIRDR must start on a quadword boundary, bits
<2:0> of this address must be zero. The size of the network interface
receive descriptor ring can vary between 8 and 1024 bytes depending on
the number of 8-byte descriptors it contains (Figure 3-53). The number of
descriptors must be a power of two between one and 128 and is determined
by NIIBW9 <15:13> (NRBD).

1514131211098 7.6 54321 0

:BASE
RECEIVE ‘
BUFFER S
OESCRIPTOR 0
SR I |
{BASE + 8
. RECEIVE -
BUFFER
™" DESCRIPTOR
P ° ecracor——
L]
= * ==
N L]
— Ll ec————
I RECEIVE | asEea
‘ BUFFER
S OESCRIPTOR N [N
. —
A= X001~ 08

Figure 3-53 Network Interface Receive Descriptor Ring

3.9.12.1 Receive Buffer Descriptors

Receive buffer descriptor n contains the base address and size of a receive
buffer as well as status and error information. It is four words (eight bytes)
in length and is located in the receive descriptor ring at base +8n.
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A representation of a typical receive buffer descriptor (RBD) is shown in
Figure 3-54.

151413121110 98 7 6 5 4 3 21 0

RBOnWO
RECEIVER
BUFFER

RE0nWM
DESCRIPTOR n
——

RBOnW2

RBONW3

MA-X0062-88

Figure 3-54 Receive Buffer Descriptors

3.9.12.1.1 Receive Buffer Descriptor n Word 0

Word 0 of RBD n (RBDnWO0) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n. This word contains a portion of the
base address of the associated receive buffer.

The format for receive buffer descriptor n word 0 is shown in Figure 3-55.

15141312111098 76 S 43210

RBDNWO r BAOR < 15:0 > ] :BASE + 8n

MA-X0063-08

Figure 3-55 Receive Buffer Descriptor n Word 0

Data Bit Definition
RBDnWO (BADR) Buffer address. This field contains bits <15:0> of the
<15:0> . 24-bit network address buffer RAM address of the start of the

buffer assodated with this descriptor. Written by the host;
unchanged by the LANCE.

3.9.12.1.2 Receive Buffer Descriptor n Word 1

Word 1 of RBD n (RBDnW1) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n+2. This word contains a portion of
the base address of the associated receive buffer as well as status and error
information.
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The format for receive buffer descriptor n word 1 is shown in Figure 3-56.

151413121110 98.76 S 4 3 21 0

REDAWI {H | | l ] [ [ aAoa<23:rsq ‘BASE + 8n + 2
l—L B
sm®
suE
e cHE
oFE
FRE
ERR
own

. MA=X0064-08

Figure 3-56 Receive Buffer Descriptor n Word 1

Data Bit Definition

RBDnW1 <15>  (OWN) Owned flag. This bit indicates whether the descriptor

is owned by the host (OWN = 0) or by the LANCE chip
(OWN = 1). The LANCE clears OWN after filling the buffer

- associated with the descriptor with an incoming packet. The
host sets OWN after emptying the buffer. In each case, this
must be the last bit changed by the current owner, since
changing OWN passes ownership to the other party and the
relinquishing party must not thereafter aiter anything in the
descriptor or its buffer.

RBDnW1 <14> (ERR) Error summary. This is the logical OR of the FRE, OFE,
CHE and BUE bits in this word. Set by the LANCE chip and
cleared by the host.

RBDnW1 <13>  (FRE) Framing error. This bit is set by the LANCE chip to
indicate that the incoming packet stored in the buffer had both
a non-integral multiple of 8 bits and a checksum error (CHE).
It is cleared by the host.

RBDnW1 <12> (OFE) Overflow error. This bit is set by the LANCE chip to
indicate that the receiver has lost part or all of an incoming
packet because it could not store it in the buffer before the
chip’s silo overflowed. Cleared by the host.

RBDnW1 <11> (CHE) Checksum error. This bit is set by the LANCE chip to
indicate that the received packet has an invalid CRC checksum.
Cleared by the host.
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Data Bit

e Definition

RBDnW1 <10>

RBDnW1 <9>

RBDnW1 <8>

RBDnW1 <7:0>

(BUE) Buffer error. This bit is set by the LANCE chip when

it has used all its owned receive descriptors or when it could

not get the next descriptor in time while attempting to chain

to:a new. buffer in the midst of a packet. When a buffer error
- occurs, an overflow error (bit OFLO) also occurs because the

LANCE continues to attempt to get the next buffer until its silo

overflows. BUE is cleared by the host.

(STP) Start of packet. This bit is set by the LANCE chip
to indicate that this is the first buffer used for this packet.
Cleared by the host.

(ENP) End of packet. This bit is set by the LANCE chip to
indicate that this is the last buffer used for this packet. When
both STP and ENP are set in a descriptor, its buffer contains
an entire packet; otherwise two or more buffers have been
chained together to hold the packet. ENP is cleared by the
host.

(BADR <23:16>) Buffer address <23:16>. This field contains
bits. <23:16> of the 24-bit the NI buffer RAM address of the
start of the buffer associated with this descriptor. Written by
the host; unchanged by the LANCE.

3.9.12.1.3 Receive Buffer Descriptor n Word 2

Word 2 of RBD n (RBDnW?2) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+4. This word contains the size of
the associated receive buffer. .

The format for receive buffer descriptor n word 2 is shown in Figure 3-57.

151413121110 98 76 5 4 3 21 0

REOnWZ H![lﬂ 8SZ < 11:0 > ] ‘BASE + 80 + 4

A~ X008S~08

. Figure 3-57 Receive Buffer Descriptor n Word 2
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Data Bit Definition

RBDnW2<15:12> These bits must be set by the host to ones. Unchange& by
: the LANCE chip.

RBDnW2<11:0> (BSZ <11:0>) Buffer size. This field contains the size (in
bytes) of the associated receive buffer in two’s complement
form. Note that the minimum buffer size is 64 bytes (to
allow enough time for chaining buffers) and the maximum
buffer size is 1518 bytes (the largest legal Ethernet packet).

. Written by the host; unchanged by the LANCE chip.

3.9.12.1.4 Receive Buffer Descriptor n Word 3

"Word 3 of RBD n (RBDnW3) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+6. This word contains the size of
the packet that was received.

The format for receive buffer descriptor n word 3 is shown in Figure 3-58.

151413121110 9876 5 4 321 0

RBDnW3 10[010]70] PSZ < 11:0 > j :BASE + 8n + 8

A= X0064—08

Figure 3-58 Receive Buffer Descriptor n Word 3

Data Bit Definition

RBDnW3<15:12> These bits are reserved. They should be set to zeros by the
’ host when it constructs the descriptor.

RBDnW3<11:0> (PSZ <11:0>) Packet size. This field contains the size (in
bytes) of the received packet. This field is valid only in
a descriptor in which ENP is set (last buffer) and ERR is
clear (no error). Set by the LANCE chip and cleared by
the host.

3.9.13 Receive Buffers

Receive buffers are set up by the host by adding a receive buffer descriptor

to the network interface receive buffer descriptor ring. These buffers are
used for storing incoming Ethernet packets. An Ethernet packet may span
multiple buffers, but a buffer cannot contain more than one Ethernet packet.
The base address of a receive buffer is formed by concatenating the contents
of RBDnW0 and RBDnW1 <7:0> (BADR). The size of a receive buffer is
determined by RBDnW2 <11:0>.
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Receive buffers are structured as shown in Figure 3-59.

151413121110 98 76 5 43210

:BASE
RECEIVE
BUFFER
( 64-1518 BYTES )

a> ~

RA=XG0G7-08

Figure 3-59 Receive Buffers

3.9.14 Network Interface Transmit Descriptor Ring

The network interface transmit descriptor ring (NITDR) contains a transmit
buffer descriptor for each transmit buffer (Figure 3-60). It is located in a
contiguous block of the network interface buffer RAM whose base address is
formed by concatenating the contents of the NIIBW10 and NIIBW11 <7:0>
(TDRA<23:0>). Since the NITDR must start on a quadword boundary,
bits <2:0> of this address must be zero. The size of the network interface
transmit descriptor ring can vary between 8 and 1024 bytes depending on the
number of 8-byte descriptors it contains. The number of descriptors must
be a power of two between one and 128 and is determined by NIIBW11
<15:13> (NTBD). ‘
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151413121110 98 76 S 4 3 21 0
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Figure 3-60 Network Interface Transmit Descriptor Ring

3.9.14.1 Transmit Buffer Descriptors

Transmit buffer descriptor n contains the base address, size, of a transmit
buffer as well as status and error information. It is four words (eight bytes)
in length and is located in the transmit descriptor ring at base + 8n.

A representation of a typical transmit buffer descriptor (TBD) is shown in
Figure 3-61.

151413121110 98 78 S 4 3 21 0

TBORWO :BASE + 8n
S TRANSMIT p—
TBOnw BUFFER
— DESCRIP
TBONW2 TOR n
TBONW3
A~ 1006908

Figure 3-61 Transmit Buffer Descriptors
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3.9.14.1.1 Transmit Buffer Descriptor n Word 0

Word 0 of TBD n (TBDnWO0) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n. This word contains a portion of the
base address of the associated transmit buffer.

The format for transmit buffer descriptor n word 0 is shown in Figure 3-62.

151413121110 9876 543210

TEOnWO r BAOR < 15:0 > 1 :BASE + 8n

MA=X0070-88

Figure 3-62 Transmit Buffer Descriptor n Word 0

Data Bit Definition

TBDnW0<15:0> (BADR) Buffer address. This field contains bits <15:0> of the
24-bit network interface buffer RAM address of the start of
the buffer associated with this descriptor. Written by the host;
unchanged by the LANCE chip.

3.9.14.1.2 Transmit Buffer Descriptor n Word 1

Word 1 of TBD n (TBDnW1) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+2. This word contains a portion
of the base address of the associated transmit buffer as well as status and
error information.

The format for transmit buffer descriptor n word 1 is shown in Figure 3-63.

151413121110 98 76 54 321 0

TBDAW1 I|lll||ll BADR<23:1S)] :BASE + 8n + 2

owN
ERR
RSV
MRE
[6, R PIS—
DEF
ST
ENP

HA-X0071-00

Figure 3-63 Transmit Buffer Descriptor n Word 1
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Data Bit Definition

TBDnW1 <15> (OWN) Owned flag. This bit indicates whether the descriptor
is owned by the host (OWN = 0) or by the LANCE chip
(OWN = 1). The LANCE clears OWN after filling the buffer
associated with the descriptor with an incoming packet. The
host sets OWN after-emptying the buffer. In each case, this
must be the last bit changed by the current owner, since
changing OWN passes ownership to the other party and the
relinquishing party must not thereafter alter anything in the
descriptor or its buffer.

TBDnW1 <14>  (ERR) Error summary. This bit is the logical OR of the COE,
' : CAE, UFE and RTE bits in this descriptor.. Set by the LANCE
chip and cleared by the host.

TBDnW1 <13> (RSV) Reserved. The LANCE chip will write a zero in this bit.

TBDnW1 <12> (MRE) More retries. The LANCE chip sets this bit when more
' than one retry was required to transmit the packet. Cleared
by the host.

TBDnW1 <11> (ORE) One retry. The LANCE chip sets this bit when exactly
. one retry was required to transmit the packet. Cleared by the
host.

TBDnW1 <10> (DEF) Deferred. The LANCE chip sets this bit when it had to
defer while trying to transmit the packet. This occurs when
the network is busy when the LANCE is ready to transmit.
Cleared by the host.

TBDnW1 <9> (STP) Start of packet. This bit is set by the host to indicate
that this is the first buffer used for this packet. STP is not
changed by the LANCE chip. '

TBDnW1 <8> (ENP) End of packet. This bit is set by the host to indicate
that this is the last buffer used for this packet. When both STP
and ENP are set in a descriptor, its buffer contains an entire
packet; otherwise two or more buffers have been chained
together to hold the packet. ENP is not changed by the LANCE
chip.

TBDnW1 <7:0> (BADR <23:16>) Buffer address <23:16>. This field
contains bits <23:16> of the 24-bit network interface buffer
RAM address of the start of the buffer associated with this

descriptor. Written by the host; unchanged by the LANCE
chip.
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3.9.14.1.3 Transmit Buffer Descriptor n Word 2

Word 2 of TBD n (TBDnW?2) resides in the network interface buffer RAM at
the base address of the NIITDR +8n+4. This word contains the size of the
associated transmit buffer.

The format for transmit buffer descriptor n word 2 is shown in Figure 3-64.

15141312111098 76 S 43210

TBOAW2 I‘H'l’[ ] BASE + 8n + 4 _

MA-X0072-08

Figure 3-64 Transmit Buffer Descriptor n Word 2

Data Bit Definition

TBDnW2<15:12> These bits must be set by the host to ones. Unchanged by the
LANCE chip.

TBDnW2 (BSZ <11:0>) Buffer size. This field contains the size (in

<11:0> bytes) of the associated transmit buffer in two’s complement

form. Note that the minimum buffer size is 64 bytes (to allow
enough time for chaining buffers) and the maximum buffer
size is 1518 bytes (the largest legal Ethernet packet). Written
by the host; unchanged by the LANCE chip.

3.9.14.1.4 Transmit Buffer Descriptor n Word 3

Word 3 of TBD n (TBDnW3) resides in the network interface buffer RAM
at the base address of the NIITDR +8n+6. This word contains error
information and a time domain reflectometer. The contents of this word
are valid only when the ERR bit in TBDnW2 has been set by the LANCE
chip.

The format for transmit buffer descriptor n' word 3 is shown in Figure 3-65.

151413121110 9876 5 43210

raoml”““ TOR < 9:0 > I:BASE+en¢6
BUE
UFE
RSV
COE e
CAE
RTE
"A-X0073-00

Figure 3-65 Transmit Buffer Descriptor n Word 3
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Data Bit

Definition

TBDnW3 <15>

TBDnW3 <14>

TBDnW3 <13>
TBDnW3 <12>

TBDnW3 <11>

TBDnW3 <10>

TBDnW3 <9:0>

(BUE) Buffer error. This bit is set by the LANCE chip during
transmission when it does not find the ENP bit set in the
current descriptor and it does not own the next descriptor.
When BUE is set, the UFE bit (below) is also set because
the LANCE chip continues to transmit until its silo becomes
empty. BUE is cleared by the host.

(UFE) Underflow error. This bit is set by the LANCE chip

when it truncates a packet being transmitted because it has
drained its silo before it was able to obtain additional data

from a buffer in memory. UFE is cleared by the host.

(RSV) Reserved. The LANCE chip will write a zero in this bit.

(COE) Late collision error. This bit is set by the LANCE chip
to indicate that a collision has occurred after the slot time of
the network channel has elapsed. The LANCE chip does not
retry after a late collision. COE is cleared by the host.

(CAE) Loss of carrier error. This bit is set by the LANCE
chip when the carrier present .input to the chip becomes false
during a transmission initiated by the LANCE. The LANCE
chip does not retry after such a failure. CAE is cleared by the
host.

(RTE) Retries exhausted. This bit is set by the LANCE chip
after 16 attempts to transmit a packet have failed due to-
repeated collisions on the network. (If the DRTY bit of
network interface initialization block word 0 (mode word) is
set, RTE will instead be set after only one failed transmission
attempt.) RTE is cleared by the host.

(TDR) Time domain reflectometer. These bits are the value
of an internal counter which is set by the LANCE chip to
count system clocks from the start of a transmission to the
occurrence of a collision. This value is useful in determing the
approximate distance to a cable fault; it is valid only when the
RTE bit in this word is set.

3.9.15 Transmit Buffers

Transmit buffers are set up by the host by adding a transmit buffer descriptor
to the network interface transmit buffer descriptor ring. These buffers
are used for storing incoming Ethernet packets. An Ethernet packet may
span multiple buffers, but a buffer cannot contain more than one Ethernet
packet. The base address of a transmit buffer is formed by concatenating
the contents of the TBDnW0 and TBDnW1 <7:0> (BADR). The size of a

transmit buffer is determined by TBDnW2 <11:0>.

S
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Transmit buffers are structured as shown in Figure 3-66.

1514131211098 76 5 4 3 21 0

. BASE

TRANSMIT I
BUFFER
(64-1518 BYTES ) — ]
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D

Figure 3-66 Transmit Buffers

3.9.16 LANCE Operation

The LANCE chip operates independently of the host under control of its
own internal microprogram. This section is a simplified description of the
operation of the LANCE in terms of its principal microcode routines (these
should not be confused with device driver programming in the host, which
is not a part of this specification). These microcode routines make use of
numerous temporary storage cells within the LANCE chip; most of these
are not accessible from outside the chip but they are mentioned here when
necessary to clarify the operation of the microcode.

Two such (conceptual) internal variables are of central importance: the
pointers to the “current” entry in the receive descriptor ring and in the
transmit descriptor ring, which are referred to below as TXP and RXP. Each
of these designates the descriptor which the LANCE will use for the next
operation of that type. If the descriptor designated by one of these pointers
is not owned by the LANCE (the OWN bit is 0), then the LANCE can neither
perform activity of that type nor advance the pointer.

For the transmit ring, the LANCE will do nothing until the host sets up a
packet in the buffer and sets the OWN bit in the descriptor designated by
the LANCE's TXP. (The host must keep track of the position of the TXP,
since setting up a packet in some other descriptor will not be detected by the
LANCE.) For the receive ring, if the LANCE does not own the descriptor
designated by RXP, it cannot receive a packet. In both rings, when the
LANCE finishes with a descriptor and relinquishes it to the host by clearing
OWN, it then advances the ring pointer (modulo the number of entries in
the ring).



136 Architecture

When the LANCE begins activity using the current descriptor (i.e. begins
receiving or transmitting a packet), it may look ahead at the next descriptor
and attempt to read its first three words in advance so it can chain to the
next buffer in mid-packet without losing data. However, it does not actually
advance its RXP or TXP until it has cleared the OWN bit in the current
descriptor.

The LANCE is a very complex chip and this specification does not attempt
to cover all the details of its operation. The chip purchase specification
and the chip vendor’s literature should also be consulted for more detailed
information.

3.9.16.1 Switch Routine

Upon power on, the STOP bit is set and the INIT and STRT bits are cleared
in NICSR0. The LANCE microprogram begins execution in the switch
routine, which tests the INIT, STRT, and STOP bits. When the host sets
either INIT or STRT, STOP is cleared. While STOP is set, if the host writes
to NICSR1 and NICSR2, that data is stored for use by the uutxahzanon
routine.

When the microprogram sees STOP cleared, it tests first the INIT bit and
then the STRT bit. If INIT is set, it performs the initialization routine. Then
if STRT is set, it begins active chip operation by jumping to the look-for-
work routine. Control returns to the switch routine whenever the host again
sets the STOP bit (which also clears the INIT and STRT bits). Note that the
ring pointers RXP and TXP are not altered by the setting of either STOP or
START; they are reset to the start of their rings only when INIT is set.

3.9.16.2 Initialization Routine

The initialization routine is called from the switch routine when the latter
finds the INIT bit set. It reads the initialization block from the memory
addressed by NICSR1 and NICSR2 and stores its data within the LANCE
chip. This routine also sets the ring pointers RXP and TXP to the start of
their rings (i.e., to point to the descriptor at the lowest memory address in
the ring).
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3.9.16.3 Look-For-Work Routine

The look-for-work routine is executed while the LANCE is active and looking
for work. It is entered from the switch routine when the STRT bit is set,
and is returned to from the receive and transmit routines after they have
received or transmitted a packet.

This routine begins by testing whether the receiver is enabled (bit RXON of
NICSRO is set). If so, it tries to have a receive buffer available for immediate
use when a packet addressed to this system arrives. It tests its internal
registers to see whether it has already found a receive descriptor owned by
the LANCE and, if not, calls the receive poll routine to attempt to get a
receive buffer.

Next the routine tests whether the transmitter is enabled (bit TXON of
NICSRO is set). If so, it calls the transmit poll routine to see whether there
is a packet to be transmitted and to transmit it.

If there was no transmission and the TDMD bit of NICSRO is not set, the
microprogram delays 1.6 milliseconds and then goes to check the receive
descriptor status again. If a packet was transmitted or the host has set
TDMD, the delay is omitted so that multiple packets will be transmitted as
quickly as possible.

If at any point in this routine the receiver detects an incoming packet whose
destination address matches the station’s physical address, is the broadcast
address, or passes the multicast address filter (or if the PROM bit of NIIBWQ
is set), the receive routine is called.

3.9.16.4 Receive Poll Routine

The receive poll routine is called whenever the receiver is enabled and the
LANCE needs a free buffer from the receive descriptor ring. The routine
reads the second word of the descriptor designated by RXP and, if the OWN
bit in it is set, reads the first and third words also.

3.9.16.5 Receive: Routine

The receive routine is called when the receiver is enabled and an incoming
packet’s destination address field matches one of the criteria described
above. The routine has three sections: initialization, lookahead, and
descriptor update.

In initialization, the routine checks whether a receive ring descriptor has
already been acquired by the receive poll routine. If not, it makes one
attempt to get the descriptor designated by RXP (if OWN is not set in it,
MISS and ERR are set in NICSRO and the packet is lost). The buffer thus
acquired is used by the receive DMA routine to empty the silo.
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In lookahead the routine reads the second word of the next descriptor in
the receive ring and, if the OWN bit is set, reads the rest of the descnptor
and holds it in readiness for possible data chaining.

The descriptor update section is performed when either the current buffer"

is filled or the packet ends. If the packet ends but its total length is less
than 64 bytes, it is an erroneous "runt packet” and is ignored: no status is
posted in the descriptor, RXP is not moved, and the buffer will be reused

for the next incoming packet (this is why a receive buffer must be at least

64 bytes long; otherwise the runt might be detected after advancing RXP).

If the packet ends (with or without error), the routine writes the packet length

‘into MCNT, sets ENP and other appropriate status bits and clears OWN in
the current descriptor, and sets RINT in NICSRO to signal the host that a
complete packet has been received. Then it advances RXP and returns to
the look-for-work routine.

If the buffer is full and the packet has not ended, chaining is required. The
routine releases the current buffer by writing status bits into its descriptor
(clearing OWN and ENP, in particular), makes current the next descriptor
data acquired in the lookahead section, advances RXP, and goes to the
lookahead section to grepare for possible additional chaining. Note that
RINT is not set in NICSRO, although the host would find OWN cleared if
it looked at the descriptor, and it could begin work on that section of the
packet, since the mutual exclusion rule prevents the LANCE from going
back and altering it.

3.9.16.6 Receive DMA Routine

The receive DMA routine is invoked asynchronously by the chip hardware
during execution of the receive routine whenever the silo contains 16 or
more bytes of incoming data or when the packet ends and the silo is not
empty. It executes DMA cycles to drain data from the silo into the buffer
designated by the current descriptor.

3.9.16.7 Transmit Poll Routine

The transmit Eoll routine is called by the look-for-work routine to see
whether a packet is ready for transmission. It reads the second word of
the descriptor designated by TXP and tests the OWN bit. If OWN is zero,
the LANCE does not own the buffer and this routine returns to its caller. If
OWN is set, the routine tests the STP bit, which should be set to indicate the
start of a packet. If STP is clear, this is an invalid packet; the LANCE sets
its OWN bit to return it to the host, sets TINT in NICSRO to notify the host,
and advances TXP to the next transmit descriptor. If both OWN and STP
are set, this is the beginning of a packet, so the transmit poll routine reads
the rest of the descriptor and then calls the transmit routine to transmit the
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packet. During this time the chip is still watching for incoming packets from
the network and it will abort the transmit operation if one arrives.

3.9.16.8 Transmit Routine

The transmit routine is called from the transmit poll routine when the latter
finds the start of a packet to be transmitted. This routine has three sections:
initialization, lookahead, and descriptor update.

In initialization, the routine sets the chip’s internal buffer address and
byte count from the transmit descriptor, enables the transmit DMA engine,
and starts transmission of the packet preamble. It then waits until the
transmitter is actually sending the bit stream (including possxble backoff-
and-retry actions in case of collisions).

In lookahead, the transmit routine test the current descriptor to see whether
it is the last in the packet (the ENP bit is set). If so, no additional buffer is
required so the routine waits until all the bytes from the current packet have
been transmitted. If not, the routine attempts to get the next descriptor and
hold it in readiness for data chaining, and then waits until all the bytes from
the current buffer have been transmitted.

Descriptor update is entered when all the bytes from a buffer have been
transmitted or an error has occurred. If there is no error and the buffer was
not the last of the packet, the pre-fetched descriptor for the next buffer is
made current for use by the transmit DMA routine. The routine writes the
appropriate status bits and clears the OWN bits in the current descriptor
and advances TXP. If this was the last buffer in the packet, the routine sets
the TINT bit in NICSRO to notify the host and returns to the look-for-work
routine. Otherwise it goes back to the lookahead section in this routine.

3.9.16.9 Transmit DMA Routine

The transmit DMA routine is invoked asynchronously by the chip hardware
during execution of the transmit routine whenever the silo has 16 or more
empty bytes. It executes DMA cycles to fill the silo with data from the buffer
designated by the current descriptor.

3.9.16.10 Collision Detect Rout’ine

This routine is invoked asynchronously by the chip hardware during
execution of the transmit routine when a collision is detected on the network.
It ensures that the jam sequence is transmitted, then backs up the chip’s
internal buffer address and byte count registers, waits for a pseudo-random
backoff time, and then attempts the transmission again. If 15 retransmission
attemnpts fail (a total of 16 attempts), it sends the microcode to the descriptor
update routine to report an error in the current transmit descriptor (bits
RTRY and ERR are set).
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3.9.17 LANCE Programming Notes
The following are LANCE programming notes:

1.

The interrupt signal is simply the OR of the interrupt-causing conditions.
If another such condition occurs while the interrupt signal is already
asserted, there will not be another active transition of the interrupt signal
and another interrupt will not be generated. An interrupt service routine
should use logic similar to the following to avoid losing interrupts:

a. Read NICSRO and save the results in a register, say RO.
b. Clear the interrupt enable bit INEA in the saved data in RO.

c. Write NICSRO with the saved data in R0. This will make the interrupt
signal false because INEA is clear and will clear all the write-one-to-
reset bits such as RINT, TINT and the error bits; if will not alter the
STRT, INIT or STOP bits nor any interrupt-cause bits which came
true after NICSR0 was read.

d. Write NICSRO0 with only INEA to enable interrupts again.

e. Service all the interrupt and error conditions indicated by the flags
in the data in RO.

f. Exit from the interrupt service routine.

Be sure to access NICSRO only with instructions which do a single
access, such as MOVE. Instructions such as BIS which do a read-modify-
write operation can have unintended side effects.

An interrupt is signalled to the host only when the last buffer of a
multibuffer (chained) packet is received or transmitted. However, the
OWN bit in each descriptor is cleared as soon as the LANCE has
finished with that portion of the packet, and the mutual exclusion rule

~ makes it safe for the host to process such a descriptor and its buffer.

When a transmitter underflow occurs (UFE is set in a transmit descriptor
because the silo is not filled fast enough), the LANCE will turn off its
transmitter and the LANCE must be restarted to turn the transmitter
back on again. This can be done by setting STOP in NICSR0O and
then setting STRT in NICSRO (DTX will still be clear in the chip’s
internal copy of NIIBWO). It is not necessary to set INIT to reread the
initialization block.
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Note that setting STOP will immediately terminate any reception which
is in progress. If the status of a receive descriptor has been updated and
its OWN bit is now clear, then the contents of its buffer are valid. If the
incoming packet was chained into more than one buffer, however, the
packet is only valid if its last buffer has been completed (the one with
the ENP bit set).

The network controller hardware requires up to five seconds after power
on to become stable. Self-test routines must delay at least this time
before attempting to use the controller for either internal or external
testing. B

The CAE bit (loss of carrier) may be set in the transmit descriptor when a
packet is sent in internal loopback mode. When the LANCE is operating
in internal loopback mode and a transmission is attempted with a non-
matching address, the LANCE will correctly reject that packet. If the
next operation is an internal loopback transmission without first resetting
the LANCE, the packet will not be sent and LCAR will be set in the
transmit descriptor for that packet. The receive descriptor will still be
owned by the LANCE. To avoid this problem, the LANCE should be
reinitialized after each internal loopback packet.

The ONE flag is occasionally set in a transmit descriptor after a late
collision. The LANCE does not attempt a retransmission even though
ONE may be set. The host should disregard ONE if the COE flag is also
set. ,

The chip’s internal copy of NICSR1 may become invalid when the chip
is stopped. The NICSR1 and NICSR2 registers should always be loaded
prior to setting INIT to initialize the LANCE chip.

Attempting an external loopback test on a busy network can cause a
silo pointer misalignment if a transmit abort occurs while the chip was
preparing to transmit the loopback packet. The resulting retransmission
may cause the transmitter enable circuit to hang, and the resulting
illegal length transmission must be terminated by the jabber timer in the .
transceiver. It is unlikely that there will be a corrupted receive buffer
because the reception that caused the transmit abort will usually not
pass address recognition.

Since external loopback is a controlled situation it is possible to
implement a software procedure to detect a silo pointer misalignment
problem and prevent continuous transmissions. Since the test is being
done in loopback the exact length and contents of the receive packet are
known; thus the software can determine whether the data in the receive
buffer has been corrupted.
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On transmission the diagnostic software should allow up to 32 retries
before a hard error is flagged. This is not to say that 32 errors are allowed
for each condition; the sum of all errors encountered in the test should
not exceed 32. The diagnostic software should expect to get a transmit
done interrupt with 1 millisecond of passing the transmit packet to the
LANCE. If this does not occur, it should reset the LANCE and retry the
test. This prevents a continuous transmission (babble) longer than the
longest legal packet in case the LANCE has become hung.

10. When the chip is in internal loopback mode and a CRC error is forced, a
framing error will also be indicated along with the CRC error. In external
loopback, when a CRC error is forced only that error is indicated; a
framing error is indicated only if the LANCE actually receives extra bits.

11. When transmit data chaining, a buffer error will be set in the current
transmit descriptor if a late collision or retry error occurred while the
LANCE was still transmitting data from the previous buffer. The BUE
error in this case is an invalid error indication and should be ignored.
BUE is valid only when UFE is also set.

12. When the host program sets up a packet for transmission in chained
buffers, it should set the OWN bits in all the transmit buffers except the
first one (i.e., the one containing the STP bit), and then as its last act
set the OWN bit in the first descriptor. Once that bit is set, the LANCE
will start packet transmission and may encounter an underflow error if
the subsequent descriptors for the packet are not available.

13. Do not set INIT and STRT in NICSRO at the same time. After stopping
the chip, first set INIT and wait for IDON, then set STRT. If both are set
at once, corrupt transmit or receive packets can be generated if RENA
becomes true during the initialization process.

3.10 Mass Storage Interface

The KA640 contains a DSSI bus interface which is implemented via the
SII chip and four 32K x 8 static RAMs. The interface allows the KA640 to
transmit packets of data to, and receive packets of data from, up to seven
other DSSI devices (typically RF type disk drives and TF type streaming
tape drives). The KA640 also provides for the DSSI bus termination with
removable resistors.

This interface contains 27 registers (of which only 16 are used) and 128K
bytes of 32 bit wide RAM (MSI buffer RAM). The SII chip transfers data
between the DSSI bus and the MSI buffer RAM, and the processor transfers
data between the MSI buffer RAM and main memory (typically using MOVC
instructions).
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3101 DSS‘I Bus Overview

~ Some of the major characteristics of the DSSI bus are:

Eight bit data path

 Eight devices supported

Parity checking
Distributed arbitration

* Synchronous operation

Maximum bandwidth of 4M bytes/sec

Communication on the DSSI bus is limited to two devices at a time. Each
device has an unique ID assigned to it.

When two devices communicate on the DSSI bus, one acts as the initiator,
the other as the target. The initiator is the device that starts a DSSI bus
- transaction. The target device controls the remainder of the DSSI bus
transaction. The direction of data flow is from the initiator to the target

A DSSI bus transaction consists of six phases:

1.
2.

WAIT—During this phase the initiator waits for the bus to become free.

ARBITRATION—During this phase control of the bus is taken by the
initiator with the highest ID.

SELECTION—During this phase the initiator tries to make a logical
connection with the target.

COMMAND OUT—During this phase the initiator sends the six bytes
of command information specified in the command block to the target
(Section 3.10.5). '

DATA OUT—During this phase the initiator sends from one to 4K bytes
of data to the target.

STATUS IN—During this phase the target sends one byte of status
information on the transaction to the initiator. The initiator writes this
byte to the status word in the command block.

A block diagram of DSSI bus sequences, showing these six phases, is given
in Figure 3-67.
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(4)

BUS FREE

:

ARBITRATION

M

!

SELECTION

()

:

COMMAND QUT

(3

:

DATA QUT

(5)

!

STATUS IN "~

(6)

Figure 3-67 DSSI Bus Sequences

The normal path follows vertically downward. Exception paths are listed

below:

The initiator arbitrates and loses.

2. The target failed to respond or responded with an unexpected bus

phase.

3. The operation was timed out or the target responded with unexpected

phase.

4. The target detected a parity error or information mismatch in the
command, or the target did not have any buffer space available.

5. The operation was timed out or the target responded with an unexpected

phase.

NA~208T73-08




N’

Architecture 145

3.10.2 Target Operation

When the KA640 is functioning as a target device, the SII chip expects
receive buffers to be established in the 128KB MSI buffer RAM (addresses
2010 0000 14 through 201F FFFF 5). Receive buffers must be set up by the
processor and start on quadword boundaries. These buffers consist of a
command block (Section 3.10.5) and a receive data block. These buffers are
linked together by the first word in the command block, and the MSI_TLP
register is used to point to the first buffer in the list (Figure 3-68).

MSI_TLP RECEIVE
[ [—[ BUFFER #1
[_‘ . BASE
‘ . BASE +2
| [ COMMAND |
‘ BLOCK : BASE +4
BASE +6
BASE +8
: BASE +10
RECEIVE : BASE +12
[ DATA —
BLOCK : BASE +14
; n : JL' BASE +16
I o
3 (4K BYTES) " BASE +4110
BASE +4112
RECEIVE
BUFFER NO.2
—~ ~
P —

ETC.
MA-X0078-88

Figure 3-68 Target Operation

During target operation, the SII chip uses the MSI_TLP register to determine
the address of the next free receive buffer to be used for this DSSI bus
transaction. As the SII chip fills the buffer, it will reload the MSI_TLD for
the next target transaction with the buffer’s t/iread word (the first word in
the command block). The target then places the DSSI bus in the status in
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phase, sends a status byte to the initiator and updates the status byte in its
buffer’s command block.

3.10.3 Initiator Operation

When the KA640 is functioning as a initiator device, the SII chip expects
transmit buffers to be established in the 128K Byte MSI BUFFER RAM
(addresses 2010 0000 ¢ through 201F FFFF 1¢). These buffers must be set up
by the processor and start on quadword boundaries. These buffers consist of
a command block (Section 3.10.5) and a transmit data block. These buffers
are linked together by the first word in the command block, and the MSI_
ILP register is used to point to the first buffer in the list.

3.10.3.1 Transmit Data Segment Links

The transmit data block is broken into one or more segments. These
segments need not reside in contiguous locations in the MSI buffer RAM and
are connected together by the link. Pictorially, the link appears as shown in
Figure 3-69.

15 14 0

MSILWO: n.,ux| LENGTH OF NEXT SEGMENT

MSILWA: " ADDRESS OF NEXT SEGMENT ( ADDRESS BITS <17:02> )

ua.xee77.88

Figure 3-69 Transmit Data Segment Links

3.10.3.1.1 MSI Link Word 0
A definition of the bit fields of MSI link word 0 (MSILWO) is given below.

Data Bit Definition

MSILWO <15> LNK. When set, this bit indicates that there is a data segment
following the next one. When clear the next data segment is
the last in this data block.

MSILWO Length of next segment. This field contains the number of
<14:0> bytes in the next data segment.

3.10.3.1.2 MSI Link Word 1 ,
A definition of the bit field of MSI link word 1 (MSILW1) is given below.
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Data Bit Definition
MSILW1 Address of next segment. This field contains bits <17:2> of
<15:0> the next quadword aligned data segment.

Each segment of data must be preceded by the above described link. The
number of linked segments is only limited by the maximum size of the data
block (4K bytes) (Figure 3-70).

MSI_IPL YRANS“'T
BUFFER
' BASE
- —
. BASE +2
[~ COMMAND |
| slock | BAsEwe
BASE +6
BASE +8
. BASE +10
;l : BASE +12
LINK —
[—" . BASE +14
i
J(_ DATA SEG = _|
- . —
0
}—l LINK — TRANSMIT
"— DATA BLOCK
L DATA SEG 4

NEXT TRANSMIT

BUFFER
MA-X0078-88

Figure 3-70 Initiator Operation

When the KA640 is the initiator, the SII chip uses the MSI_IPL register
to determine the address of the transmit buffer to be used for this DSSI
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transaction. As the SII chip is processing a transmit buffer, it loads an
internal register with the second word of the link word as long as the LNK is
enabled. This chaining continues until a LNK value of zero is encountered.
The SII will then transfer the next segment and deposit the status of the
entire transfer in the status area of the command block. The MSI_IPL register

is then loaded with the buffer’s thread word (the first word in the command

block) for the next initiator operation. If an error of any kind occurs during
the processing of a transmit buffer, the SII will stop the transmit operation
by clearing the output enable bit MSI_DSCTRL <14>.

3.10.4 Adding To A Buffer List

The 'following enumerates the method required to dynamically add new
‘buffers to the MSI_TLP and MSI_IPL lists:

1. Fill in the new buffer command block and ensure that the MSB of the
status word is zero.

2. - Make the thread word of the new buffer zero.

Replace the thread word of the last item on either the MSI_IPL or MSI_
TLP list with the new thread word, pointing to the new buffer.

4. If the MSI_IPL or MSI_TLP is zero, load it with the address of the new
buffer.

3.10.5 MS|I Command Block (MSICB)

The MSI command block is a 12 byte data structure that the processor has to
build at the start of all transmit and receive buffers in the MSI buffer RAM.

The format for the MSI command block is shown in Figure 3-71.

18 )
MSICBWO THREAD WORD . BASE +0
MSICBW1 STATUS WORD | BASE +2
Msicawz COMMAND WORD . BASE +4
MSICBW3 . BASE +6
MSICBW4 COMMAND BYTES : BASE +8
| —]
MSICBWS . BASE +10

MA-X0079-88

Figure 3-71 MSI Command Block
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3.10.5.1 MSI Command Block Word 0 .
Word 0 of the MSI command block (MSICBWO0), also referred to as the .
thread word, resides in the MSI buffer RAM at the base address of the MSI
command block. The thread word contains bits <17:2> of the base address
of the next buffer. Bit 0 of this field must always be set to 0, since buffers
must start on a quadword boundary. A thread word of zero indicates that
there are no more buffers.

The format for MSICBWO is shown in Figure 3-72.

185 ]

MSICBwWO NEXT BUFFER ADDRESS < 172 >—| :BASE +0

MA-X0085-88

Figure 3-72 MSI Command Block Word 0

3.10.5.2 MSI Command Block Word 1

Word 1 of the MSI command block (MSICBW1), also referred to as the
status word, resides in the MSI buffer RAM at the base +2 address of each
MSI command block. This word indicates the status of the current DSSI
transaction and is used by the processor to find out which buffers the SII
chip has finished processing.

The format for MSICBW1 is shown in Figure 3-73.

15 14 376543210

MSICBW1 (1 UNUSED ] , Ll l H ]:BASE+2

RST 4 | i
T™O — | |
xSM —— |
BPH i
STT
PHS
DSA
PAR

DNE i
i

MA-X0080-88

Figure 3-73 MSI Command Block Word 1
The bit fields in MSICBW1 represent the following:
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Data Bit Definition

MSICBW1<15>  (DNE) Done. When set, this indicates that the ‘SII chip has
used this buffer (either successfully or not). When clear the SiI
chip has not used this buffer. Note, if this bit is set when the
SII chip begins processing a buffer, the buffer is not used.

MSICBW1<14:8> Unused.

MSICBW1<7> (RST). Reset. When set, a DSSI device reset the DSSI bus
during this buffer’s transaction.

NOTE

If a DSSI bus reset occurred before the SII chip reached
status in phase, the SII chip will clear MSI_DSCTRL
<7> (output enable bit) and interrupt the processor
without writing any status.

MSICBW1<6>  (TMO) Timeout. When set, one of the MSI_DSTMO timers
has expired.

NOTE

If the timeout occurred before the SII chip reached
status in phase, the SII chip will clear MSI_
DSCTRL<7> (output enable bit) and interrupt the
processor without writing any status.

MSICBW1<5> (XSM) Checksum. When set, the received checksum does not
agree with that computed by the SII chip. Note the XSM bit is
only valid when the KA640 is a target.

MSICBW1<4> (BPH). Bad phase. When set, an illegal DSSI phase was
entered by the target. Note the BPH bit is only valid when
the KA640 is the initiator.

MSICBW1<3> (STT) Status. When set, ACK was not returned by the target.
Note the STT bit is only valid when the KA640 is the initiator.

MSICBW1<2> (PHS) Phase. When set, the DSSI bus phase changed before
the initiator expected. Note the PHS bit is only valid when the
KA640 is the initiator.

MSICBWl1<1> (DSA). DSSI. When set, the target detected an error in the
command bytes. Note the DSA bit is only valid when the
KA640 is the target.
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Data Bit Definition

MSICBW1<0> (PAR). Parity. When set, a parity error on the DSSI bus was
detected.

Please note that the following cases will not cause status to be written in
memory:

e DSSI bus reset occurs before status in phase is reached.

o [Initiator selects a non-existent device (initiator timeout will cause a DSSI
bus reset).

¢ Target disconnects from the DSSI bus before status in phase is reached.

3.10.5.3 MSI Command Block Word 2

Word 2 of the MSI command block (MSICBW2), also referred to as the
command word, resides in the MSI buffer RAM at the base+4 address of
each MSI command block. This word contains information regarding the
transfer.

The format for MSICBW2 is shown in Figure 3-74.

15 14 3210
- 1
MSICBw2 I | UNUSED ! } : BASE+4
IE _l DEST

MA.X0081-88

Figure 3-74 MSI Command Block Word 2

The bit fields in this memory word represent the following:

Data Bit Definition

MSICBW2<15>  (IE). Interrupt enable. When set, the SII chip will interrupt
the KA640 upon the completion (successful or not) of this
transaction. When clear the SII chip will not generate an
interrupt. Interrupts are posted at [PL14 with a vector offset of
C4 6.

MS!CBWZ <14:3> Unused.

MSICBW2<2:0> (DEST ID). Destination ID. The [D of the target to be selected.
This field is only used when the KA640 is the initiator.
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3.10.5.4 MSI Command Block Words 3-5

Words 3-5 of the MSI command block (MSICBW3-5), also referred to as
command bytes, reside in the MSI buffer RAM at the base+6 through
base + 10 address of each MSI command block. These 6 bytes are sent out
during the command out phase by the initiator. Some of the information
contained in these bytes are:

¢ The target and initiator IDs

¢ The number of data bytes which will be transferred by the initiator in
the data out phase

¢ The DSSI opcode.

3.10.6 MSI Registers

The SII chip is very powerful and diverse. The KA640 does not use all its
functionality. As a resuit of this the KA640 does not use all of the SII's
twenty-seven processor visible registers. The following is a description of
the 16 registers needed to control the SII chip during DSSI bus operations.

NOTE
The other 11 registers are not used during DSSI operations and should not
be accessed.

3.10.6.1 MSI Control and Status Registers
These five registers are used to configure, control and monitor the SII chip.

3.10.6.1.1 MSI Controi/Status Register

The mass storage interface control/status register (MSI_CSR), address 2008
460C 14, contains control and status information about the general operation
of the SII chip in regard to the DSSI bus, including various enable bits. The
format of the mass storage control/status register is shown in Figure 3-75.

31 '5432‘0
| T

MA-X00082-98

Figur‘ 3-75 MSI Control/Status Register
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Data Bit

Definition

MSI_CSR <31:5>

MSI_CSR <4>

MSI_CSR <3>

MSI_CSR <2>

MSI_CSR <1>

MSI_CSR <0>

Unused. Reads return undefined results; writes have no
effect.

(MBO) Must be one. Read/Write. These bits must read as
zero and be written as one.

(MBZ) Must be zero. Read/Write. These bits must read as
zero and be-written as zero.

(SLE) Selections. Read/Write. When set, the SII chip will
respond to-selections. When clear the SII chip will not
respond to an initiator trying to select it. Cleared on power-
up, the negation of DCOK when SCR <7> is clearor
writes to [PR55 (IORESET).

(PCE) Parity check. Read/Write. When set, the SII chip
reports parity errors. When clear the SlI-chip will continue
to check parity but will not report any errors during the:
status in phase. Cleared on power-up, the negation

of DCOK when SCR <7>is clear or writes to IPR55
(IORESET).

(IE) Interrupt enable. Read/Write. When set, interrupts
are enabled. The SlI chip posts interrupts when an error
occurs or at the end of a transaction (successful or not).
Interrupts are posted at IPL14 with an offset of C4 ;. When
clear interrupts are disabled. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPRS5 (IORESET).

3.10.6.1.2 MSI DSSI Control Register

The mass storage interface DSSI control register (MSI_DSCTRL), address
2008 4644 14, contains information to control the SII chip. The format of the
mass storage interface DSSI control register is shown in Figure 3-76.
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o 151413 768543210
UNUSED L ' UNUSED J l ]’ ] i [ | !

DSE - CHT

out cHE:

CHS!
CH4
CH3
CH2
CcH1
CHoO

=

MA-X0083-88

Figure 3-76 - MSI DSSI Control Register

Data Bit Definition

MSI_DSCTRL <31:16> Unused. Reads return undefined results. Writes have
no effect. -

MSI_DSCTRL < 15> (DSE) DSSI Enable. Read/Write: This bit must be set

to one by the processor for the SII chip to work on a
DSSI bus. This bit is cleared by the SiI chip if: the SII
chip selects or is selected by a non-DSSI device, the SiI
chip is selected with Attention. It is also cleared on
power-up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

MSI_DSCTRL <14> (OUT) Output enable. Read/Write. When set, the SII
- chip is enabled to send. transmit buffers. This bit is
cleared by the SII chip if: the MSI_IPL becomes zero,
the initiator timer MSI.DSTMO <3:0> expires, or a
transmit buffer is not terminated with ACK. It is also
cleared on power-up, the negation of DCOK when SCR
< 7> is clear or writes to IPRS5 (IORESET).

MSI_DSCTRL <13:8> v Unused. Reads return undefined results, writes have
no effect.

MSI.DSCTRL <7> (CH?7) Channel 7. Read/Write. This bit is used to
) determine if device 7 is an DSSI device. This bit must
be set to one by the processor. Cleared on power-up,
the negation of DCOK when SCR <7> is clear or
writes to [PR55 (IORESET).
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Data Bit

Definition

MSI_DSCTRL <6>-

MSI_DSCTRL <5>

MSI_DSCTRL <4>

MSI_DSCTRL <3>

MSI_DSCTRL <2>

MSI_DSCTRL <1>

MSI_DSCTRL <0>

(CH6) Channel 6. Read/Write: This bit is used to
determine if device 6 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the

- negation of DCOK when SCR <7> is clear or writes to

IPR55 (IORESET).

(CHS5) Channel 5. Read/Write. This bit is used to
determine if device 5 is a DSSI device. This bit must be
set to one by ‘the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH4) Channel 4. Read/Write. This bit is used to
determine if device 4 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH3) Channel 3. Read/Write. This bit is used to
determine if device 3 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPRS5 (IORESET)..

(CH2) Channel 2. Read/Write. This bit is used to
determine if device 2 is a DSSI device. This bit must be
set to-one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPRS5 (IORESET).

(CH1) Channel 1. Read/Write. This bit is used to
determine if device 1 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPRS5 (IORESET).

(CHO) Channel 0. Read/Write. This bit is used to
determine if device 0 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPRS5 (IORESET).
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3.10.6.1.3 MSI DSSI Connection Register

The mass storage interface DSSI connection register (MSI_CSTAT), address
2008 4648 14, contains interrupt status related to SII chip connections. The
format of the mass storage interface DSSI connection register is shown in
Figure 3-77.

e T
, —

UNY ————
RST —————
BER
osc
T2
BUF
LDN
scH
CON
ST
TGT
SWA
sip
LsT
MBZ

MA-X0084-88

Figure 3-77 MSI DSSI Connection Register
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Data Bit Definition
MSI_CSTAT Unused. Reads return undefined results, writes have no
<31:16> effect.

MSI_CSTAT <15>

MSI_CSTAT <14>

MSI_CSTAT <13>

MSI_CSTAT <12>

(CI) Composite interrupt. Read only. This bit is the
composite error bit of the MSI_CSTAT register. It is the
logical OR of bits MSI_CSTAT <13:11> and MSI_CSTAT
<9:7>. When set, the processor will be interrupted at
IPL14 with an offset of C4 s if interrupts are enabled.
Cleared on power-up, the negation of DCOK when SCR
<7> is clear or writes to IPR55 (IORESET).

(UNU) Unused. Reads return undefined results, writes
have no effect. ‘

(RST) Reset asserted. Read/Write one to clear. When set,
the DSSI bus was reset by one of the eight DSSI devices.
The SII chip will automatically disconnect itself from-the
bus and interrupt the processor at IPL14 with an offset of
C4 i+. This bit is write one to clear and is also cleared on
power-up, the negation of DCOK when SCR <7> is clear
or writes to [PR55 (IORESET).

(BER) Bus error. Read/Write one to clear. This bit is set to
one on any of the following conditions:

o Buffer overflow
* Req/Ack offset exceeded
¢ [legal phase change

While this bit is asserted, the SII chip will not receive or
transmit data. This bit is write one to clear and is also

cleared on power-up, the negation of DCOK when SCR
<7> is clear or writes to IPR55 (IORESET).
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Déta Bit

Definition

MSI_CSTAT <11>

MSI_CSTAT <10>

MSI_CSTAT <9>

MSI_CSTAT <8>

MSI_CSTAT <7>

(OBC) OUT_EN Bit cleared. Read/Write one to clear. This
bit is set to one on any of the following conditions:

®  The SII chip has received RSTIN. (The DSSI bus has
been reset).

* The MSI_DSTMO (MSI_.DSTMO <3:0> or MSIL_
DSTMO <7:4>) has expired.

* As an initiator, the attached target disconnects
“unexpectedly.

This bit is write one to clear and is also cleared on power-
up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

(TZ) Target pointer zero. Read only. When set, the MSI_
TLP register contains a value of zero. This bit is set on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

(BUF) Buffer service. Read/Write one to clear. When

set, the SII chip has begun processing a transmit buffer .
destined for non-DSSI device. Note, this bit should always
be zero since all devices must be DSSI. This bit is write
one to clear and is also cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET). ,

(LDN) List element done. Read/Write one to clear. When
interrupts are enabled, this bit is set if the SII chip has
completed a buffer, successfully or not. This bit is write
one to clear and is also cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(SCH) State change. Read/Write one to clear. Set if MSI_
DSCTRL < 15> is cleared causing the SII chip to leave
DSSI mode. This bit is write one to clear and is also
cleared on power-up, the negation of DCOK when SCR
<7> is clear or writes to [PR55 (JORESET).
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Data Bit

Definition

MSI_CSTAT <6>

MSI_CSTAT <5>

MSI_CSTAT <4>

MSI_CSTAT <3>

MSI_CSTAT <2>

MSI_CSTAT <1>

MSI_CSTAT <0>’

(CON) Connected. Read only. When set, the SlI is
connected to another device on the DSSI bus. Clear while
the SII chip is not connected to another device on the
DSSI bus. This bit is cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to I[PR55
(IORESET).

(DST) Destination. Read only. When set, the SII is the
destination of the current transaction. In other words,
this bit is set if the SII chip was selected by another device
on the DSSI bus. This bit is cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
[PR55 (IORESET). '

(TGT) Target. Read only. When set, the SII chip is
operating as a target during the current transaction.
This bit is cleared on power-up, the negation of DCOK
when SCR <7> is clear or writes to IPR55 (IORESET).

(SWA) Selected with attention. Read only. When set,
the SII chip was selected with attention. This bit is write
one to clear and is also cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to [PR55
(IORESET).

(SIP) Selection in progress. Read only. When set, the SII
chip is currently in a selection process. This is useful in

determining if the desired target is unavailable. This bit
is write one to clear and is also cleared on power-up, the
negation of DCOK when SCR.<7> is clear or writes to

IPR55 (IORESET).

(LST) Lost. Read only. When set, the SII lost arbitration.
It is cleared by the SII chip when it begins a selection
process and on power-up the negation of DCOK when
SCR <7> is clear or writes to [PR55 (IORESET).

(MBZ) Must be zero. Read Only. This bit will be read as
zero.

3.10.6.1.4 MSI ID Register
The mass storage interface ID register (MSI_ID), address 2008 4610 ¢,
contains the three bit ID number of the KA640 on the DSSI bus. This

value is placed on the DSSI bus during the selection phase so the target
knows who selected it.
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The format of the mass storage interface ID register is shown in Figure 3-78.

31 161514 3210

| UNUSED 1 r UNUSED i ]

: |
119 — KA640 BUS ID —
MA-X00868-88

Figure 3-78 MSI ID register

Data Bit Definition
MSI_ID ) Unused. Reads return undefined results, writes have no effect.
<31:16>

MSI_ID <15> (I/O) Input/Output. Read/Write. When set, the KA640’s ID
: is determined by MSI_ID <2:0>. When clear the KA640’s ID
is'determined by on board jumpers and MSI_ID <2:0> will
. reflect the one’s complement of the KA640’s DSSI ID. Cleared
on power-up, the negation of DCOK when SCR <7> is clear
or writes to IPRS5 (IORESET). Note that if this bit is cleared,
writing to this register has no effect.

MSILID <14:3> Unused. Reads return undefined results, writes have no effect.

MSLID <2:0> KA640 Bus ID. Read/Write. When MSI_ID <31> is clear (the
normal operation configuration), this field contains the DSSI
ID of the KA640, as determined by the on board jumpers.
When MSI_ID <31> is set, any DSSI ID value may be input
(used, for example, to temporarily override the on board
jumpers for test or diagnostic purposes). Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

. 3.10.6.1.5 MSI DSSI Timeout Register

The mass storage interface DSSI timeout register (MSI_DSTMO), address
2008 461C 14, contains the timeout values of the SII chip for both the initiator
and target roles. Also contained in this register is a single enable bit that
governs both timers.

The format of the mass storage interface DSSI timeout register is shown in
Figure 3-79.
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3 161514 : 876543210
UNUSED [ | unuseo | I l
‘
: TAHGET—} INIT
ENA — TIMEOUT- TIMEQUT

VALUE VALUE
MA-X0087-88

Figure 3-79 MSI DSSI Timeout Register

Data Bit

Definition

MSI_DSTMO <31:16>

MSI_DSTMO <15>

MSI_DSTMO <14:8>

MSI_DSTMO <7:4>

MSI_DSTMO <3:0>

Unused. Reads return undefined results, writes have
no effect.

(ENA) Enable. Read/Write. When set, both the DSSI
target and DSSI initiator timers are enabled. When
clear, both the DSSI target and DSSI initiator timer are
disabled. Cleared on power up, the negation of DCOK
when SCR <7> is clear or writes to [PR55 (IORESET).

" Unused. Reads return undefined results, writes have

no effect.

Target timeout value. Read/Write. This field contains
the number of 200 microsecond intervals which may
elapse while the KA640 is the target. The timer starts
from the point when the KA640 was selected ends at
the next observed bus free phase. Cleared on power_
up, the negation of DCOK when SCR <7> is clear or
writes to [PR55 (IORESET).

Initiator timeout value. Read/Write. This field contains
the number of 200 microsecond intervals which may
elapse, from the last observed bus free phase, until the
next observed bus free phase, while the KA640 is in
the initiator role; or the number of 200 microsecond
intervals which may elapse before the KA640, acting as
a potential initiator, detects a bus free phase. Should
the timer expire under either of these two conditions
the SII chip will assert a DSSI bus reset. Cleared on
power_up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).
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3.10.6.2 List Pointer Registers

These are the two registers used as address pointers for next incoming and
outgoing data buffers.

3.10.6.2.1 MSI Target List Pointer Register

The mass storage interface target list pointer register (MSI_TLP), address
2008 463C ¢, contains the address to which the SII chip will write the next
free receive buffer. The SII chip will automatically reload the register with
the receive buffer’s thread word upon completion of the current transaction.
Note this register must contain bits <17:2> of a quadword aligned address,
therefore bit 0 will always be zero. The SII chxp will interpret an address of
0000 14 as the end of a linked list.

The format of the mass storage interface target list pointer register is shown
in Figure 3-80.

31 ’ 1618

. ADDRESS OF NEXT FREE
l UNUSED [ RECEIVE. BUFFER i l

M8z ——|

MA-X0008-08

Figure 3-80 MSI Target List Pointer Register

Data Bit Definition )
MSI_TLP <31:16> Unused. Reads return undefmed results, writes have no
effect.

MSIL_TLP <15:1> Address of next incoming buffer. Read/Write. This field
. contains bits 17:3 of the quadword aligned address to
where the SII chip will find the next free receive buffer.
Cleared on powerup, the negation of DCOK when SCR
<7> is clear or writes to [PRS5 (IORESET).

MSI_TLP <0> (MBZ) Must be zero. Read/Write. This bit is read as zero
- and must be written as zero.

NOTE

This register can only be written by the processor when the register is zero
or MSI_DSCTRL <15> (DSE) is clear; all other attempts to wnte to this
register have no effect.
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3.10.6.2.2 MSI Initiator List Pointer Register

The mass storage interface initiator list pointer register (MSI_IPL), address
2008 4640 14, contains the address from which the SII chip will find the next
transmit buffer. The SII chip will automatically reload this register with the
transmit buffer’s thread word upon completion of the current transaction.
Note this register must contain bits <17:2> of a quadword aligned address,
therefore bit 0 must always be zero. The SII chip will interpret an address of
0000 |4 as the end of a linked list. The format of the mass storage interface
initiator list pointer register is shown in Figure 3-81.

31 1618 10
[ e ]
MBZ_i
MA-X0089-08
Figure 3-81 MSI Initiator List Pointer Register
Data Bit Definition
MSI_IPL <31:16> Unused. Reads return undefined results, writes have no
effect.
MSLIPL <15:1> Address of next outgoing buffer. Read/Write. This field

contains bits 17:3 of the quadword aligned address of
where the-SII chip will find the next transmit buffer.
Cleared on power_up, the negation of DCOK when SCR
<7> is clear or writes to IPR55 (IORESET).

MSI_TLP <0> (MBZ) Must be zero. Read/Write. This bit will read as
zero and must be written as zero.

NOTE

This register can only be written to by the processor when the register is
zero or MSI_DSCTRL < 15> (DSE) is clear; all other attempts to write to
this register have no effect.

3.10.6.3 Diagnostic and Test Registers

This group of registers is used for test and diagnostic purposes only. They
should never be used during normal operation.
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3.10.6.3.1 MSI Diagnostic Control Register

The mass storage interface diagnostic control register (MSI_DICTRL), at
address 2008 4654 14, allows the SII chip to be placed in one of three
diagnostic test modes. The format of the mass storage interface diagnostic
control register is shown in Figure 3-82.

31

43210

l

UNUSED ‘ ‘ | l lli

]

ELM
TST

MA-X0090-88

Figure 3-82 MSI Diagnostic Control Register

Data Bit

Definition

MSI_DICTRL<31:4>

MSI_DICTRL<3>

MSI_DICTRL<2>

Unused. ' Reads return undefined results. Writes have no
effect.

(ITM) Internal test mode. Read/Write. When set, the
values written to MSI_DRO, MSI_DR1 and MSI_DR2 are
to be looped back into the chip. This will enable the
processor to insert test vectors into the chip during power-
up diagnostics. Note that the MSI_DICTRL< 1> (ELM)
must be deasserted for this test to be meaningful. This
bit is cleared on power-up, the negation of DCOK when
SCR< 7> is clear or writes to IPR55 (IORESET).

(PRE) Port enable. Read/Write. When set, the off-chip
drivers to the DSSI port are enabled. After a reset, the
KA640 will be disconnected from the bus (this bit will
be zero). The primary purpose of this bit is to allow SII
chip diagnostics to run without affecting the rest of the
DSSI bus (PRE=0). This bit is cleared on power-up, the
negation of DCOK when SCR<7> is clear or writes to
[PRS5 (IORESET).
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Data Bit

Definition

MSI_DICTRL< 1>

MSI_DICTRL<0>

(ELM) External loopback mode. Read/Write.- Wher set, the
SII chip is in external loopback mode. In this mode, MSI_
DRO, MSI_DR1 and MSI_DR2 are used to directly control
the DSSI data and control lines, as well as the ‘external bus
transceiver. Note an external loopback connector must be
in place when using this test mode. This bit is cleared

on power-up, then negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

(TST) Test mode. Read/Write. When set, to one (1), the
SII chip is in test mode. This enables the user to replace
the 20 MHz clock. The new clock is pulsed each time-the
MSI_CLOCK register is written. This bit is cleared on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

3.10.6.3.2 MSI Diagnostic Register 0

The mass storage interface diagnostic register 0 (MSI_DRO0), address 2008
4600 ¢ is used during internal and external loopback diagnostic tests. The
fields in this register are used to emulate the data lines of the DSSI.

The format of mass

Figure 3-83.

31

storage interface diagnostic register 0 is shown in

9.8 7 [*]

[

UNUSED 1 L DATA <7:0 >

PTY "J

MA-X0091-88

Figure 3-83 MSI Diagnostic Register 0
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Data Bit Definition

MSI_DRO <31:9> Unused. Reads return undefined results, writes have no
| effect.

MSI_DRO <8> (PTY) Parity. Read/Write. This bit contains the parity

bit for the data byte MSI_DRO <7:0>. Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear
or writes to [PR55 (IORESET). Note, parity checking is
only enabled if MSI_CSR <1> PCE is set to 1. The SII
chip chip uses odd parity checking.

MSI_DRO <7:0> (DATA) Read/Write. This field contains the current byte
on the data bus. Indeterminate on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPRS5
(IORESET).

NOTE
This register should NOT be used during normal operation.

3.10.6.3.3 MSi Diagnostic Register 1

The mass storage interface diagnostic register 1 (MSI_DR1), address 2008
4604 1¢ is used during internal and external loopback tests. In external
loopback mode an external loopback connector in place allows values
written into MSI_DRO to be read back in MSI_DR1 and values written
into MSI_DR1 to be read back in MSI_DRO. In internal loopback mode
it acts as the DSSI bus emulating some of the DSSI control lines. Note
that all the control lines are asserted high in internal loopback test
mode. For more information on the SII chip modes see the description
of the mass storage interface diagnostic control register (MSI_DICTRL)
Section 3.10.6.3.1. The format of mass storage interface diagnostic register
1 is shown in Figure 3-84.
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987654321 0

UNUSED ‘

BSY
SEL

RST
ACK _____ |
REQ

ATN

MSG

(7] - B
170
MA-X0092-88

Figure 3-84 MSI Diagnostic Register 1

Data Bit

Definition

MSI_DR1 <31:9>

MSI_DR1 «<8>

MSI_DR1 <7>

MSI_DR1 <6>

Unused. Reads return undefined results, writes have no
effect. g :

(BSY) Busy. Read/Write. In internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI BSY
bus signal. In external loopback mode this bit is linked to
MSI_DRO <8> (PTY) for driver testing. Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear
or writes to [PR55 (IORESET).

(SEL) Select. Read/Write. I[n internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI SEL bus
signal. In external loopback mode this bit is linked to MSI_
DRO <7> (DATA <7>) for driver testing. Indeterminate
on power-up, the negation of DCOK when SCR <7> is
clear or writes to [PR55 (IORESET).

(RST) Reset. Read/Write. In internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI RST bus
signal. In external loopback mode this bit is linked to MSI_
DR0O <6> (DATA <6>) for driver testing. Indeterminate
on power-up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).
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Data Bit

Definition

MSI_DR1 <5>

MSI_DR1 <4>

MSI_DR1 <3>

MSI_DR1 <2>

MSI_DR1 <1>

MSI_DR1 <0>

(ACK) Acknowledge. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI ACK bus signal. In external loopback mode this bit is
linked to MSI_DR0O <5> (DATA <5>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(REQ) Request. Read/Write. In internal loopback test
mode, MSI_DICTRL <3> set, this bit emulates the DSSI
REQ bus signal. In external loopback mode this bit is
linked to MSI_.DRO <4> (DATA <4>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to [PR55 (IORESET).

(ATN) Attention. Read/Write. In internal loopback test

mode, MSI_DICTRL <3> set, this bit emulates the DSSI
ATN bus signal. In external loopback mode this bit is
linked to MSI_DRO <3> (DATA <3>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(MSG) Message. Read/Write. In internal loopback test
mode, MSI_DICTRL <3> set, this bit emulates the DSSI
MSG bus signal. In external loopback mode this bit is .
linked to MSI_DR0O <2> (DATA <2>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(C/D) Control/Data. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI C/D bus signal. In external loopback mode this bit is
linked to MSI_DRO <1> (DATA <1>) for driver testing.

Indeterminate on power-up, the negation of DCOK when

SCR < 7> is clear or writes to IPR55 (IORESET).

(/O) Input/Output. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI I/O bus signal. In external loopback mode this bit is
linked to MSI_DR0O <0> (DATA <0>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to [PR55 (IORESET).

NOTE

The data written to this register in internal test mode may differ from that
read back from it, since only certain bits are driven when configured as
a target or initiator. See the register description of MSI_DR2 for more
information on the internal test mode.
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3.10.6.3.4 MSI Diagnostic Register 2

The mass storage interface diagnostic register 2 (MSI_DR2), address 2008
4608 14 is used by diagnostics to directly control the DC563 transceiver chip.
The format of the mass storage interface diagnostic register 2 is shown in
Figure 3-85. '

3t c3210
l UNUSED- ] B IJ
_J |
IGS- |
TG§ —
AR

MA-X0093:88

Figure 3-85 MSI Diagnostic Register 2

Data Bit Definition

MSI_DR2 <31:4> Unused. Reads return undefined results. Writes have no
effect.

MSI.DR2 <3> (IGS) Read/Write. This bit enables the DSSI bus drivers

for ACK and ATN, placing the SII chip in the initiator
role. Cleared on power-up, the negation of DCOK when
SCR <7> is clear or writes to [IPR35 (IORESET).

MSI_DR2 <2> (TGS) Read/Write. When set; this bit enables the DSSI
’ bus drivers for /O, C/D, MSG and ATN, placing the Sl
chip in the target role. Cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to [PR55
(IORESET).

MSI_DR2 <1> (ARB) Arbitrate. Read/Write. This bit enables the
decoding of ID0..ID2, putting the SII chip in the
arbitration phase. Cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes. to IPR55
(IORESET).

MSI_DR2 <0> (SBE) Read/Write. When set, the DC563 transceiver drives
the DSSI data bus and parity lines. Cleared on power-up,
the negation of DCOK when SCR <7> is clear or writes
to IPRS5 (IORESET).
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NOTE

Special care should be taken when writing to tlus register to. avold
disturbing the DSSI bus during power-up diagnostics. This register should
only be used when an external loopback connector is in place and not during:
normal operation.

3.10.6.3.5 MSI Clock Controi Register (MSI_CLOCK)

Writing to the mass storage interface clock control register, address 2008
4658 16, %enerates a pulse which, in test mode (MSI_DICTRL <0> set to
one), replaces the 20 MHz clock input. This can be used to allow the CVAX
CPU to observe and sequence the various state machines inside the SII chip.
The format of the mass storage interface clock control register is shown in
Figure 3-86.

31 0

| UNUSED |

MA-X0094-88

Figure 3-868 MSI Clock Control Register

Data Bit Definition

MSI_CLOCK <31:0> Unused. Write only. Writing to this register generates a
pulse which, in test mode (MSI_DICTRL <0> set to one),
replaces the 20 MHz clock input.

3.10.6.3.6 MSI Internal State Registers (0-3)

These registers, at addresses 2008 465C 15, 2008 4660 15, 2008 4664 16, and
2008 4668 1¢, reflect the status of the SII chip’s internal state machine when
used in test mode. (I.LE. MSI_DICTRL <0> set to one.)
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KA640 Firmware

This chapter describes the functional operation of the KA640 firmware.
The KA640 firmware gains control of the processor whenever the KA640
performs a processor restart (also called a processor halt). A halt means
only that the control is transferred to the firmware. It does not mean that
the processor actually stops executing instructions.

4.1 KA640 Firmware Features

The firmware is located in two 64-Kbyte EPROMS. on the KA640. The
firmware image is duplicated in the local I/O space of the KA640 from 2004
0000 to 2007 FFFF inclusive. The firmware displays diagnostic progress and
error reports on the KA640 LEDs and on the console terminal. It provides
the following features:

¢ Automatic/manual operating system restart or bootstrap of customer
application images at power-up, on reset, or conditionally after
processor haits. (Restart in this context is not the same as restarting
or resetting the hardware.)

* Automatic/manual bootstrap of an operating system on power-up.

* An interactive command language that allows the user to examine and
alter the state of the processor.

¢ Diagnostic tests that test all components on the board and venfy that
the module is working correctly.

* Support of various terminais and devices as the system console.

¢ Multilingual support. The firmware can be configured to issue its
messages in one of several languages.

In order for the console program to operate, the processor must be
functioning at a level able to execute instructions from the console program
ROM. -
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The firmware consists of four major parts:
1. Entry/dispatch code

2. Diagnostics

3. Console emulation

4. Virtual memory bootstrap (VMB)

The entry/dispatch code, located at physical address 2004 0000, is entered
whenever a halt occurs. The processor can halt for a variety of reasons,
including power-up. The reason for the halt is found in <13:08> of internal
processor register (IPR) 43 (decimal) which is the SAVPSL. IPR 42 (decimal),
which is the SAVPC, also contains the value in the program counter (PC)
when the processor was halted. On power-up, the contents of SAVPC are
undefined.

After a halt, the firmware saves the current LED code, then writes an “E”’
to the LED. This operation occurs within several instructions upon entry
into entry/dispatch code. It indicates that at least several instructions have
been successfully executed, although if the CPU is functioning properly, this
occurs too quickly to be seen.

The entry code determines what action is to be taken based on the state
of SAVPSL <13:08>, the halt enable bit, and the processor halt action
(CPMBX <01:00>).

Table 4-1 lists the actions taken on a halt.

Table 4-1 - Actions Taken on a Hait
Halt Enable = Power-up Hait? Halt Action Action

*

Diagnostics, Halt

Halt

Diagnostics, Bootstrap, Halt
Restart, Bootstrap, Halt
Restart, Halt

Bootstrap, Halt

Halt

XX XmTm—~~
mmomm™m—4m-
WN RO XOX

*T = condition is true, F = condition is false, X = doesn’t matter

Multiple actions mean the next action is taken if and only if the previous
action fails. Diagnostics are an exception; if diagnostics fail, then the
processor enters console emulation.
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Because the KA640 does not support battery backed-up main memory, a
restart operation is not attempted on power-up. Restart in this context
means the continuation of the operating system. Operating systems provide
a mechanism for continuing operation after a halt condition.

The halt action is a 2-bit field (CPMBX <01:00>) used by operating systems
to force the firmware to enter console emulation, or to restart or reboot
following a halt, regardless of the setting of the halt enable switch.

4.1.1 Power Up Processing

On power-up, the firmware performs several unique actions. It runs initial
power-up tests (IPT), locates and identifies the console device, performs a
language query, and runs the remaining diagnostics.

Power-up actions differ, depending on the state of the mode switch on the
H3602-SA (Figure 2-4), which has three settings: test, query, and normal.
The differences are described in Sections 4.1.2 through 4.1.4.

The purpose of the IPT is to verify that the console private nonvolatile RAM
(NVRAM) is valid (battery is charged). If it is invalid (battery is discharged),
then the IPT tests and initializes the NVRAM. Prior to checking the NVRAM,
the IPT waits for power to stabilize by monitoring SCR <5>(POK). Once
power is stable, the IPT tests to see if the backup batteries failed by checking
SSCCR<31>(BLO). If the batteries failed, then the IPT initializes certain
nonvolatile data (such as the default boot device) to a known state. It then
initializes other data structures and performs a processor initialization.

Table 4-2 lists the tests that correspond to the LED display.

4.1.2 Mode Switch Set to Test

The purpose of the test position on the H3602-SA is to verify that the
connection between the KA640 and the console terminal is intact.

The firmware toggles between two states, active and passive. During the
active s