
SYSTEM REFERENCE MANUAL

SYSTEM REFERENCE MANUAL

DEC-lO-XSRMA-A-D

digital equipment corporation. maynard. massachusetts

1st Edition, May 1968
2nd Edition, December 1971
3rd Edition, August 1974

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIG IT AL's copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIG IT AL.

Copyright© 1971,1972,1973,1974,1975 by Digital Equipment CORPORATION

The postage prepaid READER'S COMMENTS form on the last page of this document requests
the user's evaluation to assist us in preparing future documentation.

Changes are indicated by a triangle (~) in the outside margin.

The following are standard trademarks of Digital Equipment Corporation:

COP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DECCOMM
DECSYSTEM-10
DECTAPE
DIBOL

DIGITAL
DNC
EDGRIN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS
INDAC

KA10
KIlO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA
PS/8

QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-ll
SABR
TYPESET-8
TYPESET-lO
UNIBUS

1/75-15

Preface

This manual explains the machine language programming and operation of
the DECsystem -10, for both instructional and referen~~/purposes. Basically
the manual defines in detail how the central process-or and the peripherals
function, exactly what their instructions do, how they handle data, what
their control and status information means, and what programming tech­
niques and procedures must be employed to utilize them effectively. The
programming is- given in machine language, in that it uses only the basic
instruction and device mnemonics and symbolic addressing defined by the
assembler. The treatment relies on neither any other Digital software nor
any of the more sophisticated features of the assembler; moreover the
manual is completely self-contained - no prior knowledge of the assembler
is required.

The text of the manual is devoted almost entirely to functional description
and programming. Chapter 1 discusses the general characteristics of the
system, defines the formats of the words used for numbers and instructions,
and also explains the conventions needed to program the system and under­
stand the examples given in the text. Chapter 2 covers all phases of the
central processor, including the general principles of in-out programming and
handling the interrupt system. The remaining chapters are devoted to the
various categories of peripheral equipment. Chapters 3 and 4 cover the
simple character-oriented devices that use form paper, paper tape and cards.
Chapter 5 treats the data interfaces that are employed in the tape, disk and
data communication systems covered in the three chapters following. Finally
Chapter 9 describes the various terminals that can be used either at the
console or in communication systems; this chapter includes both pro­
gramming and operating information.

The first three appendices contain the basic reference tables for the
programmer - word formats, instruction and device mnemonics, 10 codes,
10 bit assignments showing conditions and status, and a shorthand presenta­
tion of instruction actions in symbolic form. The next two appendices
provide additional programming information of less general use: Appendix D
gives the instruction times and Appendix E documents the differences among
the several central processor models. The final three appendices provide a
complete guide to the operation of the central processors, memories and
peripheral devices (except terminals). This treatment is entirely in hardware
terms, describing all lights and switches, how to load the devices, and so
forth, but not how to run the system in terms of interacting with any Digital
software - that information is given in the DECsystem -10 Operator's Guide.

iii

Contents

I.

1.1

1.2

1.3

1.4

2.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

INTRODUCTION

Number System
Floating point arithmetic 1-8

Instruction Format
Effective address calculation I-II

Memory
KII a memory a 110 ca tion 1-14
KAla memory allocation 1-14

Programming Conventions

CENTRAL PROCESSOR

Half Word Data Transmission

Full Word Data Transmission
Move instructions 2-10
Pushdown list 2-12

Byte Manipulation

Logic
Shift and rotate 2-24

Fixed Point Arithmetic
Arithmetic shifting 2-30

Floating Point Arithmetic
Scaling 2-33
Number conversion 2-34
Single precision with rounding 2-36
Single precision without rounding 2-38
Double precision operations 2-42

Arithmetic Testing

Logical Testing and Modification

Program Con trol
Overflow trapping 2-69

Unimplemented Operations

Programming Examples
Processor identification 2-72

v

I-I

1-7

1-10

1-12

1-15

2-1

2-2

2-9

2-15

2-17

2-26

2-31

2-45

2-51

2-58

2-70

2-72

vi

2.12

2.13

2.14

2.15

2.16

2.17

3.

3.1

3.2

3.3

4.

4.1

4.2

4.3

4.4

5.

5.1

5.2

Parity 2-72
Counting ones 2-75
Number conversion 2-77
Table searching 2-78
Double precision floating point 2-79

Input-Output
Readin mode 2-85
Console-program communication 2-86

Priority Interrupt
KIlO interrupt 2-88
KA 1 0 interrupt 2-94

Processor Conditions
KIlO processor conditions 2-98
KA 10 processor conditions 2-101

KIlO Program and Memory Management
Paging 2-105
Page failure 2-104
Monitor programming 2-111
Executive XCT 2-114

KA 1 0 Program and Memory Management
User programming 2-119
Monitor programming 2-119

Real Time Clock DKI0

CONSOLE IN-OUT EQUIPMENT

Paper Tape Reader
Readin mode 3-3

Paper Tape Punch

Console Terminal

HARDCOPY EQUIPMENT

Line Printer LPI0

Plotter XY 1 0

Card Reader CR 1 0

Card Punch CPIO

DATA INTERFACES

Data Channel DFI0

Twelve- and Eighteen-Bit Computer Interface DAI 0
PDP-I0 instructions 5-7
Twelve-bit computer instructions 5-8
Eighteen-bit computer instructions 5-10
Programming considerations 5-11

2-81

2-87

2-98

2-104

2-117

2-120

3-1

3-1

3-4

3-6

4-1

4-1

4-8

4-11

4-15

5-1

5-1

5-7

6

Part I

6.1

6.2

6.3

6.4

6.5

Part II

6.6

6.7

6.8

6.9

6.10

MAGNETIC TAPE

DECtape

Tape Format
Standard format DECtape 6-3
Compatibility 6-3

Tape Handling Characteristics

Instructions

Normal Programming
Timing 6-12
Readin mode 6-14

Formatting a Tape

Standard Magnetic Tape

Tape Format

Instructions

Tape Functions
Interrupt when unit ready 6-27
Write 6-27
Mark end of file 6-28
Erase 6-28
Erase and write 6-28
Read record 6-28
Read multirecord 6-29
Read-compare record 6-29
Read-compare multirecord 6-30
Space records forward 6-30
Space file forward 6-30
Space records reverse 6-30
Space file reverse 6-31
Rewind 6-31
Rewind and unload 6-31

Programming Considerations
Readin mode 6-32

Timing
Tape transport TUI0 6-33
Tape transport TU20 6-34
Tape transport TU30 6-35
Tape transport TU40 6-35

6-1

6-1

6-2

6-4

6-5

6-11

6-14

6-16

6-16

6-19

6-27

6-31

6-33

vii

viii

7

Part I

7.1

7.2

7.3

7.4

Part II

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

DISKS AND DRUMS

RC I 0 Disk/Drum System

Data Format

Instructions

Programming Considerations
Timing 7-11

Operation

RP 1 0 Disk Pack System

Data Format

Instructions

Disk Pack Functions

Programming Considerations
Timing 7-29

Operation

DATA COMMUNICATIONS

Communication Signals and Procedures
Bell System data sets 8-6

Data Communication System DC68A
Data multiplexing 8-11
Modem control DC08F 8-17
Call control DC08H 8-19
689AG: Part I, modem control 8-21
689AG: Part II, call control 8-24

Data Line Scanner DCl 0
Instructions 8-29
Data line programming 8-33
Modem control programming 8-35

Single Synchronous Line Unit DS 1 0
Instructions 8-37
Programming considerations 8-40

APPENDICES

A INSTRUCTIONS AND MNEMONICS
Word Formats A-2
Mnemonic Derivation A-4
Numeric Listing A-5
Alphabetic Listing A-8
Device Mnemonics A-12
Algebraic Representation A-13

7-)

7-2

7-3

7-4

7-10

7-14

7-18

7-18

7-20

7-27

7-28

7-30

8-1

8-3

8-7

8-26

8-36

A-I

B

C

D

E

F

F1

F2

G

H

HI

H2

H2.l

IN-OUT CODES

ASCII Code B-2
Line Printer Codes B-4
Card Codes B-8

10 BIT ASSIGNMENTS
KIl 0 Processor C-2
KA 1 0 Processor C-6
Console 10 C-8
Peripheral devices follow in alphabetical order

TIMING
KIlO Instruction Times D-3
KA 1 0 Instruction Times D-9

PROCESSOR COMPATIBILITY

PROCESSOR OPERATION

KIl 0 Operation
Indicators F 1-2
Operating keys Fl-6
Operating switches Fl-8
Real time clock DK10 FI-13

KA 1 0 Operation
Indicators F2-1
Operating keys F2-3
Operating switches F2-7
Real time clock DKIO F2-9

MEMORY OPERATION

Address Structure G-3
MA I 0 Core Memory G-4
MB 10 Core Memory G-S
MD10 Core Memory G-6
ME 1 0 Core Memory G-8
MFIO Core Memory G-9

OPERATION OF PERIPHERAL EQUIPMENT

Console Equipment
Paper tape reader H I-I
Paper tape punch H 1-1
Console terminal H 1-2

Hardcopy Equipment

Line Printer LPIO
Models LPIOF, H H2-1

B-1

C-1

D-1

E-1

F-1

F1-1

F2-1

G-1

H-1

HI-1

H2-1

H2-1

ix

x

H2.2

H2.3

H2.4

H3

H4

H4.1

H4.2

HS

H6

H7

H7.1

H7.2

H7.3

INDEX

Models LPIOB, C, D, E H2-4
Model LPIOA H2-6

Plotter XY 1 0

Card Reader CR 10
Models CR1OD, E, F H2-7
Model CR 1 OA/B H2-9

Card Punch CP 10

Data Interfaces (to be added)

Magnetic Tape

DECtape TD 10

Standard Magnetic Tape TM 1 0
Tape transport TUIO H4-4
Tape transport TU20 H4-6
Tape transport TU30 H4-7
Tape transport TU40 H4-8

Disks and Drums (to be added)

Data Communications
Data line scanner DClO H6-1
Single synchronous line unit DS10 H6-2

Cleaning Procedures

Tape Equipment
DECtape H7-1
Standard magnetic tape H7-2

Tapes H7-3

Disk Packs

Other Equipment
Paper tape reader and punch H7-4
Line printer H7-4
Card reader and punch H7-4

H2-6

H2-7

H2-9

H3-1

H4-1

H4-1

H4-3

HS-I

H6-1

H7-1

H7-1

H7-3

H7-4

I-I

1

Introduction

The DECsystem -lOis a general purpose, stored program computing system
that includes at least one PDP-l 0 central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch, teletypewriter,
card reader and punch, line printer, DECtape, magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory, some of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much more limited program capabil­
ity and serve to connect large, fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem -I 0 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a subsystem in toto is con­
nected to a PDP-lOin-out bus and is treated by the PDP-l 0 as a peripheral
device. Unless otherwise specified, the words "processor" and "central pro­
cessor" refer to the large-scale PDP-l 0 central processor, and "in-out bus"
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the lJFl U data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present there are two types of PDP-l 0 central processors, the KA 10
and the KII O. The latter is faster and more powerful, having a somewhat
larger instruction repertoire including double precision floating point. Both
processors handle words of thirty-six bits, which are stored in a memory
whose maximum capacity depends upon the addressing capability of the
processor. Internally both processors use 18-bit addresses and can thus
reference 262,144 word locations in memory. This is the total addressing
capahility of the KA 10, but in the KTl 0 it is only the virtual address space
available to a single program. Paging hardware supplies four additional
address bits to map pages in the program virtual address space into pages
anywhere in a physical memory that is sixteen times as large. Thus for
a number of different programs, the processor actually has access to a

1·1

Confusion could result only
in a chapter dealing with a
small-computer subsystem.
Here the small processor is
usually referred to by its
name (PDP-8, PDP-II) and
the words "computer" and
"memory" refer to the small
computer. To differentiate,
the PDP-lO is referred to by
its name or as the "DEC­
system-lO central processor",
and the large scale memory
connected to the PDP-IO
memory bus is referred to as
"DECsystem-IO main mem­
ory" .

1-2 INTRODUCTION

physical memory with a capacity of 4,194,304 words. Storage in memory
is usually in the form of 37-bit words, the extra bit producing odd parity
for the word. The bits of a word are numbered 0-35, left to right (most
significant to least significant), as are the bits in the registers that handle
the words. The processor can handle half words, wherein the left half
comprises bits 0-l7, the right half, bits IS - 35. There is also hardware
for byte manipulation ~ a byte is any contiguous set of bits within a word.
KA 10 registers that hold addresses have eighteen bits, numbered lS-35
according to the position of an address in a word. KIlO internal address
registers have eighteen bits, but a register that must supply a complete
address to physical memory has twenty-two bits (numbered 14-35). Words
are used either as computer instructions in the program, as addresses, or as
operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the IS-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is incre­
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer are the sense
switches and the 36-bit data switch register OS on the processor console:
through these switches the program can reild information supplied by the
operator. The processor also contains flags that detect various types of
errors, including several types of overflow in arithmetic and pushdown opera­
tions, and provide other information of interest to the programmer.

The processor has other registers but the programmer is not usually con­
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can
examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc­
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.
This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. In the KIl 0, AR and the adder each have a 2S-bit left
extension for handling double precision floating point numbers.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations

L

CORE MEMORY CORE MEMORY CO RE MEMORY

r ---

MEMORY BUS CENTRAL
~ PROCESSOR

FAST - MEMORY
16 X 36

I I I MA IR I

181 4: 18

ARITH METIC
LOGIC MI

36
(AR,BR,MQ)

I
I AS PC DS I

4: 18 18 36

IN-OUT BUS I

I PRIORITY I PAPER TAPE I PAPER TAPE I TELETYPE I INTERRUPT READER PUNCH

DECSY5TEM -10 51 MPLI FlED

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,

1-3

1-4

The KIl 0 actually has four
fast memory blocks, but only
one of these is available to a
program at any given time.

The KIlO allows unrestricted
in-out with a limited number
of devices for special real
time applications.

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overflow or a parity error to signal the program.

Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily_ A program that runs in executive mode - the Monitor - is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to

..,

operation in executive mode (specifically kernel mode in the KII 0).
The KAIO has the two modes discussed above, user and executive. It also

has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected, ie the user cannot
alter its contents.

The KIlO has paging hardware for the mapping of pages from the limited
virtual address space into pages anywhere in physical memory. A page map
for each program specifies not only the correspondence from virtual address
to physical address, but also whether an individual page is accessible or not,
alterable or not, and public or concealed. Both user and executive modes are
subdivided according to whether the program is running in a public area or a
concealed area. Within user mode these are the public and concealed modes;
within executive mode, the supervisor and kernel modes. A program in
concealed mode can reference all of accessible user memory, but the public
program cannot reference the concealed area except to transfer control into
it at certain legitimate entry points.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and the program
can even address some of memory directly (ie unpaged); in the paged address
space, individual pages may be restricted as inaccessible or write-protected,
but it is the kernel mode program that establishes these restrictions. In
supervisor mode the Monitor handles the general management of the system
and those functions that affect only one user at a time. This mode has
essentially the same instruction and memory restrictions as user mode,
although the supervisor mode program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor program
with information the latter cannot alter (even though the information is not
write-protected from the kernel program). In either mode the Monitor
automatically uses fast memory block 0 (the hardware requires this). The
kernel program is responsible for assigning fast memory blocks to the various
user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block 1 is assigned to all other users.

The illustration on the next page shows a typical layout of the virtual
address space for the various modes. The space is 256K, made up of 512
pages numbered 0-777 octal. Any program can address locations 0-17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
write-protected. The public program cannot access any locations in the
concealed areas except to fetch instructions from prescribed entry
points. The concealed mode user program has access to both public and
concealed areas, but it cannot alter any write-protected location whether
public or concealed, and fetching an instruction from the public area
automatically returns the processor to public mode.

The supervisor mode program is confined within the paged area of the
address space, pages 340 and above. Part of the public area in this space may

1-5

The concealed area would or­
dinarily be used for proprie­
tary programs that the user
can call but cannot read or
alter.

1-6 INTRODUCTION

USER MODE
PUBLIC CONCEALED

O~--~F~AS~T-ME~M~O=RY--~ Or---~FA~S~T~ME~M7.0R~Y--~

PU BliG
WRITEABLE

PU BLI C
WR I TE - PROTECTED

SHADED AREAS ARE INACCESSIBLE

PUBLIC
WRITEABLE

CONCEALED
WRITEABLE

PUBLIC
WRITE - PROTECTED

CONCEALED

WRITE -PROTECTED

340

400

EXECUTIVE MODE
SUPERVISOR

PUBLI C

CONCEALED

PUBLIC

WRITEABLE

PUB lIC
WRITE - PROTECTED

CONCEALED

KERNEL
Or---~FA~ST~M~E~MO~R~Y---'

340

400

UNPAGED

PUBLIC

CONCEALED

PUBLI C

WRITEABLE

PUBLI C
WRITE-PROTECTED

CONCEALED
WRITEABLE

CONCEALED

WRITE-PROTECTED

TYPICAL VIRTUAL ADDRESS SPACE CONFIGURATION

§ 1.1 NUMBER SYSTEM

be write-protected, but the program can read information in the concealed
areas - it cannot alter any location in a concealed area whether that area is
write-protected or not. Pages 340-377 constitute the per-process area, which
contains information specific to individual users and whose mapping
accompanies the user page map. In other words the physical memory
corresponding to these virtual pages can be changed simply by switching
from one user to another, rather than the Monitor changing its own page
map. The kernel mode program can access all of the unpaged area without
restriction and can reference all of the accessible paged area, both public and
concealed, with the usual restriction that it cannot alter a write-protected
area. As in the case of concealed user mode, fetching an instruction from a

-, public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num­
ber, or the left and right halves of a word can be taken as separate IS-bit
numbers. The PDP-I0 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-lOuse twos comple­
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit 0 (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2 n - x, and its ones complement is (2 n - 1) - x, or equivalently (2 n - x) - 1.
Subtracting a number from 2 n - 1 (ie, from all 1 s) is equivalent to perform­
ing the logical complement, ie changing all Os to 1 s and all 1 s to Os. There­
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153 10 = +231 8 =10000000000000000000000000000100110011
o 3S

- 153 10 = - 231 8 = 1111 111 111 111 111 111 111 111 111 10 1 100 1111
o 3S

Zero is represented by a word containing all Os. Complementing this
number produces all 1 s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation, all
even numbers both positive and negative end in 0, all odd numbers in 1 (a

1-7

The adder actually acts as
though the words represented
36-bit unsigned numbers, ie
the signs are treated just like
magnitude bits. In the absence
of a carry into the sign stage,
adding two numbers with the
same sign produces a plus sign
in the result. The presence of
a carry gives a positive answer
when the summands have dif­
ferent signs. The result has a
minus sign when there is a
carry into the sign bit and
the summands have the same
sign, or the summands have
different signs and there is
no carry.

Thus the program can in­
terpret the numbers processed
in fixed point addition and
subtraction as signed numbers
with 35 magnitude bits or as
unsigned 36-bit numbers. A
computation on signed num­
bers produces a result that

AUGUST 1974

1-8

is correct as an unsigned 36-
bit number even if overflow
occurs, but the hardware in­
terprets the result as a signed
number to detect overflow.
Adding two positive numbers
whose sum is greater than or
equal to 235 gives a negative
result, indicating overflow;
but that result, which has
a I in the sign bit, is the
correct answer interpreted as
a 36-bit unsigned number
in positive form. Similarly
adding two negatives gives
a result which is always correct
as an unsigned number in
negative form.

Multiplication produces a
double length product, and
the programmer must remem­
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple­
ment form only if the low
order part is null.

This convention for bit 0 of
the low order word is incon­
sistent with that used for
floating point arithmetic [see
below]. This should cause no
problem however, as fixed
divide ignores bit 0 of the
low order word in a double
length dividend.

AUGUST 1974

INTRODUCTION § 1.1

number all 1 s represents -1). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 4000000000008 and its magnitude is one greater
than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the Is. In twos
complement notation each negative number is one greater than the
complement of the positive number of the same magnitude, so one can read
a negative number by attaching significance to the rightmost 1 and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1 s may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because
it still has a 1 that possesses significance; but if a portion including the
rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement.

The computer does not keep track of a binary point - the programmer
must adopt a point convention and shift the magnitude of the result to con­
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre­
sented by a single word is -235 to 235 - 1 or -1 to 1 - 2-35 . Since multiplica­
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1 - 35 of the high and low order words. Bit 0 of the high

• order word is the sign, and bit 0 of the low order word is made equal to
the sign. The range for double length integers and proper fractions is thus
-270 to 270 - 1 and -1 to 1 - 2-70 .

Floating Point Arithmetic. The KII 0 has hardware for processing single
and double precision floating point numbers; the KAlO can generally process
only single precision numbers, although the hardware does include features
that facilitate double precision arithmetic by software routines. The same
format is used for a single precision number and the high order word of a
double precision number. A floating point instruction interprets bit 0 as the
sign, but interprets the rest of the word as an 8-bit exponent and a 27-bit
fraction. For a positive number the sign is 0, as before. But the contents of
bits 9 - 35 are now interpreted only as a binary fraction, and the contents of
bits 1 -8 are interpreted as an integral exponent in excess 128 (200 8)

code. Exponents from -128 to + 127 are therefore represented by the
binary equivalents of 0 to 255 (0-377 8)' Floating point zero and negatives
are represented in exactly the same way as in fixed point: zero by a word
containing all Os, a negative by the twos complement. A negative number
has a 1 for its sign and the twos complement of the fraction, but since every
fraction must ordinarily contain a 1 unless the entire number is zero (see

§ 1.1 NUMBER SYSTEM

below), it has the ones complement of the exponent code in bits 1-8. Since
the exponent is in excess 128 code, an actual exponent x is represented in a
positive number by x + 128, in a negative number by 127 - x. The
programmer, however, need not be concerned with these representations as
the hardware compensates automatically. Eg, for the instruction that scales
the exponent, the hardware interprets the integral scale factor in standard
twos complement form but produces the correct ones complement result for
the exponent.

+ 153 10 = +231 8 = +.4628 X 28 =

10110 001 0001100 110 ala 000 000 000 000 000 0001
o 1 89 35

-153 10 = -231 8 -.4628 X 28 =

1110 1 110 11110 11 00 1 11 a 000 000 000 000 000 000 I
o 1 89 35

Except in special cases the floating point instructions assume that all
nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to 1'2 and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of 1'2 to 1 - 2 -27. Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is 1'2 to 1
decreased by the value of the least significant bit. In all formats the
exponent range is -128 to + 127.

The precaution about truncation given for fixed point multiplication
applies to most floating point operations as they produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
single precision division the two words of the result are quotient and
remainder, but in the other operations they form a double length number
which is stored in two accumulators if the instruction is executed in "long"
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9-35 of each word. The sign and exponent are in bits a and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the remaining part of the less significant word, bit a is 0, and bits
1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 2 18 + 2-18 has this two-word representation in software

1-9

An instruction that generates
a double length result sets
the low word exponent part
to zero whenever the low
order fraction is zero, and
sets the whole low order word
to zero whenever the low
order exponent overflows or
underflows.

AUGUST 1974

1-10

Essentially there are five num­
ber formats. Fixed point
additive operations can be
regarded as being performed
on 36-bit unsigned numbers,
which are equivalent to logical
words. Otherwise fixed point
arithmetic uses the fixed point
format; numbers are single
length with the exception that
products and dividends can be
double length, and there is
provision for shifting a double
length operand arithmetically.
Double length format is an
extension of single length for­
mat to two 36-bit words.

Single precision floating
point instructions use two
formats: single precision float­
ing point format and soft­
ware double precision floating
point format. The latter ap­
pears only in the result of a
long mode add, subtract or
multiply, as the dividend in a
long mode divide, and as the
operand for an instruction
that negates a number specifi­
cally in that format. Operands
for double precision floating
point instructions are exclu­
sively in hardware double
precision floating point for­
mat (and these instructions are
not available on the KAIO).

AUGUST 1974

INTRODUCTION § 1.2

double precision format:

10110 010 0111100 000 000 000 000 000 000 000 0001
o 1 89 35

1010 1 III 000 1000 000 000 100 000 000 000 000 000 I
o 1 89 35

whereas its negative is

1110110110010111111111111111111111111111
o 1 89 35

10101 III 000 1111 III III 100 000 000 000 000 000 I
o 1 89 35

The double precision floating point instructions use a more straight­
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit a is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

10110 a 1 a a 1 11100 000 000 000 000 000 000 000 000 I
o 1 8 9 35

10100 000 000 010 000 000 000 000 000 000 000 000 I
o 1 35

and its negative is

1110110110010111111111111111111111111111
o 1 8 9 35

10111 111 111 110 000 000 000 000 000 000 000 000\
o 1 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

§ 1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 14-17 spec­
ify an index register for use in address modification, and the remaining
eighteen bits (1S-35) address a memory location. The instruction codes

ADDRESS TYPE

INSTRUCTION CODE MEMORY ADDRESS

o 89 121314 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are performed by the processor
as so-called "unimplemented operations".

An input-output instruction is designated by three Is in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions.

o 23

INSTRUCTION
CODE

DEVICE CODE

ADDRESS TYPE

9 10 12 13 14

INDEX REGISTER
ADDRESS

1718

MEMORY ADDRESS

IN·OUT INSTRUCTION FORMAT

35

Effective Address Calculation. Bits l3-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

Y
13 14 17 18 35

indirect bit, bits 14-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address E of the instruction depends on the values of I, X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If I is 0, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if I is 1,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the
effective address if I is 0, otherwise they are used for yet another level of
address retrieval. This process continues until some referenced location is
found with a 0 in bit 13; the IS-bit number calculated from the X and Y
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
. if it need not address a memory location. If the indirect bit in the instruc-

1-11

Among the unimplemented
operations are some that are
specified as "unimplemented
user operations" or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu­
nication with the Monitor
(MUUOs). In general, unas­
Signed codes act like MUUOs.

On the other hand, please note
that this calculation is carried

1-12

out only for words indicated
in the text as having the for­
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim­
ply because it happens to con­
tain an address [see page C-2].

PLEASE READ THIS

The calculation of E is the
first step in the execution of
every instruction. No other
action taken by any instruc­
tion, no matter what it is,
can possibly precede that cal­
culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory loca­
tion that can in any way
affect its own effective ad­
dress calculation.

AUGUST 1974

INTRODUCTION § 1.3

tion word is 0 and no memory reference is necessary, then Y is not an ad­
dress. It may be a mask in some kind of test instruction, conditions to M
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad­
dress when I is O. But when I is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which I
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper­
and even have an "immediate" mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor­
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KIl 0 further increases the speed of memory
operation by overlapping memory cycles. Eg it can start one memory to
read a word before receiving a word previously requested from a different
memory.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads or writes a word directly
(note: to write, the KAlO must first clear the location and then load it).

-"

§ 1.3 MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten feet (three meters) of cable. Fast memory times are
for referencing as a memory location (18-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
considerably shorter.

Read Write Modify
Access Access Cycle Completion Size

161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 .49 l.8 1.33 16K

164 Core Memory }
MB 10 Core Memory

.60* .20* l.65* .97 16K

MA 1 0 Core Memory .61 .20 1.00 .57 16K

MD 1 0 Core Memory .83 .33 1.8 1.23 32-l28K
MElO Core Memory .61 .20 1.00 .65 16K
MF 1 0 Core Memory .61 .20 1.00 .63 32K,64K
KAlO Fast Memory .21 .21 16
KIl 0 Fast Memory .28 .0 16

From the simple hardware addressing point of view, the entire memory is
a set of contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KAlO address is octal 777777,
decimal 262,143; the largest KilO address is 17777777, decimal
4,194,303. (Addresses are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with l8-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen for the
location. The times given above assume the addressed memory is idle when
access is requested. To avoid waiting for a previously requested memory
cycle to end, the program can make consecutive requests to different
memories by taking instructions from one memory and data from
another. All memories can be interleaved in pairs in such a way that
consecutive addresses actually alternate between the two memories in the
pair (thus increasing the probability that consecutive references are to
different memories). Appropriate switch settings at the memories
interchange the least significant address bits in the memory selection and
location parts, so that in any two memories numbered nand n + 1 where n is
even, all even addresses are locations in the first memory, all odd addresses
are locations in the second. Hence memories 0 and 1 can be interleaved as
can 6 and 7, but not 3 and 4 or 5 and 7. Some memories can be interleaved
in contiguous groups of four, where the number of the first memory in the

1-13

* Add .1 in a multiproces­
sor system.

MDlO can be increased in
units of 32K up to 128K.

KIlO access to accumulators
and index registers effectively
takes no time - it is done in
parallel with instruction oper­
ations that are required any­
way. Retrieval of instructions
or memory operands from
fast memory is generally
not worthwhile because of
the extensive overlapping that
speeds up core access. How­
'ever, except in instructions
that use two accumulators,
storage of a memory operand
in fast memory not only takes
no time but actually decreases
slightly the nonmemory time.

Information on memory set­
up is given in Appendix G_

AUGUST 1974

1-14

The kernel mode program
can always address locations
0-337777 as these are un­
paged. Virtual pages 340 and
above are mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for ftself for
each KIlO processor. In the
text, the phrase "the user
process table" refers to the
process table currently speci­
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex­
ecutive process table for the
processor under consideration.

The initial control word ad­
dress for the DFlO Data
Channel must be less than
1000.

AUGUST 1974

INTRODUCTION § 1.3

group is divisible by four (eg memories 0-3 or 14-17). In this case all
addresses ending in 0 or 4 reference the first memory in the group, all ending
in 1 or 5 reference the second, and so forth.

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KAIO the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KIl 0 the possible
program address space is the set of all 18-bit addresses just as in the KAlO,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called "small user", the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0-17 are never restricted or relocated).

KIt 0 Memory Allocation. The KIl 0 hardware defines the use of certain
memory locations, but most are relative to pages whose physical location is
specified by the Monitor. The auto restart uses location 70. The only other
physical locations uniquely defined by the hardware are those in fast memory,
whose addresses are the same for all programs: location 0 holds a pointer
word during a bootstrap readin, 0-17 can be addressed as accumulators, and
1-17 can be addressed as index registers. The only addresses uniquely speci­
fied in the user virtual space are for user local UUOs - locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware-oriented situations, are
to locations within a page specified by the Monitor for a particular user
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, billing
information, and job tables. The detailed configuration of the
hardware-defined parts of the process tables (user and executive) is given in
§2.15.

KAt 0 Memory Allocation. The use of certain memory locations is
defined by the KAI 0 hardware.

o
0-17

1-17

40-41

42-57

60-61

Holds a pointer word during a bootstrap readin

Can be addressed as accumulators

Can be addressed as index registers

Trap for unimplemented user operations (UUOs)

Priority interrupt locations

Trap for remaining unimplemented operations: these include
the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc­
tions when the hardware for them is not installed

§ 1.4

140-161

PROGRAMMING CONVENTIONS

Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith­
metic, program control and in-out. The instructions in the in-out class con­
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The MACRO-lO assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc­
tion, produces the twos complement negative of the word in memory loca­
tion 2570.

NOTE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num­
bers appearing in program examples are octal unless otherwise indi­
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the

1-15

All information given in this
manual about memory loca­
tions 40-61 for a KAlO ap­
plies instead to locations 140-
161 for programming a second
KA 1 0 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

1-16 INTRODUCTION § 1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(l2)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec­
tive address calculation.

An accumulator address (0-17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(l2)

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place Is in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur­
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator addres~ (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302

which assembles as 700600 001302, or equivalently

CONO PI, 1302

The programming examples in this manual use the following addressing
conven tions:
• A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym­
bolically as A.
• The period represents the current address, eg

ADD 5,.+2

is equivalent to

A: ADD 5,A+2

• Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]

and

ADD 12,A

§ 1.4 PROGRAMMING CONVENTIONS

A: 7256004

are equivalent. The bracketed quantity can be given as the left and right
halves separated by a double comma, not only eliminating the need to insert
leading zeros for the right half, but allowing use of a minus sign for a
negative half word as well. In other words

[-246,,135]

is equivalent to

[777532000135]

Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.

1-17

AUGUST 1974

2

Central Processor

This chapter describes all PDP-IO instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne­
monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique
instruction with a single code in bits 0-8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in­
struction is the source and which the destination of the data, in test instruc­
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0-8) for the various modes.

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the I, X and Y parts
of the instruction word. In an instruction that ordinarily references mem­
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in­
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, E or E, 0 depending upon whether E is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A; in the description,
"AC" refers to the accumulator addressed by A. "AC left" and "AC right"
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A + 1, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss -
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2-1

letters representing modes
are suffixes, which produce
new mnemonics that are rec­
ognized as distinct symbols
by the assembler.

PLEASE READ THIS

The calculation of E is the
first step in the execution of
every instruction. No other
action taken by any instruc­
tion, no matter what it is,
can possibly precede that cal­
culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory loca­
tion that can in any way
affect its own effective ad­
dress calculation.

AUGUST 1974

2-2 CENTRAL PROCESSOR §2.1

well to operation in executive mode. For completeness, the effects of restric­
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, § 2.9
discusses trapping, § 2.13 describes the priority interrupt, and §§ 2.15 and
2.16 describe the special effects and restrictions associated with program and
memory management in the KIlO and the KAIO respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum­
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc­
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being "executed." To
"execute" an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc­
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap, etc.
It is assumed that control will shortly be returned to PC, at the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes Pc.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in § 2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter­
mined by which half of the source word is moved to which half of the des­
tination, and by which of four possible operations is performed on the other

§2.1 I:IALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation

Do nothing
Zeros
Ones
Extend

Suffix

Z

o
E

Effect on Other Half of Destination

None
Places Os in all bits of the other half
Places I s in all bits of the other half
Places the sign (the leftmost bit) of
the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num­
bers - the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter­
mines the source and destination of the half word moved.

Mode Suffix Source Destination

Basic E AC
Immediate I The word O,E AC
Memory M AC E
Self S E E, but full word result also

goes to AC if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left

500 y
o 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un­
affected; the original contents of the destination left half are lost.

2-3

2-4

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.

HLLZI merely clears AC. If A
is zero, HLLZS merely clears
the right half of location E.

HLLOI sets AC to alIOs in
the left half, all Is in the
right.

CENTRAL PROCESSOR §2.l

HLL Half Left to Left 500
HLLI Half Left to Left Immediate 501
HLLM Half Left to Left Memory 502
HLLS Half Left to Left Self 503

HLLZ Half Word Left to Left, Zeros

510 y

o 67 89 12 13 14 1718 3S

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513

HLLO Half Word Left to Left, Ones

520 y
o 67 89 121314 1718 3S

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1 s. The source
is unaffected, the original contents of the destination are lost.

HLLO
HLLOI
HLLOM

HLLOS

Half Left to Left, Ones
Half Left to Left, Ones, Immediate
Half Left to Left, Ones, Memory
Half Left to Left, Ones, Self

HLLE Half Word Left to Left, Extend

530
o 67 89 121314 1718

y

520
521
522
523

3S

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

§2.1

HLLE
HLLEI
HLLEM
HLLES

HALF WORD DATA TRANSMISSION

Half Left to Left, Extend
Half Left to Left, Extend, Immediate
Half Left to Left, Extend, Memory
Half Left to Left, Extend, Self

HRL Half Word Rightto Left

504 y

o 67 89 121314 1718

530
531
532
533

3S

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf­
fected; the original contents of the destination left half are lost.

HRL
HRLI

HRLM
HRLS

Half Right to Left
Half Right to Left Immediate

Half Right to Left Memory
Half Right to Left Self

HRLZ Half Word Right to Left, Zeros

514
o 67 89 12 13 14 1718

y

504
505
506
507

3S

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HRLZ
HRLZI
HRLZM
HRLZS

Half Right to Left, Zeros
Half Right to Left, Zeros, Immediate
Half Right to Left, Zeros, Memory
Half Right to Left, Zeros, Self

HRLO Half Word Right to Left, Ones

524
o 67 89 12 13 14 1718

y

514
SIS
516
517

3S

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to allis. The source
is unaffected, the original contents of the destination are lost.

2-5

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word E,O
into AC ..

2-6

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

CENTRAL PROCESSOR §2.1

HRLO Half Right to Left, Ones 524

HRLOI Half Right to Left, Ones, Immediate 525

HRLOM Half Right to Left, Ones, Memory 526

HRLOS Half Right to Left, Ones, Self 527

HRLE Half Word Right to Left, Extend

534 y

o 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE
HRLEI
HRLEM
HRLES

Half Right to Left, Extend
Half Right to Left, Extend, Immediate
Half Right to Left, Extend, Memory
Half Right to Left, Extend, Self

f1AR Half Word Right to Right

540
o 67 89 121314 1718

y

534
535
536
537

35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR
HRRI
HRRM
HRRS

Half Right to Right

Half Right to Right Immediate
Half Right to Right Memory
Half Right to Right Self

HRRZ Half Word Right to Right, Zeros

550
o 67 89 121314 1718

y

540
541
542
543

35

Move the right half of the source word specified by M to the right half of the

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the destination left half. The source is unaf­
fected, the original contents of the destination are lost.

HRRZ
HRRZI
HRRZM
HRRZS

HRRD

560
o

Half Right to Right, Zeros

Half Right to Right, Zeros, Immediate

Half Right to Right, Zeros, Memory
Half Right to Right, Zeros, Self

Half Word Right to Right, Ones

67 89 121314 1718

y

550
551
552
553

35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all I s. The source is
unaffected, the original contents of the destination are lost.

HRRD Half Right to Right, Ones 560
HRRDI Half Right to Right, Ones, Immediate 561
HRRDM Half Right to Right, Ones, Memory 562
HRRDS Half Right to Right, Ones, Self 563

HRRE Half Word Right to Right, Extend

570 y
o 67 89 12 13 14 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE
HRREI
HRREM
HRRES

Half Right to Right, Extend
Half Right to Right, Extend, Immediate

Half Right to Right, Extend, Memory
Half Right to Right, Extend, Self

HLR Half Word Left to Right

544
o 67 89 121314 1718

y

570
571
572
573

--------'

35

Move the left half of the source word specified by M to the right half of the

2-7

HRRZI loads the word 0,£
into AC. If A is zero, HRRZS
merely clears the left half of
location E.

2-8

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to allIs in
the left half, aliOs in the
right.

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR
HLRI

HLRM
HLRS

Half Left to Right
Half Left to Right Immediate

Half Left to Right Memory
Half Left to Right Self

HLRZ Half Word Left to Right, Zeros

554
o 67 89 121314 1718

y

544
545
546
547

3S

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un­
affected, the original contents of the destination are lost.

HLRZ
HLRZI
HLRZM
HLRZS

Half Left to Right, Zeros
Half Left to Right, Zeros, Immediate
Half Left to Right, Zeros, Memory
Half Left to Right, Zeros, Self

HLRO Half Word Left to Right, Ones

564
o 67 89 12 13 14 1718

y

554
555
556
557

3S

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all I s. The source is
unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate 565
HLROM Half Left to Right, Ones, Memory 566
HLROS Half Left to Right, Ones, Self 567

HLRE Half Word Left to Right, Extend

574 y

o 67 89 12 13 14 1718 3S

Move the left half of the source word specified by M to the right half of the

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE
HLREI
HLREM
HLRES

Half Left to Right, Extend
Half Left to Right, Extend, Immediate
Half Left to Right, Extend, Memory
Half Left to Right, Extend, Self

574
575
576
577

EXAMPLES. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads the IS-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI
HRRI

XR,M
XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde­
pendently as operands (taken as IS-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC
HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange

250 A III. _X_L--____ y ____ ~
o 89 12 13 14 1718 3S

Move the contents of location E to AC and move AC to location E.

2-9

HLREI is equivalent to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load­
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

2-10

For a reverse BLT procedure
(highest addresses first), refer
to the POP instruction on
page 2-13.

A convenient way to clear a
block in memory is to clear
the first location and then
use a BLT to transfer the
zero successively from one
location to the next. Suppose
the block starts at A and
contains B words.

MOVE AC,[A"A+l]
CLEAR A
BLT AC,A+B

Vis-a-vis the BLT, the source
block runs from A toA+B-l,
the destination block from
A+ I to A+B.

Besides the move instructions
for single words there are also

NOVEMBER 1974

CENTRAL PROCESSOR §2.2

BL T Block Transfer

251 y

o 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is

... thus E - ACR + 1. If ACR ;;;;:. E, the BLT moves one word to location ACL .

CAUTION

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, A and X must not address the
same register as this would produce a different effective address calcula­
tion upon resumption should an interrupt occur; and the instruction
must not attempt to load an accumulator addressed either by A or X
unless it is the final location being loaded. Furthermore, the program
cannot assume that AC is the same after the BL T as it was before.

EXAMPLES. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI
BLT

17,2000
17,17

;Put 2000 000000 in AC 17

But to transfer the block in the opposite direction requires that one accumu­
lator first be made available to the BLT:

MOVEM 17,2017
MOVEI 17,2000
BLT 17,2016

;Move AC 17 to 2017 in memory
;Move the number 2000 to AC 17

If at the time the accumulators were loaded the program had placed in loca­
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH
BLT

17,2017
17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode Suffix Source Destination

Basic E AC
Immediate I The word O,E AC
Memory M AC E

Self S E E, but also AC
if A is nonzero

MOVE Move

200 y

o 67 89 12 13 14 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE
MOVEI
MOVEM
MOVES

MOVS

204
o

Move
Move Immediate
Move to Memory
Move to Self

Move Swapped

67 89 12 13 14

y
1718

200
201

202
203

35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped 204
MOVSI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207

MOVN Move Negative

210 y

o 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point -235 (400000000000) set the

2-11

four transmission instructions
that handle double length
operands (operands of two
adjacent words). These are
available, however, only in
the KIlO; and since they are
principally for use in hardware
double precision floating point
operations, they are described
with the floating point instruc­
tions in §2.6

MOVEI loads the word O,E
into AC and is thus equiva­
lent to HRRZI. If A is zero,
MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word E,O into
AC. MOVSI is thus equivalent
to HRLZI.

2-12

In the KIlO a move executed
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, £ and
can set no flags.

In the KIlO a move executed
as an interrupt instruction can
set no flags.

The word 0,£ is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEI.

CENTRAL PROCESSOR §2.2

Overflow and Carry I flags. (Negating the equivalent floating point -I X 2127
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry I. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap 1 flag in the
KIlO.

MOVN Move Negative 210

MOVNI Move Negative Immediate 211

MOVNM Move Negative to Memory 212

MOVNS Move Negative to Self 213

MOVM Move Magnitude

214 y

o 67 89 12 13 14 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point -235

(400000000000) set the Overflow and Carry 1 flags. (Negating the equiva­
lent floating point -1 X 2127 sets the flags, but this is not a normalized num­
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KIlO.

MOVM Move Magnitude 214

MOVMI Move Magnitude Immediate 215

MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num­
ber 200 001400 is stored in location M, the instruction

MOVE AC,M

loads 200 into AC left and 1400 into AC right. If the same word, or its nega­
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,

§2.2 FULL WORD DATA TRANSMISSION

and the program can keep a control count in the left half. There are also
two subroutine-calling instructions that utilize a pushdown list of jump ad­
dresses [§ 2.9].

PUSH Push Down

261 y

o 89 121314 1718 3S

Add one to each half of AC, then move the contents of location E to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero, set the Pushdown Overflow flag in the KAIO, set the
Trap 2 flag in the KIlO. The contents of E are unaffected, the original
contents of the location added to the list are lost.

Note: The KAIO increments the two halves of AC by adding 1000001 8
to the entire register. In the KII 0 the two halves are handled independently.

POP Pop Up

262 y

o 89 121314 1718 3S

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach -1, set the Pushdown Overflow flag in the KA 1 0, set the Trap 2
flag in the KII O. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction
- POP AC,AC would load the contents of the location addressed by AC right

into AC on top of the pushdown count, destroying it.
Note: The KAIO decrements the two halves of AC by subtracting

1 0000018 from the entire register. In the KII 0 the two halves are handled
independently.

In the KA 10, incrementing and decrementing both halves of AC together
is effected by adding and subtracting 1 000001 8. Hence a count of -2 in AC
left is increased to zero if 2 18 -1 is incremented in AC right, and conversely,
1 in AC left is decreased to -1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re­
moved at any given time is the last item in the list. This is usually referred
to as "first in, last out" or "last in, first out". Suppose locations a, b, C, ...

are set aside for a pushdown list. We can deposit data in a, b, C, d, then read

2-13

In the KI 10 a PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KIlO a POP executed
as an interrupt instruction
cannot set Trap 2.

A POP can be used to imple­
ment a reverse BLT, ie to
transfer a block of words
from one area of memory to
another, starting at the largest
addresses and proceeding to
the smallest. To move a block
of N words from a source area
to a destination area whose
maximum addresses are Sand
D respectively, the program
must first set up a push­
down pointer in accumula­
tor T, where T left contains
N - 1 + 400000 and T right
contains S. The transfer is
then effected by this pair
of instructions

POP
JUMPL

T,D-S(T)
T,.-l

AUGUST 1974

2-14

where the jump returns to the
POP until T left is less than
400000, ie until it looks posi­
tive. The 400000 added into
T left prevents pushdown
overflow, but also limits the
block to 217 words.

AUGUST 1974

CENTRAL PROCESSOR §2.2

d, then write in d and e, then read e, d, C, etc.
Note that by trapping or checking overflow and keeping a control count in

AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini­
tialize a pointer P for a list to be kept in a block of memory beginning at
BUST and to contain at most N items, the following suffices.

MOVSI
HRRI

P,-N
P,BUST-l

Of course the programmer must define BUST elsewhere and set aside loca­
tions BUST to BUST + N - 1. Using MACRO to full advantage one could
instead give

MOVE P,[IOWD N,BUST]

where the pseudoinstruction

IOWD J,K

is replaced by a word containing -J in the left half and K - I in the right.
Elsewhere there would appear

BUST: BLOCK N

which defines BUST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-IO the pushdown list is kept in a random access core mem­
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions -
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list - the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC,-I(P)

and so forth. Similarly

PUSH P,-3(P)

-.,

§2.3 BYTE MANIPULATION

adds the third to last item to the end of the list;

POP P,-2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

P s y

o 56 11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of tne byte in the word (eg if Pis 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: I, X and Yare used to cal­
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

P BITS

o 35-P-S+ 1 35-P 35-P + 1 35

where the shaded area is the byte.
To facilitate processing a series of bytes, several of the byte instructions

increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P - S, unless
there is insufficient space in the present location for another byte of the
specified size (P - S < 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 - S to point to the first byte at
the left in the new location.

CAUTION (KAlO ONLY)

Do not allow Y to reach maximum value. The whole pointer is incre-

2-15

Note that E is calculated
before the contents of Pare
changed.

In a KAI0 without byte ma­
nipulation hardware, all of the
instructions presented in this
section are trapped as un­
assigned codes [§ 2.1 0] .

Bit 12 is reserved for future
use and should be O.

AUGUST 1974

2-16

In the KIlO, incrementing
maximum Y produces a zero
address without affecting X.

The A portion of this instruc­
tion is reserved for future use
and should be zero (at present
it is ignored).

NOVEMBER 1974

CENTRAL PROCESSOR §2.3

mented, SO if Y is 218 - 1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri­
ority interrupt should occur before the calculation is complete, the in­
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LOB Load Byte

135 Y
o 89 121314 1718 3S

Retrieve a byte of S bits frdm the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

OPB Deposit Byte

137 Y
o 89 121314 1718 3S

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

IBP Increment Byte Pointer

133 Y
o 89 12 13 14 1718 3S

Increment the byte pointer in location E as explained above.

ILOB Increment Pointer and Load Byte

134 Y
o 89 12 13 14 17 18 3S

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre­
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

"

§2.4 LOGIC

IOPB I ncrement Pointer and Deposit Byte

136 y

o 89 121314 1718 3S

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into· the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (448). Incrementing then replaces the 36 with 36 - S to point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]).

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100 - S rather than 36 - S. For
S> 36 the byte is at most the entire word; for P ~ 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P + S > 36,
a byte of size 36 - P is loaded from position P, or the right 36 - P bits of the
byte are deposited in position P.

2.4 LOGIC

For logical operations the PDP-I 0 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane­
ously. Thus in the AND function of two words, each bit of the result is the
AND of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all I s) the
modes differ only in the destination of the result, so basic and immediate

2-17

2-18

SETZ and SETZI are equiva­
lent (both merely clear AC).
In them, I, X and Yare re­
served for future use and
should be zero (at present E
is ignored).

MACRO also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent. In them, I, X and Yare
reserved for future use and
should be zero (at present E
is ignored).

AUGUST 1974

CENTRAL PROCESSOR §2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu­
lator addressed by A, even when there is no AC operand.

Source of non-
Mode Suffix ACoperand

Basic E

Immediate I The word O,E

Memory M E

Both B E

SETZ Set to Zeros

400 y

o 67 89 12 13 14 1718

Change the contents of the destination specified by M to all Os.

SETZ
SETZI
SETZM
SETZB

Set to Zeros
Set to Zeros Immediate
Set to Zeros Memory
Set to Zeros Both

SETO SettD Ones

474
o 67 89 121314

y

1718

Change the contents of the destination specified by M to all 1 s.

SETO Set to Ones

SETOI Set to Ones Immediate

SETOM Set to Ones Memory

SETOB Set to Ones Both

SETA SettD AC

424 y
o 67 89 12 13 14 1718

Make the contents of the destination specified by M equal to AC.

Destination
of result

AC
AC
E

AC andE

35

400
401
402
403

35

474
475
476
477

35

§2.4

SETA
SETAl
SETAM
SETAB

SETCA

450
o

Set to AC
Set to AC Immediate
Set to AC Memory
Set to AC Both

Set to Complement of AC

67 89 121314

LOGIC

y

1718

424
425
426
427

3S

Change the contents of the destination specified by M to the complement
of AC.

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453

SETM Set to Memory

414 y
o 67 89 12 13 14 1718 3S

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417

SETCM Set to Complement of Memory

460 y

o 67 89 12 13 14 1718 3S

Change the contents of the destination specified by M to the complement of
the specified operand.

2-19

SET A and SET AI are no-ops.
In them, I, X and Yare re­
served for future use and
should be zero (at present E
is ignored).

SET AM and SET AB are
both equivalent to MOVEM
(all move AC to location E).

SETCA and SETCAI are
equivalent (both complement
AC). In them, I, X and Yare
reserved for future use and
should be zero (at present E
is ignored).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word O,E to AC
and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

AUGUST 1974

2-20

SETCMI moves the comple-
ment of the word O,E to AC.
SETCMM complements loca-
tionE.

CENTRAL PROCESSOR §2.4

SETCM Set to Complement of Memory 460
SETCMI Set to Complement of Memory Immediate 461
SETCMM Set to Complement of Memory Memory 462
SETCMB Set to Complement of Memory Both 463

AND And with AC

404 y

o 67 89 121314 1718 3S

Change the contents of the destination specified by M to the AND function
of the specified operand and AC.

AND
ANDI
ANDM
ANDB

ANDCA

410
o

And

And Immediate

And to Memory

And to Both

And with Complement of AC

67 89 121314 1718

y

404
405
406
407

3S

Change the contents of the destination specified by M to the AND function
of the specified operand and the complement of AC.

ANDCA
ANDCAI
ANDCAM
ANDCAB

ANDCM

420
o

And with Complement of AC
And with Complement of AC Immediate
And with Complement of AC to Memory
And with Complement of AC to Both

And Complement of Memory with AC

67 89 121314 1718

y

410
411
412
413

3S

Change the contents of the destination specified by M to the AND function
of the complement of the specified operand and AC.

ANDCM
ANDCMI

And Complement of Memory
And Complement of Memory Immediate

420
421

§2.4

ANDCMM
ANDCMB

ANDCB

440
o

LOGIC

And Complement of Memory to Memory
And Complement of Memory to Both

And Complements of Both

67 89 121314 1718

y

422
423

3S

Change the contents of the destination specified by M to the AND function of
the complements of both the specified operand and AC. The result is the
NOR function of the operands.

ANDCB
ANDCBI
ANDCBM
ANDCBB

And Complements of Both
And Complements of Both Immediate
And Complements of Both to Memory
And Complements of Both to Both

lOR Inclusive Or with AC

434
o 67 89 12 13 14 1718

y

440
441
442
443

3S

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and AC.

lOR Inclusive Or 434
IORI Inclusive Or Immediate 435
IORM Inclusive Or to Memory 436
IORB Inclusive Or to Both 437

ORCA Inclusive Or with Complement of AC

454 y

o 67 89 12 13 14 1718 35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and the complement of AC.

ORCA
ORCAI
ORCAM
ORCAB

Or with Complement of AC
Or with Complement of AC Immediate
Or with Complement of AC to Memory
Or with Complement of AC to Both

454
455
456
457

2-21

MACRO also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-
monies.

2-22 CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC

464 y
o 67 89 12 13 14 1718 35

Change the contents of the destination specified by M to the inclusive OR

function of the complement of the specified operand and AC.

ORCM
ORCMI
ORCMM
ORCMB

ORCB

470
o

Or Complement of Memory
Or Complement of Memory Immediate

Or Complement of Memory to Memory
Or Complement of Memory to Both

Inclusive Or Complements of Both

67 89 12 13 14 1718

y

464
465
466
467

35

Change the contents of the destination specified by M to the inclusive OR

function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB
ORCBI
ORCBM
ORCBB

Or Complements of Both
Or Complements of Both Immediate
Or Complements of Both to Memory
Or Complements of Both to Both

XOR Exclusive Or with AC

430
o 67 89 12 13 14 17 18

y

470
471
472

473

35

Change the contents of the destination specified by M to the exclusive OR

function of the specified operand and AC.

XOR
XORI
XORM
XORB

Exclusive Or
Exclusive Or Immediate
Exclusive Or to Memory

Exclusive Or to Both

430
431
432
433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive OR of the remaining operand and the result.

§2.4 LOGIC

EQV Equivalence with AC

444 y

o 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive OR function of the specified operand and AC (the result has Is
wherever the corresponding bits of the operands are the same).

Eav Equivalence 444
EaVI Equivalence Immediate 445
EaVM Equivalence to Memory 446
EaVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3 -6 of the instruction word.

AC 0 I 0

Mode Specified Operand 0 0

SETZ 0 0 0 0

AND 0 0 0 1

ANDCA 0 0 0

SETM 0 0 I 1

ANDCM 0 0 0

SETA 0 0 I

XOR 0 I I 0

lOR 0 1 1 1

ANDCB 0 0 0

EQV 0 0 I

SETCA 0 0

ORCA I 0 I I

SETCM I 0 0

ORCM 0 1

ORCB 1 1 0

SETO 1 1

2-23

2-24

LSH

LSHC

ROT

ROTC

ASH

ASHC

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A + I (mod 208), concat­
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

~ A r---EJ
o~-------------------35

~~ ________ A ______ ~~~ ______ A_+_1 _____ ~
o 35 0 35

§~_A -35§

C,=-----A ~R A + 1 ;:oJ
~O 35 ~O------------------~35~

~~ ___ A ____ ~~
o 35

o o

A A + 1

35

ACCU MULATOR BIT FLOW IN SHIFT AND ROTATE I NSTR UCTIONS

§2.4 LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see § 2.5.] In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right.
In the KAlO, maximum movement is 255 places. The KilO eliminates re­
dundant movement by logical shifting at most 72 places regardless of the ...
value of E, and rotating E mod 72 places (except 72 places if E is a nonzero
multiple of 72).

LSH Logical Shift

242 y
o 89 121314 1718 3S

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined

246 y

o 89 121314 1718 3S

Concatenate accumulators A and A + 1 with A on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A + 1); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If E is negative, shift right bringing Os
into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate

241 y
o 89 12 13 14 17 18 3S

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit O.

2-25

AUGUST 1974

2-26

Overflow is determined di­
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

In the KIlO an arithmetic
instruction execu ted as an
interrupt instruction can set
no flags.

CENTRAL PROCESSOR §2.5

ROTC Rotate Combined

245 y

o 89 121314 1718 3S

Concatenate accumulators A and A + 1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit 0 is rotated into bit 71 (bit 35 of AC A + 1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit O.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-IO has instructions for arithmetic shift­
ing (which is essentially multiplication by a power of 2) as well as for per­
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§ 1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supphes a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators A and A + 1 (mod 208), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper­
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry 0 and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§ 2.2], and the
arithmetic test instructions that increment or decrement the test word
[§ 2.7]. In these instructions an incorrect result is indicated - and the Over­
flow flag set - if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a proQuct in multiplica­
tion, too large a number to convert to fixed point [§ 2.6] , and loss of signi­
ficant bits in left arithmetic shifting. In the KIl 0 any condition that sets
Overflow also sets the Trap 1 flag.

These flags can be read and controlled by certain program control instruc­
tions [§§ 2.9, 2.10]. KIl 0 overflow is handled by trapping through the

§2.S FIXED POINT ARITHMETIC

setting of Trap [§2.9], but in the KAlO, the program must make direct
use of the Overflow flag, which is available as a processor condition (via an
in-out instruction) that can request a priority interrupt if enabled [§ 2.14] .
The conditions detected can only set the arithmetic flags and the hardware
does not clear them, so the program must clear them before an instruction
if they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Source of non- Destination
Mode Suffix AC operand of result

Basic E AC
Immediate I The word O,E AC
Memory M E E
Both B E AC andE

ADD Add

270 y
o 67 89 121314 1718 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is ~ 235 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235.

If the sum is < -235 set Overflow and Carry 0; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 235. Set both
carry flags if both summands are negative, or their signs differ and their mag­
nitudes are equal or the positive one is the greater in magnitude.

ADD
ADDI
ADDM
ADDB

Add

Add Immediate
Add to Memory
Add to Both

SUB Subtract

274
o 67 89 12 13 14

y

1718

270
271
272

273

35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is ~ 235 set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235. If the difference is < -235 set Overflow and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to

2-27

User overflow is handled by
the Monitor according to
instructions from the user.
Refer to Chapter 3 of
DECsystem-IO Monitor Calls.

Besides indicating error types,
the carry flags facilitate per­
forming multiple precision
arithmetic.

AUGUST 1974

2-28

... Remember that bit 0 of the
low order word is equal to
the sign of the product.

CAUTION

In the KAIO, an AC operand
of -235 is treated as though
it were +235 , producing the
incorrect sign in the product.

NOVEMBER 1974

CENTRAL PROCESSOR §2.5

the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

SUB

SUBI
SUBM

SUBB

Subtract

Subtract Immediate
Subtract to Memory

Subtract to Both

MUL MUltiply

224
o 67 89 1213 14

y

1718

274
275

276
277

35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator A + 1. If both oper­
ands are -235 set Overflow; the double length result stored is _270.

MUL
MUll
MULM
MULB

Multiply
Multiply Immediate
Multiply to Memory
Multiply to Both

IMU L Integer Multiply

220
o 67 89 121314 1718

y

224
225
226
227

35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is ~ 235 or < -235 (ie if the high order word of the
double length product is not null); the high order word is lost.

IMUL
IMULI
IMULM
IMULB

Integer Multiply
Integer Multiply Immediate
Integer Multiply to Memory
Integer Multiply to Both

DIV Divide

234
o 67 89 121314 1718

y

220
221
222
223

35

... If the high order word of the magnitude of the double length number in

§2.5 FIXED POINT ARITHMETIC

accumulators A and A + 1 is greater than or equal to the magnitude of the
operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula­
tors A and A + 1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator A + 1.

DIV
DIVI
DIVM
DIVB

Divide
Divide Immediate
Divide to Memory
Divide to Both

IDIV Integer Divide

230
o 67 89 121314

y

1718

234
235
236
237

35

If the operand specified by M is zero, or AC contains -235 and the operand A

specified by M is ± 1, set Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way. Otherwise divide AC by the specified operand, calculating a
quotient of 35 magnitude bits including leading zeros. Place the unrounded
quotient in the specified destination. If M specifies AC as the destination,
place the remainder, with the same sign as the dividend, in accumulator A + 1.

ID I V In teger Divide 230
IDIVI
IDIVM
IDIVB

Integer Divide Immediate
Integer Divide to Memory
Integer Divide to Both

231
232
233

EXAMPLES. The integer multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register.

Suppose we wish to reverse the order of the digits in the 6-bit character
abedet, where the letters represent the bits of the character. We first dupli­
cate it three times to the left and shift the result left one place producing

a bed eta bed eta bed eta bed efO

where the bits are grouped corresponding to the octal digits in the word.
Anding this with

1 000 100 100 010 010 000 001 000

2-29

NOVEMBER 1974

2-30

*HAKMEM 140, page 78
(Arti/icial Intelligence Memo­
randum, No. 239, February
29, 1972, MIT Artificial In­
telligence Laboratory).

These examples require that
the rest of A, outside the
character, be clear.

AUGUST 1974

CENTRAL PROCESSOR §2.5

gives

a 000 eOO bOO OjO OcO 000 OOd 000

Now it just so happens this number is configured such that the residues of
the values of its bits modulo 28 - 1 are in exactly the opposite order from
the bits of the original character and have the binary orders of magnitude
0-5. In other words this number is equal to the sum of the numbers in the
upper row below, and dividing each of these summands by 255 gives the
remainder listed in the lower row.

Dividend

Remainder

fX2 13 eX220 dX2 3

fX2 5 eX24 dX2 3

The remainder in a division is equal to the sum, modulo the divisor, of the
remainders left by dividing each of the dividend summands by the same
divisor. And the sum of the terms in the lower row is obviously fedcba.
The above procedure is implemented by this sequence (due to Schroeppel*)
where the character is right-justified in accumulator A, and its reverse
appears right-justified in accumulator A + 1.

IMUL
AND
IDIVI

A, [2020202] ;4 copies shifted left one
A,[104422010] ;Pick bits for reverse

A,3777 ;Divide by 28 - 1

To reverse eight bits we can use a similar procedure (also due to Schroeppel)
where again the original character is right-justified in A and its reverse
appears right-justified in A+ 1. But this time we cannot manage the manipu­
lation within a single length word, so we must use multiply, divide, and a
pair of ANDs.

MUL
AND
ANDI
DIVI

A, [100200401002] ; 5 copies in A and A + 1
A+l,[20420420020] ;Pick bits for reverse via
A,4l ;residues mod 210 - 1
A,1777 ;Divide by 210 - 1

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num­
ber in AC or the double length number in accumulators A and A + 1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis­
cussed here is similar to logical shifting [see § 2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted -
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single

§2.5 FIXED POINT ARITHMETIC

shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculatmg
the shift. A positive E produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. In the KA 1 0,
maximum movement is 255 places. The KIlO eliminates redundant move­
ment by shifting at most 72 places regardless of the value of E.

ASH Arithmetic Shift

240 y

89 12 13 14 17 H! 3S

Shift AC arithmetically the number of places specified by E. Do not shift
bit O. If E i~ positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num­
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, Is if negative; data shifted out of bit 35 is'lost.

ASHC Arithmetic Shift Combined

244 y

o 89 12 13 14 1718 3S

Concatenate the magnitude portions of accumulators A and A + 1 with A on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num­
ber of places specified by E. Do not shift AC bit 0, but make bit 0 of AC
A + 1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi­
tive, shift left bringing Os into bit 71 (bit 35 of AC A + 1); bit 37 (bit 1 of AC
A + 1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a 0 in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1 s if nega­
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-I0 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)

2-31

An arithmetic right shift trun­
cates a negative result differ­
ently from ION if Is are
shifted out. The result of the
shift is more negative by one
than the quotient of ION.

To obtain the same quo­
tient that IDIV would give
with a dividend in A divided
byN=~,use

SKIPGE
ADDI
ASH

A
A,N-I
A,-K

For K < 20 this is only slightly
faster than IDIVI, except in
the KA 10 where it takes only
5-6 p.s as opposed to about
16 p.s for IDIVI.

Note that the effect of a shift ...
on bit 0 of the low order word
is consistent with the conven­
tion used for double length
fixed point numbers. When
there is no shift however, the
result may be inconsistent
with that convention.

In a KAIO without floating
point hardware, all of the in­
structions presented in this
section are trapped as un­
assigned codes [§2.10].

AUGUST 1974

2-32

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSD gives a result con­
taining only one bit of signi­
ficance.

CENTRAL PROCESSOR §2.6

and negating double length numbers (software format) as well as performing
addition, subtraction, multiplication and division of numbers in single pre­
cision floating point format. Moveover the KIlO has instructions for per­
forming the four standard arithmetic operations on floating point numbers
in hardware double precision format, for moving double precision numbers
(with the option of taking the negative) between a pair of accumulators and
a pair of memory locations, and for converting single precision numbers
from fixed format to floating and vice versa. Except for the conversion in­
structions and the simple moves, all instructions treated here interpret all
operands as floating point numbers in the formats given in § 1.1, and
generate results in those formats. The reader is strongly advised to reread
§ 1.1 if he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the pro­
gram can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length operands.
Instructions without rounding have a "long" mode, which supplies a two­
word result for greater precision; the other modes save time in one-word
operations where rounding is of no significance.

Actually the result is formed in a double length register in addition, sub­
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re­
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result ("result" shall always be taken to mean the information (one word or
two) stored by the instruction, regardlesS' of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain hyenty-seven significant bits, a long addi­
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no
normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

Among the floating point instructions available only in the KIlO, those
that convert between number types operate only on single words. The in­
struction that converts to floating point assumes the operand is an integer
and always normalizes and rounds the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the pro­
gram. The instructions for the four standard operations using double pre­
cision have no modes. In division the processor always calculates a two-word
quotient that is normalized if the original operands are normalized, but
rounding is not available. In addition, subtraction and multiplication, the
result is formed in a triple length register, wherein bits of significance in the
lowest order part supply information for limited normalization and then
for rounding, which is automatic.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or

<.

§2.6 FLOATING POINT ARITHMETIC

too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Except where the result would be
in fixed point form, any of these circumstances sets Overflow and Floating
Overflow. If only these two are set, the exponent of the answer is too large;
if Floating Underflow is also set, the exponent is too small. No Divide being
set means the processor failed to perform a division, an event that can be pro­
duced only by a zero divisor if all nonzero operands are normalized. Any con­
dition that sets Overflow in the KIlO also sets the Trap 1 flag. These flags can
be read and controlled by certain program control instructions [§§ 2.9, 2.10].
KIl 0 overflow is handled by trapping through the setting of Trap 1 [§ 2.9] ,
but in the KA 1 0, the program must make direct use of Overflow and Floating
Overflow, which are available as processor conditions (via an in-out instruc­
tion) that can request a priority interrupt if enabled [§ 2.14]. The conditions
detected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before a floating point instruction if
they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding V2 X 22 and 0 X 269 gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit 0 and Os in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
"fraction" with value -1. This unnormalized number can produce an incor­
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag­
nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative E decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range -256 to
+255.

2-33

In the KIIO an arithmetic
instruction executed as an in­
terrupt instruction can set no
flags.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom­
panying exponent adjustment
thus multiply the number
both by 2 and by 16 simulta­
neously, leaving its value un­
changed.

Note that with normalized
operands, the processor uses
at most two bits of informa­
tion from the lowest order
part to normalize the result.
In multiplication this is
obvious, since squaring the
minimum fractional magni­
tude 16 gives a result of %. In
an addition or subtraction of
numbers that differ greatly in
order of magnitude, the result
is determined almost com­
pletely by the operand of
greater order. A subtraction
involving two like-signed num­
bers with equal exponents re­
quires no shifting beforehand
so there is no information in
the lowest order part. Hence
an addition or subtraction
never requires shifting both
before the operation and in
the normalization; when there
is no prior shifting, the nor­
malization brings in Os.

2-34

This instruction can be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(2338 = 155 10 = 128 + 27).

In the KAlO these instruc­
tions are trapped as unassigned
codes.

This overflow test checks for
a value ~ 235 assuming the
operand is normalized.

This is the standard Fortran
truncation ("fixation"). For
it, the processor drops the

CENTRAL PROCESSOR §2.6

FSC Floating Scale

132 A III X y

o 89 121314 1718 3S

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2E), normal­
ize the resulting word bringing as into bit positions vacated at the right, and
place the result back in AC.

NOTE

A negative E is represented in standard twos com­
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one.
If < -128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Number Conversion

Although FSC can be used to float a fixed point number, the KII a has three
single precision instructions specifically for converting between integers and
floating point numbers. In all cases the operand is taken from location E,
and the converted result is placed in AC.

FIX Fix

1 22 y

o 89 121314 1718 3S

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing as
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (as for positive, I s for negative) into bit 1, and then
truncate to an integer. Place the result in AC.

Truncation produces the integer of largest magnitude less than or equal to
the magnitude of the original number. Eg a number> + 1 but < +2 becomes
+1; a number < -1 but> -2 becomes -1.

§2.6 FLOATING POINT ARITHMETIC

FIXR Fix and Round

126 y

o 89 121314 1718 35

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (Os for positive, 1 s for negative) into bit 1, and then round
the integral part. Place the result in AC.

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is ~ V2 in a positive number but
> V2 in a negative number. Eg + 1.4 (decimal) is rounded to + 1, whereas
+ 1.5 and + 1.6 become +2; but with negative numbers, -1.4 and -1.5
become -1, whereas -1.6 becomes -2.

FL TR Float and Round

127 y

o 89 121314 1718 3S

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in proper form) into bits 1-8 to move
the shifted binary point to the left of bit 9 (35 = 27 + 8), and normalize the
fraction bringing first the bits originally shifted out and then Os into bit
positions vacated at the right. If fewer than eight bits (left shifts) are needed
to normalize, use the next bit to round the single length fraction. Place
the result in AC.

The rounding function is the same as that used by the standard floating
point arithmetic instructions [see below].

Since the largest fixed point magnitude (without considering sign) is
235 - 1, a floating point number with exponent greater than 35 (and
assumed normalized) cannot be converted to fixed point. There is no limit
in the opposite direction, but precision can be lost as floating point format
provides fewer significant bits. A fixed integer greater than 227 - 1 cannot
be represented exactly in floating point unless all its significant bits are
clustered within a group of twenty-seven.

2-35

fractional part in a positive
number, but adds one to the
integral part (as required by
twos complement fonnat) if
any bits of sigrIificance are
shifted out in a negative
number.

This overflow test checks for
a value ~ 235 assuming the
operand is nonnalized.

This is the Algol standard for
real to integer conversion. For
it the processor adds one to
the integral part if the frac­
tional part is ~ % in a posi­
tive number or (as required
by twos complement fonnat)
is ..;; % in a negative number.

2-36

In the hardware the rounding
operation is actually some­
what more complex than
stated here. If the result is
negative, the hardware com­
bines rounding with placing
the high order word in twos
complement form by decreas­
ing its magnitude if the low
order part is < 71LSB. More­
over an extra single-step re­
normalization occurs if the
rounded word is no longer
normalized.

CENTRAL PROCESSOR §2.6

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix ACoperand of result

Basic E AC

Immediate I The wordE,O AC

Memory M E E

Both B E AC andE

Note however that floating point immediate uses E,O as an operand, not
0, E. In other words the half word E is interpreted as a sign, an 8-bit expo­
nent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normaliza­
tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating Overflow; the result stored has an expo­
nent 256 less than the correct one. If < -128, set Overflow, Floating Over­
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR Floating Add and Round

144 y
o 67 89 121314 1718 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing as into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR
FADRI
FADRM
FADRB

Floating Add and Round

Floating Add and Round Immediate
Floating Add and Round to Memory
Floating Add and Round to Both

144
145
146
147

§2.6 FLOATING POINT ARITHMETIC

FSBR Floating Subtract and Round

154 y

o 67 89 121314 1718 35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under­
flow as described above, and place the result in the specified destination.

FSBR
FSBRI
FSBRM
FSBRB

Floating Subtract and Round

Floating Subtract and Round Immediate

Floating Subtract and Round to Memory

Floating Subtract and Round to Both

FMPR Floating Multiply and Round

164
o 67 89 121314 1718

y

154

155
156
157

35

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for exponent overflow or underflow
as described above, and place the result in the specified destination.

FMPR
FMPRI
FMPRM
FMPRB

FDVR

174
o

Floating Multiply and Round
Floating Multiply and Round Immediate
Floating Multiply and Round to Memory
Floating Multiply and Round to Both

Floating Divide and Round

67 89 12 13 14 1718

y

164

165
166
167

35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Overflow, Floating Over­
flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec­
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise round the fraction using the extra bit calculated. If the original

2-37

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

2-38

Note that this instruction can
be used to negate numbers in
software double precision for­
mat only; for the KIlO hard­
ware double precision format,
the program must use the
double moves.

Usually the double length
number is in two adjacent
accumulators, and E equals
A + 1. There is no overflow
test, as negating a correctly
formatted floating point num­
ber cannot cause overflow.

DFN AC,AC is undefined.

The caution given below for
FAD applies to this instruc­
tion as well.

AUGUST 1974

CENTRAL PROCESSOR §2.6

operands were normalized, the single length quotient will already be
normalized; if it is not, normalize it bringing Os into bit positions vacated
at the right. Test for exponent overflow or underflow as described above,
and place the result in the specified destination.

FDVR
FDVRI
FDVRM
FDVRB

Floating Divide and Round
Floating Divide and Round Immediate
Floating Divide and Round to Memory
Floating Divide and Round to Both

Single Precision without Rounding

174
175
176
177

Instructions that do not round are faster for processing floating point
numbers with fractions containing fewer than 27 significant bits. On
the other hand the long mode provides double precision (software format)
or allows the programmer to use his own method of rounding. Besides
the four usual arithmetic operations with normalization, there are two
nonnormalizing instructions that facilitate software double precision arith­
metic [§ 2.11 gives examples of double precision [loating point routines] .
These two instructions have no modes.

DFN Double Floating Negate

13 1 y

o 89 121314 1718 3S

Negate the double length floating point number composed of the contents of
AC and location E with AC on the left. Do this by taking the twos comple­
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location E without altering the original contents
of bits 0-8 of that location.

UFA Unnormalized Floating Add

130 y
o 89 121314 1718 3S

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear accumulator A + 1. Otherwise normalize the sum
only if the magnitude of its fractional part is ~ 1, and place the high order
part of the result in AC A + 1. The original contents of AC and E are
unaffected.

§2.6 FLOATING POINT ARITHMETIC

NOTE

The result is placed in accumulator A +1. This is
the only arithmetic instruction that stores the
result in a second accumulator, leaving the original
operands intact.

If the exponent of the sum following the one-step normalization is> 127,
set Overflow and Floating Overflow; the result stored has an exponent 256
less than the correct one.

The remammg single precision floating point instructions perform the four
standard arithmetic operations with normalization but without rounding.
All use AC and the contents of location E as operands and have four modes.

Mode

Basic

Long

Memory

Both

Suffix

L

M

B

Effect

High order word of result stored in AC.
In addition, subtraction and multiplica­
tion, the two-word result (in the software
double length format described in § 1.1)
is stored in accumulators A and A + 1. In
division the dividend is the double length
word in A and A + 1; the single length
quotient is stored in AC, the remainder
in AC A+l.
High order word of result stored in E.

High order word of result stored in AC
and E.

In each of these instructions, the exponent that results from normaliza­
tion is tested for overflow or underflow. If the exponent is> 127, set Over­
flow and Floating Overflow; the result stored has an exponent 256 less than
the correct one. If < -128, set Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one.

FAD Floating Add

140 y

o 67 89 12 13 14 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M, clearing both accu­
mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or

2-39

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

CAUTION

In single precision addition the
term with the smaller expo­
nent is right shifted in a double

AUGUST 1974

2-40

length register, specifically a
register with 54 magnitude
bits. Now if the difference in
the exponents is < 54, there
is at least one significant bit
after the shift (assuming
normalized operands); and if
the difference is > 64, the
hardware throws the term
away by substituting zero.
But when the exponent dif­
ference lies in the range 54 to
64, the procedure disposes of
all significant bits without
actually substituting zero.
This means that if the shifted
term is positive it appears in
the addition as all as, but if
negative it appears as all Is.
The latter case gives an answer
that is less by one LSB.

The caution given above for
addition applies also to sub­
traction, which is done by
adding with the minuend
negated. Here the lesser
answer (as against a true zero
substitution) occurs when the
term with the smaller expo­
nent is negative after the
minuend negation, ie when it
is a negative subtrahend but a
positive minuend.

AUGUST 1974

CENTRAL PROCESSOR §2.6

underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is < -101 (-128 + 27) or the
low order half of the fraction is zero, clear AC A + 1. Otherwise place a low
order word for a double length result in A + 1 by putting a 0 in bit 0, an
exponent in positive form 27 less than the exponent of the sum in bits 1-8,
and the low order part of the fraction in bits 9-35.

FAD
FADL
FADM
FADB

FSB

150
o

Floating Add
Floating Add Long
Floating Add to Memory
Floating Add to Both

Floating Subtract

67 89 12 13 14 1718

y

140
141
142
143

35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M, clear­
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo­
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

... In long mode if the exponent of the difference is < -101 (-128 + 27) or
the low order haIf of the fraction is zero, clear AC A + 1. Otherwise place a
low order word for a double length result in A + 1 by putting a 0 in bit 0, an
exponent in positive form 27 less than the exponent of the difference in bits
1-8, and the low order part of the fraction in bits 9-35.

FSB
FSBL
FSBM
FSBB

Floating Subtract
Floating Subtract Long
Floating Subtract to Memory
Floating Subtract to Both

FMP Floating Multiply

160
o 67 89 121314 1718

y

150
151
152
153

35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length

§2.6 FLOATING POINT ARITHMETIC

product bringing Os into bit positions vacated at the right, test for e"ponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination.

In long mode if the exponent of the product is > 154 (127 + 27) or
< -101 (-128 + 27) or the low order half of the fraction is zero, clear AC
A + 1. Otherwise place a low order word for a double length result in A + 1
by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction
in bits 9-35.

FMP
FMPl
FMPM
FMPB

Floating Multiply
Floating Multiply Long
Floating Multiply to Memory
Floating Multiply to Both

FDV Floating Divide

170
o 67 89 12 13 14 1718

y

160
161
162
163

3S

If the magnitude of the fraction in AC (in long mode, the high order part of ...
the magnitude of the double length fraction in accumulators A and A + 1) is
greater than or equal to twice the magnitude of the fraction in location E,
set Overflow, Floating Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way.

If division can be performed, floating divide the AC operand by the
contents of location E. In long mode the AC operand (the dividend) is the
double length number in accumulators A and A + 1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction
is zero, clear the destination specified by M, clearing both accumulators in
long mode if the double length dividend was zero. A quotient with a non­
zero fraction will already be normalized if the original operands were nor­
malized; if it is not, normalize it bringing Os into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.
If the remainder exponent is < -128 or the fraction is zero, clear AC A + 1.
Otherwise place the floating point remainder (exponent and fraction) with
the sign of the dividend in AC A + 1.

FDV
FDVl
FDVM
FDVB

Floating Divide
Floating Divide Long
Floating Divide to Memory
Floating Divide to Both

170
171

172
173

2-41

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

In long mode a nonzero un­
normalized dividend whose
entire high order fraction is
zero produces a zero quo­
tient. In this case the second
AC is cleared in the KIl 0
but may receive rubbish in
the KAlO.

NOVEMBER 1974

2-42

In the KAlO these instructions
are trapped as unassigned
codes.

An arithmetic instruction exe­
cuted as an interrupt instruc­
tion can set no flags.

CENTRAL PROCESSOR §2.6

Double Precision Operations

Although double precision floating point arithmetic can be done by routines
using the single precision instructions and the software double length format,
the KI I 0 has instructions specifically for handling double length operands
in the hardware double precision format described in § 1.1. Four of the
instructions use two double length operands, perform the standard arith­
metic operations, and store double length results. The other four instructions
each move one double length operand between the accumulators and
memory, either unchanged or negated.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A + 1 (mod 208) just as they do for the double length operands used in some
shift, rotate and single precision arithmetic instructions. The memory
locations have addresses E and E+ 1 (mod 218), where the second address
is 0 if E is 777777.

For the two instructions that simply move a pair of words without
altering them, the format of those words is actually irrelevant. The other
six instructions process each word pair as a double length number in the
hardware floating point format. Hence they ignore bit 0 in the low order
word of every operand and clear that bit in the result.

The four nonmove instructions perform the standard arithmetic opera­
tions. All use two double length operands in the hardware double precision
format, one from the accumulators and one from memory. Addition
and subtraction always normalize the result; in multiplication and division
the result is guaranteed to be normalized only if the original operan~s
are normalized. In all cases the result, rounded except in division, is
placed in the accumulators. The rounding function is the same as that
used in single precision: if the part of the answer being dropped (the
low order part of the fraction) is greater than or equal in magnitude to
one half the LSB of the double length part being retained, the magnitude
of the latter part is increased by one LSB (with appropriate adjustment for
a twos complement negative).

In each of these instructions, the exponent that results from normaliza­
tion and rounding (if done) is tested for overflow or underflow. If the
exponent is > 127, set Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < -128, set Overflow,
Floating Overflow and Floating Uriderflow; the result stored has an
exponent 256 greater than the correct one. Setting Overflow also sets
the Trap 1 flag.

DFAD Double Floating Add

1 1 0 y

o 89 121314 1718 3S

Floating add the operand of locations E and E+ 1 to the operand of
accumulators A and A + 1. If the high order 70 bits of the fraction in the

§2.6 FLOATING POINT ARITHMETIC

sum are zero, clear A and A + 1. Otherwise normalize the triple length sum
bringing Os in at the right, round the high order double length part, test for
exponent overflow or underflow as described above, and place the result
in ACs A and A + 1.

DFSB Double Floating Subtract

1 1 1 I· A III X y
o 89 121314 1718 35

Floating subtract the operand of locations E and E+ 1 from the operand of
accumulators A and A + 1. If the high order 70 bits of the fraction in the
difference are zero, clear A and A + 1. Otherwise normalize the triple
length difference bringing Os into bit positions vacated at the right, round
the high order double length part, test for exponent overflow or underflow
as described above, and place the result in ACs A and A + 1.

DFMP Double Floating Multiply

1 1 2 y
o 89 121314 1718 35

Floating multiply the operand of accumulators A and A + 1 by the operand
of locations E and E+ 1. If the high order 70 bits of the fraction in
the product are zero, clear A and A + 1. Otherwise, if there are any
bits of significance among the high order 35, do at most one normalization
shift if required; if the high order 35 bits are zero, shift the fraction
left 35 places (adjusting the exponent), and then do at most one normaliza­
tion shift if required. Round the high order double length part, test for
exponent overflow and underflow as described above, and place the result
in ACs A and A+I.

DFDV Double Floating Divide

1 I 3 y
o 89 121314 1718 35

If the magnitude of the fraction in the operand of accumulators A and A + 1
is greater than or equal to twice that of the fraction in the operand of
locations E and E+ 1, set Overflow, Floating Overflow, No Divide and
Trap 1, and go immediately to the next instruction without affecting the
original AC or memory operands in any way.

If the division can be performed, floating divide the AC operand by the
memory operand, calculating a quotient fraction of 62 bits. If the fraction

2-43

The 35-bit shift can be done
only if the original operands
are unnormalized.

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

2-44

A nonzero quotient is normal­
ized if the original operands
are normalized.

Do not use the instruction
DMOVEM AC,AC+ 1. At pre­
sent the processor places AC
in both AC+l and AC+2, but
this result is not guaranteed.

Note that these two instruc­
tions can be used to negate
numbers in hardware double
precision format only; for
software double precision, the
program must use DFN.

Note also that there is no
overflow test, as negating a
correctly formatted floating
point number cannot cause
overflow.

Do not use the instruction
DMOVNM AC,AC+l. At pre-

CENTRAL PROCESSOR §2.6

is zero, clear A and A + 1. Otherwise test for exponent overflow or under­
flow as described above, and place the double length quotient part of the
result in ACs A and A + 1 (the remainder is lost).

DMDVE Double Move

120 y
o 89 121314 1718 35

Move the contents of locations E and E+ 1 respectively to accumulators A
and A + 1. The memory locations are unaffected, the original contents
of the ACs are lost.

DMDVEM Double Move to Memory

124 y

o 89 121314 1718 35

Move the contents of accumulators A and A + 1 respectively to locations E
and E+ 1. The ACs are unaffected, the original contents of the memory
locations are lost.

DMDVN Double Move Negative

1 2 1 y
o 89 121314 1718 35

Negate the double length floating point number taken from locations E and
E+ 1, and move it to accumulators A and A + 1. The memory locations are
unaffected, the original contents of the ACs are lost.

DMDVNM Double Move Negative to Memory

125 A III X y

o 89 121314 1718 35

Negate the double length floating point number taken from accumulators
A and A + 1, and move it to locations E and E+ 1. The ACs are unaffected,
the original contents of the memory locations are lost.

"

"

§2.7 ARITHMETIC TESTING

Although the configuration of the operands is irrelevant in DMOVE and
DMOVEM, none of the above instructions is available in the KAlO.
Therefore unless a program is actually doing floating point arithmetic in the
hardware double precision format, it is recommended that the double
moves not be used in KIlO programs so they will be compatible with
the KA 10. Simply to move a two-word operand unaltered requires two
one-word moves. To negate a two-word operand that is actually in the
hardware format requires a somewhat longer substitution; eg this sequence
is equivalent to DMOVN AC,E.

SETCM
MOVN
TLZ
SKIPN
ADDI

AC,E
AC+ 1 ,E+ 1
AC+ 1 ,400000
AC+l
AC,l

;Take ones complement of high word
;Take twos complement of low word

;Clear bit 0
; If low part is zero, change high word
;to twos complement

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive

252 y

o 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is greater than or equal to zero (ie if bit 0 is 0, and hence a negative count
in the left half has reached zero or a positive count has not yet reached
217), take the next instruction from location E and continue sequential
operation from there.

Note: The KAlO increments the two halves of AC by adding 1 OOOOOls
to the entire register. In the KI I 0 the two halves are handled independently.

AOBJN Add One to Both Halves of AC and Jump if Negative

253 y

o 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is less than zero (ie if bit 0 is 1, and hence a negative count in the left half
has not yet reached zero or a positive count has reached 217), take the next
instruction from location E and continue sequential operation from there.

2-45

sent the processor places the
negative of AC (the comple­
ment, if AC+ 1 originally con­
tains zero) into AC+ 1, and
the negative of that into
AC+2, but this result is not
guaranteed.

AUGUST 1974

2-46

In the KIt 0 an arithmetic
instruction execu ted as an
interrupt instruction can set
no flags.

CENTRAL PROCESSOR §2.7

Note: The KAIO increments the two halves of AC by adding 1 0000018
to the entire register. In the KIlO the two halves are handled independently.

In the KA 10, incrementing both halves of AC together is effected by
adding 1 000001 8 • A count of - 2 in AC left is therefore increased to zero if
218 - 1 is incremented in AC right.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI
MOVEI
ADDM
AOBJN

XR,-N
AC,3
AC,TAB(XR)
XR,.-l

;Put -N in XR left (clear XR right)
;Put 3 in AC
;Add 3 to entry
; Update XR and go back unless all
;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode Suffix

Never
Less L
Equal E
Less or Equal LE
Always A
Greater or Equal GE
Not Equal N
Greater G

Instructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip - the action is always taken regard­
less of how the two quantities compare.

The last four of these instructions perform arithmetic operations, which
are checked for overflow. In the KIlO any condition that sets Overflow
also sets the Trap 1 flag.

.,

~

'"'

§2.7 ARITHMETIC TESTING

CAl Compare AC Immediate and Skip if Condition Satisfied

30 I M I A III X y
o 56 89 121314 1718 35

Compare AC with E (ie with the word 0, E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAl Compare AC Immediate but Do Not Skip 300
CAlL Compare AC Immediate and Skip if AC Less than E 301
CAIE Compare AC Immediate and Skip if Equal 302
CAlLE Compare AC Immediate and Skip if AC Less than 303

or Equal to E

CAIA Compare AC Immediate but Always Skip 304
CAIGE Compare AC Immediate and Skip if AC Greater than 305

or Equal to E

CAIN Compare AC Immediate and Skip if Not Equal 306
CAIG Compare AC Immediate and Skip if AC Greater than E 307

CAM Compare AC with Memory and Skip if Condition Satisfied

3 1 I M I A III X y

o 56 89 12 13 14 1718 35

Compare AC with the contents of location E and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310
CAML Compare AC with Memory and Skip if AC Less 311
CAME Compare AC with Memory and Skip if Equal 312
CAMLE Compare AC with Memory and Skip if AC Less 313

or Equal
CAMA Compare AC with Memory but Always Skip 314
CAMGE Compare AC with Memory and Skip if AC Greater 315

or Equal
CAMN Compare AC with Memory and Skip if Not Equal 316
CAMG Compare AC with Memory and Skip if AC Greater 317

JUMP Jump if AC Condition Satisfied

32 I M I A III X y
o S6 89 121314 1718 35

Compare AC (fixed or floating) with zero, and if the condition specified by

2-47

CAl is a no-op in which I, X
and Yare reserved for future
use and should be zero (at
present E is ignored).

CAM is a no-op that refer­
ences memory.

AUGUST 1974

2-48

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry). In it, I, X
and Yare reserved for future
use and should be zero (at
present E is ignored).

If A is zero, SKIP is a no-op;
otherwise it is equivalent to
MOVE. (Instruction code 330
has mnemonic SKIP for sym­
metry.)

SKIP A is a convenient way to
load an accumulator and skip
over an instruction upon en­
tering a loop.

AUGUST 1974

CENTRAL PROCESSOR §2.7

M is satisfied, take the next instruction from location E and continue
sequential operation from there.

JUMP Do Not Jump 320
JUMPL Jump if AC Less than Zero 321
JUMPE Jump if AC Equal to Zero 322
JUMPLE Jump if AC Less than or Equal to Zero 323
JUMPA Jump Always 324
JUMPGE Jump if AC Greater than or Equal to Zero 325
JUMPN Jump if AC Not Equal to Zero 326
JUMPG Jump if AC Greater than Zero 327

SKIP Skip if Memory Condition Satisfied

33 1M I A III X y
o S6 89 12 13 14 1718 3S

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip 330
S,KIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337

AOJ Add One to AC and Jump if Condition Satisfied

34 1M I A III X y

o S6 89 12 13 14 1718 3S

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained 235 - 1, set the Overflow and Carry 1 flags; if -1,
set Carry 0 and Carry 1.

AOJ

AOJL
AOJE
AOJLE

Add One to AC but Do Not Jump
Add One to AC and Jump if Less than Zero
Add One to AC and Jump if Equal to Zero
Add One to AC and Jump if Less than or Equal to Zero

340
341
342
343

a

t'

§2.7 ARITHMETIC TESTING

AOJA Add One to AC and Jump Always 344
AOJGE Add One to AC and Jump if Greater than or Equal 345

to Zero

AOJN Add One to AC and Jump if Not Equal to Zero 346
AOJG Add One to AC and Jump if Greater than Zero 347

ADS Add One to Memory and Skip if Condition Satisfied

35 1M I y

o 56 89 121314 1718 35

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 - I, set the Overflow and Carry I flags; if -I, set Carry 0 and Carry 1.
If A is nonzero also place the result in AC.

AOS Add One to Memory but Do Not Skip 350
AOSl Add One to Memory and Skip if Less than Zero 351
AOSE Add One to Memory and Skip if Equal to Zero 352
AOSlE Add One to Memory and Skip if Less than or Equal 353

to Zero

AOSA Add One to Memory and Skip Always 354
AOSGE Add One to Memory and Skip if Greater than or 355

Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356
AOSG Add One to Memory and Skip if Greater than Zero 357

SOJ Subtract One from AC and Jump if Condition Satisfied

36 I M I A III X y
o 56 89 12 13 14 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained -235 , set the Overflow and Carry 0 flags; if any other
nonzero number, set Carry 0 and Carry I.

SOJ
SOJl
SOJE
SOJlE

Subtract One from AC but Do Not Jump

Subtract One from AC and Jump if Less than Zero

Subtract One from AC and Jump if Equal to Zero

Subtract One from AC and Jump if Less than or
Equal to Zero

360
361
362
363

2-49

2-50

This procedure is invalid in
the KAlO if the programmer

CENTRAL PROCESSOR §2.7

SOJA Subtract One from AC and Jump Always 364
SOJGE Subtract One from AC and Jump if Greater than or 365

Equal to Zero

SOJN Subtract One from AC and Jump if Not Equal to Zero 366
SOJG Subtract One from AC and Jump if Greater than Zero 367

SOS Subtract One from Memory and Skip if Condition Satisfied

37 y

o 56 89 121314 1718 35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
-235 , set the Overflow and Carry 0 flags; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

SOS Subtract One from Memory but Do Not Skip 370
SOSL Subtract One from Memory and Skip if Less than Zero 371
SaSE Subtract One from Memory and Skip if Equal to Zero 372
SOSLE Subtract One from Memory and Skip if Less than or 373

Equal to Zero

SOSA Subtract One from Memory and Skip Always 374
SOSGE Subtract One from Memory and Skip if Greater 375

than or Equal to Zero

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero

SOSG Subtract One from Memory and Skip if Greater 377
than Zero

Some of these instructions are useful for determining the relative values of
fixed and floating point numbers; others are convenient for controlling
iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to -1. Either
processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location.

')

..

. ;

§2.8

AOSE
JRST

LOCK
.-1

SETOM LOCK

LOGICAL TESTING AND MODIFICATION

;Skip to interlocked code only if
;LOCK is zero after addition
;Interlocked code starts here

;Unlock

Since it takes several days to count to 236, it is alright to keep testing the
lock .

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to 1 s in the mask and they are
referred to as the "masked bits". The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked
by the word 0, E)

Left L AC left is masked by E (AC is masked by
the word E, 0)

Direct D AC is masked by the contents of loca-
tion E

Swapped S AC is masked by the contents of loca-
tion E with left and right halves inter-
changed

The third letter determines the way in which those bits selected by the mask
are modified.

Modification Letter Effect on AC

No N None

Zeros Z Places Os in all masked bit positions

Complement C Complements all masked bits

Ones 0 Places 1 s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec­
ifies the condition the masked bits must satisfy to produce a skip.

2-51

is making use of the drum
split feature (which is not
used by any DEC equipment).

2-52

These mode names are con­
sistent with those for arith­
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is O.

TRN is a no-op in which I, X
and Yare reserved for future
use and should be zero (at
present E is ignored).

AUGUST 1974

Mode

Never

Equal

Always

Not Equal

CENTRAL PROCESSOR

Suffix

E

A

N

Effect

Never skip

Skip if all masked bits equal 0

Always skip

§2.8

Skip if not all masked bits equal 0
(at least one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi­
tional skip - the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied

60 y
o S 6 7 8 9 12 13 14 17 18 3S

If the bits in AC right corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600
TRNE Test Right, No Modification, and Skip if All 602

Masked Bits Equal 0
TRNA Test Right, No Modification, but Always Skip 604
TRNN Test Right, No Modification, and Skip if Not 606

All Masked Bits Equal 0

TRZ Test Right, Zeros, and Skip if Condition Satisfied

62 y
o S 6 7 89 12 13 14 1718 3S

If the bits in AC right corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620
TRZE Test Right, Zeros, and Skip if All Masked Bits 622

Equaled 0
TRZA
TRZN

Test Right, Zeros, but Always Skip
Test Right, Zeros, and Skip if Not All Masked
Bits Equaled 0

624
626

1

§2.8 LOGICAL TESTING AND MODIFICATION

TRC Test Right, Complement, and Skip if Condition Satisfied

64 y

o 56 7 89 121314 1718 35

If the bits in AC right corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640
TRCE Test Right, Complement, and Skip if All Masked 642

Bits Equaled 0
TRCA Test Right, Complement, but Always Skip 644
TRCN Test Right, Complement, and Skip if Not All 646

Masked Bits Equaled 0

TRO Test Right, Ones, and Skip if Condition Satisfied

66 y

o 56 7 89 121314 1718 35

If the bits in AC right corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660
TROE Test Right, Ones, and Skip if All Masked Bits 662

Equaled 0
TROA Test Right, Ones, but Always Skip 664
TRON Test Right, Ones, and Skip if Not All Masked 666

Bits Equaled 0

TLN Test Left, No Modification, and Skip if Condition Satisfied

60 y

o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip 601
TLNE Test Left, No Modification, and Skip if All 603

Masked Bits Equal 0
TLNA Test Left, No Modification, but Always Skip 605
TLNN Test Left, No Modification, and Skip if Not 607

All Masked Bits Equal 0

2-53

TLN is a no-op in which I, X
and Yare reserved for future
use and should be zero (at
present E is ignored).

AUGUST 1974

2-54 CENTRAL PROCESSOR §2.8

TLZ Test Left, Zeros, and Skip if Condition Satisfied

y

o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621
TLZE Test Left, Zeros, and Skip if All Masked Bits 623

Equaled 0
TLZA Test Left, Zeros, but Always Skip 625
TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled 0

TLC Test Left, Complement, and Skip if Condition Satisfied

64 y

o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641
TLCE Test Left, Complement, and Skip if All Masked 643

Bits Equaled 0
TLCA Test Left, Complement, but Always Skip 645
TLCN Test Left, Complement, and Skip if Not All 647

Masked Bits Equaled 0

TLO Test Left, Ones, and Skip if Condition Satisfied

66 y
o 56 7 89 121314 1718 35

If the bits in AC left corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661
TLOE Test Left, Ones, and Skip if All Masked Bits 663

Equaled 0
TLOA Test Left, Ones, but Always Skip 665
TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled 0

:',

§2.8 LOGICAL TESTING AND MODIFICATION

TON Test Direct, No Modification, and Skip if Condition Satisfied

61 y

o 56 7 8 9 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un­
affected.

TON Test Direct, No Modification, but Do Not Skip 610
TONE Test Direct, No Modification, and Skip if All 612

Masked Bits Equal 0
TONA Test Direct, No Modification, but Always Skip 614
TONN Test Direct, No Modification, and Skip if Not 616

All Masked Bits Equal 0

TDZ Test Direct, Zeros, and Skip if Condition Satisfied

63 y

o 56 7 89 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to Os; the rest of AC is unaffected.

TOZ Test Direct, Zeros, but Do Not Skip 630
TOZE Test Direct, Zeros, and Skip if All Masked Bits 632

Equaled 0
TOZA Test Direct, Zeros, but Always Skip 634
TOZN Test Direct, Zeros, and Skip if Not All Masked 636

Bits Equaled 0

TDC Test Direct, Complement, and Skip if Condition Satisfied

I 65 y
o 56 7 8 9 121314 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

TOC
TDCE

TOCA
TOCN

Test Direct, Complement, but Do Not Skip
Test Direct, Complement, and Skip if All Masked
Bits Equaled 0
Test Direct, Complement, but Always Skip
Test Direct, Complement, and Skip if Not All
Masked Bits Equaled 0

650
652

654
656

2-55

TDN is a no-op that refer-
ences memory.

2-56

TSN is a no-op that refer-
ences memory.

CENTRAL PROCESSOR §2.8

TOO Test Direct, Ones, and Skip if Condition Satisfied

67 y

o 56 7 89 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1 s; the rest of AC is unaffected.

TOO Test Direct, Ones, but Do Not Skip 670
TOOE Test Direct, Ones, and Skip if All Masked Bits 672

Equaled 0
TOOA Test Direct, Ones, but Always Skip 674
TOON Test Direct, Ones, and Skip if Not All Masked 676

Bits Equaled 0

TSN Test Swapped, No Modification, and Skip if Condition Satisfied

61 y
o 56 7 89 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611
TSNE Test Swapped, No Modification, and Skip if All 613

Masked Bits Equal 0
TSNA Test Swapped, No Modification, but Always Skip 615
TSNN Test Swapped, No Modification, and Skip if Not 617

All Masked Bits Equal 0

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied

63 y

o 56 7 89 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

TSZ Test Swapped, Zeros, but Do Not Skip 631
TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633

Equaled 0
TSZA Test Swapped, Zeros, but Always Skip 635
TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled 0

.,

§2.8 LOGICAL TESTING AND MODIFICATION

TSC Test Swapped, Complement, and Skip if Condition Satisfied

65 y

o S 6 7 89 12 13 14 1718 3S

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651
TSCE Test Swapped, Complement, and Skip if All 653

Masked Bits Equaled 0

TSCA Test Swapped, Complement, but Always Skip 655
TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

TSO Test Swapped, Ones, and Skip if Condition Satisfied

67 y

o S 6 7 89 12 13 14 1718 3S

If the bits in AC corresponding to Is in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Is; the rest of
AC is unaffected.

TSO Test Swapped, Ones, but Do Not Skip 671
TSOE Test Swapped, Ones, and Skip if All Masked Bits 673

Equaled 0
TSOA Test Swapped, Ones, but Always Skip 675
TSON Test Swapped, Ones, and Skip if Not All Masked 677

Bits Equaled 0

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro­
cedure, since locations 1-17 are addressable as index registers, is to use AC 0
as a register of flags (often addressed symbolically as F). _

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by Is right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M TLO F,M

and tested and cleared by one of these:

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

2-57

AUGUST 1974

2-58

KAlO instruction codes 247
and 257 are reserved for in­
structions installed specially
for a particular system. They
execute as no-ops when run
on a KAlO that contains no
special hardware for them,
but for program compatibility
it is advised that they not be
used regularly as no-ops.

OVERFLOW

I--I

CARRY
0

o

CARRY
1

2

FLOATING
OVERFLOW

!
3

Note that nothing is stored in
bits 13-17, so when the PC
word is addressed indirectly it
can produce neither indexing
nor further indirect address­
ing.

AUGUST 1974

FIRST
PART
DONE

4

CENTRAL PROCESSOR §2.9

Suppose we wish to skip if both bits 34 and 35 are I in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where X
is a binary number containing a single I in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu­
lator F are both on:

TRC
TRCE

F,X+Y
F,X+Y

;Complement flags X and Y
;Test both and restore original states
;Do this if not both on
;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAl, SETMM, CAl, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these, SETA, SETAl, CAl, JUMP, TRN and TLN do
not use the calculated effective address to reference memory.

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§ 2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there­
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator.

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The bits saved in the left half of

USER ADDRESS
USER IN-OUT PUBLIC FAILURE TRAP 2 TRAP 1

INHIBIT

5 6 7 B 9 10

FLOATING
UNDERFLOW

I-
NO

DIVIDE

11 12

0

1 3

0 0 0 0

14 15 16 17

this PC word in KilO user mode are as shown here. In the KAlO, bits 7-10
are not used. In KIlO executive mode, bit 6 receives the same flag although
it has a different meaning, and bit 0 receives a different flag altogether [see
below]. In either processor all unused bit positions are cleared.

The following lists the left PC-word bit positions that receive information
and explains the meaning of the flags at the time they are saved. Certain

§2.9 PROGRAM CONTROL

instructions can set up these flags to restore them to their original states
following an interruption or to control specific situations. The explanations
assume the flags reflect normal circumstances - not arbitrary rigging. In the
following an X in a mnemonic indicates any letter (or none) that may appear
in the given position to specify the mode, eg ADDX comprises ADD,
ADDI, ADDM, ADDB.

Bit

o
Meaning of a 1 in the Bit

Overflow - any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a lout of bit I in a positive
number or a 0 out in a negative number.

An MULX has multiplied -235 by itself (product 270).

An IMULX has multiplied two numbers with product ~ 235 or
< _2 35 •

An FIX or FIXR has fetched an operand with exponent> 35.

Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

Carry 0 - if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two negative numbers with sum < _235.

An SUBX has subtracted a positive number from a negative num­
ber with difference < _235.

An SOJX or SOSX has decremented _235.

But if set with Carry 1, indicates that one of these non overflow
events has occurred:

In an ADDX both summands were negative, or their signs differed
and their magnitudes were equal or the positive one was the
greater in magnitude.

In an SUBX the signs of the operands were the same and AC was
the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJX or AOSX has incremented -1.

An SOJX or SOSX has decremented a nonzero number other than
_235.

An MOVNX has negated zero.

2 Carry 1 - if set without Carry 0 (bit 1) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two positive numbers with sum ~ 235.

An SUBX has subtracted a negative number from a positive num­
ber with difference ~ 235.

2-59

In user mode, bit 0 reflects
the state of Overflow. But
when the flags are saved in
KIlO executive mode, bit 0
represents the Disable Bypass
flag, which the Monitor uses
to control certain aspects of
the execution of an instruc­
tion by an executive XCT
[see below and §2.15]. Al­
though these are two separate
flags that are read in different
circumstances, when a PC
word is used to restore or set
up the flags, bit 0 conditions
both of them.

Remember [§2.5] , overflow
is determined directly from
the carries, not from the
flags. The carry flags give
meaningful information only
if no more than one instruc­
tion that can set them occurs
between clearing and reading
them.

AUGUST 1974

2-60

Floating point instructions
that cannot overflow are
FL TR, DMOVN, DMOVNM
and DFN.

Although this flag is set upon
completion of the first part of
every interruptable two-part
instruction, it is seldom rele­
vant to the programmer as it
is always cleared by the com­
pletion of the second part.
The flag is seen only in an
interruption, and its effect on
the repeated first part is au to­
matic provided only that it is
properly restored at the
return.

In the KAI0, User In-out is
applicable only to user mode
[§2.16]. In the KIlO this flag
has the stated effect when the
processor is in user mode, but
is used in executive mode to
control certain aspects of the
execution of an instruction
by an executive XCT [see
below and § 2.15] .

AUGUST 1974

CENTRAL PROCESSOR

An AOJX or AOSX has incremented 235 - 1.

An MOVNX or MOVMX has negated -235 .

§2.9

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

3 Floating Overflow - any of the following has set Overflow:

4

In a floating point instruction, the exponent of the result was> 127.
DMOVNM or DFN, the exponent of the result was> 127.

Floating Underflow (bit 11) has been set.

No Divide (bit 12) has been set in an FDVX, FDVRX or DFDV.

First Part Done - the processor is responding to a priority interrupt
between the parts of a two-part instruction or to a page failure in the
second part. A 1 in this bit indicates that the first part has been
completed, and this fact should be taken into account when the
processor restarts the instruction at the beginning upon the return to
the interrupted program. Eg if an ILDB or IDPB is interrupted after
the processing of the pointer but before the processing of the byte,
the pointer now points not to the last byte, but rather to the byte
that should be handled at the return [§ 2.13]. Thus when the pro­
cessor restarts the instruction, it must retrieve the pointer but not
increment it.

Besides indicating a priority interrupt in the middle of a byte
instruction, the KIlO First Part Done indicates a page failure in the
processing of a byte, in the transfer of the second (low order) word
in a DMOVEM or DMOVNM, or in a noninterrupt data 10 instruc­
tion that results from a block 10 instruction (following the processing
of the pointer [§ 2.12]).

5 User - the processor is in user mode [§ § 2.15, 2.16] .

6

7

8

User In-out - even with the processor in user mode, there are no
instruction restrictions (but memory restrictions still apply).

Public (KII 0 only) - the last instruction performed was fetched
from a public area of memory, ie the processor is in user mode public
or executive mode supervisor.

Address Failure Inhibit (KI I 0 only) - an address failure cannot occur
during the next instruction [§ 2.15] .

9 Trap 2 (KII 0 only) - if bit lOis not also set, pushdown overflow has
occurred. Unless the executive paging system is disabled, the setting
of this flag immediately causes a trap as explained at the end of this
section. At present, bits 9 and 10 cannot be set together by any
hardware condition.

10 Trap I (KII 0 only) - if bit 9 is not also set, arithmetic overflow has
occurred. Unless the executive paging system is disabled, the setting
of this flag immediately causes a trap as explained at the end of this
section. At present, bits 9 and 10 cannot be set together by any
hardware condition.

•

..

§2.9 PROGRAM CONTROL

11 Floating Underflow - in a floating point instruction, the exponent
of the result was < -128 and Overflow and Floating Overflow have
been set.

12 No Divide - any of the following has set Overflow:

In a DIV X the dividend was greater than or equal to the divisor.

In an IDIVX the divisor was zero, or the dividend was -235 and
the divisor was ± 1.

In an FDVX, FDVRX or DFDV the divisor was zero, or the divi­
dend fraction was greater than or equal to twice the divisor fraction
in magnitude; in either case Floating Overflow has been set.

XCT Execute

y
o 89 121314 1718 35

In user mode or in the KA 10, execute the contents of location E as an in­
struction. Any instruction may be executed, including another XCT. If an
XCT executes a skip instruction, the skip is relative to the location of the
XCT (the first XCT if there are several in a chain). If an XCT executes a
jump, program flow is altered as specified by the jump (no matter how many
XCTs precede a jump instruction, when PC is saved it contains an address
one greater than the location of the first XCT in the chain).

In KIlO executive mode this instruction performs as stated only when A is
zero. Nonzero A results in a so called "executive XCT", whose ramifications
are far more widespread than indicated here [for details refer to §2.15].

JFFO Jump if Find First One

243 y

o 89 121314 1718 35

If AC contains zero, clear AC A + 1 and go on to the next instruction in
sequence.

If AC is not zero, count the number of leading Os in it (Os to the left of
the leftmost 1), and place the count in AC A + 1. Take the next instruction
from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC A + 1 are lost.

JFCL Jump on Flag and Clear

255 y

o 89 121314 1718 35

If any flag specified by F is set, clear it and take the next instruction from

2-61

If normalized operands are
used, only a zero divisor can
cause floating division to fail.

In user mode and in the
KAlO, theA portion of this in­
struction is ignored. It should
then be zero for compatibility
with KilO executive mode
and possible future use even
in user mode.

CAUTION

In concealed or kernel mode,
an XCT that executes an in­
struction in a public page
places the processor in public
or supervisor mode. Hence
unless the execu ted instruc­
tion changes PC to a public
area, the instruction following
the XCT must be a valid entry
point back into the concealed
area or a page failure, in par­
ticular a proprietary violation,
will result. A valid entry point
is one containing a particular
form of the JRST instruction
described below.

Note that when AC is nega­
tive, the second accumulator
is cleared, just as it would be
if AC were zero.

To left-normalize a positive ...
integer in AC:

JFFO
LSH

AC,.+l
AC,-l(AC+l)

NOVEMBER 1974

2-62

This instruction can be used
simply to clear the selected
flags by having the jump ad­
dress point to the next con­
secutive location, as in

JFCL 17,.+1

which clears all four flags
without disrupting the nor­
mal program sequence. A
JFCL that selects no flag is
the fastest no-op as it neither
fetches nor stores an operand,
and bits 18-35 of the instruc­
tion word can be used to
store information.

The A portion of this instruc­
tion is reserved for future use
and should be zero (at present
it is ignored).

AUGUST 1974

CENTRAL PROCESSOR §2.9

location E, continuing sequential operation from there. Bits 9-12 are pro­
grammed as follows.

Bit Flag Selected by a 1

9 Overflow
10 Carry 0
11 Carry 1
12 Floating Overflow

To select one or a combination of these flags (which are among those des­
cribed above) the programmer can specify the equivalent of an AC address
that places 1 s in the appropriate bits, but MACRO recognizes mnemonics for
some of the l3-bit instruction codes (bits 0 -12).

JFCL JFCL 0, No-op 25500
JOV JFCL 10, Jump on Overflow 25540
JCRYO JFCL 4, Jump on Carry 0 25520
JCRYI JFCL 2, Jump on Carry 1 25510
JCRY JFCL 6, Jump on Carry 0 or 1 25530
JFOV JFCL 1, Jump on Floating Overflow 25504

JSR Jump to Subroutine

264 y
o 89 121314 1718 35

Place the current contents of the flags (as described above) in the left half of
location E and the contents of PC in the right half (at this time PC contains
an address one greater than the location of the JSR instruction). Take the
next instruction from location E + 1 and continue sequential operation from
there. The flags are unaffected except First Part Done, Address Failure
Inhibit, and the trap flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA 1 0 MUUO, bit 5 of the PC word stored
is 1 and the processor leaves user mode, clearing Public. (In the KIlO an
interrupt that is not dismissed automatically returns control to kernel mode.)

JSP Jump and Save PC

265 y
o 89 121314 1718 35

Place the current contents of the flags (as described above) in AC left and

,'J

"

§2.9 PROGRAM CONTROL

the contents of PC in AC right (at this time PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location E an,d continue sequential operation from there. The flags
are unaffected except First Part Done, Address Failure Inhibit, and the trap
flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KAIO MUUO, bit 5 of the PC word stored
is I and the processor leaves user mode, clearing Public. (In the KI lOan
interrupt that is not dismissed automatically returns control to kernel mode.)

JRST Jump and Restore

254 y

o 89 121314 1718 35

Perform the functions specified by F, then take the next instruction from
location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit Function Produced by a 1

9 Restore the channel on which the highest priority interrupt is cur­
rently being held [§ 2.13] .

10

II

This function cannot be performed at all in a KIlO user or super- ...
visor program and cannot be performed in a KAlO user program
unless User In-out is set. Instead of restoring the channel, it acts
just like an MUUO [§ 2.1 0].

Halt the processor. When it stops, the AR lights on the KIl 0 and the
MA lights on the KAIO display an address one greater than that of
the location containing the instruction that caused the halt, and PC
displays the jump address (the location from which the next instruc­
tion will be taken if the operator causes the processor to resume
operation without changing PC).

This function cannot be performed at all in a KI I 0 user or super- ...
visor program and cannot be performed in a KAIO user program
unless User In-out is set. Instead of halting the processor, it acts
just like an MUUO [§2.10].

Restore the flags listed above from the left half of the word ih the
last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or
indirect addressing.

Restoration of all but the user and Public flags is directly according
to the contents of the corresponding bits as given above: a flag is set
by a I in the bit, cleared by a O. A I in bit 5 sets User but a 0 has no
effect, so the Monitor can restart a user program by restoring flags
but the user cannot leave user mode by this method. A 0 in bit 6
clears User In-out, but a I sets it only if the JRST is being performed

2-63

AR or MA actually displays
the address of the location
that would have been exe­
cuted next had the JRST
been replaced by a no-op. So
except for a JRST in a priority
interrupt, the lights point to
the location one beyond that
containing the instruction
that caused the halt. This
instruction is ordinarily the
JRST or perhaps an XCT, but
could even be a UUO.

By manipulating the contents
of the left half word used to
restore the flags, the program­
mer can set them up in any
desired way except mal a
user program cannot clear
User or set User In-out, and

AUGUST 1974

2-64

no public program can clear
Public for itself. As an ex­
ample, setting First Part Done
prevents incrementing in the
next ILDB, IDPB or noninter­
rupt KIl 0 block 10 instruc­
tion provided there is no inter­
vening JSR, JSP or PUSHJ.
Note that if overflow traps are
enabled, setting a trap flag
immediately causes one.

JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program.

AUGUST 1974

12

CENTRAL PROCESSOR §2.9

by the Monitor, ie if User is clear. A 1 in bit 7 sets Public, but a 0
clears it only if the JRST is being performed in executive mode with
a 1 in bit 5 (ie User is being set). These conditions imply that the
processor is entering user mode: hence the user cannot enter con­
cealed mode by clearing Public; and although the supervisor can
place the processor in user mode concealed, it cannot use this
procedure to enter kernel mode.

KA10. Enter User mode. The user program starts at relocated
location E.

KIl O. The instruction is simply a jump except when fetched from
a non public area, in which case it clears Public. In other words a
location containing a JRST 1, is a valid entry to a nonpublic area
and the instruction places the processor in concealed or kernel mode.

To produce one or a combination of these functions the programmer can
specify the equivalent of an AC address that places 1 s in the appropriate bits,
but MACRO recognizes mnemonics for the most important l3-bit instruction
codes (bits 0-12).

JRST

HALT

JRSTF

PORTAL

JEN

JRST

JRST

JRST

JRST

JRST

JRST

0,
10,

4,
2,

1,

12,

Jump 25400
Jump and Restore Interrupt 25440
Channel

Halt 25420
Jump and Restore Flags 25410
Allow Nonpublic Entry (KIlO) 25404
Jump to User Program (KAlO)

Jump and Enable 25450

In a JRSTF or JEN the flags are restored from bits 0-12 of the final word
retrieved in the effective address calculation; hence any JRST with a 1 in bit
11 must use indirect addressing or indexing, which takes extra time. If the
PC word was stored in AC (as in a JSP), a common procedure is to use AC to
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec­
tive (jump) address. If the PC word was stored in core (as in a JSR), one
must address it indirectly (remember, bits 13-17 of the PC word are clear,
so again its right half is the effective address). A JRSTF (AC) is con­
siderably faster than a JRSTF @PCWORD.

CAUTION

Giving a JRSTF or JEN without indexing or
indirect ad~ressing restores the flags from the
instruction code itself.

While the KAlO is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5 of the PC word stored is 1 and
the processor leaves user mode.

..

§2.9 PROGRAM CONTROL

JFCL is the only jump that can test any of the flags directly. In fact it is
the only basic program control instruction that can do so - several of the
flags can be tested as processor conditions by in-out instructions, but these
are ordinarily illegal in user programs anyway. But JFCL can test only four
of the flags, and it saves no information for a subsequent return from a sub­
routine. Hence it serves as a branch point for entry into either one of two
main paths, which mayor may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine.

JSR and JSP are regularly used to call subroutines. They are uncondi­
tional, but the execution of such an instruction can be the result of a

c: decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

JOV
JRST
JSR

.+2

.+2
OVRFLO

;Faster than skipping
;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
read the flags into a test accumulator T and then use a test instruction.

JSP
TLNE
JSR

T,.+l
T,40
DIVERR

;Store flags but continue in sequence
;40 left selects bit 12
;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return­
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a
JRST N(AC).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain the
following:

JSP T,PRINT ;Put PC word in accumulator T
;Text inserted here by ASCIZ pseudo­
;instruction, which automatically
;places a zero (null) character at the
;end
;Next instruction here

2-65

The fastest skip is CAIA in
the KAlO, TRNAin the KIlO.

2-66 CENTRAL PROCESSOR §2.9

The subroutine can use T as a byte pointer which already addresses the first
word of data. For the print routine, characters are loaded into another
accumulator CH.

PRINT: HRLI
ILDB
JUMPE

JRST

T,440700
CH,T
CH,I(T)

PRINT+I

JSA Jump and Save AC

266

;Initialize left half of pointer
;Increment pointer and load byte
; Upon reaching zero character return
;to one beyond last data word
;Print routine

;Get next character

y

o 89 121314 1718 3S

Place AC in location E, the effective address E in AC left, and the contents
of PC in AC right (at this time PC contains an address one greater than the
location of the JSA instruction). Take the next instruction from location
E + I and continue sequential operation from there. The original contents
of E are lost.

While the KAIO is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5 ,of the PC word stored is I and
the processor leaves user mode.

JRA Jump and Restore AC

267 y

o 89 121314 1718 3S

Place the contents of the location addressed by AC left into AC. Take the
next instruction from location E and continue sequential operation from
there.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multiple­
entry subroutines. In a·subroutine called by a JSR, the returning JRST must
refer to the (single) entry point. Since a JRA can retrieve the original PC by
addressing AC as an index register, it is independent of any entry point

§2.9 PROGRAM CONTROL

without tying up an accumulator to the extent a JSP would.
The accumulator contents saved by a JSA are restored by a JRA paired

with it despite intervening JSA-JRA pairs. Hence these instructions are
especially useful for nesting subroutines, as shown by this example.

SI:

S2:

S3:

JSA

o

JSA

JRA

o

JSA

JRA

o

JRA

17,SI

17,S2

17,(17)

17,S3

17,(17)

17,(17)

;Main program

. ;Call to first subroutine (A)

;First subroutine starts here

;Call to second subroutine (B)

;Return to A + I in main program

;Second subroutine starts here

;Call to third subroutine (C)

;Return to B + I in first subroutine

;Third subroutine starts here

;Return to C + I in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the
left and right of AC 17, saves the previous contents of AC 17 in E (the first
subroutine location), and jumps to E + I. To return to the next higher level,
a JRA restores the previous contents of AC 17 from the location addressed
by AC 17 left (the first subroutine location) and jumps to the location
addressed by AC 17 right (the location following the JSA in the higher sub­
routine). If N lines of data for the next subroutine follow a JSA, the return
to the location following the data is made by giving a JRA 17, N(17).

PUSHJ Push Down and Jump

260 y

o 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the addition
causes the count in AC left to reach zero, set the Pushdown Overflow flag
in the KA I 0, set the Trap 2 flag in the KII O. Then place the current
contents of the flags (as described above) in the left half of the location now
addressed by AC right and the contents of PC in the right half of that
location (at this time PC contains an address one greater than the location of
the PUSHJ instruction). Take the next instruction from location E and con­
tinue sequential operation from there.

2-67

In the KIlO a PUSHJ executed
as an interrupt instruction
cannot set Trap 2.

2-68

/, X and Yare reserved for
future use and should be zero
(at present E is ignored). In
the KIlO a POP] executed as
an interrupt instruction can­
not set Trap 2.

CAUTION

The jump is completed before
the processor responds to
overflow, whether by trap or
interrupt. Hence it is impos­
sible to determine the location
of the POP] that caused the
overflow.

AUGUST 1974

CENTRAL PROCESSOR §2.9

The flags are unaffected except First Part Done, Address Failure Inhibit,
and the trap flags, which are cleared. However, pushdown overflow overrides
the Trap 2 clear, so if the list overflows, Trap 2 sets and the KIl a traps
instead of jumping. The original contents of the location added to the list
are lost.

Note: The KAla increments the two halves of AC by adding 1 0000018
to the entire register. In the KIl a the two halves are handled independently.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KAlO MUUO, bit 5 of the PC word stored is 1
and the processor leaves user mode, clearing Public. (In the KIlO an
interrupt that is not dismissed automatically returns control to kernel mode.)

POPJ Pop Up and Jump

263 y

o 89 121314 1718 3S

Subtract one from each half of AC and place the result back in AC. If the
subtraction causes the count in AC left to reach - 1, set the Pushdown Over­
flow flag in the KA 10, set the Trap 2 flag in the KIl O. Take the next in­
struction from the location addressed by the right half of the location that
was addressed by AC right prior to the decrementing, and continue
sequential operation from there.

Note: The KAlO decrements the two halves of AC by subtracting
1 00000 18 from the entire register. In the KIlO the two halves are handled
independentlY.

The address of the top item in the pushdown list is kept in the right half
of the pointer in AC, and the program can keep a control count in the left
half. In the KA 1 0, incrementing and decrementing both halves of AC
together is effected by adding and subtracting 1 000001 8. Hence a count of
- 2 in AC left is increased to zero if 2 18 - 1 is incremented in AC right, and
conversely, 1 in AC left is decreased to -1 if zero is decremented in AC right.

Since the pushdown list is independent of the subroutine called, PUSHJ­
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by
level is inherent in the structure of a pushdown list [§ 2.2], so paired
PUSHJ-POPJ instructions are excellent for nesting subroutines: there can be
any number of subroutines at any level, each with more subroutines nested
within it. Recursive subroutines are also possible.

Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but
the usual procedure is to keep both data and jump addresses in a single list so
only one AC is required for the most complex pushdown operations. The
programmer must keep track of whether a given entry in the list is data or
a PC word; in other words, every item inserted by a PUSH should be
removed by a POP, and every PUSHJ should be matched by a POPJ. If flag

§2.10

restoration is desired, the returning

POPJ P,

can be replaced by

POP
JRSTF

P,AC
(AC)

UNIMPLEMENTED OPERATIONS

which requires another accumulator. If the flags are not important, data
ll1'.lV be stored in the left halves of the PC words in the stack, reducing the
l\;;quired pushdown depth.

By trapping or checking overflow and keeping a control count in AC left, the
programmer can set a limit to the size of the list by starting the count
negative, or he can prevent the program from extracting more items than
there are in the list by starting the count at zero, but he cannot do both at
once. If only jump addresses are kept in the list, the first procedure limits
the depth of nesting. A technique to catch extra POPJs is to put a PC word
addressing an error routine at the bottom of the list,

Overflow Trapping

In the performance of a program there are many events that cannot be fore­
seen and whose occurrence requires special action by the program. There are
instructions that test for the conditions produced by such events, but in say
a long string of computations, it would be both cumbersome and time con­
suming to test for overflow at every step. It is far better simply to allow an
event such as overflow to break right into the normal program sequence.

For situations of this nature, various internal conditions can act through
the priority interrupt system. However the processor also has a trapping
mechanism that allows conditions due directly to the program, and which
are often permitted to happen as a matter of course, to interrupt the
program sequence without recourse to the interrupt system. In some cases,
traps are used to handle the restrictions that play a role in program and
memory management [as explained in later sections], but here we are con­
cerned specifically with action by the processor in response to overflow.

Overflow produced by an interrupt instruction cannot be detected. In any
other circumstances, an instruction in which an arithmetic overflow condi­
tion occurs sets Overflow and Trap I, and an instruction in which a
pushdown overflow occurs sets Trap 2. At the completion of an instruction
in which either trap flag is set, rather than going on to the next instruction as
specified by PC, the processor instead executes an instruction taken from a
particular location in the process table for the program (user or executive).
The location as a function of the trap flags set is as follows.

Trap Flags Se t

Trap 1 only

Trap 2 only

Trap 1 and 2

Trap Type

Arithmetic overflow

Pushdown overflow
Not used by hardware

Trap Number

2
3

Location

421
422
423

2-69

NOTE

This feature is not available in
the KAI0. That processor
is limited to the use of
internal conditions that can
act through the priority inter­
rupt system [§ 2.14] .

Note that it is the overflow
condition that sets Trap 1 -
not the state of the Overflow
flag. Hence an overflow is
trapped even if Overflow is
already set.

Note also that the trap
flags have no effect at all
when executive paging is
disabled [§ 2.15] .

A trap can be produced arti­
ficially simply by setting up
the trap flags with a JRS'!'F or
MUUO. In this way the pro­
gram can also use trap number

2-70

3, which at present cannot
result from any hardware­
detected condition (it is re­
served for future use by DEC).

The location of the instruc­
tion that caused the overflow
can be determined from PC
unless the instruction jumped,
in which case its location can
be determined only for a
PUSHJ, from the stack entry.

An arithmetic instruction that
overflows on every iteration
produces an infinite loop if
used as a trap instruction
for arithmetic overflow. A
pushdown instruction in a
pushdown overflow trap can
overflow only once. (The
memory allocated to a push­
dow:J stack should have at
Jp"st one extra location to
handle this case - two extras
if the program and the trap
both use the same pointer.)

These are convenience mne­
monics that mean nothing to
the assembler. UUOs are also
sometimes called "program­
med operators".

CENTRAL PROCESSOR §2.10

A trap instruction is executed in the same address space as the instruction
that caused it. Overflow in a user instruction traps to a location in the user
process table, and any addresses used in the instruction in that location are
interpreted in the user address space. Thus a user program can handle its
own traps, eg by requesting the Monitor to place a PUSHJ to a user routine
in the trap location. An MUUO must be used if the Monitor is to handle
a user-caused trap.

The trap instruction (the final instruction in an XCT and/or LUUO string)
clears the trap flags, so the processor returns to the interrupted program
unless the trap instruction changes PC. Thus the trap instruction can be a
no-op (which ignores the trap), a skip, a jump, or anything else. However,
should the trap instruction itself set a trap flag (not necessarily the same
one), a second trap occurs.

An interrupt can occur between an instruction that overflows and the trap
instruction, but the latter will be performed correctly upon the return pro­
vided the interrupt is dismissed automatically or the interrupt routine
restores the flags properly. If a single instruction causes both overflow and a
page failure, the latter has preference; but the overflow trap will be taken
care of after the offending instruction has been restarted and completed
successfully. A trap instruction that causes a page failure does not clear the
trap flags; hence after the page failure is taken care of, the trap instruction
will correctly handle the trap when it is restarted.

2.10 UNIMPLEMENTED OPERATIONS

Codes not assigned as specific instructions act as unimplemented operations,
wherein the word given as an instruction is trapped and must be interpreted
by a routine included for this purpose by the programmer. Codes in the
range 001-077 are unimplemented user operations, or UUOs. Half of these
(001-037) are for the local use of the user or Monitor (LUUOs); the other
half (040-077) are set aside for user communication with the Monitor
(MUUOs) and are interpreted by it (although they may be used by the
Monitor as well). Codes 100 and above that are not used for instructions
are regarded as the "unassigned codes"; 000 is not regarded as a legal code
at all. Instructions that violate the instruction restrictions act in the same
manner as MUUOs.

Local Unimplemented User Operation

001-037 A III X y

o 89 121314 1718 3S

Store the instruction code, A and the effective address E in bits 0-8, 9-12
and 18-35 respectively of location 40; clear hits 13-17. Execute the
instruction contained in location 41. The original contents of location 40
are lost.

.,

§2.l0 UNIMPLEMENTED OPERATIONS

Every LUUO uses some pair of locations numbered 40 and 41, but which
such pair depends upon the circumstances. An LUUO in a user program uses
relocated locations 40 and 41 and is thus entirely a part of and under control
of the user program. An LUUO in KA 1 0 executive mode uses unrelocated
locations. In KIlO executive mode an LUUO uses locations 40 and 41 in
the executive process table.

The actions of MUUOs and unassigned codes depend to a considerable
degree on the processor. All use at least two consecutive locations, where
the first receives the information specified above for an LUUO (in the KIlO
a third nonconsecutive location is also used). The unassigned codes are
included so that the Monitor steps in when a user gives an incorrect code.
The code 000 acts in exactly the same way as an MUUO but is not a standard
communication code: it is included so that control returns to the Monitor
should a user program wipe itself out.

KIt O. MUUOs and unassigned codes in user or executive mode act in
exactly the same way. They store the information specified above for an
LUUO in location 424 of the user process table, save the flags and PC (the
current PC word) in location 425, set up the flags and PC according to a new
PC word taken from a third location, and restart the processor in normal
sequence at the location then addressed by PC. In the PC word saved in
location 425, bit 0 may represent either Overflow or Disable Bypass
depending upon the mode the processor is in when the MUUO is given. If
the MUUO is given directly by the program, the address in the right half of
the PC word saved is one greater than the location of the MUUO; otherwise
it depends upon the circumstances in which the MUUO is executed. The
new PC word can be taken from among the eight locations in the user
process table listed here depending upon the mode at the time the MUUO is
given, and whether or not it is executed as the result of a trap (page failure
or overflow).

Mode Execution Location

Kernel No trap 430
Kernel Trap 431
Supervisor No trap 432
Supervisor Trap 433
Concealed No trap 434
Concealed Trap 435
Public No trap 436
Public Trap 437

There are no restrictions on the manner in which the new PC word of an
MUUO can set up the flags. It can switch the processor from any mode to
any other. A 1 in bit 0 sets both Overflow and Disable Bypass; a 0 clears
both. Hence bit 0 should be adjusted to produce the desired state in the flag
that is relevant to the mode the processor is entering.

2-71

If a single memory serves as
memory number 0 for two
KA 1 0 processors, the second
(with the trap offset) uses
unrelocated 140-141 and 160-
161 respectively for each in­
stance in which 40-41 and
60-61 are given here. The
offset does not apply to user
LVVOs as it is assumed the
Monitor would relocate these
to different physical blocks.

The unassigned codes are
100- 107, 114- 1 1 7, 123 and
247.

Note that even in a dedicated
system, the program must still
define a user process table.

Note that unless executive
paging is disabled, setting a
trap flag immediately causes
a trap.

2-72

Note that in executive mode,
LUUOs and MUUOs act
identically.

Codes 247 and 257, although
not assigned as specific in­
structions, are nonetheless
not regarded as "unassigned"
codes. They execute as no­
ops unless implemented by
special hardware.

CENTRAL PROCESSOR § 2.11

KAlO. MUUOs and unassigned codes, regardless of mode, perform
exactly the operations given above for an LUUO with the exception that
MUUOs use unre10cated 40-41 and unassigned codes use unrelocated 60-61
040-141 and 160-161 for a second processor). The unassigned codes are
100-127. The codes 130-177, which are the floating point and byte
manipulation instructions, are equivalent to the unassigned codes if unimple­
mented, ie if the hardware for them is not included. In this case all codes
100-177 trap to unrelocated 60-61.

The important point is that an MUUO or unassigned code results in
executing an instruction in an unrelocated location, ie an instruction under
the control of the Monitor. This would most likely be a jump that leaves
user mode, saves the PC word and enters a routine to interpret the MUUO
configuration. In the instruction descriptions, any reference to events
resulting from execution by an MUUO should be taken to include the
unassigned and illegal codes as well.

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider some
simple programs that demonstrate the use of a variety of the instructions
described thus far.

Processor Iden tifica tion

The instruction repertoires of the KIl 0, the KA 10, and the 166 processor
used in the PDP-6 are very similar, and most programs require no changes to
run on any of them. Because of minor differences and the fact that some
instructions are not available on the earlier machines, a program that is to be
compatible with all three should have some way of distinguishing which
machine it is running on. This simple test suffices.

JFCL
JRST
JFCL
MOVNI
AOBJN
JUMPN
JRST

17,.+ 1
.+1
I,PDP6
AC,l
AC,.+1
AC,KAIO
KIlO

; Clear flags
;Change PC
;PDP-6 has PC Change flag
; Others do not, make AC all 1 s
;Increment both halves
; KA 10 if AC = 1000000
; KIl 0 if AC = 0 (no carry between
; halves)

Parity

Parity procedures are used regularly to check the accuracy of stored informa­
tion. Parity generation and checking is generally handled automatically by
memory and high speed, block-oriented peripheral devices, but must be
handled by the program for character-oriented devices. Consider 8-bit
characters, for which the program carries out two procedures: for output it

§2.ll PROGRAMMING EXAMPLES

generates a parity bit from seven data bits to produce an 8-bit character with
parity; following input it checks the parity of the eight bits received. In
either case however, the program can simply find the parity of an 8-bit
character, by regarding the seven output data bits as eight including an
irrelevant extra bit. The two procedures then differ only in the final action.
In the first case the program uses the result to adjust the eighth bit for
correct parity, whereas in the second it checks the result for an indication
of error.

Assuming the character is right-justified in accumulator A, the simplest
and quickest procedure would be to use A to index an XCT into a table,
each of whose locations contains an instruction that adjusts the parity for
output or jumps to a routine for erroneous input. This procedure would
normally be unacceptable because of the very large memory requirements.
However the table can be reduced to sixteen entries without excessive loss in
speed, by exclusive oring the left and right halves of the character and
indexing on the result (parity is invariant under the exclusive OR function,
which essentially disposes of pairs of 1 s). This example, which uses a second
accumulator T for character manipulation, requires six memory references
to generate odd parity.

PARITY: MOVEI T,(A) ; Copy character in T
LSH T,-4 ; Line up halves
XORI T,(A) ; Reduce paritywise to 4 bits
ANDI T,17 ; Wipe out unwanted bits
XCT PARTAB(T) ;Execute indicated table item
POPJ P,

PARTAB: XORI A,200 ;0 - change high bit
JFCL ; 1 - no-op
JFCL ;2
XORI A,200 ;3
JFCL ;4
XORI A,200 ;5
XORI A,200 ;6
JFCL ;7
JFCL ; 10
XORI A,200 ; 11
XORI A,200 ; 12
JFCL ; 13
XORI A,200 ; 14
JFCL ; 15
JFCL ; 16
XORI A,200 ; 17

To handle even parity, interchange the JFCLs and XORIs in the table, or
change the MOVE I T,(A) to MOVEI T,200(A).

The next example does exactly the same thing but substitutes a little more
computation for use of a table. In other words it takes a little more time
(7Y2 memory references average) but less than half the memory.

2-73

We assume the rest of A, out­
side the character, is clear, as
it would be were the character
placed in A by a load-byte in­
struction or a DATAL The
next two examples, however,
work even if the rest of A
is not clear.

Numbers of memory refer-
ences and locations given do
not include those for the
POP], which we will regard as
subroutine overhead. Simi-
larly every example also re-
quires that the program give
a PUSH] to get to the sub-
routine.

2-74

PARITY:

CENTRAL PROCESSOR

MOVEI
LSH
XORI
TRCE
TRNN
XORI
TRCE
TRNN
XORI
POP]

T,200(A)
T,-4
T,(A)
T,14
T,14
A,200
T,3
T,3
A,200
P,

§2.ll

;Copy character with high bit comple­
;mented, then fold copy into 4 bits
;with opposite parity
;Are left two both a?
;Or both I?
;Yes, change high bit
;Are right two both a?
;Or both I?
;Yes, change for even, restore for odd

For even parity change the address in the MOVEI from 200 to O. , t.

Finally let us consider the extreme of substituting computation for
memory. Starting with the character abedefgh right-justified in A, we first
copy it in T and then duplicate it twice to the left producing

abc def gha bed efg hab ede fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the
result by

efadgbeh

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
111111118 generates the following partial products:

efadgbeh
efadgbeh

efadgbeh
efadgbeh

efadgbeh
efadgbeh

efadgbeh
efadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the par­
ity of the character, a if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence:

PARITY: MOVEI
IMULI
AND

T,(A)
T,20040l
T,ONES

;Copy in T
;Duplicate twice
;Pick LSBs

§ 2.11

ONES:

IMUL
TLNN
XORI

T,ONES
T,10
A,200

POP] P,

11111111

PROGRAMMING EXAMPLES

;Generate product
; Is bit 14 odd?
;No, change parity

This procedure uses a minimum of both memory references and memory
space, but takes considerably more time because the instructions themselves
are slow.

-!J The following table shows the trade-off of memory references against
memory space for the above four procedures. The time is proportional to
the number of references except in case 4.

References Locations
1. 2 257
2. 6 21
3. 7Yz 9
4. 7Y2 7

Counting Ones

Suppose we wish to count the number of Is in a word. We could of course
check every bit in the word. But there is a quicker way if we remember
that in any word and its twos complement the rightmost 1 is in the same
position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right­
most 1 are complements). Hence using the negative of a word as a mask for
the word in a test instruction selects only the rightmost 1 for modification.
The example uses three accumulators: the word being tested (which is lost)
is in T, the count is kept in CNT, and the mask created in each step is stored
in TEMP.

MOVE!
MOVN
TDZE
AOJA

CNT,O
TEMP,T
T,TEMP
CNT,.-2

;Clear CNT
;Make mask to select rightmost I
;Clear rightmost 1 in T
;Increase count and jump back
;Skip to here if no I s le~t in T

CNT is increased by one every time a 1 is deleted from T. After all Is have
been removed, the TDZE skips.

The preceding example uses little memory, but contains a loop so the time
it takes is proportional to the number of I s. The next example takes more
memory but is constant; hence it is slower than the above when there are
few I s (less than eight), but is much faster when there are many. The word,
which is lost, is in accumulator A, and the answer appears in accumulator

2-75

2-76

*HAKMEM 140, item 169,
page 79 (Artificial Intelligence
Memorandum, No. 239, Feb­
ruary 29,1972, MIT Artificial
Intelligence Laboratory).

In general terms this is the
statement that the sum S of
the digits in any number N
in base b is Nmod (b -1)­
provided b is deliberately
chosen such that S < b - 1.
The condition holds here of
course as the number of Is in
a PDP-lO word is at most 36.
And it is in fact to make this

CENTRAL PROCESSOR § 2.11

A+ 1 (for convenience we let B = A+ 1). The routine (due to Gosper, Mann
and Leonard *) has three distinct parts and is based on the fact that in a
binary word, counting 1 s is equivalent to calculating the sum of the digits.
The first part, of seven instructions, manipulates the octal digits of the word
so as to replace each digit by the number of 1 s in it. Taking D as an octal
digit and [x] as the largest integer contained in x, the algorithm used to
make the substitution is

D - [D/2] - [D/4]

Of course the computer always acts in binary terms regardless of programmer
interpretation. In this case the procedure carried out on each 3-bit piece
abc is

abc -ab-a

The instructions effect this algorithm by shifting a copy of the word right
one place, masking out the LSB of each shifted octal digit to prevent it from
interfering with the next digit at the right (ie to isolate the digits), and
subtracting the shifted, word from the original. The same process is then
repeated, this time masking out what was originally the middle bit in each
digit. That this algorithm gives the correct substitution is evident from the
following table, in which it is seen that the bottom number in a given column
is the sum of the bits in the octal digit given at the top of the column.

Original digit 0 I 2 3 4 5 6 7

Subtract 0 0 1 1 2 2 3 3

0 1 1 2 2 3 3 4

Subtract 0 0 0 0 1 1 1

Number of 1s 0 2 I 2 2 3

We have now replaced the original word with a set of twelve numbers,
whose sum is equal to the number of I s in the original. The next three in­
structions add together pairs of adjacent numbers so as to replace the twelve
by six whose sum is still the same. Since these new numbers are isolated in
6-bit pieces of the word, we shall revise our point of view, and regard them
as digits in a number in base 64. Now any number is simply the sum of the
values of its digits, ie of its digits each multiplied by an appropriate power of
the base. Dividing each such summand by I less than the base gives the digit
itself as remainder. Hence the third part of the routine just divides our
6-digit number by 63, producing in B a remainder that is the sum of the
remainders from the individual digits, ie that is the sum of the digits.

MOVE
LSH
AND
SUB
LSH
AND
SUBB

B,A ;Copy in B
B,-l ;Right one
B,[333333,,333333] ;Masks out LSBs
A,B ;D - [D/2]
B,-l ;Right one again
B,[333333,,333333] ;Mask out middle bits
A,B ;D - [D/2] - [D/4] ; two copies

§2.11

LSH
ADD
AND

IDIVI

PROGRAMMING EXAMPLES

B,-3 ;Shift right one octal digit
A,B ;Add numbers in digit pairs
A,[070707,,070707] ;Throw out extra pair sums

A,77 ; Divide by 63, sum in B

If it is known that the 1 s in the word are entirely contained within bits
22-35 (the right fourteen bits), we can use the following somewhat shorter
routine, which is faster than the loop for more than seven 1 s. It first treats
the number in quaternary, replacing each digit with the number of Is in it,
and then converts from quaternary to hexadecimal.

MOVEI B,(A)
LSH B;-l
ANDI B,12525 ;Mask out LSBs
SUBB A,B ;D - D/2]; two copies

LSH B,-2 ;Right one quaternary digit
ANDI A,31463 ;Mask out some of digits in A
ANDI B,31463 ; The rest in B
ADDI A,(B) ;Now combine digit pairs

IDIVI A,17 ; Divide by 15, sum in B

Number Conversion

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

Nib = q1 + 'lib

q1/b = q2 + '21b

q21b = q3 + '31b

The number in base b is then 'n . .. '3'2'1. Eg the octal equivalent of 61
decimal is 75:

61/8 = 7 + 5/8

7/8 0 + 7/8

The following decimal print routine converts a 36-bit positive integer in
accumulator T to decimal and types it out. The contents of T and T + 1 are
destroyed. The routine is called by a PUSH] P,DECPNT where P is the
pushdown pointer.

DECPNT: IDIVI
PUSH

T,12
P,T+l

;128= 1010

;Save remainder

2-77

condition hold that the rou­
tine converts from base 8 to
base 64.

Note that here we must get
rid of one out of each set of
two identical bit pairs before
adding. This is because there
can be digit overflow, ie a
resulting hexadecimal digit
can have more than two signi­
ficant bits.

2-78

MACRO interprets a number
following tD as decimal.

CENTRAL PROCESSOR

SKIPE
PUSHJ

T
P,DECPNT

;All digits formed?
;No, compute next one

§2.12

DECPNl: POP P,T ; Yes, take out in opposite order
;Convert to ASCII (60 is code for 0)
;Type out

ADDI
JRST

T,60
TTYOUT

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
"0" if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPN 1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits
in the left halves of the locations that contain the jump addresses. This is
accomplished in the decimal print routine by changing

PUSH P,T+l to HRLM T+I,(P)

and

POP P,T to HLRZ T,(P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is
replaced by

LSHC
LSH
DIVI

T,-tD35
T+l,-l
T,12

; Shift right 35 bits into T + 1
;Vacate the T+I sign bit
;Divide double length integer by 10

Table Searching

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T contains
the item. The right half of A is used to index through the table, while the
left half keeps a control count to signal when a search is unsuccessful.

MOVSI
CAMN
JRST
AOBJN

A,-N
T,TAB(A)
FOUND
A,.-2

;Put -N, 0 in A
;Skip if current item not the one
;Item found
;Try next item until left count = 0
;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different pro­
cedure would be

HRLZI
CAME
AOBJN
JUMPL

A,-N
T, TAB(A)
A,.-l
A, FOUND

; Skip if current item is the one

;Jump if left count < 0
; Item not found

.. ,

;.-

§2.11 PROGRAMMING EXAMPLES

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of
accumulator T. At the end the final item is in T right.

FIND:
MOVE
TRNE
JRST
HLRZS

T,(T)
T,777777
.-2
T

;Move next item to T
;Skip if AC right = 0

;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI
JUMPE
HRRZ
AOJA

CNT,O
T,OUT
T,(T)
CNT,.-2

;ClearCNT
;Jump out if T contains 0
;Get next address
;Count and go back

Double Precision Floating Point

The following are straightforward routines for handling double precision
floating point arithmetic in software format, ie using single precision instruc­
tions, as would be required with a KAIO processor. [§ 2.6 describes the
floating point instructions.]

DFAD: UFA A+I,M+I ;Sum of low parts to A+2
FADL A,M ; Sum of high parts to A, A + I
UFA A+I,A+2 ;Add low part of high sum to A+2
FADL A,A+2 ;Add low sum to high sum
POPJ P,

DFSB: DFN A,A+I ;Negate double length operand
PUSHJ P,DFAD ;Call double floating add
DFN A,A+I ;-(M - AC) = AC - M
POPJ P,

DFMP: MOVEM A,A+2 ;Copy high AC operand in A+2
FMPR A+2,M+I ;One cross product to A+2
FMPR A+I,M ;Other to A + I
UFA A+I,A+2 ;Add cross products into A+2
FMPL A,M ;High product to A, A + I
UFA A+I,A+2 ;Add low part to cross sum in A + 2
FADL A,A+2 ;Add low sum to high part of product
POPJ P,

A double precision division is of the form

A a + CX2-27

B b + dX2-27

2-79

These routines are given to
showthe mechanics of double
precision floating point oper-
ations. They produce correct
results in all ordinary circum-
stances, but do not handle
pathological cases.

2-80 CENTRAL PROCESSOR § 2.11

Using the relationship

A/b = q + rX 2-27/b

where q and r are the quotient and remainder produced by FDVL, the
following routine computes a double length quotient by the approximation

A

B

(r - qd) X 2-27
q + -'-----'----'----

b

which gives a result correct to the next-to-Iast bit in the low order half.

DFDV: FDVL
MOVN
FMPR
UFA
FDVR
FADL
POP]

A,M
A+2,A
A+2,M+l
A+l,A+2
A+2,M
A,A+2
P,

Proof" Using the expansion

x+y

;Get high part of quotient
;Copy negative of quotient in A + 2
;Multiply by low part of divisor
;Add remainder
;Divide sum by high part of divisor
;Add result to original quotient

and letting x = band y = d2 -27 gives

A

B

Multiplying out and gathering like terms gives

A q + I (r -qd)2-27 _ !i (r -qd)rS4 + d2 (r -qd)r81 - .•.

B b b2 b 3

where the first two terms on the right are those in the approximation
given above.

The ratio of adjacent terms is

=
-d2-27

b

In an alternating convergent series, the error due to truncation is smaller
than the first term dropped. Therefore

IErrorl
d2-27

< --T
b n

Since the maximum value of d is less than 1 and the minimum value of b
(normalized) is 71,

IErrorl < Tn 2 -26

§2.12 INPUT-OUTPUT

2.12 INPUT -OUTPUT

The input-output instructions govern all transfers of data to and from the
peripheral equipment, and also perform many operations within the proc­
essor. An instruction in the in-out class is designated by 111 in bits 0-2, ie
its left octal digit is 7. Bits 3-9 address the device that is to respond to the
instruction. The format thus allows for 128 codes, two of which, 000 and
004 respectively, address the processor and priority interrupt, and are used
for the console as well. The KAlO also uses the first two codes for the time
share hardware, but the KI I 0 has a separate code, 0 I 0, for this purpose.
A chart in Appendix A lists all devices for which codes have been assigned,
and gives their mnemonics and DEC option numbers. Electrical and logical

£'0 specifications of the 10 bus are given in the interface manual.
Bits 13-35 are the same as in all other instructions: they are the /, X, and

Y parts, which are used to calculate an effective address, set of conditions,
or mask to be used in the execution of the instruction. The remaining bits,
10-12, select one of the following eight 10 instructions.

NOTE

All instructions described in the remainder of this manual are in-out
instructions, which are affected by the time share instruction restric­
tions. In the KA 1 0 no in-out instruction can be performed by a user
mode program unless the User In-out flag is set. In the KilO, in-out
instructions using device codes 740 and above are not restricted. But
an instruction using a device code under 740 cannot be performed by a
user mode program unless User In-out is set and cannot be performed
in supervisor mode at all (in-out is normally handled in kernel mode).
Any in-out instruction that violates these restrictions does not perform
the functions given for it in the instruction description. Instead it acts
just like an MUUO [§2.10].

These restrictions will not be mentioned in the instruction descrip­
tions, as they apply to all instructions from this point on.

CONO Conditions Out

I 7 D Y
o 23 910 121314 1718 3S

Set up device D with the effective initial conditions E. The number of con­
dition bits in E that are actually used depends on the device.

CONI Conditions In

I 7 I D Y
o 23 910 121314 1718 3S

Read the input conditions from device D and store them in location E. The

2-81

Input and output for system
users is normally handled by
the Monitor using MUUOs
and various software formats.
For information on user
procedures vis-a-vis Monitor
handling of user 10 re­
quirements, refer to Chapters
4-6 of DECsystem-10Moni­
tor Calls, manual DEC-10-
MRRx-D.

E will always be regarded as
being bits 18-35, even though
it is actually placed on both
halves of the bus and many
devices receive the informa­
tion from the left half.

2-82 CENTRAL PROCESSOR §2.l2

number of condition bits stored depends on the device; the remaining bits
in location E are cleared.

DATAO Data Out

I 7 I D y

o 23 910121314 1718 3S

Send the contents of location E to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location E
are unaffected.

DATAl Data In

I 7 D y

o 23 910121314 1718 3S

Move the contents of the data buffer in device D to location E, and perform
whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are
cleared.

CONSZ Conditions In and Skip if Zero

I 7 D 1 30 III X y

o 23 910 121314 1718 3S

Test the input conditions from device D against the effective mask E. If all
condition bits selected by 1 s in E are Os, skip the next instruction in
sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

CONSO Conditions In and Skip if One

I 7 I D y

o 23 910 121314 1718 3S

Test the input conditions from device D against the effective mask E. If any
condition bit selected by a 1 in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

-, ,

§2.12 INPUT-OUTPUT

BLKO Block Out

7 D 10 III x y

0 23 910 121314 1718 35

BLKI Block In

7 D 00 III X y

0 23 910 121314 1718 35

Add one to each half of a pointer in location E, and place the result back
in E. Then perform a data 10 instruction in the same direction as the block
10 instruction, using the right half of the incremented pointer as the
effective address. If the given instruction is a BLKO, perform a DATAO;
if a BLKI, perform a DATAL

The remaining actions taken by this instruction depend on whether it is
executed as a priority interrupt instruction [§ 2.13] .
• Not as an Interrupt Instruction. If the addition has caused the count in
the left half of the pointer to reach zero, go on to the next instruction in
sequence. Otherwise skip the next instruction.
• As an Interrupt Instruction. If the addition has caused the count in the
left half of the pointer to reach zero, execute the instruction in the second
interrupt location for the channel. Otherwise dismiss the interrupt and
return to the interrupted program.

Note: The KAlO increments the two halves of the pointer by adding
1 00000 18 to the entire register. In the KI lathe two halves are handled
independently.

The above eight instructions differ from one another in their total effect,
but they are not all different with respect to any given device. A BLKO acts
on a device in exactly the same way as a DA TAO - the two differ only in
counting and other operations carried out within the processor and memory.
Similarly, no device can distinguish between a BLKI and a DATAl; and a
device always supplies the same input conditions during a CONI, CONSZ or
CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre­
sented by the first four instructions described above. Moreover, a.complete
treatment of the programming of any device can be given in terms of these
four instructions, two of which are for input and two for output. The four
exhaust the types of information transfer that occur in the 10 system, at
least three of which are applicable to any given device. Thus all instruction
descriptions in the rest of this manual will be of the CO NO , CONI, DA TAO
and DATAl instructions combined with the various device codes. The dis­
cussion of each device will present timing information pertinent to device
operation, as internal device timing is depcndent only upon the device and
not upon processor instruction time (which is given in Appendix D).

Every device requires initial conditions; these are sent by a CONO, which

2-83

A block 10 instruction is
effectively a whole in-out
data handling subroutine. It
keeps track of the block loca­
tion, transfers each data
word, and determines when
the block is finished.

Initially the left half of the
pointer contains the negative
of the number of words in
the block, the right half con­
tains an address one less than
that of the first word in the
block.

The word "input" used with­
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; "output" refers
to the transfer in the opposite
direction.

2-84

A DATAl that addresses an
output-only device simply
clears location E. DATAl PI,
(code 70044) produces only
this effect as the priority in­
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAO, CONO orCONSO
is a no-op. a CONSZ is an
absolute skip, a DATAl or
CONI clears location E.

Busy and Done both set is a
meaningless situation.

Occasionally a device with a
second code may use a
DATAl or DATAO to trans­
mit aaditional control or
maintenance information.

CENTRAL PROCESSOR §2.12

can supply up to eighteen bits of control information to the device control
register. The program can determine the status of the device from up to
thirty-six bits of input conditions that can be read by a CONI (but only the
right eighteen can be tested by a CONSZ or CONSO). Some input bits
simply reflect initial conditions sent by a previous CONO; others are set up
by output conditions but are subject to subsequent adjustment by the
device; and still others, such as status levels from a tape transport, have no
direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit
words. Each transfer between memory and a device data buffer requires a
single DATAl or DATAO. Every device has a CO NO and CONI, but it may
have only one data instruction unless it is capable of both input and output.
Eg, the paper tape reader has only a DATAl, the tape punch has only a
DATAO, but the console terminal has both. (A high speed device, such as a
disk file, can be connected to a direct-access processor, which in tum is
connected directly to memory by a separate memory bus and handles data
automatically. This eliminates the need for the program to give a DATAO
or DATAl for each transfer.)

A Typical 10 Device. Every device has a 7-bit device selection network. a
priority interrupt assignment, and at least two flags, Busy and Done, or some
equivalent. The selection network decodes bits 3-9 of the instruction so
that only the addressed device responds to signals sent by the processor over
the in-out bus. To use the device with the priority interrupt, the program
must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, a
CONO or DATAO sets Busy. If the device will be used for output, the pro­
gram must give a DA TAO that sends the first unit of data - a word or char­
acter depending on how the device handles information. When the device has
processed a unit of data, it clears Busy and sets Done to indicate that it is
ready to receive new data for output, or'that it has data ready for input.
In the former case the program would respond with a DATAO to send more
data; in the latter, with a DATAl to bring in the data that is ready. If an
interrupt channel has been assigned to the device, the setting of Done signals
the program by requesting an interrupt; otherwise the program must keep
testing Done to determine when the device is ready.

All devices function basically as described above even though the number
of initial conditions varies considerably. Besides Busy and Done flags, the
tape reader and punch have a Binary flag that determines the mode of
operation of the device with respect to the data it processes - alphanumeric
or binary. The terminal has no binary flag, but it has two Busy flags and two
Done flags - one pair for input, another for output. A complicated device,
such as magnetic tape, may require two device codes to handle the large
number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape control is to
perform; input conditions include error flags and transport status levels.

Most 10 devices involve motion of some sort, usually mechanical (in a
display only the electron beam moves). With respect to mechanical motion

§ 2.12 INPUT·OUTPUT

there are two types of devices, those that stay in motion and those that do
not. Magnetic tape is an example of the former type. Here the device
executes a command (such as read, write, space forward) and the done flag
indicates when the entire operation is finished. A separate data flag signals
each time the device is ready for the program to give a DATAl or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CO NO every time. The reader logic is set up so that a
DATAl not only reads the data, but also clears Done and sets Busy. Hence
if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start
the tape, and one to stop it after the final DATAL

Other devices operate in one or the other of these two ways but differ in
various respects. The tape punch and terminal output are like the reader.
Terminal input is initiated by the operator striking a key rather than by
the program. The card reader reads an entire card on a single CONO, with
a DATAl required for each column. The DECtape stays in motion, and
the program must give a CONO to stop it or it will go all the way to the
end zone.

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. Its principal use is to read in a short loader
program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the
validity of the information read.

Pressing the readin key on the console activates readin mode by starting
the processor in a special hardware sequence that simulates a DATAl fol­
lowed by a series of BLKI instructions, all of which address the device whose
code is selected by the readin device switches at the left just above the
console operator panel. Various devices can be used, and for each there are
special rules that must be followed. But the readin mode characteristics of
any particular device are treated in the discussion of the device. Here we
are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre­
ceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word.

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. This key function
first duplicates the action of the console reset key, which clears both the
processor and the in-out equipment; in particular it places the processor in
executive mode, and in the KI I 0 selects kernel mode with executive paging
disabled, so all access will be to the first 256K of physical memory unpaged.
Following this the processor places the device in operation, brings the first

2-85

At present readin is limited to
paper tape, DECtape, and
standard magnetic tape.

2-86

MACRO also recognizes the
mnemonic RSW (Read
Switches) as equivalent to
DATAl APR,.

CENTRAL PROCESSOR §2.12

word (the pointer) into location 0, and then reads the data block, placing the
words in the locations specified by the pointer. Data can be placed any­
where in the first 256K of memory (including fast memory) except in
location O. The operation affects none of memory except location 0 and
the block area.

Upon completing the block, the processor leaves readin mode and begins
normal operation. This is done in the KII 0 by jumping to the location con­
taining the last word in the block, in the KAI 0 by executing the last word as
an instruction. In the KA 10 the processor stops after executing the first
instruction if the single instruction switch is on.

Console-Program Communication

Neither the processor nor the priority interrupt system require all four types
of 10 instructions, so the program can make use of their device codes for
communicating with the console. Both processors have two instructions that
transfer data between console and program. But in the KII 0, the program
can actually operate some of the switches on the console. For this purpose
it uses a data-out instruction with the device code for the paper tape reader
(an input-only device). The KIl 0 program can also inspect the states of a
number of operating and sense switches, but the bits for these are included
in the left half words of the standard input conditions for the interrupt
and processor [§§2.13, 2.14].

DATAl APR, Data In, Console

70004 III X y

o 121314 1718 3S

Read the contents of the console data switches into location E.

DATAO PI, Data Out, Console

70054 y
o 121314 1718 3S

Unless the console MI program disable switch is on, display the contents of
location E in the console memory indicators and turn on the triangular light
beside the words PROGRAM DATA just above the indicators (turn off the
light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi­
tion selected from the console [Appendix F] can load them until the
operator turns on the MI program disable switch, executes a key function
that references memory, or presses the reset key.

..

§2.13 PRIORITY INTERRUPT

DATAO PTR, Operating Data Out, Console

71054 y

o 121314 1718 35

Unless the MI program disable switch is on, set up the console address and
address-condition switches according to the contents of location E as shown
(a 1 in a bit turns on the switch, a 0 turns it off).

------- ------r-----
r-----~I

ADDRESS SWITCHES

6 14 35

For complete information on the use of these switches, see Appendix Fl.

2.13 PRIORITY INTERRUPT

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service them,
but they must be serviced within a short time after they request it. Failure
to service within the specified time (which varies among devices) can often
result in loss of information and certainly results in operating the device
below its maximum speed. The priority interrupt is designed with these
considerations in mind, ie the use of interruptions in the current program
sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the
processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a
priority chain, with assignment of devices to channels entirely at the discre­
tion of the programmer. To assign a device to a channel, the program sends

r, the number of the channel to the device control register as part of the condi­
tions given by a CONO (usually bits 33-35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device
from the interrupt channels altogether. Any number of devices can be
connected to a single channel, and some can be connected to two channels
(eg a device may signal that data is ready on one channel, that an error has
occurred on another).

When a device requires service it sends an interrupt request signal over the
in-out bus to its assigned channel in the processor. The processor accepts the
request depending upon certain conditions, such as that the channel must be
active (on). The request signal is a level so it remains on the bus until turned
off by the program (CONO, DATAO or DATAl, depending on the device).
Thus if a request is not accepted when made, it will be accepted when the

2-87

On the KIl 0 console, all
switches are pushbutton.
flipflop combinations; the in·
struction of course controls
the flipflops, not the buttons.

2-88

The request signal is generally
derived from a flag that is set
by various conditions in the
device. Often associated with
these flags are enabling flags,
where the setting of some
device condition flag can re­
quest an interrupt on the
assigned channel only if the
associated enabling flag is also
set. The enabling flags are in
turn controlled by the condi­
tions supplied to the device by
a CONO. Eg a device may
have half a dozen flags to
indicate various internalcondi­
tions that may require service
by an interrupt; by setting up
the associated enabling flags,
the program can determine
which conditions shall actual­
ly request interrupts in any
given circumstances.

Note that there are therefore
two orders of priority asso­
ciated with an interrupt: first
the channel, and then for all
devices requesting interrupts
simultaneously on the same
channel, proximity to the
processor on the bus. For
priority purposes, all devices
on the left bus are closer than
those on the right bus.

CENTRAL PROCESSOR §2.l3

conditions are satisfied. A single channel will shut out all others of lower
priority if every time its service routine dismisses the interrupt, a device
assigned to it is already waiting with another request. The program can
usually trigger a request from a device but delay its acceptance by turning
on the channel later.

Having accepted a request, the processor will do nothing further with it
unless the priority interrupt system is on. But even with the system off, the
processor will continue to accept requests on other channels; and when the
system is finally turned on, it will respond as though all requests had just
been accepted, handling the highest priority one first.

The way in which interrupts are handled, the conditions that affect them,
and so forth depend upon the type of processor.

KilO Interrupt

A request made to an active channel is accepted immediately unless some
channel is already waiting for an interrupt to start or an interrupt is starting
for some channel. Once a request is accepted with the system on, the
channel must wait for the interrupt to start. The processor however will
delay any action on the request if it is already holding an interrupt for the
same channel or for a channel with priority higher than those on which
requests have been accepted (in other words if the current program is a
higher priority interrupt routine). When a waiting channel has priority
higher than the current program, the processor sends an interrupt-granted
signal for the waiting channel that has highest priority. This action makes
use of the 10 bus. Should the bus be busy, the grant is sent as soon as the
bus becomes available, taking precedence over any 10 instruction that may
also be waiting (note that in this situation the program actually stops). The
grant signal goes out on the bus and is transmitted serially from one device
to the next. Upon receiving the grant, a device that is not requesting an
interrupt on the specified channel sends the signal on to the next device. A
device that is requesting an interrupt on the specified channel terminates the
signal path and sends an interrupt function word back to the processor.

Upon receipt of the function word, the processor stops the current pro­
gram at the first allowable point to start an interrupt for the waiting channel
for which the grant was made. Allowable stopping points are at the com­
pletion of an instruction, following the retrieval of an address word in an
effective address calculation (including the second calculation using the
pointer in a byte instruction), between transfers in a BLT, between steps in
the calculation of the first part of the quotient in double floating division,
and while an 10 instruction is waiting for the bus. When an interrupt starts,
PC points to the interrupted instruction, so that a correct return can later be
made to the interrupted program.

The action taken by the processor in starting an interrupt depends upon
the function specified by the function word returned to the processor. Two
fixed locations in the executive process table are associated with each
channel: locations 40 + 2N and 41 + 2N, where N is the channel number.
Channel I uses locations 42 and 43, channel 2 uses 44 and 45, and so on to

•. 1

§ 2.13 KIlO INTERRUPT

channel 7 which uses 56 and 57. The processor starts a "standard" interrupt
for channel N by executing the instruction in the first interrupt location for
the channel, ie location 40 + 2N. The fixed locations however need not be
used. The interrupt function word sent by the device may specify a standard
interrupt using the fixed locations, or an equivalent interrupt using a pair of
locations specified by the function word, or some other interrupt function
entirely. The format of the function word and the operations the processor
performs in response to the function selected by bits 3-5 of the word are
as follows.

FUNCTION

\
I \ INCREMENT INTERRUPT ADDRESS

3

Bits 3-5

o

2

3

4

5

6

56 1718 35

Interrupt Function

Processor waiting. If no response, perform a standard interrupt
(see function 1).

Standard interrupt - execute the instruction in location 40 + 2N
of the executive process table.

Dispatch - execute the instruction in the location specified by
bits 18-35.

Increment - add the contents of bits 6-17 to the contents of the
location specified by bits 18-35. The increment is a fixed point
number in twos complement notation, bit 6 being the sign, and
bit 17 corresponding to bit 35 of the memory word.

DA T AO - do a DA TAO for this device using the contents of
bits 18-35 as the effective address.

DATAl - do a DA TAl for this device using the contents of
bits 18-35 as the effective address.

Not used - reserved by DEC.

7 Not used - reserved by DEC.

Regardless of what mode the processor is in when an interrupt occurs, the
interrupt operations are performed in kernel mode. No interrupt operation
can set Overflow or either of the trap flags; hence an overflow trap can never
occur as a direct result of an interrupt. A page failure that occurs in an
interrupt operation is never trapped; instead it sets the In-out Page Failure
flag, which requests an interrupt on the channel assigned to the processor
[§ 2.14]. These considerations of course do not apply to a service routine
called by an interrupt instruction.

Interrupt Instructions. An instruction executed in response to an inter­
rupt request and not under control of PC is referred to elsewhere in this
manual as being "executed as an interrupt instruction." Some instructions,
when so executed, have different effects than they do when performed in
other circumstances. And the difference is not due merely to being per-

2-89

A device designed originally
for use with the KAlO will
work when connected to the
KII a bus, where it always
requests a standard interrupt
by providing no response to
the grant. Note that for simul­
taneous requests on a given
channel, all KIlO devices that
return a function word have
priority over all KAla devices
and over any KIlO devices
that do not return a function
word. The last group includes
the reader, punch and tele­
typewriter, which are con­
tained in the processor, as
well as the processor itself
acting as a device [see proc­
essor conditions, § 2.14] .

At present, functions 6 and 7
produce standard interrupts.

2-90

These locations may be the
fixed ones for a standard in­
terrupt or those given by the
function word for a dispatch
interrupt.

Satisfaction of the condition
does not change PC, as this
would skip the next instruc­
tion in the interrupted pro­
gram. In effect the instruction
skips back to the interrupted
program by skipping the sec­
ond interrupt location.

Note that the interpreta­
tion of a BLKI or BLKO as a
skip instruction is consistent
with the description given in
§ 2.12, the condition being
that the count is not zero.

CENTRAL PROCESSOR §2.13

formed in an interrupt location or in response (by the program) to an inter­
rupt. To be an interrupt instruction, an instruction must be executed in the
first or second interrupt location for a channel, in direct response by the
hardware (rather than by the program) to a request on that channel. § 2.12
describes the two ways a BLKO is performed. If a BLKO is contained in an
interrupt routine called by a JSR, it is not "executed as an interrupt instruc­
tion" even in the unlikely event the routine is stored within the interrupt
locations and the BLKO is executed by an XCT. The interrupt instructions
executed in a standard or dispatch interrupt fall into three categories.

• AOSX, SKIPX, SOSX, CONSX, BLKX. If the skip condition specified by
the instruction is satisfied, the processor dismisses the interrupt and returns
immediately to the interrupted program (ie it returns control to the un­
changed PC). If the skip condition is not satisfied, the processor executes
the instruction contained in the second interrupt location.

CAUTION

In the second interrupt location, a skip instruction
whose condition is not satisfied hangs up the pro­
cessor, which will keep repeating the instruction
until the condition is satisfied.

• JSR, JSP, PUSHJ, M UUO. The processor holds an interrupt on the
channel, takes the next instruction from the location specified by the jump
(as indicated by the newly changed PC), and enters either kernel mode or the
mode specified by the new PC word of the MUUO. Hence the instruction is
usually a jump to a service routine handled by the Monitor.
• All Other Instructions. In general the processor simply executes the
instruction, dismisses the interrupt, and then returns to the interrupted
program. If the instruction is a jump (other than those mentioned above),
the processor jumps to the newly specified location; but it dismisses the
interrupt and returns to the mode it was already in when the interrupt
occurred. Hence it effectively returns to the interrupted program but in a
different place, and the original contents of PC are lost.

Since the interrupt operations are performed in kernel mode regardless of
the actual mode of the processor, an XCT is performed as an executive XCT
[§ 2.15]. The ultimate effect of the XCT depends of course on the instruc­
tion executed - and its effect is as described here for the various categories.

CAUTION

Neither an LUUO, a BLT, a DMOVEM, nor a
DMOVNM will function in a reasonable manner as
an interrupt instruction. Therefore do not use them.

Dismissing an Interrupt. Unless the interrupt operation dismisses the
interrupt automatically, the processor holds an interrupt until the program
dismisses it, even if the interrupt routine is itself interrupted by a higher
priority channel. Thus interrupts can be held on a number of channels
simultaneously, but from the time an interrupt is started until it is dismissed,

§ 2.13 KII 0 INTERRUPT

no interrupt can be started on that channel or any channel of lower priority
(requests, however, can be accepted on lower priority channels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be on when the JEN
is given). This instruction restores the channel on which the interrupt is
being held, so it can again accept requests, and interrupts can be started on
it and lower priority channels. JEN also restores the flags, whose states were
saved in the left half of the PC word if the routine was called by a JSR,
JSP, PUSHJ, or MUUO. If flag restoration is not desired, a JRST 10, can
be used instead.

CAUTION

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority will be
disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in­
terrupt system by means of condition 10 instructions. The device code is
004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

70060 y

o 121314 1718 35

Perform the functions specified by the effective conditions E as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

CLEAR CLEAR

DROP PROGRAM
REQUESTS ON
SELECTED
CHANNELS

INITIATE
INTERRUPTS
ON

DEACTIVATE ACTIVATE
PI PI

-,---

2-91

DISABLE I ENABLE '\ CLEAR I TURN I TURN
POWER PA RITY ON OFF

I
SELECT CHANNELS FOR BITS 22,24,25,26 PARITY ERROR PI

I \ ~
FAILURE

FLAG

18

20

21

22

ERROR
FLAG INTERRUPT SYSTEM SELECTED CHANNELS I I 2 I I I

19 20 I 21 22 23 24 25 26 27 28 29 I 30

Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

On channels selected by Is in bits 29-35, turn off any interrupt
requests made previously by the program (via bit 24).

23 Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but
are still waiting, and dismiss all interrupts that are currently being
held.

I 3

31
I 4 I 5 I 6 I 7

32 I 33 34 35

Bits 18·-21 are actually for
processor conditions [§ 2.14].

2-92

For other than the highest
priority channel, the greater
the number of higher priority
channels active, the greater
the amount of program time
available both initially and
between successive interrupts.
If the program forces an inter­
rupt on the lowest priority
channel when all are active,
there can be as much as 40 IlS
of program time between the
CONO PI, and its interrupt.

INST DATA
WRITE

ADDRESS ADDRESS
FETCH FETCH STOP BREAK

o 2 3 4

CENTRAL PROCESSOR .§ 2.13

24 Request interrupts on channels selected by Is in bits 29-35, and
force the processor to accept them even on channels that are off.
The request remains indefinitely, so as soon as an interrupt is com­
pleted on a given channel another is started, until the request is
turned off by a CO NO that selects the same channel and has a
1 in bit 22.

25

26

27

Remember that the processor allows the program to continue
while it grants an interrupt. Thus when this bit forces acceptance of
a request, another program instruction or two may be performed
before the interrupt, even on the highest priority channel. Moreover
if the request is allowed to remain, additional instructions may be
performed between successive interrupts.

Turn on the channels selected by 1 s in bits 29-35 so interrupt
requests can be accepted on them.

Turn off the channels selected by Is in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

70064 y
o 121314 1718 35

Read the status of the priority interrupt (and nine console operating
switches) into location E as shown.

EXEC USER PAR NXM PROGRAM REQUESTS ON CHANNELS
PAGING PAGING STOP STOP

I I I I I I 1 2 3 4 5 6 7

5 6 7 8 9 10 11 I 12 13 14 I 15 16 17

INTERRUPT IN PROGRESS ON CHANNELS
PI CHANNELS ON (ACTIVE) SYSTEM

1 I 2 I
18 19 20 21 22

3 I 4 I 5 J 6 I 7
ON

1 I 2 I 3 I 4 I 5 I 6 I 7
23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35

Channels that are active are indicated by 1 s in bits 29-35; 1 s in bits
21-27 indicate channels on which interrupts are currently being held; Is in
bits 11-17 indicate channels that are receiving interrupt requests generated
by a CONO PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt
system is on.

The remaining conditions read by this instruction have nothing to do with
the interrupt. Bits 0-8 reflect the settings of various console operating
switches; for information on these switches refer to Appendix Fl.

,to-

"

§2.13 KIlO INTERRUPT

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,
it need never wait longer than IO MS.

Special Considerations. On a return to an interrupted program, the proc­
essor always starts the interrupted instruction over from the beginning. This
causes special problems in a BL T and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that holds
the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the
same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a
two-part byte instruction. When this happens, First Part Done is set. This
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if the User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in
the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
• No requests can be accepted, not even on higher priority channels, while
an interrupt is starting. Therefore do not use lengthy effective address cal­
culations in interrupt instructions.
• Most in-out devices are designed to drop an interrupt request when the
program responds, usually with a DATAl or DATAO. If an interrupt is
handled neither by a BLKI or BLKO interrupt instruction nor by a service
routine, the programmer must make sure the device is configured to drop the
request on receipt of whatever response the program does give.
• The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.
• The principal function of an interrupt routine is to respond to the situa­
tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it.

2-93

2-94

Interrupt locations for a sec­
ond processor on the same
memory are 140 + 2N and
141 + 2N.

CENTRAL PROCESSOR § 2.13

• If the routine uses a UUO it must first save the contents of the pair of
locations that will be changed by it in case the interrupted program was in
the process of handling a UUO of the same type. For an MUUO the routine
must save locations 424 and 425 of the user process table. For an LUUO the
routine must save location 40 in the executive process table and the location
used by the UUO handler instruction to store the PC word .
• The routine must dismiss the interrupt (with a JEN) when returning to the
interrupted program. The flags and UUO locations should be restored.

KAIO Interrupt

A request made to an active channel is accepted at the next memory access
unless the processor is starting an interrupt for any channel or holding an
interrupt for the same channel. Once a request is accepted with the system
on, the channel must wait for the interrupt to start. The processor however
cannot start an interrupt if it is already holding an interrupt for a channel
with priority higher than those on which requests have been accepted (in
other words if the current program is a higher priority interrupt routine).
When there is a higher priority channel waiting, the processor stops the
current program at the first allowable point to start an interrupt for the
waiting channel that has highest priority. Allowable stopping points are
following the retrieval of an instruction, following the retrieval of an address
word jn. an effective address calculation (induding the second calculation
USIllg the poihter III a byte Illstruction) , and between' transfers in a BLT.
When an interrupt starts, PC points to the interrupted instruction, so that a
correct return can later be made to the interrupted program.

Two memory locations are associated with each channel: unrelocated
locations 40 + 2N and' 41 + 2N, where N is the channel number. Channell
uses locations 42 and 43, channel 2 uses 44 and 45, and so on to channel 7
which uses 56 and 57. The processor starts an interrupt for channel N by
executing the instruction in location 40 + 2N. Even though the processor
may be in user mode when an interrupt occurs, interrupt instructions are
performed in executive mode.

Interrupt Instructions. An instruction executed in response to an inter­
rupt request and not under control of PC is referred to elsewhere in this
manual as being "executed as an interrupt instruction." Some instructions,
when so executed, have different effects than they do when performed in
other circumstances. And the difference is not due merely to being per­
formed in an interrupt location or in response (by the program) to an
interrupt. To be an interrupt instruction, an instruction must be executed in
location 40 + 2N or 41 + 2N, in direct response by the hardware (rather than
by the program) to a request on channel N. § 2.12 describes the two ways a
BLKO is performed. If a BLKO is contained in an interrupt routine called
by a JSR, it is not "executed as an interrupt instruction" even in the unlikely
event the routine is stored within the interrupt locations and the BLKO is
executed by an XCT. There are two categories of interrupt instructions .
• Non-IO Instructions. After executing a non-IO interrupt instruction, the
processor holds an interrupt on the channel and returns control to Pc.

<,

§ 2.13 KAIOINTERRUPT

Hence the instruction is usually a jump to a service routine. If the processor
is in user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or
JRST, the processor leaves user mode (the Monitor thus handles all interrupt
routines [§2.16J).

If the interrupt instruction is not a jump, the processor continues the
interrupted program while holding an interrupt - in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction
might just move a word to a particular location. Such procedures are
usually reserved for maintenance routines or very sophisticated programs .
• Block or Data 10 Instructions. One or the other of two actions can result
from executing one of these as an interrupt instruction.

If the instruction in 40 + 2N is a BLKI or BLKO and the block is not
finished (ie the count does not cause the left half of the pointer to reach
zero), the processor dismisses the interrupt and returns to the interrupted
program. The same action results if the instruction is a DA TAl or DAT AO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach
zero, the processor executes the instruction in location 41 + 2N. This
cannot be an 10 instruction and the actions that result from its execution
as an interrupt instruction are those given above for non-IO instructions.

CAUTION

The execution, as an interrupt instruction, of a
CONO, CONI, CONSO or CONSZ in location
40 + 2N or any 10 instruction in location 41 + 2N
hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only
in a DATAl or DAT AO, or in a BLKI or BLKO with an incomplete block.
Following any non-IO interrupt instruction, the processor holds an interrupt
until the program dismisses it, even if the interrupt routine is itself inter­
rupted by a higher priority channel. Thus interrupts can be held on a
number of channels simultaneously, but from the time an interrupt is started
until it is dismissed, no interrupt can be started on that channel or any
channel of lower priority (requests, however, can be accepted on lower
priority channels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be on when the JEN is
given). This instruction restores the channel on which the interrupt is being
held, so it can again accept requests, and interrupts can be started on it and
lower priority channels. JEN also restores the flags, whose states were saved
in the left half of the PC word if the routine was called by a JSR, JSP, or
PUSHJ. If flag restoration is not desired, a JRST 10, can be used instead.

CAUTION

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority will be

2-95

2-96

01 SABLE I ENABLE CLEAR CLEAR
POWER PARITY

FAILURE ERROR PARITY ERROR
FLAG FLAG INTERRUPT

1S 19 20 I 21

Bits 18-21 are actually for
processor conditions [§ 2.14].

22

CENTRAL PROCESSOR

disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

§2.13

Interrupt Conditions. The program can control the interrupt system by
means of condition 10 instructions. The device code is 004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

70060 y
121314 1718 3S

Perform the functions specified by the effective conditions E as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

CLEAR
PI

SYSTEM

23

20

21

IN ITiATE
INTERRUPTS

r I TURN I TURN
ON OFF

SELECTED CHANNELS

24 25 26

OEACTI VATE ACTIVATE

\ l ,--

1

27 2B 29

SELECT CHANNELS FOR BITS 24, 25,26

I 2 I 3 I 4 I 5 I 6 I 7
I 30 31 32 I 33 34 35

Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

23 Deactivate the priority interrupt system, turn off all channels, elimi­
nate all interrupt requests that have already been accepted but are
still waiting, and dismiss all interrupts that are currently being held.

24 Request interrupts on channels selected by Is in bits 29-35, and
force the processor to accept them even on channels that are off.
There is at most one interrupt on a given channel, and a request is
lost if it is made by this means to a channel on which an interrupt is
already being held.

25 Turn on the channels selected by Is in bits 29-35 so interrupt
requests can be accepted on them.

26 Turn off the channels selected by Is in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

§2.l3

CONI PI, Conditions I n, Priority Interrupt

KA10 INTERRUPT

70064 y

121314 1718 3S

Read the status of the priority interrupt (and several bits of processor con­
ditions) into location E as shown.

POWER PARITY
FA I LURE ERROR

18 19

PARITY ERROR
INTERRUPT

E(BLED

1

20 21

INTERRUPT IN PROGRESS ON CHANNELS

I 2 I 3 I 4 I 5 I 6 I
22 23 I 24 25 26 I

PI
SYSTEM

7 ON 1 I 2

27 28 29 I 30

Channels that are on are indicated by Is in bits 29-35; Is in bits 21-27
indicate channels on which interrupts are currently being held. A 1 in bit 28
means the interrupt system is on.

The remaining conditions read by this instruction have nothing to do with
the interrupt. Bits 18-20 actually read processor status condition [§ 2.14]
as follows.

18

19

Ac power has failed. The program should save PC, the flags and fast
memory in core, and halt the processor.

The setting of this flag requests an interrupt on the channel
assigned to the processor. If the flag remains set for 5 ms, the
processor is cleared.

A word with even parity has been read from core memory. If bit 20
is set, the setting of the Parity Error flag requests an interrupt on the
channel assigned to the processor, at which time PC points to the
instruction being performed or to the one following it.

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,
it need never wait longer than the time required for the processor to finish
the instruction that is being performed when the request is made. The maxi­
mum time can be considered to be about 15 j1S for FDVL, but a ridiculously
long shift could take over 35 j1S.

Special Considerations and Programming Suggestions. If the interrupt
routine uses a VUO it must first save the contents of the pair of locations
that will be changed by it in case the interrupted program was in the process
of handling a UUO. Hence the routine must save unrelocated location 40
and the location used by the UUO handler instruction to store the PC word.
In all other respects, the special considerations and programming suggestions
given at the end of the section on the KII 0 interrupt hold for the KAI O.

2-97

CHANNELS ON (ACTIVE)

I 3 I 4 I 5 I 6 I 7

31 32 I 33 34 35

Note that PC may point to
an interrupt service routine
rather than the main program.

2-98

The error conditions are gen­
erally regarded as important
enough to be assigned to the
highest priority channel. How­
ever for conditions that may
be associated with user in­
structions (a parity error or
unanswered memory refer­
ence), the common practice is
for the error interrupt to
switch over to the lowest
priority channel by means of
a program-set request. Then
the time taken to handle the
situation, which may well be
considerable, cannot interfere
with high priority events.

CENTRAL PROCESSOR §2.14

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by
requesting an interrupt on a channel assigned to the processor. Condition 10
instructions are used to control the appropriate flags and to inspect other
internal conditions of interest to the program.

KIt 0 Processor Conditions

In the KIl 0, page failures and overflow are handled by trapping, but other
internal conditions use the interrupt system. The program can actually
assign two channels to the processor - one for error conditions and one
specifically for the clock. Control over the Power Failure and Parity Error
flags is exercised by a CONO that addresses the priority interrupt system
[§ 2.13]. Control over other conditions and inspection of all are handled by
condition 10 instructions that address the processor; the CONI also reads
some console switches and maintenance functions. The processor also has
a data-out instruction through which the program can perform margin
checking of the system in both speed and voltage.

One of the features controlled by the CONO for the processor is the auto­
matic restart after power failure. This restart applies only when the levels on
the power mains go below specification while the processor is running, and
the power switch is on when power is restored - the machine never begins
operation by itself when the operator turns the power switch on or off.
Inadequate power, over temperature, etc are indicated by the Power Failure
flag. In order for the processor to restart itself, the program must respond in
a particular way to the setting of Power Failure. If the program fails to
respond properly, there is no restart.

The processor device code is 000, mnemonic APR.

CONO APR, Conditions Out, Arithmetic Processor

70020 y
o 121314 17 18 35

Assign the interrupt channels specified by bits 30-35 of the effective condi­
tions E and perform the functions specified by bits 18-29 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

CLEAR
NONEXISTENT
MEMORY

CLEAR DISABLE I ENABLE DISABLE I ENABLE CLEAR -I-
PRIORITY INTERRUPT PRIORITY INTERRU PT RESET ALL DISABLE ENABLE CLOCK CLEAR IN-OUT

TIMER IN-OUT TIMER TIMER AUTO RESTART
INTERRUPT CLOCK PAGE ASSIGNMENT -ERROR ASSI GN M ENT -CLOCK

DEVICES I I FAILURE I I I I

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A 1 in bit 19 produces the 10 reset signal, which clears the control logic

....

§2.14 PROCESSOR CONDITIONS

in all of the peripheral equipment (but affects neither the priority interrupt
system nor the processor conditions).

CONI APR, Conditions I n, Arithmetic Processor

70024 y
o 121314 1718 3S

Read the status of the processor (as well as various console switches and
maintenance functions) into location E as shown.

MEM
OVERLAP
DISABLE

o

*

MI
FM

MANUAL
PROG

DISABLE

2

PARITY
ERROR
INTERRUPT
ENABLED

3

CONSOLE
CONSOLE

DATA
LOCK LOCK

4 5

•

50
HERTZ

6

MAINTENANCE

MARGIN

IE
POWER

ENABLE ALARM

7 8 9

CLOCK
INTERRUPT
ENABLED

VOLTAGE
MONITOR

LOW

10

*

1

11 12

NONEXISTENT
MEMORY

2-99

SENSE SWITCHES

I 2 I 3 I 4 I 5 I 6

13 14 I 15 16 17

TIME PARITY I TIMER POWER AUTO
f *

IN-OUT *-; PRIORITY INTERRUPT PRIORITY INTERRUPT
OUT ERROR ENABLED FAILURE RESTART CLOCK PAGE ASSIGNMENT-ERROR ASSIGNMENT -CLOCK

DISABLED FAILURE

18 19 20 21 22 23 24 25 26 27 28 29 30

Interrupts are requested on the error channel (assigned by bits 30-32 of
the CONO) by the setting of Power Failure, In-out Page Failure, Nonexistent
Memory, and if enabled, Parity Error. The setting of Clock Flag, if enabled,
requests an interrupt on the clock channel (assigned by bits 33- 35 of the
CONO).

Bits 12 - I 7 reflect the states of the console sense switches, which are
specifically for operator communication with the program. Bits 1-5 reflect
the settings of various console operating switches; for information on these
switches refer to Appendix Fl. Bits 7 -10 are maintenance functions for
which the reader should refer to Chapter 10 of the maintenance manual.

6 The system is operating on 50 Hz line power. This is important to
the program, not only because some 10 devices run slower on 50 Hz,
but because the program must compensate for the time difference
when using the line frequency clock (bit 26).

18 Bit 21 is 1 and the program has not reset the timer (CONO APR,
bit 18) during the last 1.2 seconds (the period of the timer may vary
from 1.2 to 1.5 seconds). The setting of this flag clears the processor
and the peripheral equipment, and restarts the processor in kernel
mode at location 70.

19 A word with even parity has been read from core memory. If bit 20
is 1, the setting of Parity Error requests an interrupt on the error
channel [see cautions below] .

I
31

I I I
32 33 34 35

*These bits cause interrupts.

The processor does not actu­
ally have a maintenance mode
- the bit is simply the OR

function of a number of con­
sole switches, anyone of
which being on implies that
the processor is being op­
erated for maintenance pur­
poses.

The timer provides a restart
similar to that following
power failure. Running the
machine under margins may
result in significant logical
errors. If the timer is enabled,
failure of the program to
reset it about every second
allows it to time out. The re­
start instruclioll should sel up
PC, which would otherwise
be clear.

2-100

The restart instruction should
set up PC, which would other­
wise be clear.

An interrupt page failure
caused by the console address
break switch sets this flag in­
stead of producing an address
failure [§ 2.15] .

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

Remember that during the
grant procedure, the inter­
rupt system is otherwise static
and the program continues.
Moreover the processor is
effectively at the far end of
the bus.

In any event, it is generally not
worthwhile to return to any
program without first finding
out what has gone wrong.

CENTRAL PROCESSOR §2.l4

22 Ac power has failed. The program should save PC, the flags, mode
information and fast memory in core, and halt the processor. Note
that PC may point to an interrupt service routine rather than the
main program.

26

28

29

The setting of this flag requests an interrupt on the error
channel. After 4 ms the processor is cleared. But at that time, if
the power switch is on and the program has cleared Power Failure
(CONO PI,400000) and enabled the auto restart (CO NO APR,
010000), then when adequate power levels are restored, the processor
will resume normal operation by executing the instruction in location
70 in kernel mode.

This flag is set at the ac power line frequency and can thus be used
for low resolution timing (the clock has high long term accuracy). If
bit 25 is I, the setting of the Clock flag requests an interrupt on the
clock channel.

A page failure has occurred in an interrupt instruction. The setting
of this flag requests an interrupt on the error channel.

Note: A page failure in an interrupt instruction is regarded as a
fatal error, and it causes an interrupt instead of a page failure trap.
The kernel mode program is expected to set up the interrupt instruc­
tions so that a page failure simply cannot occur.

The processor attempted to access a memory that did not respond
within 100 fJ.s. The setting of this flag requests an interrupt on the
error channel [see cautions below] .

Programming Cautions. When handling parity error or nonexistent mem­
ory interrupts, the programmer should beware of the following.
• Should an error flag be set during an interrupt grant, the processor would
handle a lower priority interrupt before getting to the processor interrupt.
This means PC may be pointing to a lower level interrupt service routine
rather than the program level at which the error occurred.
• Even without inadvertent interference from another channel, it is quite
likely the processor will perform one or perhaps two more instructions
between the time the error flag sets and its interrupt starts. Hence even
though PC is at the correct program level, it may well be pointing to the first
or second instruction following the one in which the error occurred.
• A processor error interrupt that switches over to a lower priority channel
should not return to the interrupted program, as the error may simply recur,
producing a second processor interrupt before the error-handling interrupt
for the first. This could happen because PC is actually pointing to the.
offending instruction, but beyond that, one error often begets another­
consider the case of PC counting into a nonexistent memory.
• The error may have originated from a console key function, and thus be
hidden from any investigation by the program.

--,

§2.14 PROCESSOR CONDITIONS

DATAO APR, Maintenance Data Out, Arithmetic Processor

70014 III X y
o 121314 1718 3S

Supply diagnostic information and perform diagnostic functions according
to the contents of location E as shown.

TURN J TURN
OFF ON

VOLTAGE
MARGINS

o 2 3 4 5 6 7 8 9 10 11 12

WRITE TURN J TURN
EVEN OFF ON

PARITY SPEED
MARGINS

18 19 20 21 22 23 I 24 25 26 27 28 29 30

The margin value supplied by bits 30-35 of the output word is translated
to a voltage in the range 0-10 volts by a D-A converter, whose output is
available at pin 2S02V2. Running margins requires a slowdown capacitor
in the converter. But turning off the margin enable switch cuts out the
capacitor, making the converter output suitable for external use, such as for
operating audio equipment to play Bach or rock or Bacharach.

KA 1 0 Processor Conditions

All KAIO processor conditions act through the interrupt on a single channel
assigned to the processor. _ Flags for power failure and parity error are
handled by the condition 10 instructions that address the priority interrupt
system [§ 2.13]. The remaining flags are handled by condition instructions
that address the processor. Its device code is 000, mnemonic APR.

CONO APR, Conditions Out, Arithmetic Processor

70020 y
o 121314 1718 3S

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 18-32 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

CLEAR
PUSHDOWN
OVERFLOW

CLEAR
MEMORY
PROTECTION

CLEAR
NONEXISTENT
MEMORY FLAG

CLEAR
FLOATING
OVERFLOW

13

31

2-101

This instruction is primarily
for maintenance, for which
further information is given
in Chapter 10 of the KIl 0
Maintenance Manual.

MARGIN ADDRESS

I I I I

14 I 15 16 17

MARGIN VALUE

I I

32 I 33 34 35

Most of these conditions are
generally regarded as impor­
tant enough to be assigned to
the highest priority channel.
Except in the case of a power
failure however, the common
practice is for the processor
interrupt to switch over to
the lowest priority channel
by means of a program-set
request. Then the time taken
to handle the situation, which
may well be considerable,
cannot interfere with high
priority events.

CLEAR
OVERFLOW

.--\ \-,---
01 SABLE I ENABLE DISABLE.t ENABLE DISABLEI ENABLE PRIORITY CLEAR CLEAR CLEAR ALL ADDRESS FLOATING INTERRUPT \ I

FLAG\ 11 I
IN-OUT BREAK I

CLOCK CLOCK OVERFLOW OVERFLOW
ASSIGNMENT

DEVICES FLAG INTE~RUPT FLAG INTERRUPT INTE~RUPT
I I

18 19 20 21 22 23 I 24 25 26 27 28 29 30 31 32 33 34 35

2-102 CENTRAL PROCESSOR §2.14

Enabling a particular flag to interrupt means that henceforth the setting
of the flag will request an interrupt on the channel assigned (by bits 33-35)
to the processor. Disabling prevents the flag from triggering a request.

A 1 in bit 19 produces the 10 reset signal, which clears the control logic in
all of the peripheral equipment (but affects neither the priority interrupt sys­
tem, nor the processor flags cleared by this instruction or CONO PI,).

CONI APR, Conditions In, Arithmetic Processor

70024 y

o 121314 1718 35

Read the status of the processor into the right half of location E as shown
(all interrupt requests are made on the channel assigned to the processor).

PUSHDOWN MEMORY NONEXISTENT CLOCK FLOATING FLOATING OVERFLOW OVERFLOW

r-__ OV~E~R:_OW~ __ -. __ ._~~~~_1~E;::~nMEM_O_RY __ ~-,~/t~r~_~._~_PT~ ___ ~~~:.\~~~ITOVER_F_LO_W.-~_~!~~~Ir __________ ~
/

PRIORITY
USER ADDRESS CLOCK TRAP INTERRUPT

IN-OUT BREAK J I OFFSET I ASISIGNMEINT

18 19 20 21

*These bits cause interrupts
on the channel assigned to the
processor, as do Power Failure
and Parity Error, bits 18 and
19 read by a CONI PI,.

PC bears no relation to the
break if the access was re­
quested for a console key
function.

NOVEMBER 1974

22 23 I 24 25 26 27 28 29 I 30 31 32 I 33 34 35

With the possible exception of an illegal memory reference on an instruc­
tion fetch, if the highest priority active channel is assigned to the processor,
then the occurrence of any processor interrupt condition is guaranteed to
produce a processor interrupt with no lower priority interrupt intervening
between it and the program level at which the processor condition occurred.
The actual relationship between PC and the instruction associated with a
given condition is as stated in its description.

19 Pushdown Overflow - in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached -1. The setting
of this flag requests an interrupt, at which time PC points to the
instruction following that in which the overflow occurred. The loca­
tion of the offending instruction is implied by PC for PUSH or POP,
is indicated by the last item in the stack for PUSHJ, but is indeter­
minate for POPJ.

20 User In-out - even if the processor is in user mode, there are no
instruction restrictions (but memory restrictions still apply) [§ 2.16] .

21 Address Break - while the console address break switch was on, the
processor requested access to the memOlY location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con­
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

.~}

§2.14

22

23

26

29

PROCESSOR CONDITIONS

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory, other than in a read-modify-write.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.

Memory Protection - a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area and the user instruction was terminated at that time. The setting
of this flag requests an interrupt, at which time PC points either to
the instruction that caused the violation or to the one following it,
unless the illegal reference was for fetching an instruction. In this
exceptional case it is possible for a lower level interrupt to occur
between the violation and its interrupt, even with the processor
assigned to the highest priority active channel.

Nonexistent Memory - the processor attempted to access a memory
that did not respond within 100 /J.S. The setting of this flag requests
an interrupt, at which time PC points either to the instruction con­
taining the unanswered reference or to the one following it.

Clock - this flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
accuracy). If bit 25 is set, the setting of the Clock flag requests an
interrupt.

Floating Overflow - this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of § 2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over­
flow occurred.

30 Trap Offset - the processor is using locations 140-161 for unimple­
mented operation traps and interrupt locations.

32 Overflow - this is one of the flags saved in a PC word, and the condi­
tions that set it are given at the beginning of § 2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred.

CAUTION

For an address break, a memory protection violation, a
parity error, or a nonexistent memory, a processor error
interrupt that switches over to a lower priority channel
should not return to the interrupted program, as the proc­
essor will fetch the next user instruction before it accepts
the program-set interrupt request. This makes it very likely
that the same error will recur, producing a loop between
the processor interrupt and the interrupted program.

2-103

This flag can also be set by
an instruction executed from
the console while the USER
MODE light is on, in which
case PC bears no relation to
the violation.

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

NOVEMBER 1974

2-104 CENTRAL PROCESSOR

2.1S KilO PROGRAM AND MEMORY MANAGEMENT

General information about the machine modes and paging procedures is
given in Chapter 1, in particular at the end of the introductory remarks and
at the end of § 1.3. Here we are concerned principally with the special
instructions the Monitor uses to operate the system, the special effects that
ordinary instructions have in executive mode, and certain hard ware pro­
cedures, in particular paging and page failures, that are necessary for an
understanding of executive programming.

User Programming. As far as user programming is concerned, all of the
necessary information has already been presented. For convenience however
we list here the rules the user must observe. [Refer to the Monitor manual
for further information including use of the Monitor for input-output.]
• If possible, limit your memory needs to 32K, using addresses 0-37777
and 400000-437777, to gain the savings afforded by having the status of a
"small user". There are no restrictions of any kind on addresses 0-17 as
these are in fast memory and are available to all users (even though page 0
may otherwise be inaccessible).
• If an area of memory is write-protected, eg for a reentrant program shared
by several users, do not attempt to store anything in it. In particular do not
execute a JSR or JSA into a write-protected page.
• Use the MUUO codes 040-077 only in the manner prescribed in the
Monitor manual. In general, unless they are prescribed for special circum­
stances, code 000 and the unassigned codes should not be used.
• Do not use HALT (JRST 4,) or JEN (JRST 12, (specifically JRST 10,)).
• Unless User In-out is set do not give any 10 instruction with device code
less than 740. The program can determine if User In-out is set by examining
bit 6 of the PC word stored by JSR, JSP or PUSHJ.
• If your public program has the use of concealed programs, do not
reference a location in a concealed page for any purpose except to fetch an
instruction from a valid entry point, ie a location containing a JRST 1,.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the instruction
restrictions himself. Note that a 0 in bit 6 will clear User In-out, so a user
can discard his own special privileges. Similarly a I in bit 7 sets Public, but a
o does not clear it, so a public program cannot enter concealed mode this way.

The above rules are the result of KIl 0 hardware characteristics. But in a
real sense many of these rules are actually transparent to the user, in
particular the whole paging setup is invisible. Although the hardware allows
for user virtual address spaces that are scattered and/or very large (eg larger
than available physical core), the actual constraints will be dictated by the
particular Monitor and the system manager. It may be desirable (for com­
patible operation with KAlO systems) to enforce a two-segment virtual
address space that mimics the one imposed by the KAlO hardware. In any
case the user must write a sensible program, which can be handled easily and
cheaply by the system; if he uses addresses a few to a page all over memory,
his program can be run but will require a much larger amount of core than
necessary or cause excessive page swapping.

§2.1

"

§2.15 KIlO PROGRAM AND MEMORY MANAGEMENT

Paging

All of memory both virtual and physical is divided into pages of 512 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by IS-bit addresses, where the left
nine bits specify the page number and the right nine the location within the
page. Physical memory can contain Sl92 pages and requires 22-bit addresses,
where the left thirteen bits specify the page number. The hardware maps the
virtual address space into a part of the physical address space by trans­
forming the IS-bit addresses into 22-bit addresses. In this mapping the right
nine bits of the virtual address are not altered; in other words a given
location in a virtual page is the same location in the corresponding physical
page. The transformation maps a virtual page into a physical page by sub­
stituting a 13-bit physical page number for the 9-bit virtual page number.
The mapping procedure is carried out automatically by the hardware, but
the page map that supplies the necessary substitutions is set up by the kernel
mode program. Each word in the map provides information for mapping
two consecutive pages with the substitution for the even numbered page in
the left half, the odd numbered page in the right half.

The paging hardware contains two 13-bit registers that the Monitor loads
to specify the physical page numbers of the user and executive process
tables. To retrieve a map word from a process table, the hardware uses the
appropriate base page number as the left thirteen bits of the physical address
and some function of the virtual page number as the right nine bits. Eg the
entire user space of 512 virtual pages at two mappings per word requires a
page map of just half a page, and this is the first half page in the user process
table. Thus locations 0-377 in the table hold the mappings for pages 0 and
I to 77 6 and 777. To find the desired substitution from the 9-bit virtual
page number, the hardware uses the left eight bits to address the location
and the right bit to select the half word (0 for left, 1 for right). If the
Monitor specifies a program as being a small user, that program is limited to
two 16K blocks with addresses 0-37777 and 400000-437777. This is
pages 0-37 and 400-437, and the mappings are in locations 0-17 and
200- 217 in the page map.

The executive virtual address space is also 256K but the first 112K are not
paged - in other words any address under 340000 given in kernel mode
addresses one of the first 112K locations in physical memory directly. The
other 144K is paged for supervisor or kernel mode anywhere into physical
memory. For this there are two maps. The map for the second half of the
virtual address space uses the same locations in the executive process table as
are used in the user process table for the user map (locations 200-377 for
pages 400-777). The map for the remaining 16K in the first half of the
executive virtual address space is in the user process table, the mappings for
pages 340-377 being in locations 400-417. Thus the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user.

The illustrations on the next two pages show the organization of the
virtual address spaces, the process tables and the mappings for both user and
executive. The first illustration gives the correspondence between the
various parts of each address space and the corresponding parts of the page

2-105

Actually page 0 has only 496
locations using addresses 20-
777, as addresses 0-17 refer­
ence fast memory, which is
unrestricted and available to
all programs. (In general a
user cannot reference the first
sixteen core locations in his
virtual page 0.) Throughout
this discussion it is assumed
that all references are to core
and are not made by an
instruction executed by an
executive XCT [see below] .

Thus when switching from
one user to another, the Moni­
tor need change only the user
process table. This single sub­
stitution can make whatever
change is necessary in the
executive address space for a
particular user.

2-106

0

4000 0

400000

440000

777777

USER
VIRTUAL
ADDRESS

SPACE

16K

112 K

16 K

112K

CENTRAL PROCESSOR

\
\
\
\

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \ USER

\ \ PROCESS
\ \'r---:-,.-:_T A"7B=L:....E----:~...,
\ SMALL USER 0- 37 16

I
I

I /
I /

/f

40-377 '12

SMALL USER 400-437 16

0

340000
I /

I f
/ /

440-777 112
///

///

II I /
/

/

//

r----:::C-:=::"'-:-:---:-:-::--::-:-=--1/
;I---"E--,XE:,::..CU:....T;,.:.I V.::,E:.3,.,:40:""-...,.c3:....7_7 -1!L --

/
/

/

'b7-:'T7777-ri';...n7-7777'7'i 16 , , ,
I
I ,

I
I ,

I
I ,

I
I
I , ,

I
I
I
I
I
I
I
I
I
I
I ,

I

224

400000

777777

EXECUTIVE
VIRTUAL
ADDRESS

SPACE

112 K
NOT PAGED

(KERNAL MODE ONLY I

16K

128K

I
I

I
I

I
I

I

I
I

I

EXECUTIVE
PROCESS

TABLE

400 -777

§2.1S

32

128

, h-,..."..,....,.-r-,..:.;.c;.:;"""rr7.."..,....,..j , ,
I , , , ,

I ,
I
I
I , ,

I , , , , , , ,
I , , , ,

I

SHADEO AREAS
ARE NOTUSEO
BY HAROWARE

VIRTUAL ADDRESS SPACE AND PAGE MAP LAYOUT

,",

§2.1S KIlO PROGRAM AND MEMORY MANAGEMENT 2-107

USER PROCESS TABLE

01 USER PAGE 0 , i USER PAGE 1

I I
17 USER PAGE 36

20 USER PAGE 40

USER PAGE 37

USER PAGE 41

I
I

I i
I AVAILABLE TO SOFTWARE IF SMALL USER
I I
I I
I I
I I

177 USER PAGE 376

200 USER PAGE 400 ,
USER PAGE 377

USER PAGE 401

,
217 USER PAGE 436 USER PAGE 437

220 USER PAGE 440 USER PAGE 441
I I
I I
I I
I I
I AVAILABLE TO SOFTWARE IF SMALL USER

I I
I I
I I
I I

377 USER PAGE 776 USER PAGE 777

EXECUTIVE PAGE 341 400 EXECUTIVE PAGE 340
I

417

420

421

422

423

424

425

426

427

430

431

432

433

434

435

436

437

440
I
I

I
EXECUTIVE PAGE 376 I EXECUTIVE PAGE 377

USER PAGE FAILURE TRAP INSTRUCTION

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER PUSHDOWN OVERFLOW TRAP INSTRUCTION

USER TRAP 3 TRAP INSTRUCTION

MUUO STORED HERE

PC WORD OF MUUO STORED HERE

EXECUTIVE PAGE FAILURE WORD

USER PAGE FAILURE WORD

KERNEL NO TRAP NEW MUUO PC WORD

KERNEL TRAP NEW MUUO PC WORD

SUPERVISOR NO TRAP NEW MUUO PC WORD

SUPERVISOR TRAP NEW MUUO PC WORD

CONCEALED NO TRAP NEW MUUO PC WORD

CONCEALED TRAP NEW MUUO PC WORD

PUBLIC NO TRAP NEW MUUO PC WORD

PUBLIC TRAP NEW MUUO PC WORD

I AVAILABLE TO SOFTWARE
I

777~1 ______________________________ ~

EXECUTIVE PROCESS TABLE

01
'AVAILABLE TO SOFTWARE

37
r---~

40 EXECUTIVE LUUO STORED HERE

41 LUUO HANDLER INSTRUCTION

42

,STANDARD PRIORITY INTERRUPT INSTRUCTIONS

57 r --------i
60

:AVAILABLE TO SOFTWARE

177
~------------------,-------------------~

200 EXECUTIVE PAGE 400

377 EXECUTIVE PAGE 776

400

AVAILABLE TO SOFTWARE

417

EXECUTIVE PAGE 401

EXECUTIVE PAGE 777

~--------------------------------------~
420 EXECUTIVE PAGE FAILURE TRAP INSTRUCTION

421 EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 EXECUTIVE PUSHDOWN OVERFLOW TRAP INSTRUCTION

423 EXECUTIVE TRAP 3 TRAP INSTRUCTION

424

I
I
I
I
I
I
I
iAVAILABLE TO SOFTWARE

I
I
I
I
I
I
I

777~1 __________________________________ ~

PROCESS TABLE CONFIGURATION

2-108

There is no requirement that
the accessible space be con­
tinuous - it can be scattered
pages. The convention how­
ever is for the accessible space
to be in two continuous virtual
areas, low and high, beginning
respectively at locations 0 and
400000. The low part is
generally unique to a given
user and can be used in any
way he wishes. The (perhaps
nUll) high part is a reentrant
area, which is shared by sev­
eral users and is therefore
write-protected. The small
user configuration is consist­
ent with this arrangement.

The program can inspect the
contents of the page table by
using the MAP instruction
and 10 instructions that ad­
dress the paging hardware [see
below] .

CENTRAL PROCESSOR §2.15

map for it. The second illustration lists the detailed configuration of the
process tables. Any table locations not used by the hardware can be used by
the Monitor for software functions. Note that the numbers in the half
locations in the page map are the virtual pages for which the half words give
the physical substitutions. Hence location 217 in the user page map contains
the physical page numbers for virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessible.
The Monitor also specifies whether each page is public or not and writeable
or not. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE

o 1 234 S

PHYSICAL PAGE
ADDRESS BITS 14-26

DATA FOR ODD VIRTUAL PAGE

17181920212223

PHYSICAL PAGE
ADDRESS BITS 14-26

3S

Bits 5 -17 and 23-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1 s in the remaining bits are as
follows.

Bit Meaning of a 1 in the Bit

A Access allowed
P Public
W Write able (not write-protected)
S Software (not interpreted by the hardware)
X Reserved for future use by DEC (do not use)

Associative Memory. If the complete mapping procedure described above
were actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this the
paging hardware contains a 32-word associative memory, in which it keeps
the more recently used mappings for both the executive and the current user.
Each word is divided into two parts with one part containing a virtual page
number specified by the program and the other containing the corresponding
physical page number as determined from the page map. Hence the
associative memory is a page table made up of a list of virtual pages and a list
of physical pages, each with thirty-two corresponding locations. In the
virtual list, each entry contains a 9-bit virtual page number, a single bit that
indicates whether the specified page is in the user or executive address space,
and a bit that indicates whether the entry is valid or not (it is not suitable to
clear a location as 0 is a perfectly valid page number). Each corresponding
entry in the physical list contains a 13-bit physical page number and the
P, Wand S bits from the map half word for that page. The A bit is not
needed in the table as the mapping is not entered into the table at all if the
page is not accessible.

At each reference the hardware compares the page number supplied by

§2.15 KIlO PROGRAM AND MEMORY MANAGEMENT

the program with those in the virtual part of the page table. If there is a
match for the appropriate address space, the corresponding entry in the
physical list is used as the left thirteen bits in the physical address (provided
of course that the reference is allowable according to the P and W bits). If
there is no match, the hardware makes a memory reference to get the neces­
sary information from the page map and enters it into the page table at the
location specified by a reload counter. This counter is incremented when­
ever it is used to reload the table, and also whenever the location to which it
points is used for a mapping. Hence the counter tends to stay away from
locations containing the page numbers most frequently referenced.

Page Failure

A page failure that occurs during an interrupt instruction terminates the
instruction and sets the In-out Page Failure flag, requesting an interrupt on
the error channel assigned to the processor. In all other circumstances, if the
paging hardware cannot make the desired memory reference, it terminates
the instruction immediately without disturbing memory, the accumulators
or PC, places a page fail word in the user process table, and causes a page
failure trap. If the attempted reference is in user virtual address space, the
page fail word is placed in location 427 of the user process table, and the
processor executes the trap instruction in location 420 of the same table.
If the attempted reference is in executive virtual address space, the page fail
word is placed in location 426 of the user process table, and the processor
executes the trap instruction in location 420 of the executive process table.
The trap instruction is executed in the same address space in which the
failure occurred. The page fail word supplies this information.

1 ul VIRTUAL PAGE 1

8 9 17

IF BIT 31 IS 0, BITS 31-35
HAVE THIS FORMAT

FAILUKE
TYPE

31 3S

10iAIwIsiri
31 323334 3S

Whether the violation occurred in user or executive virtual address space is
indicated by a 1 or a 0 in bit 8. If bit 31 is 1, the number in bits 31-35
(~ 20) indicates the type of "hard" failure as follows.

23 Address failure - this is a simulated page failure caused by the satis­
faction of an address condition selected from the console. It indi­
cates that while the console address break switch was on and the
Address Failure Inhibit flag was clear (bit 8 of the PC word), the
processor initiated a page check for access to the memory location
that was specified by the paging and address switches and for which a
comparison was enabled, and the intended memory reference was for
the purpose selected by the address condition switches as follows:

The instruction fetch switch was on and the requested access was
for retrieval of an ordinary instruction, including an instruction
executed by an XCT or an LVVO (address 41).

2-109

This memory reference is re­
ferred to as a "page refill
cycle."

When a page failure trap in­
struction is performed, PC
points to the instruction that
failed (or to an XCT that
executed it), unless the failure
occurred in an overflow trap
instruction, in which case PC
points to the instruction that
overflowed. After taking care
of the failure, the processor
can always return to the inter­
rupted instruction. Either the
instruction did not change
anything, or the failure was in
the second part of a two-part
instruction, where First Part
Done being set prevents the
processor from repeating any
unwanted operations in the
first part.

Since a user page failure trap
instruction is executed in user
address space, the Monitor
should be careful not to have
the trap instruction do in­
direct addressing that might
cause another page failure.

Whether or not a comparison
can be made is a function of
the settings of the paging
switches [Appendix FI] and
the state of the User Ad­
dress Compare Enable flag
[see below] .

2-110

Virtual addresses are supplied
to the paging hardware via
the address bus. An inad­
vertent failure occurs when
the bus is not used for an
access, but it accidentally con­
tains the number set into
the address switches. The data
fetch switch also catches the
attempt to retrieve a dispatch
interrupt instruction or in­
advertently a standard inter­
rupt instruction, but the page
failure sets the In-out Page
Failure flag instead of result­
ing in a trap for an address
failure.

Using this flag, the Monitor
can return to a user instruc­
tion that caused an address
failure and "set by it."

Tests for hard page failures
are actually made in the order
given here.

The type of reference implies
nothing about the cause of
failure - it indicates only the
reason the failed reference
was being made.

In a soft page failure, the
mapping entry for the page is
removed from the page table
on the assumption that the
Monitor will change it. When
the instruction is restarted,
the hardware must go to the
page map to get a new entry
for the page table.

22

CENTRAL PROCESSOR §2.15

The data fetch switch was on and the requested access was for
retrieval of an address word in an effective address calculation or
read-only retrieval of an operand (otl1er than in an XCT). This
switch can also cause a failure inadvertently on the retrieval of a
trap instruction or a PC word in an MUUO.

The write switch was on and the requested access was for writing,
either write-only or read-modify-write, including writing by an
LUUO (address 40). This switch also causes a failure on the first
write in an MUUO if the address switches contain the effective
address of the MUUO (even though that address is not used for the
access), and can cause a failure inadvertently on the second write.

The Address Failure Inhibit flag, which can be set only by a
JRSTF or MUUO, prevents an address failure during the next instruc­
tion - the completion of the next instruction automatically clears it.
If an interrupt or trap intervenes, the flag has no effect and it is saved
and cleared if the PC word is saved. If it is not saved, it affects the
instruction following the interrupt or trap. Otherwise it affects the
instruction following a return in which it is restored with the
PC word.

Page refill failure - this is a hardware malfunction. The paging hard­
ware did not find the virtual page listed in the page table, so it loaded
paging information from the page map into the table but still could
not find it.

20 Small user violation - a small user has attempted to reference a
location outside of the limited small user address space.

21 Proprietary violation - an instruction in a public page has attempted
to reference a concealed page or transfer control into a concealed
page at an invalid entry point (one not containing a JRST 1,).

If the violation is not one of these, then bits 31-35 have the format shown
above where A, Wand S are simply the corresponding bits taken from the
map half word for the page, and T indicates the type of reference in which
the failure occurred - 0 for a read reference, 1 for a write or read-modify­
write reference.

The page fail trap instruction is set by the Monitor to transfer control to
kernel mode. After rectifying the situation, the Monitor returns to the inter­
rupted instruction, which starts over again from the beginning. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores the First Part Done flag.

Note that a failure does not necessarily imply that anything is "wrong".
The virtual address space of even a small user is 32K words, which may well
be more than is needed in a given run_ Hence the Monitor may have only ten
or twenty pages of the user program in core at any given time, and these
would be the virtual pages indicated as accessible. When the user attempts to
gain access to a page that is not there (a virtual page indicated in the page
map as inaccessible), the Monitor would respond to the page failure by

§2.1S KIlO PROGRAM AND MEMORY MANAGEMENT

bringing in the needed page from the drum or disk, either adding to the user
space or swapping out a page the user no longer needs.

The same situation exists for writeability. When bringing in a user
program, the Monitor would ordinarily indicate as writeable only the buffer
area and other pages that will definitely be altered. Then in response to a
write failure, the Monitor makes the page writeable and indicates to itself
(perhaps by means of the software bit in the page map) that that page has in
fact been altered. When the user is done, the Monitor need write only the
altered pages back onto the drum.

Monitor Programming

The kernel mode program is responsible for the overall control of the system.
It is the only program that has access to any of physical core unpaged and
that has no instruction restrictions. The kernel program handles all in-out
for the system and must set up the page maps, trap locations, interrupt loca­
tions and the like. The supervisor program labors under the same instruction
restrictions as the user but has no way of bypassing them - they always
apply. Supervisor mode is limited to the 144K paged part of the executive
address space, although within that space it can read but not alter concealed
pages (the kernel program supplies data tables of all kinds to the supervisor
program, and the latter cannot affect them). The supervisor can give a
JRSTF that clears Public provided it is also setting User; in other words the
supervisor can return control to a concealed program but cannot enter kernel
mode by manipulating the flags. The PC words supplied by MUUOs can
manipulate the flags in any way, switching arbitrarily from one mode to
another, but these are in the process table and assumed to be under control
solely of kernel mode.

For accumulator, index register and fast memory references, the Monitor
automatically uses fast memory block O. For each user, the kernel mode
program must assign a block. The usual procedure is to assign blocks 2 and 3
to individual user programs on a semipermanent basis for special applications
and to assign block 1 to all other users. In this way the Monitor need not
store blocks 2 and 3 when the special users are not running, and it need not
store block 1 when it takes over control from an ordinary user temporarily.
When switching from one user to another, the Monitor usually stores the
first user's accumulators in his shadow area - this is locations 0-17 in user
virtual page 0, an area not generally accessible to the user at all - and loads
the new user's accumulators from his shadow area, where they were stored
after the last time the new user ran.

Even while User is set, the interrupt instructions are not part of the user
program and are thus subject only to executive restrictions. As interrupt in­
structions, JSR, JSP and PUSHJ automatically take the processor out of user
mode to jump to an executive service routine. An MUUO can also be used.

The paging hardware has one non-IO instruction and two condition 10
instructions primarily for diagnostic purposes. Otherwise control over the
system is exercised by data 10 instructions. The device code for the paging
hardware is 010, mnemonic PAG.

2-111

If the Monitor shared block 0
with any users, it would have
to store the user accumulators
even when taking control only
temporarily.

The page failure and overflow
trap instructions are executed
in the user address space if
caused by the user.

2-112

Invalidating all data in the
associative memory means
setting the Word Empty bit in
each location to indicate that
the rest of the word is mean­
ingless and should not be used.

USER FAST
USER

LOAD SMALL ADDRESS

CENTRAL PROCESSOR §2.l5

DATAO PAG, Data Out, Paging

70114 y
o 121314 1718 3S

Invalidate all data in the associative memory, and set up the paging hardware
according to the contents of location E as shown.

MEMORY USER BASE ADDRESS
LEFT

BL~CK
USER COMPARE

ENABLE I I I I I I I I I I I

o 2 3 4 5 I 6 7 8 I 9 10 11 I 12 13 14 I 15 16 17

LOAD PAGE
RIGHT ENABLE

EXECUTIVE BASE ADDRESS

1
18 19 20 21

The Address Compare Enable
bit functions in conjunction
with the console paging
switches, as explained in
Appendix Fl.

An executive mode program
that does not set bit 22 and
avoids other speCial KI 1 0
features will run on a KAlO
as well. This is useful for
hardware diagnostics and
bootstrap loaders [see readin
mode, §2.12].

NOTE

Neither turning on power nor
pressing the reset switch in­
validates the data in the asso­
ciative memory. Therefore,
after power has been off, the
starting kernel mode program
must do a DATAO PAG, to
clear the associative memory
of random data before enter­
ing executive or user paged
address space.

22
I I I I I I I I I I I I

23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35

Bits 0 and 18 are change bits. If bit 0 is 0, ignore the rest of the left half
word. But if bit 0 is 1, load bits 5 -17 into the user base register to select the
user process table, select the fast memory block specified by bits 1 and 2 for
the user, limit the address space to that of a small user if bit 3 is 1, and
enable address comparison if bit 4 is 1.

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise
load bits 23-35 into the executive base register to select the executive
process table, and enable executive paging if bit 22 is 1. For normal opera­
tion of the system, bit 22 must be 1. A 0 in this bit disables overflow
traps, and disables executive paging so there is no supervisor mode and
no executive virtual addressing - in other words an executive mode pro­
gram automatically runs in kernel mode with all access in the first 256K of
physical memory unpaged.

DATAl PAG, Data I n, Paging

70104 y
o 121314 1718 3S

Read the status of the paging hardware into location E. The information
read is the same as that supplied by a DATAO (bits 0 and 18 are 0).

CONO PAG, Conditions Out, Paging

70120 y
o 121314 1718 3S

Load the executive stack pointer from bits 18 - 22 and the page table reload
counter from bits 31-35 of the effective conditions E as shown.

§2.15 KIlO PROGRAM AND MEMORY MANAGEMENT

EXECUTIVE AC
STAC K PO INTER

I I I I I I I I

18 19 20 I 21 22 23 I 24 25 26 I 27 28 29 I 30

The executive stack pointer specifies a block of sixteen locations in the user
process table by supplying the left five bits for a 9-bit address that references
a location in the table; this function is used only for accessing stacked fast
memory blocks in an instruction executed by an executive XCT [see below] .
Loading the reload counter causes it to point to the specified location in the
page table.

CONI PAG, Conditions In, Paging

70124 y

o 121314 1718 35

Read the processor serial number, the page table reload counter, and the
contents of the location in the virtual page table specified by the counter
into the right half of location E as shown.

PROCESSOR SERIAL NUMBER

o 2 I I 3 4 5 I 6 7 8 I 9 10 11 I 12

EXECUTIVE WORD COMPLEMENT OF VIRTUAL PAGE NUMBER ADDRESS
SPACE EMPTY

I I I I I I I I

18 19 20 I 21 22 23 I 24 25 26 27 28 29 30

Note that bits 18-26 contain the complement of the virtual page number in
the selected location. A 1 in bit 27 indicates the page is in the executive
address space; a 1 in bit 30 means the information in bits 18-27 is invalid.

MAP Map an Address

257 A III X y
o 89 121314 1718 35

Map th~ virtual effective address E and place the resulting map data in AC
right in the same format as it is in the page map, ie bits P, Wand S in
bits 19-21 and the physical page number in bits 23-35. Clear AC left.

31

13

31

2-113

PAGE TABLE
RELOAD COUNTER

I I I I

32 I 33 34 35

14 I 15 16 17

PAGE TABLE
RELOAD COUNTER

I I I I

32 I 33 34 35

It is possible for the reload
counter to change between
the CONI and the CONO, so
the CONI might read a differ­
ent location than was selected
by the CONO.

Note that unlike all other in­
structions since § 2.1 0, this is
not an 10 instruction.

NOVEMBER 1974

2-114

PAGE NO
FAILURE

P W S
MATCH

18 19 20 21

These three instructions can
be used to inspect the contents
of the associative memory.
The CONO selects a location,
the CONI reads the contents
of the virtual-page part of
that location, and an MAP
that addresses the specified
virtual page reads the con­
tents of the physical-page part
of that location.

Read the next four paragraphs
very carefully (reading them
two or three times is highly
recommended).

22

CENTRAL PROCESSOR §2.15

PHYSICAL PAGE
ADDRESS BITS 14 -26

I I I I I I I I I I I I

23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35

This instruction cannot produce a page failure, but if a page failure would
have resulted had an ordinary instruction in the same mode attempted to
write in location E, place a 1 in AC bit 18. If no match can be made by the
paging hardware, place a 1 in bit 22. This results in four possible situations
as a function of the states of bits 18 and 22.

Bit 18

o
o

Bit 22

o
Meaning

AC right contains valid map data.
There is no page failure but also no match, so the
instruction must have made an unmapped reference -
perhaps to fast memory or to the unpaged area in
kernel mode.

o There is a page failure but the map data is correct as
a match exists.
There is a page failure, and since there is no match,
the failure must have resulted from the instruction
referencing an inaccessible page or from some prior
failure (such as a page refill malfunction). Hence AC
right contains invalid information.

Executive XCT

Ordinarily an instruction in a user program is performed entirely in user
address space and an instruction in the executive program is performed
entirely in executive address space. In order to facilitate communication
between Monitor and users, the XCT instruction allows the executive to
execute instructions whose memory operand references can cross over the
boundary between user and executive address spaces.

It is very important to note that the only difference between an instruc­
tion executed by an executive XCT and an instruction performed in normal
circumstances is in the way the memory operand references are made. There
is no difference in the XCT itself. Everything in the XCT is done in executive
address space, and the instruction fetched by the XCT is fetched in executive
space. Moreover, in the executed instruction all effective address calculation
and accumulator references are in executive space. If the instruction makes
no memory operand references, as in a jump, shift or immediate mode in­
struction, its execution differs in no way from the normal case. The only
difference is in memory operand references.

Control over the special effects of the executed instructions is determined
by the User In-out flag (whose implied meaning is confined to user mode)
and bits 11 and 12 of the A portion of the XCT instruction word (in user
mode A is ignored). If the A bits are both 0, the XCT acts as described in
§ 2.9, and the executed instruction differs in no way from the normal case.

§2.15 KIlO PROGRAM AND MEMORY MANAGEMENT

But if these bits are not both 0, then some memory operand references are
made to user virtual address space, where the type of reference is determined
by the A bits and the type of memory is selected by User In-out. With this
flag set, the A bits affect both core memory and fast memory references,
whereas with User In-out clear, the A bits affect only fast memory references.
For the memory operand references selected by User In-out, the effect of 1 s
in bits 11 and 12 is as follows: a 1 in bit 12 causes the executed instruction
to perform all selected read and read-modify-write memory operand refer­
ences to be performed in user virtual address space; a 1 in bit 11 causes all
selected memory operand write references to be performed in user space;
and 1 s in both bits cause all types of selected memory operand references in
the executed instruction to be performed in user space.

The meaning of user space is obvious in terms of core memory references,
but not so for fast memory. When User In-out is set, the user space for fast
memory references depends on which fast memory block is currently
selected for the user. If block 0 is selected, fast memory operand references
of the types specified by bits 11 and 12 are made to the user shadow area. If
some other block is selected, the specified fast memory references are made
to the selected block.

If User In-out is clear, all core memory references are in executive
address space. Fast memory references of the types specified by bits 11
and 12 are made to the user process table, in particular to that set of

sixteen locations specified by the executive stack pointer. The pointer is
given by a CONO PAG,.

User Space Fast Memory References

User Fast Memory Block Selected
User In-out Zero Nonzero

1

o
Shadow area

AC stack

Selected block

AC stack

There is another flag that plays a role in the execution of instructions by
an executive XCT. This is Disable Bypass, bit 0 of the PC word. When
Disable Bypass is clear, a bypass in the logic allows an executed instruction

-, to access the concealed user area from supervisor mode. With the flag set, an
attempt to do this results in a page failure. Generally the new MUUO PC
word would set this flag when the Monitor is being called from public mode,
so the concealed area can be accessed only when such access is requested by
the concealed program.

Individual Instruction Effects. The effects of execution by an executive
XCT on different types of instructions is as follows.
• Instructions without memory operand references are not affected. This
includes shifts, jumps, immediate mode instructions, CONSO, CONO, and
even an XCT. In fact not only is an executive XCT not affected when
executed by an executive XCT, but the first destroys any effect the second
would otherwise have on a third instruction (in other words, a pair of
executive XCTs is equivalent to a pair of ordinary XCTs).

2-115

2-116

This makes a different set of
sixteen words available at each
level using the same addresses.

CENTRAL PROCESSOR §2.1S

• Instructions that refer to one memory location for reading only or reading
and writing are controlled by the read bit (MOYE, MOYES, ADDM, AOS).
The read bit controls writing when the write is done to the same location as
the read, whether the memory references are done as a single cycle including
both read and write or as separate read and write cycles.
• Instructions that refer to one memory location for writing only are con­
trolled by the write bit (MOYEM, MAP, HRLZM).
• Instructions that refer to two different memory locations are controlled
by the read bit in the read part of the instruction and by the write bit in the
write part (BLT, PUSH).
• BLKI and BLKO are controlled by the write bit and the read bit respec­
tively. The pointer reference is done in the same address space as the
data transfer.
• In byte instructions all pointer calculations are done in executive address
space. The read and write bits affect only the second part, ie the load
or deposit.

Philosophy. The purpose of the executive XCT is to facilitate the
handling of user requirements by the Monitor, but the selection made by
User In-out of the references affected by the read and write bits is to allow
the Monitor to make recursive calls to itself, ie to perform MUUOs in the
process of carrying out an MUUO given by the user. Specifically the state of
User In-out differentiates between the Monitor response directly to the user
MUUO and its response to its own MUUOs.

The new PC word of an MUUO from the user would set User In-out so
that core memory references can be made across the user-executive
boundary, and fast memory references can be made to the user AC block.
The point in choosing between the shadow area and the selected block if not
block 0 is to reference the information that was held in the user AC block
before the Monitor took over. If the user shared block 0 with other users
and the Monitor, the Monitor will have saved his ACs in the shadow area of
his address space. The other AC blocks are not disturbed when the Monitor
takes over temporarily, so the Monitor need not save them and they will still
hold the user information.

If in the course of carrying out a user MUUO, the Monitor should itself
give an MUUO, the new PC word would clear User In-out. Thus at this level
all core memory references are in the executive address space and fast
memory references are to an AC block in the user process table as specified
by the executive stack pointer. MUUO calls by the Monitor to itself can be
nested to a number of levels, but in all cases User In-out is left clear. The
particular AC block used at any level is specified by the stack pointer. Hence
the AC stack in the user process table is effectively a pushdown list kept by
the stack pointer; at each level the program must change the pointer to
specify the appropriate block. Each user process table would contain the
blocks needed for carrying out MUUOs for that user.

EXAMPLE. Suppose that the Monitor has been called by an MUUO from
the user (hence User In-out is set) and wishes to save the user's ACs in the
shadow area. Assume that every user runs with AC block I, 2 or 3, and that
the Monitor always sets up executive virtual page 342 to point to the same

,":!

. .,

§2.16 KAlO PROGRAM AND MEMORY MANAGEMENT

physical page as user page O. Using accumulator T in block 0, the Monitor
saves the user ACs by giving these two instructions,

MOVE I
XCT

T,342000 ; Initialize pointer: from 0 to 342000
1,[BLT T,342017]

and restores them with these two.

MOVSI
XCT

T,342000 ;From 342000 to 0
2,[BLT T,17]

2.16 KAlO PROGRAM AND MEMORY MANAGEMENT

The KA 10 has only user and executive modes and uses protection and
relocation hardware.

Every user is assigned a core area and the rest of core is protected from
him - he cannot gain access to the protected area for either storage or
retrieval of information. The assigned area is divided into two parts. The
low part is unique to a given user and can be used for any purpose. The
high part may be for a single user, or it may be shared by several users. The
Monitor can write-protect the high part so that the user cannot alter its
contents, ie he cannot write anything in it. The Monitor would do this when
the high part is to be a pure procedure to be used reentrantly by several
users. One high pure segment may be used with any number of low impure
segments. The user can request that the Monitor write-protect the high part
of a single program, eg in order to debug a reentrant program. All users write
programs beginning at address 0 for the low part, and beginning usually at
400000 for the high part. The programmed addresses are retained in the
object program but are relocated by the hardware to the physical area
assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protection
and relocation addresses for the low and high blocks. The protection address
determines the maximum address the user can give; any address larger than
the maximum is illegal. The relocation address is the address, as seen by the
Monitor and the hardware, of the first location in the block. The Monitor
defines these addresses by loading four 8-bit registers, each of which
corresponds to the left eight bits (18 - 25) of an address whose right ten bits
are all O.

To determine whether an address is legal its left eight bits are compared
with the appropriate protection register, so the maximum user address
consists of the register contents in its left eight bits, 1777 in its right ten bits
(ie it is equal to the protection address plus 1777). Since the set of all
addresses begins at zero, a block is always an integral multiple of 102410
(2000s) locations. Relocation is accomplished simply by adding the contents
of the appropriate relocation register to the user address, so the first address
in a block is a multiple of 2000. The relative user and relocated address
configurations are therefore as illustrated here, where PI, RI, Ph and Rh are
respectively the protection and relocation addresses for the low and high

2-117

2-118

Note that the relocated low
part is actually in two sections
with the larger beginning at
RI + 20. This is because ad­
dresses 0 -17 are not relo­
cated, all users having access
to the accumulators. The
Monitor uses the first sixteen
locations in' the low user
block to store the user's accu­
mulators when his program is
not running.

Some systems have only the
low pair of protection and
relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

If a relocated address is in
the range 0-17, the refer·
ence is to core rather than
fast memory.

CENTRAL PROCESSOR

o
LOW

PI + 1777

ILLEGAL

-
<-
\
\

\
\
\

\ \
\ \

\ \ I
I

\' I
\ \ I

\ \ I I

\ " I \ I \I

'" 1\ I \ I \
I " ,

I / \ \

§2.16

o 17

Rh + 400000
HIGH

/ I \

, RI RI + 20

400000
HIGH

ILLEGAL

777777

USER ADDRESSES
BEFORE RELOCATION

I

I

I I \
\

I \

I \
I

LOW

, ,
I ,

NON· :
EXISTENT,
MEMORY I

I
I
I
I
I L _______ .J

RI + PI + 1777

Rh MUST BE NEGATIVE
UNLESS SYSTEM HAS A
MEMORY LARGER THAN
128K

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER RELOCATION

parts as derived from the 8-bit registers loaded by the Monitor. If the low
part is larger than 128K locations, ie more than half the maximum memory
capacity (PI ~ 400000), the high part starts at the first location after the low
part (at location PI + 2000). The high part is limited to 128K. If the Monitor
defines two parts but does not write-protect the high part, the user has a
two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CONI APR,), and an interrupt is requested on the
channel assigned to the processor [§ 2.14] .

Addressing Summary. Let Au be the address supplied by the user, and let
Ap be the physical core address generated from it by the relocation hardware.

If Au ~ 17, then Ap = Au (fast memory, no relocation).

If 20 ~ Au ~ PI + 1777, then Ap = (Au + R I) mod 218 .

{ 400000 }
If the greater of PI + 2000 ~ Au ~ Ph + 1777,

then Ap = (Au + R h) mod 218 •

Any other value of Au is illegal. These are Au > PI + 1777 if either
Au < 400000 or Au> Ph + 1777.

'.

§2.l6 KA10 PROGRAM AND MEMORY MANAGEMENT

User Programming. The user must observe the following rules when pro­
gramming on a time shared basis. [Refer to the Monitor manual for further
information including use of the Monitor for input-output.]
• Use addresses only within the assigned blocks for all purposes - retrieval
of instructions, retrieval of addresses, storage or retrieval of operands. The
low part contains locations with addresses from 0 to the maximum; the high
part contains from the greater of 400000 or PI + 2000 to the maximum.
Either part can address the other.
• If the high part is write-protected, do not attempt to store anything in it.
In particular do not execute a JSR or JSA into the high part.
• Use instruction codes 000 and 040-127 only in the manner prescribed in
the Monitor manual.
• Unless User In-out is set do not give any 10 instruction, HALT (JRST 4,)
or JEN (JRST 12, (specifically JRST 10,». The program can determine if
User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or

PUSHJ.
The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does

not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the restrictions
himself. Note that a 0 in bit 6 will clear User In-out, so a user can discard
his own special privileges.

LUUOs (001-037) function normally and are relocated to addresses 40
and 41 in the low block [§2.1O].

Monitor Programming. The Monitor must assign the core area for each
user program, set up trap and interrupt locations, specify whether the user
can give 10 instructions, transfer control to the user program, and respond
appropriately when an interrupt occurs or an instruction is executed in
unrelocated 41 or 61. Core assignment is made by this instruction.

DATAO APR, Data Out, Arithmetic Processor

70014 y
o 121314 1718 35

Load the protection and relocation registers from the contents of location
E as shown, where PI> Ph, RI and Rh are the protection and relocation

R118-25 I I Rh 18-25 I I
I I I I I I I I I I I I J

o 789 161718 252627 3435

addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the
user to write in the high part of his area.

2-119

The user can actually write
any size program: the Monitor
will assign enough core for his
needs. Basically the user must
write a sensible program; if he
uses absolute addresses scat­
tered allover memory his
program cannot be run on a
time shared basis with others.

These instructions are illegal
unless User In-out is set.

For a two part nonreentrant
program, set P = O. For a one­
part nonreentrant program,
make Ph ~ PI. If the hardware
has only one set of protection
and relocation registers, the
user area is defined by PI and
R I , the rest of the word is
ignored.

2-120

The trap locations are 140-
141 and 160-161 in a second
KAI0 processor.

The clock referred to through­
out this section is the DKI0
real time clock and should
not be confused with the
line frequency clock whose
flag is one of the processor
conditions [§ 2.14] .

CENTRAL PROCESSOR §2.l7

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle
his own input-output. The Monitor can also transfer control to the user with
this instruction by programming a 1 in bit 5 of the PC word, or it may jump
to the user program with a JRST 1, which automatically sets User. The set
state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program and
are therefore completely unrestricted, namely those executed in the interrupt
locations (which are not relocated) and in unrelocated trap locations 41 and
61. Illegal instructions and UUO codes 000 and 040-077 are trapped in
unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and
BLKO can be used in the even interrupt locations, and if there is no over­
flow, the processor returns to the interrupted user program. JSR should
ordinarily be used in the remaining even interrupt locations, in odd interrupt
locations following block 10 instructions, and in 41 and 61. The JSR clears
User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are
acceptable in that they clear User, but the first two require an accumulator
(all accumulators should be available to the user) and the latter two do not
save the flags.

After taking appropriate action, the Monitor can return to the user program
with a JRSTF or JEN that restores the flags including User and User In-out.

2.17 REAL TIME CLOCK DK10

This processor option can be used to signal the end of a specified real time
interval or to measure the real time taken by an event. With appropriate
software the DKIO can easily be used to keep the time of day. The basic
element in the clock is an l8-bit binary counter that is incremented repeated­
ly by a clock source; a 100 kHz ± .01 % crystal-controlled source is available
internally, or a source of any frequency up to 400 kHz can be provided ex­
ternally. Operation is synchronized so that the program can read the counter
at any time without missing a count. Associated with the counter is an l8-bit
interval register, which can be loaded by the program. Each time the count
reaches the number held in the register, the clock requests an interrupt while
the counter clears and begins a new count. With the internal clock source,
whose period is 10 P.S, the total count is about 2.6 seconds.

The program turns the clock on and off by enabling and disabling the
counter. The clock has two modes of operation: with the User Time flag
clear, the counter operates continuously; with User Time set, the counter
stops while the processor is handling interrupts. Hence in the latter mode
the clock discounts interrupt time and can be used to time user programs.
In a system that contains two clocks, one can be used by the Monitor to
time user programs while the other is used to keep the time of day.

Instructions. The clock device code is 070, mnemonic CLK. A second
clock would have device code 074.

",

§2.17 REAL TIME CLOCK OKlO

CONO CLK, Conditions Out, Clock

70720 y
o 121314 1718 3S

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 23-32 as shown (a I in
a bit produces the indicated function, a 0 has no effect).

18 19 20 21 22

SET
COUNT

IERFLOW

SET
COUNT
DONE

23 24

COUNT
CLEAR
CLOCK

25 26

CLEAR SET TURN TURN
USER USER CLOCK CLOCK
TIME TIME OFF ON

27 28 29 30

A I in bit 26 clears the clock counter and the Count Done, Count
Overflow and User Time flags, turns off the clock, and dismisses the PI
assignment (assigns zero). The effect of giving conflicting conditions
is indeterminate.

CONI CLK, Conditions In, Clock

70724 y
o 121314 1718 3S

Read the contents of the interval register into the left half of location E and
read the status of the clock into bits 26-35 as shown.

EXTERNAL
SOURCE

COUNT
OVERFLOW

2-121

CLEAR
COUNT

CLEAR PRIORITY
INTERRUPT

IERFLOW

31

COUNT
DONE ASSIGNMENT

I I

32 33 34 35

A 1 in bit 25 increments
the counter provided the clock
is off (this is for mainte­
nance only).

PRIORITY ~ ~* *
USER CLOCK
TIME ON

18 19 20 21 22 2 3 2 4 25 26 27 28 29 30

Interrupts are requested on the assigned channel by the setting of Count
Overflow and Count Done.

26

28

The counter is connected to an external source (0 indicates the
internal source is connected).

The counter cannot be incremented while an interrupt is being held
or a request has been accepted and the channel is waiting for an
interrupt to start.

31

COUNT INTERRUPT
DONE ASSIGNMENT

I l
32 33 34 35

*These bits cause interrupts.

Note that to time a user prop­
erly, the Monitor must also
compensate for any noninter­
rupt time taken from the
user.

2-122

The comparison of the coun­
ter against the interval register
that follows every count is
inhibited while this instruc­
tion is loading the register.

The counter is always stable
while being read, and any
count held back is picked
up immediately afterward.

Following turnon the first
count may occur at any time
up to the full period of the
source.

Remember that although a
CONO need not affect the
mode or the clock state, every
CONO must renew the PI
assignment.

CENTRAL PROCESSOR §2.l7

DATAD CLK, Data Out, Clock

70714 y

o 121314 1718 35

Load the contents of the right half of location E into the interval register.

DATAl CLK, Data I n, Clock

70704 y
o 121314 17 18 35

Read the current contents of the clock counter into the right half of
location E.

Initially the program should give a CONO CLK,l 000 to clear the clock,
and then give a DATAO to select the interval and a CONO to turn on the
clock, select the mode, and assign the interrupt channel. When the count
reaches the specified interval, Count Done sets, requesting an interrupt on
the assigned channel. At the same time, the counter clears and a new count
begins with the next pulse. The program should respond with a CONO to
clear Count Done.

The interval can be changed at any time simply by giving a DAT AO.
However, if the program does not clear the counter at the same time, then it
should make sure that the count has not yet reached the value of the new
interval. If the count is already beyond that point, the counter will con­
tinue until it overflows. When the counter overflows, either because the
<;ount started too high, the program specified the maximum count (2 18 is
selected by loading zero), or there is a malfunction of some sort, Count
Overflow sets, requesting an interrupt, and a new count begins.

To use the clock to time some operation, turn it on with the counter
at zero. For a counter reading of C, the elapsed time is

T(C + nI) i)

where T is the period of the source, n is the number of clock interrupts
since the clock was started, and I is the interval selected by the program. To
cause the clock to request an interrupt after T X n MS, where n .,;;;; 218 and Tis .;

the period of the source in microseconds, load the interval register with n
expressed in binary. There is an average indeterminacy of half a count every
time the counter starts and stops. Therefore, when the clock is keeping user
time, there is an average indeterminacy of one count for every group of
overlapping interrupts and requests (not for every interrupt, as the counter
is inhibited while there is any request or interrupt being held).

For keeping the time of day, the program can use a memory location to
maintain -a count of the closk interrupts. The location should be cleared

§2.17 REAL TIME CLOCK DKlO

at midnight, and the time can be determined by combining its contents with
the current contents of the clock counter. If the location itself is to be used
as a low resolution clock kept in hours, minutes and seconds, it is better to
use a more convenient interval than the full count. Using the internal source,
an interval of 212 seconds, which is octal 750220, is the most straightforward
interval with the fewest interrupts. To interrupt every second the interval
would be 303240.

2-123

Note that an error of .01%
amounts to 8.64 seconds in
24 hours.

3

Console In-out Equipment

The PDP-IO contains three in-out devices as standard equipment: tape
reader, tape punch, and a console terminal. The punch supplies output in
the form of 8-channel perforated paper tape in either of two modes. In
alphanumeric mode, 8-bit characters are processed; in binary mode, 6-bit
characters. Information punched in the tape can be brought into memory
by the tape reader, which handles characters in the same two modes. Reader
and punch are generally used at the most basic program level, such as for
program loading and assembler output.

The console invariably has a full duplex terminal, combining a keyboard
with a printer or a display screen. The program can type out characters on
the printer or screen and can read characters that have been typed in at the
keyboard. The terminal is a slow device, but it provides the most convenient
means of communication between man and machine.

3.1 PAPER TAPE READER

The reader processes 8-channel perforated paper tape photoelectrically at a
speed of 300 lines per second. The device can operate in alphanumeric or
binary mode, as specified by the 0 or I state respectively of the Binary flag.
In alphanumeric a single tape-moving command reads all eight channels from
the first line encountered. In binary the device reads six channels from the
first six lines in which hole 8 is punched and assembles the information into
a 36-bit word. The interface contains a 36-bit buffer from which all data is
retrieved by the processor. The reader device code is 104, mnemonic PTR.

CONO PTR, Conditions Out, Paper Tape Reader

71060 y
o 121314 1718 35

Set up the reader control register according to bits 30-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a 0 clears it).

27 28 29 30 31 32

PRIORITY INTERRUPT
ASSIGNMENT

33 34 35

3-1

The choice of alphanumeric
code used with paper tape is
up to the programmer, but
it is generally best to use
the ASCII code given in
Appendix B.

Maintenance procedures re­
quire that the console have
a hardcopy terminal when
certain long diagnostic and
reliability tests are run. How­
ever a terminal with a display
screen can be used for normal
operations, and a hardcopy
terminal substituted only for
the tests that require it.

3-2

The absence of tape is de­
tected by the absence of tape
material between feed holes.
Hence damage that results in
the joining of two feed holes
will most likely be mistaken
for the end of tape. Con­
versely, if the tape is torn
diagonally in an area where
the program expects to re­
trieve data, the end may well
not be detected until after
the program has read a few
garbage characters.

TAPE CHANNELS

FEED
HOLE

'It
®<!>®~@)o®@<D

t
TAPE MOTION

CONSOLE· IN-OUT EQUIPMENT §3.2

CONI PTR, Conditions In, Paper Tape Reader

71064 y

o 121314 1718 35

Read the status of the reader into bits 27 and 30-35 of location E as shown.

27 28 29 30 31 32

PRIORITY INTERRUPT
ASSIGNMENT

33 34 35

Placing the tape in motion sets the Tape flag and it remains set so long as the
tape is in the reader. If tape motion is caused by the operator pressing the
tape feed switch, the on transition of the flag sets Done, requesting an inter­
rupt on the assigned channel. A 0 in bit 27 indicates that the last time an
attempt was made to read, the reader was out of tape.

DATAl PTR, Data In, Paper Tape Reader

71044 y
o 121314 1718 35

Transfer the contents of the reader buffer into location E. Clear Done and
set Busy.

Setting Busy clears the reader buffer, sets the Tape flag (if it is not already
set) and places the reader in operation. If Binary is clear, all eight channels
from the first line on tape are read into bits 28-35 of the buffer with
channel 1 corresponding to bit 35 (the presence of a hole produces a 1 in the
buffer). If Binary is set, the device reads only channels 1-6, but it reads the
first six lines encountered in which channel 8 is punched (lines without a
hole in channel 8 are skipped) and assembles them into a full word in the
buffer. The first line is at the left in the word and channel 1 corresponds to
the rightmost bit in each 6-bit byte.

After the specified number of lines has been read, the reader clears Busy
and sets Done, requesting an interrupt on the assigned channel. A DATAl
brings the data into memory and also causes the reader to continue in opera­
tion. The programmer must give a CONO to clear Busy if he does not want
the reader to move the tape after the final DATAl is given.

The operator can signal the program that a tape has been loaded by
feeding a few frames and thus setting the Tape flag; this in turn sets Done to
request an interrupt. The Tape flag is cleared if the tape runs out or mal­
functions while a read operation is in progress, or is deliberately run out
by the operator.

Timing. At 300 lines per second the reader takes 3.33 ms per alpha­
numeric character, 20 ms per binary word if the binary characters are con­
tiguous. After Done is set, the program has 1.6 ms to give a DATAl and

r,

"

t •

§3.1 PAPER TAPE READER

keep the tape in continuous motion. Waiting longer causes the reader to
shut down for 40 ms. Thus start-stop operation is limited to 21 lines per
second in alphanumeric, 15Yz reads in binary.

EXAMPLES. This program reads ten binary words (60 lines) from paper
tape and stores them in memory beginning at location 4000. The block
pointer is kept in accumulator PNT.

MOVE PNT,[IOWD 12,4000] ;Put pointer in PNT
CONO PTR,60 ;Set up reader

NEXT: CaNSO PTR,lO ;Watch Done
JRST .-1
BLKI PTR,PNT ;Word ready, get it
JRST .+2 ;Got all data
JRST NEXT ;Go gack for next word

If instead of just waiting we wish to continue our program while the data
is coming in, we can use the priority interrupt. The following uses channel 4
and signals the main program that the data is ready by setting bit 35 of
accumulator F.

DONE:

MOVE
MOVEM
MOVE
MOVEM
CONO
CONO

17,[BLKI PTR,[IOWD 12,4000]]
17,50 ;Set up 50 and 51 for channel 4
17, [JSR DONE]
17,51
PTR,64
PI,12210

;Set up reader on channel 4
;Clear PI, then activate it and turn on
; channel 4
;Continue program

TRZN F,I ;Check if data ready when needed
;Wait if necessary JRST .-1

o
CONO
TRO
JEN

PTR,O
F, I
@DONE

;Interrupt routine, block done
;Stop tape
;Set F bit 35
;Dismiss and restore flags

Readin Mode

The only requirement (beyond those given in § 2.12) for readin mode with
paper tape is that the data must be in binary (hole 8 punched). To select
the reader in the readin device switches, turn on the third from the left and
the last on the right (104).

The program below is the RIM I OB Loader, which is brought into the
accumulators in readin mode, and then continues to read any number of
blocks of binary data from the same tape. The tape is formatted as a series

3-3

3-4

This loader is written for min­
imum size and is quite com­
plex. Do not approach it as a
simple programming example.

CONSOLE IN·OUT EQUIPMENT §3.1

of blocks separated by a half-dozen lines of blank tape (tape with only feed
holes punched). The first block is the loader in readin format. The rest of
the tape contains any number of data blocks and ends with a transfer block.
Each data block contains any number of words of program data, preceded
by a standard 10 block pointer for the data only, and followed by a check­
sum, which is the sum of all the data words and the pointer. It is recom­
mended that the number of data words per block be limited to twenty for
ease in repositioning the tape in case of error. The transfer block is a JRST
to the starting location of the program, followed by a throw-away word to
stop the reader.

ST:
STl:
RD:

A:

TBLl:

TBL2:

XWD
CONO
HRRI
CaNSO
JRST
DATAl

XCT

XCT

SOJA

CAME

ADD
SKIPL

JRST
AOBJN

ADR: JRST
CKSM=ADR+l

-16,0
PTR,60
A,RD+1
PTR\ 10
.-1

; 1410 words starting at location 1
;Set up reader binary
;Put RD+ 1 in Y part of A
;Watch Done

PTR,@TBL1 - RD+ 1 (A) ;First and last words in
;ADR, data in block

TBL 1 - RD+ 1 (A) ;TBL 1 + 2 first word, + 1 data,
; +0 checksum

TBL2-RD+ l(A) ;TBL2+2 JRST, + 1 data, +0

A,
; bad checksum
;RD+ 1 first word, RD data, RD-I
;last word

CKSM,ADR ;Compare computed checksum with
;one read

CKSM,I(ADR) ;Add word read to checksum
CKSM,ADR ;Put first word in CKSM, skip if

4,ST
ADR,RD

ST1

;pointer
;Halt if checksum bad
;If data done, go to A; otherwise wait
;for next word
;Read in executes this. First and last
;word of each block also put here

The processor halts if a computed checksum does not agree with the tape.
To reread a block, move the tape back to the preceding blank area and press
the continue key. A halt following the transfer block is not an error - many
programs begin by halting.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at speeds up to 50 lines per second. It
can operate in alphanumeric or binary mode, as specified by the 0 or 1 state
respectively of the Binary flag; but in either mode a single tape-moving
command punches only one line. Alphanumeric mode punches an 8-bit
character supplied by the program; binary mode always punches channel 8,

§3.2 PAPER TAPE PUNCH 3-5

never punches channel 7, and punches a 6-bit character in the remaining
channels. The interface contains an 8-bit buffer that receives data from the
processor. The punch device code is 100, mnemonic PTP.

CONO PTP, Conditions Out, Paper Tape Punch

71020 y

o 121314 1718 3S

Set up the punch control register according to bits 30-35 of the effective
conditions E as shown (a I in a flag bit sets the flag, a 0 clears it).

27 28 29 30 31

CONI PTP, Conditions In, Paper Tape Punch

71024
o 121314 1718

32

PRIORITY INTERRUPT
ASSIGNMENT

33 34 3S

y

Read the status of the punch into bits 29-35 of location E as shown.

PRIORITY INTERRUPT
DONE ASSIGNMENT

27 28 29 30 31 32 33 34 3S

A I in bit 29 indicates that the punch is out of tape.

DATAO PTP, Data Out, Paper Tape Punch

71014 y

o 12 13 14 1718

3S

3S

Load the contents of bits 28-35 of location E into the punch buffer. Clear
Done and set Busy.

A CONO need be given only to change Binary or the PI assignment;
DATAO sets Busy while loading the buffer. Setting Busy places the punch in
operation. If Binary is clear, one line is punched in tape from bits 28-35 of
the buffer with bit 35 corresponding to channel I (a I in the buffer produces
a hole in the tape). If Binary is set, channel 8 is punched, channel 7 is not

3-6 CONSOLE IN-OUT EQUIPMENT §3.3

punched, and the remaining channels are punched from bits 30-35 of the
buffer with bit 35 corresponding to channell. After punching is complete,
the device clears Busy and sets Done, requesting an interrupt on the assigned
channel.

Timing. If Busy is set when the punch motor is off, punching is auto­
matically delayed I second while the motor gets up to speed. While the
motor is on, punching is synchronized to a punch cycle of 20 ms. After
Done sets, the program has 10 ms within which to give a new DA TAO to
keep punching at the maximum rate; after 10 ms punching is delayed until
the next cycle. If Busy remains clear for 5 seconds the motor turns off.

EXAMPLE. Suppose we wish to punch out the same information we read
from tape in the examples of the previous section. We cannot use a BLKO
as an interrupt instruction unless we first spread the 6-bit characters over
sixty memory locations. The example uses channel 5 and assumes that other
channels are already in use.

PUNCH:

BYPPNT:
CNT:

MOVE A,[JSR
MOVEM A,52

PUNCH]
;Set up channel 5

CONO PTP,55 ;Request interrupt for first word
;Turn on channel 5 CONO PI, 2004

o
ILDB
AOSL
CO NO
DATAO
JEN

XWD
tD-60

A, BYPPNT
CNT
PTP,40
PTP,A
@PUNCH

;Continue program

;Interrupt routine
;Put byte in A
;Got all bytes?
; Yes, prevent interrupt after last word
;Punch byte

440600,4000 ;Generate pointer here
;Initialize count

3.3 CONSOLE TERMINAL

Mounted inside the console bay of every KIlO and KAIO is an asynchronous
serial interface for connection to a terminal to be used by the operator for
direct communication with the computer software. Through this interface
the program can type out characters and can read in the characters produced
when keys are struck at the keyboard. The interface is designed for full
duplex operation, ie it separates its input and output functions so the
terminal in effect acts as though it were two devices with a single device
code. Each device has its own Busy and Done flags, but the two share a
common interrupt channel. Placing the code for a character in the output
buffer causes the terminal to print or display the character or perform the
designated control function. Striking a key places the code for the associated
character in the input buffer where it can be retrieved by the program, but it
does nothing at the terminal unless the program sends the code back as

,J

§3.3 CONSOLE TERMINAL

output (ie echoes the input).
The interface handles terminals that operate either in current mode or

with EIA standard levels. Terminals differ one from another in various
programming characteristics, particularly the character set, timing, and fill
requirements between certain characters. Transmission rates available for
the KIl 0 terminal are 110, 150, 300, 600, 1200 and 2400 baud; these rates
are switch selectable for input and output separately. The KAlO interface is
set up for a particular baud rate (regularly 110 or 150), which can be
changed only through modification by Field Service. Characters always con­
tain eight data bits. At 110 baud the interface handles II-unit characters
with two stop bits; at all other rates characters are ten units with a single

:> stop bit. Most terminals use the ASCII character set given in Appendix B, or
some subset of it, and the control characters that affect a given terminal are
generally used in a manner that is relatively consistent with their ASCII
definitions. For information on terminal-dependent characteristics, refer to
the description of the appropriate terminal in Chapter 9.

Any terminal is, however, connected to the same interface, is controlled
by the same instructions, and is in general programmed in the manner
described here. The terminal device code is 120, mnemonic TTY, which
stands for teletypewriter.

CONO TTY, Conditions Out, Console Terminal

71220 y

o 121314 1718 35

Set up the terminal control register according to bits 24-35 of the effective
conditions E as shown (a 1 in bit 24 sets Test, a 0 clears it; all other flag
functions are produced by Is, Os have no effect).

CLEAR CLEAR CLEAR CLEAR SET SET SET SET
TEST INPUT INPUT OUTPUT OUTPUT INPUT INPUT OUTPUT OUTPUT

BUSY DONE BUSY DONE BUSY DONE BUSY DONE

24 25 26 27 28 29 30 31 32

Setting Test connects the output buffer directly to the input buffer, allowing
the program to check out the interface logic without the line and the device.

CONI TTY, Conditions In, Console Terminal

71224 y

o 121314 1718 35

Read the status of the terminal into bits 24 and 29-35 of location E as
shown.

24 25 26 27 28 29 30 31 32

PRIORITY INTERRUPT
ASSIGNMENT

33 34 35

PRIORITY INTERRUPT
ASSIGNMENT

33 34 35

3-7

3-8

*Two stop bits.

tNot generally recommended.

CONSOLE IN-OUT EQUIPMENT §3.3

DATAO TTY, Data Out, Console Terminal

71214 y

o 121314 1718 35

Load the contents of bits 28-35 of location E into the output buffer. Clear
Output Done, set Output Busy, and enable the transmitter.

DATAl TTY, Data In, Console Terminal

71204 y
o 12 13 14 1718 35

Transfer the contents of the input buffer into bits 28-35 of location E.
Clear Input Done.

Output. A CONO need be given only to change the PI assignment;
DATAO sets Output Busy and enables the transmitter while loading the
buffer. Enabling the transmitter causes it to send the contents of the output
buffer serially to the terminal. Completion of transmission clears Output
Busy and sets Output Done, requesting an interrupt on the assigned channel.

Input. Reception requires no initiating action by the program except to
supply a PI assignment. Striking a key transmits the code for the character
serially to the input buffer. The beginning of reception sets Input Busy;
completion clears Input Busy and sets Input Done, requesting an interrupt
on the assigned channel. A DATAl brings the character into memory and
clears Input Done.

Timing. After Output Done is set, the time the program has to give a
DATAO to keep typing at the maximum rate is a half bit time in the KI I 0,
one bit time in the KAIO. After Input Done is set, the character is available
for retrieval by a DATAl for a half bit time plus the stop bit times before
another key strike can destroy it. Generally speaking, keyboard transfer
rates that are suitable for a console terminal are 110, 150 and 300 baud (ten, ~

fifteen and thirty characters per second). The available times for the various
rates are as follows.

Baud Bit time KIJODATAO KAIODATAO DATAl !~

rate in ms time in ms time in ms time in ms

110 9.09 4.54 9.09 22.7*
150 6.67 3.33 6.67 10
300 3.33 1.67 5
600 1.67 .833 2.5t

1200 .833 .417 1.25t
2400 .417 .208 .625t

§3.3 CONSOLE TERMINAL

The only other timing considerations are the fill character requirements.
These vary greatly from one terminal to another and are treated with the
terminals in Chapter 9.

3-9

t· ..

4

Hardcopy Equipment

This chapter discusses the line printer, XY plotter, card reader, and card
punch. Like the basic in-out equipment, these devices are primarily for
communication between computer and operator using a paper medium: form
paper, graph paper or cards.

The line printer provides text output at a relatively high rate. The pro­
gram must effectively typeset each line; upon command the printer then
prints the entire line. With the plotter, the program can produce ink draw­
ings by controlling the incremental motion of pen on paper in a cartesian
coordinate system. Curves and figures of any shape can be generated by
proper combinations of motion in x and y.

The card equipment processes standard 12-row 80-column cards. Many
programmers find cards a convenient medium for source program input and
for supplying data that varies from one program run to another. Cards are
convenient to prepare manually, input is much faster than paper tape, and
simple changes are easy to make: individual cards can be repunched, and
cards can be added or removed from the deck. The card reader cannot be
used in readin mode, but a standard card-reading program in readin format
can be kept on paper tape or DECtape. A possible consideration in using
cards is that many installations do not include an online card punch.

These four devices are all run by the BA I 0 Hardcopy Control. Interface
logic for a plotter can also be mounted in the TD lOA DECtape Control.

4.1 LINE PRINTER LPI0

The line printer outputs hardcopy composed of lines 132 characters long at
rates of 300 to 1250 lines per minute. Character sets available on the various
models are listed in tables of the line printer code in Appendix B. Besides
accepting printing characters, the printer responds to ten control characters,
HT, CR, LF, VT, FF, DLE and DCI-4. Only these control codes affect the
printer, but the interface recognizes two others: NUL, which is ignored, and
delete, which allows expansion of the character set by providing a means for
distinguishing between control characters and printing characters with the
same codes. All other codes are ignored.

Printers LPIOA, B, C and F have a 64-character print drum, whose print
positions are selected by the figure and upper case codes, 040-137. But
lower case codes (140-176) are also valid for these printers: when a lower

4-1

Virtually any character set
can be had on any printer by
special order.

Although most control codes
are ignored, it is recommended
that NUL be used for fill, as
DEC guarantees it to be suit­
able for that purpose.

4-2

The feature for selecting the
hidden character is optional.
The standard version there­
fore has a 95-character set
even though it has a 96-
character drum.

Spacing other than the stan­
dard can be produced by
using a different format tape.
The length of the loop should
correspond to one or more
pages of the printer form
used, with holes punched at
the lines where paper spacing
is to stop. Models F and H can
be set for eight lines per inch.

Programmers generally treat
the data for the line printer
and teletype identically, using
the combination CR plus LF
for printing and spacing. This
way a given character string
can be outputted on either
device. CR is used alone only
when the next print command

HARDCOPY EQUIPMENT §4.1

case code is given, the corresponding upper case code is loaded into the
buffer. Models D and H have a 96-character drum whose print positions are
selected by the figure, upper case and lower case codes, 040-176, and the
delete code. A single delete code is ignored, but two consecutive 177s cause
the code 177 to be loaded into the buffer. When a code for a printing
character is the same as one for a non printing character and is loaded by
giving it immediately after a delete, the printing character is said to be
"hidden" under the nonprinting one. Model E has a 1 28-character drum and
uses the entire set of 7-bit codes for printing characters, with characters
hidden under the ten control characters and also under null and delete.

The character sets in Models A to E are fixed, but Models F and H have
removable drums. Two standard versions (designated respectively by E and
F appended to the model number) of these drums are available, with EDP
and scientific character sets; in the latter, zero and Z are crossed.

The printer has a l32-character buffer that holds the image of a single line;
the program must first load the buffer up to five characters at a time, and
then give a control character to print the entire line. The buffer is loaded
from left to right, and only the portion filled produces a printout. Hence
for each line the program need send out characters (including spaces) only as
far as the rightmost nonspace character. The characters are printed in the
order that they pass the print hammers, and a given character is printed
simultaneously in all positions that require it. In other words the drum has a
row of l32 Ms, a row of Ns, etc; all Ms are printed together, all Ns together,
and so forth. The first character printed depends only upon the position of
the drum when the print command is given.

Output Format. Paper motion is controlled by a format tape loop in the
printer. The tape has eight columns and the loop corresponds to an integral
number of pages of the fanfold form paper. With the exception of CR, every
control character that prints a line from the contents of the buffer produces
a different spacing by selecting a particular tape column. The paper then
advances until a hole is encountered in the selected column.

The standard paper has II-inch pages of sixty-six lines, and the standard
tape for these generates the formats listed below. The fourth column gives
the hole positions in terms of the numbered lines on the tape. The tape is
usually installed at random and then positioned by pressing the top-of-form
button on the printer. Then the paper is adjusted so that the desired line on
the paper corresponds to line 0 on the tape. Ordinarily the paper is set with
the print hammers at the fourth line, so all but one of these formats leaves
a three-line margin at the top and a margin of at least three lines at the
bottom of each page.

Character Column

FF (014) 1
CR(015) None

LF (012) 8

Normal meaning

Top of form
No spacing (paper
motion inhibited)
Single space with auto-
matic top of form after
every 60 impressions

Hole positions

Line 0

Every line from 0
to 59

§4.1

DCl (021)

DC2 (022)

DC3 (023)
DC4 (024)

VT (013)

DLE (020)

3

4

5

6

7

2

LINE PRINTER LPIO

Double space with auto­
matic top of form after
every 30 impressions
Triple space with auto­
matic top of form after
every 20 impressions

Single space
Space one sixth of a
page
Space one third of a
page
Space half a page

Every even num­
bered line from 0
to 58
Every third line
from 0 to 57

Every line
Lines 0, 10, 20
30, 40, 50
Lines 0, 20, 40

Lines 0,30

The actual printer action of advancing the paper to the next hole in the tape
produces the "normal" format only if the program consistently selects the
same tape column. Always using DC 1 to print produces double spaced text
from line 4 to line 62 on every page. But if the last print command spaced to
an odd numbered line, DC 1 moves the paper only one line.

Printing Speed. The printer is available in seven models with differing
printing speeds. On models with two speeds, the slower one gives higher
printing quality.

Nominal printing Time per
Number of speed in lines Drum rotation revolution

Printer Characters per minute in rpm in ms

LPIOA 64 300 333 180
LPIOB 64 600 750 80
LPIOC 64 1000 1250 48
LPIOD 95/96 600 750 80
LPIOE 128 500 550 109
LPIOF 64 925/1250 1200/1800 50/33
LPIOH 95/96 675/925 800/1200 75/50

Printing begins as soon as a print command is given and terminates when
the last required character is printed, ie without necessarily waiting for a
complete drum revolution. Therefore print time depends on the initial drum
position and the number of characters that must pass the print head before
the last is printed. No time is required for spaces: the printer produces
spaces in a line by not printing anything in the columns corresponding to the
buffer positions that hold space characters. As a given character is printed,
space codes replace the codes for the character in all buffer positions that
hold it, and printing ceases when the buffer is filled with spaces.

A complete print cycle consists of the print time plus the time required
for advancing the paper; paper spacing begins immediately after printing ter­
minates, and further printing is inhibited while the paper is moving. It takes
about 12 ms to advance the paper one line, about 6-8 ms for each additional

4-3

will overprint, ie will print
another character in a column
position already printed. With
this technique the program
can produce a character such
as "*" by overprinting a
slash on an equal sign (or vice
versa).

4-4

24 2S 26

Power turnon and the 10
reset signal generated by
eONO APR, 200000 dupli­
cate this clear function.

24 2S 26

HARDCOPY EQUIPMENT §4.l

line. If the buffer is loaded only with spaces, the print cycle consists entirely
of paper spacing.

Using an ordinary distribution of characters results in printing at or
slightly above the nominal speed. Printing is faster however if paper spacing
occurs while unused characters are passing the print head. Eg text that uses
only the alphabet can be printed at the full drum rotation speed.

Instructions. The printer has the usual instructions for sending and reading
conditions, but after initial setup it can be controlled entirely by the charac­
ters sent by a string of DATAOs. The program supplies five characters at a
time to a 35-bit character buffer in the printer interface. The interface proc­
esses the characters from left to right loading valid data characters into the
line buffer, ignoring invalid characters, and sending control signals to the
printer when a control character is encountered. The printer device code is
124, mnemonic LPT. A second printer would have device code 234, and a
third would have code 230.

CONO LPT, Conditions Out, Line Printer

71260 y

o 121314 1718 3S

Perform the function given below if specified by a 1 in bit 25 and set up the
printer control register according to bits 28-35 of the effective conditions E
as shown (a 1 in a flag bit sets the flag, a 0 r.lears it).

I BUSY I DONE

2'1 28 29

PRIORITY INTERRUPT
ASSIGNMENT - ERROR

I I
30 31 32

PRIORITY INTERRUPT I
ASSIGNMENT - DONE

I
33 34 3S

If bit 25 is 1, clear Done, set Busy, clear the interface logic, and trigger a
print cycle to clear the line buffer. The cycle clears the buffer by replacing
the characters in it with spaces, and the time required is the same as would
be required, to print whatever is in it. Completion of the cycle clears Busy
and sets Done, requesting an interrupt on the channel assigned by bits
33-35.

CONI LPT, Conditions In, Line Printer

71264 y

o 121314 1718 3S

Read the status of the printer into bits 24-35 of location E as shown.

27 28 29 31

A 1 in bit 24 indicates that the printer has a l28-character drum; a 1 in bit
25 indicates that at least 95 characters are available to the program.

.~

§4.l LINE PRINTER LP10

DATAD LPT, Data Out, Line Printer

71254 y

o 121314 1718 3S

Load the contents of bits 0-34 of location E into the character buffer, clear
Done, set Busy, and trigger the interface processing cycle. The format of the

data word and the order in which the characters are processed is as shown.

FIRST SECOND THIRD FOURTH FIFTH I I
o 67 1314 2021 2728 34

Following power tumon, the Error flag (CONI bit 27) is set if the printer
cable is not connected or any other condition exists that makes the printer
unavailable to the program [these other conditions are given in the discussion
of printer operation in Appendix H2J. If Error is set when a CONO gives an
error PI assignment (with bits 30-32 of E), there is an immediate interrupt
request on the error channel. Barring accident or hardware malfunction,
an error interrupt is likely to occur during a printout run only when the
printer is about to run out of paper or the operator stops it (in either case
Error sets amI the printer stops when the buffer is empty following the
printing of a line).

Models F and H always complete the final form before shutting down
when the paper runs out. Models A to E shut down after completing the
current line when a low paper alert occurs. A program intended to print to
the end of form should, upon operator direction, provide data only to the
end of the present form. Then the operator can make the printer print one
line at a time but only until the data is exhausted [refer to § H2.lJ. Upon
completing the form, the program should refuse to supply anymore data -
even should the operator enable printing - until the operator has given some
indication (as by a message via the console terminal) that new paper has
been loaded.

At the beginning of a print run the program should give a CONO to clear
the line buffer and assign the PI channels. After that a CO NO need be given
only to change the PI assignments; each DATAO starts the character-proc­
essing operations of the interface while loading the character buffer. The
interface processes the characters from left to right, starting each character
cycle when the line buffer is ready. Printing characters are simply sent to the
buffer, with lower case codes translated to upper case for a 64-character
printer. Unused codes are ignored. The interface responds as follows when a
control character is encountered .
• A horizontal tab (HT) is simulated by sending a string of spaces to the line
buffer. Tab stops are every eight columns (9, 17, ...). The interface always
sends at least one space, and then sends as many more as are necessary for
the next character to be at a tab stop. Thus if a DATAO gives the sequence

A HT B

4-5

Characters are assembled into
words in this manner by an
IDPB loop or an ASCII or
ASCIZ pseudoinstruction.

These tabs are the same as
the ones ordinarily used on
a terminal.

4-6 HARDCOPY EQUIPMENT §4.1

where A is placed in column 7, B will go into column 9. But if A goes into
column 8, B will go into column 17 .
• Upon encountering any other printer control character, the interface
signals the printer to print the contents of the line buffer, and unless the
character is CR, it also selects a format tape column to space the paper as
listed in the format discussion at the beginning of this section. When the
buffer again becomes available, subsequent characters will be loaded starting
in column I. If printing is caused by a CR, the next line will overprint unless
the paper is advanced before any nonspace characters are loaded into the r-

buffer.
If the buffer is filled with 132 characters and the next character doe~ not

cause printing, the interface simulates a line feed to print and advance the
paper, and then loads the next character at column 1 for the new line. If the
program tabs to the end of a line, the interface simulates a line feed and also
tabs at the beginning of the next line. In other words a printing character
following the tab will be loaded at column 9 for the new line.

When the inte:r:face finishes processing the five characters supplied by a
DATAO, it clears Busy and sets Done, requesting an interrupt on the channel
assigned by bits 33-35 of the conditions out.

Timing. The time from one DA TAO to the next while the program is
loading the buffer is simply the time required by the interface to process five
characters. Loading each printing character, including each space in a
horizontal tab, takes 10 /lS. Skipping an illegal character takes 8 /lS.

If the fifth character causes printing, Done is set immediately and the
program can give a DA TAO to send the first set of characters for the next
line. However, the interface does not begin processing the new characters
until the buffer becomes available after the printer finishes printing the
previous line. If printing is produced by any character before the last, the
print time elapses before the interface processes the next character in the
current set.

The overall time required for a print run is the total printing and spacing
time for all lines as given above in the discussion of the printing speed. The
time required to process individual characters is a consideration in pro­
gramming the DATAOs that load the buffer, but buffer loading time is not
a factor in total printer operating time except when loading characters for
overprinting (following a CR). This is because the buffer becomes available
while the paper is moving, in plenty of time for the program to load it before
the paper stops.

EXAMPLES. In the first example, which uses the line printer without the
interrupt, we have simply filled in the missing part of the print subroutine
given in § 2.9 (it prints the characters that accompany the calling sequence
given just before the subroutine).

PRINT: HRLI
ILDB
JUMPE
CONSZ
JRST
LSH

T,440700
CH,T
CH,I(T)
LPT,200
.-1
CH,I

;Skip when printer not busy
;Wait for Busy to clear
;Shift character to bits 28-34

§4.1 LINE PRINTER LPIO

DATAO LPT,CH ;Send character to printer
JRST PRINT + 1

The same program could be used for output on the console terminal by
changing

CONSZ LPT,200 to CONSZ TTY,20

DATAO LPT,CH to DATAO TTY,CH

" and deleting the LSH CH, 1.
The above is perhaps an overly simple example. It assumes the line buffer

is clear initially and the printer is available. Moreover the processor spends
." . most of its time waiting. Characters are processed individually in order to

detect the null, but if the processor has anything else to do, it would be
much more efficient to use the interrupt and send five characters at a time.

~

'!'

In the following example the main program sets up each print run by
giving a JSR SETUP. The number of words printed and the starting location
of the block containing them are determined by the contents of PNTR 1.
Once a run is set up, the program can change the contents of PNTR 1 for
the next one.

SETUP: 0
SKIPGE PNTR
JRST .-1 ;Wait for current 10 to finish
MOVE T, [JSR ERROR]
MOVEM T,42 ;Channel 1 for error
MOVE T, [JSR DATA]
MOVEM T,44 ;Channel 2 for data
MOVE T,PNTRI
MOVEM T,PNTR ;Set up new 10 block pointer
CONO LPT,2012 ;Clear printer, assign channels
CONO PI,2340 ;Turn on PI and channels
JRST @SETUP

PNTRI: 0
PNTR: 0

ERROR: 0
CONO LPT,2 ;Drop error request by dropping error

;PI assignment
;Start typing error message

JEN @ERROR

DATA: 0
CONO LPT,12 ;Reassign error channel
BLKO LPT,PNTR ;Send out word
CONO LPT,O ;Turn off printer
JEN @DATA

4-7

End of clear function sets
Done, requesting a data
interrupt.

4-8

Two of these are standard
models with the pbtter con-
tro!: the XYIOA has the 565,
the XYlOB has the 563.

Calcomp plotters in the 600
series have two step sizes and
two plotting speeds: a switch
at the back selects the step
size, delay settings in the
plotter control determine the
speed.

HARDCOPY EQUIPMENT §4.2

4.2 PLOTTER XYIO

The XY 1 0 plotter control interfaces the PDP-l 0 central processor to various
plotters that use cartesian coordinates. The models most frequently used are
manufactured by Calcomp, but others can be accommodated. The following
lists the type and paper size of the most commonly supplied Calcomp
models.

Calcomp model

502,602
518,618
563,663
565,665

Type

Bed
Bed
Drum
Drum

Paper size in inches

31 X 34
54 X 72

29Y2 X 1440
11 X 1440

These are high accuracy, incremental digital plotters that produce fine
quality ink plots of computer-generated data. Bidirectional stepping motors
provide individual increments of motion in either coordinate or both at once.
The program draws a continuous sequence of line segments by controlling
the relative motion of pen and paper with the pen lowered, and it can raise
the pen for repositioning.

Motion in y is movement of the pen carriage along a pair of rods. Motion
in x is movement of the entire carriage-and-rod mechanism on a bed plotter,
movement of the paper underneath the carriage on the drum type. On a bed
plotter the coordinate directions are the standard ones when viewing the
device from the front: positive x to the right, positive y to the back. The
coordinate system on a drum is in the standard orientation when the viewer
is standing at the right side, unrolling the paper from the drum with his left
hand. In other words positive y is movement of the pen from right to left
across the drum, positive x is drum rotation downward at the front (drawing
a line toward the paper supply roll at the back).

The step sizes and plotting speeds available with the various Calcomp
models are the following.

Plotting speed in
Model Step size steps per second

502 All sizes 300

.005 inch 200

518
.002 inch 450
.1 mm 200
.05mm 400

.010 inch 200
563 .005 inch 300

.1 mm 300

565 All sizes 300

602 All sizes 450/900

§4.2

618

663

665

PLOTTER XY 1 0

.005/.0025 inch

.002/ .00 1 inch

.1/.05 mm

.05/.025 mm

.OlD/.005 inch

.005/.0025 inch

.0025/.00125 inch

All sizes

200/400
450/900
200/400
450/900

350/700
450/900
450/900

450/900

4-9

The program can draw any complete figure by giving a string of DATAOs,
each of which supplies the information for one steo. The olotter device code
is 140, mnemonic PL T. A second plotter would have device code 144.

CONO PLT, Conditions Out, Plotter

71420 y

o 121314 1718 3S

Set up the plotter control register according to bits 31-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a 0 clears it).

PRIORITY INTERRUPT
DONE ASSIGNMENT

29 30 32 33 34 3S

CONI PLT, Conditions In, Plotter

72424 y

o 121314 1718

Read the status of the plotter into bits 30-35 of location E as shown.

27 28 29

POWER
ON

30

Power On is not available on all plotters.

DATAO PLT, Data Out, Plotter

71414
o 121314 1718

DONE

32

PRIORITY INTERRUPT
ASSIGNMENT

33 34 35

y

3S

3S

Clear Done, set Busy, and move the pen as specified by bits 30-35 of the

4-10

The asterisk is the sign for
multiplication in MACRO.

POINT is a pseudo instruction
that causes MACRO to gener­
ate a byte pointer from the
three arguments that follow
it. In order these arguments
are the byte length in deci­
mal, the address of the loca­
tion containing the byte, and

HARDCOPY EQUIPMENT §4.2

contents of location E as shown (a 1 in a bit produces the indicated motion,
a 0 has no effect).

RAISE LOWER -LlX +LlX +LlY -LlY
PEN PEN (DRUM (DRUM (CARRIAGE (CARRIAGE

UP) DOWN) LEFT) RIGHT)
30 31 32 33 34 35

A CONO need be given only to change the PI assignment; DA TAO places
the plotter in operation by supplying plotting data. After sufficient time has
elapsed for the device to carry out the specified action, the control clears
Busy and sets Done, requesting an interrupt on the assigned channel.

To avoid drawing line segments shorter than one step, do not raise or
lower the pen in the same DATAO that calls for xy motion. The conse­
quences of specifying contradictory movements cannot be predicted.

Timing. Lowering the pen takes 60 ms, raising it takes 10 ms. The time
required to move one step in either or both coordinates depends on the
plotting speed as follows.

Pia tting speed in
steps per second Time per step in ms

200 5.00
300 3.33
350 2.86
400 2.50
450 2.22

700 1.43
900 1.11

EXAMPLE. The plotting commands sent out by this program are contained
six to a word in WC words beginning at location BUFFER. The interrupt
routine uses one accumulator which is shared with the main program and
other channels.

CONSZ
JRST
MOVE
MOVEM
MOVEI
MOVEM
MOVE
MOVEM
CONO
CONO
DATAO

PLT,7 ;Wait until previous run finished as
;indicated by no PI assignment

DATA]
.-1
T,[JSR
T,50
T,WC*6
T,COUNT
T,[POINT
T,CHARP
PLT,4
PI,2210
PLT,PUP

;Set up channel 4
;Set up count for plotting commands

6,BUFFER] ;Initiate byte pointer

;Assign channel
;Turn on PI and channel
;Raise pen to trigger first interrupt

§4.3

DATA:

PUP:
TSAVE:
COUNT:
CHARP:

DATAl:

o
SOSGE COUNT
JRST DATAl
MOVEM T,TSAVE
ILDB T,CHARP
DATAO PLT,T
MOVE T,TSAVE
JEN @DATA

40
o
o
o
CONO PLT,O
DATAO PLT,PUP
JEN @DATA

CARD READER CRI0

;Is plot finished?
;Yes
;Save T
;Get next plotting command
;Plot point
;Restore T

;Disconnect plotter from interrupt
;Raise pen

4.3 CARD READER CRIO

The card reader handles standard 12-row 80-column cards at maximum
speeds from 300 to 1200 cards per minute depending on the model. Once
started, an entire card is read column by column. The reader supplies each
column to the processor as twelve bits corresponding to the column punch
and also in a more compact form. The program can translate the column
data in any way it wishes, but the standard DEC character representations
and the translation to 7-bit ASCII made by the Monitor are given in
Appendix B. Of course the data can simply be in binary at three columns
per word (a 7 and 9 punch in the first column is the traditional indication
that the rest of the card contains binary data).

The reader is available in four models with differing speeds and capacities.

Hopper/stacker
Reader Cards per minute capacity

CRIOA/B A: 1000 1000
B: 833

CRIOD 1000 950
CRlOE 1200 2200
CRlOF 300 550

CONO CR, Conditions Out, Card Reader

y

o 121314 1718

Model type

Table

Table
Floor
Table

35

Assign the interrupt channel specified by bits 33-35 of E and perform the

4-11

the position of the rightmost
bit of the byte as the decimal
number of the bit in the
word. If the last argument is
omitted, MACRO takes it as
-1; in other words, after
being incremented the pointer
will point to the first byte.
The left half of the pointer
generated here is 440600.

Models A and B are actually
the same machine: the A
version runs on 60 Hz power,
the B on 50 Hz - and the
speed depends on the line fre­
quency. For the other models
the 60 or 50 Hz version is
indicated respectively by A or
B appended to the model
number, and line frequency
has no effect on timing.

4-12

18 19 20 21 22

I I I I I

HARDCOPY EQUIPMENT §4.3

functions specified by bits 23-32 as shown (in bits 27 and 29 a enables
the given flag to interrupt, a 0 disables it; in all other bits a 1 produces the
indicated function, a 0 has no effect).

CLEAR OFFSET READ
READER CARD CARD

2 3 24 25 26

ENABLE
TROUBLE
INTERRUPTS

CLEAR
DATA t

MISSED

27 28

ENABLE
READY
TO READ
INTERRUPTS

1 CLEAR
END
OF

FILE

29 30

CLEAR CLEAR PRIORITY
END DATA INTERRUPT
OF READY ASSIGNMENT

CARD I I

3 1 32 33 34 35

23 Dismiss the PI assignment (assign zero); clear flags Reading Card,
Data Missed, End of File, End of Card, Data Ready, Trouble
Interrupt Enabled, Ready to Read Interrupt Enabled; clear the card
column buffer; and disable any read command given by a CONO if
the reader has not yet started the card. If any action specified by the
rest of the CONO bits conflicts with these actions, the clear function
has precedence.

24 CR10A/B only: If a card is currently being processed in the reader
(Card In Reader, CONI bit 24, is I), offset it when it is placed in the
stacker. The card will actually stick out about a half inch from the
rest of the stacked deck.

CONI CR, Conditions In, Card Reader

71524 y

o 121314 1718

Read the status of the reader into the right half of location E as shown.

READER
MODEL

I

35

o 2 3 4 5 6 7 16 17

TROUBLt
INTERRUPT

READY
TO READ
INTERRUPT
ENABLED '"'iLEO r-I-j

PICK
FAILURE

18 19 20

PHOTO
CELL

ERROR

21

*These bits cause interrupts.

CARD
MOTION
ERROR

22

* * * * * *
CARD HOPPER READY END END PRIORITY

STOP IN EMPTY- READING TROUBLE DATA TO OF OF DATA INTERRUPT
READER STACKER CARD MISSED READ FILE CARD READY ASSIGNMENT

FULL I I
23 24 25 26 27 28 29 30 31 32 33 34 35

Interrupts are requested on the assigned channel by the setting of Data
Ready, Data Missed, End of Card, End of File, and if enabled, Trouble and
Ready to Read.

I?

§4.3 CARD READER CRIO

16-17 These bits identify the type of reader connected to the hardcopy
control.

20

21

o CR10A/B
1 CRlOD
2 CR10E
3 CRlOF

The reader has received a read command but has failed to bring in
a card from the hopper.

The reader has failed to read a card properly and maintenance is
probably required. The program should be dubious of any data
taken from the card being read when the error occurred.

22 A card has failed to move properly through the reader (it has
probably slipped). The program should be dubious of any data taken
from the card being read when the error occurred.

23 Reader power is on but the reader is or soon will be unavailable to
the program either because the operator has pressed the stop button
or there is a trouble condition (bit 27). If Stop is set while a card is
being read, the reader usually finishes it; only a power failure can
stop the reader in the middle of a card.

24 The reader has· brought a card in from the hopper and has not yet
finished reading it. The program can give a CONO offset command
while this bit is 1.

26 The reader has accepted a read command and has not yet finished
reading the card.

27

28

29

30

Bit 20, 21, 22 or 25 is 1. If bit 18 is also 1, the setting of Trouble
requests an interrupt on the assigned channel.

Any condition that sets Trouble also sets Stop (bit 23) and the
reader will stop at the end of the current card (of course a pick
failure prevents the reader from even starting a card). Although a 1
in bit 27 does not necessarily imply an error or malfunction, it
always requires operator intervention. If bit 25 is 1 it is very likely
that the only trouble is the hopper is empty or the stacker is full.

The program failed to retrieve a column of data before the next
column was loaded into the buffer by the reader.

The reader is ready to accept a read command. If bit 19 is 1, the
setting of Ready to Read requests an interrupt on the assigned
channel.

The reader has stopped (probably because the hopper is empty) and
the operator has pressed the end-of-file button.

4-13

Note that CONSZ and CaNSO
can test only bits 18-35. To
test bits 16 and 17 the pro­
gram must give a CONI CR,
AC and then use a test in­
struction [§ 2.8] .

The usual procedure is to put
an end-of-file card at the end
of the deck rather than use
the button. Actually the but­
ton can be used to signal the
program for any purpose pro­
vided the reader is off line
(stopped).

4-14

BITS
15-17

INVALID
I I I

o 2 T 3

I I I I

18 19 20 I 21

The arrangement in bits 10-
17 simplifies many standard
card decoding procedures. Eg
having the card character re­
presented in eight bits allows
conversion to ASCII with a
table containing only 256 en­
tries (as against 4096 entries
for 12-bit characters). With
a deck containing integers,
bits 14-17 are the BCD re­
presentation of the numbers
0-8.

If the program does not re­
trieve the final column and a
CONO that starts a new card
does not clear Data Ready,
Data Missed will be set by the
first column in the new card.

I

4

I

22

HARDCOPY EQUIPMENT §4.3

DATAl CR, Data In, Card Reader

71504 y

o 121314 1718 3S

Clear Data Ready and transfer two versions of the contents of the card
column buffer into bits 10-17 and 24-35 of location E where the corre­
spondence of card rows to bit positions is as shown.

ROW ROW ROW ROW ROW ROW PUNCHED
9 12 11 a 8 IN ROWS 1-7

I I I I 1 I

5 I 6 7 8 I 9 10 11 12 13 14 15 16 17

ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW
12 II a 1 2 3 4 5 6 7 8 9

23 24 25 26 27 28 29 30 31 32 33 34 35

If bit a is 0, bits 15-17 hold the octal row number of the single punch in
rows 1-7 (zero indicates no punch). However, if bit a is 1, there is more
than one punch in rows 1 -7 and bits 15 -1 7 are meaningless.

The program must give a CONO with a 1 in bit 26 to start every card.
This read card command waits until the reader is ready, at which time Read­
ing Card sets and the reader card cycle begins. Movement of a card in from
the hopper sets Card in Reader. As each column is loaded into the buffer,
Data Ready sets, requesting an interrupt on the assigned channel. The
program must respond with a DATAl to transfer the column to memory and
clear Data Ready. If Data Ready is still set when the next column is loaded
into the buffer, Data Missed is set, requesting a second interrupt.

After all eighty columns have been read, Card in Reader goes off, clearing
Reading Card and setting End of Card, which requests an interrupt. The
card then moves out to the stacker, and when the device is ready to begin a
new card cycle, Ready to Read goes on, but only if no new read card
command has been given. If a read card command is already waiting when
the reader becomes ready, it simply accepts the command and Ready to
Read remains off. If no new command is waiting, Ready to Read goes on,
requesting an interrupt if enabled (CONI bit 19 is 1), and it goes off auto­
matically when a new command is given.

It is generally most convenient to use data interrupts only to handle data,
and to give a CONO to read the next card after an End of Card interrupt.
With the CRlOD, E and F, however, Ready to Read comes on at the same
time as End of Card. To save time, the program can give a new CONO read

§4.4 CARD PUNCH CPIO

card command right after retrieving the data from the final column. Then
End of Card can be ignored, and there will be no Ready to Read interrupt.

Timing. Of interest to the programmer at the beginning of each card are
the time from the turn on of Reading Card to the turnon of Card in Reader,
assuming the first pick attempt is successful, and then the time to the first
Data Ready. Subsequent columns are ready at fixed intervals, which deter­
mine the time after each setting of Data Ready within which the program
must give a DATAl in order not to miss the data from the column. When
End of Card sets after the final Data Ready, Card in Reader and Reading
Card both clear. The bottom number in each column of the table below is
the time after End of Card the program has to give a new CONO read card
command to keep the reader going at the nominal maximum rate. With the
CR 10AIB, Ready to Read goes on at the end of this period if no new
command appears; with the other readers, Ready to Read goes on with End
of Card if no new command has already appeared.

CRIOA CRIOB CRIOD

Time per card in ms 60 72 60
Reading Card -+ Card in Reader in ms 18 21.6 15
Card in Reader -+ first Data Ready in ms 1.8 2.2 1.9
Each Data Ready to next in fJ.S 370 444 478

DA TAl window after Data Ready in fJ.S 350 420 450
(otherwise Data Missed)

Total first to last Data Ready in ms 29.2 35 37.7

Final Data Ready -+ End of Card in ms 1.8 2.2
Time for CONO after End of Card

for nominal maximum rate in ms 9.2 11

When the last card in a deck is read, the hopper empty signal goes on well
after the final Data Ready but before End of Card, except in the CR 1 OAIB
where it is simultaneous with End of Card.

4.4 CARD PUNCH CPt 0

The card punch handles standard 12-row 80-column cards at speeds up to
200 cards per minute if all eighty columns are punched, 365 cards per minute
if only the first sixteen columns are punched. The processor must supply
each column to the punch as twelve bits, and the program can generate this
data by any procedure it wishes; the standard DEC character representations
and the translation from ASCII made by the Monitor are given in Appendix
B. Of course the data can simply be in binary at three columns per word
(punching rows 7 and 9 in the first column is the standard procedure for
indicating that the rest of the card contains binary data).

A card is taken from the hopper only when the program supplies data for
the first column. In the interface is a 12-bit buffer to which the processor

1.9

0

4-15

CRIOE CRIOF

50 200
14 24

1.1 2.6

405 2014

385 1900

32.1 158
1.6 8.0

0 0

4-16

CLEAR OFFSET
PUNCH CARD

18 19 20 21 22

*These bits cause interrupts.

TEST HOPPER
LOW

18 19 20

NEED
OPERATOR

7" PICK
FAILURE-

STACK
FAILURE

21 22

HARDCOPY EQUIPMENT §4.4

sends each column, but the punch has a 48-bit buffer, and it punches four
columns at a time from each set of four l2-bit bytes sent through the inter­
face. The program can send a card to the stacker after punching any number
of columns. The punch device code is 110, mnemonic CDP.

CONO COP, Conditions Out, Card Punch

7 1 1 20 y
o 1213141718 3S

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 20-32 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

DISABLE I ENABLE DISABLE I ENABL E CLEAR SET CLEAR I SET PRIORITY
EJECT CLEAR END INTERRUPT
CARD TROUBLE ERROR END OF CARD OF PUNCH DATA

ASSIGNMENT INTER!UPTS CARD ON REQUEST
I I

23 24 25 26 27 28 29 30 31 32 33 34 35

20 Clear flags Trouble Interrupt Enabled, Error, End of Card Enabled,
End of Card, Punch On, Busy, Data Request; clear the card column
buffer. If any action specified by the rest of the CONO bits conflicts
with these actions, the other bits have precedence.

21 If a card is currently being processed in the punch (Card in Punch,
CONI bit 27, is 1) or was ejected less than 3 ms ago, offset it when it
is placed in the stacker. The card will actually stick out about a half
inch from the rest of the stacked deck.

23 If a card is currently being processed (Card in Punch, CONI bit 27,
is 1), punch whatever data is in the 4-column buffer and then eject
the card. Ejection moves a card through the punch head assembly
four times as fast as punching blank columns.

CONI COP, Conditions In, Card Punch

7 1 124 II I X I y
o 1213141718

Read the status of the punch into the right half of location E as shown.

*
tJ~CT TROUBLE FAILURE

23 24

TROUBLE
INTERRUPT

'toL£'
ERROR

25 26

CARD END
IN OF

CARD PUNCH ENABLED

27 28

* *
END PRIORITY

OF PUNCH
BUSY

DATA INTERRUPT
ON REQUEST ASSIGNMENT CARD

I I

29 30 31 32 33 34 35

o

"

§4.4 CARD PUNCH CPIO

Interrupts are requested on the assigned channel by the setting of Data
Request, End of Card, and if enabled, Trouble.

18 The operator has turned on the test switch, taking the punch off line.

20 Less than a hundred cards are left in the hopper.

21 The hopper is empty or the stacker or chip box is full.

22 The punch has received data for the first column but has failed to
bring in a card from the hopper; or it has received an eject command
but has failed to place the card properly in the stacker.

23

24

The punch has received an eject command but has failed to move the
card out of the punch head assembly.

Bit 18, 22 or 23 is 1, or bit 21 is 1 because the hopper is empty or
the stacker is full, or the operator has taken the punch off line. If
bit 25 is also 1, the setting of Trouble requests an interrupt on the
assigned channel.

Ordinarily a trouble condition allows the punch to finish a card
but prevents it from starting another; only a power failure or the
operator turning on the test switch (bit 18) can take the punch off
line in the middle of a card. A full chip box does not stop the punch
at all as there is actually enough room left for the chips from a whole
hopper full of cards. Although a 1 in bit 24 does not necessarily
imply a malfunction, it always requires operator intervention. If bit
21 is 1 it is very likely that the only trouble is the hopper is empty or
the stacker is full.

26 A column punched in a card does not agree with the data sent by
the processor.

27 A card is in the punch head assembly. The program can give a CONO
offset or eject command while this bit is 1 (the offset can also be
given within 3 ms after Card in Punch clears).

29 Bit 28 is 1 and the program has given either an eject command or
data for column 80. The setting of End of Card requests an interrupt
on the assigned channel.

OATAO COP, Data Out, Card Punch

7 1 1 1 4 y
o 12 13 14 17 18 35

Clear Data Request, set Punch On and Busy, and load the contents of bits
24-35 of location E into the interface column buffer where the correspond­
ence of bit positions to card rows is as shown.

ROW ROW ROW ROW ROW ROW ROW
12 11 0 1 2 3 4

I I I I I

18 19 20 I 21 22 23 24 25 26 27 28 29 30

4-17

ROW ROW ROW ROW ROW
5 6 7 8 9

31 32 33 34 35

4-18

If the program gives a DAT AO
to turn on the motor, the
initial ready from the punch
takes the first column from
the column buffer but does
not set Data Request. When
that flag does set, the punch is
ready for the second column.

If the program does not eject
before the punch starts punch­
ing cQlumns 77-80, it makes
another data request. The pro­
gram can then supply two
more columns, which will be
punched in the margin of the
card.

CAUTION

Any data that is given but
not punched (eg the first col­
umn(s) when there is a pick
failure) is usually lost when
the punch goes off line. Hence
the program should always
start with the first column of
a card when the punch is
restarted.

HARDCOPY EQUIPMENT §4.4

Setting Punch On turns on the punch motor, but only a DAT AO can pick
a card. Since DATAO also sets Punch On, the program can initiate punch
operations while supplying data, but the usual procedure is to set Punch On
while giving other initial conditions.

When the punch is ready to take a card from the hopper it sends a ready
signal to the interface. This sets Data Request, which requests an interrupt
on the assigned channel. To pick a card the program must respond with a
DATAO, which supplies the first column, clears Data Request, and sets Punch
On and Busy. The interface then sends the column to the 4-column punch
buffer and clears Busy. While the punch is picking a card it also makes three
more data requests to each of which the program must respond with a
DATAO. When the card is properly registered in the punch head assembly,
Card in Punch sets. When this flag has set and the program has supplied the
first four columns, the device punches the four columns simultaneously (a 1
sent to the column buffer produces a hole in the card). The punch then con­
tinues in this fashion making four data requests for each set of four columns.

Punch On clears when the program gives an eject command. This causes
the device to punch whatever is in its 4-column buffer and the card then
moves out to the stacker. If the punch has already sent a ready signal, the
CONO that ejects should also clear Data Request. If End of Card has been
enabled by a 1 in CONO bit 28, the eject command sets it, requesting an
interrupt. If no eject command has been given by the time data is supplied
for column 80, End of Card sets anyway if it is enabled (producing an
interrupt request), but the card remains in the punch head assembly until an
eject command is given. The actual ejection of a card clears Card in Punch.

Timing. If Punch On is set when the punch motor is off, the first ready
signal is delayed about 120 ms while the motor gets up to speed. When the
motor is on, Card in Punch sets about 60 ms after the DA T AO that sends the
first column for a card. While the card is in the head assembly, punching is
synchronized to a punch cycle of 11.1 ms. About 30 jJ.S elapse from each
DA TAO to the next Data Request, but after the first request the program
has the full punch cycle time to supply all four columns and keep punching
at the maximum rate; after that punching is delayed until the next cycle.

Giving an eject command clears Punch On and sets End of Card after 5 jJ.s,
but Card in Punch does not clear until the card leaves the head assembly; this
takes about 25 ms plus 2.8 ms for each set of four columns skipped over.
After Card in Punch clears, about 30 jJ.S elapse before the punch indicates
that it is ready to pick another card from the hopper, at which time the
program should give a DA T AO to pick another card at the maximum rate.
(Of course the first DA TAO can be given right after the eject command, and
the punch will then pick another card automatically without setting Data
Request for the first column.) When the final card is punched, the hopper
empty signal is simultaneous with End of Card. If Punch On remains clear
for about 30 seconds, the motor turns off.

\,J

5

Data Interfaces

The equipment described in this chapter is used for transferring data directly
between memory and an in-out device or between the DECsystem-lO and
some other computer.

A data channel can be used with high speed 10 equipment. The channel
moves data words between the 10 device control and memory, thus bypass­
ing the central processor. A disk or drum must use the data channel unless
it has an equivalent data interface built into its own control. Use of the
channel with the standard magnetic tape is optional; but the DECtape and
all devices already described do not use the data channel - all of their
transfers must be made individually under program control over the 10 bus.

An interface from one computer to another not only handles the transfer
of a block of words but also compensates for the difference in word size.
The DAlO, which interfaces the PDP-IO to a 12- or 18-bit computer, uses
the 10 bus and therefore depends on the program for each transfer.

5.1 DATA CHANNEL

The maximum rate for data transfers between external devices and core
memory would be no greater than 150,000 words per second if the transfers
were executed under program control. This rate would tie up the central
processor completely. To allow much greater transfer rates and to free the
central processor for more useful programs while in-out operations are in
progress, a data channel can be installed in parallel with the central pro­
cessor. When the data channel and the central processor are both accessing
the same memory, they must compete for memory cycles, but when they
are accessing different memories the data channel can execute transfers at the
full memory cycle rate (a million words per second with the MAIO). An
efficient procedure is to use the data channel to bring information for the
next program into a memory (eg memory 1) while the processor is running a
program in another memory (eg memory 0); then while the processor exe­
cutes the program in memory 1, the channel can be used to output the results
of the previ<?us program from memory 0 and bring in the next program.

The data channel is essentially a small processor that runs on its own very
limited program taken from memory. This program is a set of control words.
Most of these control words are simply addresses and word counts for con­
trolling data transfers, but some are equivalent to jump and halt instructions.

5-1

5-2

The word counter can also be
used for other purposes, such
as counting records spaced
on tape, but this is always
done by counting throwaway
words.

DATA INTERFACES §5.l

The data channel is connected to memory either by its own memory bus
or through a multiplexer sharing a common bus with other processors; a
channel bus connects the data channel to those 10 devices that use it.

The central processor program cannot affect the data channel directly
because the channel is not connected to the 10 bus and therefore has no
instructions; instead the program sets up the device to use the channel.
Some of the conditions that the program can supply via a CONO to the
device are actually for the data channel; similarly status conditions from
the channel are supplied to the program through the device. Moreover a
device connected to the data channel requires no data transfers over the
10 bus, so the DATAO and DATAl for the device are often used for control
and status information.

Although several devices can be connected to a single channel bus, the
data channel operates with only one device at a time - once the channel
begins a series of transfers with a given device it services only that device
until the entire series is complete. The priority among devices for gaining
use of the channel is determined simply by physical location on the channel
bus: the closer a device, the higher its priority. To place a device in oper­
ation with the channel, the processor sends all of the necessary control infor­
mation for both the device and the channel to the device via the 10 bus.
When the channel is free and the device has priority, it automatically con­
nects to the channel and remains connected until the channel operation is
terminated by either a control word taken from memory, an error in the
channel or a signal sent by the device.

The illustration on the next page shows the organization of the data
channel. All transfers to, from, through and within the channel except for
the transfer of addresses over the memory bus address lines are actually made
through a memory buffer, which is not shown. Controlling the operation of
the data channel are three 18-bit counters that count data words, data ad­
dresses and control word addresses. The first of these counters determines
the number of words transferred in a single block, the second supplies con­
secutive memory addresses for the data transfers in a block, and the last
supplies the address for retrieval of the next control word when a block is
complete. Following each memory access, the counter from which the ad­
dress for the access was taken is incremented by one. Thus, the data transfers
in a block are made to consecutive locations and control words are also taken
from consecutive locations.

When a device connects to the data channel, it supplies an initial control
word address, which must be an even number between 2 and 776 (in other
words the address occupies bits 27-34 of a word sent by the program to the
device). This address is saved in a register in the channel and is also loaded
into the control word address counter from which it is sent to memory for
the retrieval of the first control word. When a control word is brought into
the memory buffer, its left and right halves are first inspected to determine
what the channel must do. The format of these control words is as follows.

'1

""

,

§ 5.1 DATA CHANNEL 5-3

Left half Right half Meaning

Nonzero Nonzero Normal block transfer. Left half is negative The control word for a block

of word count, right half is one less than transfer is the same as the

initial data address. pointer for a pushdown or
block IO instruction [see page

Nonzero Zero Normal block transfer for output, but for in- G3] and can be generated by
an IOWD pseudo instruction.

put the words received from the device are Note that the initial data
not sent to memory - they are discarded. address would usually be 20

or greater as the central pro-
Zero Nonzero Jump. Right half is sent to control word ad- cessor cannot normally access

dress counter to get another control word. locations below 20 if the ac-
cumulators are in a fast mem-

Zero Zero Halt. The channel terminates operation and ory. Location 0 can be used
only by counting around from

disconnects from the device. high addresses.

MEMORY BUS .
I \

DATA 0-17 DATA 18-35 ADDRESS 18-35

0-17

t

o

+
DATA WORD

COUNTER

•
CHANNEL BUS

17 18

I
18-35

~ ____ ----z' t

DATA ADDRESS

COUNTER

35

I

18-26 1
0S

27-34

18

.
\

135
1

CONTROL WORD
ADDRESS COUNTER

35

.
I \

18-261 135
0S 0

INITIAL CONTROL

WORD ADDRESS

27 34

27-34 ONLY

CHANNEL DATA FLOW
10- 06~7

5-4

Ordinarily the program would
do this to determine how near
to completion an operation is.

DATA INTERFACES § 5.1

If the left half is nonzero, the word supplies information for a block trans­
fer and its left and right halves are sent to the data word counter and the data
address counter respectively. The channel logic then increments both address
counters so that the data address counter points to the ftrst location in the
block and the control word address counter points to the next control word.
Data channel operation then begins, and as each word is transferred to or
from the location specifted by the data address counter, the logic increments
both data counters. When the word counter overflows, the channel gets an­
other control word from the location specifted by the control word address
counter and continues operation as specifted by the new control word. A
control word with a nonzero left half and a zero right half causes a normal
block transfer for output; however, for input it functions in the normal way
with the device but simply throws away the data received without accessing
memory. This feature can be used for skipping blocks on a tape or disk with­
out requiring program intervention at the device.

When the channel receives a zero control word, it terminates operation
and disconnects from the device. At the same time the data channel stores
a control word in the memory location whose address is one greater than
the initial control word address, ie the next odd location following the even
address initially given by the program to the device. However, this control
word is not the same as the control words retrieved by the channel; the word
stored has the present contents of the control word address counter in its
left half, and the prese~t contents of the data address counter in its right
half. The channel stores a control word in this manner upon termination
for whatever reason.

Output Conditions. The program can supply two control signals via the
device.

Write Control Word. Upon receipt of this signal the channel waits until
the next data transfer is complete and then writes a control word of the form
described above in the location following that of the initial control word.

Write Even Parity. This signal is usually supplied as bit 35 of the word
containing the initial control word address and is for maintenance only. The
signal causes the channel to generate an even parity bit for each data word
stored in memory, but the channel still checks all words retrieved from mem­
ory for odd parity and uses odd parity when storing control words.

Input Conditions. The channel supplies four conditions via status flags
in the device.

Control Word Parity Error. If the data channel receives a control word
with even parity from memory, it sends this signal to the device, terminates
operation and disconnects from the device.

No Such Memory. If a memory addressed by the data channel does not
respond within 100 fJ.s, the channel sends this signal to the device, terminates
operation and disconnects from the device.

Data Parity Error. If the channel receives a data word with even parity
from memory, it sends this signal to the device but continues normal opera­
tion.

§ 5.1 DAT A CHANNEL

Control Word Written. When the data channel finishes storing a control
word at the request of the device, it sends this signal to the device.

EXAMPLES. Let A be the initial control word address. This control word
list is used for an output operation; it causes the channel to take 1024
(20008) words from memory beginning at location 5000 and send them to
the device.

Location

A
A+l

Contents

776000 004777
o 0

Note that this example uses the location following the initial control word
so the program cannot signal the channel to write a control word during its
execution.

It is usually better to leave location A + 1 free and use a jump as in this
example.

Location

A
1000
1001

Contents

o 001000
777700 001777

o 0

For an input operation this control word list causes the channel to accept
sixty-four words from the device and store them in locations 2000-2077.

Suppose the following control word list is used for an input operation.

Location Contents

A 0 000500
500 777700 000777
501 777000 004777
502 777300 0
503 777000 005777
504 0 0

This sequence causes the channel to store the first sixty-four words supplied
by the device in locations 1000-1077, the next 512 words go to locations
5000-5777, the next 320 words are thrown away, and the final 512 words
are stored in locations 6000-6777. Hence four blocks of data are involved,
but the channel skips the third block. Using this list for output would involve
equivalent transfers in the opposite direction, but the third block of 320
words would be taken from core locations 1-500.

Operation. Registers and a number of control signals for the data channel
are displayed on an indicator panel. The lights for the left and right halves
of the control word display the current contents of the word counter and the
data address counter respectively. The other register lights display the mem­
ory buffer, the address of the next control word, and the initial address (the
bit 35 light is not used).

5-5

5-6

Indicator Panel,
Data Channel

DATA INTERFACES § 5.1

The three lights at the left end of the third row show the status of the
channel: the left light indicates the channel is ready to terminate opera­
tions, the second light indicates the channel is not in use, and the third
light indicates that the control word for the current block transfer had a
zero right half, ie if the current operation is for input, the channel is skipping
a block on the device. The next set of five lights in the third row and the
five lights directly below them indicate the type of memory cycle being
requested and the specific type of individual transfer being made. The lights
in the middle of the third row display parity information: PAR is the parity
bit generated for a word to be written in memory; the second light is on
when the channel is generating even parity for data words; the third light
indicates when a switch at the memory is causing the channel to ignore
parity, and hence the channel can discover no parity errors in words taken
from memory. Mounted in the logic is a toggle switch that allows the op­
erator to select odd parity for the channel regardless of the conditions given
by the program via the device. The switch is located above panel D; it
should be set to the left to lock out even parity.

The lights at the left in the bottom row indicate the type of data channel
operation. yeW indicates a block transfer (ie the control word is valid, being
neither jump nor halt). The READ light indicates an input operation (the
middle light is the device pulse, which indicates that the device is ready to
receive output or has sent input data that the channel has not yet transferred
to memory). ,./

Located behind the doors on a bracket between panels e and D are a push­
button that clears the data channel and the toggle switch for locking out
even parity writing. On two brackets between panels A and B are mainte­
nance switches for local control of the channel; the left switch on the left
bracket must be set to the right for proper operation of the channel in the
system (when set to the left this switch enables the other switches for test
operation without a device).

~.

§5.2 DAI0INTERFACE

5.2 TWELVE- AND EIGHTEEN-BIT COMPUTER INTERFACE DAto

This unit interfaces a PDP-lO processor to a variety of 12- and l8-bit DEC
computers. It is connected to the PDP-lO 10 bus and the 10 bus of a small
computer, and from either bus it appears as an interface to a device. The
small computer must have a negative bus, which is always either standard or
available as an option.

The interface contains two 36-bit buffers, From Ten and To Ten, so that
data transfers can be performed simultaneously in both directions. Data is
moved between the PDP-lO and the interface in 36-bit words, but the small
computer operates with only part of a buffer at a time depending on its own
word size. The unit also contains four status flags, two for each computer,
to indicate when it has data for the computer to retrieve (ie the input buffer
is full) and when it is ready to receive data (ie the output buffer is empty).
The flags for the PDP-lO are From Ten Empty and To Ten Full; the flags for
the small computer are To Ten Empty and From Ten Full. The setting of
any of these flags requests a priority interrupt in the associated computer.

PDP-tO Instructions

The interface has the usual instructions for sending and reading conditions,
but except for assigning a PI channel, it can be controlled entirely by DA TAls
and DATAOs. The interface device code is 014, mnemonic CCI (computer­
computer interface). A second interface would have device code 020.

CONO CCI, Conditions Out, Computer-Computer Interface

70160 y
o 121314 1718 3S

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 23-32 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

DISABLE tENABLE CLEAR SET CLEAR SET CLEAR SET
FROM FROM FROM FROM TO TO

SELF-CHECK TEN TEN TEN TEN TEN TEN

I FULL FULL EMPTY EMPTY FULL FULL

18 19 20 21 22 23 I 24 25 26 27 28 29 30

5-7

The interface must be set up
to operate either with a I2-bit
computer or with an IS-bit
computer. For setup infor­
mation refer to the DA10
Maintenance Manual.

The input buffer for the
PDP-lO is the output buffer
for the small computer, and
vice versa.

CLEAR SET PRIORITY
TO TO INTERRUPT

TEN TEN ASSIGNMENT
EMPTY EMPTY I I

31 32 33 34 35

5-8

18 19 20 21 22

DATA INTERFACES §5.2

CONI CCI, Conditions In, Computer-Computer Interface

70164 y

o 121314 1718 3S

Read the status of the interface into bits 24-35 of location E as shown.

SELF FROM FROM TO TO
PRIORITY

CHECK TEN TEN TEN TEN INTERRUPT
ENABLED FULL EMPTY FULL EMPTY ASSIGNMENT

I I

23 24 25 26 27 28 29 30 31 32 33 34 35

The setting of From Ten Empty or To Ten Full requests an interrupt on the ,Cl

assigned channel.

DATAO CCI, Data Out, Computer-Computer Interface

70154 y
o 121314 1718 3S

Load the contents of location E into the From Ten buffer. Clear From Ten
Empty and set From Ten Full.

DATAl CCI, Data In, Computer-Computer Interface

70144 y

o 121314 1718 3S

Transfer the contents of the To Ten buffer into location E. Clear To Ten
Full and set To Ten Empty.

Twelve-bit Computer Instructions

For operation with a 12-bit computer such as the PDP-8 or PDP-12, the
data buffers are divided into three parts, 1, 2, and 3 (bits 0-11, 12-23, and
24-35 respectively). Because the 12-bit words must be handled individually,
the interface uses three small-computer device codes, 35, 36, and 37. There
are no standard mnemonics defined for instructions that use these codes, but
because the DAI0 is often a part of a DC68A communication system, the
mnemonics defined in the X 680 software are given here.

In the following, the term "AC" refers to the l2-bit accumulator. The
setting of To Ten Empty or From Ten Full requests an interrupt at the small
computer.

§5.2 DA10INTERFACE

DADSKP DA10 Out Skip 6361

Skip the next instruction in sequence if To Ten Empty is set.

DAISKP DA10 In Skip 6371

Skip the next instruction in sequence if From Ten Full is set.

DAOCLR DA 10 Out Clear 6351

Clear the To Ten buffer and To Ten Empty.

DALOD1 DA10 Load 1 6354

Load the contents of AC into bits 0-11 of the To Ten buffer.

DALOD2 DA10 Load 2 6364

Load the contents of AC into bits 12-23 of the To Ten buffer.

DALOD3 DA10 Load 3 6374

Load the contents of AC into bits 24-35 of the To Ten buffer, and set To
Ten Full.

DARED1 DA10 Read 1 6352

Inclusive OR the contents of bits 0-11 of the From Ten buffer with the
contents of AC in AC.

DARED2 DA10 Read 2 6362

Inclusive OR the contents of bits 12-23 of the From Ten buffer with the
contents of AC in AC.

DARED3 DA10 Read 3 6372

Inclusive OR the contents of bits 24-35 of the From Ten buffer with the
contents of AC in AC. Clear From Ten Full and set From Ten Empty.

5-9

Note that these read instruc­
tions perform an inclusive OR.

Hence, each complete 12-bit
read operation actually re­
quires an instruction pair: a
CLA to clear AC, followed by
the read.

5-10

A 1 in instruction bit 14
clears AC prior to the trans­
fer. The instructions given
are the forms that are most
likely to be used. However,

DATA INTERFACES §5.2

Eighteen-bit Computer Instructions

For operation with an l8-bit computer such as a PDP-9 or PDP-IS, the data
buffers are divided into two halves, whose contents are handled individually.
The l8-bit computer device code for the interface is 22, and a 0 or 1 respec­
tively in instruction bit 13 selects the left or right half of the buffer (bits
0-17 and 18-35). There are no standard mnemonics defined for instruc­
tions that use this device code.

In the following, the term "AC" refers to the I8-bit accumulator. The set­
ting of To Ten Empty or From Ten Full requests an interrupt at the small
computer.

Skip if Ten Interface Empty 702221

Skip the next instruction in sequence if To Ten Empty is set.

Skip if Ten Interface Full 702241

Skip the next instruction in sequence if From Ten Full is set.

Clear Ten Interface 702201

Clear the To Ten buffer and To Ten Empty.

Load Ten Interface Left 702204

Load the contents of AC into bits 0-17 of the To Ten buffer.

Load Ten Interface Right 702224

Load the contents of AC into bits 18-35 of the To Ten buffer, and set To
Ten Full.

Read Ten Interface left 702212

Clear AC and then transfer the contents of bits 0-17 of the From Ten buffer
into AC.

Read Ten Interface Right 702232

Clear AC and then transfer the contents of bits 18 - 35 of the From Ten
buffer into AC. Clear From Ten Full and set From Ten Empty.

§5.2 DAIOINTERFACE

Programming Considerations

Initially, a CONO need be given only to assign a PI channel. In the small
computer, the interrupt flags are connected to the priority request line; the
only requirement is that the interrupt be turned on.

For the transfer of data toward the small computer, the PDP-l a program
must give a DATAO for each 36-bit word; this loads the word into the From
Ten buffer, clears From Ten Empty and sets From Ten Full. The setting of
the latter flag requests an interrupt in the small computer, which then uses
its skip instructions to determine which device has requested service. To
complete the transfer, the small computer retrieves its words from the buffer
from left to right. The instruction that retrieves the right-hand word also
clears From Ten Full and sets From Ten Empty, requesting an interrupt in
the PDP-lO. After the final word in a block is transferred, the program must
give a CONO with a 1 in bit 27 to clear From Ten Empty and drop the inter­
rupt request.

For transfers in the opposite direction, the small computer should first
clear To Ten Empty and the To Ten buffer. The small words are then loaded
into the buffer from left to right, where the instruction that loads the right­
hand word also sets To Ten Full, requesting an interrupt in the PDP-10. The

PDP-10 program responds with a DATAl that retrieves the 36-bit word from
the To Ten buffer, clears To Ten Full, and sets To Ten Empty, requesting an
interrupt in the small computer. After the final word in the block is trans­
ferred, the program must give a DAOCLR to clear To Ten Empty and drop
the interrupt request.

The programmer must establish some sort of protocol to be used by the
program in the two computers so the receiving program will know what is
going on. Eg the first words of a block might be used to indicate the amount
of data, where it should be stored, what it is for, and so on.

The top two rows of lights on the DA 10 indicator panel display the con­
tents of the 36-bit buffers. The device select lights in the bottom row

5-11

Note that the small computer
must always work from left
to right. Hence, if single small
words are being processed
through the interface, they
must be right-justified.

DAlO Indicator Panel

5-12

The manner in which the data
is moved (ie the word size)
depends on the type of small
computer with which the in­
terface is set up to operate.

DATA INTERFACES §5.2

indicate which computers are currently selecting the interface (the 8 light
represents any l2-bit computer, the 9 light any l8-bit computer). The re­
maining lights indicate when power is on and display the status flags and the
PDP-l 0 PI channel assignment.

Timing. The DAlO can handle transfers at the maximum PDP-lO rate of
150,000 words per second. Whether or not this rate can be attained depends
entirely on the speed of the small computer. Some small computers can
actually operate faster than this, but others are much slower. No times are
given with the instruction descriptions, as the time for each lOT type de­
pends on the processor rather than the device. To determine the instruc­
tion times and the transfer rate that can be maintained, refer to the hand­
book for the appropriate small computer. The system designer must be
careful to ensure that one computer cannot swamp the other with interrupt
requests. This might occur particularly with a fast small computer, especially
in an arrangement where it sends out data in its own word size rather than
assembling PDP-l 0 words.

Self-checking. The DAIO contains circuitry that allows a PDP-IO main­
tenance program to check out the transfer logic with the interface discon­
nected from the small computer bus. Self-checking is enabled by giving a
CONO with a 1 in bit 24. Then each DATAO not only loads the From Ten
buffer but also triggers a sequence that moves the small computer words (left
to right) through the bus logic to the To Ten buffer. The transfer of the
right-hand word sets To Ten Full, requesting an interrupt, so the program
can give a DATAl and check the word received against that originally sent.

:

6

Magnetic Tape

Two types of Magnetic tape equipment are regularly available for use in a
DECsystem -10. One handles the large reels of half-inch tape that are
standard throughout the industry; the other handles DECtape, of DEC's own
creation. DECtape trades off some of the speed and storage capacity of
standard magnetic tape for the convenience of paper tape. Its small reels are
easy to handle and carry about, making DECtape desirable for program input.
In addition, the redundancy used in recording helps to maintain the informa­
tion intact despite heavy handling. The format of the tape allows single
blocks to be replaced without affecting the rest of the tape, thus making it
especially convenient for holding a library of commonly used routines.

The industry-standard magnetic tape may be used as backup storage for
memory and is especially convenient for storing large amounts of data that
need not be available to the system continuously. (A disk or drum can store
information much faster, but physical storage of the information storing me­
dium separate from its handling equipment is less convenient, and often im­
possible.)

Both types of magnetic tape equipment automatically record error-checking
information while recording data on tape. This provides a means of checking
for possible data loss that results from using the tape as a storage medium.

PART I
DECTAPE

A DECtape system consists of a TD 1 0 control and up to eight DECtape
transports. Three of the tape transports can be mounted in the same cabinet
with the control. Any number of tapes can be in motion simultaneously,
but the control can monitor only one at a time. Both reading and writing
can be done in either direction of tape motion, with an average data transfer
rate between processor and tape of 400 lAS per 36-bit word. Each transport
has two reels, which function as supply or take up depending on the direction
of tape motion. A full reel has 260 feet of *-inch, 1 mil magnetic tape and
can store 2Y2 million data bits, three bits per frame (73,984 36-bit words in
standard PDP-lO DECtape format).

6-1

6-2

12 12

FORWARD FORWARD
BLOCK SYNCHRONIZING

NUMBER AREA

DECTAPE §6.1

6.1 TAPE FORMAT

From a programming point of view the tape has four tracks, one for format
information - the "mark" track - and three for data. While handling the
data tracks, the control uses the mark track internally to determine the posi­
tion of the tape, ie which type of zone is present at the heads. The control
expects to find the tape formatted as a series of contiguous blocks preceded
and followed by an end zone.

REVERSE
END ZONE

FIR ST SECOND
BL OCK BLOCK

- - - - - - -,---,--------,

ADDITIONAL
BLOCKS

LAST
BLOCK

FORWARD
END ZONE

- - ____ --'-__ --'-____ --.J

- - - FORWARD TAPE MOTION - -­

~ ~ ~ REVERSE TAPE MOTION ~ ~ ~

TAPE FORMAT

Each block has seven zones. In the middle is a data area that has a min­
imum of twenty-four frames and can be expanded by any multiple of twelve
frames; a block thus holds an integral number of 36-bit words. Blocks with
different size data areas can be mixed on one tape. At either end of the data
area are a block number (BN), a synchronizing area and a parity area. Twelve

NUMBER OF FRAMES
6 24+12N 6

FORWARD REVERSE
PARITY DATA AREA PARIT Y

AREA AREA

- - - FORWARD TAPE MOTION - - -

~ ~ ~ REVERSE TAPE MOTION ~ ~ ~

BLOCK FORMAT

12 12

REVERSE REVERSE
SYNCHRONIZING BLOCK

AREA NUMBER

frames at each end of every block are used for a block number; identifying
blocks in this manner allows the data area of a block to be treated as address­
able storage. Tape processing involves three types of functions: those that
process only the block numbers, those that process only the data and parity
areas, and those that process everything; these functions are respectively BN,
Data and All functions. There are two functions of each type, for reading
and writing, and every function can be executed in either direction.

§6.1 TAPE FORMAT

A BN function processes only the block number at the beginning of each
block; in other words it processes only the forward BN when the tape is mov­
ing forward, and the reverse BN when the tape is moving reverse. For conven­
ience, the first end encountered in any block will be referred to as the leading
end regardless of which direction the tape is moving - and similarly the other
end is the trailing end. Hence a BN function processes only leading block
numbers.

Data functions process the data areas, but when the control is processing a
data area it also automatically processes the parity areas. The programmer
need not be concerned with the parity areas as such: generation and checking
of parity is entirely automatic. The programmer's only concern is a flag that
indicates whether any errors have been detected in information read. Note
that if only BN and Data functions are used, the synchronizing areas are not
processed at all, but the program can take advantage of the time that elapses
while the control is spacing past the synchronizing areas to change functions.
The usual procedure is to search for a d~sired block by reading block num­
bers, and then switch to a read or write Data function to process the data area
when the block is found.

With the All functions, the program can write or read all areas, except of
course parity areas which are processed automatically just as in the Data
functions. The All functions allow use of the synchronizing areas for special
identification purposes or storage of large quantities of information without
regard to the block structure, but often they are used only to write block
numbers on a tape that has just been formatted.

The DECtape control processes data in terms of 36-bit words even though
the tape has 3-bit frames. The twelve frames written from a given word are
read as that same word regardless of the direction of tape motion. BN func­
tions in different directions actually process different tape areas, ie they
process numbers at opposite ends of the blocks. Data and All functions how­
ever are truly bidirectional; the only difference in processing a block in oppo­
site directions is that the order of the words is reversed.

Besides the above functions there is a special function through which the
program formats a blank tape by writing the mark track. As the mark track
is written, a timing track is also recorded on tape. The programmer should
not be concerned with this timing track since its generation and use are in­
ternal to the control. The timing track is, however, responsible for variations
in the data transfer rate: when processing is in the same direction that the
mark track was recorded, the transfer rate is a constant 400 J.Ls per 36-bit
word; in the opposite direction the transfer rate varies from 480 J.LS near the
forward end zone to 320 J.LS near the reverse end zone.

Standard Format DECtape. DEC supplies tapes with timing and mark
tracks recorded on a transport whose write head has zero skew; these tapes
may therefore be used on any transport where the skew is within specifica­
tions. A standard tape is formatted into 578 blocks numbered in octal from
o to 1101. Each block has a data area of 128 words.

6-3

The forward BN for the first
block and the reverse BN for
the last block cannot be proc­
essed; but this is not important
since in either case the block is
being approached from the
end zone.

When the control is writing a
block, it writes 1 s in the lead­
ing parity area, writes the data
area, and writes parity infor­
mation in the trailing parity
area. When the tape is being
read, the direction is of no sig­
nificance; the control simply
checks the parity of the two
parity areas and the data area
combined.

Internally the control handles
6-bit bytes, each of which oc­
cupies two tape frames. The
frames thus contain octal dig­
its, which are oriented so that
the control encounters the
most significant digit of each
word first when tape is moving
forward.

The Monitor actually reverses
the order of the words handled
in a transfer between memory
and tape when the tape is go­
ing in reverse. Hence core data
sent to tape and subsequently
retrieved appears in the same
orientation in core regardless
of the direction in which the
tape happens to be moving
during writing and reading.

6-4

A discussion of the compati­
bility of PDP-l DECtape and
LINe tape with the PDP-I0
is not included in this manual.

A 120 ms delay is built into
the hardware to prevent the
tape from being processed
should it be already up to
speed but in the wrong direc­
tion. Following the delay,
processing can begin as soon
as the tape is up to speed in
the right direction.

The time from a known to a
desired position on the tape
can be estimated with reason­
able accuracy, so the program
can leave one tape running
while using another.

DECTAPE §6.2

The mark track of a standard format tape has 200 BN space codes between
each end zone and the block nearest it. With tape moving from the end zone,
the control ignores these codes; with motion toward the end zone, the tape
simply appears to have a string of leading block numbers for a block that is
not there.

Compatibility. All DECtape controls except those used with the PDP-I,
4 and 7 generate and check parity automatically and use the same zone marks.
Tapes are thus compatible from one of these computers to another (of course
the number of words in a given block depends on the word length of the com­
puter). In the PDP-4 and 7 the program handles parity and must therefore
match the parity configuration of the PDP-IO or an error indication results
when the tape is read. The TO I 0 generates even parity the length of a data
area for corresponding bits in 6-bit data bytes; the resulting 6-bit parity
character is written in the first two frames of the trailing parity area, and the
rest of the half word is filled with Os. The PDP-4 is not fast enough to com­
pute parity while processing the tape.

6.2 TAPE HANDLING CHARACTERISTICS

The program communicates with the DECtape control, which in turn governs
all tape transports but communicates with only a single transport at a time.
Once the program starts a tape function, the control operates automatically
but transfers data only between itself and the selected tape; all data transfers
between control and memory must be handled by the program. Initial con­
ditions the program must supply include PI assignments, a tape function, the
number of a tape unit, and the direction of tape motion. However, it is not
enough simply to address a tape unit - the unit must also be selected. Once
selected, a transport requires about 150 ms to bring the tape up to speed.
This time is actually sufficient to stop a transport that is already running, but
in the wrong direction, and to change direction and bring the tape up to a
speed that allows data processing to take place in the opposite direction.

Suppose transport A is running and we wish to use transport B. A CONO
can be given that deselects A and selects B, but A will stay in motion and a
deselected tape can run right off the reel. To stop A and select B, a CONO
must be issued that selects A and stops it, followed by a second CONO that
deselects A and selects B. The only way a deselected tape can be stopped
(other than by selecting it) is for the program to stop all tapes simultaneously,
including both the selected one (if any) and all deselected ones. The selected
transport can be stopped individually by the program, and the transport
always stops automatically when the end zone is encountered. To reselect a
tape that is already moving in the right direction, the program can save time
by inhibiting the start delay. Tape processing can then begin following a I ms
delay to allow the selection relays to settle.

<,

.\
"

§6.3 INSTRUCTIONS

Suppose we have searched for and found a desired block number but wish
to process the data area of the block in the opposite direction. To do this the
program must give a CONO that turns the tape around. However, before the
control begins the stop-turnaround-start sequence, it waits through a turn­
around delay of 200 ms while the tape continues in the same direction with
data processing inhibited. This delay ensures that when the tape is up to
speed in the opposite direction it will still be beyond the desired block, ie the
block will not have reached the tape head and hence can be processed in the
new direction. In many cases this feature is not necessary. Suppose block 17
is required and block 32 has just been identified going forward. In this case,
we simply want the tape to turn around as quickly as possible. By subterfuge,
the program can eliminate the turnaround delay [§ 6.4] .

If the tape is positioned at some arbitrary point and we wish to process
block 0 forward, instead of checking block numbers, we can simply run the
tape to the reverse end zone where it stops automatically. After the tape
stops, do not simply turn the tape around or make it go forward, since it is
unlikely that the tape will be in the correct position to process block 0 when
the necessary speed is attained. Instead, the program should give two CONOs,
where the first makes the tape go in reverse again, and the second turns it
around. The program instructions are too quick for the system to respond to
the end zone, so the tape starts up in reverse and continues in reverse through
the turnaround delay. This makes the tape go far enough into the end zone
so the first block can be processed.

6.3 INSTRUCTIONS

The DECtap'e control has two device codes, 320 and 324, mnemonics DTC
and DTS. Device code 320 is used for transmitting data and command infor­
mation; device code 324 is used for enabling interrupts and reading status.
(There are also data instructions that use the status code, but they are for
maintenance purposes only.) A second DECtape system would have device
codes 330 and 334.

CONO DTC, Conditions Out, DECtape Command

73220 y

o 121314 1718 35

Clear Active, Function Stop, Parity Error, Data Missed, Job Done, IllegalOp­
eration, End Zone, Block Missed, Incomplete Block, Mark Track Error and
Data Request. Set up the DECtape command register according to bits
24-35 of the effective conditions E and perform the functions specified by
bits 18-23 as shown (a 1 in a bit produces the indicated function, a 0 has no
effect).

6-5

Note that the data and flag
interrupt assignments are re­
versed from their usual posi­
tions. For most devices, bits
33-35 assign a channel for
data, and bits30-32 are used
for flags, error conditions, etc.

6-6

INHIBIT GO GO STOP START SELECT
FORWARD REVERSE DELAY

18 19 20 21

Bits 18-20 all 0 affects a trans­
port newly selected by this
CONO only to the extent that
its state differs from the pres­
ent state of the motion com­
mand bits in the control.

CAUTION

Spurious data processing can
occur if the programmer in­
hibits the delay but the tape is
actually moving in the direc­
tion opposite the one selected.

In a CONO that supplies con­
trol information for a trans­
port already selected, bits 22-
26 can ali be O.

22

DECTAPE §6.3

PRIORITY PRIORITY
DESELECT UNIT FUNCTION INTERRUPT INTERRUPT

ASSllGNMENTiDATA ASSI~NMENT -flAGS
I I I I

23 24 25 26 27 28 29 30 31 32 33 34 35

Notes.

18-20 Bits 19 and 20 both 1 changes the direction specified by the control
and hence causes a tape already selected to turn around. If bit 18 is 1,
bits 19 and 20 should both be O. A transport already selected is un­
affected if bits 18-20 are all O.

21 If a tape is being newly selected by this CONO, begin processing it
after only 1 ms provided the tape is up to speed. The program should
inhibit the start delay only when selecting a tape that is already mov­
ing in the right direction.

22 Following the loading of the conditions supplied by this instruction,
select the transport addressed by the unit register. If a transport is
already selected and bit 23 is 0, bit 22 has no effect.

23 Clear the unit register and deselect the transport previously selected.

24-26 Numbers 1-7 address transports 1-7; 0 addresses transport 8. The
contents of these bits are ored into the unit register. Hence to ad­
dress a new transport the programmer must give the CONO with a 1
in bit 23; otherwise the control will address the transport whose num­
ber is the OR function of bits 24-26 and the previous number.

27-29 Perform the function specified by these bits on the selected tape.

0 Do Nothing
1 Read All
2 Read BN
3 Read Data
4 Write Mark Track
5 Write All
6 Write BN
7 Write Data

Any write function sets the Data Request flag, requesting an interrupt
on the channel assigned by bits 30-32.

CONI DTC, Conditions In, DECtape Command

73224 y

o 121314 1718 3S

.~

-:.,

§6.3 INSTRUCTIONS 6-7

Read the contents of the DECtape command register into the right half of lo­
cation E as shown.

STOP FORWARD REVERSE
TAPE

NO
SELECTION

1 PRIORITY PRIORITY
UNIT FUNCTION INTERRUPT INTERRUPT

SELECTED ASSI~NMENT ~DATA ASSI~NMENT-rLAGS
I I I I

18

Notes.

18

19

20

22

23

19 20 21 22 23 24 25 26 27 28

The currently selected tape is not in motion or is stopping.

The currently selected tape is moving forward.

The currently selected tape is moving reverse.

29

The transport addressed by bits 24-26 is currently selected.

No transport is currently selected.

30

CONO DTS, Conditions Out, DECtape Status

73260 y

o 121314 1718 3S

Enable or disable flags as specified by bits 18-23 of the effective conditions E
to interrupt on the channel assigned to the flags (a I in a bit enables the given
flag, a 0 disables the flag) and perform the functions specified by bits 25, 34
and 35 as shown (a I produces the indicated function, a 0 has no effect).

PARITY DATA
ERROR MISSED

18 19

Notes.

JOB
DONE

20

ILLEGAL
OPERATION

\
END
ZONE

21 22

BLOCK CLEAR
DECTAPE

MISSED SYSTEM

23 24 25 26 27 28 29 30

34 All transports will stop, but the selected transport (if any) will then
resume the motion currently specified for it.

35 Setting Function Stop clears Data Request and inhibits all further data
requests; it then terminates the function currently being executed,
setting Job Done, as follows:

If the function is processing a block number or synchronizing area,
it terminates at the end of the current word (hence Job Done sets
within half a millisecond).

31

31

32 33 34

STOP
ALL

TAPES

32 33 34

35

SET
FUNCTION

1-STOP\

3 5

Note that terminating a func­
tion has no effect on tape mo­
tion.

NOVEMBER 1974

6-8

ILLEGAL
OPERATION

DECTAPE §6.3

If the function is processing a data or parity area, it terminates fol­
lowing the trailing parity. However, there are no data requests.
Therefore, during a read operation, the function simply reads and
discards the rest of the data and checks parity; and during a write
operation, the function writes the last word sent by the program
over and over in the rest of the data area and writes parity.

In any other situation (a BN function spacing between block num­
bers; Write Mark Track) the function terminates immediately.

CONI DTS, Conditions In, DECtape Status

73264
o 121314 1718

Read the status of the DECtape into location E as shown.

DELAY IN
PROGRESS

y

3S

-
PARITY I DATA I JOB I I END J BLOCK UP BLOCK ERROR MISSED DONE ZONE MISSED ACTIVE TO NUMBER

INT~RRUPTSI ENABLEp ON FL~G CHANfEL

f (-
LEADING TRAILING
PARITY DATA FINAL PARITY

BLOCK
IDLE NUMBER

FUNCTION

STOP ~

o 2 I 3 4

ILLEGAL
OPERATION

PARITY DATA JOB END

* * * T *
ERROR MISSED DONE

18 19 20 21

*These bits cause interrupts.

Note that this device has a full
word of status but CONSZ and
CONSO can test only the right
half. To test the left half, the
program must give a CONI
DTS,AC and then use a test
instruction [§ 2.8] .

ZONE

22

5 6 7

*
BLOCK WRITE WRITE

MISSED LOCK MARK
SWITCH

23 24 25

Notes.

SPEED

8 9

INCOMPLETE
BLOCK

f
26 27

10

*
MARK
TRACK
ERROR

28

READ

11 12 13 14 15 16 17

* * *
SELECT FLAG DATA
ERROR REQUEST REQUEST

29 30 31 32 33 3 4 35

If the flags are enabled, the setting of Parity Error, Data Missed, Job
Done, Illegal Operation, End Zone or Block Missed sets Flag Request, which
in turn requests an interrupt on the flag channel (assigned by bits 33-35 of
the last CONO DTC,). The setting of Mark Track Error or Select Error
can request an interrupt as these flags in turn set Parity Error and Illegal
Operation respectively. The setting of Data Request requests an interrupt
on the data channel (assigned by bits 30-32 of the last CONO DTC,).

All status bits apply only to the tape currently selected.

6 The control is currently waiting through a selection, start or turn­
around delay and is neither communicating with nor responding to
the tape.

7 The control is now processing the tape or writing the mark track.

.q;

§6.3

8

9

10

11

12

13

14

15

17

INSTR UCTIONS

Bit 6 is 0 and the tape is moving at the correct speed for processing.

The control is now detecting a leading block number.

The control is now detecting a leading parity area.

The control is now detecting a data area except for the final half word.

The control is now detecting the final half word in a data area.

The control is now detecting a trailing parity area.

The control is now detecting the first half of a leading synchronizing
area, a trailing synchronizing area, or a trailing block number .

A BN function is processing a block number or has just processed one
and has not yet reached the leading parity area.

Data requests have ceased and the present function has or is being
terminated either because data has been missed (bit 19 is 1) or the
program has stopped the function [see eDND DTS. above]. Func­
tion Stop remains set until a CONO DTC, is given.

18 The control has read a data area with incorrect parity, or bit 28 is 1.

19

20

21

The program has failed to respond in time to a data request. The set­
ting of this bit sets Function Stop (bit 17), terminating the function.

Function Stop (bit 17) has been set (either by the program or Data
Missed being set) and the function has been terminated as described
under bit 35 of CO NO DTS,.

Any necessary initial delay has been completed (bit 6 is 0), and the
command given by the program conflicts with a switch setting as
follows:

The function is Write Mark Track and the WRTM switch on the
control panel is off (bit 25 is 0).

The WRTM switch is on (bit 25 is I) and the function is not Write
Mark Track.

The program has given a write function and the write switch on
the selected transport is in the write lock position (bit 24 is I).

There is no transport in remote whose thumbwheel is dialed to the
unit number selected by the program, or there is more than one
such transport set to that number (bit 29 is 1).

Note that the setting of this bit does not terminate the function,
but the presence of a switch error does prevent the control from
writing. Hence a read function will be executed although the control
may be reading from two tapes at once or no tape at all.

22 The end zone has been encountered and the tape has been stopped.

6-9

Bits 9-14 indicate tape posi­
tion; the control may be proc­
essing the zone in question or
simply spacing over it.

In other words, bit 15 goes on
with bit 9 and goes off when
bit 10 goes on.

Although the program trans­
fers full words, transfers to
and from the buffer within
the control are in half words.
Hence after Data Request sets,
the program has half the cur­
rent word transfer time in
which to respond.

6-10

Block Missed is also set if the
program gives a Data function
without bothering to read any
block numbers.

23

24

DECTAPE §6.3

The program gave a Read Data or Write Data function while bit 15
was O. In normal programming circumstances this means that after
reading a block number, the program gave a Data function after the
leading parity area of the same block had been encountered and hence
too late to process the data area properly.

The write switch on the selected transport is set to the write lock
position.

25 The WRTM switch on the control panel is on.

26 Function Stop (bit 17) was set while the control was processing the
data area of a block.

28 The control has misread the mark track or the mark track has incor­
rect information in it. The setting of this bit also sets Parity Error
(bit 18).

29 There is no transport in remote whose thumb wheel is dialed to the
unit number selected by the program, or there is more than one such
transport set to that number. The setting of this bit causes Illegal Op­
eration (bit 21) to be set when a delay times out (bit 6 returns to 0)
or the control actually attempts to process the tape.

34 Any of bits 18-23 is set and the corresponding enabling flag among
bits 0-5 is also set. The setting of bit 34 requests an interrupt on the
flag channel.

35 The control is ready for the program to send a word to be written or
the control has read a word and is waiting for the program to take it.
The setting of this bit requests an interrupt on the data channel.

OATAO OTC, Data Out, DECtape Control

73214 y

o 121314 1718 3S

Clear Data Request, and load the contents of location E into the buffer in the
DECtape control.

DATAl DTC, Data In, DECtape Control

73204 y
o 121314 1718 35

Clear Data Request, and transfer the contents of the buffer in the DECtape
control into location E.

Q
;

§6.4 NORMAL PROGRAMMING

DATAO DTS, Data Out, DECtape Maintenance

73254 y
o 121314 1718 35

At DATAO CLR time trigger TPO, and if bit 21 of location E is 1, trigger the
up-to-speed delay (TUPSO). At DATAO SET time trigger TP1 and load bit35
of location E into the mark track shift register.

DATAl DTS, Data In, DECtape Maintenance

73244 y

o 121314 1718 3S

Read the LP and RW buffers into bits 15-26 of location E and read the out­
put of the mark track decoder into bits 29-35 as shown, where the current
mark (if any) is indicated by a 0 in the listed bit.

I LP BUFFER I RW BUFFER I
15 2021 261

-------------' -------------1--

BN DATA
REV FWD

BN END DATA DATA DATA BN SYNC
SPACE

(26)
SYNC

END (70) END (51)
(25) (32) (10) (73)

27 28 29 30 31 32 33 34 35

6.4 NORMAL PROGRAMMING

Normal DECtape operation consists of reading block numbers until a desired
block is found, reading or writing the desired number of words in the data
area of that block or a number of contiguous blocks, and then waiting for
Job Done. An interrupt program should first give a CONO DTS,O to disable
all flag interrupts. A CONO DTC, should then be given that both selects and
deselects and that specifies the transport, the direction, the flag and data pri­
ority interrupt assignments, and the function Read BN; in other words,
CONO DTC,M3U2DF, where M is the motion information, U is the unit
number, and D and F are the data and flag PI assignments. Unless the pro­
grammer already knows the approximate position of the tape, it is best to
search initially in the same direction that he intends to process the data. After
starting the search an interrupt program should give a CONO DTS,660000
to enable all interrupts except Job Done and Block Missed, and wait for an
interrupt produced either by an error or the data request for the first block
number. When the transport gets up to speed and a block number is read, Data

6-11

This instruction is for main­
tenance only.

This instruction is for main­
tenance only.

6-12 DECTAPE §6.4

Request is set requesting an interrupt on the channel assigned to it. The pro­
gram must bring in the block number and compare it with the number of the
desired block. If the desired block is moving toward the tape head, the pro­
gram can simply wait until the correct number is read. If the block is moving
in the opposite direction, the program gives a CONO DTC,3002DF to tum
the tape around and read block numbers in the opposite direction. Once the
correct number is found, if the tape is moving in the direction in which the
programmer wishes to process the data, he can simply change the function to
Read Data or Write Data (the DTC conditions would be 0003DF and 0007DF
respectively). If the tape is traveling in the wrong direction, the program
should turn it around and continue to read block numbers until the desired
number is encountered in the right direction.

Along with starting the data function, the program should also give a
CONO DTS,770000 to enable all of the flags to interrupt. While performing
the Data function, the control sets Data Request every time it takes the
second half word from the buffer in· writing or fills the buffer in reading.
The program must respond with a data 10 instruction to device DTC, which
is most easily issued by a block 10 contained in the interrupt channel location.
In Read Data, the control checks parity at the end of each data area and sets
Parity Error if it is incorrect. Data transfers cease while the control is proc­
essing parity areas and spacing across the synchronizing areas and block
numbers. However, the control continues to process one data area after
another until Function Stop sets either because the program gives a CONO
DTS,1 or Data Missed is set because the program does not respond in time to
a data request. If Function Stop is set within a data area, Incomplete Block
sets; and although data transfers cease (Data Request can no longer be set),
the function continues as previously described until the control has processed
the trailing parity, at which time Job Done sets to request an interrupt on the
flag channel. The program should leave the tape selected until Job Done sets
so that for Write Data the control will write the correct parity, and for Read
Data it will set Parity Error if the parity in the final block is incorrect.

Once Job Done sets, the tape remains se)ected unless deselected by the
program, but the control does notact on the tape in any way except to stop
it if it runs into the end zone. The program must give a new CONO DTC, to
stop the tape, to deselect the tape, or to execute another function.

To use the DECtape, without the interrupt, the program follows essentially
the same scheme as given above: the program need not enable the flags, but
it must test them to determine when data requests are made and whether
anything is amiss.

Timing. As described in §6.2, start time for a transport is about 150 ms,
turnaround time is 350 ms. If the program inhibits the start delay when re­
selecting a tape that is already moving in the right direction, tape processing
can begin after 1 ms. A transport requires about 150 ms to stop the tape.

The timing of operations in the execution of a function by the control de­
pends upon the direction of tape motion. If the tape is moving in the same

-.

<) . '.

§6.4 PROGRAMMING CONSIDERATIONS

direction that the mark track was recorded, all times are essentially constant.
Following a data request for a block number, the program has 400 f.ls to
switch to a Data function before the leading parity is encountered and Block
Number Read clears. A Data function given after this time sets Block Missed
req uesting an interrupt on the flag channel, and the program should turn
around, and start the block over before attempting to process the data area.
Once a Data function has begun, the program has 200 f.lS following each data
request to take care of the transfer before Data Missed sets; this flag not only
requests an interrupt on the flag channel, but sets Function Stop to inhibit
further data requests and terminate the function. The time between blocks
is about 2 ms.

For processing in the opposite direction the mark track was recorded,
times vary up to 20 percent from the times just given. Hence in any circum­
stances the program has at least 320 f.lS to switch to a Data function following
the identification of a block, and it has at least 160 f.lS to respond to each data
request during the Data function.

EXAMPLE. This routine finds the block whose number is contained in loca­
tion NUMBER and approaches it for processing with the tape moving for­
ward. The interrupt is not used, and an error flag causes a jump to location
ERRS. In general the error routine should stop the tape (CONO DTC,400000)
and take some corrective action.

CONO DTC,23 1200 ;Forward, unit 1, Read BN
A: CONSZ DTS,640000 ;Error?

JRST ERRS ;Yes, do something
CONSZ DTS,20000 ;End zone?

B: CONO DTC,300200 ;Turn around, Read BN
CONSO DTS,1 ;Got BN?
JRST A ;No, retest all

DATAl DTC,2 ;Bring BN into AC2
SUB 2,NUMBER ;Compute this BN - desired BN
CONSZ DTC,IOOOOO ;Going reverse?
TLCA 2,400000 ;Yes, complement condition for

;turnaround and skip the found test
JUMPE 2,FOUND ;At desired block going forward?
JUMPGE 2,B ;No, is turnaround required?
JRST A ;No, start testing flags again

Programming Suggestions and Cautions. To turn the tape around as quickly
as possible, eg if the tape is several blocks away from the desired block and is
traveling away from it, give a CONO DTC,33U2DF. This deselects and selects
the transport and thus triggers only the start delay. Note that the unit num­
ber must be given because deselection clears the unit register.

To process block 0 forward (or block 1101 reverse), simply go to the ap­
propriate end zone and then (as already discussed in § 6.2) give two CONO

6-13

6-14

Write BN exists primarily be­
cause of symmetry in the func­
tion bits and is unlikely to be
used. It writes one word in the
first leading BN position en­
countered.

NOVEMBER 1974

DECTAPE §6.S

DTC,s wherein the first makes the tape go in the same direction and the
second turns it around. The function given by the second CONO cannot be
Read BN because this function will miss the first block number. Thus the
program should give a Data function, which will process the first data area
encountered. Since no block number is read before the Data function, Block
Missed will be set. The program can ensure proper processing of the first
block by making sure that the tape moves far enough into the end zone (by
the procedure already indicated).

Whenever a moving tape is temporarily not in use, the program should
watch it or stop it so that the tape cannot run off the reel. Halting the proc­
essor does not affect the tapes, but 10 reset generated by the program or
from the console stops all tapes.

Other Functions. Do Nothing is used only to start, stop or otherwise con­
trol a tape without performing any function. The remaining functions are
used primarily for generation and maintenance of the prewritten block for­
mat [§ 6.S], but with Read All and Write All the entire tape except for the
parity areas can be used for data storage. When the program gives an All func­
tion, the control starts processing the tape at the first trailing block number
encountered and continues processing every area of the tape until Function
Stop is set. Data transfer timing is the same as for Data functions, but there
is no space between blocks. The program has 200 J.ls to respond to a data re­
quest before Data Missed sets if processing is in the same direction the mark
track was written, otherwise the program has at least 160 J.ls. The data trans­
fer rate is a constant 400 J.ls per word in the former direction, and averages
400J.ls over the entire tape in the latter direction; however, the time between
transfers is increased by half when the control processes a parity area.

Readin Mode

The only requirements (beyond those given in § 2.12) for readin mode with
DECtape are that the data must be in consecutive data areas beginning with
block 0 and the tape must be mounted on transport 8. To select the
DECtape with the readin device switches, turn on the second, third and fifth
switches from the left (320, the DTC device code).

Pressing the readin key causes the processor to place the DEC tape control
in a special readin sequence in which it selects transport 8 (unit number 0)
and places it in reverse motion. When the end zone is encountered, the
automatic stop does not occur; instead the control turns the tape around and
executes a Read Data function beginning at block o. After retrieving the
specified number of words from the buffer, the processor simply fails to
respond further. If the program read in does not stop the tape, it will stop
at the forward end zone.

6.5 FORMATTING A TAPE

Write Mark Track and Write All are used to write the timing and mark tracks
and write the block numbers on the tape. Read All can be used to check
that the tape is formatted properly.

§6.5 FORMATTING A TAPE

Listed here, in half words, is the information the program must send in
full words to write the various parts of the mark track. For either direction
the full words are the same but are sent in the opposite order.

FORWARD

.j.

.j.

.j.

t
t
t

REVERSE

404404 END ZONE

040404 } BLOCK NUMBER
040440
044040
004000
004000 PARITY

• ~~~~~~} DATA AREA
444044
444044
444044 PARITY
444044
404004

400404} BLOCK NUMBER
040404

040040 END ZONE

EACH BASIC BLOCK
(2-WORD DATA AREA)

• 444000 } 444000 INSERT FOR EACH ADDITIONAL WORD IN THE DATA AREA

After the mark track is written, Write All is used to write the block numbers.
Forward block numbers are written straight, but reverse numbers must be
written with the octal digits complemented and in the reverse order. Eg the
word sent for the forward BN for block 1101 is 000000 001101, but the
word for the reverse BN in that block is 676677 777777. Between block
numbers the program should send zeros to clear the data areas and write
correct parity (writing the mark track always produces incorrect parity).

To format a tape use a transport whose head has zero skew so the tapes
can be processed on any other unit. The usual procedure is to write the
mark track forward and write the block numbers in reverse. Load a blank
tape or one that is to be repaired (perhaps because it was disrupted by a
strong magnetic field), and turn on the WRTM switch on the control. After
the program starts the tape, writing can begin as soon as the tape is up to
speed. To generate the standard format send 7000 end zone codes (3500
words) and then send the marks for 578 blocks, each with a data area of
128 words (ie send 444000 444000 in every block 126 times at the position
marked by the asterisk in the above table). Then write end zone codes until
the tape comes off the reel.

Now put the tape back on the left reel, turn off WRTM, and restart the
program at a location for writing the block numbers. Run the tape out of the
end zone, turn the tape around with a CONO that gives Write All, and send a
throwaway word at the first data request. Then send the correct forward and
reverse block numbers for block 1101 with 130 zero words between them. If
the data is being written in some other block, that is alright - simply put it in
every block until the end zone comes up again. This time the end zone will
stop the tape. Turn the tape around with two CON Os [§6.2] , the second
CONO gives Write All, and send 000000 001101 at the first datarequesl (for
the first trailing, ie forward, BN). Then give the data in the order reverse BN,
130 zero words, forward BN for the remaining 577 blocks (1100 to 0).

6-15

While the control is writing the
mark track, it writes the data
sent by the program in the
data tracks of all zones, in­
cluding end zones and parity
areas (which therefore do not
contain parity information).

The skew will certainly be
within acceptable limits on
any relatively new transport
that has not been seriously
mistreated.

It is not necessary to use the
entire tape, but there must be
at least two end zone marks at
each end and enough tape out­
side the blocks to load it on
the reels.

Remember, the control han­
dles the parity areas.

6-16

The recording technique used
is NRZI (nonreturn to zero,
inverting). In a given frame (ie
character position) a change in
the direction of magnetization
in any track represents a 1 in
the character bit correspond­
ing to that track. Thus if the
same bit is 0 in a string of
characters, there is no change
in the track corresponding to
that bit; but for a string of Is,
the flux direction changes in
every frame.

STANDARD MAGNETIC TAPE TM 10

PART II

STANDARD MAGNETIC TAPE

§6.6

A system for handling industry-standard magnetic tape consists of a TM I 0
control and up to eight tape transports; each unit in the system occupies a
separate cabinet. DEC supplies several types of transports that differ in tape
speed and tape handling characteristics. Each type is available in two ver­
sions, for recording information in seven tracks and nine tracks. Thus data
transfer rates and timing depend on the transport, but each transport supplies
information to the control such that transports of different speeds and
recording formats can be operated by a single control. Transports currently
available move tape at speeds of 45, 75 and ISO inches per second. Every
transport accommodates two I m~-inch reels (one for supply, one for takeup)
and can record information in three densities: 200, 556 and 800 bytes per
inch (bpi). A full reel has 2400 feet of half-inch tape and at 800 bpi can
store over 135 million bits of data in the 7-track format, or over 180 million
bits in the 9-track format.

The program communicates with the tape control, which in tum governs
all tape transports but communicates with only one transport at a time.
Reading and writing (recording) can occur only when tape is moving forward
(from supply reel to takeup reel), but the control can space the tape (ie move
it to a new position) in either direction. Although only one transport can be
reading, writing or spacing at a time, rewinding the entire tape onto the sup­
ply reel at high speed requires only initiation by the control. The rewinding
transport then proceeds automatically while the control can operate another
transport.

Data transfers between tape and control are governed entirely by the con­
trol. Transfers between a TM lOA control and memory are handled by the
program over the 10 bus, whereas the TMIOB control is connected to a data
channel for automatic transfer of data to and from memory, thus bypassing
the central processor [§ 5.1] .

6.6 TAPE FORMAT

The control writes characters containing seven or nine bits of information;
one bit is written in each track. Every character is part of a data record or a
file mark. A data record contains both data characters and error-checking
characters. Every data character consists of a data byte and a lateral parity
bit, which the control generates so that the number of Is in the character is
odd or even as specified by the program. The data bytes in a record taken to­
gether correspond to a block of words sent from memory to the control. To
separate adjacent records the control automatically erases a segment of tape
between them; this segment is called a "record gap". The control always
stops the tape in a gap.

§6.6 TAPE FORMAT

Full words are transferred between memory and control even though the
tape characters may contain 6-bit or 8-bit data bytes. To write, the control
divides the words into data bytes, and when reading, the control reassembles
the bytes into words. There are several ways in which this is done. For 7-
track format, the program can select any density, and the control writes each
word as six characters, each containing a 6-bit data byte. After the control
writes the last data character for a record, it writes three blank frames (zero

FIRST SECOND THIRD FOURTH FIFTH SIXTH

o S 6 II 12 1718 2324 2930 3S

7-TRACK BYTE DISTRIBUTION

[[0::: G'P I HR'''fj_CC_.7_S_'' -----;========D=A=TA========!\

'~

ONE RECORD RECORD GAP - - FORWARD TAPE MOTION

7-TRACK RECORD FORMAT

characters) followed by a longitudinal parity check character (LPCC). The
three blank frames constitute the end of record gap (EOR), which is used by
the control to detect the end of record. The EOR is used in writing as well as
reading since the tape encounters the write head first, and the control detects
everything shortly after writing it. The LPCC (which may be zero) produces
even parity in each of the tracks along the length of the record. The mini­
mum record gap is .75 inch.

When the control reads or writes a data record, it checks that the (lateral)
parity of every data character agrees with the parity specified by the program
and checks that every track has even (longitudinal) parity.

The 9-track format is used for recording data compatible with systems
based on 8-bit bytes. The program must select a density of 800 bpi, and the
control writes bits 0-31 of each word in four characters, ignoring bits 32-35
altogether. The bits from left to right in each 8-bit byte are written in tracks
0-7. After writing the last data character, the control writes an EOR gap, a
cyclic redundancy character (CRC), three more blank frames, and an LPCC.
The control generates the CRC as described in §6 of USAS X3.22-1967,
USA Standard, Recorded Magnetic Tape for Information Interchange (800
CPl, NRZl). Taking the CRC bits as numbered in that document and the
track scheme defined above, CRC bit 1 corresponds to the parity track and
bits 2-9 correspond to tracks 0-7. The standard record gap is .5 inch mini­
mum, .6 inch nominal, 25 feet maximum.

When the control reads a record in 9-track format, it assembles data into
36-bit words. Each word is composed of four data bytes in bits 0-31 and the
corresponding character parity error indicators in bits 32-35 (eg a 1 in bit 33

6-17

For industry compatibility the
program must select 800 bpi
and odd parity.

The difference in nominal gap
length between 7 -track and 9-
track format is due entirely to
a difference in head spacing.

6-18

Characters are assembled into
words in this manner by an
IDPB loop or an ASCII or
ASCIZ pseudoinstruction.

The "tracks" referred to here
are simply a convenience for
identifying the bits in the data
bytes. The actual correspond­
ence of character bits to phys­
ical tracks on tape is as fol­
lows:

BIT 2 0 4 P 5 6 7 I 3
TRACK I 2 3 4 5 6 7 8 9

This scheme, which minimizes
the effects of errors, is recom­
mended in the standard refer­
enced in the text.

A 1 in an error bit does not
necessarily mean the corres­
ponding byte is in error: the
error could be in the parity
track.

The program must use bit 32
and the parity being checked
for in order to regenerate the
bit actually read from the par­
ity track of the CRC by the
control, keeping in mind that
the parity track does not con­
tain an actual parity bit. The
parity of the CRC will be odd
if the number of data charac­
ters in the record is even,
otherwise the CRC parity is
even.

Errors discovered in a record
in core dump format at 800
bpi can be corrected by re­
reading the record in 9-track
format, if investigation of the
CRC indicates the errors are
confined to a single track.
The program must then re­
construct the original words,
four from each group of five
4-byte sets supplied by the
control.

Two or more contiguous miss­
ing characters would be inter­
preted by the control as an
EOR gap. This sets the Bad
Tape flag and terminates the
function.

STANDARD MAGNETIC TAPE TMIO §6.6

FIRST SECOND THIRD FOURTH

o 78 1516 2324 31 32 35

9-TRACK BYTE DISTRIBUTION

3 BlAN K FRAMES
EOR GA P (3 FRAMES) \ CRC

\ ~lPCC

fl 1i~(·6 .. I DATA DATA

'~

ONE RECORD RECORD GAP - FORWARD TAPE MOTION

9- TRACK RECORD FORMAT

indicates an error in the character from which the byte in bits 8-15 was
taken). If errors occur, the program can use the cyclic redundancy character
to determine if the errors are confined to a single track, and if so, to correct
them. After reading the data characters in a record, the control makes the
eRe available in a word in which bits 0-7 contain information from the data
tracks and bit 32 contains a parity error bit. The program can correct errors
by using the procedure described in Appendix B of the standard. It is not
necessary to reread the tape: the error pattern can be generated from the
data in memory _ If errors are confined to a single track, the program can cor­
rect the record by complementing the bit from the bad track in every byte
whose error bit is 1.

To facilitate the use of 9-track tape for binary data applications, a core
dump format is available in which the program can select any density, and
the control uses the 9-track record format but writes full 36-bit words as five
characters each. The first four bytes are taken from bits 0-31 of a word in
the same manner as in 9-track format; the fifth data byte contains Os in tracks

FIRST SECOND THIRD FOURTH Z FIFTH

o 78 1516 2324 3031 35

CORE DUMP BYTE DISTRIBUTION

o and I and bits 30-35 of the word are contained in tracks 2-7. To reas­
semble the word during reading, the control ors the overlapping bits. The
eRe is written in the usual fashion, but no error bits are supplied with the
data bytes.

When writing in even parity in any recording format, the program must not
supply a word containing a zero data byte, since this would result in a miss­
ing character (a blank frame), and no words beyond that point would be re­
assembled correctly_ The control does not check for missing characters when
reading, but such an event always terminates the function at the end of the
current record_

.~

§6.7 INSTRUCTIONS

To facilitate tape processing, the program can group sets of data records
into files. The end of a file is indicated by a 3-inch gap followed by a file
mark. The file mark is a special record containing a single, special data char­
acter and its LPCC, which is equivalent. The control always terminates a
function when it encounters a file mark; in particular, the control can space
by files as well as by numbers of records.

Each tape has two physical markers to indicate its extremities. These
markers are reflective strips that are sensed by photoelectric cells in the
transport (one marker can be seen on the tape in the illustration at the end
of §H4.2). The loadpoint marker is located about fifteen feet in from the
beginning of the reel and denotes the logical beginning of the tape. Reverse
functions stop automatically at this marker. A load point gap of at least
three inches (twenty-five feet maximum) precedes the first record on the
tape. The endpoint marker is about twenty-five feet from the physical end
of the tape; the final fifteen feet of tape should be left for trailer, ie the
program should not record more than ten feet beyond the endpoint (this is
enough for a 4000-word record at low density). A status bit indicates when
the tape is beyond the endpoint, but this condition stops the tape auto­
matically only when it is spacing forward.

An annular groove is molded into the back of every reel, and the control
cannot write on the tape unless the supply reel has a plastic (write enable)
ring in this groove. By leaving the ring out, the operator can protect the data
on the tape from accidental destruction (overwriting or erasure).

While the control is actually processing the data portion of a record, the
data transfer rate is fixed. However, in a lengthy tape run, the effective (av­
erage) transfer rate depends on record length, which determines the percent­
age of tape taken up by gaps (at the highest density in 7-track format, each
record gap could hold 100 additional words). The effective transfer rate is
therefore a function of record length as well as tape speed and density.

6.7 INSTRUCTIONS

Both versions of the tape control have a 36-bit buffer register BR. During
writing, characters are transferred from the BR to the transport for storage.
During reading, the characters are reassembled into words in the BR. In the

. TM lOB, BR is connected directly to the channel bus; therefore, when the
control is ready to receive or send data, the channel must respond within one
character time. (This time requirement is quite reasonable since the data
channel serves as a buffer between tape control and memory.) The TM lOA
has a 36-bit hold register HR, which provides data buffering between BR and
the 10 bus. Thus each time HR is free to receive a word from the bus or has
a word for the bus, the program has one entire word time plus one character
time in which to respond.

To run the tape, the program must select a transport and a function; the

6-19

Tapes recorded on some IBM
transports have a substandard
load point gap of only .5 inch
and are thus not compatible
with the TMIO.

The markers are on the shiny
side of the tape; the endpoint
marker is against the edge
nearer the transport, the load­
point marker is against the op­
posite edge.

6-20

CAUTION

This instruction should not be
given when the control is proc­
essing a tape (ie once given it
should not be given again un­
til Job Done sets), since it dis­
connects the control from the
channel and stops the tape
even if it is in the middle of a
record.

UNIT PARITY

I

18 19 20 21

Bit 22 is ignored when bits
18-20 address a 7-track trans­
port.

NOVEMBER 1974

CORE
DUMP

22

STANDARD MAGNETIC TAPE TMI0 §6.7

function requires specification of format information, such as parity and den­
sity. To use the interrupt, the program should also assign a channel for flags.
The control makes data requests in functions that require the transfer of data
to or from memory and in spacing a specified number of records. The TM lOB
uses the data channel for these functions; with the TM 1 OA the program must
either check the Data Request flag or assign a second interrupt channel for
data. To write data, the control takes words from memory, divides them into
characters and sends the characters to the selected transport. To read data,
the control receives characters from the transport, assembles them into words
and sends the words to memory. There is also a type of function, Read­
Compare, which combines some of the characteristics of both Read and
Write. During Read-Compare, the control actually reads the tape but does
not send the words to memory; instead the control takes words from memory
and compares them with the words assembled from tape, noting any discrep­
ancy by means of a status bit. To space less than a file, the control makes
data requests to allow the program or the word counter in the data channel
to count the records spaced.

The tape control has two device codes, 340 and 344, mnemonics TMC and
TMS. Device code 340 is used for transmitting data (with a TMI0A) and

command information; device code 344 is used for sending the initial data
channel control word address to a TM I OB and reading status. A second tape
system would have device codes 350 and 354.

CONO TMC, Conditions Out, Magnetic Tape Command

73420 y

o 121314 1718 35

Clear BR, the Write EOR flag, and most status conditions other than those gen­
erated by the selected transport [refer to CONI TMS,]. Set up the tape com­
mand register according to bits 18 - 35 of the effective conditions E as shown.

FUNCTION

I I

23 I 24 25 26

NEXT UNIT
INTERRUPT

iABLE

DENSITY

I

27 28 29

PRIORITY PRIORITY
INTERRUPT INTERRUPT

ASSI~NMENT -~LAGS ASSI?NMENT -pATA

30 31 32 33 34 35

18-20 Numbers 0-7 address transports 0-7 (the unit number is loaded into
the next unit register).

21 1 selects odd parity, 0 selects even parity.

22 When bits 18-20 address a 9-track transport, a 1 in this bit causes the
control to process tape in core dump format, and a 0 causes tape to be
processed in 9-track format.

' ..

~

§6.7 INSTRUCTIONS

23-26 Perform the function specified by these bits on the addressed tape.

00
10
01
11
02
12
03
13

04
14
05
15
06
16
07
17

No-op
Interrupt When Unit Ready
Rewind
Rewind and Unload

Read Record }
Read Multirecord
Read-Compare Record
Read-Compare Multirecord

Write
Erase and Write
Mark End of File
Erase
Space Records Forward
Space File Forward
Space Records Reverse
Space File Reverse

}
}

Reading

Writing

Spacing

All of the above are tape-moving functions except No-op and Inter­
rupt When Unit Ready. The control actually reads tape (ie assembles
characters into words in BR) only in Read and Read-Compare, but
the control detects the information encountered on tape in all tape­
moving functions except Rewind.

27 A 1 in this bit enables the 1 state of the Load Next Unit flag to re­
quest an interrupt on the flag channel (assigned by bits 30-32).

28-29 Process the addressed tape at the aensity specified by these bits.

00 200 bpi
01 556 bpi
10 800 bpi
11

33-35 The TM lOB ignores these bits.

CONI TMC, Conditions In, Magnetic Tape Command

73424 y

o 121314 1718 35

Read the contents of the tape command register into bits 14-35 of location
E as shown here. Bits 21-35 are simply the corresponding output conditions
supplied by the previous CONO TMC, with the exception that in the
TM lOB, bits 33 - 35 are all Is.

6-21

Codes 11 and 14 actually spec­
ify double functions: for 11
the selected transport first ex­
ecutes Rewind and then Un­
load; for 14 the control first
writes blank tape and then
writes data.

For all transports available at
this writing, 11 selects sao
bpi. Should a new density be
added, 11 will be used to se­
lect it.

Note that CONSZ and CONSO
can test only bits IS-35. To
test bits 14-17 the program
must give a CONI TMC,AC
and then use a test instruction
[§2.S] .

6-22 STANDARD MAGNETIC TAPE TMI0 §6.7

I 0 I [2 1 , [4 [5 1 , [7 [8 1 9 [10 [11 I" [13 [':::' 115

N EXT UNIT

16 17

CORE
UNIT PARITY

DUMP
I I

18 19 20 21 22

Bit 14 is for maintenance
only. It is 1 whenever the
control is terminating a re­
cord (ie writing blank lines
and error checking charac­
ters). Bit 14 is also 1 for a­
bout a tenth of a millisecond
after the control has encoun­
tered a file mark while spacing
reverse.

18 19 20 21 22

NOVEMBER 1974

FUNCTION

I I I

23 I 24 25 26

NEXT UNIT
INTERRUPT

j-ABlE

DENSITY

I

27 28 29

PRIORITY PRIORITY
INTERRUPT INTERRUPT

ASSI~NMENT -~LAGS ASSI?NMENT -IDATA

30 31 32 33 34 35

If a CONO TMC, is given when the control is not moving tape (ie when the
Load Next Unit flag is 1), the unit number specified by bits lS-20 of the
CONOappears in both bits 15-17 and bits IS-200fthe CONI. Ifthe CONO
is given when Load Next Unit is 0 (this must be after Job Done sets, ie after
the control has finished processing a record and is positioning the heads in
the record gap), CONI bits 15-17 contain the unit number supplied by the
CONO, but bits IS-20 continue to address the moving tape until Load Next
Unit sets, at which time the number of the next unit is loaded into bits IS-
20. Every CONO addresses a transport, but a transport does not become
selected until its number appears in CONI bits IS-20 and the transport sup­
plies status information to the control.

CONO TMS, Conditions Out, Magnetic Tape Status

73460 y

o 121314 1718 35

Perform the functions specified by bits 25 and 31-35 of the effective con­
ditions E as shown (a 1 in a bit produces the indicated function, a 0 has no
effect), and specify the read threshold for the transport according to the
state of bit 30.

CLEAR
TAPE

SYSTEM

23 24 25 26 27 28 29

LOW
READ
THR1HOlD

30

CLEAR
DATA

PARITY
ERROR

31

CLEAR WRITE CONTROL MOVE
WORD CONTROL BR-HR

STOP
WRITTEN WORD

32 33 34 35

Bits 31 -33 are used only with the data channel [§ 5.1] and have no effect
on the TM lOA.

30 A 1 causes the selected transport to accept a lower than standard
signal level from the tape as representing a 1; a 0 returns the transport
read detection circuits to operation at the standard read threshold.
The program should read with Low Read Threshold set only after
repeated attempts to recover a record correctly at the high threshold
have failed.

"

§6.7 INSTRUCTIONS

34 Move the contents of BR to HR and clear BR.

35

When the control finishes reading the data in a 9-track record, the
CRC is loaded into BR (and if the function is terminating, Job Done
sets shortly thereafter). With a TMIOB the program can then give a
DATAl TMC, to transfer the contents of BR to location E. However,
with a TMIOA the program must first give a CO"NO TMS,2 to move
BR to HR, and then give a DATAl TMC, to transfer HR to memory.

Stop tape at the end of the current record. Giving a I in this bit dur­
ing a function inhibits further data requests, thus halting data trans­
fers immediately. In Write the control terminates the record (and the
function) after writing any data already sent. Read and space func­
tions terminate at the end of the current record, and the TMIOB con­
tinues to hold the data channel until termination except in Read­
Compare (and of course in file spacing functions, which do not use
the data channel).

When the tape is stopped at the end of a record (or a file mark),
the tape is positioned so that the heads are at the proper place in the
record gap. If the program gives a CONO TMS, I after the control
processes the last word in a record but before the time at which the
control would send the stop signal to the transport, the transport
stops anyway. (Load Next Unit sets when the stop signal is sent.)
After the last word in the record, the time interval within which the
program can stop the tape in the current gap is approximately equal
to the stop time listed for the transport plus about forty BOO-bpi
character times. A CONO TMS, I given after the proper stopping po­
sition stops the tape at the end of the next record.

Note that termination of a function halts data transfers and re­
leases the data channel, but a function never terminates until the end
of a record even when transfers cease within the record.

CONI TMS, Conditions In, Magnetic Tape Status

73464 y
o 121314 1718 3S

Read the status of the tape system into bits 9-35 of location E as shown.

22-BIT
ADDRESS

o 2 3 4 5 6 7 8 9

LOW READ
THRESHOLD

I CONTROL
WORD
PARITY
ERROR

10 11

NO
SUCH

MEMORY

12

*

6-23

This bit is used primarily with
the TMlOA. but it may be
used with the TM lOB to stop
a tape operation independ­
ently of the data channel con­
trol word list.

This applies only to reading
and spacing, since the control
cannot write more than one
record at a time.

*
DATA CONTROL CHARACTER

PARITY WORD COUNTER ERROR WRITTEN

13 14 15 16 17

NOVEMBER 1974

6-24

* *
UNIT LOAD

ILLEGAL
HUNG POINT

1S 19 20 21

*These bits cause interrupts.
Note that Bad Tape should
not interrupt. Logic for an
interrupt was added by ECO
1MIO-OOOI4 but was later re­
moved by ECO TMlO-00022.

Of course Low Read Thresh­
old is always cleared by a
CONO TMC, given as an
emergency shutdown while
the control is actually proc­
essing a tape.

Bits 15-17 are primarily for
maintenance: the character
counter controls the division
and assembly of data words.

NOVEMBER 1974

TAPE
PARITY
ERROR

22

STANDARD MAGNETIC TAPE TMI0 §6.7

* * *
END END READ- RECORD DATA BAD JOB UNIT CHANNEL WRITE 7 LOAD DATA OF COMPARE LENGTH NEXT
FILE POINT ERROR DIFFERS LATE TAPE DONE IDLE FLAG LOCK TRACK UNIT REQUEST

23 24 25 26 27 2S 29 30 31 32 33 34 35
10-0649

CONO TMC, clears all of these status bits except 22-Bit Address, Load
Next Unit, and those generated by the selected transport, namely Rewinding,
Loadpoint, Endpoint, Unit Idle, Write Lock, and 7 Track. Low Read
Threshold is cleared, however, only by an initial CONO TMC, ie one given
to begin tape operations. Hence once Low Read Threshold is set by the
program, then so long as the control has a tape in motion, a CONO TMC,
has no effect on this flag and it is left to the program to determine its state.

Interrupts are requested on the flag channel (assigned by bits 30-32 of the
last CONO TMC,) by the setting of Data Parity Error, Control Word Written,
Unit Hung, Illegal, Job Done, and if enabled, Load Next Unit. In the TMIOA
the setting of Data Request requests an interrupt on the data PI channel
(assigned by bits 33 - 35 of the last CONO TMC,).

Bits 9, 11-14 and 31 reflect conditions in the data channel and are always
read as Is (but cause no interrupts) in the TMIOA. When the data channel
sets Control Word Parity Error or No Such Memory, it simultaneously termi­
nates operation; data transfers cease immediately and the tape control
terminates the function at the end of the current record.

10 The transport will accept a lower than standard signal level from the
tape as representing a 1.

18 An addressed transport has failed to respond within one second to a
tape-moving function (because it is either off line or rewinding) or a
selected transport has gone off line during a function. The setting of
this bit requests an interrupt on the flag channel.

When a transport hangs up, the control does not terminate the
function - it simply fails to continue, ie the control effectively hangs
up too.

19 The selected tape is rewinding.

20 The selected tape is at loadpoint.

21 A transport has been selected but the tape control cannot place it in
operation because of one of the following illegal conditions:

The program has given a read, write or space function to process
in 9-track format but has specified a density other than 800 bpi.

The function requires reverse spacing and Loadpoint (bit 20) is 1.

The function requires writing and Write Lock (bit 32) is 1.

The setting of Illegal prevents the control from executing the func­
tion and requests an interrupt on the flag channel.

§6.7 INSTRUCTIONS

22 In Read, Write or Read-Compare, the control encountered a data
character whose parity differed from that specified with the function
or discovered a track with odd parity, and therefore the function ter­
minated at the end of the record in which the error occurred.

23 The control has encountered a file mark on the tape.

24 The selected tape is beyond the endpoint.

25

26

27

28

29

In Read-Compare a word read from tape was not identical to the cor­
responding word supplied from memory. When this bit sets, data
transfers cease, the data channel is released, and the function termi­
nates at the end of the current record.

In Read or Read-Compare the program misjudged the number of
words in the record or records being read. The program's "judge­
ment" is reflected in the word count in the TM lOB or in the timing of
the CO NO TMS, I in the TM lOA. Of course "misjudgement" exists
on the assumption that the program meant to read an entire record.

When all the records in a file are read, this bit gets set only if the
number of words is underestimated; an overestimate simply allows the
control to read the file mark, which terminates the function without
setting Record Length Differs.

When this flag sets, data transfers cease and the function terminates
at the end of the current record; in Read-Compare the data channel is
released immediately, in Read the data channel is held until the func­
tion terminates.

In Read, Write or Read-Compare, the program (TM lOA) or the data
channel (TMlOB) failed to respond in time to a data request. In Write,
the control writes a zero word and then terminates the record; in a
read function, data transfers cease immediately and the function ter­
minates at the end of the current record.

The control has encountered either data in a record gap or a false end
of record (two or more contiguous blank characters inside the record).
When this bit sets, the function terminates.

The control has completed a function and is ready for the program to
give a new function. The setting of this bit requests an interrupt on
the flag channel.

30 The currently addressed transport is selected and is not now in opera-
tion.

31 Bit 11,12,13 or 14is 1.

32 The supply reel of the selected transport does not have a write enable
ring inserted.

33 The selected transport handles 7-track tape (a 0 indicates 9-track tape
or no transport selected).

6-25

CAUTION

Bit 22 is usually set and bit 23
may be set during a record,
but neither is valid until Job
Done sets (bit 29).

NOTE: This explanation is val­
id only for a function that goes
to completion in a normal
manner without errors. Any
condition that causes data
transfers to cease prematurely
(eg the setting of No Such
Memory or Data late) also
sets Record Length Differs.
Bit 26 is also set in a TMlOA
if the program fails to give the

CONO TMS,1 in time at the
end of a single-record func­
tion.

If the control is reading 7-
track tape, and the program
fails to retrieve the last two
words (or the channel fails
to retrieve the last word) in
a record by the time the re­
cord gap is encountered, the
function terminates without
setting Data late.

Note that writing a zero word
in even parity produces a long
EOR gap, which can cause
problems when the tape is
read.

6-26

In the TMIOB this instruction
simply clears Data Request if
the function is not Read.

This instruction is used to read
the CRC and is simulated by
the hardware for readin mode.

In the TMIOA this instruction
is for maintenance: it moves
HR to BR, the inverse of
CONOTMS,2.

STANDARD MAGNETIC TAPE TMI0 §6.7

34 The control is not moving tape and a CONO TMC, given now will se­
lect a transport. The setting of this bit requests an interrupt on the
flag channel if Next Unit Interrupt Enable is I (CONI TMC, bit 27),
and loads the next unit address to select a new unit (CONI TMC, bits
15-17 and 18-20 respectively) if the program has given a CONO
TMC, since Job Done set.

35 The control is ready for a data transfer. In the TMlOA the setting of
this bit requests an interrupt on the data PI channel.

DATAO TMC, Data Out, Magnetic Tape Control

73414 y
o 121314 1718 35

TM10A: Load the contents of location E into HR, and if the function is not
Read, clear Data Request.

DATAl TMC, Data In, Magnetic Tape Control

73404 y
o 121314 1718 35

TM10A: Transfer the contents of HR into location E, and if the function is
Read, clear Data Request. If Job Done is 1, clear BR.

TM10B: Transfer the contents of BR into location E, and if the function
is Read, clear Data Request. If Job Done is 1, clear BR.

DATAO TMS, Data Out, Magnetic Tape Status

73454 y

o 121314 1718 35

TM10B: Load the contents of bits 27-34 of location E into the initial data
channel control word address register in the tape control. (If bit 35 of loca­
tion E is 1, select even memory parity for tape input (read) operations. This
condition is for maintenance only; in all ordinary circumstances bit 35 must
be 0 so the data channel generates odd parity for words stored in memory.)

Once this instruction is given following power tumon, all tape operations
use the same initial address until the program supplies a new one by giving an­
other DATAO TMS •.

.,

.~

"

§6.B TAPE FUNCTIONS

6.8 TAPE FUNCTIONS

Before starting any tape operation that uses the data channel, the program
must give a DATAO TMS, unless the new function is to use the same initial
control word address that was used for the previous function. When giving a
function the program must give the unit address and must also supply the
other initial conditions required for the function. Once the addressed trans­
port has responded, the control tests the function to determine whether it is
legal. If the initial conditions for any tape-moving function other than Re­
wind address a 9-track transport without specifying BOO bpi density or setting
Core Dump, the control sets Illegal and shuts down (other tests depend upon
specific functions as described below). If the function is legal, the control
then begins its execution provided the control is a TMlOA or the function
does not require the data channel; for a function that requires the data chan­
nel in a TM lOB, the control waits until the channel is connected before start­
ing the function. The timing in the various functions is dependent upon the
transport speed, tape handling characteristics and density, and is therefore
treated in the discussion of each transport.

The program can choose the density and parity for writing. However, once
data is written, it must be read in the same density and parity or it will not
be read correctly. (Space functions do not check parity, but an EOR gap can
be missed if the wrong density is specified.) The program should also write a
file mark in the same density as the data records in the file to allow a read or
space function that is processing the file to detect the mark.

Terminating a function and setting Job Done are essentially equivalent: the
control sets Job Done when and only when it terminates a function. Termi­
nation can occur only when the control has reached a gap on the tape or has
encountered the loadpoint. Following termination at a gap the control al­
ways stops tape upon reaching the proper position unless the control is al­
ready set up to execute another function with the same tape moving in the
same direction [§ 6. 10] .

When a flag interrupt occurs, the program should determine if the function
is finished by checking Job Done. If Job Done is clear, the other interrupt
flags should be checked to determine what happened: Unit Hung, Illegal, and
in the TMlOB, Data Parity Error via Channel Flag (Control Word Written and
Load Next Unit can be set only if the program had previously taken action
that would allow them to be set). If Job Done is set the program should
check error and other flags appropriate to the function. For a TMIOB always
check Channel Flag to determine if the function was aborted by Control
Word Parity Error or No Such Memory. Other flags are listed at the end of
each function.

Interrupt When Unit Ready. The control simply waits until the addressed
transport becomes selected and indicates that it is ready for operation (Unit
Idle is I), at which time the control sets Job Done.

Write. The program selects the density and parity. If Write Lock is 1, the
control sets Illegal and shuts down. Otherwise it continues as follows.

6.27

Of course, a function can be
aborted at any time by giving
aCONO TMC,.

This function is used primarily
to wait for a transport to finish
rewinding.

6-28

The character used in a fIle
mark is 017 on 7 -track tape or
023 on 9-track tape. These
have even parity regardless of
the parity specified by the pro­
gram, but a correct fIle mark
cannot set Tape Parity Error.

Erase is used primarily to skip
sections of tape on which the
program has found it impos­
sible to write data correctly,
ie without parity errors or a
bad tape indication.

The control will search for
data indefinitely if it attempts
to read a totally blank tape.
Hence, any read program
should include a time check
and abort the function if noth­
ing has been retrieved by the
time the tape moves twenty­
five feet.

STANDARD MAGNETIC TAPE TMIO

TMIOA

The control starts the tape and sets
Data Request. As soon as the pro­
gram responds with a DATAO TMC,
the control again sets Data Request
in order to fill both HR and BR.
Upon completing the record gap, the
control writes the words it receives
from the program, setting Data Re­
quest as each word is written. If at
any time the program fails to supply
a word in time for continuous writ­
ing, the control sets Data Late,
writes a zero word, terminates the
record, and sets Job Done. Other­
wise, the control continues writing
until the program gives a CONO
TMS, 1; the control then writes
whatever data has already been re­
ceived, terminates the record, and
sets Job Done.

§6.8

TMIOB

The control waits until the data
channel connects, at which time it
starts the tape and makes a data re­
quest to fill BR. Upon completing
the record gap, the control writes
the words it receives from the chan­
nel, making a data request as each
word is written. If at any time the
channel fails to supply a word in
time for continuous writing, the
control sets Data Late, writes a zero
word, terminates the record, releases
the channel, and sets Job Done.
Otherwise, the control continues to
write until the data channel termi­
nates operation, at which time it
writes any data already received,
terminates the record, and sets Job
Done.

Flags: Tape Parity Error, Endpoint, Data Late, Bad Tape.
Mark End of File. The program should select the same density that was

used when the data records in the file were written. If Write Lock is 1, the
control sets Illegal and shuts down. Otherwise, the control erases at least
three inches of tape (ie it extends the present record gap into a file gap),
writes a file mark, and sets End of File and Job Done. Flags: Tape Parity Er­
ror, Endpoint, Bad Tape.

Erase. If Write Lock is I, the control sets Illegal and shuts down. Other­
wise, the control erases at least three inches of tape and sets Job Done. Flags:
Endpoint, Bad Tape.

Erase and Write. The control executes Erase without setting Job Done and
then executes Write.

Read Record. The program must select the same parity and density that
were used when the data was written.

TMIOA

The control reads one entire record,
setting Data Request as each word is
ready for the program. The pro­
gram must respond before the next
word is ready or Data Late sets. If
the program gives a CONO TMS, 1 or
Data Late sets during the record,

TMIOB

The control waits until the data
channel connects and then reads one
entire record and supplies the words
to the channel. If the channel termi­
nates or Data Late sets before the
record is finished, there are no fur­
ther transfers but the control con-

§6.8

there are no further requests but the
control continues to the end of re­
cord. If transfers cease before the·
last word is read or the program fails
to give a CONO TMS,l within two
character times after the last word,
Record Length Differs sets. When
the control detects the end of re­
cord, it sets Job Done.

TAPE FUNCTIONS

tinues to the end of record. If trans­
fers cease before the last word is
read or the channel does not termi­
nate after the last word is read, Re­
cord Length Differs sets. When the
control detects the end of record, it
sets Job Done and releases the chan­
nel.

Flags: Tape Parity Error, End of File, Endpoint, Record Length Differs,
Q. Data Late, Bad Tape.

<--.

Read Multirecord. This function is similar to Read, but the control does
not terminate the function automatically at the end of the first record. In­
stead, the control reads from one record to the next and terminates the func­
tion when it encounters a file mark or detects the end of any record in which
the program gives a CONO TMS,I, the data channel terminates (TMlOB), a

parity error is discovered, Data Late or Bad Tape sets, or the number of char­
acters detected in the record does not constitute an integral number of words.
If any of these conditions except a parity error occurs before the last word in
the record is read, data transfers cease, but the control continues to the end
of record with the TM 1 DB holding the data channel.

If the function terminates at a file mark, Record Length Differs cannot be
set.

Read-Compare Record. The program must select the same parity and den­
sity that were used when the data was written.

TM10A

The control sets Data Request to
get the first word from the program
and then reads one entire record.
As each word is read, the control
compares it with the last word sent
by the program and again sets Data
Request if the two words are iden­
tical. If they are not identical, the
control sets Read Compare Error
and terminates data requests, but
continues to the end of record. In
all other respects this function is
identical to Read Record.

TM10B

The control waits until the data
channel connects and then makes a
data request for a word that is com­
pared against zero. Hence, in order
to execute this function properly,
the program must set up the data
channel control word list so that the
channel supplies a zero throwaway
word before supplying the words to
be compared with those from tape.

The control then reads one entire
record and compares each word read
with the word supplied by the chan­
nel. If the two words are not iden­
tical, the control set.s Read Compare
Error and data transfers cease, but
the control continues to the end of
record. In all other respects this

6-29

If a missing character or a file
mark results in a partial last
word, the control makes a
data request for it when the
end of record is detected.
However, for the character in
a file mark, Data Request
stays set for only 1 ~ character
times.

6-30

To handle record spacing with
the TMlOA, use a BLKO
where the count in the left half
of the pointer is equal to the
negative of the number of re­
cords to be spaced, and give a
CONO TMS,l when overflow
occurs.

In reverse spacing, a record
can be detected only if it is a
fIle mark or has at least three
characters.

STANDARD MAGNETIC TAPE TMIO §6.8

function is equivalent to Read Re­
cord except that the setting of Re­
cord Length Differs by premature
termination of data transfers re­
leases the data channel.

Flags: Tape Parity Error, End of File, Endpoint, Read Compare Error, Re­
cord Length Differs, Data Late, Bad Tape.

Read-Compare Multirecord. This function is related to Read-Compare Re­
cord in exactly the same way as Read Multirecord is related to Read Record.
The control terminates the function at the end of any record in which any of
the conditions listed for Read Multirecord occur. Termination also occurs if
Read-Compare Error is set. For the TMIOB the program must set up the data
channel control word list to supply a zero throwaway word at the beginning
of every record.

Space Records Forward. The program must select the same density that
was used when the tape was written.

TM10A

The control spaces the tape forward
setting Data Request at the begin­
ning of each record. If the program
does not respond with a DA T AO
TMC, (with a throwaway data word)
by the time the end of record is de­
tected, the control sets Job Done.
If the program responds in time, the
control continues on to the next
record. Hence, the number of
records spaced over is one greater
than the number of DATAOs sup­
plied by the program.

TM10B

The control waits until the data
channel connects and then spaces
the tape forward. At the end of
each record the control makes a
data request and the data channel
responds by sending a throwaway
word and incrementing its word
counter. When the channel termi­
nates - ie when the word counter
overflows - the control sets Job
Done. Hence, the control spaces a
number of records equal to the
word count given to the data chan­
nel, except that one record is spaced
even if the word count is zero.

Besides terminating for a specific number of records as explained above,
the control terminates Space Records Forward when it encounters a file mark
or detects the end of any record in which Endpoint sets or the program gives
a CONO TMS, 1. Flags: End of File, Endpoint, Bad Tape.

Space File Forward. This program must select the same .density that was
used when the tape was written. The control spaces the tape forward until it
encounters a file mark or detects the end of a record in which Endpoint sets
or the program gives a CONO TMS, I. Flags: End of File, Endpoint, Bad Tape.

Space Records Reverse. The program must select the same density in
which the tape was written. If Loadpoint is 1, the control sets Illegal and
shuts down. Otherwise, the control executes a function that is equivalent to

..,

o u

-.>

§6.9 PROGRAMMING CONSIDERATIONS

Space Records Forward except that the tape moves in reverse, Endpoint has
no effect, and the control terminates the function if it encounters the load­
point. Flags: Loadpoint, End of File, Bad Tape.

Space File Reverse. The program must select the same density in which
the tape was written. If Loadpoint is 1, the control sets Illegal and shuts
down. Otherwise, the control spaces the tape in reverse until it encounters a
file mark or the load point or detects the end of any record in which the pro­
gram gives a CONO TMS,I. Flags: Loadpoint, End of File, Bad Tape.

Rewind. The control places the transport in operation and sets Job Done
once the function is initiated. The control is then free for further use by the
program while the transport rewinds the tape at high speed onto the supply
reel and stops at loadpoint. Flags: Rewinding, Loadpoint.

Rewind and Unload. This function executes exactly like Rewind except
that upon encountering the load point , the transport pulls the entire tape off
of the takeup reel, winds the tape onto the supply reel, and goes off line.

6.9 PROGRAMMING CONSIDERA nONS

Before beginning tape operations, check the status of the control to deter­
mine if it is free, which is indicated by Load Next Unit being set. Then give
a No-op for the desired transport to check if it is on line and ready: ready is
indicated by Unit Idle being set. If the transport is not ready but Rewind is
set, then the transport is on line but is rewinding. Before using the transport,
make sure it is the right type - bit 33 is 1 for 7-track, 0 for 9-track; if the
program is to write or erase tape, Write Lock must be O.

Once the control is executing a function, the program must wait for Job
Done to set before giving another function. After Job Done sets, the control
continues to select the current transport while waiting for the tape to move
the correct distance into the gap. Then the control signals the transport to
stop tape and sets Load Next Unit; and at this time the control selects the
next unit if the program has given a new function. The distance the tape
moves into the gap for a given direction is the same regardless of whether it is
a record gap, a file gap or simply an erased portion of tape. If the program
gives a new function before Load Next Unit sets, and the function is for the
same transport and direction as the previous one, the TM 1 OA does not stop
the tape at all. The TMIOB always releases the data channel at the comple­
tion of a function; hence, it will keep the tape moving between functions
only if it can reconnect to the channel, ie if the channel is still free and the
control has priority. If some other device connects to the channel before the
TM 1 OB regains service, the tape stops.

In Rewind, Job Done and Load Next Unit are both set soon after the tape
is up to speed, and the control is then free for operations with other trans­
ports. To wait for a transport to finish rewinding, give an Interrupt When
Unit Ready, which sets Job Done when the tape reaches loadpoint and is

6-31

Some transports cannot be un­
loaded by the program.

NOVEMBER 1974

6-32

The most likely source of
parity errors is dropping 1 s.
If repeated attempts to read a
record fail, try it using the
low read threshold: give a
eONO TMS,40 and reread
the record. But make sure to
clear Low Read Threshold
(by giving a eONO TMS,O)
before going on to subsequent
records, as the low threshold
increases the possibility of
reading Os as 1 s.

To space over a me mark with
a TM lOB, always use Space
File Forward to avoid tying
up the data channel.

NOVEMBER 1974

STANDARD MAGNETIC TAPE TMI0 §6.9

ready to move forward again. Do not give a tape-moving function for a trans­
port that is rewinding, as Unit Hung will set, requesting an interrupt, if the
tape is not ready within one second. After any other function, the program
can give any function for the same or another transport as soon as Job Done
sets. When addressing a new unit or changing direction on the same one, the
CONO TMC, can enable the setting of Load Next Unit to interrupt when the
new unit is selected or the new function starts. If the program simply wishes
to be able to check the status of a new transport at the earliest possible
moment, it can give a No-op with Next Unit Interrupt Enable.

In Read Record or Read-Compare Record in a TMlOA, Record Length
Differs will set if the program does not give a CONO TMS,l within two to
three character times after Data Request sets for the last full word; note that
this is considerably less time than the program has for retrieving words with­
out data loss. If missing characters produce an incomplete final word and the
program has not deliberately stopped transfers prematurely by giving a CONO
TMS,l before the record is complete, the end of record sets both Data Re­
quest and Record Length Differs. To read an entire file, it is best to read the

data records and then space over the file mark. Of course if the length of the
file is unknown, then simply dispense with the CONO TMS, 1 altogether (or
give a large word count in the TMlOB), but remember that the final word
transferred will contain only the file mark character. Timing for this is stand­
ard in the TMlOB, but in the TMlOA the program has only about lY2 charac­
ter times to respond before Data Request clears.

After writing a record, always check Endpoint. If Endpoint is set, do not
give another Write; give Mark End of File and do not use the tape beyond
that point.

When reverse spacing is stopped by a file mark, the tape is positioned on
the loadpoint side of the mark. To process the records in the file just spaced
over, first space forward over the file mark; a read function would simply stop
at the mark.

ReadinMode

The only requirements (beyond those given in § 2.12) for readin mode with
standard magnetic tape are that the data must be in the first record on the
reel, in core dump format if the reel is on a 9-track unit, with odd parity at
556 bpi, and the reel must be mounted on transport O. To select magnetic
tape with the readin device switches, turn on the second, third and fourth
switches from the left (340, the TMC device code).

Pressing the readin key causes the processor to place the tape control in a
special read in sequence in which it executes Rewind on transport O. The con­
trol continues to select transport 0 (Unit Hung sets but this has no effect) and
when the tape reaches loadpoint, the control executes Read Record selecting
odd parity, core dump fonnat, and a density of 556 bpi. The data is trans­
ferred over the 10 bus regardless of the type of control (the data channel is
not used).

§6.10 TIMING

6.10 TIMING

The timing of tape functions depends not only on the density selected by
the program, but also on the speed and tape handling characteristics of the
selected transport. This section discusses timing for the various transports.

Tape Transport TU 1 0

The tape processing speed of this transport is 45 inches per second ±4%. The
character and word times and the average transfer rates within a record are
as follows.

Density

200

556
800

Character
time in J1S

111

40
27.8

Word time in J1S

Core
7-track 9-track dump

666

240

167 111

555

200

139

Words per second

Core
7-track 9-track dump

1500

4170

6000

1800

5004

9000 7200

The data channel has just under a character time to respond to a data
request, but because of double buffering in the TM lOA, the program has
an entire word time.

The start time is the time from the beginning of a function with the tape
at rest in a normal record gap to the first word processed. Stop time is from
the setting of Job Done to the setting of Load Next Unit.

Time in ms

Write start
7-track 12.5
9-track 8.9

Read start
7-track 19.2
9-track 12.2

Loadpoint start 180
Forward stop .9

Reverse stop
7-track 3.6
9-track .9

Erase or Mark End of File 100
At loadpoint 220

Rewind initiation 230

Note that Job Done and Load Next Unit set simultaneously in Rewind and
in reverse spacing that stops at loadpoint. Rewinding an entire reel takes less
than four minutes. This transport cannot be unloaded by the program.

To determine memory buffer size in real time applications, the program­
mer must know the total time between records in reading and writing. The

6-33

Between Job Done and Load
Next Unit, the program can
give a new function without
stopping tape.

NOVEMBER 1974

6-34

Between Job Done and Load
Next Unit, the program can
give a new function without
stopping tape.

Times given in parentheses
are applicable to a control
that has ECO TMlO-00021 ,
which is unlikely unless the
system includes TU40 or later
transports.

NOVEMBER 1974

STANDARD MAGNETIC TAPE TMI0 §6.l0

interrecord time without stopping tape is 21.9 ms for 7-track, 14.9 ms for
9-track (in writing, the time to the initial data request for the next record is
9.4 ms for 7-track, 6 ms for 9-track). For stopping between records, add
8 ms.

Tape Transport TU20

The tape processing speed of this transport is 45 inches per second ± 1 %. The
character and word times and the average transfer rates within a record are
as follows.

Density

200
556
800

Character
time in J.lS

111
40
27.8

Word time in J.lS

Core
7-track 9-track dump

666
240
167 111

555
200
139

Words per second

Core
7-track 9-track dump

1500
4170
6000

1800
5004

9000 7200

The data channel has just under a character time to respond to a data request,
but because of double buffering in the TM lOA, the program has an entire
word time.

The start time is the time from the beginning of a function with the tape
at rest in a normal record gap to the first word processed. Stop time is from
the setting of Job Done to the setting of Load Next Unit.

Time in ms

Write start 14.2
Read start

7-track 20.9
9-track 17.5

Loadpoint start 185
Write stop 4.7 (2.9)

Read or forward space stop 3.9 (2.1)
Reverse stop 9.8 (8)

Erase or Mark End of File 100
At loadpoint 220

Rewind initiation 1.8

Note that Job Done and Load Next Unit set simultaneously in Rewind and
in reverse spacing that stops at loadpoint. Rewinding an entire reel takes
about three minutes. This transport cannot be unloaded by the program.

To determine memory buffer size in real time applications, the program­
mer must know the total time between records in reading and writing. The
interrecord time without stopping tape is 26.5 ms for 7-track, 23.1 ms for
9-track (in writing, the time to the initial data request for the next record is
12.3 ms for 7-track, 8.9 ms for 9-track). For stopping between records,
add 5 ms.

?

1

,...
';.

§6.10 TIMING

Tape Transport TU30

The tape processing speed of this transport is 75 inches per second ± 1 %. The
character and word times and the average transfer rates within a record are
as follows.

Character
Density time in J.lS

200 66.7
556 24
800 16.7

Word time in J.lS

Core
7-track 9-track dump

400 333
144 120
100 67 83

Words per second

7-track

2,500
6,950

10,000

Core
9-track dump

3,000
8,340

15,000 12,000

The data channel has just under a character time to respond to a data request,
but because of double buffering in the TM lOA, the program has an entire
word time.

The start time is the time from the beginning of a function with the tape
at rest in a normal record gap to the first word processed. Stop time is from
the setting of Job Done to the setting of Load Next Unit.

Write start
Read start

7-track
9-track

Loadpoint start
Write stop
Read or forward space stop
Reverse stop
Erase or Mark End of File

At loadpoint
Rewind initiation

Time in ms

11.7

15.7
13.7

115
3.2 (2.1)
2.7 (l.6)
5.9 (4.8)

63
130

1.07

Note that Job Done and Load Next Unit set simultaneously in Rewind and
in reverse spacing that stops at loadpoint. Rewinding an entire reel takes less
than three minutes. This transport can be unloaded by the program.

To determine memory buffer size in real time applications, the program­
mer must know the total time between records in reading and writing. The

'" interrecord time without stopping tape is 19.4 ms for 7-track, 17.4 ms for
9-track (in writing, the time to the initial data request for the next record is
7.7 ms for 7-track, 5.7 ms for 9-track). For stopping between records,
add 5 ms.

Tape Transport TU40

The tape processing speed of this transport is 150 inches per second ±3%.
The character and word times and the average transfer rates within a record
are as follows.

6-35

Between Job Done and Load
Next Unit, the program can
give a new function without
stopping tape.

Times given in parentheses
are applicable to a control
that has ECO TM 1 0-0002 1 ,
which is unlikely unless the
system includes TU40 or later
transports.

NOVEMBER 1974

6-36

Between Job Done and Load
Next Unit, the program can
give a new function without
stopping tape.

NOVEMBER 1974

STANDARD MAGNETIC TAPE TMI0 §6.10

Word time in J.IS Words per second

Character Core Core
Density time in J.IS 7-track 9-track dump 7-track 9-track dump

200 33.3 200 167 5,000 6,000
556 12 72 60 13,900 16,680
800 8.3 50 33 42 20,000 30,000 24,000

The data channel has just under a character time to respond to a data request,
but because of double buffering in the TM10A, the program has an entire
word time.

The start time is the time from the beginning of a function with the tape
at rest in a normal record gap to the first word processed. Stop time is from
the setting of Job Done to the setting of Load Next Unit.

Write start
7-track
9-track

Read start
7-track
9-track

Loadpoint start
Forward stop

Time in ms

4.0
3.5

6.0
4.5

55
.3

Reverse stop .3
Erase or Mark End of File 30

At loadpoint 65
Rewind initiation 68

Note that Job Done and Load Next Unit set simultaneously in Rewind and
in reverse spacing that stops at loadpoint. Rewinding an entire reel takes
66 seconds. This transport can be unloaded by the program.

To determine memory buffer size in real time applications, the program­
mer must know the total time between records in reading and writing. The
interrecord time without stopping tape is 7.1 ms for 7-track, 5.6 ms for
9-track (in writing, the time to the initial data request for the next record is
3.1 ms for 7-track, 2.1 ms for 9-track). For stopping between records,
add 2 ms.

?

{.

7

Disks and Drums

A disk or a drum is generally the largest random-access storage device in a
computer system (a single unit usually holds more bits than all of core),
and it also provides the fastest storage outside of core. These devices are
exceptionally desirable as backup storage for memory, especially for storage
of large files and for swapping in time sharing systems - while the currently
active user programs are in core, inactive programs are stored on a disk or
drum. Unlike magnetic tape, a disk or drum is constantly in motion and
has a predetermined format with data blocks of fixed length. Hence,
individual blocks are addressable, and at the simplest level, reading and
writing may be the only functions the system need perform.

In a disk unit, the storage medium is similar to a phonograph record. Data
is stored in tracks that are concentric circles on the disk surface (there may be
tracks on both surfaces or on only one surface). The disk is further divided
into sectors, ie pie-shaped sections. Hence the tracks are divided into arcs,
each arc being the intersection of a track with a sector. In common termi­
nology these arcs of a track are also referred to as sectors. The basic data
block consists of a set of data words in one sector of a track. Generally a
disk is divided into n + 1 sectors, where n sectors are for data. The extra
sector can be used for maintenance, but it also provides time for changing
tracks without skipping a data sector. Besides data, each sector may contain
information for synchronization, error checking, and addressing. The disk
also may have extra tracks for timing and addressing information.

The inner tracks are shorter than those on the outer part of the disk, but
timing is usually kept constant, with the result that the information density
in the tracks increases toward the center. Sometimes tracks are grouped into
rings, where the inner rings have fewer sectors; this grouping means that the
time is constant only within rings but the variation in density is less.

In a drum unit the data is recorded in tracks that are circles on the surface
of a cylinder. In this case the tracks are all the same length, so both timing
and density are constant. As with a disk, the drum is divided into sectors, and
the basic data blocks are recorded in the sectors of the tracks.

In a disk pack unit the storage medium is a removable stack of disks.
Hence, not only is the storage capacity much greater, but the data can literally

7-1

This ambiguity seldom leads
to any confusion. In relation
to the disk as a whole, "sector"
refers to an area; in relation
to tracks and data blocks,
"sector" refers to a segment
ofa track.

7-2

Note that a single disk with
tracks on both surfaces also
has cylinders, each consist­
ing of a pair of tracks. But
a cylinder configuration is not
ordinarily used in the address­
ing scheme: tracks are con­
secutive across the surface,
not back and forth from one
surface to the other (in other
words, a surface is specified
by the most significant bit
of the track address, rather
than the least significant).

A cylinder is often defined
as all the tracks that can be
processed without reposition­
ing the heads.

NOTE: If the drum operates on
50 Hz power, individual trans­
ters occur every 5.2 J.ls, with
an average rate of 184,000
words per second.

RCIO DISK/DRUM SYSTEM §7.1

be stored on the shelf like magnetic tape while the drive is being used with an­
other pack. Each disk surface has tracks and sectors. However, there are
many surfaces, and the set of identically numbered tracks on the various
surfaces constitutes a cylinder (logically a disk pack is equivalent to a drum
pack). As before, the basic data block is a sector of a track, which is addressed
as the intersection of a cylinder and a surface. In terms of the addressing
scheme used in continuous data processing, the disk pack is treated as though
it were a drum pack; the hardware counts through all the tracks (surfaces)
in one cylinder at a time.

If there is a separate read-write head for each track, the average random­
access time is a little over half a revolution; otherwise additional time may
be required for head positioning. Since the storage medium is continuous,
has a fixed format, and is in constant motion (both in speed and direction),
functions can be limited simply to read and write, with an automatic search
for an initially specified sector. However, in more complex systems, there
may be a separate search function and even special functions for handling
nondata I?arts of a sector.

A disk or drum system always consists of a control and a number of disk,
drum, or disk pack units. In all cases, the program communicates with the
control, which in turn governs all the units but effectively communicates with
only one at a time. Data transfers between the~ontrol and device are
governed by the control. The control is always connected to the 10 bus,
but only for the transfer of initial conditions and status. Once the program
sets up the system for reading or writing, data transmission between control
and memory is handled automatically via a separate memory bus (ie bypass­
ing the central processor). To accomplish this the control is connected to the
memory bus through a data channel or contains the necessary hardware for
direct connection to the bus.

PART I
RCIO DISK/DRUM SYSTEM

This system consists of an RClO control, which must be connected to memo­
ry via a DFI0 data channel [§5.1], and up to four RDlO disk drives or
RM lOB drum drives in any mix. The system is used primarily for swapping
programs in and out of core in time sharing.

The RD 10 disk, which is manufactured by Burroughs, can store 512,000
36-bit words in blocks of thirty-two words each. While a block is being
processed, data transfers occur at the rate of one word every 13.3 p,s. The
average transfer rate over a number of blocks is 74,035 words per second.

The RM 1 OB drum, which is manufactured by Bryant, is smaller but faster
than the disk. It can store 345,600 words in 64-word blocks. Individual
transfers occur every 4.3 p,s, with an "average transfer rate of 220,800 words
per second.

§ 7.1 DATA FORMAT

The disk and drum are controlled by the program in essentially the same
manner, but they differ in format and timing. In the text the words "disk"
and "drum" are used only to refer specifically to the type of equipment
named. In the discussion of characteristics common to both and the
operation of the control, the words "unit" and "device" shall be taken to
refer to either the disk or drum.

7.1 DATA FORMAT

Since the disk and drum have a separate head for each track, there is no head
positioning time. If the data channel is free when an operation is begun,
the control need wait only for the specified sector to reach the head, thus
the average random-access time is just over half a revolution. Moreover, tl~
control has a sector counter for each unit, allowing the program to det~rmin ~
the current position of a disk or drum at any time. Tracks and sectors are
addressed by the control in binary-coded decimal form (BCD), ie the program
supplies addresses as numbers with four bits per decimal digit.

Full words are transferred between memory and control, but data is
transferred between control and device in 6-bit bytes. At the disk each
byte is recorded serially, so the track contains one long string of bits.
In reading, the bits are reassembled into bytes at the disk just as the bytes
are reassembled into words at the control. The drum actually has six physical
tracks for each logical, addressable track, and therefore the data is processed
as a string of 6-bit characters.

While the control is supplying characters to the device for writing, it keeps
a running exclusive OR function of the characters in a parity register and
writes the result at the end of the sector. Hence the final character in a
sector is a longitudinal parity check character (LPCC). On the drum this
character actually produces even parity along the length of the sector in
each of the six physical tracks, whereas on the disk the LPCC is a function
of six sets of bits, each containing every sixth bit along the track. When the
control subsequently reads the sector, it checks parity by again keeping a
cumulative function, including the LPCC (a nonzero result indicates an error).

In reading or writing the control starts at a given sector in a given track,
as specified by the program. So long as the data channel remains in operation
and there is no error stop, the RC 10 continues reading or writing from one
sector to the next along the track, and upon reaching the end of one track it
switches automatically to the next track. Switching occurs at the beginning
of the extra, maintenance sector to allow all transients to die down before the
first data sector of the next track is encountered. Upon completing the final
track on a given disk or drum, the control starts over at track 0, sector 0 of
the same unit.

7-3

7-4

The extra sector is numbered
80 in order to use the mainte­
nance circuitry in the RCI0.

The drum actually uses binary
addressing, and the BCD
numbers supplied by the pro­
gram must be translated. For
the sectors, which must be
consecutive, the conversion is
standard. But to use the sim­
plest decoding, the tracks as
numbered are not physically
consecutive on the drum. The
translation is as follows.

BCD Octal

000-007
010-017

070-077
080-087

008
009
018
019
028
029
038
039
048
049
058
059
068

000-007
010-017

070-077
100-107

110
111
112
113
114
115
116
117
120
121
122
123
124

RCIO DISK/DRUM SYSTEM §7.2

To provide data protection, the entire storage area (of all four devices) can
be divided into two parts, one of which is locked against writing by the
program. Switches on the control allow the operator to define the two areas
by selecting a unit and track which form the boundary between the protected
and unprotected areas. Other switches select whether the protected area is
above or below the boundary and whether the boundary is included in the
protected area. The area below the boundary includes all units numbered
lower than the selected unit and all tracks numbered lower than the selected
track on that unit; the upper area is the remainder of the storage medium.

Disk. The disk has 200 data tracks, numbered 0-199 BCD (100 tracks
on each of the two disk surfaces), and is divided into eighty-one sectors,
numbered 0-80 BCD, of which 0-79 are for data. Each sector contains
thirty-two words. Thus, there are 2560 words per track and the capacity
of an entire disk is 512,000 words. The disk runs at 1735 rpm, giving an
average latency time of 17.6 ms.

Drum. The drum has ninety tracks, numbered 0-89 BCD, and is divided
into sixty-one sectors, numbered 0-59 and 80 BCD, of which 0-59 are for
data. While handling a drum, the control counts sectors as numbered (ie
it counts to 59, jumps to 80, and then returns to 0) but the track counter
continues all the way to 199 before returning to 0 just as it does with the
disk. Hence, if the program lets a transfer run beyond track 89, the control
will simply wait through the normal counting from 90 to 199 before resuming
transfers (this requires approximately two seconds). Each sector contains
sixty-four words. Thus, there are 3840 words per track and the total capacity
of an entire drum is 345,600 words. With 60 Hz power the drum runs at
3450 rpm, giving an average latency time of 8.8 ms; at 50 Hz power the
drum runs at 2870 rpm, giving an average latency time of 10.6 ms.

7.2 INSTRUCTIONS

The control has a 36-bit assembly register AR, from which characters are
sent to the unit for writing, and in which characters are reassembled into
words in reading. The AR is connected directly to the channel bus for full
word transmission between the data channel and control. The RC 10 also
contains a 6-bit longitudinal parity register for calculating and checking the
LPCC, one 8-bit BCD sector counter for each unit, a 9-bit BCD track counter
for use with the unit currently selected, and an 8-bit BCD sector register that
points to the sector specified by the program for beginning the current opera­
tion. The contents of this last register are compared with the sector address
sent from the device when the control is searching for the sector in which to
begin reading or writing.

To run a disk or drum, the program must select a unit, track, sector and
function, and supply an initial control word address for the data channel.
To use the interrupt, the program should also assign a PI channel. Since all

"

c·

§7.2 INSTRUCTIONS

data transmission is handled through the DFIO, interrupts are requested only
when Done sets at the termination of an operation, either because the oper­
ation is complete or an error condition has terminated operation premature­
ly.

The RClO device code is 170, mnemonic DSK. Both the condition and
data 10 instructions are used for control purposes. A second RC 1 0 would
have device code 174.

CONO DSK, Conditions Out, Disk/Drum

71720 y

o 121314 1718 3S

Select the sector counter specified by bits 18-19 of the effective conditions
E, assign the interrupt channel specified by bits 33-35, and perform the
functions specified by bits 20-32 as shown (a 1 in a bit produces the indi­
cated function, a 0 has no effect).

SECTOR
COUNTER

I
la 19

Notes.

18-19

30

31

CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR TRACK- CLEAR CLEAR DEVICE DATA CONTROL NO CLEAR CLEAR WRITE
UNIT SECTOR NOT POWER PARITY PARITY WORD SUCH ILLEGAL DATA CONTROL

ERROR READY FAILURE PARITY WRITE LATE WORD ERROR ERROR ERROR ERROR MEMORY

20 21 22 23 24 25 26 27 28 29 30

Unit addresses 0-3 select the corresponding sector counters for
reading the current sector with a DA TAl.

This bit requests that the channel write a control word and clears
Control Word Written (CONI bit 30).

Clear Busy, set Done, requesting an interrupt on the assigned
channel, release the data channel, and cease operation.

DATAO DSK, Command Data Out, Disk/Drum

71714 y

o 121314 1718 3S

If Busy is set, do nothing. Otherwise clear the assembly register, Search
Error, Not Ready, Device Parity Error, Data Parity Error, Control Word

7-5

BCD Octal

069 125
078 126
079 127
088 130
089 131

PRIORITY
CLEAR INTERRUPT STOP DONE

31

A~SIGNMErT

32 33 34 35

To load the ReiO command
conditions, Busy must be 0
and the channel must not be
connected, which always oc­
curs when Busy clears. Should
the combined condition fail
even though BusyisO,DATAO
simply clears the registers it
would otherwise load.

7-6

UNIT
101lS

o 2 3

LPCC 81AS

I I I I

18 19 20 I 21

The bias is included in the
LPCC calculation (as an extra
character) for all sectors in
reading, but only for the first
sector in writing (for writing
the control clears the parity
register between sectors). If
there is no error, the result
of reading a sector using zero
bias is the bias used when the
sector was written. Reading
using the same bias should
give a zero result.

The initial control word ad­
dress is held in AR until the
channel connects.

RCIO DISK/DRUM SYSTEM §7.2

Parity Error, No Such Memory, Illegal Write, Data Late, Control Word
Written and Done. Set up the RCIO command conditions according to the
contents of location E as shown.

105
I

TRACK
IS

SECTOR

I 15

4 5 6 7 8 I 9 10

IllS

11 I 12 13 14 I 15 I 16 17

22

NO NO
DEVICE DATA WRITE
PARITY PARITY WRITE INITIAL CONTROL WORD ADDRESS EVEN
ERROR ERROR PARITY

I STOP STOP I I I I I I I

23 24 25 26 27 28 29 I 30 31 32 I 33 34 35

Notes.

0-1 Numbers 0-3 address the device.

2-10 BCD numbers 0-199 address the track (only 0-89 are valid for a
drum).

11-17 BCD numbers 0-79 address the sector (only 0-59 are valid for a
drum).

18-23 Bias the cumulative LPCC calculation by this quantity. This is for
maintenance only and should be zero in all normal programming.

24 A 1 in this bit prevents the RCIO from stopping when Device
Parity Error sets.

25 A 1 in this bit prevents the RCIO from stopping when Data Parity
Error sets.

26 A 1 in this bit causes the control to write data on the addressed
unit when it finds the specified sector (0 specifies Read).

27 -34 Send this address to the data channel when it is seized by the
RCIO.

35 A 1 in this bit selects even memory parity for disk/drum input
(read) operations. This condition is for maintenance only; in all
ordinary circumstances bit 35 must be 0 so the data channel will
generate odd parity for words stored in memory.

If Power Failure is set or the conditions supplied by this instruction result
in the setting of Unit Error, Track-Sector Error, Not Ready or Illegal Write,
the control sets Done, requesting an interrupt on the channel assigned by the
last CONO DSK, and shuts down. If none of these error flags is set, the
control sets Busy and waits for the data channel to connect.

§7.2 INSTRUCTIONS

CONI DSK, Conditions In, Disk/Drum

71724 y

o 121314 1718 3S

Read the status of the disk/drum system into bits 4-35 of location E as
shown.

7-7

Note that CONSZ and CaNSO
can test only bits 18-35. To
test bits 4-17 the program
must give a CONI DSK,AC
and then use a test instruction
[§2.8] .

SECTOR LOW PROTECTION BOUNDARY
DRUM

80
AREA UNIT TRACK
SAFE I 100S I '~S I I

o 2 3 4 5 6 7 8 I 9 10 11 I 12

* * * * * * * * * * *
TRACK- DEVICE DATA CONTROL NO CONTROL SEARCH SEARCH UNIT SECTOR NOT POWER PARITY PARITY WORD SUCH

ILLEGAL DATA WORD DONE ERROR ERROR ERROR READY FAILURE ERROR ERROR PARITY MEMORY
WRITE LATE WRITTEN ERROR

18 19 20 21 22 23 24 25 26 27 28 29 30

Notes.

DATAO clears bits 19,22-30 and 32.
The setting of Done requests an interrupt on the assigned channel. This

is the only flag that directly requests an interrupt, but Done is set by the
setting of any error flag, although in some cases not immediately.

In many cases the setting of a flag causes the control to terminate; this
means that the control clears Busy, sets Done, requesting an interrupt on
the assigned PI channel, and ceases operation. If the data channel has not
already been released by the control or disconnected of its own accord, then
termination releases it.

4 The currently addressed unit is a drum (0 indicates a disk).

5 The operator has selected the maintenance sector at the switch panel
and the program can process only sector 80.

6 The protected area is below the boundary specified by bits 7 -17 (0
indicates the high area is protected).

7 -17 This is the unit and track selected at the switch panel as the boundary
between the safe and unsafe areas.

18

19

20

The control has found the addressed sector and a block transfer is in
progress.

The control began a search but terminated because it was unable to
find the addressed sector within two revolutions.

There were two units set to the unit address given by the last
DATAO; therefore the control set Done and did not go into oper­
ation.

I
13

BUSY

31

I I ? I

14 I 15 16 17

*
PRIORITY

DONE INTERRUPT
ASSIGNMENT

I I

32 33 34 35

*These bits cause interrupts.

NOTE: Unit Error sets Done
only if it is already 1 when
the RCIO is placed in oper­
ation; Done is not affected if
Unit Error is set during exe­
cution of a function.

The program cannot deter­
mine if the boundary is in­
cluded in the protected area.

During operation Unit Error
can be set only by a malfunc­
tion or unwarranted operator
intervention, in which case the
system hangs up.

7-8

During operation this flag can
be set only by a control logic
malfunction, in which case the
control terminates.

While waiting for the memory,
the control may set Data Late,
which releases the channel so
the memory error does not
show up at all.

RCIO DISK/DRUM SYSTEM §7.2

Notes (Continued)

21 The last DATAO specified a track or sector address that was not
a BCD number; therefore the control set Done and did not go into
operation.

22 The addressed unit is not available to the program. If this bit is
set when a DA TAO is executed, the control sets Done and does
not go into operation. If the unit goes off line during operation,
the control terminates.

23 The voltage levels in the RCIO are not within tolerance. If this
condition is indicated when a DATAO is executed, the control sets
Done and does not go into operation. If power fails during oper­
ation, the control completes the current sector and then termi­
nates.

24 The control read a sector with incorrect parity, and therefore
terminated unless the last DATAO disabled the error stop.

25 The data channel discovered a parity error in a data word read
from memory. Unless the last DATAO disabled the error stop,
the setting of this bit causes the control to release the data channel
immediately, continue to the end of the current sector writing
zeros, and then terminate.

26 The data channel discovered a parity error in a control word read
from memory. When this bit sets, the channel disconnects from
the RCIO, which continues to the end of the current sector, either
writing zeros or throwing away the data read, and then terminates.

27 The memory addressed by the data channel did not respond within
100 p.s. When this bit sets, the channel disconnects from the
RCIO, which continues to the end of the current sector, either
writing zeros or throwing away the data read, and then terminates.

28 In Write the ..control specified a track that fell in the protected area.

29

If this bit is set when a DATAO is executed, the control sets Done
and does not go into operation. If the control counts into the
protected area while writing, it terminates.

The data channel did not send data to the RCIO or accept data
from the RC I 0 when it was expected to. When this bit sets, the
control releases the channel but continues to the end of the current
sector, either writing zeros or throwing away the data read, and
then terminates.

30 The data channel has stored a control word in memory as requested
by CONO bit 30 through the RCIO.

.. -

o

§7.3 PROGRAMMING CONSIDERATIONS

31 The control is in operation, ie it has received correct conditions
from a DATAO and is either waiting to seize the data channel,
searching, or processing the tracks on a disk or drum.

32 The RClO has terminated, either because a data channel block
transfer has been completed or an error condition shut down the
system prematurely.

DATAl DSK, Command Data In, Disk/Drum

71704 y
o 121314 1718 3S

Read additional status information from the disk/drum system into the right
half of location E as shown.

PARITY REGISTER SECTOR
COUNTER 105

1 I 1 I 1 1 I I I

18 19 20 I 21 22 23 24 25 26 I 27 28 29 I 30

Notes.

Following a sector in which Device Parity Error sets and stops the control,
the program can inspect the result of the parity calculation by reading the
parity register. Assuming zero bias is used, Is in bits 18-23 indicate which
of the six sets of bits definitely contained errors (these bits are in six physical
tracks on the drum).

Bits 28-35 indicate the current position of the disk or drum whose unit
address appears in bits 26 and 27; the latter bits indicate the sector counter
selected by bits 18 and 19 of the previous CONO.

7.3 PROGRAMMING CONSIDERATIONS

To write data the program should first give a CONI to determine what area
is protected. Of course the program can also check Busy to make sure the
system is not already in use. To use the interrupt, give a CONO to assign
the channel. To place a disk or drum in operation, give a DATAO that speci­
fies the initial sector (unit, track, and sector), the function to be performed
(Read or Write), the initial control word address for the data channel, and
whether the control is to stop if parity errors are discovered in the data
received from memory or the device.

I

7-9

SECTOR

31
I 15

I I I

32 I 33 34 35

While data is being processed,
the parity register changes too
fast for the program to read
it meaningfully.
Since the storage medium (and
hence the counter) is in con­
stant motion, the program
should repeat the DATAl un­
til two consecutive readings
agree .

7-10 RCIO DISK/DRUM SYSTEM §7.3

If the control is already busy, it simply ignores the DATAO. Otherwise,
the control loads the command information and checks the various conditions
listed in the DA TAO instruction description to determine if it can perform as
expected; if it cannot, the control sets Done and shuts down. If the control
can continue, it sets Busy, waits until it is connected to the data channel,
then waits an additional 100 J1S to settle down and begins the search for
the specified initial sector. If data transfers can begin at an arbitrary sector,
the program could save search time by selecting the sector counter for the
addressed unit when giving the initial CO NO that assigns the PI channel.
The program can then issue a DATAl to determine the position of the unit,
and specify a sector that will be encountered soon when giving the DATAO. ~

As soon as the control finds the addressed sector, it starts transferring data to
or from the addressed track. If the control fails to find the desired sector
within two revolutions of the disk or drum, it sets Search Error and termi-
nates.

The program can incorrectly address a track or sector within a disk only
by giving a non-BCD number. On the other hand, there are BCD numbers
that are not valid for the drum, ie there are no tracks or sectors correspond­
ing to the numbers. An erroneous track selection is actually taken care of
by one of the other conditions: selecting an initial track in the range 90-
199 causes the addressed drum to generate its not-ready signal, preventing
the control from starting. However, specifying an initial sector in the range
60-79 does not stop the control; instead the control goes ahead, then gives
up when its search for the nonexistent sector is unsuccessful. Note that with
a disk, a search error can result only from a hardware malfunction - all BCD
numbers are valid.

Once transfers begin, the control processes data continuously, going through
all the sectors from one track to the next until it is stopped by an error or the
data channel retrieves a zero control word. Some errors cause immediate
termination even in the middle of a sector, whereas for other errors the
control releases the channel but continues to the end of the sector before
terminating (see the descriptions of the flags read by a CONI). When the
control processes part of a sector without the data channel, it simply continues
the function it is already doing - in Write the control writes zeros in the
remaining data positions in the sector and then writes an LPCC; in Read the
control reads the data and checks the parity. The program can stop the
control at any time by giving a CONO DSK,20.

While processing data, the control counts from one sector to the next and
changes to the next track at the beginning of sector 80. If the control should
count into the protected area while performing Write, it terminates immedi­
ately. Upon completing track 199, the counter simply recycles and the con­
trol begins over at sector 0 of track 0 on the same unit. If the addressed
unit is a drum and the control counts beyond track 89, data transfers cease
for about two seconds while the control counts through all the missing tracks
and returns to zero.

§7.3 PROG RAMMING CONSIDERATIONS

Usually a block transfer processes an integral number of sectors, so the
channel stops in the gap between them. In Write the channel sends a word
before it is written, so there is plenty of time to stop. However, in Read
the channel must wait for the last word after it is read. Thus, if the word
count overflows at a gap, the channel may not have time to get a halt from
its control word list before the device starts reading the first character in
the next sector, even though the RC I 0 has not received any data from the
device. When this happens the control terminates, but the device reads the
rest of the sector. However, the program may set up the system so that the
channel reconnects before the device finishes. To compensate for this, if
the device is still reading a data track when the data channel is seized, the
control waits until the end of the sector before beginning the 100 MS wait
that precedes the search.

Timing. At 1735 rpm the disk takes 34.9 ms per revolution. The time
to traverse one sector is 431 MS including nondata time (gap plus LPCC) of
4.4 MS. Search time after the data channel connects is 35.3 ms maximum,
17.6 ms average. During processing, word transfers occur every 13.3 MS.
Between sectors in Read the channel has about 17 MS to store the last word
and execute control words; in Write the channel has about 13 MS for control
words.

At 3450 rpm (60 Hz power) the drum takes 17.4 ms per revolution. The
time to traverse one sector is 285 MS including nondata time (gap plus LPCC)
of 8.6 MS. Search time after the data channel connects is 17.7 ms maximum,
8.8 ms average. During processing, word transfers occur every 4.3 MS. Be­
tween sectors in Read the channel has about 8 MS to store the last word and
execute control words; in Write the channel has about 6 MS for control words.

If the drum operates on 50 Hz power, it rotates at 2875 rpm, taking 20.9
ms per revolution. The time to traverse one sector is 342 MS including non­
data time (gap plus LPCC) of 10.3 MS. Search time after the data channel
connects is 21.2 ms maximum, 10.6 ms average. During processing, word
transfers occur every 5.2 MS. Between sectors in Read the channel has about
10 MS to store the last word and execute control words; in Write the channel
has about 7 MS for control words.

EXAMPLE. Consider this situation: The main program is processing data
from a disk and writes the results back on the same disk. Data is handled in
terms of single tracks, and it is always desirable to complete a block transfer
as quickly as possible. Each time the program has a block ready or needs a
block, it determines whether the disk and data channel are available, and
when they are, the program jumps to a disk service routine DSKSER. In
the location following the subroutine call, the program supplies the address
of the first location in the block in the right half, the binary number of the

7-11

If the operator selects the
maintenance sector from the
switch panel but the system
is under program control, a
DATAO will read or write in
sector 80. The sector se­
lected by the program is ig­
nored, protection does not
apply, and the control termi­
nates upon completing the one
sector.

7-12 RCIO DISK/DRUM SYSTEM § 7.3

track in the left half, and a 0 or 1 respectively in bit 0 to indicate whether
the block should be read or written. Hence, the call is of this fonn:

JSP T,DSKSER
; Arguments
; Return here

The service routine uses four accumulators, T, Tl, T2 and T3. In an
accumulator of flags addressable as F (most likely AC 0), bits 30 and 31
are reserved for these disk operations. The interrupt routine sets bit 31
when the block is complete, and the service routine uses bit 30 to tell the :~

interrupt routine whether the track is being processed as one continuous
block from sector 0 to sector 79 or as two subblocks beginning somewhere
within the track. The example uses disk 2 and interrupt channel 3, although
these can be changed easily by the main program. Being one complete track,
each block transfer is 2560 words (50008). The disk control word list starts
at location 750, which contains a jump to 752 so that 751 is available for
writing control words; the first control word computed by the routine thus
goes in 752. The service routine and associated interrupt routine are as
follows.

DSKSER: CONO DSK,400003 ;Select sector counter 2, PI channel 3
DATAl DSK,Tl ; Read counter
ANDI Tl,377 ;Strip it out
DATAl DSK,T2 ;Read again
ANDI T2,377 ;Strip again
CAME Tl,T2 ;Are they the same?
JRST DSKSER+l ;No, try again

MOVEI T3,-l(T) ; Get block address -1

CAIGE Tl,170 ;~BCD 78 = l708 ?
JRST DSKANY ;No, must compute
CAIE Tl,200 ;= BCD 80 = 2008?
JRST .+3 ;No, 78 or 79
MOVEI Tl,tD32 ;Yes, start at sector 1 (33d word)
JRST DSKI

;::.

HRLI T3,-5000 ;Get word count
MOVEM T3,752 ;Deposit control word
TRZ F,40 ;Bit 30 = 0 means one block
CLEAR T3, ;Start at sector 0
JRST DSKTRK ;Go to track calculation

§ 7.3 PROGRAMMING CONSIDERATIONS 7-13

DSKANY: MOVEI T2,17 ;Mask for units character
ANDI T2,(Tl) ;Strip out units
LSH Tl,-4 ; Right justify tens character
IMULI Tl,tDI0 ;Convert to binary
ADDI Tl,2(T2) ;Add units plus 2 Processing will begin at the

second sector following the
LSH Tl,5 ;Multiply by 32 (words/sector) present one.

DSK1: MOVN T2,Tl ;Negate number of words
HRL T3,T2 ;Control word for second part
MOVEM T3,DSKDF ;Put in interrupt routine
HRLI T3,-5000 ;Get full word count

" HRLS Tl ;Duplicate count for second part 4-~~

ADD T3,TI ;Add it to word count and address
MOVEM T3,752 ;Control word for first part
TRO F,40 ;Bit 30 = 1 means two blocks

HLLI Tl,O ;Clear AC left
LSH Tl,-5 ;Get back sector number
IDIVI Tl,tDlO ; Get BCD tens character
LSH Tl,4 ;Move to tens position
lOR TI,T2 ;Insert units
HRLZ T3,Tl ;Put in DATAO position

DSKTRK: HLRZ Tl,(T) ;Get track
ANDI Tl,377 ;Wipe out read/write bit
IDIVI Tl,tDI0 ;Get tens
CAlL Tl,tDIO ;Shortcut: range (0-199)/10 = 0-19 It is assumed the program has
ADDI Tl,6 ;Get BCD hundred and tens given a proper track address

LSH Tl,4 ;Put in position
(.:;;; 199 = 3078).

lOR Tl,T2 ; Insert uni ts
ROT Tl,-tDII ;Put in DATAO position

SKIPGE (T) ;Is read/write flag set?
TRO Tl,lOOO ;Yes, set DATAO write bit

MOVE T2,DSKCOM ;Get basic DATAO word
lOR T2,Tl ; Make one with sector 0
MOVEM T2,DSKCMI ;Put in interrupt routine
lOR T3,T2 ;Make another with starting sector

4. MOVE T2,DSKINW ;Get interrupt instruction
MOVEM T2,46 ;Set up for channel 3
CLEARM753 ;Put halt in control word list
DATAO DSK,T3 ; Start disk
JRSTF l(T) ; Return

7-14 RCIO DISK/DRUM SYSTEM §7.4

DSKINW: JSR DSKINT ;Interrupt instruction
DSKCOM: 400000000750 ;Basic DATAO word

DSKINT: 0 ;Interrupt routine
CONSZ DSK,377720 ;Check all errors (including Busy)

DSKERO: JRST DSKERR ;Out to disk error routine
TRCN F,40 ;Comp1ement flag, track finished?
JRST DSKDON ;Yes

EXCH 17,DSKDF ;No, finish track
MOVEM 17,752 ;Data channel control word
CLEARM753 ; Halt
EXCH l7,DSKDF ; Restore AC 17
DATAO DSK,DSKCMI ;Start second part
JEN @DSKINT ; Return

DSKDON: TRO F,20 ;Set track done flag
CONO DSK,lO ;Clear Done to drop interrupt
JEN @DSKINT ; Return

DSKDF: 0
DSKCMI: 0

7.4 OPERATION

The RD 1 0 disk has pushbuttons for turning power on and off (POWER ON
lights green when on) and a red not-ready indicator.

The RM lOB drum unit contains extra DEC logic to make it compatible
with the disk for operation from the control. The panel at the top of the
left cabinet in the unit is associated with this logic. The upper two rows of
lights display counters that keep track of the sector, the characters within
each word, and the words in each sector. The left half of the second row
displays each character read from the drum (a buffer is required in reading
because of possible skew in picking up the parallel characters across six
tracks). Among the five lights at the left in the bottom row, WR and RD
indicate the function, and the remaining lights, PRE, DATA and BLK END,
indicate the position in a sector (ie in the part preceding the data, in the
data area, or at the last word or the LPCC). RCOV controls the spacing
between characters. The next two lights indicate sector and word counting
errors, ie that the sector count was not 59 when the drum indexed to the
next track, or the word count was not zero at the beginning of a sector.
SKEW is not used; SUR is the ready indicator. Besides the drum conditions
that generate the not-ready signal (ie that turn off SUR), the drum is also un­
available to the program if a sector or word counting error occurs or the
control supplies an address for a track that does not exist on the drum. The
switches at the bottom of the panel control power and clear the logic follow­
ing a sector or word counting error.

.~

.,

.;,

§7.4 OPERATION

Controls for the RClO are located on a switch panel behind the doors just
below the indicator panel. The rotary switches at the bottom assign unit
addresses to the devices, where A, B, C and D correspond to the device
cable connectors at the back of the RCIO. The off position takes the unit
offline.

At left center are thumbwheel switches and a rotary switch for selecting the
boundary between the safe and unsafe areas and for specifying which area
is safe; the protected area may be under (including the boundary) o'r ex­
clusively under, over or exclusively over. The boundary thumbwheels allow
selection of decimal digits where the device digit (DISK) is interpreted modulo
4, the hundreds digit in the track modulo 2.

The data and parity switches at the top supply data and LPCC bias for
offline operations. Control over system operation is accomplished by means
of the lever switches and pushbuttons at the upper right below the data
switches (the first two at the left are momentary contact, the next two are
toggles). For online operation the toggles must be set to NORMAL and
REMOTE. Setting the third switch to MAINT SEG allows the program to
process sector 80. Setting the fourth switch to LOCAL disables the third
switch but enables the remaining switches. In local control, the RClO can
read sector 80 or write the word supplied by the data switches into sector
80. To select Write push up the second switch (WRITE); to specify Read
do not operate the switch; to change from Write to Read during offline
operation, press CLEAR. Pressing START causes the control to process
the maintenance sector in the track selected by the thumb wheels at right
center. The control repeatedly processes the same sector unless the operator
pushes up the CHANGE TRACK switch, in which case the control counts
through the tracks. Pressing STOP causes the control to terminate the next
time it reaches the end of sector 80. Pressing CLEAR stops the control
immediately and clears the logic. To process the maintenance sector only
once, hold STOP on while pressing START.

7-15

RMlOB Control Panel

CAUTION

Do not manipulate these
switches while the RClO is
operating or can be placed in
operation. Assign unit ad­
dresses only when the control
is off line or the processor is
not running.

7-16

RCIO Switch and
Indicator Panels

RCIO DISK/DRUM SYSTEM §7.4

The upper three rows of lights on the indicator panel display the contents
of the assembly register, the four sector counters associated with the devices,
the parity register, the device (DISK) and track currently selected, and the
initial sector selected by the last DATAO. Of the flag and control indicators,
BUSY, DONE and the PI assignment lights at the right end of the bottom
row are self-explanatory. The remaining lights are as follows.

ACTV

ACTVBUF

CHAN STTD

The control is waiting for the channel or is connected.

The control is waiting for the channel.

The channel has been seized (started).

§7.4 OPERATION 7-17

INH The control has released the channel.

CHANPLS The control has received the channel pulse.

CHPS BUF The control has received at least one channel pulse.

SRCHERBUF The control has searched for one revolution without find-
ing the addressed sector.

COIN The low order digits of the specified sector address coincide
with the sector address from the device.

SRCH The control is searching.

SRCHCMP Search Done (complete).

SRCH SYNC Synchronizing flipflop for SRCH.
<'t GAP The head is in the gap between sectors.

GENCLR The control is not in operation.

MAINT SEG The control can process only sector 80.

LCL The control is off line (local).

SRCH RDY The control is ready to start a search.

SHIFTCT Switch-tail ring counter that controls distribution and as-
sembly of characters between AR and device.

SCDS 1,2 Sector counter selected by bits 18 and 19 of a CONO, and
indicated by bits 26 and 27 of a DATAl (sector counter
device select).

SRCHERR Search Error.

SUDD FAIL Suppress device designation failure (flipflop set by CONO
bit 20 - clear Unit Error).

SUTS FAIL Suppress track select failure (flipflop set by CONO bit 21 -
clear Track-Sector Error).

PS FAIL Power Failure.

DPE Device Parity Error.

DDPE STOP Disable device parity error stop (flipflop set by DATAO
bit 24).

CPE Data (channel) Parity Error.

DCPE STOP Disable channel (data) parity error stop (flipflop set by
DATAO bit 25).

CHANCPAR Control Word Parity Error.

WRIT Write function.
-=

NOEXMEM No Such Memory (nonexistent memory).

ILL WRIT Illegal Write.

SURLLTCH Not Ready (selected unit ready level latch).

OVERRUN Data Late.

CWXCOMP Control Word Written (control word transfer complete).

WTEVPAR Write even parity (flipflop set by DATAO bit 35).

7-18

The RP02 has eleven disks and
the RP01 has six, but the out­
er surfaces are not used.

The DEC software that for­
mats disk packs also deter­
mines which sectors are un­
usable and records this inform­
ation in the pack. The Moni­
tor reserves the last three
tracks on every surface (310-
312) for diagnostic procedures
and makes the rest, except
for bad sectors and a few
Monitor overhead sectors, a­
vailable for user storage.

The program may be able to
skip a bad sector in writing by
supplying a throwaway block.
In reading, the control should
terminate the function and re­
start following a bad sector.

RPIO DISK PACK SYSTEM §7.5

PART II
RPIO DISK PACK SYSTEM

The disk pack system consists of an RPlO control, which must be connected
to memory via a DFI0 data channel [§5.1], and up to eight RP02 or RPOI
disk pack drives in any mix. The system is primarily for storage of large files
or files for a large number of users.

Both disk pack models store data in blocks of 128 words and operate at
the same rotational speed. The RP02 has twice as many surfaces and twice
as many sectors as the RPO 1, and thus has four times the storage capacity
at twice the transfer speed. The capacity of the RP02 is 5,120,000 36-bit
words. While the data part of a sector is being processed, transfers are at
the rate of one word every 14.8 p.s; although an entire cylinder of 25,600
words can be processed in 500 ms, the average transfer rate over a number
of consecutive cylinders is 48,762 words per second. The RPOI can store
1,280,000 words and individual transfers occur every 29.6 p.s; a single cylin­
der containing 6400 words can be processed in 250 ms, but the average rate
over consecutive cylinders is 23,273 words per second.

7.5 DATA FORMAT

The RP02 disk pack has twenty surfaces divided into ten sectors, addressed
as octal 0-23 and 0-11 respectively; the RPO 1 has ten surfaces divided into
five sectors, numbered 0-11 and 0-4 octal. Each surface has 203 tracks,
addressed as 0-312 octal, of which the manufacturer guarantees 200 tracks
to be usable. Any bad tracks in a pack are indicated on a label on the base
plate. Since there are seldom as many as three bad tracks on a surface, and
even in a bad track some or most of the sectors may be usable, the initial
capacity of an individual pack is usually greater than that given above.

The drive has one head per pack surface, with all heads mounted in a sin­
gle carriage so that they are positioned simultaneously. The maximum time
required to move the heads from one cylinder to the next is 20 ms, and at
most 80 ms are required for motion from one extremity to the other. Once
the positioning operation is complete, the control must wait for the specified
sector to reach the heads. This requires just over half a revolution on aver­
age (13.1 ms on the RP02, 13.7 ms on the RPOl).

In reading or writing, the control starts at a given sector in a given track,
as specified by the program. So long as the data channel remains in operation
and there is no error stop, the RPI0 continues from one sector to the next
along the track, and upon reaching the end of one track it switches auto­
matically to the next track on the cylinder (ie to the same track on the next
surface). Upon completing the final track on the cylinder, the control termi­
nates the function. Since each sector contains 128 data words, the RP02
with ten sectors and twenty surfaces has 1280 words per track, 25,600 words
per cylinder; 200 cylinders gives a total capacity of 5,120,000 words. The

§ 7.5 DATA FORMAT

RPOI with five sectors and ten surfaces has 640 words per track, 6400 words
per cylinder, and a capacity in 200 cylinders of 1,280,000 words. Each data
function executed by the control can process one complete cylinder (provided
of course that the cylinder contains no unusable sectors). Since repositioning
the heads from one cylinder to the next requires a maximum of 20 ms, and at
2400 rpm each revolution takes 25 ms, the control can process a large file in
contiguous tracks simply by pausing for one revolution between cylinders.

Transfers between memory and control are of full words, but data is
transferred between control and device in a serial string of bits. Each word
is written as thirty-seven bits, where the last bit produces odd parity for the
word. The control also keeps a running exclusive OR of the 37-bit words

'~ and writes the complement of the result as an odd longitudinal parity word
at the end of the sector. When the control subsequently reads a sector, it
checks the parity of each word and of the whole sector.

Of the functions the system can perform, three actually process the disk
sectors; these are Write Format, Write Data, and Read Data. Sector bound­
aries are defined by physical properties in the disk pack, but every sector must
be formatted as shown here by a program that supplies the necessary inform­
ation through the data channel. The synchronization zone at the beginning
of the sector requires thirty zero words (eighteen for the RPOI) and then a
single word of Os with a I in bit 35. Following this is an address word whose
left half may contain any information desired by the program, but whose
right half must contain the number of the sector and the numbers of the
cylinder and surface in which the sector lies. The program must then give a
word in which bit 0 is an odd parity bit for the address word and the remain­
ing bits are Os (the slight discrepancy between this discussion and the diagram
is explained below). This is followed by three more zero words, but the con­
trol turns on the parity circuits following the second of these, so the third
word (the fourth of the data synchronization zone) is written as thirty-seven
bits with Os in bits 0-35 and a I (for odd parity) in bit 36. The program
completes its role in the procedure by supplying 128 data words that are
automatically written as 37-bit words with parity. Following the data the
control writes a 37-bit parity word for the sector and then rewrites it before
turning off the write circuits (this action garbles the end of the last word, but
this is of no consequence since the word is never read).

Data functions that subsequently process the sector synchronize on the
leading Os, and the 1 indicates the beginning of the address word. For read-

;: ing or writing, the control reads the address word and compares the address
information with that supplied by the program for the current function. If
the two addresses are identical and the address word with bit 0 of the next
word has odd parity, the search is regarded as successful and the control pro­
cesses the rest of the sector (note that although the left half of the address
word is not used in any way by the control, it is included in the parity check).

• After the first in a series of consecutive sectors processed by a single function,
there is no search and no check of the address word.

;z

:;
~
U W
zcr
::oW
...... I

>-Vl
~
-cr
cr"" ""
0.\

a.

"" '\

a
f---~I-,

<D

'"

t------i a

'" '"

Vl
Cl
cr
0 · ~ · Vl

"" Cl
~ cr

"" a
Cl ~

'= a:>
a:> N

,.:.. ·
'" a:>
~

· a
<D 0 · ,..,

· · 0

-~...;::. a
- a on a ,..,
"" · '::::!
z · 0 Vl cr Cl
I cr
U 0
Z ~
>-
Vl

· 0 0 a

~~~~'\\ 

a 
~ 
W 

u.. 
« 
I-« 
a 

-, 
/i 

0 

<r 
on ,.., 

or- o 
cr- .... 
oa:> u 

~>-
W ;;:; '" Vl .... -Vl_ W 0 

W<r u ,.., 
<r"" 0 ~ 00. 
a cr <r 

"'" 
0 ::0 <D ~ V) N 
",-

Vl <r on 
W W N 
cr a 
0 ;z 
0 ::::i 
"'" >-u ~ -

a ~ 
W a:: Vl 
::0 W .... a 
0 « z 0 W 

c; on :c ,.., . 
. · ;z · 2 

Vl '" .... 00 

"'" a:: a:: 
'::::! 00 
;z ~~ 
0 -0'> 
cr "'-
I N_ 
U 
Z 00 

a. 0->- Ira:: 
Vl · · · 
0 
0 a 

7-19 

l­
e::( 

:FE 
c:: 
o 
LL.. 

c:: 
o 
I­
u 
w 
en 



7-20 RPIO DISK PACK SYSTEM §7.6 

For Write Data the control waits 2.5 p,s following the parity bit before 
turning on the write circuits. Hence, once a sector is processed by Write 
Data, its format varies slightly from the original in that there is a small gap 
between the address word parity bit and the data synchronization zone (the 
gap contains the remnants of the beginning of the original synchronization). 
The control now automatically writes four zero words where the fourth has 
thirty-seven bits, containing a I in the parity position. The control then 
writes 128 words supplied through the data channel, writes a parity word, 
and repeats it to complete the sector. 

After a search is successful for Read Data, the control syncs to the first 
four words in the data field, sends the 128 data words to memory through 
the data channel, checking the parity of each, and then reads the parity word 
to check the parity of the data field. 

To provide data protection, a switch at each drive allows the operator to 
lock out the entire pack against writing by the program. 

7.6 INSTRUCTIONS 

The data path between the data channel and a disk pack includes a 36-bit 
assembly register AR and a 6-bit shift register SR. In writing, words supplied 
by the channel are received by AR, which parcels them out in 6-bit bytes to 
SR, which transmits the bytes serially to the selected pack. In reading, SR 
assembles the bits into bytes, which in turn are assembled into words in AR 
for transmission to the channel. The RPI0 also contains one 5-bit sector 
counter for each drive and a set of eight Attention flags that request interrupts 
for individual drives. Each drive contains an 8-bit register that indicates the 
last cylinder to which the program ordered the drive to position its heads. 

To execute any function the RPIO can perform, the program must specify 
the op code of the function and select a drive. To position the heads requires 
specification of a cylinder. To process the disk tracks, the program must also 
select a surface and sector, and supply an initial control word address for the 
data channel. To use the interrupt, the program should assign a PI channel. 
Since all data transmission is handled through the DFIO, interrupts are re­
quested only when an Attention flag sets or when Done sets at the termi­
nation of an operation, either because the operation is complete or an error 
condition has terminated it prematurely. 

The RPIO device code is 250, mnemonic DPe. Both the condition and 
data 10 instructions are used for control purposes. A second RPI0 would 
have device code 254. 

CONO oPC, Conditions Out, Disk Pack Control 

72520 y 
o 121314 1718 3S 



,') 

§7.6 INSTRUCTIONS 

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E, and perform the functions specified by bits 20-32 as shown (a I in 
a bit produces the indicated function, a 0 has no effect). 

18 19 

Notes. 

20 

24 

30 

31 

CLEAR CLEAR CLEAR CLEAR CLEAR 
CLEAR CLEAR CLEAR CLEAR WRITE 

POWER SEARCH DATA NO PARITY ILLEGAL ILLEGAL SECTOR SURFACE CONTROL 
FAILURE ERROR LATE 

SUCH ERROR 
WRITE DATAO 

ADDRESS ADDRESS 
WORD MEMORY FLAGS ERROR ERROR 

20 21 22 23 24 25 26 27 28 29 30 

Clear Power Failure if the failure condition has been corrected. 

Clear all of the parity error flags (CONI bits 14-17). 

This bit requests that the channel write a control word and clears 
Control Word Written (CONI bit 30). 

Clear Busy, set Done, requesting an interrupt on the assigned 
channel, release the data channel, and cease operation immediately. 

DATAO DPC, Command Data Out, Disk Pack Control 

72514 y 
o 121314 1718 3S 

If Busy is set, do nothing but set Illegal DA TAO. Otherwise clear the as­
sembly register, all Parity Error flags (Control Word, Sector, Channel Data 
Word, Disk Word), Search Error, Data Late, No Such Memory, Illegal Write, 
Illegal DATAO, Sector Address Error, Surface Address Error, Control Word 
Written and Done. Set up the RPIO command conditions according to the 
contents of location E. The meaning of bits 6-35 of the condition word 
depends on the function whose code is given in bits 0-2. The typical in­
terpretation of the several parts of the word is as follows (variations in format 
for individual functions are given below). 

o 2 3 5 6 13 14 18 19 

0-2 Code for the function as follows. 

o Read Data 
1 Write Data 
2 
3 Write Format 
4 Position Heads 
5 At Ease 
6 Select Drive 
7 Recalibrate 

23 27 

INITIAL CONTROL 
WORD ADDRESS 

34 

STOP 

31 

7-21 

PRIORITY 
CLEAR INTERRUPT 
DONE ASSIGNMENT 

I I 

32 33 34 35 

CAUTION 

Do not use op code 2. It is 
not a no-op, and is subject to 
change for future use. 



7-22 

The initial control word ad­
dress is held in AR until the 
channel connects. 

* A 1 in this bit selects even 
memory parity for data chan­
nel input (read) operations. 
This is for maintenance only; 
in all ordinary circumstances 
bit 35 must be 0 so the data 
channel will generate odd pari­
ty for words stored in memo­
ry. 

RPIO DISK PACK SYSTEM §7.6 

3-5 Numbers 0-7 address the drive. 

6-13 Numbers 0-312 address the cylinder. 

14-18 Numbers 0-23 address the surface in the RP02; numbers 0-11 
address the surface in the RPO 1. 

19-23 Numbers 0-11 address the sector in the RP02; numbers 0-4 ad­
dress the sector in the RPO 1. 

27 -34 In functions that process the disk sectors, this address is sent to the 
data channel when it is seized by the RPI0. 

Position Heads 

I 4 I DR IVE I CYLINDER 
I I I I I I I I I I o 2 3 5 6 13 

Recalibrate 

I 7 I DRIVE I 
I I I I 

o 2 3 5 

Read Data 
DISABLE 
WORD PARITY A ERROR STOP 

CYLINDER 
INITIAL CONTROL 

WOR 0 ADDRESS 

0 2 3 5 6 13 14 18 19 2324 26 27 34 35 

24 A 1 in this bit prevents the RP I 0 from stopping when Sector 
Parity Error sets. 

26 

Write Data 

A 1 in this bit prevents the RPI0 from stopping when Disk Word 
Parity Error sets. 

DISABLE CHANNEL DATA 
PARITY ERROR STOP 

~~--~------~----~----~/'~--------~ 

13 14 18 19 23 25 27 34 35 

25 A 1 in this bit prevents the RP 10 from stopping when Channel 
Data Parity Error sets. 

At Ease 

o 2 3 5 27 28 29 30 31 32 33 34 

27 -34 Clear the Attention flags selected by these bits. 



,,", 

§7.6 

Select Drive 

I 6 I DRIVE I 
I I I I 

D 2 3 5 

Write Format 

INSTRUCTIONS 

DISABLE CHANNEL DATA 
PARITY ERROR STOP 

~~--~--------~----~----~/~--------~ 
INITIAL CONTROL 

WORD ADDRESS 

o 2 3 5 6 13 14 18 25 27 34 35 

25 A I in this bit prevents the RPlO from stopping when Channel 
Data Parity Error sets. 

If the function is Read Data, Write Data, or Write Format, the control 
checks as follows to determine whether the function can be executed prop­
erly: If Power Failure is set or the conditions supplied by this instruction re­
sult in the setting of No Such Drive, Not Ready, Illegal Write, Sector Address 
Error or Surface Address Error, the control sets Done, which in turn sets 
Interrupt, requesting an interrupt on the channel assigned by the last CONO 
DPC, and the control shuts down. If none of these error flags is set, the con­
trol sets Busy and waits for the data channel to connect. 

DATAl DPC, Drive Data In, Disk Pack Control 

72504 y 

o 121314 1718 35 

Read the disk pack drive status into location E as shown. 

* * 
POSITION HEADS 

DRIVE CYLINDER FAILURE IN 
POSITION 

I I I L L I J J 1 
o 2 3 4 5 I 6 7 8 I 9 10 11 12 

* * * * 

* 
DISK 
ON 

LINE 

13 

* 

SECTOR 

I 
ATTENTION 

I I I 
0 2 3 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Notes. 

The setting of Done or any Attention flag sets Interrupt, which requests an 
interrupt on the channel assigned by the last CONO DPC,. Failure or success 
in positioning the heads in any drive sets the Attention flag for that drive. 
While Busy is set, Heads In Position or Disk On Line being clear or File Un­
safe or No Such Drive being set in turn sets Done (for other conditions that 
set Done, see CONI). 

4 

31 

7-23 

* * 
FI LE NO READ WRITE 

UNSAFE SUCH ONLY HEADER 
DRIVE LOCKOUT 

14 15 16 17 

* * * 

5 6 I 7 I ! 
32 33 34 35 

*These bits cause interrupts. 



7-24 

Note that bits 11 and 12 are 
both clear while the drive is 
attempting to position the 
heads. 

This bit is clear if bit 11 is set. 
A drive that is off line only 
because of a position failure 
can be placed back on line by 
the Recalibrate function. 

While Busy is set, bits 12 and 
13 can be cleared and bits 14 
and 15 set only by operator 
intervention or a physical or 
electrical malfunction, in 
which event the control termi­
nates. 

If inspection of the sector 
counter (which is guaranteed 
stable when read) shows the 
disk to be at the beginning of 
a sector, the program can start 
processing at the next sector. 
But if the disk is at the end 
of a sector, the program 
should not begin processing 
until the second sector after 
the one specified. 

Note that bits 11 and 12 apply 
only to the selected drive, 
whereas these bits reflect con­
ditions in all drives. Morever, 
the program can clear any of 
these bits without affecting 
the associated drives. 

Note that CONSZ and CaNSO 
can test only bits 18-35. To 
test bits 14-17, the program 
must give a CONI DPC,AC and 
then use a test instruction 
[§2.8] . 

0-2 

3-10 

11 

12 

13 

14 

15 

RPIO DISK PACK SYSTEM §7.6 

The drive selected by the last legal DATAO. 

The heads in the selected drive are positioned at or are being posi­
tioned to the cylinder specified by these bits. 

The selected drive failed within 100 ms to position the heads at 
the cylinder specified by bits 3-10. 

The heads in the selected drive are positioned at the cylinder speci­
fied by bits 3-10. If this bit is clear when a DATAO for a disk 
processing function is executed, the control sets Done and does 
not go into operation. 

The selected drive is enabled by the operator and is at operating 
speed with a pack mounted, dust cover closed and heads loaded. 
If this bit is clear when a DATAO for a disk processing function 
is executed, the control sets Done and does not go into operation. 

There is an electrical malfunction in the selected drive or the RPIO 
drive interface circuitry. If this bit is set when a DA T AO for a 
disk processing function is executed, the control sets Done and 
does not go into operation. 

There is no drive with the address specified by bits 0-2. If this 
bit is set when a DATAO for a disk processing function is exe­
cuted, the control sets Done and does not go into operation. 

16 The pack on the selected drive is protected against writing by the 
program. 

17 The Write Format function cannot write on the disk (this flag is 
generated by a switch on the RPIO). 

18-22 The current position of the pack on the selected drive. A sector 
counter counts the twenty notches in the base plate of the pack. 
Thus for an RP02, bits 18-21 indicate the sector, and a 0 or 1 in 
bit 22 indicates the first or second half of the sector. For an RPO 1, 
bits 18-20 indicate which quarter of the sector is currently at the 
heads. 

27 -34 Bits in this field that are set indicate drives that have failed or suc­
ceeded in positioning their heads as required. 

CONI DPC, Conditions In, Disk Pack Control 

72524 y 

o 121314 1718 3S 

Read the status of the disk pack system into bits 14-35 of location E as 
shown. 



... 

§7.6 INSTRUCTIONS 

I I I I I I I I J I i i i 
o 2 I 3 4 5 I 6 7 8 I 9 10 11 I 12 

* * * * * * * * * * 
SEARCH END POWER SEARCH DATA NO PARITY NOT ILLEGAL ILLEGAL SECTOR SURFACE CONTROL 

DONE OF FAILURE ERROR LATE SUCH ERROR READY WRITE DATAO ADDRESS ADDRESS WORD 
CYLINDER MEMORY ERROR ERROR WRITTEN 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Notes. 

DATAO clears Bits 14-17,21-24 and 26-30. 
The setting of Interrupt requests an interrupt on the assigned channel. 

This is the only flag that directly requests an interrupt. However, Interrupt 
is set by the setting of any Attention flag (see DATAl) and by the setting of 
Done, which is itself set by the setting of any error flag except Illegal DATAO 
(for other conditions that set Done, see DATAl). 

In many cases the setting of a flag causes the control to terminate; this 
means that the control clears Busy, sets Done, requesting an interrupt on the 
assigned PI channel, and ceases operation. If the data channel has not already 
been released by the control or disconnected of its own accord, then termi­
nation releases the data channel. 

14 The data channel discovered a parity error in a control word read 
from memory. When this bit sets, the channel disconnects from 
the RPlO, which continues to the end of the current data field, 
either writing zeros or throwing away the data read, and then 
terminates. 

15 The control read a sector with incorrect parity, and therefore 
terminated unless the last DATAO disabled the error stop. 

16 The data channel discovered a parity error in a data word read 
from memory. Unless the last DATAO disabled the error stop, 
the setting of this bit causes the control to release the data chan­
nel, continue to the end of the current data field writing zeros, 
and then terminate. 

17 The control read a word from the disk with incorrect parity, and 
therefore terminated unless the last DATAO disabled the error 
stop. 

18 

19 

The control has found the addressed sector and a block transfer 
is in progress. 

The data channel attempted to continue a block transfer beyond 
the end of the cylinder (ie the last sector of the last surface) and 
the control terminated. 

7-25 

* * * * 
CONTROL SECTOR CHANNEL DISK 

WORD PARITY DATA WORD 
PARITY ERROR PARITY PARITY 
ERROR ERROR ERROR 

13 14 1 5 16 1 7 

* 
PRIORITY 

INTERRUPT BUSY INTERRUPT 
ASSIGNMENT 

31 
I I 

32 33 34 35 

*These bits cause interrupts. 

Bit 18 means the sector ad­
dress information matched 
that supplied by the DATAO, 
and the address word had cor­
rect parity. 



7-26 

The control searches until it 
encounters the end of the 
track the third time; hence the 
search lasts from two to three 
revolutions. 

Some malfunctions associated 
with writing a particular sec­
tor (eg a bad header) set 
Search Error and terminate 
the function before the me 
unsafe condition can arise. 
This usually allows the pro­
gram to continue using the 
disk pack despite the mal­
function [see §7.8]. 

While waiting for the memo­
ry, the control may set Data 
late, which releases the chan­
nel so the memory error does 
not show up at all. 

During operation, bits 25, 26, 
28 and 29 can be set only by 
hardware malfunction, in 
which case the control termi­
nates. 

RPIO DISK PACK SYSTEM §7.6 

20 The voltage levels in the RP 10 are not within tolerance. If this 
condition is indicated when a DA TAO is executed, the control sets 
Done and does not go into operation. If power fails during opera­
tion, the control completes the current data field and then termi­
nates. 

21 

22 

23 

If no data has been transferred, a I in this bit indicates the control 
began a search but terminated because it was unable to find the ad­
dressed sector within a minimum of two revolutions. 

NOTE: The drive searches only on the addressed surface in the 
cylinder at which the heads are currently positioned. 

If inspection of the control word written by the data channel 
shows that some data has been transferred, bit 21 being set indi­
cates that the control has terminated because of a hardware mal­
function. 

The data channel did not send data to or accept data from the 
RPIO when it was expected to. When this bit sets, the control 
releases the channel but continues to the end of the current data 
field, either writing zeros or throwing away the data read, and then 
terminates. 

The memory addressed by the data channel did not respond within 
100 J.i.s. When this bit sets, the channel disconnects from the 
RPIO, which continues to the end of the current data field, either 
writing zeros or throwing away the data read, and then terminates. 

24 Bit 14, 15, 16 or 17 is 1. 

25 Heads In Position or Disk On Line is 0 or File Unsafe is 1 (DATAl 
bits 12-14). If this bit is set when a DA TAO for a disk processing 
function is executed, the control sets Done and does not go into 
operation. 

26 

27 

28 

29 

The last DATAO specified Write Data or Write Format but selected 
a protected pack (ie Read Only, DATAl bit 16, is set), so the con-
trol set Done and did not go into operation. 

The program gave a DATAO while Busy was set. 

The last DATAO specified a sector address greater than II for an 
RP02 or greater than 4 for an RP01, so the control set Done and 
did not go into operation. 

The last DAT AO specified a surface address greater than 23 for an 
RP02 or greater than 11 for an RPO 1 , so the control set Done and 
did not go into operation. 

30 The data channel has stored a control word in memory as re­
quested by CONO bit 30 through the RPI0. 

., 



§7.7 DISK PACK FUNCTIONS 

31 The control is now performing a Read Data, Write Data or Write 
Format function. 

32 Either Done or an Attention flag (DATAl bits 27-34) is set, and 
an interrupt is being requested on the assigned channel. 

7.7 DISK PACK FUNCTIONS 

Every legal DATAO clears the flags, and any function specified by a DATAO 
selects a drive, but only those functions that actually process the disk sectors 

"" set Busy and place the control in operation. A nonprocessing function may 
place a drive in operation, but the control remains free so the program can 
give other functions and can have a number of drives in operation simulta­
neously. 

Select Drive and At Ease place neither the control nor the drive in opera­
tion. The first function simply selects a drive for status checking. At Ease 
clears the selected Attention flags. 

Position Heads causes the selected drive to position its heads at the spec­
ified cylinder. When a drive completes a head-positioning command, it sets 
Heads In Position provided the drive is currently selected; similarly, if the 
drive fails within 100 ms to position its heads at the specified cylinder, it 
sets Position Failure provided it is the currently selected drive. In either 
event, the drive sets its Attention flag. 

The program can give a DATAl to inspect the Attention flags for all drives 
as well as to check cylinder, sector and other status information for the cur­
rently selected drive, ie the drive specified by bits 0-2 of the word read by 
the DATAL Besides setting appropriate flags, a drive that fails to position its 
heads correctly also goes off line. However, if a position failure is the only 
reason the drive is off line, the program can place it back on line by giving 
the Recalibrate function, which moves the heads to cylinder 0 independently 
of the previous position. Once a drive has been recalibrated, another attempt 
can be made to position the heads as desired. 

The remaining functions all handle data through the DFI 0 and must there­
fore place the control in operation. With a DATAO that specifies any of 
these functions, the program must select a drive, cylinder and surface, and 
specify the initial control word address for the data channel. After loading 
the command information, the control checks the various conditions listed at 
the end of the DA TAO instruction description to determine if it can perform 
as expected: if it cannot, it sets Done and shuts down. If the control can 
continue, it sets Busy and waits for the data channel to connect. While Busy 
is set, the control will accept no other DATAOs; if the program gives a 
DATAO, the control sets Illegal DATAO but otherwise ignores the instruc­
tion. 

For Write Data and Read Data, the program must also specify the sector at 
which operations are to begin, and whether the control is to stop if parity er­
rors are discovered in the data received from memory or the pack. Once the 

7-27 



7-28 

Write Format cannot write in 
the header areas unless the 
write header lockout switch is 
off. 

RPIO DISK PACK SYSTEM §7.8 

data channel connects, the control begins the search for the specified initial 
sector, searching along the specified track in the cylinder at which the heads 
are already positioned. As soon as the control finds a sector whose address 
word matches the cylinder, surface and sector addresses supplied with the 
function, it starts transferring data to or from the track. If the control fails 
to find the desired sector by the third time it encounters the end of the track, 
it sets Search Error and terminates. Once transfers begin, the control proc­
esses data continuously, going through all the sectors from one surface to the 
next until it reaches the end of the cylinder, unless it is stopped by an error 
or the data channel retrieves a zero control word. Some errors cause imme­
diate termination even in the middle of a sector, whereas for others the con­
trol releases the channel but continues to the end of the sector before termi­
nating (see the descriptions of the flags read by a CONI). When the control 
processes part of a sector without the data channel, it simply continues the 
function it is already doing: in Write Data it writes zeros in the remaining 
data positions in the sector and then writes the parity word; in Read Data it 
reads the data and checks the parity. The program can stop the control at 
any time by giving a CONO DPC,20. If the data channel attempts to keep 
the control in operation after the last track in the cylinder is completed, the 
control sets End Of Cylinder and terminates. 

For Write Format the program must specify whether the control is to stop 
if a parity error is discovered in the data received from memory. After the 
data channel connects, the control waits until it receives an index signal from 
the drive. Then the control writes the data supplied by the data channel on 
the addressed surface in the cylinder at which the heads are already posi­
tioned. This function processes one track, and the program must supply the 
data specified in § 7.5 for the proper format to be written. The function ter­
minates at the end of the track unless it is stopped prematurely by an error 
or the program. 

7.8 PROGRAMMING CONSIDERATIONS 

Before giving a CONO or DATAO for the RPIO, the program should check 
Busy to make sure the system is not already in use. To use the interrupt, give 
a CONO to assign the channel. Most of the bits read by a DATAl or CONI 
are indicated in the instruction descriptions as causing interrupts. However, 
only the Attention flags can request interrupts independently of drive selec­
tion, and then only when the control is not busy; when the program sets 
Busy, any interrupts being requested by the Attention flags go away but re­
turn when Busy subsequently clears. Among the other bits, those that reflect 
conditions in a given drive can affect the control only when the drive is se­
lected. Furthermore, for all but the Attention flags, a condition can produce 
an interrupt only if said condition exists when the control either is attempt­
ing to begin a disk processing function or is already busy executing one; and 
the interrupt request does not occur until Busy clears, ie until Done sets. In 

. most cases Done sets at the same time the condition is recognized, but in 



§7.S PROGRAMMING CONSIDERATIONS 

some instances an error that occurs within a sector does not terminate the 
function (and hence request an interrupt) until the end of the sector. If a 
nonprocessing function selects a drive that does not exist or even attempts to 
position its heads, there is no interrupt - the function is simply ignored. 
Hence before attempting to use a given drive, the program should select it 
and at least check CONI bit 25 to make sure it is available. Giving a DATAl 
allows the program to check the individual drive conditions and also to de­
termine whether the pack is protected, should writing be contemplated. If 
Disk On Line is clear, give the Recalibrate function just in case the drive was 
disabled by a position failure. 

When a drive sets its Attention flag, the underlying condition (failure or 
success in positioning the heads) shows up in the DATAl only if the device is 
selected. Moreover, if the program subsequently clears the Attention flag, 
the condition remains and can show up in the DATAl until the drive receives 
a new position command. 

Only a Position Heads function can reposition the heads. A read or write 
function does not move the heads even though it must specify a cylinder. 
This specification is for address checking only - the heads must already be 
positioned at the cylinder to be processed. 

When the program is simply setting up one or more drives, an interrupt can 
be due only to an Attention flag. If an interrupt occurs when the control has 
been busy executing a disk processing function, the program should check 
status to determine whether the function was completed properly. If Search 
Error is set, check the control word written by the data channel. If no data 
has been transferred, the control has failed to find the desired sector. But if 
data has been processed, the flag is due to some malfunction, such as a bad 
header or an incorrect word count in the data field. While the control is 
writing, such malfunctions set Search Error and terminate the function be­
fore the file unsafe condition can arise and make the drive unavailable to the 
program. Should this situation occur, first repeat the entire function. If the 
second attempt fails, write one sector at a time and do not use the sector in 
which the malfunction occurred. 

Timing. The maximum time required to move the heads from one cylinder 
to the next is 20 ms, and at most SO ms are required for motion from one ex­
tremity to the other; average random positioning time is therefore at most 50 
ms. Recalibration requires approximately ~OO ms. These times are of course 
for the drive; a function that moves the heads takes about 6 jJ.S of control 
time. 

CAUTION 

Do not use a string of consecutive DATAOs to set up several packs. 
Following a DAT AO DPC, that specifies Position Heads or Recalibrate, 
the program must give some other instruction (eg a no-op) before giving 
another DAT AO DPC,. If the program gives two consecutive DATAOs 
where the first moves the heads, the control will execute only that func­
tion supplied by the second. 

7-29 

If the disk is to be formatted, 
check that the operator has 
turned off the lockout switch 
(DATAl bit 17 is 0). 

The control can execute At 
Ease followed immediately by 
Position Heads. 



7-30 

Search time can be minimized 
by giving a DATAl to deter­
mine the current pack posi­
tion and starting operation at 
a sector that will be encoun­
tered soon. 

Plastic plates with numeral 
cutouts are provided for inser­
tion over the online indicator 
lamp. Thus when the drive is 
on line, the indicator can dis­
play the drive number (which 
is determined solely by the 
position of the drive cable at 
the control). 

RPIO DISK PACK SYSTEM §7.9 

At 2400 rpm the disk pack takes 25 ms per revolution. Although the time 
to traverse one complete RP02 sector is 2.46 ms, traversing the data field 
within a sector takes only 1.90 ms. Search time for a random data field after 
the data channel connects is 25.6 ms maximum, 13.1 ms average. During 
processing, word transfers occur every 14.8 IlS. The data channel has about 
40 IlS between sectors. 

Traverse time for one complete RPOI sector is 4.56 ms, of which 3.79 ms 
is taken up by the data field. Search time after the data channel connects is 
26.2 ms maximum, 13.7 ms average. During processing, word transfers occur 
every 29.6Ils. Between sectors the data channel has about 440 IlS. 

7.9 OPERATION 

The disk pack drive is illustrated on the next page. If main power is on, a 
pack loaded and the cover closed, pressing START turns on the drive. After 
a stabilization delay of about a minute, the drive loads the heads and posi­
tions them to cylinder O. Pressing STOP unloads the heads and turns off the 
drive. The numbered lights indicate the last cylinder to which the drive was 
commanded to position its heads. FILE UNSAFE indicates an electrical mal­
function in the drive or the control (pressing STOP resets this indicator if the 
condition has been cleared). 

The remaining switches affect the drive only when it is not selected by the 
control. If the switches are manipulated while the drive is selected, the con­
ditions they represent are applied to the drive when it is deselected at the be­
ginning of the next function (deselection occurs even if the new function re­
selects the same drive). With the drive in proper operating order, pressing 
ENABLE places it on line, lighting the large indicator at the left center of the 
panel. Pressing READ-WRITE allows unrestricted use of the pack by the 
program; pressing READ-ONLY lights the associated indicator at the right 
and prevents the program from writing on the pack. Pressing DISABLE takes 
the unit off line. 

To load a pack, hold it by its handle and unscrew the bottom of the con­
tainer a quarter turn (counterclockwise). Set the pack down over the spindle 
and turn it clockwise until it stops. Lift off the cover and close the door. To 
remove a pack, place the cover over it and turn it counterclockwise until a 
click is heard; the pack is now free of the spindle and is held tightly inside 
the cover, so it can be lifted out. Screw the bottom back onto the package. 

Controls for the RPIO are located on a switch panel behind the doors just 
below the indicator panel. For online operation the single toggle switch at 
the right end of the panel must be set to REMOTE. To operate the system 
manually, switch the toggle to LOCAL, place the desired command data in 
the drive, cylinder, surface, sector and op code switches (data switches sup­
ply data for writing), and press START. The specified function will be re­
peated till STOP is pressed; for single cycle operat~on, hold STOP on while 



§7.9 
OPERATION 

7-31 

Disk Pack Drive 



7-32 

RPlO Switch and Indicator 
Panels 

RPIO DISK PACK SYSTEM §7.9 

pressing START. Pressing CLEAR stops the control and clears the logic. 
The write header lockout is a toggle switch located between panels M and N 
at slots 13-16; this switch must be set to the right (ON) to prevent an inad­
vertent Write Format from disturbing the information in the headers. 

The top row of lights on the indicator panel displays the contents of the 
assembly register. The two sets of six lights at the right end of the second 
row display the shift register, through which bytes are transmitted between 
the control and the drive, and a buffer that holds each byte stable for com­
puting parity. The four sets of lights at the left display the last drive, cyl­
inder, surface and sector addresses supplied by a DATAO or the switches. 
The remaining three lights in the row indicate designation errors for drive, 
surface and sector; these correspond to the flags No Such Drive, Surface Ad­
dress Error, and Sector Address Error. The last function specified by a 
DATAO is indicated by the op code lights at the left end of the third row. 

The remaining lights in the third row are for maintenance. The three sets 
of lights in the center display counters that keep track of the data words in 
each sector, the bytes in each word, and the bits in each byte. 

READ 1M 

READ LPR 

The control is executing the restricted function whose op 
code is 2. 

The control is reading a parity word. 



~~ 

§7.9 

READ DATA 

READ REF 

READ GAP 

READHDR 

WRHDR 

WRGAP 

WRDATA 

WRLPR 

ACTV 

ACTV BUF 

CHAN STTD 

INH 

CHAN PLS 

PS FAIL 

LCL 

GENCLR 

OPERATION 

The control is reading a data field. 

The control is reading the synchronization area (refuse) at 
the beginning of a sector. 

The control is reading the narrow gap between a header and 
a data field. 

The control is reading a header. 

The control is writing a header. 

The control is writing the narrow gap between a header and 
a data field. 

The control is writing a data field. 

The control is writing a parity word. 

The control is waiting for the channel or is connected. 

The control is waiting for the channel. 

The channel has been seized (started). 

The can trol has released the channel. 

The control has received the channel pUlse. 

Power Failure. 

The RP lOis under local control (off line). 

The RPI 0 is idle. 

At the left end of the bottom row are the Attention flags for the various 
drives. The three SEARCH ERR lights keep track of the index pulses re­
ceived during a search; light number 2, which is equivalent to the Search Er­
ror flag, goes on when the beginning of the track is encountered the third 
time (ie when the second complete revolution is finished). Of the flag and 
control indicators, BUSY, DONE and the PI assignment lights at the right are 
self-explanatory. The remaining lights are as follows. 

DISK WDPE 

DSPE 

CCPE 

CDPE 

SRCH 

SRCHCOMP 

DSPE STOP 

Disk Word Parity Error. 

(Disk) Sector Parity Error. 

(Channel) Control Word Parity Error. 

Channel Data Parity Error. 

The control is searching for the addressed sector. 

Search Done (complete). 

Disable sector parity error stop (condition specified by 
DA T AO bit 24. 

7-33 



7-34 RPIO DISK PACK SYSTEM §7.9 

CDPE STOP 

DWPE STOP 

PAR 

PARCONT 

ILLWR 

ILL COM 

CWXCOMP 

WREVEN 

OVER RUN 

DISKNRDY 

NXM 

Disable channel data parity error stop (condition specified 
by DATAO bit 25). 

Disable disk word parity error stop (condition specified by 
DATAO bit 26). 

This bit computes the parity function for each word. 

The control is reading or writing the parity (37th) bit of a 
word. When this light is on, PAR indicates the value of the 
parity bit being written or the parity of the word being 
read. 

Illegal Write. 

Illegal DATAO (command). 

Control Word Written (transfer complete). 

Write even parity (condition specified by DA TAO bit 35). 

Data Late. 

Not Ready. 

No Such Memory (nonexistent memory). 



8 

Data Communications 

~ The equipment described here provides for the transfer of information in 
serial form between the computer and one or more other points, usually 
some distance away. Such equipment can simply connect to teletypewriters 
or other terminals located in a number of offices in a single plant, allowing 
engineers and other personnel to communicate directly with a centrally lo­
cated DECsystem-lO; or make a large time-sharing facility available (through 
private lines or the standard telephone network) to many users located over 
a large geographical area; or allow high-speed communication between a large 
computation center and other computer installations located throughout the 
world. 

Basically there are two types of serial communication. In a synchronous 
system, data is transmitted as a continuous bit stream, beginning with a pre­
arranged special sequence through which the receiver synchronizes to the 
stream. In an asynchronous system, all information is transmitted in distinct 
characters bounded by start and stop bits. Running an asynchronous channel 
at its maximum rate does result in a continuous bit stream, but each data 
character is still separated from the next by stop and start bits, and the re­
ceiver synchronizes on each character separately. Communication at low 
speed (up to 300 bits per second) is invariably asynchronous, whereas high­
speed transmission (generally above 2500 bits per second) is usually synchro­
nous. Either technique is used for medium speeds (above 300 bits per second 
but within the capacity of a voice-band channel). 

A DC I 0 or DC68A system services a number of asynchronous lines, and by 
providing conversion of data between parallel and serial forms, acts as a mes­
sage concentrator and distributor. In the DClO, these operations are carried 
out largely by hardware, and the unit is connected directly to the 10 bus for 
the transfer of data in single characters. The DC68A on the other hand in­
cludes a PDP-8/1 computer, which is connected to the PDP-lO 10 bus through 
a DA 1 0 interface; hence, data conversion, channel scanning, and the transfer 
of data between the two computers (in characters or words) are determined 
entirely by the software. The DS I 0, which handles a single synchronous line, 
is connected directly to the 10 bus and converts between full words and serial 
data. The DC75 is analogous to the DC68A for synchronous lines: it is based 
on a PDP-II, which communicates with the DECsystem-lO central processor 

8-1 

The data rate mayor may not 
be the same as the bit rate. 
For a Model 35 teletype­
writer operating at the maxi­
mum speed of 10 characters 
per second (where each char­
acter consists of a start unit, 
eight data units (bits) and two 
stop units), the data rate is 
actually 80 bits per second, 
whereas the code element rate 
is 110 bits per second (ie 110 
baud). On the other hand, a 
transmitter for a synchronous 
line using phase modulation 
might encode two bits of data 
per code element and achieve 
a data rate that is twice the 
code element rate. The pro­
gram must necessarily be 



8-2 

concerned primarily wi th the 
data rate when that is the fast­
er of the two. For a slower 
data rate, the situation de­
pends on the type of equip­
ment: when the software has 
to deal with the character 
structure including start and 
stop elements, the program 
must operate at the code ele­
ment rate; when the hardware 
handles the characters, the 
programmer need be concern­
ed only with the character or 
word rate (although the user 
may have to consider the line 
rate to select the proper clocks 
when the equipment is being 
set up). 

Generally with a half-duplex 
channel (and sometimes an 
alternate-simplex channel), 
the originating station re­
ceives its own output data 
back as input as it is being 
transmitted, although some 
DEC equipment includes pro­
vision for the program to 
inhibit this echoing. Full­
duplex operation with local 
copy uses a full-duplex chan­
nel in which each terminal re­
ceives its own output data 
back to provide a ''local 
copy" of the data. To the 
program, this arrangement is 
indistinguishable from half­
duplex. 

In communication terminol­
ogy, data signals for 1 and 0 
are referred to as "mark" and 
"space". Control signals are 
regarded as being off or on, 
and the binary signals for 
supplying digits in automatic 
calling are invariably the nu­
merals I and O. The EIA 
standard for mark, off, or 1 is 
a voltage level ~ -5 volts; 
space, on, or 0 is a voltage 
level;;;;' +5 volts. 

''Modem'' is an abbrevia­
tion of "modulator-demodu­
lator". 

DATA COMMUNICATIONS 

and memory via a D L 10 interface. This interface connects not only to the 
10 bus, but also to the memory bus in such a way that the small computer 
actually uses part ofDECsystem-IO memory as its own. 

All DEC equipment is organized to handle each communication channel as 
two separate devices, so that data can be transmitted and received simulta­
neously. This is usually referred to as duplex or full-duplex operation. In 
general, the equipment can also be used to handle a half-duplex or alternate­
simplex channel (wherein data can be transmitted in either direction but not 
both at once) or a simplex channel (one-way transmission only). 

NOTE 

For purposes of this discussion, a half-duplex channel is defined as one 
in which the data transmitted by any terminal is oRed with the data 
transmitted by all other terminals and presented to all terminals as input 
data. Such a channel is usually implemented by relays in a floating cur­
rent loop configuration. No formal protocol is required to reverse the 
direction of transmission, but if two terminals transmit simultaneously, 
all receive garbled information. 

Alternate simplex is defined as a two-way circuit in which at any 
instant there exists only a one-way path, and a formal protocol must be 
established and followed to reverse the direction of transmission. A re­
verse channel (that operates at very low speed compared to the main 
channel) is sometimes provided to assist in the turn-around procedure. 

Industry usage of these two terms is not consistent, but throughout 
this chapter the terms are used only as defined here. 

A low-speed asynchronous channel may be used for communication with a 
Model 35 teletypewriter or equivalent terminal; local stations can be handled 
by simple transmitter and receiver modules utilizing 20 mA signals, and tele­
graph equipment is available for connecting to more distant stations utilizing 
20-60 mA signals. Communication with any of the more recent terminal 
equipment such as the Model 37 and various visual displays requires EIA 
standard levels, ie signal levels as defined in EIA Standard RS-232-C and 
CCITT Recommendation V.24. Remote communication at speeds greater 
than 75 baud generally requires a modem, which also uses EIA standard 
levels. Such a modem is usually some type of Bell System data set or equiv­
alent, which may have a connected or built-in telephone for voice communi­
cation and for manual answering and placing of calls for subsequent data 
transmission. Optional equipment is generally available in DEC communica­
tion systems for computer-controlled answering and placing of calls through 
the dial telephone network or private switched lines. 

Industry standards term the modem as "Data Communications Equip­
ment", whereas the computer and its associated equipment (including circuits 
for signal conversion between computer levels and EIA standard levels) is 



... 

§8.1 ~GNALSANDPROCEDURES 

termed "Data Terminal Equipment". At the other end of every channel there 
must be other Data Terminal Equipment, which can be another computer, 
teletypewriter, display, remote batch station, or other device. Indeed, the 
console teletypewriter is a local terminal connected via a single asynchronous 
channel to the 10 bus through the console teletypewriter interface. 

Except for communication with 11 O-baud teletypewriters or via telegraph 
lines, all DEC equipment described here uses levels that generally meet the 
EIA standard for transmission, reception, and control. The functions of the 
modem control signals used are generally as defined in RS-232-C or V.24, 
although there is some variation depending on the type of data set and the 
use of the system. § 8.1 describes the basic control signals, discusses the 
characteristics of some of the more common data sets, and outlines the pro­
cedures for transmission, reception, automatic answering and automatic call­
ing. The rest of the chapter describes the communication systems. Various 
terminals supplied by DEC are discussed in Chapter 9. 

8.1 COMMUNICATION SIGNALS AND PROCEDURES 

There are six basic control signals used in interfacing to a modem, but all 
modems do not necessarily use all of them. 
• Data Terminal Ready (EfA circuit CD, CCfTT circuit 108/2). The terminal 
equipment turns on this signal to connect the modem to the communication 
channel (place it in data mode) or to allow it to be connected by external 
means (eg manual calling, manual answering, or automatic calling). Usually 
the data set has a data pushbutton. For manual answering or originating, 
Data Terminal Ready must already be on, and the attendant places the set in 
data mode by pressing the data button until it lights. For automatic answer­
ing, the set must be in auto mode, and it goes into data mode when both 
Data Terminal Ready is on and a ringing signal is received. Turning off Data 
Terminal Ready disconnects the data set. 
• Request To Send (EfA circuit CA, CCfTT circuit 105). The terminal 
equipment sends this signal to the local modem to turn on the transmitter 
and otherwise condition the modem for data transmission. On an alternate­
simplex channel, Request To Send held on maintains the modem in transmit 
mode; otherwise, the modem is in receive mode. The signal is seldom used 
for full-duplex service. 
• Data Set Ready (EfA circuit CC, CCfTT circuit 107). The local data set 
sends this signal to the terminal equipment when it is connected to a com­
munication channel and is capable of handling data. 
• Clear To Send (EfA circuit CB, CCfTT circuit 106). The local modem re­
turns this signal to the terminal equipment in response to Request To Send 
when it has established a connection with a remote terminal and is ready to 
transmit data. 

8-3 

Particular interface equipment 
is also generally available to 
meet other specifications 
when required by local reg­
ulatory authorities. 

All DEC hardware is con­
figured to use circuit 108/2; 
the hardware will work if 
connected to 108/1, but the 
user must take care of any 
regulatory requirements. 

Generally, a data set may be 
wired in auto mode or have 
an auto button. 

Switching a data set from 
data to voice terminates the 
data link but holds the chan­
nel for voice communication 
until the attendant hangs up . 

This signal is generally not 
used by DEC terminal equip­
ment. 

NOVEMBER 1974 



8-4 

Usually the receiver is held 
marking when Carrier De­
tected is off. This signal is 
also known as Received Line 
Signal Detector. 

Generally, Ring Indicator fol­
lows the intermittent ringing 
signal, ie it goes on and off 
until the call is answered or 
abandoned. In some data 
sets, however, Ring Indicator 
remains on throughout the 
call. 

Another signal, which is often 
used in switched network 
1WX service, is Restrain De­
tected. Suppose a 4-row sta­
tion (such as a computer-data 
set combination) is connected 
to a 3-row station through an 
intermediate translator (the 4-
row station operates at 100 
or 150 words per minute, 
whereas the 3-row station 
operates at 60 words per 
minute). In this and other 
similar situations, Restrain 
Detected informs the com­
puter that the translator buf­
fer is full and cannot receive 
more characters. The com­
puter must stop transmitting 
until Restrain Detected goes 
off or the translator will dis­
connect the data circuit. 

The time required to answer 
a call, ie from Data Terminal 
Ready to Carrier Detected, is 
on the order of 3 %-4 sec­
onds. 

In other words, the number is 
encoded in BCD. 

DA T A COMMUNICATIONS §8.l 

• Carrier Detected (EIA circuit CF. CCITT circuit 109). The local modem 
turns on this signal to the terminal equipment when it is receiving carrier 
from a remote terminal. On an alternate-simplex channel, Carrier Detected 
may be held off whenever Request To Send is on, or the data set may echo 
the transmitted data back to the receiver . 
• Ring Indicator (EIA circuit CEo CCITT circuit 125). The local modem 
sends this signal to the terminal equipment when it is receiving a ringing 
signal from the telephone or data network. 

Occasionally, a data set may have all six of these signals available. Most 
sets use Data Set Ready, Clear To Send, and Carrier Detected, and a set for 
un switched lines uses Request To Send, whereas a modem for switched lines 
uses Data Terminal Ready and Ring Indicator. With unswitched private lines 
(dedicated lines), Data Terminal Ready is often not used, and the modem is 
either always in data mode or is placed in data mode externally. To transmit 
data, the terminal sends Request To Send to the local modem and transmis­
sion can begin when the modem returns Clear To Send. Any data appearing 
on the incoming line can be received whenever Carrier Detected is on. A full­
duplex modem often does not require Request To Send, and the transmitter 
is on whenever the set is in data mode. Using an associated hand set, the 
attendant can place and answer calls and put the modem in data mode 
manually provided Data Terminal Ready is on. The terminal can transmit 
when Clear To Send is on and receive when incoming carrier is present. 

When the local terminal originates a call and data is transmitted as soon as 
Clear To Send comes on, the remote station must be capable of receiving data 
before turning on its own carrier. The CB-CF common option, which is avail­
able in most low-speed data sets and is required by most asynchronous DEC 
terminal equipment, delays the return of Clear To Send until incoming carrier 
is present, thus, reception by the remote station is guaranteed. Moreover, 
since the two signals come on simultaneously, the terminal equipment need 
check only Carrier Detected for both transmission and reception. 

Answering a Call. If the local modem is left in automatic answering mode, 
the program can answer incoming calls placed through a switched network. 
A call to the local modem from a remote terminal is indicated by the pres­
ence of Ring Indicator; the local terminal equipment answers by turning on 
Data Terminal Ready. Establishment of the channel is indicated by Carrier 
Detected, at which time transmission and reception can begin. If Data Ter­
minal Ready is left on, all incoming calls are answered automatically by the 
data set. 

Placing a Call. For the computer to be able to place calls through a local 
modem requires that the system have an automatic calling unit (ACU) associ­
ated with the modem and an ACU control that is itself controlled by the pro­
gram. The ACU supplies these signals: Power On, Data Line Occupied, Data 
Set Status (the modem is in data mode), Present Next Digit, and Abandon 
Call. Signals supplied to the ACU by the control are Call Req uest, Digit Pres­
ent, and the telephone number, one digit at a time in binary form (four bits). 

.< ... 



§8.1 SIGNALS AND PROCEDURES 

After selecting a line on which to place a call, the program can turn on Call 
Request if power is on in the ACU and the modem for the selected line is 
ready (ie it is not already in use, it is not in talk or test mode, and its Data 
Terminal Ready signal is on). In response to the request, the ACU takes con­
trol of the line from the data set and signals off-hook to the network ex­
change; on receipt of a dial tone, the ACU turns on Data Line Occupied and 
sends Present Next Digit to request the first digit of the telephone number. 
As the program supplies each digit, the control turns on Digit Present; on 
delivering the digit to the switched network, the ACU turns off Present Next 
Digit, at which time the control should turn off Digit Present and wait for the 
next digit request. 

After dialing is complete, the program can let the ACU wait for the answer 
from the called station, provided the ACU can detect the answer tone. On 
detecting this signal, the ACU returns the line to the data set, which then goes 
into data mode and proceeds to establish the channel. Otherwise, the pro­
gram can indicate the end of the number by responding to the last Present 
Next Digit with an end-of-number code (12, ie binary 1100). This returns 
the line to the data set and places it in data mode immediately; the modem 
itself must then detect the answer signal and establish the channel. 

Although the ACU can be configured to stay with the data set throughout 
the call and terminate it by dropping Call Request, it is better to get the 
option that allows Call Request to be dropped as soon as the channel has 
been reconnected to the modem (ie as soon as the modem goes into data 
mode). Then the call can be continued by the modem control, and the call 
control can be used for placing calls on other lines. Either way, Call Request 
must remain off until Data Line Occupied goes off. 

The ACU includes a timer that is started initially by the turnon of Call 
Request and is then restarted by each event in the call procedure to deter­
mine whether each subsequent event occurs within a reasonable time. If the 
timer runs out before the network returns a dial tone, before the ACU re­
ceives a digit from the program and sends it to the network, or before the 
data set goes into data mode, the ACU turns on Abandon Call to signal the 
program to hang up and try again. After dialing is complete, the timer is 
ordinarily turned off by the data set going into data mode. This arrange­
ment assumes that Data Set Status coming on means that the call has been 
answered, which is the case if the ACU waits for the answer tone. If it is 
expected that the program will generally give an end-of-number code to let 
the data set wait for the answer, then the ACU should have the option that 
prevents Data Set Status from stopping the timer. In this case, the timer will 
always run out and can be taken as a signal that the program should check 
to see if the call has been answered. 

Terminating a Call. An unswitched line remains permanently connected, 
but the modem control can turn off the transmitter by dropping Request To 
Send, and the data set can be switched manually from data to voice opera­
tion. A switched channel can be disconnected manually by changing to voice 

8-5 

Procedures outlined here are 
reasonably complete, but 
many details of timing and 
specific control interaction 
depend on the characteristics 
of the modem and the com­
munication network itself. 
The user should consult the 
information supplied by the 
manufacturer 0 f his data com­
munication equipment and 
the common carrier supplying 
his communication channel or 
the manufacturer of his pri­
vate network. 

Typical automatic calling 
units are the Bell 801A for 
dial phones and the 801C 
for touch-tone phones. The 
801 Cl requires an end-of­
number code; the 801C2 can 
detect the answer tone but 
will also respond to an end­
of-number code. 

After completing a message, 
the transmitting station 
should wait (perhaps a char­
acter time) before turning off 
the transmi tter or terminating 



8-6 

the call, so that proper trans­
mission of the final data over 
the line is ensured. Similarly, 
an end-of-transmission charac­
ter keeps the receiving station 
from confusing the transients 
accompanying loss of carrier 
with additional data. 

There is also an optional .4 
second short space disconnect 
for use with 4-row TWX net­
work terminals. Carrier De­
tected goes off on the order 
of 30-60 ms after carrier is 
lost. Some data sets have an 
automatic disconnect on loss 
of carrier. 

No attempt is made here to 
describe all data sets nor even 
to describe completely the 
Bell sets included. There are 
other Bell sets besides these, 
and many other manufactur­
ers as well. In the remainder 
of this chapter, typical data 
sets that can be used with the 
equipment under discussion 
are mentioned, but to deter­
mine whether any particular 
set is usable, the user should 
consult the manufacturer's 
manual and DEC's engineer­
ing representatives. For addi­
tional information on data 
sets, and in particular on the 
options and channel config­
urations recommended for 
use with DEC systems, refer 
to the interface and installa­
tion manual for the system 
and Chapter 5 of the DEC 
Communications Equipment 
Handbook. 

DATA COMMUNICATIONS §8.1 

mode and then hanging up the telephone. Under program control, a call is 
terminated by dropping Data Terminal Ready (or Call Request), generally 
for about 100 ms minimum, but in any event until Data Set Ready goes off. 
It is recommended that an end-of-transmission character (or better, character 
sequence) be transmitted before terminating so the remote station will also 
terminate. A modem can have an option to disconnect on receiving a long 
space (1.5 seconds). For this, the data set at the other end must be equipped 
with the send disconnect option, so that Data Terminal Ready going off 
causes the modem to transmit three seconds of space signal before discon­
necting the line. 

Besides terminating a call after completing transmission or receiving a pre­
arranged amount of data, the modem control should disconnect the channel 
on receipt of an end-of-transmission character, loss of carrier, and when an 
incoming call is answered (in response to Ring Indicator) but no incoming 
carrier (or answer back code) appears within 10 seconds. This last situation 
may occur when a call is placed in error from a voice telephone to the local 
data set. 

Bell System Data Sets 

The 103A, E, G, and H data sets operate at speeds up to 300 baud and are 
used typically for asynchronous communication over a switched network. 
These modems have connections for all the basic interface signals defined 
above except Request To Send. The 103A has the CB-CF common config­
uration and automatic answer capability, and it can be used in conjunction 
with a data auxiliary set 804B 1 for voice communication. Available options 
are: send disconnect, long space disconnect, and operation with an auto­
matic calling unit. 

The 1 03E, G and H sets are different versions of the same modem; the G is 
the data set in a housing including a telephone, the H consists of data set, 
attendant's set, and hand set in three separate units, whereas the E is the 
basic modem without housing, power supply, or controls. Options include 
Ring Indicator only during ringing or throughout an incoming call, automatic 
answering, send disconnect, long or short space disconnect, CB-CF common, 
and disconnect on loss of carrier. These sets can also have an abort timer, 
which disconnects if the channel is not established within 8-16 seconds after 
the set answers a call. 

A number of 103E modems can be mounted in a rack with additional con­
trol equipment as a 1 03E data station having additional features. Among the 
more important of these features are that automatic calling is possible and 
each modem has a Make Busy interface connection. The latter allows the 
modem control or the attendant to make an individual set appear busy to an 
incoming call; this is especially convenient when the sets are in a "hunting" 



§S.2 COMMUNICATION SYSTEM DC68A 

or "rotary" group, as it enables the telephone network to skip over a set that 
is out of order or will not answer for some reason. Since the I 03E does not 
require Request To Send, the DEC terminal wiring can be modified to apply 
the Request To Send signal from the modem control to the Make Busy lead. 

For use with asynchronous dedicated lines, the 103F provides communi­
cation at rates up to 300 baud for two-point or multipoint unswitched net­
works. Request To Send turns on the transmitter, and the set has the CB-CF 
common configuration. Provision for voice transmission must be made exter­
nal to the set. 

Typical data sets for asynchronous communication at medium speeds are 
the 202C and D. The 202C operates at 1200 bits per second over the tele-

-t phone network and has a hand set in the unit. The 202D is used for dedi­
cated lines and operates at 1000, 1400 or ISOO bits per second depending on 
the characteristics and configuration of the channel; alternate voice operation 
requires addition of the data auxiliary set S04A. These modems use all six 
interface signals: Data Terminal Ready connects the data set to the channel, 
and Request To Send turns on the transmitter. In alternate simplex opera­
tion, the latter signal controls the direction. 

Typical data sets for medium speed synchronous operation are the 201A 
and B. The former is designed for transmission and reception at a fixed rate 
of 2000 bits per second over a switched voice frequency channel, public or 
private; the 20lB is primarily for private line use and operates at 2400 bits 
per second. A similar data set is the 205, which operates at 2400 or 4S00 bits 
per second. 

High-speed communication is almost always over private wide-band lines. 
A typical set for an unswitched channel is the 301B, which operates at 
40,SOO bits per second. The various 303 type data sets are available for 
switched or unswitched applications. These modems are capable of both 
synchronous and asynchronous operation at several speeds depending on the 
bandwidth utilized. On a group channel (12 voice circuits), the speed is 
50,000, 4S,000 or 40,SOO bits per second. 

8.2 DATA COMMUNICATION SYSTEM DC68A 

The DC6SA handles transmission and reception of serial data over 12S full­
duplex asynchronous communication lines at speeds up to 300 baud. Indi­
vidual characters generally are three to eleven bits in length, including one 
start bit, one to nine data bits, and one or two stop bits. Transfer of data be­
tween the DC6SA and DECsystem-IO memory is in characters or full words 
via a DAlO interface [§S.2] connected between the 10 buses of the PDP-S/I 
and the PDP-lO. 

The heart of the system, as shown at the lower left in the illustration on 
the next page, is a DCOSA serial line multiplexer and a PDP-S/I computer 

S-7 

In most synchronous sets, 
transmission may be timed 
by a clock in the modem or 
an external clock supplied 
by the terminal equipment. 

The 205 contains a very 
stable (and hence expensive) 
clock and is generally used 
only in special applications. 

High asynchronous speeds are 
usually for facsimile opera­
tion and are not generally 
used with computers. 



.---------------, 
I ALTERNATE MODEM CONTROL DC~8H DC08J ACU I 64 REMOTE LINES FULLY CONTROLLED, 
I WITH AUTOMATIC CALLING ON 4 

,_ .1 AUTOMATIC • 
CALL CONTROL 10 : 

128 LI NES DISTRI8UTED 
IN MULTIPLES OF 8 IN 

ANY MANNER AMOUNG 

THESE THREE CLASSES: I 689AG ACU 

+-----1 MODEM 4 : 
CONTROL 

<t 32 LINES 

~ 4 CALLING 
g UNITS 

::;: 25' 
o 
a:: 
LL 

(J) 

~ SECOND I 
-' 689AG 32:EIA L _______ : 
t:! • • 
;5 32 LINES 689LM 

L--______________ _ 

NEGATIVE BUS 

H DA1¢ I--

POP-I¢ 
10 BUS 

I DW¢8A I 

KA81 

PDP - 8/1 

POSITIVE BUS 

T 
DC(lJ8A 

SERIAL LINE 
MULTIPLEXER 

128 LINES 
(64 M75~S) 

~ 

I M75(IJ 

I M75L-

1~ CALLING UNITS 

DC!1I8F 
MODEM 
CONTROL 
PANEL 
64 LINES 

r.--=--=--== (DC¢8FX OPTION 
Ii INCLUDED) 
II 

II , 

I DC~8G 
32 : EIA 

I DC!Zl8G 

TO 1(11 
SELECTED 
MODEMS 

• REMOTE- FULLY CONTROLLED 
• LOCAL OR DATA ON LY 

.TELEGRAPH 

r I MODEM 
I L ___ : 

MODEM~ 

~I-_-=--=-- DC(38FE 
II MOD<:.'Y' "v'~, nVL 

I 25' DC08G I I MODEM r- ~ REMOTE LI NES 
~~ •• ~~~. FULLY CONTROLLED 

II EXTENSION 

tt--=--=--= NEXT 32 LINES 
II 
II 
I 

ti=--=--=--=-- DC!1I8FF 

: I MODEM CONTROL 
I! EXTENSION 

FINAL 32 LINES 

~DC!1I8B 
LOCAL AND 
DATA ONLY 
CONNECTOR 
PANEL 

48 LINES IN ANY 
ARRANGEMENT 

16 : EIA 

I DC(lJ8G 

I Dc!Zl8G 

16 : EIA 

I DC!Zl8G 

I BC01C 

:EIA 

MODEM"l 

I ~ 
L _____ _ 

MODEMl--

OR 

WITH AUTOMATIC 
CALLING ON 1(11 

TO MODEMS FOR DATA-ONLY REMOTE LINES 
I Bl 

} 

TO LOCAL EIA TERMINALS IMODEL 371 

:01C (FIXED DATA TERMINAL READY) 

MAXIMUM 3 UNITS r-w []j~o+---r~~---' <B00' 

T~~E~~~E } TO LOCAL DC TERMINALS FOR 128 LI NES • 2(1) 
: MA PANEL IMODEL33,35) 

DL81 r--P1' CLOCK STANDARD <6 • 
DATA LINE 3 ADDITIONAL ~=t:======= 

!J1 (48-48-32) 
iw 

L---

~~...H---i 

INTERFACE DC08Y CLOCKS 
OPTIONAL 

WITHOUT KA81, NEGATIVE 

BUS DRIVES DAI(II AND 

689AG DIRECTLY, CON­

VERTED IN DW(II8B TO 

DRIVE DC(II8A AND DC(II8H 

DC68A 

Ii " 

r M750 

[M750 

DATA 

,--
DC(lJ8CS I DC0BCM 
TELEGRAPH '20-60 
RELAY PANEL 16 : MA 

TELEGRAPH TELEGRAPH LINES 

CURRENT LINE (NEUTRAL 
MONITOR TERMINATOR OR POLAR) 32 LINES 

MAXIMUM 4 UNITS [QC~ 
FOR 128 •••• ~" 

DC08EB* DC08D t} TELEGRAPH 

~~~~r=====~~P~A~N~E=L~ PANEL 
~~~~'~L~'~"~~~v~ __________ ~ 

*MONITOR PANEL REOUIREO ONLY IF USER 
SUPPLIES LINE CURRENT (WITH 793 POWER 
SUPPLY ANO 893 FUSE PANEL) 

COMMUNICATION SYSTEM 

'iJ; :j 

qo 
00 

o 
:> ..., 
:> 
("l 

o 
~ 
~ 
c::: z 
n 
:> ..., 
o 
Z 
en 

C():) 

00 
N 



§8.2 COMMUNICATION SYSTEM DC68A 

containing a special DL81 data line interface. The computer usually contains 
a KA81 for driving a positive 10 bus, which connects to the DC08 units as 
well as to other devices. This positive bus is also converted through a DW08A 
to provide the negative bus required by the DA 1 O. Without a KA81, the com­
puter supplies a negative bus, which drives the DAIO directly but must be 
converted through a DW08B to drive the DC08A and other positive-bus de­
vices. The bus supplies device selection bits and 10 pulses to the in-out inter­
faces to implement program control over the various devices. The DC08A is 
no exception to this rule insofar as its clocks and control registers are con­
cerned. However, the instructions that handle the transmission and reception 
of data through the multiplexer are executed by the DL81; this interface 
actually takes control of the PDP-8/1 processor, adding new hardware cycles 
whose timing differs from that of standard 10 instructions. 

For transmission, the PDP-1O supplies one or more messages in words or 
characters through the DAIO. The PDP-8/1 program divides the data into 
characters of the proper size and adds the necessary start and stop bits. It 
then transmits the characters over selected communication channels one bit 
at a time, interleaving bits from different messages and routing them to the 
proper channels through the multiplexer. In the opposite direction, bits re­
ceived through the multiplexer from the various channels are sorted out and 
assembled into characters. On completing each character, the program strips 
off the start and stop bits and places the character in the part of memory 
where the corresponding message is being reconstructed. As each message is 
completed, the program sends it through the DA 10, either one character at a 
time or with the characters assembled into PDP-l 0 words. Timing for trans­
mitting bits and sampling the receiver inputs is provided by clocks in the 
DC08A. To guarantee accurate input sampling and to allow more even load 
distribution in transmission and reception, each clock has a frequency five 
times the code element rate. A single clock is standard, and is usually set at 
550 Hz (110 baud). However, the clock can have any frequency up to 1500 
Hz (300 baud), and the user can order up to three additional clocks, option 
DC08Y, for distribution of the channels into as many as four frequency 
groups (the distribution is software controlled). 

The DC08A requires one M750 module for each pair of communication 
channels (full-duplex or otherwise) and can handle a maximum of 128 chan­
nels. From the M750s, the data lines are connected to various panels on 
which are mounted the circuits that convert between computer levels and the 
signals used on the communication channels. Communication with local ter­
minals and data-only communication on remote lines is handled by a DC08B, 
which requires one W076 or BCOIC circuit for each line. The W076 handles 
20 mA signals and is used for connection to a local Model 33 or 35 teletype­
writer (or equivalent). The BCOIC connects to a local Model 37 or other ter­
minal that uses EIA standard levels, but it can connect to a modem (such as 
the 103A) for data-only communication with a remote terminal. This circuit 

8-9 

This entire section is written 
from the point of view of 
the PDP-8/1 rather than the 
PDP-IO. The "computer" is 
the PDP-8/1, the '''program'' is 
the PDP-8/I program, "AC" is 
the PDP-8/1 accumulator, and 
so forth. 

For information on the 
PDP-8/1, including program­
ming and operation, refer to 
the Digital Small Computer 
Handbook. 

The fastest clock available is 
actually for 480 baud, but 
the objective is to handle a 
large number of low-speed 
lines. The number that can 
be handled depends both on 
the data characteristics of the 
channels and the efficiency of 
the software. 

A local line is defined as one 
that is operating in an electri­
cally clean environment and 
has a loop resistance of less 
than 40 ohms (eg a terminal 
connected by 800 feet of 24 
gauge cable). 



8-10 

The BCOIC can be used with 
the 103F by modifying it to 
apply the Data Terminal 
Ready signal to the Request 
To Send lead. 

Use of this circuit with 
switched lines assumes that 
any problem, such as a wrong 
number or an inadvertent dis­
connect, is handled by an 
attendant. 

Current is generally provided 
by a 793 power supply con­
nected to the DC08C through 
an 893 fuse panel. The supply 
has a current capacity of 2.5 
amperes at ±80 volts. 

Connection to the bus is not 
direct, but is made through 
the DC08A. 

Neither of these data sets re­
quires Request To Send. With 
a I03E data station, the con­
nector can be modified so that 
Request To Send is applied to 
the Make Busy lead. 

DATA COMMUNICATIONS §8.2 

supplies no control signals except a fixed Data Terminal Ready and is princi­
pally for use with dedicated lines. It can be used, however, in a switched net­
work wherein the local modem automatically answers all calls and outgoing 
calls are placed by hand; in this case, the local transmitter would always be 
on, and since there are no indicators, the program would have to monitor the 
line at all times to ensure that no incoming data is missed. The DC08B can 
handle a total of 48 lines distributed in any manner among the three types. 
To handle all 128 lines in this fashion requires three DC08B panels with the 
lines divided 48-48-32. 

Telegraph communication requires the equipment shown at bottom right 
in the block diagram; this setup is also used for communication with nearby 
Model 35-type terminals that are too far away for a W076. The DC08CS tele­
graph relay panel handles 32 lines with one DC08CM telegraph line module, 
handling 20-60 rnA signals, for each line pair. Connections from the mod­
ules to the telegraph lines are made at a DC08D terminator panel. The equip­
ment shown in the drawing is for use with polar or neutral lines where the 
user supplies the line current. In this case, the lines connect to the terminator 
panel through a DC08EB monitor panel, which has rheostats for adjusting 
the send and receive currents. For neutral lines with an external line current 
supply, no monitor panel is needed. A complete complement of 128 tele­
graph channels requires four sets of the equipment shown. 

Unlike the local and telegraph panels, the DC08F connects to the 10 bus 
for program control of the communication hook-up. This panel has one 
DC08G for control and data connections to local modems for two channels. 
The modem control scans the channels, and on detecting a ring or a change 
in carrier status, signals the program and makes the number of the channel 
available to it. In-out instructions control Request To Send and Data Ter­
minal Ready, to operate the transmitters and answer incoming calls. The 
DC08FX option (which is standard in a DECsystem-IO) allows the program 
to step through the channels checking the carrier status of each. The basic 
DC08F can handle 64 lines; for an expanded system, a DC08FE can handle 
an additional 32 lines, and the full complement of 128 is reached by adding 
a DC08FF. Typical modems used are the 103A or a 103E data station (all 
modems must have the CB-CF common option). 

The DC08F allows complete control over communication channels except 
for enabling the program to place calls without human assistance. To fulfill 
this need, a DC08H is required. This control is connected to the 10 bus and 
may contain up to ten DC08J interfaces, each of which is connected to an 
80l-type automatic calling unit (ACU), which is, in turn, permanently con­
nected to one of the modems controlled through the DC08F. 

Some systems have the 689AG modem control [upper left of the block 
diagram] in place of the DC08F and DC08H units. The 689AG must be con­
nected to a negative 10 bus, and it requires one 689LM for each local modem 
(which must have the CB-CF common option). A ring or a change in carrier 
status signals the program via the interrupt, and the program must count 



§8.2 COMMUNICATION SYSTEM DC68A 

through and check the channels in groups of eight to find the line. In-out 
instructions control Request To Send and Data Terminal Ready. The 689AG 
handles 32 lines, and a second can be added for a maximum of 64. For plac­
ing calls, the first 689AG can contain up to four 689ACs, each of which con­
trols an 801-type ACU, which is, in turn,' permanently connected to one of 
the controlled modems. 

The total complement of 128 lines can be distributed in groups of eight 
contiguous lines among these three classes: controlled remote, data-only or 
local, and telegraph - with the exception that the 689AG alternate modem 
control is limited to 64 lines. The order of the groups is entirely up to the 
user. Moreover, the lines in the second group can be distributed in any way 

.} among local dc, local EIA, and data-only remote. 
Note that among the various panels for the different types of communica­

tion channels, only the modem control units (and their associated call con­
trols) are connected to the 10 bus and have instructions of their own; and 
these instructions are limited to control functions - they do not actually 
process any data. All data lines are connected to the M750s in the multi­
plexer and simply pass through the conversion circuits in the various panels. 
All transmission and receipt of data is handled by the program through the 
DC08A, regardless of whether the communication channel goes to an office 
down the hall or via satellite to Samarkand. 

Data Multiplexing 

The DC08A is very flexible in terms of the length and structure of the serial 
characters it handles, especially in transmission, but asynchronous communi­
cation invariably requires that every character begin with one bit time of 
space (0) for start and end with at least one bit time of mark (1) for stop. If 
the program wishes to restrict output characters to the PDP-8/1 word size, 
then each such character can contain at most 11 data and stop bits combined. 
The hardware limits input sampling to II bits per character including start. 
As assembled or used in AC or a memory location, the start bit is at the right. 
The channel over which a single bit is received or transmitted at any given 

" time is selected by the 7-bit line select register LSR; the program can load 
this register to select a line at random and can increment it to step through 

... 
a set of consecutive lines . 

Timing for transmission and reception is provided by a clock, which period­
ically interrupts the program. The program responds by sending bits to 
appropriate output lines and sampling appropriate input lines. If the clock 
frequency were the same as the bit rate, there would be no tolerance in line 
input timing, and the program could easily miss a bit (including the start bit) 
or attempt to read an entire character at the transitions between bits. The 
clock is, therefore, set at five times the bit rate. Then when the program 
detects a space that signals the beginning of a character, it can sample each 

8-11 

Jumpers in the M750s allow 
the user to select each input 
direct, inverted, or filtered. 



8-12 

For each channel, the DC08A 
has a flip-flop that holds the 
bit on the output line. 

A break is transmitted by 
sending a string of zero charac­
ters with no stop bits. Actu­
ally a suitable program could 
transmit anything acceptable 
to the remote terminal. Char­
acters can be any length, with 
any length stops (even frac­
tional). Indeed, the program 
could even convert a channel 
to synchronous operation by 
sending a continuous bit 
stream. 

The TTl is unusually complex 
(it is equivalent to a small 
subroutine) so a flow chart is 
included with the detailed 
instruction description [see 
below] . 

Each line requires this set of 
four words: 

TTl 
LSW 
CAW 
JMS 

DA T A COMMUNICATIONS §8.2 

bit at approximately the middle of the bit time. The DC08A can contain 
four clocks for four sets of lines at different frequencies. To distribute the 
lines into different frequency groups, the program simply determines which 
clock is interrupting and selects only the lines appropriate to that clock. 

For output, the program takes the appropriate number of data bits from 
a message, sets up a character by appending start and stop bits, and stores it 
in a location associated with the line to be used. Then at every fifth interrupt, 
the output routine selects the line, puts the character in AC, right shifts one 
bit out to the selected line, and stores the shifted character back in memory. 
If a significant number of output lines are being used, the program should 
spread out the load by handling bits on perhaps a fifth of the lines at each 
clock interrupt and staggering the characters at different bit times, so that it 
will not have to set up new characters for all the lines within one bit time (ie 

within one set of five interrupts). 
The user has no control over input except to choose the lines (he may 

simply ignore some). Hence, on every interrupt the program must carry out 
at least some operations for all accepted lines of the corresponding frequency. 
An inactive line must be checked on every pass in order to detect the begin­
ning of an asynchronous character properly. After a character has begun, 
the input routine for the line samples it only at every fifth interrupt, but 
must be executed at every interrupt in order to guarantee sampling at the 
correct position in each bit time. After assembling a complete character, 
the program must then process it, ie take out its data bits, put them in the 
appropriate part of memory for assembling the message, and set up the input 
routine to look for the next character. 

The instruction that checks a line and processes the input bits uses three 
memory locations, the first of which contains the input instruction TTL The 
sequence for each line actually requires four locations, as it is assumed that 
the third location following the TTl contains a jump to a subroutine to pro­
cess the character when it is assembled. The location following the TTl con­
tains a line status word (LSW), which has the format shown here. The TTl 

o 2 3 

LINE NUMBER 

I 
4 5 

I SAM~LlNG ~OUNT I 
6 7 8 9 10 11 

selects the line specified by LSW bits 2-8. When a character is detected, the 
TTl places a I in LSW bit O. On subsequent passes, Active being set causes 
the TTl to keep a sampling count in LSW bits 9-11 so that it can sample the 
line in the middle of each bit; the count is from 0 to 4 in every bit time with 
sampling at 2 (every fifth interrupt). 

At the count of 2, the TTl retrieves the character assembly word (CAW) 
from the third location. For the standard assembly procedure, the CAW is set 
up initially with a single 1 in a bit position such that the number of Os at the 
right of it is two greater than the number of data bits in the expected input 
character. For a character with eight data bits, the CAW is initially 2000; for 

... 



§8.2 COMMUNICATION SYSTEM DC68A 

seven bits it is 1000, and for five bits, 0200. To sample the input, the TTl 
shifts the CAW one place to the right, bringing the input bit in at the left. 
Shown here is the sequence of states for reception of a typical input charac­
ter with eight data bits. As long as the character is incomplete, the TTl skips 
over the fourth location to continue the input routine. But when the initial 
1 is shifted into the right most bit of the CAW, the routine continues by 
executing the fourth location, which should contain a JMS (or equivalent) to 
a subroutine to process the completed character. At completion, a character 
with N data bits is left in AC with the data in AC bits I-N. 

Note that the number of stop bits (even if fractional) is irrelevant, as the 
hardware regards the character as complete when the initial 1 is shifted all 
the way over. To sample two stop bits, the CAW is initialized with the 1 off­
set one place to the left from the standard position; to sample only the data 
bits in a character, the CAW is initialized with the 1 offset one place to the 
right. Sampling beyond the expected data in a character (ie what are ex­
pected to be stop bits) allows the program to recognize the reception of a 
break or long space. 

The sampling procedure, even for a large number of lines, is relatively 
quick. The processing of characters, however, can add significantly to the 
time required for a single pass. If characters are coincident on many lines, 
the time required for character processing offsets the sampling times for later 
lines from their usual positions with respect to the clock time. To provide a 
limit to this offset, the DC08A has a Line Hold flag for each channel and a 
5-bit loading control counter LCC. At a clock interrupt, the input routine 
can load LCC with the (twos complement) negative of the maximum number 
of characters to be processed in that pass. Each character-processing subrou­
tine should then increment the counter. When a TTl completes a character 
and discovers that LCC has been counted up to zero, it sets the Line Hold 
flag for the channel and stores the completed CAW back in the third location 
instead of going to the subroutine. In a subsequent pass, Line Hold being set 
causes the TTl to retrieve the completed CAW and go to the subroutine with­
out sampling the line. 

Instructions. The DL8I-DC08A combination has eight device codes, 40-
47. There are no standard mnemonics defined for instructions that use these 

<> codes, but for convenience the mnemonics defined in the X680 software are 
given here. Interrupts are requested by the setting of any clock flag. 

CK10N Clock 10n 4.25 J,tS 6424 

Clear Clock I Flag and enable clock I to set the flag, requesting an interrupt. 

CK1SKP Clock 1 Skip 4.25 IlS 6421 

Skip the next instruction in sequence if Clock 1 Flag is set. 

8-13 

Standard Assembly Procedure 

DATA=Ol 001 011 

INITIAL 
START 
1 
1 
o 
1 
o 
o 
1 
o 
STOP 

010 000 000 000 
001 000 000 000 
100 100 000 000 
110 010 000 000 
011 001 000 000 
101 100 100 000 
010 110 010 000 
001 011 001 000 
100 101 100 100 
010 010 110 010 
101 001 011 001 

With the standard assembly 
procedure, completed CAWs 
with eight and five data bits 
appear like this in AC: 

DATA 

o 1 2 3 4 5 6 7 8 9 10 11 

11 I DATA 10 1 11 I 
o 1 2 3 4 5 6 7 8 9 10 11 



8-14 

To select a new line, the pro­
gram must clear and load. 
TIlls can be done in one in­
struction by oRing the codes, 
ie giving 6413. 

By oRing these codes, ie giv­
ing 6405, the program can do 
one instruction that first sends 
a bit, then selects the next 
consecutive line for the next 
bit. (Note that this is oppo­
site the standard order im­
plied by the codes.) 

To produce a true transfer, 
this instruction must be pre­
ceded by CLA. 

To reset the counter, the pro­
gram must clear and load. 
This can be done in one in­
struction by oRing the codes, 
ie giving 6473. 

DATA COMMUNICATIONS §8.2 

CK10FF Clock 1 Off 4.25 p.s 6422 

Clear Clock I Flag and inhibit clock I from setting the flag. 

Instructions analogous to the above are available for clocks 2, 3 and 4 as 
follows. 

CK20N 
CK2SKP 
CK20FF 

LSRCLR 

6434 
6431 
6432 

LSR Clear 

Clear the line select register. 

LSRLOD LSR Load 

CK30N 
CK3SKP 
CK30FF 

6444 
6441 
6442 

CK40N 
CK4SKP 
CK40FF 

4.25 p.s 

4.25 p.s 

6454 
6451 
6452 

6411 

6412 

Inclusive OR the contents of AC bits 5 -II into the line select register. 

TTO Teletype Out 1.5 p.s 6404 

Send AC bit II out on the selected line. Shift AC right one place, bringing 
Os into the link and bit 0; data shifted out of bit II is lost. 

LSRINC LSR Increment 1.5 p.s 6401 

Increment the contents of the line select register by I. 

LSRRED LSR Read 4.25 p.s 6414 

Inclusive OR the contents of the line select register into AC bits 5-11. 

LCCCLR LCC Clear 4.25 p.s 6471 

Clear the loading control counter. 

LCCLOD LCC Load 4.25 p.s 6472 

Inclusive OR the contents of AC bits 7 -11 into the loading control counter. 



'1 

§8.2 COMMUNICATION SYSTEM DC68A 

TTl Teletype In 6402 

Retrieve the line status word LSW from the next location and select a line by 
loading LSW bits 2-8 into the line select register LSR. If Active (LSW bit 0) 
is clear or Line Hold is set, adjust Active to the state opposite that of the 
line, ie for a space (start) set Active, for a mark (stop) clear it. If Active is set 
and Line Hold is clear, add 1 to the sample count (LSW bits 9-11) or clear it 
if it has already reached 4. In any event, store the new LSW in the same loca­
tion (the first after the TTl). 

If the count is not 2, skip the next two locations and continue with the 
instruction in the fourth location beyond the TTL If the count is 2, get the 
character assembly word CAW from the next location (the second beyond 
the TTl); and if Line Hold is clear, shift CAW right one place, reading the 
input from the selected line into CAW bit O. Store the CAW (whether revised 
or not) back in the same location. 

If the initial 1 has not yet been shifted into CAW bit 11 (ie if bit 11 is not 
now 1), skip the next location and continue with the instruction in the fourth 
location beyond the TTL If bit 11 is 1 but the loading control counter LCC 
is zero, set Line Hold and skip one location to get the next instruction. On 
the other hand, if the assembly of the character is complete and the program 
has not yet processed all the characters it can on this pass (CAW bit 11 = 1 
and LCC =1= 0), load the CAW into AC, clear Line Hold, and continue with 
the instruction in the next location (the third beyond the TTl). 

LCCINC LCC Increment 4.25 JlS 6461 

Increment the contents of the loading control counter by 1. 

LCCRED LCC Read 4.25 JlS 6464 

Inclusive OR the contents of the loading control counter into AC bits 7 -11. 

Programming Considerations. If several frequencies are used, interrupts 
from different clocks will occasionally occur simultaneously. The program 
should, therefore, check the clock flags in order of decreasing frequency so as 
to service the faster lines first. If frequencies differ greatly, the interrupt 
should be left on while the program is servicing slow lines so that it can stop 
to service fast lines as needed and then go back to complete a slow pass. 

Because input cannot be distributed, the program should spread output 
servicing evenly over the five passes per bit time. In general, it is best to keep 
the lines in approximately the same timewise position in every pass. Eg as a 
character is finished, the output routine can jump to a subroutine to set up a 
new character for that line. But it is better for the program to go through the 
pass simply flagging every line on which char~cter transmission is complete; 

8-15 

TIl takes 4.9 JlS if it retrieves 
the CAW from memory; other­
wise, it takes only 3.4 JlS. 

In practice these operations 
are usually separable. While 
the line is inactive, each itera­
tion does nothing until a space 
is encountered, at which time 
Active sets. When a character 
is assembled but not pro­
cessed, the next TTl clears 
Active (since a stop is being 
received). 

Failure to process a character 
as soon as it is assembled sets 
line Hold, so the count re­
mains at 2 during subsequent 
iterations. 

To produce a true transfer, 
this instruction must be pre­
ceded by CLA. 

Remember that the interrupt 
is also being used for commu­
nication with the PDP-! a 
through the DAIO. 



8-16 DATA COMMUNICATIONS 

NO 

YES 

START (SPACE): SET ACTIVE 
STOP (MARK): CLEAR ACTIVE 

CAW .... AC 
CLEAR LINE HOLD 

TAKE NEXT 
INSTRUCTION FROM 

TTl LOCATION +3 

YES 

YES 

YES 

GET LSW FROM 
TTl LOCATION + 1 

LSW2-8--LSR 

ACTIVE 
SET? 

LINE 
HOLD 
SET? 

STORE NEW LSW 
IN TTl LOCATION +1 

YES 

GET CAW FROM 
TTl LOCATION +2 

NO 

SHIFT CAW RIGHT 
LINE BIT-- CAW¢ 

STORE NEW CAW IN 
TTl LOCATION +2 

SET LINE HOLD 

NO 

COUNT<4: ADD 1 TO LSW9-11 
COUNT ~4: CLEAR LSW9-11 

NO 

NO 

TAKE NEXT 
INSTRUCTION FROM 

TTl LOCATION +4 

TTl I NSTRUCTION FLOW 

§8.2 



... 

... 

§8.2 COMMUNICATION SYSTEM DC68A 

then after the interrupt is dismissed, the main program can set up whatever 
new characters are required. The same procedure could be used for input, 
but the loading control counter allows the program to prevent reception from 
being offset too much. Generally, one can allow character processing on 20-
40% of the lines in a given pass. However, even this upper limit could con­
ceivably cause trouble for channels that use only one stop bit, especially if 
they are operating at maximum rate. To guard against this, the input routine 
should service such lines first, thus ensuring that characters from them will 
be processed in the same pass. 

The setting of Line Hold does clear Active on the next pass and inhibit 
further counting, but the character-processing subroutine should nonetheless 
put a 0 in LSW bit 0 and allow the TTl to reactivate itself when a new char­
acter is encountered; otherwise, the program samples a second stop bit or a 
marking line as a new character. The subroutine should also clear the LSW 
sampling count, store the data bits of the character in the message being pre­
pared for the PDP-lO, indicate whether the message is complete, and if not, 
set up a new assembly word for the next character. 

By using the second count out of five in each bit time, sampling occurs at 
the center ± 1 0%. This means that the input allows considerable tolerance in 
signal timing. Detailed consideration of timing for transmission and recep­
tion depends on the frequencies used, the efficiency of the program, and 
other factors. 

Modem Control DC08F 

This unit has two 7-bit counters that scan through the channels checking for 
a Ring Indicator or a change in carrier status. Counting is done by a 2400 
Hz clock, thus each modem is checked about 20 times per second. Although 
the same clock controls both counters, they function independently. If the 
unit detects the Ring Indicator on the line selected by the ring scanner or 
detects Carrier Change set on the line selected by the carrier scanner, it stops 
the corresponding counter (by disconnecting it from the clock) and sets the 
Ring Flag or Carrier Flag respectively, requesting an interrupt. The program 
can then read the number of the line on which the event occurred and take 
appropriate action. The DC08FX prevents the initialize pulse (generated by 
the computer start switch) from affecting the state of the modems and al­
lows the program to step through the channels checking the carrier status of 
each with the automatic carrier scan disabled. 

The DC08F has four device codes, 70-73. There are no standard mne­
monics defined for instructions that use these codes, but for convenience the 
mnemonics defined in the X680 software are given here. Interrupts are re­
quested by the setting of the Ring Flag and Carrier Flag. 

8-17 

If a large number of channels 
use a single stop bit, the pro­
gram can provide more leeway 
by sampling only the data bits. 
However, if the final data bit 
can be 0, the input routine 
must not give a TTl for the 
line again until the stop bit 
arrives, because the final data 
bit could be interpreted as the 
start of another character. 

The carrier scanner determines 
whether the carrier has 
changed by checking the 
Carrier Change flag for the 
line; this flag is set whenever 
Carrier Detected goes on or 
off. 



8-18 

By oRing these codes (6703) 
the program can do one in­
struction that checks the flag 
and reads the scanner. Note 
that the read (combined or 
not) must be preceded by 
CLA to produce a true trans­
fer. 

By oRing these codes (6715) 
the program can do one in­
struction that checks the flag 
and reads the scanner. Note 
that the read (combined or 
not) must be preceded by 
CLA to produce a true trans­
fer. 

DATA COMMUNICATIONS §8.2 

MODLOD Modem Load 4.25JJ.s 6704 

Enable Ring Flag and Carrier Flag to request interrupts and enable the decod­
ing of AC bits 5 -11 to select a modem for control signals. 

MODCLR Modem Clear 4.25JJ.s 6712 

Disable Ring Flag and Carrier Flag from requesting interrupts and disable 
the decoding of AC bits 5 -II for selecting a modem. Disconnect the carrier 
scanner from the clock and increment the carrier counter by one. 

RNGSKP Ring Skip 4.25JJ.s 6701 

Skip the next instruction in sequence if Ring Flag is set. 

RNGRED Ring Scanner Read 4.25JJ.s 6702 

Inclusive OR the number of the line selected by the ring scanner into AC bits 
5-11. 

RNGCLR Ring Scanner Clear 4.25JJ.s 6734 

Clear the Ring Flag and enable the ring scanner (ie connect the ring counter 
to the clock). 

CARSKP Carrier Skip 4.25JJ.s 6711 

Skip the next instruction in sequence if Carrier Flag is set. 

CARRED Carrier Scanner Read 4.25JJ.s 6714 

Inclusive OR the number of the line selected by the carrier scanner into AC 
bits 5-11 and the state of Carrier Detected on that line into AC bit O. 

CARCLR Carrier Scanner Clear 4.25JJ.s 6724 

Clear the Carrier Flag, enable the carrier scanner (ie connect the carrier 
counter to the clock), and clear the Carrier Change flag for the line selected 
by AC bits 5-11. 

DTRLOD Data Terminal Ready Load 4.25JJ.s 6731 

Turn on the Data Terminal Ready signal to the modem selected by AC bits 
5-11. 

... 



-... 

§8.2 COMMUNICA nON SYSTEM DC68A 

RTSLOD Request To Send Load 4.25J,LS 6732 

Turn on the Request To Send signal to the modem selected by AC bits 5-11. 

DTRCLR Data Terminal Ready Clear 4.25J,LS 6721 

Turn off the Data Terminal Ready signal to the modem selected by AC bits 
5-11. 

RTSCLR Request To Send Clear 4.25J,LS 6722 

Turn off the Request To Send signal to the modem selected by AC bits 5-11. 

The features of the DC08FX option are useful principally when something 
goes wrong in software or hardware. The program can determine exactly 
which channels have carrier and which do not without any interference in the 
state of the modems by restarting the program (although the initialize pulse 
does clear the scanner). MODCLR and CARRED have the same device code 
so they can be oRed (ie 6716) to step the counter and read both it and the 
carrier status in a single instruction. 

Call Control DC08H 

The DC08H has the hardware necessary for the program to place outgoing 
calls through ACUs (such as the Bell 801) associated with selected modems 
among those controlled by the DC08F. To implement the call procedure, the 
DC08H contains two flags and supplies two control signals to the ACU. To 
place a call, the program turns on Call Request. When the ACU is ready to 
receive each digit, it turns on Present Next Digit, which sets Digit Request; 
when the program has a digit ready, it sends the Digit Present signal. Call 
Status is set by various conditions involving the standard control signals 
[ § 8.1] sent by the ACU to the DC08H. 

The call control has two device codes, 74 and 75. There are no standard 
mnemonics defined for instructions that use these codes, but mnemonics 
consistent with those used for the DC08F are given here. Interrupts are re­
quested by the setting of Digit Request and Call Status. 

CALLOD Call Load 4.25J,LS 6754 

Select the ACU specified by AC bits 8-11. The ten ACUs are addressed as 
0-11 octal. An address greater than 11 selects no. unit. 

8-19 

Note that these codes can be 
combined so that the pro­
gram can turn both signals on 
at once (6733) or both off at 
once (6723). 

With a 103E data station or 
similar setup, Request To 
Send can be used for Make 
Busy. 

Although the following eight 
instructions use the lOP pulses 
for timing, seven of them are 
derived from one device code 
by decoding instruction bits 
9-11. Hence, in no case can 
the codes be oRed to com­
bine instruction operations. 



8-20 

To produce a true transfer, 
this instruction must be pre­
ceded by CLA. 

DATA COMMUNICATIONS §8.2 

CALREQ Ca II Request 4.25 ps 6756 

If power is on in the selected ACU and the associated modern is not already 
busy, tum on the Call Request signal to that ACU and start its timer. Other­
wise (ie if Power On is off or Data Line Occupied is on), set Call Status and 
request an interrupt. 

CALSKP Call Status Skip 4.25 ps 6751 

Skip the next instruction in sequence if Call status is clear. This flag is set by 
the following events. 
• Power On was off or Data Line Occupied was on from the selected ACU 
when the program gave a CALREQ. 
• Power On went off or Data Set Status carne on from the selected ACU 
while Call Request was on. 
• Abandon Call carne on from the selected ACU. 

CALRED Call Status Read 4.25 ps 6755 

Clear Call Status and inclusive OR the status of the selected ACU and asso­
ciated modern into AC bits 0-4 as shown (a 1 in a bit indicates the signal is 
on). 

POWER DATA ABANDON DATA PRESENT 
LINE SET NEXT 

ON OCCUPIED CALL STATUS DIGIT 

o 2 3 4 5 

DIGSKP Digit Skip 4.25 ps 6753 

Skip the next instruction in sequence if Digit Request is clear. 

DIGCLR Digit Clear 4.25 ps 6741 

Clear Digit Request. 

DIGLOD Digit Load 4.25 ps 6757 

Send the digit specified by AC bits 8-11 to the selected ACU, and if Call 
Request is on, tum on Digit Present. 

The decimal digits 0-9 are specified by codes 0000-1001; 12 (1100) is 
the end-of-number code; other configurations of AC bits 8-11 are not used. 

, . ., 



'J 

§8.2 COMMUNICATION SYSTEM DC68A 

CALCLR Call Clear 4.25/lS 6752 

Turn off Call Request and Digit Present. 

To place a call, the program gives CALLOD to select an ACU unit (and 
therefore a modem and associated communication channel) and CALREQ to 
turn on Call Request to the selected unit. If either Power On is off or Data 
Line Occupied is on for the selected unit, the CALREQ fails to turn on Call 
Request and instead sets Call Status, requesting an interrupt (the program 
can use CALSKP and CALRED to determine the cause of the interrupt). 
Otherwise, the ACU starts its timer and waits for a dial tone; reception of the 
tone turns on Data Line Occupied. As the ACU is ready for each digit it 
turns on Present Next Digit, which sets Digit Request, requesting an interrupt. 
The program should respond using DIGSKP, DIGCLR and DIGLOD to pro­
vide the digit, clear Digit Request and turn on Digit Present. When the ACU 
accepts the digit, it turns off Present Next Digit, turning off Digit Present, 
and restarts the timer. Should the timer run out while waiting for some 
necessary event in the call procedure, the ACU turns on Abandon Call, 
which in tum sets Call Status, requesting an interrupt. 

After the last digit has been processed, the ACU again turns on Present 
Next Digit, and the response by the program depends on the particular setup. 
The program may simply clear Digit Request and let the ACU wait for the 
call to be answered, at which time the channel is returned to the modem; or 
the program may have the option of or need to give the end-of-number code, 
which turns the line over to the modem immediately and the modem waits 
for the answer. When the modem regains the line, it goes into data mode and 
turns on Data Set Status, which in turn sets Call Status, requesting an inter­
rupt. If the timer runs out, either before Data Set Status comes on or because 
the modem going into data mode does not stop it, the ACU generates Aban­
don Call, setting Call Status and requesting an interrupt. 

After Data Set Status comes on, action again depends on the way the ACU 
is set up. The program can give CALCLR to drop Call Request while the 
modem waits or the call continues, and the program may use another ACU, 
although it must eventually terminate the call through the modem control 
by turning off Data Terminal Ready. Without this option, the program must 
stay with the call until it is over and terminate it by dropping Call Request. 

689AG: Part I, Modem Control 

The modem control section of the 689AG has two flags that detect ringing 
signals and carrier changes. The turnon of Ring Indicator on any channel sets 
Ring Flag; Carrier Detected turning on or off on any channel sets Carrier 
Flag. The setting of either flag requests an interrupt. The program responds 

8-21 

Note that in no case is Call 
Status set simply by the pas­
sive existence of a condition: 
rather, it is set always by a 
specific event. CALREQ be­
ing given while Data Line 
Occupied is on sets Call Status, 
but Data Line Occupied com­
ing on later (as it must when a 
dial tone is received) does not. 
Abandon Call turning on sets 
Call Status, but if the program 
chooses to ignore the signal, it 
simply clears the flag and there 
is no further interrupt even 
though Abandon Call may re­
main on (there would be an­
other interrupt were Abandon 
Call to go off and then come 
on again). 

If the program gives an end-of­
number code but continues to 
select the same ACU, it can 
use the timer interrupt as a 
signal to check that the call 
has been answered. If the pro­
gram switches to some other 
ACU, reselecting the original 
one later will trigger the inter­
rupt if the timer has already 
run out. 



8-22 

In other words, for 32 or few­
er lines, the counter cycles 
through 0-3, for more than 
32 lines it cycles through 0-7. 

To produce a true transfer, 
this instruction must be pre­
ceded by CLA. 

Eg lines 20-27 correspond to 
lines 0-7 in group 2. 

DATA COMMUNICATIONS §8.2 

by reading the corresponding status (ring or carrier) of the channels in groups 
of eight (as selected by a group counter) to find the channel on which the 
event occurred and then take appropriate action. 

The modem control has five device codes, 70-74. There are no standard 
mnemonics defined for instructions that use these codes, but for convenience 
the mnemonics defined in the X680 software are given here. Interrupts are 
requested by the setting of Ring Flag and Carrier Flag. 

MODLOD Modem Load 4.25 J.l.S 6704 

Enable Ring Flag and Carrier Flag to request interrupts and enable the group 
counter to select a group of modems for control signals. 

MODCLR Modem Clear 4.25 J.l.S 6714 

Disable Ring Flag and Carrier Flag from requesting interrupts and disable the 
selection of a group by the group counter. 

GRPCLR Group Clear 4.25 J.l.S 6721 

Clear the group counter. 

GRPINC Group Increment 4.25J.l.s 6731 

Increment the group counter by one. Incrementing recycles the counter back 
to 0 from 3 if there is only one 689AG, from 7 if there are two. 

RNGSKP Ring Skip 4.25 J.l.S 6701 

Skip the nex t instruction in seq uence if Ring Flag is set. 

RNGRED Ring Read 4.25J.l.S 6704 

Inclusive OR the ring status of the lines in the presently selected group into 
AC bits 4-11 as shown (a 1 in a bit indicates that Ring Indicator is on from 
the specified line). 

o 2 3 4 5 6 7 8 9 10 11 



§8.2 COMMUNICATION SYSTEM DC68A 

RNG Ring Clear 4.25p.s 6742 

Clear Ring Flag. 

CARSKP Carrier Skip 4.25p.s 6711 

Skip the next instruction in seq uence if Carrier Flag is set. 

CARRED Carrier Read 4.25p.s 6714 

Inclusive OR the carrier status of the lines in the presently selected group into 
AC bits 4-11 as shown (a 1 in a bit indicates that Carrier Detected is on from 
the specified line). 

o 2 3 4 5 6 7 8 9 10 11 

CARCLR Carrier Clear 4.25p.s 6741 

Clear Carrier Flag. 

DTRLOD Data Terminal Ready Load 4.25p.s 6722 

In the presently selected group, turn on the Data Terminal Ready signals to 
the modems selected by 1 s in AC bits 4-11 as shown. 

o 2 3 4 5 6 7 8 9 10 11 

RTSLOD Request To Send Load 4.25p.s 6732 

In the presently selected group, turn on the Request To Send signals to the 
modems selected by 1 s in AC bits 4-11 as shown. 

o 2 3 4 5 6 7 8 9 10 11 

DTRCLR Data Terminal Ready Clear 4.25p.s 6724 

In the presently selected group, turn off the Data Terminal Ready signals to 
the modems selected by 1 sin AC bits 4-11 as shown. 

8-23 

To produce a true transfer, 
this instruction must be pre­
ceded by CLA. 

With a 103E data station or 
similar setup, Request To 
Send can be used for Make 
Busy. 



8-24 

A malfunction that keeps one 
Ring Indicator on disables all 
of them by preventing any 
ring interrupts. This should 
not be regarded as extremely 
unlikely, as simply removing a 
data set cable holds on the 
Ring Indicator. Thus, on a 
low priority basis the program 
should occasionally check the 
ring status to see if any Ring 
Indicator is on that did not 
interrupt. 

DA T A COMMUNICATIONS §8.2 

LINE LINE LINE LINE 
6 5 3 2 

o 2 3 4 5 6 7 8 9 10 11 

RTSCLR Request To Send Clear 4.25 ps 6734 

In the presently selected group, turn off the Request To Send signals to the 
modems selected by 1 s in AC bits 4-11. 

o 2 3 4 5 6 7 8 9 10 11 

Note that the program cannot select an individual line at random. The 
lines are divided into groups of eight and to select any particular line the pro­
gram must clear the group counter and then increment it to the group con­
taining the desired line. Within a given group, the program can read the ring 
or carrier status of all lines simultaneously and can handle a given control 
operation (turning Data Terminal Ready or Request To Send on or off) on 
any desired lines simultaneously. 

The flags are set only by specific events - the turnon of a ring signal and a 
change in carrier. Hence in response to an interrupt, the program should 
check all channels in case more than one was ringing or experienced a carrier 
change. 

689AG: Part II, Call Control 

The call control section of the 689AG has the hardware necessary for the 
program to place calls through automatic calling units (ACU) associated with 
modems selected from among those the 689AG controls. To implement the 
call procedure, the call control contains two flags and supplies two control 
signals to the ACU. To place a call, the program turns on Call Request. 
When the ACU is ready to receive each digit it sets Digit Request, and when 
the program has a digit ready it sends the Digit Present signal. The program 
must give the end-of-number code, either to end the dialing sequence or later 
to turn off Call Request. Turnon of the Abandon Call signal sets the Incom­
plete Call flag. 

The call control has three device codes, 75-77. There are no standard 
mnemonics defined for instructions that use these codes, but mnemonics 
consistent with those used for the modem control are given here. Interrupts 
are requested by the setting of Digit Request and Incomplete Call. 



§8.2 COMMUNICATION SYSTEM DC68A 

CALLOD Call Load 4.25 liS 6752 

Select the ACU specified by AC bits 10-11. The four ACUs are addressed as 
0-3 octal. 

CALSKP Call Skip 4.25 liS 6761 

Skip the next instruction in sequence if Power On is on and Data Line .&. 

\~ Occupied is off from the selected ACU. 

CALREQ Call Request 4.25 liS 6764 

If power is on in the selected ACU and the associated modem is not already 
busy, turn on the Call Request signal to that ACU and start its timer. 

DIGSKP Digit Skip 4.25 liS 6751 

Skip the next instruction in sequence if Digit Request is clear. 

DIGCLR Digit Clear 4.25 liS 6762 

Clear Digit Request. 

DIGLOD Digit Load 4.25 liS 6754 

Send the digit specified by AC bits 5-8 to the selected ACU, and if Call Re­
quest is on, turn on Digit Present. 

The decimal digits 0-9 are specified by codes 0000-1001; 12 (1100) is 
the end-of-number code; other configurations of AC bits 5 -8 are not used. 

INCSKP Incomplete Call Skip 4.25 liS 6771 

Skip the next instruction in sequence if Incomplete Call is clear. 

INCCLR Incomplete Call Clear 4.25 liS 6772 

Clear Incomplete Call. 

To place a call, the program gives CALLOD to select an ACU (and there­
fore a modem and associated communication channel) and CALSKP to de­
termine whether the selected unit is ready, ie power is on and the line is 
free. If so, CALREQ turns on Call Request for the selected unit, which starts 

8-25 

NOVEMBER 1974 



8-26 

The dial tone can be sensed 
by CALSKP, as Data Line 
Occupied comes on at that 
time. 

At each step in the procedure, 
the program should give both 
DIGSKP and INCSKP to dis­
tinguish between a digit re­
quest and an incomplete call. 

If the program chooses to 
ignore Incomplete Call, it can 
simply give INCCLR and there 
is no further interrupt even 
though Abandon Call may re­
main on (there would be an­
other interrupt were Abandon 
Call to go off and then come 
on again). 

If the program continues to 
select the same ACU after 
giving an end-of-number code, 
it can use the timer interrupt 
as a signal to check that the 
call has been answered. If 
the program switches to some 
other ACU, reselecting the 
original one later will trigger 
the interrupt if the timer has 
already run out. 

Which channel types can 
actually be selected depends 
on the communication facili­
ties available. The user can 
select three frequencies arbi­
trarily - the rest are depend­
ent on them [see below]. 

NOVEMBER 1974 

DATA COMMUNICATIONS §8.3 

its timer and waits for a dial tone. As the ACU is ready for each digit, it turns 
on Present Next Digit, which sets Digit Request, requesting an interrupt. 
The program should respond using DIGSKP, DIGCLR, and DIGLOD to pr<r 
vide the digit, clear Digit Request and turn on Digit Present. When the ACU 
processes the digit, it turns off Present Next Digit, turning off Digit Present, 
and restarts the timer. If the timer runs out while waiting for some necessary 
event in the call procedure, the ACU turns on Abandon Call, which in tum 
sets Incomplete Call, requesting an interrupt. 

After the last digit has been processed and the ACU has again turned on 
Present Next Digit, the program must at some point give the end-of-number 
code, as the only condition that turns off Call Request is Present Next Digit 
going off while that code is being held in the call control. Suppose the data 
set can detect the answer tone and can continue the call under modem con­
trol (ie without Call Request). In this case, the program can clear Digit Re­
quest and give the end-of-number code immediately; this causes the ACU to 
tum the line over to the data set, and the turnoff of Present Next Digit drops 
both Digit Present and Call Request. The program can then use another ACU 
while the modem waits for the answer tone and establishes the channel. If 
the timer is not stopped by Data Set Status, it will run out, causing the ACU 
to generate Abandon Call; this sets Incomplete Call to request an interrupt if 
the ACU is still selected. 

If the data set cannot detect the answer tone but can do without Call Re­
quest, the program should clear Digit Request, wait until the call has been 
answered and the line turned over to the data set, and then give the end-of­
number code anyway. This turns on Digit Present, which will then go off 
along with Call Request when Present Next Digit goes off. If the timer runs 
out before Data Set Status comes on, the ACU generates Abandon Call, set­
ting Incomplete Call and requesting an interrupt. 

If the data set is confIgured to terminate when Call Request goes off, the 
ACU must wait for the answer signal and the program terminates the call by 
giving the end-of-number code. 

8.3 DATA LINE SCANNER OCtO 

The DC 10 is a line scanning-multiplexing system for handling transmission 
and reception of serial data over asynchronous communication channels. 
The user can select the characteristics of each channel as follows: 

Channel type: full-duplex, full-duplex with local copy, half-duplex, alter­
nate simplex, simplex-receive only, simplex-transmit only 

Bit rate: anyone of three selected for the 32-line group out of nine avail­
able to the system (maximum rate, 100,000 bits per second) 

Data bits per character: five or eight 

Stop units (bit times) per character: I, 1.5, 2 (start is one unit) 

."'. -.... 
" -



~. 

§8.3 DA T A LINE SCANNER DC 1 0 

The choice among the above, once made, is fixed in the hardware so that all 
transmission and reception over a given channel has the characteristics se­
lected initially. Transfer of data between the DC 10 and DECsystem-1O main 
memory is over the PDP-1O 10 bus in single characters, each containing the 
number of data bits appropriate to the channel. 

The entire system can have 64 lines. A given line can be a communication 
channel but need not be - some lines can be paths for control signals to 
operate data sets, ie a program-controlled modem requires two lines, one for 
data and one for control. A maximum system can therefore have as many as 
64 data lines or as few as 32 data lines with the other 32 lines used for modem 
control. 

The basic unit in the system is a DC1OA, which contains the clocks, scan­
ning facilities, and bus interface. Each set of eight data lines requires a 
DC lOB, which contains a transmitter and receiver for each line. These 
circuits can handle either EIA standard levels or local 20 rnA dc signals. To 
drive a telegraph line, the DC 1 OB transmitter-receiver must be connected to 
the line via a DC 1 OC telegraph relay assembly. This latter unit also handles 
eight lines, but it need not be connected to a single DC 1 OB - it can drive any 
eight lines selected from among the various DC lOBs. 

Program control of a data set on a data line through a DC10B requires a 
modem control line through a DC 1 OE. Each DC 1 OE provides control for 
eight modems and automatic calling for two of them. There is no necessary 
correspondence between any DC10E and DC1OB; the DC10E lines can be 
used to control modems associated with any eight data lines connected to the 
DC lOBs, and any two of these modems can have automatic calling units. In 
tenus of the line structure, a DCIOE appears in place of a DC1OB. The total 
number of DCIOBs and DCIOEs combined is therefore eight, of which at 
most four can be DC 1 OEs, as 32 modem controls require 32 data lines. 

DCIOA. This unit contains three clocks that generate nine signaling fre­
quencies. Of these, any three can be made available to the first 32 lines and 
any three to the second 32 lines (hence, up to six can be used altogether). 
The user can select three frequencies arbitrarily, and the rest, although not 
uniquely determined by the three selected, are dependent on them. Within 
limits, the functional dependency is adjusted to best suit the user's require­
ments. If no frequencies are specified, the equipment is delivered with clocks 
for the standard or typical bit rates of Model 28, 33, 35, and 37 teletype­
writers and 103 and 202 series Bell data sets (ie 75, 110, 150, 300, 600, 
1200, and 2400 Hz). 

The DC 1 OA also contains a scanner that searches through all the lines and 
stops to interrupt the program whenever it encounters a line with a flag set. 
The scanner supplies the number of the line at which it stopped and indicates 
whether the stop was due to completion of character transmission or recep­
tion so the program can respond appropriately. Transmitter and receiver 
interrupts occur only on data lines, but the scanner checks all lines and also 
requests an interrupt on encountering a modem control that requires program 
attention. 

8-27 

Actually, the DC lO can be 
used solely for modem control 
with the data going through 
some other device. Thus, a 
system with eight DClOEs to 
handle 64 modem control 
lines is theoretically possible. 

Given three base frequencies 
II' 12 , and 13 , the nine derived 
frequencies are 11' 1611' 12, 
1612,13 and 2n13, where n = 
1, 2, 3, 4. The standard base 
frequencies supplied respec­
tively are 110, 150, and 75 
Hz. 



8-28 

For complete information on 
installing jumpers, connecting 
lines, etc., refer to the DelD 
Maintenance Manual. 

A local line is defined as one 
that is operating in an electri­
cally clean envrionment and 
has a loop resistance of less 
than 50 ohms (eg a terminal 
connected by 1000 feet of 24 
gauge cable). 

Current for any relay-buffered 
line may be supplied exter­
nally or by a DC 1 OD power 
supply, which has a capacity 
of 2 amperes at ±12S volts. 
A single supply can handle 32 
half-duplex or 16 full-duplex 
lines at 60 rnA, or 96 half­
duplex or 48 full-duplex lines 
at 20 rnA. 

DATA COMMUNICATIONS §8.3 

DCIOB. For each of the eight lines in a DCIOB, the user must install 
jumpers to select the line speed (among the three available), the number of 
data bits per character, and the number of stop units. The equipment is 
delivered with the lines configured for full-duplex or alternate-simplex opera­
tion, and jumpers must be added to convert any line to full-duplex with local 
copy or half-duplex (the latter also requires that the DClOC be used). 
Simplex operation requires no jumpers as it simply implies that either the 
transmitter or receiver for a given line is not used. Each line must also be 
connected to the proper connector pins (for EIA or dc signals). 

The EIA connections can be used for a Model 37 teletypewriter or similar 
terminal, a data set controlled through a DC 10E, or a data set controlled 
manually. The dc signals can be used for connection to a relay assembly 
DC lOC for telegraph lines or half-duplex operation, or directly to a local 
Model 33 or 35 terminal for full-duplex operation with or without local copy. 
For full-duplex with local copy, the transmitter will not go on until the 
receiver is idle so as not to garble copy at the teleprinter. The transmitter 
also waits until the receiver is idle in half-duplex operation. 

For output, the program supplies each data character to the desired trans­
mitter, which adds the start and stop bits and sends the character out serially 
over the line. Each serial character coming in over a line is assembled by a 
receiver, which strips off the start and stop bits and supplies the data for 
reading by the program. Completion of transmission or reception of a char­
acter sets a corresponding flag for the line. When the scanner encounters the 
flag, it stops scanning and requests an interrupt. The program responds with 
a DATAl that reads the number of the line, and if the receiver flag is set, 
reads the character and clears the flag. If the transmitter flag is set, the pro­
gram uses the line number to determine what character to send next, and 
then gives a DATAO to clear the transmitter flag and supply the character for 
transmission on the line specified by the scanner. In either case, when the 
interrupt has been serviced, the scanner continues to search for the next flag. 
The program can select any random line to start transmission, but for further 
transmission and all reception, the program acts only at an interrupt. 

DCIOC. This unit contains send and receive relays for any eight lines con­
nected to DC lOBs. It can be used to implement a half-duplex channel, to 
communicate over long dc telegraph lines (up to 22 miles (36 kilometers) of 
24 gauge cable), or to connect a Model 35 terminal that is too far away or is 
in an electrically noisy environment. The unit accommodates polar and 
neutral circuits of 20-60 mA and has controls for line resistance compensa­
tion and send and receive relay bias. Use of the DC lOC does not affect pro­
gramming except in that signaling speed is limited to 300 baud, and in half­
duplex operation any character transmitted is also received. 

DCIOE. This unit provides program control over data sets on eight of the 
DC lOB data lines. The program can control one signal to each modem and 
can monitor two signals from it. The output signal is usually connected to 

.. 



, , . 

,J 

§8.3 DATA LINE SCANNER DC10 

the Data Terminal Ready lead but can be used for Request To Send; one of 
the inputs is generally connected to Clear To Send or Carrier Detected (which 
are equivalent in the CB-CF common configuration of most low-speed 
modems), and the other generally receives Ring Indicator, Data Set Ready, or 
Restrain Detected. Besides the standard modem control, the hardware also 
handles the signals necessary to control automatic calling units (ACU) for 
placing calls on data lines associated with two of the modems. 

There is only one type of interrupt for a DCIOE line. Changes in status 
conditions of interest to the program set a status flag, which the scanner 
monitors in the same way as a receiver flag on a data line. When the scanner 
interrupts, a DATAl can be used to read the line number and the status infor­
mation. If the program desires to read the status of a particular line at any 
time, it can give a DAT AO that deliberately sets the status flag so that the 
scanner will interrupt the next time it reaches the line. 

Instructions 

The data line scanner uses the four 10 instructions with a single device code. 
However, the meaning of the information sent by a DATAO or read by a 
DATAl depends on whether the instruction is dealing with a data line or a 
modem control line. Hence, the programmer must keep track of whether a 
DATAl or DATAO is for a DClOB or DC WE. The DClO device code is 240, 
mnemonic DLS. A second DClO would have device code 244. 

The lines are numbered 00-77 octal, where the left octal digit indicates 
the group, the right digit the line within the group. In a DC WE, the ACUs 
are on lines 6 and 7. The programmer must not only distinguish between the 
lines for data and the lines for modem control, but in particular he must keep 
track of which DC I OE line controls the modem for a given DC lOB line. 

CONO DLS, Conditions Out, Data Line Scanner 

72420 y 

o 121314 1718 35 

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the function specified by bits 30-32 (a I in a bit pro­
duces the indicated function, a 0 has no effect). 

27 28 29 

CLEAR 
DC10 

30 31 

RESET PRIORITY INTERRUPT 
SCANNER ASSIGNMENT 

32 33 34 3S 

8-29 

In the DClOE, the three leads 
are labeled DATA TERM 
READY, CLR TO SND, and 
RESTRN DETCTD. 

The program can select a line 
to send out modem control 
information just as it can to 
begin data transmission. The 
device explained here for read­
ing status is necessary because 
input is available only on a 
line selected by the scanner. 



8-30 

Power turnon and the 10 re­
set signal generated by CONO 
APR,200000 duplicate this 
clear function. 

The switch is normally left on, 
so this bit need not be used, 
and the program exercises 
complete control over the 
Data Terminal Ready signals 
via the DClOE lines. 

Bits 31 and 32 are valid only 
when the scanner has stopped 
and requested an interrupt. 

Notes 

30 

31 

DATA COMMUNICATIONS §8.3 

Clear all units in the DC 10: clear scanner, receivers, transmitters, 
flags and control circuits; dismiss PI assignment; and if the DTR dis­
tend switch is off, also turn off all transmitters and modem and auto­
matic calling unit control signals. 

Should the DTR distend switch be off, giving a 1 in this bit enables 
the Data Terminal Ready circuits in the modem controls for over half 
a second. This allows any modem control to hold on a Data Terminal 
Ready signal that has been turned on or is turned on within the hold 
time. 

32 Set the scanner to line O. 

CONI DLS, Conditions In, Data Line Scanner 

72424 y 
o 121314 1718 35 

Read the status of the scanner into bits 30-35 of location E as shown. 

27 28 

Notes 

29 

DTR 
DISTEND 

30 

RCVR 

31 32 

PRIORITY INTERRUPT 
ASSIGNMENT 

33 34 35 

30 The DTR distend switch is on. This switch generates Ready Hold 
continuously (CONO bit 31) so the program need not keep reassert­
ing it, and neither 10 reset nor the clear function (CONO bit 30) can 
turn off Data Terminal Ready signals to the modems. 

31 

32 

The scanner has requested an interrupt for a line whose transmitter 
flag is on. 

The scanner has requested an interrupt for a line whose receiver flag 
is on. 

DATAl DLS, Data In, Data Line Scanner 

72404 y 

o 121314 1718 35 



..,. 

.) 

§8.3 DA T A LINE SCANNER DC 1 0 

Perform functions for the line selected by the scanner and read the informa­
tion for it into bits 12-17 and 27-35 of location E. The left half word al­
ways receives the information shown here. 

LINE NUMBER 

9 10 11 12 13 14 15 16 17 

Bits 12-17 specify the line currently selected by the scanner. 
The information received in the right half word and the functions per­

formed depend on whether the selected line is for a DC 1 OB or DC 1 OE as 
shown below. 

DCIOB Line . 

31 33 

If bit 27 is 1, clear the receiver flag and restart the scanner. The interrupt is 
for the receiver and bits 28-35 contain the data, with bit 35 received first. 
An 8-bit character uses all the data bits, a 5-bit character is in bits 31-35 
(bits 28-30 are irrelevant). A 0 in bit 27 indicates the interrupt is for the 
transmitter and bits 28-35 are zero. 

DCIOE Line. Clear the status flag and restart the scanner. 

DATA 
LINE ABANDON 'CARRIER tRING 

OCCUPIED CALL DETECTED INDICATOR 

I 
/ 

1 I READY I I""E:~;TI 
I 

71 
DIGIT 

ENABLE 

27 28 29 30 31 32 33 34 35 

A 1 in bit 29 indicates Ready Enable has been set by a DATAL This means 
Data Terminal Ready (or Request To Send) is on provided it has not been 
turned off within the last 100 ms (and assuming the DTR distend switch is 
on or the program has given Ready Hold (CONO bit 31) within the last half­
second). Bits 33 and 34 are signals from the modem, bits 30-32 are signals 
from the ACU and are applicable only to lines 6 and 7 (a 1 in a bit indicates 
the signal is on). 

The status flag is set, requesting an interrupt on the assigned channel when 
the scanner encounters it, by the turnon of any of the signals monitored by 
bits 31-35 and the turnoff of the signal for bit 33. 

8-31 

The information read is valid 
only when the scanner has 
stopped and requested an in­
terrupt. 

Alternates: 
*Clear To Send 
t Restrain Detected or Data 
Set Ready 

For switched lines, bits 33 
and 34 would likely be used 
to monitor the signals shown, 
whereas for unswitched lines 
they might be used for Gear 
To Send and Data Set Ready. 
In 4-row TWX service, bit 34 
should be used for Restrain 
Detected. If no signal is de­
sired, it should be held off by 
connecting the lead to a nega­
tive voltage between -3 and 
-25 volts. 



8-32 

With a 1 in bit 11, this instruc­
tion cart be given at any time; 
the scanner pauses while it is 
being performed and then 
continues. With a 0 in bit 11, 
the instruction can be given 
only when the scanner has 
stopped and requested an in­
terrupt for the transmitter (as 
determined by a DATAl or 
CONI). 

This instruction can be given 
at any time; the scanner pauses 
while it is being performed 
and then continues. 

DA T A COMMUNICATIONS §8.3 

DATAO DLS, Data Out, Data Line Scanner 

72414 y 
o 121314 1718 35 

Perform functions and supply information for a line according to the con-
tents of bits 11-17 and 27 -35 of location E and depending on whether the :>, 

instruction is given for a DClOB line or a DClOE line as shown below. 
DCIOB Line. The left half word always supplies this information. 

9 10 

USE 
THIS 
LINE 

11 12 13 

LINE NUMBER 

14 15 16 17 

If bit 11 is 1 select the DC 1 OB line specified by bits 12-17. Otherwise ignore 
bits 12-17, select the DClOB line currently specified by the scanner, clear its 
transmitter flag, and restart the scanner. 

The format of the right half word depends on the character length. If the 
instruction is given for a line that is set up for 8-bit characters, the left half 
word supplies this information. 

TURN 
OFF 

XMTR 

27 

BIT 8 I BIT 7 

28 29 

BIT 6 I 
I 30 

DATA 

BIT 5 I BIT 4 I BIT 3 I BIT 2 I BIT 1 

31 32 I 33 34 35 

If bit 27 is 1 turn off the transmitter and ignore bits 28-35. Otherwise, 
transmit the data in bits 28-35, bit 35 first. 

For a 5-bit character, the left half word supplies this information. 

TURN DATA ON 
XMTR BIT 5 I BIT 4 I BIT 3 I BIT 2 I BIT 1 

27 28 29 30 31 32 33 34 35 

If bit 30 is 0, turn off the transmitter and ignore bits 31-35. Otherwise, 
transmit the data in bits 31-35, bit 35 first. 

DCIOE Line. 

LINE NUMBER 

I 
9 10 II 12 13 14 15 16 17 



§8.3 DATA LINE SCANNER DCJO 

SET READY LOAD 
STATUS ENABLE CALL DIGIT DIGIT 

FLAG I I I 

27 28 29 30 3J 32 33 34 3S 

On the DC 1 OE line specified by bits 12-17 perform the functions specified 
by bits 28-31 (a 1 in a bit produces the indicated function; in bits 29 and 
30 a a produces the opposite effect, in bits 28 and 31 a a has no effect). Bits 
28 and 29 are for the modem, bits 30 and 31 are for the ACU and are appli­
cable only to lines 6 and 7. 

Notes 

28 Set the status flag so the next time the scanner checks this line it will 
stop and request an interrupt on the assigned channel. 

29 

30 

31 

Turn on Data Terminal Ready provided it has not been turned off 
within the last 100 ms. If this condition is not satisfied, the signal 
turns on when it does become satisfied. A a in this bit turns off Data 
Terminal Ready. 

Turn on Call Request. A a turns off Call Request. 

Make the digit in bits 32-35 available to the ACU, and if Present 
Next Digit is on (DATAl bit 31), turn on Digit Present. 

Data Line Programming 

For the data lines per se, the program need give a CONO only initially to 
select the PI channel. To begin transmission on a line, the program must take 
initiating action in supplying the first character; then as the transmission of 
each character is completed, the transmitter sets its flag. Reception requires 
no initiating action by the program involving the data line, and as each char­
acter is assembled the receiver sets its flag. Whenever the scanner encounters 
a flagged line, it stops to hold the line number and requests an interrupt on 
the assigned channel. The program can give a CONI (CaNSO, CONSZ) to 
look at both flags for the line, but a DATAl is sufficient: either it has the 
character, or a a in bit 27 indicates that the program must give a DATAO to 
supply a character to the transmitter specified by DATAl bits 12-17. Either 
way, the instruction that transfers the character clears the corresponding flag 
and restarts the scanner. If both flags are set simultaneously, the scanner 
services the receiver first. In other words, the DATAl reads the received 
character and clears the receiver flag, but instead of continuing, the scanner 
immediately requests another interrupt for the transmitter. 

8-33 

Whenever Data Terminal 
Ready is turned 0 ff, it is held 
off for 100 ms to ensure that 
the data set disconnects prop­
erly. This bit can be used in­
stead to control Request To 
Send, eg with a 103F data 
set. 

Even with a conditions-in 
check, a DATAl must be given 
for a receiver or to get the 
line number for a transmitter. 



8-34 

If the transmitter selected is 
already active, the data is 
garbled. 

When transmission is com­
plete, this form must be given 
to release the scanner. 

This wipes out the character 
currently being transmitted. 

Characters sent in alternate 
simplex are also echoed back 
if the modem is so configured 
(but there can be no conflict 
as the channel is one way). 

NOVEMBER 1974 

DATA COMMUNICATIONS §8.3 

The program reads input only on an interrupt and from the receiver se­
lected by the scanner. But for output, the program must take several differ­
ent actions, namely to begin, continue, and terminate transmission. For 8-bit 
characters, these are distinguished by the configuration of bits 11 and 27 in a 
DATAO as follows (parentheses indicate equivalent information for 5-bit 
characters). 

Bit 11 Bit 27 (Bit 30) 

o (1) 

o o (1) 

o (0) 

(0) 

Function 

Transmit the character in bits 28-35 over the 
line selected by bits 12-17. This is used to 
begin transmission on an idle line. It can be 
given at any time without affecting the scanner 
(except to hold it during execution). 

Transmit the character in bits 28-35 over the 
line selected by the scanner, clear the trans­
mitter flag, and restart the scanner. This is 
used only in a transmitter interrupt when the 
scanner has stopped. 

Turn off the transmitter selected by the scan­
ner, clear its flag, and restart the scanner. This 
is used only in a transmitter interrupt when 
the scanner has stopped. 

Turn off the transmitter selected by bits 12-
17. Ordinarily this is not used. 

For full-duplex operation with local copy or half-duplex operation, the 
transmitter does not start sending a character until the receiver for the same 
line is idle. This is to avoid garbled copy at the teleprinter in the one case, 
garbled reception in the other. Thus, the program can load a character into a 
transmitter at any time without affecting the character presently being 
printed or received respectively, but it may garble the next one. 

Each character transmitted in half-duplex will subsequently come back to 
the receiver for the same line, whence the program can check it against the 
transmitted character. If the two do not match, either a line error has 
occurred or someone has struck a key at the teletypewriter. The latter action 
is often used to interrupt program output. Note that every character causes 
two interrupts, the receiver request being one bit time before that for the 
transmitter. 

Timing. A complete scan requires only 20 J.1s and is, therefore, negligible in 
terms of program response time except at extremely high frequencies (which 
could be maintained on only a limited number of lines). Where reception is 
at maximum speed, the program must retrieve a character from the receiver 

., 



1.' 

§8.3 DATA LINE SCANNER DClO 

within n + V2 bit times, where n is the number of stop units, to avoid losing 
data. To keep a transmitter operating at maximum speed, the program must 
supply a new character in n - V2 bit times. These times, however, are irrele­
vant in any reasonable system with a number of lines at different speeds. 
The program must service every interrupt as quickly as possible to avoid 
hanging up the scanner, because there is no guarantee that other lines are not 
already waiting. The time is critical only for reception, where information 
can be lost, as transmission is simply slowed down. But a slow response by 
the program to a transmitter interrupt can sink a receiver that is waiting. 
Even if a receiver is not serviced in time, the program must give the DATAl 
anyway to release the scanner and clear the receiver flag so the end of the 
next character can be detected. 

Modem Control Programming 

If any DCIOE lines are in use, the DTR distend switch should be on. This 
allows the program to control the Data Terminal Ready signal for each 
modem individually via its DC lOE line and greatly facilitates recovery pro­
cedures from a breakdown. When the system is restarted, the 10 reset has no 
effect on the modem control signals. Hence, the software can check through 
the lines to see which ones are still operating and get the system going again. 

To turn on Data Terminal Ready to an individual data set, give a DATAO 
for the line with a 1 in bit 29. In every DAT AO that is ever given for a 
DC 10E line, there must be a 1 in bit 29 unless the programmer specifically 
wishes to disconnect the modem. When a call 'is terminated (by a 0 in bit 29), 
the hardware holds the signal off for 100 ms to ensure that the data set dis­
connects properly even if the program sets Ready Enable again before that 
time is up. Generally, the program should turn on Data Terminal Ready on a 
switched line only to answer a call in response to Ring Indicator or to allow 
placing of an outgoing call, either manually or through an ACU. 

The program can place outgoing calls on the data sets connected to lines 6 
and 7 in each DClOE. To determine whether the data set is available, the 
program can give a DATAO that sets the status flag (bit 28) and then give a 
DATAl to check Data Line Occupied (bit 30) when the interrupt occurs. 
To place a call, give a DATAO whose data word selects the line and has a 1 in 
bit 30 to turn on Call Request and the timer. Reception of a dial tone turns 
on Data Line Occupied. As the ACU is ready for each digit it turns on 
Present Next Digit, which sets the status flag. On checking that bit 31 read 
by a DATAl is on, the program gives a DATAO for the line with the digit in 
bits 32-35 and a 1 in bit 31 to load the digit into the modem control and 
turn on Digit Present. When the ACU processes the digit, it turns off Present 
Next Digit, turning off Digit Present, and restarts the timer. If the timer runs 
out while waiting for some necessary event in the call procedure, the ACU 
turns on Abandon Call, which sets the status flag. 

8-35 

With the DTR distend switch 
off, a system failure causes all 
data sets to disconnect. To 
use DCIOE lines with the 
switch off, the program must 
give a CONO DLS,2P (where 
P is the channel assignment) 
every half-second to keep the 
data sets connected. 

Actually, the hold for the 
signals is a one-shot that is 
held on continuously when 
the switch is on. The circuit 
is generally set to its maxi­
mum time, about .9 second. 

To terminate a call and have 
the line available again as soon 
as possible (eg to answer any 
incoming call automatically), 
the program can give two con­
secutive DATAOs for the 
same line, the first having a 0 
in bit 29, the second having a 
1. The first instruction turns 
Data Terminal Ready off, and 
it stays off for 100 ms even 
though the second instruction 
sets Ready Enable immediate­
ly. 

Bits 29 and 30 must also be Is 
to hold on Data Terminal 
Ready and Call Request. 



8-36 

If the program gives an end-of­
number code, it can use the 
timer interrupt as a signal to 
check that the call has been 
answered. 

Rates below 2000 require a 
minor hardware adjustment. 

Good communica tion practice 
dictates the use of a string of 
sync characters to initiate and 
a more complex pattern, end­
ing with an EOT, to terminate. 

DATA COMMUNICATIONS §8.4 

After the last digit has been processed, the ACU again turns on Present 
Next Digit, and the response by the program depends on the particular setup. 
The program can simply ignore the interrupt and let the ACU wait for the 
call to be answered, at which time the channel is returned to the modem; or 
the program may have the option of or need to give the end-of-number code, 
which turns the line over to the modem immediately and the modem waits 
for the answer. If the timer runs out, either before the call is answered or 
because the modem going into data mode does not stop it, the ACU generates 
Abandon Call, setting the status flag. After the modem regains the line, the 
program may be able to drop Call Request if the ACU is so configured, but it 
is of no concern because the program must eventually give a DATAO anyway 
to terminate the call by turning off Data Terminal Ready. 

8.4 SINGLE SYNCHRONOUS LINE UNIT DS10 

This unit handles transmission and reception of serial data over one full­
duplex, synchronous communication line at speeds of 600 to 20,000 bits per 
second using EIA standard levels. Although transmission and reception are in 
the form of a continuous bit stream, this stream is nonetheless handled in 
terms of characters of six or eight bits in length. Transfer of data between 
the OSlO and the PDP-IO is in full words via the 10 bus. The equipment 
contains facilities for the program to answer incoming calls. Typical modems 
used with the OS 10 are Bell data sets 20 I A, 201 B, 203, and 205. Timing for 
reception and transmission is provided by a clock in the data set. 

When the character length is six bits, each word has six characters in this 
order: 

FIRST SECOND THIRD FOURTH FIFTH SIXTH 

o 5 6 11 12 17 18 23 24 29 30 35 

When the character length is eight bits, each word contains thirty-two bits of 
data comprising four characters in this order: 

FIRST SECOND THIRD FOURTH 

o 7 8 15 16 23 24 31 32 35 

Transfers over the 10 bus are always in 36-bit words, but for 8-bit characters, 
bits 32-35 are ignored by the transmitter and supplied as Os by the receiver. 
In both formats, the least significant bit is transmitted and received first in 
every character. Communication is initiated by the use of a sync character 
and should be terminated by an end-of-transmission character (EOT). 

For output, the program selects the character length and supplies the first 
word with the sync character in the first character position. When the trans-



§8.4 LINE UNIT OSlO 

mitter recognizes the sync character, it sends out the word and signals the 
program when it is ready for the next one. At the completion of a message, 
the transmitter can be turned off or the program can cause it to idle, sending 
the same character over and over, until a new message is ready. 

For input, the program must specify the expected character length prior to 
reception. On detecting a sync character, the receiver assembles the incom­
ing bits into characters of the specified size and assembles the characters into 
words. As each word is completed, the receiver signals the program to re­
trieve it. 

The equipment contains a number of jumper boards that allow the user to 
select the polarity of the data signals, the device codes of the equipment, and 
the configuration of the sync and EOT characters (different sync characters 
can be selected for transmission and reception). Unless otherwise specified, 
the equipment is set up for conventional EIA signal polarities, the standard 
DEC device codes, and the standard ASCII SYN and EOT characters. The 
sync and end-of-transmission characters respectively are, therefore, 226 and 
204 in the 8-bit format, 26 and 04 in the 6-bit format. 

Instructions 

The transmitter and receiver each have a 36-bit word buffer and a shift regis­
ter for connection to the line for characters of either length. Because the 
individual characters are handled separately from the buffer, each time the 
transmitter is free to receive a word from the bus or the receiver has a word 
for the bus, the program has one entire character time in which to respond. 

The DS 10 has two device codes, 460 and 464, mnemonics DSS and DSI. 
Device code 460 is used for both data and conditions; device code 464 is used 
only for priority interrupt assignments. A second DS 10 would have device 
codes 470 and 474. 

CONO DSI, Conditions Out, DS10 Interrupt 

74660 y 

o 121314 1718 35 

Assign the interrupt channels specified by bits 30-35 of the effective condi­
tions E as shown. 

27 28 

PRIORITY INTERRUPT 
ASSIGNMENT - FLAGS 

30 31 32 

PRIORITY INTERRUPT 
ASSIGNMENT - DATA 

33 34 35 

8-37 

For information on installing 
jumpers, refer to the DS10 
Maintenance Manual. 



8-38 

SELECT 
8-BIT 

LENGTH 

18 

ENTER 
OIAGNOSTIC 

'r ENABLE 
IDLE 

19 20 21 22 

DATA COMMUNICATIONS §8.4 

CONIOSI, Conditions In, OS10 Interrupt 

74664 y 
o 121314 1718 3S 

Read the interrupt assignments given by the last CONO DSI, into bits 30-35 
of location E. 

CONO OSS, Conditions Out, OS10 Status 

74620 y 

o 121314 1718 3S 

Perform the functions specified by the effective conditions E as shown (in 
bits 23 and 30-35, a 1 performs the indicated function, a 0 has no effect; in 
the remaining bits, a 1 performs the indicated function, a 0 has the opposite 
effect). 

TURN TURN ON 
CLEAR CLEAR CLEAR INHIBIT DATA ENABLE CLEAR OFF 

ECHO TERMINAL RING RING 
END DATA EOT 

RECEIVER 
READY ERROR ERROR RECEIVED 

23 24 25 26 27 28 29 30 31 32 33 34 35 

18 A I selects a character length of eight bits, a 0 selects six bits. 

19 A 1 places the unit in diagnostic mode, a 0 returns it to normal opera­
tion. 

20 A 1 causes the next DA T AO to idle the transmitter; a 0 disables 
idling, clears Idle, and places the transmitter back in normal opera­
tion. 

23 Tum off the receiver by clearing Receiver Active and Receiver Done. 

24 For alternate-simplex operation, a 1 in this bit prevents transmitted 
data from being echoed back to the receiver; a 0 allows the normal 
echoing. 

26 A 1 turns on Data Terminal Ready, a 0 turns it off. 

27 A 1 enables a Ring Indicator signal from the modem to set the Ring 
flag; a 0 causes Ring Indicator to be ignored. 

<.r 

.. ' 



§8.4 LINE UNIT DSI0 

CONIOSS, Conditions In, OSlO Status 

74624 y 
o 121314 1718 3S 

Read the status of the line unit into the right half of location E as shown. 

DIAGNOSTIC 

''\' 8-BIT IDLE 
IDLE 

LENGTH ENABLED 

18 19 20 21 

TRANSMITTER 
ACTIVE 

\ RECEIVER 
ACTIVE 

22 23 

ECHO 
INHIBIT 

24 

* 
CLEAR DATA 

RING 
DATA 

TO ERMINAL SET RING 
SEND READY ENABLED READY 

25 26 27 28 29 30 

DATAl DSS, clears Receiver Done, DATAO DSS, clears Transmitter Done. 
The setting of Ring, End Error, or Data Error requests an interrupt on the 
flag channel (assigned by bits 30-32 of the last CONO DSI,). The setting of 
Transmitter Done or Receiver Done requests an interrupt on the data channel 
(assigned by bits 33-35 of the last CONO DSI,). 

Bits 25, 26, and 28 are simply the modem control signals (a 1 indicates the 
signal is on). 

18 The DS 10 is set up to process 8-bit characters; a 0 indicates 6-bit 
characters. 

21 The transmitter is idling, ie transmitting over and over the first char­
acter of the last word supplied by a DATAO. 

22 The transmitter is now transmitting data. This bit is cleared when 
the program fails to supply a new word before the last bit of the pre­
vious one is transmitted or Clear To Send goes off (bit 25). 

23 The receiver is now receiving data. This bit is cleared if the program 
turns off the receiver (CONO DSS, bit 23), carrier is lost, or the re­
ceiver clock from the data set goes off. 

24 If the line is set up for alternate-simplex operation, characters trans­
mitted will not be echoed back to the receiver. 

30 

31 

A ringing signal was received while Ring Enabled (bit 27) was set. 

Either carrier was lost or the receiver clock from the data set went off 
before an EOT character was received (ie while bit 34 was clear). 

32 The program failed to respond to a receiver interrupt before the next 
character was assembled. Until a DATAl is given, the buffer will still 
contain the word previously assembled, but subsequent characters 
will have been lost. 

8-39 

TRANSM ITTER 

* * ""9 * 
END DATA EOT RECEIVER 

ERROR ERROR RECEIVED DONE 

31 32 33 34 35 

*These bits cause interrupts. 

In the usual fashi on, the pro­
gram can answer by turning on 
Data Terminal Ready (eONO 
DSS, bit 26). 



8-40 

Note that this neither causes 
an interrupt nor affects the 
receiver - it is up to the pro­
gram to determine its implica­
tions. 

DATA COMMUNICA nONS §8.4 

33 The transmitter buffer is free to receive another word from the pro­
gram. 

The receiver has detected an EOT character. 34 

35 The receiver buffer has a complete word for the program to retrieve. 

DATAO DSS, Data Out, DS10 Status 

74614 y 

o 121314 1718 3S 

Load the contents of location E into the transmitter buffer and clear Trans­
mitter Done. If Idle Enabled is set, set Idle (CONI DSI, bits 20 and 21). 

DATAl DSS, Data In, DS10 Status 

74604 y 
o 121314 1718 3S 

Transfer the contents of the receiver buffer into location E. Clear the buffer 
and Receiver Done. 

Programming Considerations 

Before using the line, the program should give a CO NO DSI, to assign inter­
rupt channels for the flags and data, and give a CONO DSS, to select the 
character length, clear the flags, and turn on Data Terminal Ready if that is 
required by the modem. To ignore incoming calls, simply give a 0 in bit 27 

to disable the Ring flag; but if calls are to be answered, give a 1 so that Ring 
Indicator will set Ring, requesting an interrupt on the channel assigned to the 
flags. When the program answers a call by turning on Data Terminal Ready, 
it should disable Ring to prevent further interrupts. Initially, the program 
should also give a CONI DSS, and check for a 1 in bit 28 to make sure the 
data set is ready. 

Output. To transmit, the program gives a DAT AO to load the buffer with 
the first word, which must have the predefined sync character of the selected 
length in the first position. In response to the sync character, the transmitter 
turns on Request To Send; when the data set responds by sending back Clear 
To Send, Transmitter Active sets and the unit begins sending out the charac­
ters from the buffer in serial form over the line. As the final character in 
each word is started, Transmitter Done sets, requesting an interrupt on the 



§8.4 LINE UNIT DSIO 

channel assigned to data. Within one character time, the program must re­
spond with a DATAO that supplies the next word and clears Transmitter 
Done. Otherwise, when the transmitter finishes sending the final character 
in the word, it clears Transmitter Active and Transmitter Done and turns off 
Request To Send. This means that the program can terminate transmission 
simply by refusing to respond to the interrupt following the last word - or 
by dismissing the data PI assignment when giving the last word, so there will 
be no interrupt at all. 

The program may wish to keep a line active even though there are intervals 
between messages transmitted. To do this give a CONO DSS, with a 1 in bit 
20 to enable Idle after loading the last word of the message into the buffer; 
then at the next interrupt give a DATAO to load a word whose first character 
is some line idling character previously arranged with the remote station. 
This DAT AO clears Transmitter Done, but it sets Idle so that Transmitter 
Active remains set indefinitely, causing the transmitter to send out the first 
character of the word over and over. This idling procedure continues until 
the program gives a CONO DSS, with a 0 in bit 20 to clear Idle and Idle 
Enabled, at which time the transmitter sends the rest of the word. 

Input. While a communication link is maintained, the receiver continu­
ously monitors the incoming bit stream; with the line idle, this is usually con­
tinuous marking. Whenever the receiver detects the predefined sync character' 
in the length specified by the program, it synchronizes to that character and 
sets Receiver Active. From that point on, it assembles incoming bits into 
characters, and assembles the characters into words in the buffer, taking the 
first sync character as the first in the first word. As it loads the last character 
of each word into the buffer it sets Receiver Done, requesting an interrupt on 
the channel assigned to data. The program must respond within one character 
time with a DATAl to get the word and clear Receiver Done. If the receiver 
assembles an entire character before the buffer is read, it simply throws the 
character away and sets Data Error, requesting an interrupt on the channel as­
signed to the flags; the last word assembled remains inviolate in the buffer, 
but all sub seq uent characters are thrown away until Receiver Done is cleared. 

If the receiver detects the predefined end-of-transmission character in the 
incoming data, it sets EOT Received. The program can determine whether 
such a character is received (perhaps with each DATAl) by checking for a 1 
in bit 34 of the input conditions. It is up to the program to determine 
whether such a character really represents the end of a message or the end of 
transmission and is not just the equivalent set of bits, as would quite likely 
happen if the input is binary data without a true character structure. The 
program can turn off the receiver at any time by giving a 1 in bit 23 of a 
CONO DSS,. This action or the loss of carrier or clock from the data set 
clears Receiver Active, halting reception and clearing Receiver Done. If 
carrier or clock goes off before an EOT character comes in (ie while EOT 
Received is clear), the receiver also sets End Error, requesting an interrupt on 
the channel assigned to the flags. 

8-41 

Eg the program may wish to 
wait for the remote station to 
respond to one message before 
sending another. 

The remammg characters in 
the word may be part of the 
next message if this is known 
ahead of time, or they can 
simply be more idling charac­
ters, or sync characters to sig­
nal the beginning of the next 
message. 



8-42 

The same circuit is used to 
detect loss of carrier: it is 
assumed that carrier is lost if 
Carrier Detected remains off 
for the period of the circuit. 

The data set need not actually 
be disconnected. 

DATA COMMUNICATIONS §8.4 

In alternate-simplex operation, the data transmitted is often echoed back 
to the receiver from the data set. If no echo is desired, the program can in­
hibit it by giving a CONO DSS, with a 1 in bit 24; then the input to the 
receiver is held marking regardless of what is sent out by the transmitter. 

Timing. Timing depends on various characteristics of the modem, partic­
ularly the bit rate. Given the bit rate, the only critical factor for the program 
is that it must respond to a data interrupt within one character time. Failure 
of the receiver clock is assumed if no pulses arrive for 650 J1.s as determined 
by a timing circuit; this covers speeds of 2000 bits per second and above. 
For slower speeds, the circuit should be adjusted to some reasonable period 
greater than the bit time. 

Diagnostic Programming. Placing the unit in diagnostic mode (by giving a 
CONO DSS, with a 1 in bit 19) causes it to act in the normal manner but 
totally divorced from the modem. Instead, the necessary control signals are 
simulated: Data Terminal Ready produces Data Set Ready, Request To 
Send produces Clear To Send, and an internal clock supplies both the re­
ceiver and transmitter clocks at a frequency of 2500 Hz. With this arrange­
ment, the program can transmit data, starting with a sync character and then 
responding to Transmitter Done, but the data sent out is fed directly into 
the receiver, which also functions normally. 

Leaving Ring disabled simulates Carrier Detected so the standard logic can 
monitor both it and the receiver clock for an end error; enabling Ring allows 
the diagnostic clock to set the Ring flag. 



Appendices 





.-
o· 

APPENDIX A 

INSTRUCTIONS AND MNEMONICS 

The drawing on the next two pages shows the formats of the various types of 
words used by the processor (instructions, pointers, operands, etc). The il­
lustration on page A-4 shows the derivation of the instruction mnemonics. 
Next are two tables that list all instruction mnemonics and their octal codes 
both numerically and alphabetically. When two mnemonics are given for the 
same octal code, the first is the preferred form, but the assembler does 
recognize the second. For completeness, the tables include the MUUOs 
(indicated by an asterisk) that are recognized by MACRO for communication 
with the DECsystem -10 Time Sharing Monitor. A double dagger (:j:) indi­
cates a KIl 0 instruction code that is unassigned in the KAIO. 

In-out device codes are included only in the alphabetic listing and are 
indicated by a dagger (t). Following the tables is a chart that lists the 
devices with their mnemonic and octal codes and DEC type numbers for 
both PDP-IO and PDP-6. A device mnemonic ending in the numeral 2 is 
the recommended form for the second of a given device, but such codes are 
not recognized by MACRO - they must be defined by the user. 

Beginning on page A-13 is a list of all instructions showing their actions in 
symbolic form. On page A-23 is a table of the positive and negative 
powers of 2. 

A-I 

Note that 247 is unassigned 
in the KilO, but 247 and 
257 execute as no-ops in 
the KAIO. 



A-2 

1 
I 

INSTRUCTION CODE 
(INCLUDING MODE) 

DEVICE CODE 

2 3 

FLAGS 

9 10 

SOURCE ADDRESS 

INSTRUCTIONS AND MNEMONICS 

BASIC INSTRUCTIONS 

r 

IN-OUT INSTRUCTIONS 

x r 
12 13 14 17 18 

PC WORD 

PC 

12: 13 17 18 , 
----------------

10 11 12 

BLT POI NTER fx WD} 

DESTI NATION ADDRESS 

17 18 

BLKI/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD 

I - WORD COUNT I ADDRESS-l 

o 17 18 

BYTE POINTER 

POSITION P SIZE S x I y 

5 6 11 12 13 14 17 18 

BYTE STORAGE 

35 

35 

35 

*DISA8LE BYPASS IN 
KIlO EXECUTIVE MODE 

35 

[IOWD] 

I 
35 

I 
35 

f-----s BITS P 81TS ------1 

10 SMALL USER VIOLATION 

21 PROPRIETARY VIOLATION 

NOVEMBER 1974 

I BYTE NEXT BYTE 

35-P-S -1 35- P 35-P+l 

PAGE MAP WORD 

PHYSICAL PAGE 
ADDRESS BITS 14 -26 

17 18 19 20 21 22 23 

PAGE FAIL WORD 
VIRTUAL PAGE 

ADDRESS BITS 18 -26 

17 

PHYS I CA L PAGE 
ADDRESS BITS 14-26 

FAILURE TYPE 

31 

35 

35 

35 

22 PAGE REFILL FAILURE 

23 ADDRESS FAILURE 
IF BIT 31 IS 0, BITS 31-35 HAVE THIS FORMAT 10 I A I Wi SiT I 



WORD FORMATS 

FIXED POINT OPERANDS (SINGLE PRECISION OR HIGH ORDER WORD) 

BINARY NUMBER (TWOS COMPLEMENT) 

LOW ORDER WORD IN DOUBLE LENGTH FIXED POINT OPERANDS 

LOW ORDER HALF OF BI NARY NUMBER (TWOS COMPLEMENT) 

FLOATING POINT OPERANDS (SINGLE PRECISION OR HIGH ORDER WORD) 
EXCESS 128 EXPONENT 

(ONES COMPLEMENT) 

8 9 

FRACTION (TWOS COMPLEMENT) 

LOW ORDER WORD IN SOFTWARE DOUBLE LENGTH FLOATING POINT OPERANDS 
EXCESS 128 EXPONENT-27 

IN POSITIVE FORM 
8 9 

LOW ORDER HALF OF FRACTION (TWOS COMPLEMENT) 

LOW ORDER WORD IN HARDWARE DOUBLE LENGTH FLOATING POINT OPERANDS 

LOW ORDER EXTENSION OF FRACTION (TWOS COM PLEMENT) 

A-3 

35 

35 

35 

35 

35 



A-4 INSTRUCTIONS AND MNEMONICS 

MOV!; Negative ] ______ --, 

e Magnitude ! to AC 
e Swapped f- Immediate to AC 

(
no effect ] to Memory 

{Right} {Right} Ones to Self 
Half word Lef to Lef Z >-t t eros 

Extend sign 

BLock Transfer 

EXCHange AC and memory 

use present pOinter} d { LoaD Byte into AC 

Increment pointer an DePosit Byte in memory 

Increment Byte Pointer 

PUSH down} { -
POP up and Jump 

Zeros 
Ones 

SETto Ac 
Memory 
Complement of Ac 

Complement of Memory 1 AC 

1
- ] AC Immediate ,...to 

AND } with Complement of Ac Memory 
inclusive OR with Complement of Memory .- Both 

Complements of Both 

eXclusive OR ___________ --.J 
Inclusive OR I 
EQuiValence 

SKIP if memory} 
JUMP if AC ---------, 

never 
Less 
Equal 

Add One to } {memory and SkiP} if-f-' 
Subtract One from AC and Jump 

Less or Equal 
Always 
Greater 

{Immediate} " 
Compare Ac 'I M and skip If AC-Wit 1 emory Greater or Equal 

Not equal 

, {Positive Add One to Both halves of AC and Jump If N ' 
egatlve 

Arithmetic SHift I { 
Logical SHift C~ b' d 
ROTate om me 

ADD 
SUBtract 
MULtiply 

Integer MULtiply ~! ~ 
DIVide Immediate 
Integer DIVide to Memory 

and Round to Both 

F10ating AdD I r 1 ~ F10ating SuBtract Long 
F10ating MultiPly to Memory 
F10ating DiVide to Both 

F10ating SCale 

Double Floating Negate 

Unnormalized Floating Add 

FIX 
FIX and Round 

FLoa T and Round 

Double Floating AdD 
Double Floating SuBtract 
Double Floating MultiPly 
Double Floating DiVide 

Double MOV , { E } {-
e NegatIve to Memory 

Jump 

to SubRoutine 
and Save Pc 
and Save Ac 
and Restore Ac 
if Find First One 
on Flag and Clear it 
on OVerflow (JFCL 10,) 
on CaRrY 0 (JFCL 4,) 
on CaRrY 1 (JFCL 2,) 
on CaRrY (JFCL 6,) 
on Floating OVerflow (JFCL I,) 
and ReSTore 
and ReSTore Flags (JRST 2,) 
and ENable PI channel (JRST 12,) 

HALT (JRST 4,) 

PORTAL (JRST I,) 

eXeCuTe 

DATA} 

BLocK :{{In 
Out 

CONditions , 
, d Sk' 'f {all masked bits Zero 
111 an Ip I some masked bit One 

I with Direct mask I 
T with Swapped mask 

est AC R' h 'h Ig tWit E 

Left with E 

! 

No modification ] ! never 
set masked bits to Zeros d k' if all masked bits Equal 0 
set masked bits to Ones an s Ip if Not all masked bits equal 0 
Complement masked bits Always 



000 ILLEGAL 

~11 LUUO'S 

., 037 
040 *CALL 
041 *INIT 

,. 

W2j '.c 

043 RESERVED 

044 FOR 
SPECIAL 

045 MONITORS 

046 
047 *CALLI 
050 *OPEN 
051 *TTCALL 

052
1 

053 RESERVED 
FOR DEC 

054 
055 *RENAME 
056 *IN 
057 *OUT 
060 *SETSTS 
061 *STATO 
062 * STATUS 
062 *GETSTS 
063 * STATZ 
064 *INBUF 
065 *OUTBUF 
066 *INPUT 
067 *OUTPUT 
070 *CLOSE 
071 *RELEAS 
072 *MTAPE 
073 *UGETF 
074 *USETI 

"- 075 *USETO 
076 *LOOKUP 
077 *ENTER 
100 *UJEN 
101 
102 
103 
104 
105 

NUMERIC LISTING 

INSTRUCTION MNEMONICS 

NUMERIC LISTING 

106 
107 
110 :j:DFAD 
III :j:DFSB 
112 :j:DFMP 
113 :j:DFDV 
114 
115 
116 
117 
120 :j:DMOVE 
121 :j:DMOVN 
122 :j:FIX 
123 
124 :j:DMOVEM 
125 :j:DMOVNM 
126 :j:FIXR 
127 :j:FLTR 
130 UFA 
131 DFN 
132 FSC 
133 IBP 
134 ILDB 
135 LDB 
136 IDPB 
137 DPB 
140 FAD 
141 FADL 
142 FADM 
143 FADB 
144 FADR 
145 FADRI 
146 FADRM 
147 FADRB 
150 FSB 
151 FSBL 
152 FSBM 
153 FSBB 
154 FSBR 
155 FSBRI 
156 FSBRM 
157 FSBRB 
160 FMP 
161 FMPL 

A-5 

162 FMPM 
163 FMPB 
164 FMPR 
165 FMPRI 
166 FMPRM 
167 FMPRB 
170 FDV 
171 FDVL 
172 FDVM 
173 FDVB 
174 FDVR 
175 FDVRI 
176 FDVRM 
177 FDVRB 
200 MOVE 
201 MOVEI 
202 MOVEM 
203 MOVES 
204 MOVS 
205 MOVSI 
206 MOVSM 
207 MOVSS 
210 MOVN 
211 MOVNI 
212 MOVNM 
213 MOVNS 
214 MOVM 
215 MOVMI 
216 MOVMM 
217 MOVMS 
220 IMUL 
221 IMULI 
222 IMULM 
223 IMULB 
224 MUL 
225 MULl 
226 MULM 
227 MULB 
230 IDIV 
231 IDIVI 
232 IDIVM 
233 IDIVB 
234 DIV 
235 DIVI 



A-6 INSTRUCTIONS AND MNEMONICS 

236 DIVM 306 CAIN 367 SOJG 
237 DIVB 307 CAIG 370 SOS 
240 ASH 310 CAM 371 SOSL 
241 ROT 311 CAML 372 SOSE 
242 LSH 312 CAME 373 SOSLE 
243 JFFO 313 CAMLE 374 SOSA 
244 ASHC 314 CAMA 375 SOSGE 
245 ROTC 315 CAMGE 376 SOSN 
246 LSHC 316 CAMN 377 SOSG 
247 317 CAMG 400 SETZ >OJ 

250 EXCH 320 JUMP 400 CLEAR 
251 BLT 321 JUMPL 401 SETZI 
252 AOBJP 322 JUMPE 401 CLEARI . 
253 AOBJN 323 JUMPLE 402 SETZM 
254 JRST 324 JUMPA 402 CLEARM 
25404 PORTAL 325 JUMPGE 403 SETZB 
25410 JRSTF 326 JUMPN 403 CLEARB 
25420 HALT 327 JUMPG 404 AND 
25450 JEN 330 SKIP 405 ANDI 
255 JFCL 331 SKIPL 406 ANDM 
25504 JFOV 332 SKIPE 407 ANDB 
25510 JCRYI 333 SKIPLE 410 ANDCA 
25520 JCRYO 334 SKIPA 411 ANDCAI 
25530 JCRY 335 SKIPGE 412 ANDCAM 
25540 JOV 336 SKIPN 413 ANDCAB 
256 XCT 337 SKIPG 414 SETM 
257 :j:MAP 340 AOJ 415 SETMI 
260 PUSHJ 341 AOJL 416 SETMM 
261 PUSH 342 AOJE 417 SETMB 
262 POP 343 AOJLE 420 ANDCM 
263 POPJ 344 AOJA 421 ANDCMI 
264 JSR 345 AOJGE 422 ANDCMM 
265 JSP 346 AOJN 423 ANDCMB 
266 JSA 347 AOJG 424 SETA 
267 JRA 350 AOS 425 SETAl 
270 ADD 351 AOSL 426 SETAM 
271 ADDI 352 AOSE 427 SETAB 
272 ADDM 353 AOSLE 430 XOR .' 
273 ADDB 354 AOSA 431 XORI 
274 SUB 355 AOSGE 432 XORM 
275 SUBI 356 AOSN 433 XORB 
276 SUBM 357 AOSG 434 lOR 
277 SUBB 360 SOJ 434 OR 
300 CAl 361 SOJL 435 10RI 
301 CAlL 362 SOJE 435 ORI 
302 CAIE 363 SOJLE 436 10RM 
303 CAlLE 364 SOJA 436 ORM 
304 CAIA 365 SOJGE 437 10RB 
305 CAIGE 366 SOJN 437 ORB 



NUMERIC LISTING A-7 

440 ANDCB 521 HLLOI 602 TRNE 
441 ANDCBI 522 HLLOM 603 TLNE 
442 ANDCBM 523 HLLOS 604 TRNA 
443 ANDCBB 524 HRLO 605 TLNA 
444 EQV 525 HRLOI 606 TRNN 
445 EQVI 526 HRLOM 607 TLNN 
446 EQVM 527 HRLOS 610 TDN 
447 EQVB 530 HLLE 611 TSN 
450 SETCA 531 HLLEI 612 TDNE 

'" 451 SETCAI 532 HLLEM 613 TSNE 
452 SETCAM 533 HLLES 614 TDNA 
453 SETCAB 534 HRLE 615 TSNA 

,. 454 ORCA 535 HRLEI 616 TDNN 
455 ORCAI 536 HRLEM 617 TSNN 
456 ORCAM 537 HRLES 620 TRZ 
457 ORCAB 540 HRR 621 TLZ 
460 SETCM 541 HRRI 622 TRZE 
461 SETCMI 542 HRRM 623 TLZE 
462 SETCMM 543 HRRS 624 TRZA 
463 SETCMB 544 HLR 625 TLZA 
464 ORCM 545 HLRI 626 TRZN 
465 ORCMI 546 HLRM 627 TLZN 
466 ORCMM 547 HLRS 630 TDZ 
467 ORCMB 550 HRRZ 631 TSZ 
470 ORCB 551 HRRZI 632 TDZE 
471 ORCBI 552 HRRZM 633 TSZE 
472 ORCBM 553 HRRZS 634 TDZA 
473 ORCBB 554 HLRZ 635 TSZA 
474 SETO 555 HLRZI 636 TDZN 
475 SETOI 556 HLRZM 637 TSZN 
476 SETOM 557 HLRZS 640 TRC 
477 SETOB 560 HRRO 641 TLC 
500 HLL 561 HRROI 642 TRCE 
501 HLLI 562 HRROM 643 TLCE 
502 HLLM 563 HRROS 644 TRCA 
503 HLLS 564 HLRO 645 TLCA 
504 HRL 565 HLROI 646 TRCN 

"- 505 HRLI 566 HLROM 647 TLCN 
506 HRLM 567 HLROS 650 TDC 
507 HRLS 570 HRRE 651 TSC 
510 HLLZ 571 HRREI 652 TDCE 
511 HLLZI 572 HRREM 653 TSCE 
512 HLLZM 573 HRRES 654 TDCA 
513 HLLZS 574 HLRE 655 TSCA 
514 HRLZ 575 HLREI 656 TDCN 
515 HRLZI 576 HLREM 657 TSCN 
516 HRLZM 577 HLRES 660 TRO 
517 HRLZS 600 TRN 661 TLO 
520 HLLO 601 TLN 662 TROE 



A-8 INSTRUCTIONS AND MNEMONICS 

663 TLOE 673 TSOE 70010 BLKO 

664 TROA 674 TDOA 70014 DATAO 

665 TLOA 675 TSOA 70020 CON a 

666 TRON 676 TDON 70024 CONI 

667 TLON 677 TSON 70030 CONSZ .. 
670 TDO 70000 BLKI 70034 CaNSO 

671 TSO 70004 DATAl .' 

672 TDOE 70004 RSW ~ 
>' 

~, 

.-. 

INSTRUCTION MNEMONICS . ( 

ALPHABETIC LISTING 

tADC 024 AOSA 354 tCDP 110 
ADD 270 AOSE 352 tCDR 114 
ADDB 273 AOSG 357 CLEAR 400 

ADDI 271 AOSGE 355 CLEARB 403 

ADDM 272 AOSL 351 CLEARI 401 

AND 404 AOSLE 353 CLEARM 402 

ANDB 407 AOSN 356 tCLK 070 

ANDCA 410 tAPR 000 *CLOSE 070 

ANDCAB 413 ASH 240 CONI 70024 

ANDCAI 411 ASHC 244 CONO 70020 

ANDCAM 412 BLKI 70000 CON SO 70034 

ANDCB 440 BLKO 70010 CONSZ 70030 

ANDCBB 443 BLT 251 tCPA 000 

ANDCBI 441 CAl 300 tCR 150 
ANDCBM 442 CAIA 304 DATAl 70004 
ANDCM 420 CAIE 302 DATAO 70014 
ANDCMB 423 CAIG 307 tDC 200 
ANDCMI 421 CAIGE 305 tDCSA 300 
ANDCMM 422 CAlL 301 tDCSB 304 
ANDI 405 CAlLE 303 :j:DFAD 110 
ANDM 406 CAIN 306 :j:DFDV 113 .", 

AOBJN 253 *CALL 040 :j:DFMP 112 
AOBJP 252 *CALLI 047 DFN 131 
AOJ 340 CAM 310 :j:DFSB 111 
AOJA 344 CAMA 314 tDIS 130 
AOJE 342 CAME 312 DIV 234 
AOJG 347 CAMG 317 DIVB 237 
AOJGE 345 CAMGE 315 DIVI 235 
AOJL 341 CAML 311 DIVM 236 
AOJLE 343 CAMLE 313 tDLB 060 
AOJN 346 CAMN 316 tDLC 064 
AOS 350 tCCI 014 tDLS 240 



ALPHABETIC LISTING A-9 

:j:DMOVE 120 FSBRB 157 HRLS 507 
:j:DMOVEM 124 FSBRI 155 HRLZ 514 
:j:DMOVN 121 FSBRM 156 HRLZI 515 
:j:DMOVNM 125 FSC 132 HRLZM 516 

DPB 137 *GETSTS 062 HRLZS 517 
tDPC 250 HALT 25420 HRR 540 

.. tDSI 464 HLL 500 HRRE 570 
t· tDSK 170 l 

HLLE 530 HRREI 571 
tDSS 460 HLLEI 531 HRREM 572 .. " tDTC 320 HLLEM 532 HRRES 573 , 

• tDTS 324 HLLES 533 HRRI 541 
*ENTER 077 HLLI 501 HRRM 542 

t· EQV 444 HLLM 502 HRRO 560 
EQVB 447 HLLO 520 HRROI 561 
EQVI 445 HLLOI 521 HRROM 562 

.' EQVM 446 HLLOM 522 HRROS 563 
EXCH 250 HLLOS 523 HRRS 543 
FAD 140 HLLS 503 HRRZ 550 
FADB 143 HLLZ 510 HRRZI 551 
FADL 141 HLLZI 511 HRRZM 552 
FADM 142 HLLZM 512 HRRZS 553 
FADR 144 HLLZS 513 IBP 133 
FADRB 147 HLR 544 IDIV 230 
FADRI 145 HLRE 574 IDIVB 233 
FADRM 146 HLREI 575 IDIVI 231 
FDV 170 HLREM 576 ImVM 232 
FDVB 173 HLRES 577 IDPB 136 
FDVL 171 HLRI 545 ILDB 134 
FDVM 172 HLRM 546 IMUL 220 
FDVR 174 HLRO 564 IMULB 223 
FDVRB 177 HLROI 565 IMULI 221 
FDVRI 175 HLROM 566 IMULM 222 
FDVRM 176 HLROS 567 *IN 056 

:j:FIX 122 HLRS 547 *INBUF 064 
:j:FIXR 126 HLRZ 554 *INIT 041 
:j:FLTR 127 HLRZI 555 *INPUT 066 

FMP 160 HLRZM 556 lOR 434 
',. FMPB 163 HLRZS 557 IORB 437 

FMPL 161 HRL 504 IORI 435 
FMPM 162 HRLE 534 IORM 436 
FMPR 164 HRLEI 535 JCRY 25530 
FMPRB 167 HRLEM 536 JCRYO 25520 
FMPRI 165 HRLES 537 JCRY1 25510 
FMPRM 166 HRLI 505 JEN 25460 
FSB 150 HRLM 506 JFCL 255 
FSBB 153 HRLO 524 JFFO 243 
FSBL 151 HRLOI 525 JFOV 25504 
FSBM 152 HRLOM 526 JOV 25540 
FSBR 154 HRLOS 527 JRA 267 



A-I0 INSTR UCTIONS AND MNEMONICS 

JRST 254 ORCAM 456 SETOM 476 
JRSTF 25410 ORCB 470 *SETSTS 060 
JSA 266 ORCBB 473 SETZ 400 
JSP 265 ORCBI 471 SETZB 403 
JSR 264 ORCBM 472 SETZI 401 
JUMP 320 ORCM 464 SETZM 402 
JUMPA 324 ORCMB 467 SKIP 330 
JUMPE 322 ORCMI 465 SKIPA 334 
JUMPG 327 ORCMM 466 SKIPE 332 , 

JUMPGE 325 ORI 435 SKIPG 337 rl 

JUMPL 321 ORM 436 SKIPGE 335 
JUMPLE 323 *OUT 057 SKIPL 331 
JUMPN 326 *OUTBUF 065 SKIPLE 333 , 

''t' 

LDB 135 *OUTPUT 067 SKIPN 336 
*LOOKUP 076 tPAG 010 SOJ 360 
tLPT 124 tPI 004 SOJA 364 

LSH 242 tPLT 140 SOJE 362 
LSHC 246 POP 262 SOJG 367 

:j:MAP 257 POPJ 263 SOJGE 365 
MOVE 200 PORTAL 25404 SOJL 361 
MOVEI 201 tPTP 100 SOJLE 363 
MOVEM 202 tPTR 104 SOJN 366 
MOVES 203 PUSH 261 SOS 370 
MOVM 214 PUSHJ 260 SOSA 374 
MOVMI 215 *RELEAS 071 SOSE 372 
MOVMM 216 * RENAME 055 SOSG 377 
MOVMS 217 tRMC 270 SOSGE 375 
MOVN 210 ROT 241 SOSL 371 
MOVNI 211 ROTC 245 SOSLE 373 
MOVNM 212 RSW 70004 SOSN 376 
MOVNS 213 SETA 424 *STATO 061 
MOVS 204 SETAB 427 *STATUS 062 
MOVSI 205 SETAl 425 * STATZ 063 
MOVSM 206 SETAM 426 SUB 274 
MOVSS 207 SETCA 450 SUBB 277 

*MTAPE 072 SETCAB 453 SUBI 275 
tMTC 220 SETCAI 451 SUBM 276 
tMTM 230 SETCAM 452 TDC 650 ..... ", 

tMTS 224 SETCM 460 TDCA 654 
MUL 224 SETCMB 463 TDCE 652 
MULB 227 SETCMI 461 TDCN 656 
MULl 225 SETCMM 462 TDN 610 
MULM 226 SETM 414 TDNA 614 

*OPEN 050 SETMB 417 TDNE 612 
OR 434 SETMI 415 TDNN 616 
ORB 437 SETMM 416 TDO 670 
ORCA 454 SETO 474 TDOA 674 
ORCAB 457 SETOB 477 TDOE 672 
ORCAI 455 SETOI 475 TDON 676 



ALPHABETIC LISTING A-II 

TDZ 630 TRCA 644 TSO 671 

TDZA 634 TRCE 642 TSOA 675 

TDZE 632 TRCN 646 TSOE 673 

TDZN 636 TRN 600 TSON 677 
TLC 641 TRNA 604 TSZ 631 
TLCA 645 TRNE 602 TSZA 635 
TLCE 643 TRNN 606 TSZE 633 
TLCN 647 TRO 660 TSZN 637 
TLN 601 TROA 664 *TTCALL 051 

~ TLNA 605 TROE 662 UFA 130 
TLNE 603 TRON 666 *UGETF 073 
TLNN 607 TRZ 620 *UJEN 100 .. ' 

~ TLO 661 TRZA 624 *USETI 074 

TLOA 665 TRZE 622 *USETO 075 
TLOE 663 TRZN 626 tUTC 210 

TLON 667 TSC 651 tUTS 214 

TLZ 621 TSCA 655 XCT 256 

TLZA 625 TSCE 653 XOR 430 

TLZE 623 TSCN 657 XORB 433 

TLZN 627 TSN 611 XORI 431 

tTMC 340 TSNA 615 XORM 432 

tTMS 344 TSNE 613 
TRC 640 TSNN 617 



- - - . . - .. -- - . -- - . 
l 6,10 6,10 10 10 DAIO 10 DAIO 10 ADIO 10 ADIO 
. APR PI PAG* CCI CCI2 ADC ADC2 CPA 

CENTRAL PRIORITY KIlO PDP-B,9 PDP-8,9 ANALOG-DIGITAL ANALOG-DIGITAL 
PROCESSDR INTERRUPT PAGING INTERFACE INTERFACE CONVERTER CONVERTER 

6 761 6 760 10 CPIO 6 461 6 6266 646 6,10 340 6,10 340 10 
10 10 10 10 LPIO 10 VPIO 10 VPIO 

PTP PTR CDP CDR TTY LPT DIS DIS2 
PAPER PAPER CONSOLE 

TAPE PUNCH TAPE READER CARD PUNCH CARD READER TELETYPE LINE PRINTER DISPLAY DISPLAY 

6 136 6 136 6 551 6 516 6 646 10 
10 LP10 

DC DC2 UTC UTS MTC MTS MTMt LPT2t 
DATA DATA 

CONTROL CONTROL DECTAPE MAGNETIC TAPE LINE PRINTER 

6 630 10 I TOIO 10 TDIO 10 

DCSA DCSB DTC DTS DTC2 DTS2 
DATA COMMUNICATION DECTAPE DECTAPE 

CODES IN THIS SECTION RESERVED FOR USER SPECIAL DEVICES 

*'N THE PDP-6 THESE CODES ARE USED FOR OTHER DEVICES 

010 DRUM PROCESSOR 

160 PDP-7,8 INTERFACE 

270 DISK FILE I DF) 

IN-OUT 
INSTRUCTION 

WORD 

t FOR A THIRD LINE PRINTER USE CODE 230 

DEVICE CODE 

.- .. -- - . -- - . . - .. 
10 r DL10 10 DKIO 10 DKIO 

DlB DlC ClK CLK2 
REAL REAL 

PDP -11 DATA LINK TIM E CLOCK TIME CLOCK 

XYIO 10 XY10 10 CR10 10 CR10 10 I DLiO 10 RC10 10 RCIO 

PLT PlT2 CR CR2 DLB2* DLC2 DSK DSK2 
PLOTTER PLOTTER CARD READER CARD READER PDP-II DATA LINK DISK/DRUM DISK I DRUM 

DCIO 10 DCIO 10 RPIO 10 RPIO 10 RPIO 10 RPIO 10 RHIO 10 RHIO 

DLS DlS2 DPC DPC2 DPC3 DPC4 RMC* RMC2 
DATA II NE DATA II NE DISK PACK DISK PACK DI SK PASK DISK PACK DATA DATA 
SCANNER SCANNE R SYSTEM SYSTEM SYS TEM SYS TEM CONTROL CONTROL 

TMIO 10 TMIO 

TMC TMS TMC2 TMS2 
MAGNETIC TAPE MAGNETIC TAPE 

KIlO UNRESTRICTED CODES 
RESERVED FOR USERS 

10 DSIO 10 DSIO 

DSS DSI DSS2 DSI2 
SINGLE SYNCHRONOUS SINGLE SYNCHRONOUS 

LINE UNIT LINE UNIT 

KIlO UNRESTRICTED CODES 
RESERVED FOR DEC 

24 
- ) I -

Used with PDP-6 ---16 646 -, - Option number for PDP-6 
Used with PDP-l0~110 LPlO-:---

1 

Option number for POP-l0 
1 LPT {No number indicates device is 1----- part of central processor) 

Deyice whosecodeis124~ LINE PRINTER Mnemonic for de'4ice code 124 

DEVICE MNEMONICS 

-' ", ~) . ...... : ~. 

~ ..... 
tv 

51 
Ul ..., 
::>:l 
c::: 
n ..., 
o 
z 
Ul 

:> z 
o 
3: z 
tTl 
3: 
o z 
n 
Ul 



... 

ALGEBRAIC REPRESENTATION 

ALGEBRAIC REPRESENTATION 

The remammg pages of this Appendix list, in symbolic form, the actual 
operations performed by the instructions. The grouping, as given below, dif­
fers slightly from that used in Chapter 2. 

Boolean A-IS In-out A-19 
Byte manipulation A-16 Program control A-19 
Fixed point arithmetic A-16 Pushdown list A-19 
Floating point arithmetic A-16 Shift and rotate A-19 
Full word data transmission A-17 Test, arithmetic A-20 
Half word data transmission A-18 Test, logical A-21 

The terminology and notation used also vary somewhat from that in the 
body of the manual, as follows. 

AC 

AC+l 

E 

E+I 

PC 

(X) 

(n 
(X)R 

(X)S 

An 

A,B 

(X,y) 

((X)) 

(AC) (E) 

I\VV'" 

The accumulator address in bits 9-12 of the instruction word 
(represented by A in the instruction descriptions). 

The address one greater than AC, except that AC+ 1 is 0 if AC is 
17. 

The result of the effective address calculation. E is eighteen bits 
when used as an address, half word operand, mask or output con­
ditions, but is a signed 9-bit quantity when used as a scale factor 
or a shift number. 

The address one greater than E, except that E+ I is 0 if E is 
777777. 

The 18-bit program counter. 

The word contained in register X. 

The left half of (X). 

The right half of (X). 

The word contained in X with its left and right halves swapped. 

The value of bit n of the quantity A. 

A 36-bit word with the 18-bit quantity A in its left half and the 
18-bit quantity B in its right half (either A or B may be 0). 

The contents of registers X and Y concatenated into a double 
word operand. 

The word contained in the register addressed by (X), ie addressed 
by the word in register X. 

The quantity A replaces the quantity B (A and B may be half 
words, full words or double words). Eg 

(AC) + (E) ~ (AC) 

means the word in accumulator AC plus the word in memory lo­
cation E replaces the word in AC. 

The word in AC and the word in E. 

The Boolean operators AND, inclusive OR, exclusive OR, and com­
plement (logical negation). 

A-13 



A-14 INSTRUCTIONS AND MNEMONICS 

+ - X -:- II The arithmetic operators for addition, negation or subtraction, 
multiplication, division, and absolute value (magnitude). 

Square brackets are used occasionally for grouping. With respect to the 
values of their terms, the equations for a given instruction are in chronolog­
ical order; eg in the pair of equations 

(AC) + 1 -+ (AC) 
II(AC) = 0: E -+ (PC) 

the quantity tested in the second equation is the word in AC after it has been 
incremented by one. 

'. 
4 . 



ALGEBRAIC REPRESENTATION A-IS 

Boolean 

SETZ 400 0-+ (AC) SETO 474 777777777777 -+ (AC) 

SETZI 401 0-+ (AC) SETOI 475 777777777777 -+ (AC) 

SETZM 402 0-+ (E) SETOM 476 777777777777 -+ (E) 

SETZB 403 0-+ (AC) (E) SETOB 477 777777777777 -+ (AC) (E) 

SETA 424 (AC) -+ (AC) [no-op] SETCA 450 - (AC) -+ (AC) 
- SETAl 425 (AC) -+ (AC) [no-op] SETCAI 451 - (AC) -+ (AC) .. 

SETAM 426 (AC) -+ (E) SETCAM 452 - (AC) -+ (E) 

~. SETAB 427 (AC) -+ (E) SETCAB 453 - (AC) -+ (AC) (E) 
:-

SETM 414 (E) -+ (AC) SETCM 460 - (E) -+ (AC) 

SETMI 415 O,E -+ (AC) SETCMI 461 - [O,E] -+ (AC) 

SETMM 416 (E) -+ (E) [no-op] SETCMM 462 - (E) -+ (E) 

SETMB 417 (E) -+ (AC) (E) SETCMB 463 - (E) -+ (AC) (E) 

AND 404 (AC) /\ (E) -+ (AC) ANDCA 410 - (AC) /\ (E) -+ (AC) 

ANDI 405 (AC) /\ O,E -+ (AC) ANDCAI 411 - (AC) /\ O,E -+ (AC) 

ANDM 406 (AC) /\ (E) -+ (E) AN DCAM 412 - (AC) /\ (E) -+ (E) 

ANDB 407 (AC) /\ (E) -+ (AC) (E) ANDCAB 413 - (AC) /\ (E) -+ (AC) (E) 

ANDCM 420 (AC) /\ - (E) -+ (AC) ANDCB 440 - (AC) /\ - (E) -+ (AC) 

ANDCMI 421 (AC) /\ - [O,E] -+ (AC) ANDCBI 441 - (AC) /\ - [O,E] -+ (AC) 

ANDCMM 422 (AC) /\ - (E) -+ (E) ANDCBM 442 - (AC) /\ - (E) -+ (E) 

ANDCMB 423 (AC) /\ - (E) -+ (AC) (E) ANDCBB 443 - (AC) /\ - (E) -+ (AC) (E) 

lOR 434 (AC) V (E) -+ (AC) ORCA 454 - (AC) V (E) -+ (AC) 

IORI 435 (AC) V O,E -+ (AC) ORCAI 455 - (AC) V O,E -+ (AC) 

IORM 436 (AC) V (E) -+ (E) ORCAM 456 - (AC) V (E) -+ (E) 

IORB 437 (AC) V (E) -+ (AC) (E) ORCAB 457 - (AC) V (E) -+ (AC) (E) 

.~, ORCM 464 (AC) V - (E) -+ (AC) ORCB 470 - (AC) V '" (E) -+ (AC) 

ORCMI 465 (AC) V '" [O,E] -+ (AC) ORCBI 471 '" (AC) V '" [O,E] -+ (AC) 

ORCMM 466 (AC) V '" (E) -+ (E) ORCBM 472 '" (AC) V '" (E) -+ (E) 

ORCMB 467 (AC) V '" (E) -+ (AC) (E) ORCBB 473 '" (AC) V '" (E) -+ (AC) (E) 

XOR 430 (AC) V (E) -+ (AC) EQV 444 '" [(AC) V (E)] -+ (AC) 

XORI 431 (AC) V O,E -+ (AC) EQVI 445 '" [(AC) V O,E] -+ (AC) 

XORM 432 (AC) V (E) -+ (E) EQVM 446 '" [(AC) V (E)] -+ (E) 

XORB 433 (AC) V (E) -+ (AC) (E) EQVB 447 '" [(AC) V (E)] -+ (AC)(E) 



A-16 INSTRUCTIONS AND MNEMONICS 

Byte Manipulation 

IBP 133 Operations on (E) [see page 2-16] 
IfP - S ~ 0: P - S -+ P 
IfP - S < 0: Y + I -+ Y 36 - S -+ P 

LDB 135 BYTE IN «E» -+ (AC) [see page 2-16] 

DPB 137 BYTE IN (AC) -+ BYTE IN «E» [see page 2-16] 

ILDB 134 IBPand LDB 

IDPB 136 IBPand DPB ~ 

Fixed Point Arithmetic . ~ 
ADD 270 (AC) + (E) -+ (AC) SUB 

, 
274 (AC) - (E) -+ (AC) 

ADDI 271 (AC) + O,E -+ (AC) SUBI 275 (AC) - O,E -+ (AC) 

ADDM 272 (AC) + (E) -+ (E) SUBM 276 (AC) - (E) -+ (E) 

ADDB 273 (AC) + (E) -+ (AC) (E) SUBB 277 (AC) - (E) -+ (AC) (E) 

IMUL 220 (AC) X (E) -+ (AC)* MUL 224 (AC) X (E) -+ (AC,AC+ 1) 

IMULI 221 (AC) X O,E -+ (AC)* MULl 225 (AC) X O,E -+ (AC,AC+ 1) 

IMULM 222 (AC) X (E) -+ (E)* MULM 226 (AC) X (E) -+ (E)t 

IMULB 223 (AC) X (E) -+ (AC) (E)* MULB 227 (AC) X (E) -+ (AC,AC+I)(E) 

IDIV 230 (AC) -;- (E) -+ (AC) DIV 234 (AC,AC+ I) -;- (E) -+ (AC) 
REMAINDER -+ (AC+ l) REMAINDER -+ (AC+ 1) 

IDIVI 231 (AC) -;- O,E -+ (AC) DIVI 235 (AC,AC+ 1) -;- O,E -+ (AC) 
REMAINDER -+ (AC+ 1) REMAINDER -+ (AC+ 1) 

IDIVM 232 (AC) -;- (E) -+ (E) DIVM 236 (AC,AC+ 1) -;- (E) -+ (E) 

IDIVB 233 (AC) -;- (E) -+ (AC) (E) DIVB 237 (AC,AC+ 1) -;- (E) -+ (AC) (E) 
REMAINDER -+ (AC+ 1) REMAINDER -+ (AC+ 1) 

*The high order word of the product is discarded. 
tThe low order word of the product is discarded. 

Floating Point Arithmetic ""'-."~ 

FAD 14O (AC) + (E) -+ (AC) FADR 144 (AC) + (E) -+ (AC) 

FADL 141 (AC) + (E) -+ (AC,AC+ l) FADRI 145 (AC) + E,O -+ (AC) 

FADM 142 (AC) + (E) -+ (E) FADRM 146 (AC) + (E) -+ (E) 
.. 

FADB 143 (AC) + (E) -+ (AC) (E) FADRB 147 (AC) + (E) -+ (AC) (E) 

FSB 150 (AC) - (E) -+ (AC) FSBR 154 (AC) - (E) -+ (AC) 

FSBL 151 (AC) - (E) -+ (AC,AC+ 1) FSBRI 155 (AC) - E,O -+ (AC) 

FSBM 152 (AC) - (E) -+ (E) FSBRM 156 (AC) - (E) -+ (E) 

FSBB 153 (AC) - (E) -+ (AC) (E) FSBRB 157 (AC) - (E) -+ (AC) (E) 



ALGEBRAIC REPRESENTATION A-17 

FMP 160 (AC) X (E) -+ (AC) FMPR 164 (AC) X (E) -+ (AC) .. 
FMPL 161 (AC) X (E) -+ (AC,AC+ 1) FMPRI 165 (AC) X E,O -+ (AC) 

FMPM 162 (AC) X (E) -+ (E) FMPRM 166 (AC) X (E) -+ (E) 

FMPB 163 (AC) X (E) -+ (AC) (E) FMPRB 167 (AC) X (E) -+ (AC) (E) 

FDV 170 (AC) + (E) -+ (AC) FDVR 174 (AC) + (E) -+ (Ae) 

FDVL 171 (AC) + (E) -+ (AC) FDVRI 175 (AC) + E,O -+ (AC) 
c REMAINDER -+ (AC+ 1) 

u 

FDVM 172 (AC) + (E) -+ (E) FDVRM 176 (AC) + (E) -+ (E) 

FDVB 173 (AC) + (E) -+ (AC) (E) FDVRB 177 (AC) + (E) -+ (AC) (E) 
-, ,., 

UFA 130 (AC) + (E) -+ (AC+ 1) without normalization 

DFN 131 - (AC,E) -+ (AC,E) 

FSC 132 (AC) X 2E -+ (AC) 

FLTR 127 (E) floated, rounded -+ (AC) 

FIX 122 (E) fixed -+ (AC) FIXR 126 (E) fixed, rounded -+ (AC) 

DFAD 110 (AC,AC+ 1) + (E,E+ 1) -+ (AC,AC+ 1) 

DFSB III (AC,AC+ 1) - (E,E+ 1) -+ (AC,AC+ 1) 

DFMP 112 (AC,AC+ 1) X (E,E+ 1) -+ (AC,AC+ 1) 

DFDV 113 (AC,AC+ 1) + (E,E+ 1) -+ (AC,AC+ 1) 

DMOVE 120 (E,E+ 1) -+ (AC,AC+ 1) DMOVEM 124 (AC,AC+ 1) -+ (E,E+ 1) 

DMOVN 121 - (E,E + 1) -+ (AC,AC+ 1 ) DMOVNM 125 - (AC,AC+ 1) -+ (E,E+ 1) 

Full Word Data Transmission 

EXCH 250 (AC) ~ (E) 

BLT 251 Move E - (AC)R + 1 words starting with «AC)d -+ «AC~) [see page 2-10] 

,.,.. MOVE 200 (E) -+ (AC) MOVS 204 (E)s -+ (AC) 

MOVEI 201 O,E -+ (AC) MOVSI 205 E,O -+ (AC) 

MOVEM 202 (AC) -+ (E) MOVSM 206 (AC)s -+ (E) ,-

MOVES 203 If AC =1= 0: (E) -+ (AC) MOVSS 207 (E)s -+ (E) 
If AC =1= 0: (E) -+ (AC) 

MOVN 210 - (E) -+ (AC) MOVM 214 ICE) I -+ (AC) 

MOVNI 211 - [O,E] -+ (AC) MOVMI 215 O,E -+ (AC) 

MOVNM 212 - (AC) -+ (E) MOVMM 216 I(Ac)I-+ (E) 

MOVNS 213 - (E) -+ (E) MOVMS 217 I(E)I-+ (E) 
If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 



A-18 INSTRUCTIONS AND MNEMONICS 

Half Word Data Transmission 

HLL 500 (E)L -+ (AC~ HLLZ 510 (E)L,O -+ (AC) 

HLLI 501 0-+ (AC~ HLLZI 511 0-+ (AC) 

HLLM 502 (AC~ -+(E~ HLLZM 512 (AC~,O -+ (E) 

HLLS 503 If AC =1= 0: (E) -+ (AC) HLLZS 513 0-+ (Ek 
If AC =1= 0: (E) -+ (AC) 

HLLO 520 (Ek,777777 -+ (AC) HLLE 530 (Ek,[(Ek X 777777] -+ (AC) <~ 

HLLOI 521 0,777777 -+ (AC) HLLEI 531 0-+ (AC) 

HLLOM 522 (AC~,777777 -+ (E) HLLEM 532 (AC)L,[(ACk X 777777] -+ (E) i, .., 
HLLOS 523 777777 -+ (Ek HLLES 533 (E)o X 777777 -+ (E)R 

If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 

HLR 544 (E~ -+ (AC)R HLRZ 554 O,(E~ -+ (AC) 

HLRI 545 0-+ (ACk HLRZI 555 0-+ (AC) 

HLRM 546 (AC~ -+ (E)R HLRZM 556 O,(AC~ -+ (E) 

HLRS 547 (E~ -+ (E)R HLRZS 557 O,(Ek -+ (E) 
If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 

HLRO 564 777777 ,(E~ -+ (AC) HLRE 574 [(Ek X 777777] ,(E)L -+ (AC) 

HLROI 565 777777,0 -+ (AC) HLREI 575 0-+ (AC) 

HLROM 566 777777 ,(AC~ -+ (E) HLREM 576 [(ACk X 777777] ,(AC~ -+ (E) 

HLROS 567 777777 ,(E~ -+ (E) HLRES 577 [(E)o X 777777] ,(E~ -+ (E) 
If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 

HRR 540 (E)R -+ (ACk HRRZ 550 O,(E)R -+ (AC) 

HRRI 541 E-+(ACk HRRZI 551 O,E -+ (AC) 

HRRM 542 (ACk -+ (E)R HRRZM 552 O,(ACk -+ (E) 

HRRS 543 If AC =1= 0: (E) -+ (AC) HRRZS 553 0-+ (E)L 
If AC =1= 0: (E) -+ (AC) 

HRRO 560 777777 ,(Ek -+ (AC) HRRE 570 [(E)18 X 777777] ,(E)R -+ (AC) ~l 

HRROI 561 777777,E -+ (AC) HRREI 571 [E18 X 777777] ,E -+ (AC) 

HRROM 562 777777 ,(AC)R -+ (E) HRREM 572 [(AC)18 X 777777] ,(ACk -+ (E) 

HRROS 563 777777 -+ (E~ HRRES 573 (E)18 X 777777 -+ (E~ "1 

If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 

HRL 504 (E)R -+ (AC~ HRLZ 514 (Ek,O -+ (AC) 

HRLI 505 E-+ (AC~ HRLZI 515 E,O -+ (AC) 

HRLM 506 (AC)R -+ (E~ IIRLZM 516 (ACk,O -+ (E) 

HRLS 507 (E)R -+ (E)L HRLZS 517 (E)R,O -+ (E) 
If AC =1= 0: (E) -+ (AC) If AC =1= 0: (E) -+ (AC) 



HRLO 524 (E)R,777777 ~ (AC) 

HRLOI 525 E, 777777 ~ (AC) 

HRLOM 526 (AC)R,777777 ~ (E) 

HRLOS 527 (E)R,777777 ~ (E) 

ALG EBRAIC REPRESENT A TION 

HRLE 

HRLEI 

HRLEM 

HRLES 
If AC =F 0: (E) ~ (AC) 

CONO 

CONI 

DATAO 

70020 E ~ COMMAND 

70024 STATUS ~ (E) 

70014 (E) ~ DATA 

In-out 

CONSZ 

CONSO 

DATAl 

A-19 

534 (E)R,[(E)18 X 777777] -+ (AC) 

535 E,[E18 X 777777] ~ (AC) 

536 (AC)R,[(AC)18 X 777777] ~ (E) 

537 (E)R,[(E)18 X 777777] -+ (E) 
If AC =F 0: (E) ~ (AC) 

70030 If STATUSR 1\ E = 0: skip 

70034 If STATUSR 1\ E =F 0: skip 

70004 DATA ~ (E) 

BLKO 

BLKI 

70010 (E) + 1000001 -+ (E)* ((Ek) ~ DATA [see page 2-83] 

70000 (E) + 1000001 ~ (E)* DATA ~ ((Ek) [see page 2~83] 

Program Control 

JSR 264 FLAGS,(PC) ~ (E) E + 1 ~ (PC) 

JSP 265 FLAGS,(PC) -+ (AC) E ~ (PC) 

JRST 254 E ~ (PC) [If AC =F 0, see page 2-63] 

JSA 266 (AC) ~ (E) E,(PC) ~ (AC) E + 1 ~ (PC) 

JRA 267 E ~ (PC) ((Ac)d ~ (AC) 

JFCL 

XCT 

JFFO 

255 

256 

243 

If AC 1\ FLAGS =F 0: E ~ (PC) '" AC 1\ FLAGS ~ FLAGS 

Execute (E) 

If (AC) = 0: 0 ~ (AC + 1) 
If (AC) =F 0: E ~ (PC) [see page 2-61] 

MAP 257 PHYSICAL MAP DATA ~ (AC) 

Pushdown List 

PUSH 261 (AC) + 1000001 ~ (AC)* (E) ~ ((AC)R) 

POP 262 ((AC)R) ~ (E) (AC) - 1000001 ~ (AC)* 

PUSHJ 

POPJ 

260 (AC) + 1000001 -+ (AC)* FLAGS,(PC) ~ ((AC)R) E ~ (PC) 

263 ((AC)R)R ~ (PC) (AC) - 1000001 ~ (AC)* 

ASH 

ROT 

LSH 

240 (AC) X 2E ~ (AC) 

241 Rotate (AC) E places 

242 Shift (AC) E places 

Shift and Rotate 

ASHC 

ROTC 

LSHC 

*In the KIl 0, 1 is added to or subtracted from each half separately. 

244 (AC,AC+ 1) X 2E ~ (AC,AC+ 1) 

245 Rotate (AC,AC+ 1) E places 

246 Shift (AC,AC+ 1) E places 



A-20 INSTRUCTIONS AND MNEMONICS 

Arithmetic Testing 

AOBJP 252 (AC) + 100000 1 ~ (AC)* If (AC) ~ 0: E ~ (PC) 

AOBJN 253 (AC) + 100000 1 ~ (AC)* If (AC) < 0: E ~ (PC) 

CAl 300 No-op CAM 310 No-op 

CAlL 301 If (AC) < E: skip CAML 311 If (AC) < (E): skip 

CAIE 302 If (AC) = E: skip CAME 312 If(AC) = (E): skip 

CAlLE 303 If (AC) ,,;;;; E: skip CAMLE 313 If (AC) ,,;;;; (E): skip '", 

CAIA 304 Skip CAMA 314 Skip 

CAIGE 305 If (AC) ~ E: skip CAMGE 315 If (AC) ~ (E): skip 

CAIN 306 If (AC) "* E: skip CAMN 316 If (AC) "* (E): skip 

CAIG 307 If (AC) > E: skip CAMG 317 If (AC) > (E): skip 

JUMP 320 No-op SKIP 330 If AC "* 0: (E) ~ (AC) 

JUMPL 321 If (AC) < 0: E ~ (PC) SKIPL 331 If AC "* 0: (E) ~ (AC) 
If (E) < 0: skip 

JUMPE 322 If (AC) = 0: E ~ (PC) SKIPE 332 If AC "* 0: (E) ~ (AC) 
If (E) = 0: skip 

JUMPLE 323 If (AC) ,,;;;; 0: E ~ (PC) SKIPLE 333 If AC "* 0: (E) ~ (AC) 
If (E) ,,;;;; 0: skip 

JUMPA 324 E ~ (PC) SKIPA 334 If AC "* 0: (E) ~ (AC) 
Skip 

JUMPGE 325 If (AC) ~ 0: E ~ (PC) SKIPGE 335 If AC "* 0: (E) ~ (AC) 
If (E) ~ 0: skip 

JUMPN 326 If (AC) "* 0: E ~ (PC) SKIPN 336 If AC "* 0: (E) ~ (AC) 
If (E) "* 0: skip 

JUMPG 327 If (AC) > 0: E ~ (PC) SKIPG 337 If AC "* 0: (E) ~ (AC) 
If (E) > 0: skip 

AOJ 340 (AC) + 1 ~ (AC) SOJ 360 (AC) - 1 ~ (AC) 

AOJL 341 (AC) + 1 ~ (AC) SOJL 361 (AC) - 1 ~ (AC) 
If (AC) < 0: E ~ (PC) If (AC) < 0: E ~ (PC) ·ll', 

AOJE 342 (AC) + 1 ~ (AC) SOJE 362 (AC) - 1 ~ (AC) 
If(AC) = 0: E ~ (PC) If (AC) = 0: E ~ (PC) 

AOJLE 343 CAC) + 1 ~ (AC) SOJLE 363 (AC) - 1 ~ (AC) 
., 
'" 

If (AC) ,,;;;; 0: E ~ (PC) If (AC) ,,;;;; 0: E ~ (PC) 

AOJA 344 (AC) + 1 ~ (AC) SOJA 364 (AC) - 1 ~ (AC) 
E~ (PC) E~ (PC) 

AOJGE 345 (AC) + 1 ~ (AC) SOJGE 365 (AC) - 1 ~ (AC) 
If (AC) ~ 0: E ~ (PC) If CAC) ~ 0: E ~ (PC) 

*In the KII 0, 1 is added to or subtracted from each half separately. 



ALGEBRAIC REPRESENTATION A-21 

AOJN 346 (AC) + 1 -+ (AC) SOJN 366 (AC) - 1 -+ (AC) 
If (AC) =F 0: E -+ (PC) If (AC) -=1= 0: E -+ (PC) 

AOJG 347 (AC) + 1 -+ (AC) SOJG 367 (AC) - 1 -+ (AC) 
If (AC) > 0: E -+ (PC) If (AC) > 0: E -+ (PC) 

AOS 350 (E) + 1 -+ (E) SOS 370 (E) - 1 -+ (E) 
If (AC) =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 

~; AOSL 351 (E) + 1 -+ (E) SOSL 371 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If (E) < 0: skip If (E) < 0: skip 

,. 
AOSE 352 (E) + 1 -+ (E) SOSE 372 (E) - 1 -+ (E) 

If AC -=1= 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If(E) = 0: skip If (E) = 0: skip 

AOSLE 353 (E) + 1 -+ (E) SOSLE 373 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If(E)':;;;O: skip If (E) .:;;; 0: skip 

AOSA 354 (E) + 1 -+ (E) SOSA 374 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
Skip Skip 

AOSGE 355 (E) + 1 -+ (E) SOSGE 375 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If (E) ~ 0: skip If (E) ~ 0: skip 

AOSN 356 (E) + 1 -+ (E) SOSN 376 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If (E) =F 0: skip If (E) =F 0: skip 

AOSG 357 (E) + 1 -+ (E) SOSG 377 (E) - 1 -+ (E) 
If AC =F 0: (E) -+ (AC) If AC =F 0: (E) -+ (AC) 
If (E) > 0: skip If (E) > 0: skip 

Logical Testing and Modification 

TLN 601 No-op TRN 600 No-op 

TLNE 603 If (AC)L /\ E = 0: skip TRNE 602 If (AC)R /\ E = 0: skip 

TLNA 605 Skip TRNA 604 Skip 

TLNN 607 If(AC~ /\ E =F 0: skip TRNN 606 If (AC)R /\ E =F 0: skip 

TLZ 621 (AC~ /\ '" E -+ (AC)L TRZ 620 (AC)R /\ '" E -+ (AC)R 

TLZE 623 If(AC~ /\ E = 0: skip TRZE 622 If (AC)R /\ E = 0: skip 
(AC~ /\ '" E -+ (AC~ (AC)R /\ '" E -+ (AC)R 

TLZA 625 (AC~ /\ '" E -+ (AC~ skip TRZA 624 (AC)R /\ '" E -+ (AC)R skip 

TLZN 627 If (AC~ /\ E =F 0: skip TRZN 626 If (AC)R /\ E =F 0: skip 
(AC~ /\ '" E -+ (AC)L (AC)R /\ '" E -+ (AC)R 



A-22 INSTRUCTIONS AND MNEMONICS 

TLC 641 (AC\ V E -+ (AC)L TRC 640 (AC)R V E -+ (AC)R 

TLCE 643 If (ACk /\ E = 0: skip TRCE 642 If (AC)R /\ E = 0: skip 
(ACk V E -+ (AC)L (AC)R V E -+ (AC)R 

TLCA 645 (ACk V E -+ (ACk skip TRCA 644 (AC)R V E -+ (AC)R skip 

TLCN 647 If (ACk /\ E =1= 0: skip TRCN 646 If (AC)R /\ E =1= 0: skip 
(ACk V E -+ (ACk (AC)R V E -+ (AC)R 

TLO 661 (ACk V E -+ (AC)L TRO 660 (AC)R V E -+ (AC)R 

TLOE 663 If(ACk /\ E = 0: skip TROE 662 If (AC)R /\ E = 0: skip 
(AC)L V E -+ (ACk (AC)R V E -+ (AC)R 

TLOA 665 (ACk V E -+ (ACk skip TROA 664 (AC)R V E -+ (AC)R skip ., 
TLON 667 If (ACk /\ E =1= 0: skip TRON 666 If (AC)R /\ E =1= 0: skip 

(ACk V E -+ (AC)L (AC)R V E -+ (AC)R 

TON 610 No-op TSN 611 No-op 

TONE 612 If (AC) /\ (E) = 0: skip TSNE 613 If (AC) /\ (E)g = 0: skip 

TONA 614 Skip TSNA 615 Skip 

TONN 616 If (AC) /\ (E) =1= 0: skip TSNN 617 If (AC) /\ (E)g =1= 0: skip 

TOZ 630 (AC) /\ '" (E) -+ (AC) TSZ 631 (AC) /\ '" (E)s -+ (AC) 

TOZE 632 If (AC) /\ (E) = 0: skip TSZE 633 If (AC) /\ (E)s = 0: skip 
(AC) /\ '" (E) -+ (AC) (AC) /\ '" (E)g -+ (AC) 

TOZA 634 (AC) /\ '" (E) -+ (AC) skip TSZA 635 (AC) /\ '" (E)g -+ (AC) skip 

TOZN 636 If (AC) /\ (E) =1= 0: skip TSZN 637 If (AC) /\ (E)s =1= 0: skip 
(AC) /\ '" (E) -+ (AC) (AC) /\ '" (E)s -+ (AC) 

TOC 650 (AC) V (E) -+ (AC) TSC 651 (AC) V (E)s -+ (AC) 

TOCE 652 If(AC) /\ (E) = 0: skip TSCE 653 If (AC) /\ (E)s = 0: skip 
(AC) V (E) -+ (AC) (AC) V (E)g -+ (AC) 

TOCA 654 (AC) V (E) -+ (AC) skip TSCA 655 (AC) V (E)s -+ (AC) skip 

TOCN 656 If (AC) /\ (E) =1= 0: skip TSCN 657 If (AC) /\ (E)s =1= 0: skip 
(AC) V (E) -+ (AC) (AC) V (E)s -+ (AC) 

TOO 670 (AC) V (E) -+ (AC) TSO 671 (AC) V (E)g -+ (AC) 
~:, 

TOOE 672 If (AC) /\ (E) = 0: skip TSOE 673 If (AC) /\ (E)s = 0: skip 
(AC) V (E) -+ (AC) (AC) V (E)s -+ (AC) 

~ 

TOOA 674 (AC) V (E) -+ (AC) skip TSOA 675 (AC) V (E)s -+ (AC) skip 

TOON 676 If(AC) /\ (E) =1= 0: skip TSON 677 If (AC) /\ (E)g =1= 0: skip 
(AC) V (E) -+ (AC) (AC) V (E)s -+ (AC) 



POWERS OF TWO A-23 

POWERS OF TWO 

o 1.0 
2 1 
4 2 
8 3 

16 4 
32 5 
64 6 

128 7 
256 8 
512 9 
024 10 

2 048 11 
4 096 12 
8 192 13 

16 384 14 
32 768 15 
65 536 16 

131 072 17 
262 144 18 
524 288 19 

1 048 576 20 
2 097 152 21 
4 194 304 22 
8 388 608 23 

16 777 216 24 
33 554 432 25 
67 108 864 26 

134 217 728 27 
268 435 456 28 
536 870 912 29 

1 073 741 824 30 
2 147 483 648 31 
4 294 967 296 32 
8 589 934 592 33 

17 179 869 184 34 
34 359 738 368 35 
68 719 476 736 36 

137 438 953 472 37 
274 877 906 944 38 
549 755 813 888 39 
099 511 627 776 40 

2 199 023 255 552 41 
4 398 046 511 104 42 
8 796 093 022 208 43 

17 592 186 044 416 44 
35 184 372 088 832 45 
70 368 744 177 664 46 

140 737 488 355 328 47 
281 474 976 710 656 48 
562 949 953 421 312 49 

1 125 899 906 842 624 50 
2 251 799 813 685 248 51 
4 503 599 627 370 496 52 
9 007 199 254 740 992 53 

18 014 398 509 481 984 54 
36 028 797 018 963 968 55 
72 057 594 037 927 936 56 

144 115 188 075 855 872 57 
288 230 376 151 711 744 58 
576 460 752 303 423 488 59 
152 921 504 606 846 976 60 

2 305 843 009 213 693 952 61 
4 611 686 018 427 387 904 62 
9 223 372 036 854 775 808 63 

18 446 744 073 709 551 616 64 
36 893 488 147 419 103 232 65 
73 786 976 294 838 206 464 66 

147 573 952 589 676 412 928 67 
295 147 905 179 352 825 856 68 
590 295 810 358 705 651 712 69 
180 591 620 717 411 303 424 70 

2 361 183 241 434 822 606 848 71 
4 722 366 482 869 645 213 696 72 

0.5 
0.25 
0.125 
0.062 5 
0.031 25 
0.015 625 
0.007 812 5 
0.003 906 25 
0.001 953 125 
0.000 976 562 5 
0.000 488 281 25 
0.000 244 140 625 
0.000 122 070 312 5 
0.000 061 035 156 25 
0.000 030 517 578 125 
0.000 015 258 789 062 5 
0.000 007 629 394 531 25 
0.000 003 814 697 265 625 
0.000 001 907 348 632 812 5 
0.000 000 953 674 316 406 25 
0.000 000 476 837 158 203 125 
0.000 000 238 418 579 101 562 5 
0.000 000 119 209 289 550 781 25 
0.000 000 059 604 644 775 390 625 
0.000 000 029 802 322 387 695 312 5 
0.000 000 014 901 161 193 847 656 25 
0.000 000 007 450 580 596 923 828 125 
0.000 000 003 725 290 298 461 914 062 5 
0.000 000 001 862 645 149 230 957 031 25 
0.000 000 000 931 322 574 615 478 515 625 
0.000 000 000 465 661 287 307 739 257 812 5 
0.000 000 000 232 830 643 653 869 628 906 25 
0.000 000 000 116 415 321 826 934 814 453 125 
0.000 000 000 058 207 660 913 467 407 226 562 5 
0.000 000 000 029 103 830 456 733 703 613 281 25 
0.000 000 000 014 551 915 228 366 851 806 640 625 
0.000 000 000 007 275 957 614 183 425 903 320 312 5 
0.000 000 000 003 637 978 807 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
0.000 000 000 000 000 III 022 302 462 515 654 042 363 166 809 082 031 25 
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5 
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25 
0000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 U 1 3'3L !:In Lb5 b25 
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5 
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25 
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125 
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5 
v.OOG 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25 
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625 



" 



APPENDIX B 

INPUT-OUTPUT CODES 

The table beginning on the next page lists the complete 1968 ASCII code 
(ANSI X3.4-1968). The software handles the full character set, and for a 
program that does not handle lower case, it translates input codes 140-174 
into the corresponding upper case codes (100-134) and translates both 175 
and 176 into 033, escape. The actual character sets available on different 
terminals vary greatly, but usually a terminal without lower case will 
accept lower case codes, printing the corresponding upper case character. 
The definitions of the control codes are those given by ASCII; most control 
codes, however, have no effect on the console terminal, and the definitions 
bear no necessary relation to the use of the codes in conjunction with the 
DECsystem -1 0 software. Brackets enclose earlier definitions of control 
codes (mostly 1963 ASCII). The table includes bit 8 as an even parity bit, 
the form generally used for paper tape and asynchronous operations; odd 
parity is generally used for magnetic tape and synchronous operations. 

With all line printers, ten control characters are used for format control, 
and the interface also recognizes null for fill and delete for selecting hidden 
characters. The 64-character print set includes the figures and upper case; 
lower case is added for the 96-character set (with the smaller print set, giving 
a lower case code prints the upper case character). The larger print set 
includes a character hidden under delete, a feature that is optional on the 
LPI0D and H. The printable characters are generally those defined by 
ASCII, with little if any variation. The 1 28-character printer uses the entire 
set of 7-bit codes for printable characters, with characters hidden under the 
ten control codes that affect the printer and also under null and delete. 

The first two pages of the table of card codes [pages B-8 to B-12J list the 
column punches required to represent characters in the ASCII card code. 
When reading cards, the software translates the column punch into the octal 
code shown; when punching cards, it produces the listed column punch 
when given the corresponding code. There are also a few control hole 
patterns that the software responds to but does not translate. The next page 
lists two earlier DEC card codes that have only the figure and upper case 
character subset, plus a few control punches. The remaining pages of the 
table show the relationship among the early DEC card codes, the correspond­
ing characters in the ASCII set, and several IBM card punches. Each column 
punch is produced by a single key on any keypunch for which a character is 
listed, the character being that which is printed at the top of the card. 

B-1 

Output codes are simply 
passed on to the terminal 
as they are, with the ex­
pectation that the terminal 
will ignore irrevelant control 
codes, and that a terminal 
that lacks lower case will 
print the corresponding upper 
case. A terminal that fails 
to live up to these assump­
tions will generally not 
operate satisfactorily with the 
DECsystem-lO software. 



B-2 INPUT-OUTPUT CODES 

ASCII CODE 

Even 
Parity 7-Bit 7-Bit 

Bit Decimal Octal Character Remarks 

0 000 000 NUL Null, tape feed. Control shift P. 

001 001 SOH Start of heading [SOM, start of message] . Control A. 

1 002 002 STX Start of text [EOA, end of address]. Control B. 

0 003 003 ETX End of text [EOM, end of message] . Control C. ~ 

004 004 EOT End of transmission; shuts off TWX machines and disconnects some data sets. 
Control D. 

0 005 005 ENQ Enquiry [WRU, "Who are you?"] . Triggers identification ("Here is ... ") at ., 
remote station if so equipped. Control E. 

0 006 006 ACK Acknowledge [RU, "Are you ... ?"]. Control F. 

007 007 BEL Rings the bell. Control G. 

008 010 BS Backspace. Control H. 

0 009 011 HT Horizontal tab. Control I. 

0 010 012 LF Line feed. Cantrall. 

1 011 013 VT Vertical tab. Control K. 

0 012 014 FF Form feed to top of next page. Control L. 

013 015 CR Carriage return to beginning of line. Control M. 

1 014 016 SO Shift out; change character set or change ribbon color to red. Control N. 

0 015 017 SI Shift in; return to standard character set or color. ControlO. 

1 016 020 DLE Data link escape [DCO]. Control P. 

0 017 021 DCl Device control 1, turns transmitter (reader) on. Control Q (X ON). 

0 018 022 De2 Device control 2, turns punch or auxiliary on. Control R (TAPE, AUX ON). 

019 023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF). 

0 020 024 DC4 Device control 4 (stop), turns punch or auxiliary off. Control T (rAPE, 
AUX OFF). 

021 025 NAK Negative acknowledge [ERR, error]. Control U. 

022 026 SYN Synchronous idle [SYNC]. Control V. 

0 023 027 ETB End of transmission block [LEM, logical end of medium] . Control W. 

0 024 030 CAN Cancel [So]. Control X. 

025 031 EM End of medium [Sd. Control Y. ~ 

026 032 SUB Substitute [S2]. Control Z. 

0 027 033 ESC Escape, prefix [S3]. Control shift K. 

1 028 034 FS File separator [S4]. Control shift L. ..., 

0 029 035 GS Group separator [Ssl. Control shift M. 

0 030 036 RS Record.separator [S6]. Control shift N. 

031 037 US Unit separator [S7]. Control shift O. 



o 

ASCII CODE B-3 

Figures Upper Case Lower Case 

Even Even Even 
Parity 7-Bit 7-Bit Parity 7-Bit 7-Bit Parity 7-Bit 7-Bit 

Bit Decimal Octal CharacterlO Bit Decimal Octal Character Bit Decimal Octal Character 

o 
o 
1 
o 

o 
o 

1 
o 
1 
o 
o 

o 

1 
o 
1 
o 
o 

o 
o 

o 

o 
ISpace . 

032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 
047 
048 
049 
050 
051 
052 
053 
054 
055 
056 
057 
058 
059 
060 
061 
062 
063 

040 
041 
042 
043 
044 
045 
046 
047 
050 
051 
052 
053 
054 
055 
056 
057 
060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
072 
073 
074 
075 
076 
077 

2£ on some (non-DEC) units. 

/I 

( 
) 

* 
+ 

/ 
o 

2 
3 
4 
5 
6 
7 
8 
9 

< 

> 
? 

o 
o 

o 

1 
o 
o 

1 
o 
1 
o 
o 
1 
o 

o 

o 
o 

1 
o 
o 
1 
o 

1 
o 

064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 
094 
095 

3 Accent acute or apostrophe - ' before 1965, but used 
until recently on DEC units. 

4'" 1965-67, but never on DEC units. 
SShift K. 
6~ 1965-67, but never on DEC units. Shift L. 

7Shift M. 
sCircumflex - t before 1965, but used until recently on 
DEC units. 

9Underscore - +-- before 1965, but used until recently on 
DEC units. 

IOCodes 140-173 tlrst defined in 1965. For a full ASCll 
character set the Monitor accepts codes 140-176 as 
lower case. For a character set that lacks lower case, the 
Monitor translates input codes 140-174 into the corre-

100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 

@4 

A 
B 
C 
D 
E 
F 
G 
H 

J 
K 
L 
M 
N 
o 
p 

Q 
R 
S 
T 
U 
V 
W 
X 
y 

Z 
[ S 

\6 
1 7 

AS 

9 

o 

1 
o 

o 
o 

o 
o 

o 

1 
o 
1 
o 
o 
1 
o 

1 
o 
o 

o 
1 
o 
o 

096 
097 
098 
099 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

140 
141 
142 
143 
144 
145 
146 
147 
150 
151 
152 
153 
154 
155 
156 
157 
160 
161 
162 
163 
164 
165 
166 
167 
170 
171 
172 
173 
174 
175 
176 
177 

... 11 

a 
b 
c 
d 
e 
f 
g 
h 

j 
k 

m 
n 
a 
p 
q 

u 
v 

w 
x 
y 
z 
{ 
112 
I 

}13 
~14 

DELIS 

sponding upper case codes (100-134) and translates 
both 175 and 176 into 033, escape. Early versions of the 
Monitor used 175 as the escape code and translated both 
176 and 033 to it. 

II Accent grave - @ 1965-67, but never on DEC units. 

12Control character ACK before 1965; --. 1965-67, but 
never on DEC units. Vertical bar mayor may not have 
gap depending on font design, but generally does not on 
DEC units. 

13Unassigned control character (usually ALT MODE) 
before 1965. Code generated by ALT MODE key on 
most DEC units. 

14Control character ESC before 1965; 11965-67, hut never 
on DEC units. Code generated by ESC key on some 
DEC units. 

ISDelete, rub out (not part of lower case set). 



B-4 

Control 

INPUT-OUTPUT CODES 

LINE PRINTER CODE: LPIOA, B, C, D, E 
Basic Character Set 

Figures Upper Case 

Hex Decimal Octal Character Hex Decimal Octal Character Hex Decimal Octal Character 

09 

OA 
OB 
OC 
OD 

10 

11 

12 

13 

14 

00 

7F 

009 

010 

011 

012 

013 

016 

017 

018 

019 

020 

000 

127 

011 

012 

013 

014 

015 

020 

021 

022 

023 

024 

000 

177 

HT 

LF 
VT 
FF 
CR 

DLE 

DCl 

DC2 

DC3 

DC4 

NUL 

DEL 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

3A 

3B 

3C 

3D 

3E 

3F 

032 

033 

034 

035 

036 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

040 

041 

042 

043 

044 

045 

046 

047 

050 

051 

052 

053 

054 

055 

056 

057 

060 

061 

062 

063 

064 

065 

066 

067 

070 

071 

072 

073 

074 

075 

076 

077 

SP 

/I 

# 
$ 

% 

& 

( 

) 

* 
+ 

o 

2 

3 

4 

5 

6 

7 

8 

9 

< 

> 
? 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B 

4C 
4D 

4E 

4F 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

SA 

5B 

5C 

5D 

5E 

SF 

064 

065 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

100 

101 

102 

103 

104 

105 

106 

107 

110 

111 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

137 

@ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 
p 

Q 
R 

S 

T 

U 

V 

W 

X 

Y 

Z 

\ 

1 
t 

., 



LINE PRINTER CODES B-S 

Additional Characters - 95, 96 and 128 Character Sets 

LPI0D, E LPI0E 

Hex Decimal Octal Character Hex Decimal Octal Character 

60 096 140 7F/00 127/000 177/000 • NUL 

61 097 141 a 01 001 001 ~ SOH 

62 098 143 b 02 002 002 a STX .. 63 099 143 c 03 003 003 {3 ETX 

64 100 144 d 04 004 004 A EOT 

65 101 145 e 05 005 005 --, ENQ 
J 

'. 66 102 146 f 06 006 006 € ACK 

67 103 147 g 07 007 007 1T BEL 

68 104 150 h 08 008 010 A BS 

69 105 151 7F/09 127/009 177/011 'Y HT 

6A 106 152 7F/OA 127/010 177/012 8 LF 

6B 107 153 k 7F/OB 127/011 177/013 f VT 

6C 108 154 7F/OC 127/012 177/014 ± FF 

6D 109 155 m 7F/OD 127/013 177 /015 Ell CR 

6E 110 156 n DE 014 016 00 SO 

6F III 157 0 OF 015 017 a Sf 

70 112 160 P 7F/1O 127/016 177/020 C DLE 

71 113 161 q 7F/ll 127/017 177/021 :J DCI 

72 114 162 r 7F/12 127/018 177/022 () DC2 

73 115 163 s 7F/13 127/019 177/023 u DC3 

74 116 164 7F/14 127/020 177/024 V DC4 

75 117 165 u 15 021 025 3 NAK 

76 118 166 v 16 022 026 ® SYN 

77 119 167 w 17 023 027 <+ ETB 

78 120 170 x 18 024 030 A CAN 

79 121 171 Y 19 025 031 -+ EM 

7A 122 172 z lA 026 032 SUB 

7B 123 173 { IB 027 033 -=1= ESC 
,,-; 

7C 124 174 I lC 028 034 ..;; FS 

7D 125 175 } 1D 029 035 ~ GS 

7E 126 176 IE 030 036 == RS 

7F/7F 127/127 177/177 --, DEL IF 031 037 v US 

Code pairs indicate hidden characters. For characters after the 95th, corresponding ASCII control characters are given in 
italics to facilitate generating codes at a keyboard. 



B-6 

Control 

Hex Decimal Octal Character 

09 

OA 
OB 
DC 

OD 

10 

11 

12 
13 

14 

00 

7F 

009 

010 

011 

012 

013 

016 

017 

018 

019 

020 

000 

127 

011 

012 

013 

014 

015 

020 

021 

022 

023 

024 

000 

177 

HT 
LF 

VT 
FF 

CR 

DLE 

DC1 
DC2 
DC3 
DC4 

NUL 
DEL 

Table gives EDP character set of 
LPlOFE and HE. Brackets enclose 
substitutions for scientific set, 
LP10FF and HF. 

INPUT-OUTPUT CODES 

LINE PRINTER CODE: LPIOF and H 
Basic Character Set 

Figures 

Hex Decimal Octal Character 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

32 

33 

34 
35 

36 

37 

38 

39 

3A 

3B 

3C 

3D 

3E 

3F 

032 

033 

034 

035 

036 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

040 

041 

042 

043 

044 

045 

046 

047 

050 

051 

052 

053 

054 

055 

056 

057 

060 

061 

062 

063 

064 

065 

066 

067 

070 

071 

072 

073 

074 

075 

076 

077 

SP 

" 
# 
$ 

% 

& 

( 

) 

* 
+ 

o [0] 

2 

3 

4 

5 

6 

7 

8 

9 

< 
= 
> 
? 

Upper Case 

Hex Decimal Octal Character 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B 

4C 

4D 

4E 

4F 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

SA 

5B 

5C 

5D 

5E 

SF 

064 

065 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

100 

101 

102 

103 

104 

105 

106 

107 

110 

111 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

137 

@ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 
P 

Q 
R 

S 

T 

U 

V 

W 

X 

Y 

Z [l;] 

[ 

\ 
] 

• > .. 

" 



LINE PRINTER CODES B-7 

Additional Characters - LPIOH 

Hex Decimal Octal Character Hex Decimal Octal Character 

60 096 140 70 112 160 P 

61 097 141 a 71 113 161 q 

62 098 142 b 72 114 162 

63 099 143 c 73 115 163 

64 100 144 d 74 116 164 

65 101 145 e 75 117 165 u 

66 102 146 f 76 118 166 v 

... 67 103 147 g 77 119 167 w 
t' 

68 104 150 h 78 120 170 x 

69 105 151 79 121 171 y 

6A 106 152 7A 122 172 z 

6B 107 153 k 7B 123 173 { 

6C 108 154 I 7C 124 174 I 
6D 109 155 ill 7D 125 175 } 

6E 110 156 n 7E 126 176 

6F 111 157 0 7F/7F 127/127 177/177 +- DEL 

Character with code 177 is hidden under delete. 



B-8 

Column 
Octal Character Punch 

000 

001 

002 

003 

004 

005 

006 

007 

010 

011 

012 

013 

014 

015 

016 

017 

020 

021 

022 

023 

024 

025 

026 

027 

030 

031 

032 

033 

034 

035 

036 

037 

NUL 

SOH 

STX 
ETX 
EOT 
ENQ 

ACK 

BEL 

BS 

HT 
LF 
VT 
FF 
CR 
SO 

SI 

DLE 

DC1 

DC2 

DC3 

DC4 

NAK 

SYN 

1209 8 1 

12 9 1 

1292 

1293 

9 7 

098 5 

098 6 

098 7 

11 96 

1296 

095 

1298 3 

12984 

12985 

12986 

12 9 8 7 

1211981 

11 9 1 

1 1 9 2 

11 9 3 

984 

985 

9 2 

ETB 096 

CAN 11 98 

EM 11981 

SUB 987 

ESC 
FS 
GS 
RS 
US 

097 

11 9 8 4 

11 9 8 5 

11 9 8 6 

11 9 8 7 

INPUT-OUTPUT CODES 

ASCII CARD CODE 

Column 
Octal Character Punch 

Column 
Octal Character Punch 

040 

041 

042 

043 

044 

045 

046 

047 

050 

051 

052 

053 

054 

055 

056 

057 

060 

061 

062 

063 

064 

065 

066 

067 

070 

071 

072 

073 

074 

075 

076 

077 

SP 

/I 

# 
$ 

% 

& 

( 

) 

* 
+ 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

< 

> 
? 

None 

1287 

8 7 

8 3 

1183 

084 

12 

8 5 

12 8 5 

1185 

1184 

1286 

083 

11 

12 8 3 

o 1 

a 
1 

2 

3 

4 

5 

6 

7 

8 

9 

8 2 

1186 

1284 

8 6 

086 

087 

100 

101 

102 

103 

104 

105 

106 

107 

110 

111 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

137 

@ 

A 

B 

C 

D 

E 

F 
G 

H 

J 

K 

L 

M 

N 

o 
P 

Q 
R 

S 

T 

U 

V 

W 

x 
Y 

Z 

\ 

] 

84 

12 1 

12 2 

12 3 

124 

12 5 

12 6 

12 7 

12 8 

12 9 

II 1 

11 2 

11 3 

11 4 

11 5 

11 6 

11 7 

11 8 

11 9 

02 

03 

04 

05 

06 

07 

08 

09 

12 8 2 

082 

1182 

1187 

085 

Column 
Octal Character Punch 

140 

141 

142 

143 

144 

145 

146 

147 

150 

151 

152 

153 

154 

155 

156 

157 

160 

161 

162 

163 

164 

165 

166 

167 

170 

171 

172 

173 

174 

175 

176 

177 

a 

b 

c 

d 

e 

f 

g 

h 

k 

I 

m 

n 

a 

p 

q 

u 

v 

w 

x 

y 

z 
{ 

} 

DEL 

8 1 

12 0 1 

1202 

1203 

1204 

12 0 5 

1206 

12 0 7 

1208 

1209 

12 11 1 

12 II 2 

12 11 3 

12 11 4 

12 11 5 

12 II 6 

12 11 7 

12 11 8 

12 11 9 

1102 

11 0 3 

11 0 4 

11 0 5 

11 a 6 

1107 

11 0 8 

II 0 9 

12 0 

12 11 

11 a 
11 0 1 

1297 

When reading or punching cards, the software translates between the octal codes and column punches listed here. The soft­

ware also recognizes the following control punches. 

Binary 
Mode Switch 
End ufFile 

7 9 
1202468 
1211016789 



CARD CODES B-9 

Column Column Column Column 
Punch Character Punch Character Punch Character Punch Character 

None SP 11 8 Q 12 04 d 11 8 3 $ 

12 & 11 9 R 12 a 5 e 11 8 4 * 
11 a 1 I 12 a 6 f 1185 ) 

a a 02 S 12 a 7 g 1186 

1 1 03 T 12 a 8 h 11 87 

2 2 04 U 12 a 9 095 LF 
0 

3 3 05 v 12 9 1 SOH 096 ETB 

4 4 06 W 1292 STX 097 ESC 

" 5 
t~ 

5 07 X 1293 ETX 082 \ 

6 6 08 Y 12 9 5 HT 083 

7 7 09 Z 1297 DEL 084 % 

8 8 9 2 SYN 1282 085 

9 9 9 7 EOT 1283 086 > 
12 11 8 1 1284 < 087 ? 

12 a { 8 2 128 5 ( 984 DC4 

12 1 A 8 3 # 1286 + 98 5 NAK 

122 B 84 @ 128 7 987 SUB 

12 3 C 8 5 11 a 1 1298 3 VT 

124 D 86 11 02 s 12984 FF 

12 5 E 8 7 " 11 03 1298 5 CR 

12 6 F 12 11 1 11 04 u 1298 6 SO 

12 7 G 12 11 2 k 11 a 5 v 1298 7 SI 

128 H 12 11 3 11 06 w 11 9 8 1 EM 

129 12 11 4 m 1107 x 11 9 8 4 FS 

11 a } 12 11 5 n 11 08 y 11 9 8 5 GS 

11 1 J 12 11 6 0 1109 z 11 986 RS 

11 2 K 12 11 7 P 11 9 1 DCl 11 9 8 7 US 

113 L 12 11 8 q 1192 DC2 098 5 ENQ 

114 M 12 11 9 11 9 3 DC3 0986 ACK 

11 5 N 12 a 1 a 11 9 6 BS 098 7 BEL 
,;;;, 

116 0 12 a 2 b 1198 CAN 12 11 981 DLE 

117 P 12 03 c 11 82 ] 12 098 1 NUL 

,:-.- 79 Binary 
1202468 Mode Switch 
12 11 a 1 6789 End of File 



B-10 INPUT-OUTPUT CODES 

EARLY DEC CARD CODES 

7-Bit 7-Bit 
Character Octal DEC 029 DEC 026 Character Octal DEC 029 DEC 026 

Space 040 None None @ 100 84 84 
! 041 11 8 2* 1287 A 101 12 1 12 1 
" 042 87 085 B 102 12 2 12 2 
# 043 8 3 086 C 103 12 3 12 3 
$ 044 11 8 3 11 8 3 D 104 124 12 4 

,.,. 
% 045 084 087 E 105 12 5 12 5 
& 046 12 1187 F 106 12 6 12 6 

047 8 5 86 G 107 12 7 12 7 
<, ... 

( 050 12 8 5 084 H 110 12 8 12 8 
) 051 1185 1284 I III 12 9 12 9 
* 052 1184 1184 J 112 11 1 11 1 
+ 053 1286 12 K 113 11 2 11 2 

054 083 083 L 114 11 3 11 3 
055 11 11 M 115 11 4 11 4 
056 12 8 3 l2 8 3 N 116 11 5 11 5 

/ 057 o 1 o 1 0 117 11 6 11 6 
0 060 0 0 P 120 11 7 11 7 
1 061 1 1 Q 121 11 8 11 8 
2 062 2 2 R 122 11 9 119 
3 063 3 3 S 123 02 02 
4 064 4 4 T 124 03 03 
5 065 5 5 U 125 04 04 
6 066 6 6 V 126 05 05 
7 067 7 7 W 127 06 06 
8 070 8 8 X 130 07 07 
9 071 9 9 Y 131 08 08 

072 82 11 8 2 or 11 ot Z 132 09 09 
073 1186 082 [ 133 1282 11 8 5 

< 074 1284 1286 \ 134 11 8 7* 8 7 
= 075 86 8 3 ] 135 082* 12 8 5 
> 076 086 1186 136 12 8 7* 8 5 
? 077 087 12 8 2 or 12 ot 137 085 8 2 

r'; .. 

Binary 79 
Mode Switch 12 0 246 8 tThe Monitor accepts either punch for input 
End of File 12 11 0 1 6789 but outputs only the triple punch_ <) 

These two DEC card codes provide a representation for the figure and upper case character subset. 
DEC 029 is not available in all programs, but it is almost identical to the ASCII subset, differing only in the 
four column punches indicated by asterisks as follows: 

DEC 029 11 8 2 11 8 7 082 12 8 7 
ASCII 1287 082 1182 1187 

The next two pages show the relationship among the various character sets for the column punches listed 



CARD CODES B-ll 

Column Column 
Punch Character Punch Character 

None Space 12 9 I 

0 0 III J 

1 11 2 K 

2 2 11 3 L 

3 3 11 4 M 

4 4 11 5 N 

5 5 11 6 0 

6 6 11 7 P 
"" 
'Co 7 7 11 8 Q 

8 8 11 9 R 

9 9 o 1 / 
12 1 A 02 S 

12 2 B 03 T 
12 3 C 04 U 

12 4 D 05 V 

12 5 E 06 W 

12 6 F 07 X 
12 7 G 08 y 

12 8 H 09 Z 

Column 026 Data 026 
Punch Processing Fortran 029 DEC 026 DEC 029 ASCII 

12 & + & + & & 

11 

12 0 ? 

11 0 

8 2 

~..,. 83 # = # = # # 
84 @ @ @ @ @ 

85 
~ 86 = = = 

8 7 " \ " " 

12 8 2 ¢ ? 

1283 

above, and where they exist, the corresponding single-key punch configurations and printed characters for 
several IBM key punches. 



B-12 INPUT-OUTPUT CODES 

Column 026 Data 026 
Punch Processing Fortran 029 DEC 026 DEC 029 ASCII 

1284 II ) < ) < < 
1285 ( ( ( 

1286 + < + + 
12 8 7 

11 8 2 

11 8 3 $ $ $ $ $ $ rl 

11 84 * * * * * * 
1185 ) ) ) .' 11 8 6 > 
11 8 7 & \ 
082 See note ] \ 
083 

084 % ( % ( % % 
085 +- " 
086 > # > > 
087 ? % ? ? 

79 Binary Binary EOT 
12 0 246 8 Mode Switch Mode Switch 

12 11 0 1 6789 End of File End of File 

NOTE: There is a single key for the 0 8 2 punch on the 029 but printing is suppressed. 

-, 



APPENDIX C 

10 BIT ASSIGNMENTS 

The drawings on the following pages define the meanings of the bits in the 
half words and full words of control and status information handled by 
the 10 instructions (bits that cause interrupts are indicated by asterisks). 
First are the KII 0 processor, the KA I 0 processor, and the console IO devices 
[pages C-2, C-6 and C-8]. The rest of the appendix is devoted to the 
peripheral devices, which are in order by type number, and the pagination 
also uses those numbers. Besides the bit layouts for conditions and status, 
the section on a given device also lists all other 10 instructions for that 
device, showing the operations performed in symbolic form using the con­
ventions defined for the representation of the processor instructions in 
Appendix A [see page A-I3]. 

/ 

C-1 



C-2 10 BIT ASSIGNMENTS 

KilO PROCESSOR 

Console APR 000 PI 004 PTR 104 

DATAl APR, 70004 (DS) --+ (E) (RSW) 

DATAO PI, 70054 If MI PROG DIS = 0: (E) --+ (MI) 
1 --+ PROGRAM DATA 

DATAO PTR, 71054 

r------ --------

ADDRESS SWITCHES 

6 14 

Priority Interrupt PI 004 

FUNCTION 

\ 
I \ 
3 S 6 

CONO PI, 

CLEAR CLEAR 

INCREMENT 

70060 

DROP PROGRAM 
REQUESTS ON 
SELECTED 
CHANNELS 

1718 

FUNCTION WORD 

INITIATE 
INTERRUPTS 

INTERRUPT ADDRESS 

DEACTIVATE ACTIVATE 

-,--

3S 

3S 

r \ ~' 
DISABLEI ENABLE '\ CLEAR I TURN I TURN 

POWER PARITY ON OFF 

I 
SELECT CHANNELS FOR BITS 22,24,25,26 

FAI LURE ERROR PARITY ERROR PI 

FLAG FLAG INTERRUPT SYSTEM SELECTED CHANNELS I I 2 I I I 3 I 4 I 5 I 6 I 
18 19 20 I 21 22 23 24 25 26 27 28 29 I 30 31 32 I 33 34 

CONI PI, 70064 

INST DATA 
WRITE 

ADDRESS ADDRESS EXEC USER PAR NXM PROGRAM REQUESTS ON CHANNELS 
FETCH FETCH STOP BREAK PAGING PAGING STOP STOP 

I I I I I I I 2 3 4 5 6 

o 2 3 4 5 6 7 8 9 10 11 I 12 13 14 I 15 16 

INTERRUPT IN PROGRESS ON CHANNELS 
PI CHANNELS ON (ACTIVE) SYSTEM 

1 I 2 I 3 I 4 J 5 J 6 j 7 
ON 

1 1 2 I 3 I 4 I 5 I 6 I 
18 19 20 21 22 23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 34 

~., 

7 

35 

7 

17 

7 

35 



.. 

KIlO PROCESSOR 

Processor Conditions APR 000 

CONO APR, 70020 

CLEAR DISABLE I ENABLE DISABLE I ENABLE 
RESET ALL DISABLE ENABLE CLOCK CLEAR 
TIMER IN-OUT TIMER TIMER AUTO RESTART 

INTERRUPT CLOCK 
DEVICES I I 

18 19 20 21 22 23 24 25 26 27 

CONI APR, 70024 

MAINTENANCE 

MEM 
OVERLAP 
DISABLE 

o 1 

* 
TIME PARITY 
OUT ERROR 

18 19 

FM 
MI 

MANUAL 
PROG 

DISABLE 

2 3 

PARITY 
ERROR 
INTERRUPT 
ENABLED 

I TIMER 
ENABLED 

20 21 

CONSOLE 
DATA 
LOCK 

4 

* 
POWER 

FAI LURE 

22 

DATAO APR, 70014 

o 2 3 4 

WRITE 
EVEN 
PARITY 

18 19 20 21 22 

CONSOLE 50 
LOCK HERTZ 

5 6 

AUTO 
RESTART 
DISABLED 

23 24 

5 6 

TURN J TURN 
OFF ON 

SPEED 
MARGINS 

23 I 24 

MARGIN i-E 

ENABLE 

7 8 

CLOCK 
INTERRUPT 
ENABLED 

f * 
CLOCK 

25 26 

TURN J TURN 
OFF ON 

VOLTAGE 
MARGINS 

7 8 

25 26 

POWER 
ALARM 

9 

27 

9 

27 

CLEAR 
IN-OUT 

PAGE 
FAILURE 

28 

VOLTAGE 
MONITOR 

LOW 

10 

* 
IN-OUT 

PAGE 
FAILURE 

28 

10 

28 

CLEAR 
NONEXISTENT 
MEMORY 

I-
PRIORITY INTERRUPT 
ASSIGNMENT-ERROR 

I I 

29 30 31 32 

C-3 

PRIORITY INTERRU PT 
ASSIGN MENT -CLOCK 

I I 
33 34 35 

SENSE SWITCHES 

11 

1 I 
12 

NONEXISTENT 
MEMORY 

2 I 3 

13 14 

*-; PRIORITY INTERRUPT 
ASSIGNMENT-ERROR 

I I 

29 30 31 32 

I 4 I 5 I 6 

I 15 16 17 

PRIORITY INTERRUPT 
ASSIGNMENT -CLOCK 

I I 
33 34 35 

MARGIN ADDRESS 

I I I I 

11 12 13 14 I 15 16 17 

MARGIN VALUE 

I I I I I 

29 30 31 32 I 33 34 35 



C-4 10 BIT ASSIGNMENTS 

Memory Management PAG 010 

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE 

o 1 234 5 

DATAO PAG, 
DATAl PAG, 

USER FAST 

PHYSICAL PAGE 
ADDRESS BITS 14-26 

PHYSICAL PAGE 
ADDRESS BITS 14-26 

171RI920212223 

PAGE MAP WORD 

VIRTUAL PAGE 

8 9 

70114 
70104 

USER 

17 

IF BIT 31 IS 0, BITS 31-35 
HAVE THIS FORMAT 

PAGE FAIL WORD 

0--+ ASSOCIATIVE MEMORY 

35 

FAILURE 
TYPE 

31 35 

10lAlwlsiTI 
31 32 33 34 35 

LOAD 
MEMORY 

SMALL AODRESS USER BASE ADDRESS 
LEFT USER COMPARE BLOCK 

I ENABLE I I I I I I I I 

o 2 3 4 5 I 6 7 8 I 9 10 II I 12 13 

LOAD PAGE EXECUTIVE BASE ADDRESS 
RIGHT ENABLE 

I I I I I I I I I 

18 19 20 21 22 23 I 24 25 26 I 27 28 29 I 30 31 

CONO PAG, 70120 

EXECUTIVE AC 
STACK POINTER 

I I I I I I I I I I I 

18 19 20 I 21 22 23 I 24 25 26 I 27 28 29 I 30 31 

CONI PAG, 70124 

PROCESSOR SERIAL NUMBER 

o 2 3 4 5 6 7 8 9 10 II I 12 13 

EXECUTIVE WORD COMPLEMENT OF VIRTUAL PAGE NUMBER ADDRESS 
SPACE EMPTY 

I I I I I I I I I 

18 19 20 I 21 22 23 I 24 25 26 27 28 29 30 31 

I I I I 

14 I 15 16 17 

I I I I 

32 I 33 34 35 

PAGE TABLE 
RELOAD COUNTER 

I I I I 

32 I 33 34 35 

14 I 15 16 17 

PAGE TABLE 
RELOAD COU NTER 

I I L I 

32 I 33 34 3 5 



KI 1 0 PROCESSOR C-5 

MAP 257 

PAGE P W S NO PHYSICAL PAGE 
FAILURE MATCH ADDRESS BITS 14-26 

I I I I I I I I I I I I 

18 19 20 21 22 23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35 



C-6 10 BIT ASSIGNMENTS 

KAIO PROCESSOR 

Console APR 000 

DATAl APR, 70004 (DS) ~ (E) 

Processor Conditions APR 000 

CONO APR, 

CLEAR 
PUSHDOWN 
OVERFLOW 

70020 

CLEAR 
MEMORY 
PROTECTION 

CLEAR 
NONEXISTENT 
MEMORY FLAG 

(RSW) 

r-\ FLAG 11 
CLEAR CLEAR \-r-- DISABLEI ENABLE CLEAR DISABLE), ENABLE 

ALL ADDRESS 

~lL~~K I I Nff~~~ PT 
CLOCK FLOATI NG 

IN-OUT 
DEVICES 

18 19 

CONI APR, 

PUSHDOWN 
OVERFLOW 

20 21 22 

70024 

• 
MEMORY 
PROTECTION 
FLAG 

23 I. 24 

NONEXISTENT 
MEMORY 

25 

FLAG 

26 

CLOCK 
INTERRUPT 
ENABLED 

• 

OVERFLOW 
INTERRUPT 

27 28 

FLOATING 
OVERFLOW 
INTERRUPT 
ENABLED 

CLEAR 
FLOATING 
OVERFLOW 

I D ISABL~I_ ENABLE 
OVERFLOW 
INTERRUPT 

I 
29 30 31 

CLEAR 
OVERFLOW 

I 

32 33 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

34 

FLOATING OVERFLOW OVERFLOW 

• • ~ . / !-~ -,--

/ \'-- PRIORITY 
USER ADDRESS TRAP INTERRUPT 

IN-OUT BREAK 

I 
CLOCK I OFFSET I 

~ 11 
lTRfL~ INTERRUPT ~ / 

","CEO 7r 
ASSIGNMENT 

I I 

18 19 20 21 22 23 I 24 25 26 27 28 29 I 30 31 32 I 33 3 4 

35 

35 



.. ,.. 

.. 

KAI0 PROCESSOR 

Priority Interrupt PI 004 

CONO PI, 70060 

INITIATE 
INTERRUPTS 

DEACTIVATE ACTIVATE 

CLEAR CLEAR 
POWER PARITY 

FAILURE ERROR 
FLAG FLAG 

18 19 

CONI PI, 

DISABLE I ENABLE 

PARITY ERROR 
INTERRUPT 

20 I 21 22 

70064 

PARITY ERROR 
INTERRUPT 

-,--

CLEAR I TURN I TURN 
ON OFF 

I PI 
SYSTEM SELECTED CHANNELS 

I I 

r '\ ~' 
23 24 25 26 27 28 29 

POWER PARITY I!NTERRUPT IN PROGRESS ON CHANNELS 
PI 

SYSTEM 

E1-BLED 

FAILURE ERROR 
I I 2 I 3 I 4 I 5 I 6 I 7 

ON 
1 

18 19 2 o 2 22 23 I 24 25 26 I 27 28 29 

Memory Management APR 000 

DATAO APR, 70014 

Pl18-25 
! I I I II Ph 18-25 

! I I I II Rh18-25 

I I II I 
o 7 8 9 16 17 18 252627 

SELECT CHANNELS FOR BITS 22,24,25,26 

I 2 I 3 I 4 I 5 I 6 1 
I 30 31 3 2 I 33 34 

CHANNELS ON (ACTIVE) 

I 2 I 3 I 4 I 5 I 6 I 
I 30 31 32 I 33 34 

II 
34 35 

C-7 

7 

35 

7 

35 



C-8 

Reader PTR 104 

CONO PTR, 

27 28 

CONI PTR, 

27 28 

DATAl PTR, 

Punch PTP 100 

CONO PTP, 

CONI PTP, 

DATAO PTP, 

71060 

10 BIT ASSIGNMENTS 

CONSOLE 10 

PRIORITY INTERRUPT 
ASSIGNMENT 

29 30 31 32 33 34 3S 

71064 

29 

71044 

71020 

71024 

71014 

(BUFFER) ~ (E) 
o ~ DONE 

1 ~ BUSY 

PRIORITY INTERRUPT 
ASSIGNMENT 

33 34 3S 

PRIORITY INTERRUPT 
ASSIGNMENT 

33 34 3S 

PRIORITY INTERRUPT 
DONE ASSIGNMENT 

32 

(Eh8-3S ~ (BUFFER) 

O~ DONE 

1 ~ BUSY 

33 34 3S 

TAPE CHANNELS 

FEED 
HOLE 

\. 
@(!)®<ID@lo®~<D 

t 
TAPE MOTION 

.) 

" 



CONSOLE 10 C-9 

Console Terminal TTY 120 

CONO TTY, 71220 

CLEAR CLEAR CLEAR CLEAR SET SET SET SET PRIORITY INTERRUPT 
TEST INPUT INPUT OUTPUT OUTPUT INPUT INPUT OUTPUT OUTPUT ASSIGNMENT 

BUSY DONE BUSY DONE BUSY DONE BUSY DONE 
I 

24 25 26 27 28 29 30 31 32 33 34 35 

.. CONI TTY, 71224 

PRIORITY INTERRUPT 
ASSIGNMENT .. 

24 25 26 27 28 29 30 31 32 33 34 35 

DATAO TTY, 71214 (Eh8-35 ~ (BUFFER) 

o ~ OUTPUT DONE 

1 ~ OUTPUT BUSY 

DATAl TTY, 71204 (BUFFER) ~ (Eh8-35 

o ~ INPUT DONE 

.. ) 



CPIO 

CONO COP, 

CLEAR 
PUNCH 

18 19 20 

CONI COP, 

TEST HOPPER 
LOW 

18 19 20 

DATAO COP, 

I I I 

18 19 20 I 

71120 

OFFSET 
CARD 

21 22 

71124 

NEED 
OPERATOR 
SERVICE 

PICK 
FAILURE-t 

STACK 
FAILURE 

21 22 

71114 

I 

21 22 
I 

EJECT 
CARD 

23 

EJECT 
FAILURE 

23 

IO BIT ASSIGNMENTS 

CARD PUNCH CPIO 
CDP 110 

DISABLE I ENABLE 
CLEAR 

TROUBLE ERROR 
INTERfUPTS 

2 4 

* 

TROUBLE 

24 

25 26 

TROUBLE 
INTERRUPT 

7""0 
ERROR 

25 26 

DISABLE I ENABLE 

END OF CARD 

I 

2 7 28 

CARD END 
IN OF 

PUNCH CARD 
ENABLED 

27 28 

0--+ DATA REQUEST 

1 --+ PUNCH ON, BUSY 

ROW ROW ROW ROW ROW 
12 11 0 1 2 

23 24 25 26 27 28 

CLEAR SET CLEAR I SET PRIORITY 
END INTERRUPT 
OF 

PUNCH DATA ASSIGNMENT ON REOUEST CARD I I 

29 30 3 1 32 33 3 4 35 

.. 

" 
* * 

END 
PRIORITY 

OF PUNCH 
BUSY 

DATA INTERRUPT 
CARD ON REOUEST ASSIGNMENT 

1 I 
29 30 31 32 33 34 35 

ROW ROW ROW ROW ROW ROW ROW 
3 4 5 6 7 8 9 

29 30 31 32 33 34 35 



CO NO CR, 

18 19 20 

CONI CR, 

I I I 
o 2 

TROUBLE 
INTERRUPT 

READY 
TO READ 
INTERRUPT 
ENABLED '",\LEO C-\-j 

PICK 
FAILURE 

18 19 20 

DATAl CR, 

BITS 
15-17 

INVALID 
I 

o 2 

I I 

18 19 20 

71520 

21 22 

71524 

I I 
3 4 

PHOTO CARD 
CELL MOTION 

ERROR ERROR 

21 22 

71504 

I I I 
I 3 4 

I I I 
I 21 22 

CLEAR OFFSET 
READER CARD 

23 24 

5 6 

CARD 
STOP IN 

READER 

23 24 

CARD READER CRIO 

CARD READERCRIO 
CR 150 

READ 
CARD 

25 26 

I I 
7 8 

HOPPER 
EMPTY- READING 
STACKER CARD 

FULL 

25 26 

ENABLE 
TROUBLE 
INTERRUPTS 

t CLEAR 
DATA 

MISSED 

27 28 

I I 
9 10 

TROUBLE DATA 
MISSED 

27 28 

0-+ DATA READY 

ROW 
9 

I I I I 

5 I 6 7 8 I 9 10 

ROW ROW ROW ROW ROW 
12 11 0 1 2 

23 24 25 26 27 28 

ENABLE 
READY 
TO READ 
INtERRUPTS 

CLEAR 
END 
OF 

FILE 

29 30 

II 12 

READY END 
TO OF 

READ FILE 

29 30 

ROW ROW 
12 11 

11 12 

ROW ROW 
3 4 

29 30 

CLEAR 
END 
OF 

CARD 

31 

I I 
13 

END 
OF 

CARD 

31 

ROW 
0 

13 

ROW 
5 

31 

CLEAR 
DATA 

READY 

32 33 

14 15 

DATA 
READY 

32 33 

ROW 
8 

14 15 

ROW ROW 
6 7 

32 33 

CRlO 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

34 35 

READER 
MODEL 

I 
16 17 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

34 35 

ROW PUNCHED 
IN ROWS 1-7 

I J 
16 17 

ROW ROW 
8 9 

34 35 





,. 

COMPUTER INTERFACE DAI0 

TWELVE- AND EIGHTEEN-BIT COMPUTER INTERFACE DAIO 
CCI014 

CO NO CCI, 70160 

DISABLE tENABLE CLEAR SET CLEAR SET CLEAR SET CLEAR SET 
FROM FROM FROM FROM TO TO TO TO 

SELF-CHECK TEN TEN TEN TEN TEN TEN TEN TEN 

I FULL FULL EMPTY EMPTY FULL FULL EMPTY EMPTY 

18 19 20 21 22 23 I 24 25 26 27 28 29 30 31 32 

CONI CCI, 70164 

SELF FROM FROM TO TO 
CHECK TEN TEN TEN TEN 

ENABLED FULL EMPTY FULL EMPTY 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

DATAO CCI, 70154 (E) -+ (FROM TEN) 

DATAl CCI, 70144 (TO TEN) -+ (E) 

Twelve-bit Computer 35, 36, 37 Eighteen-bit Computer 22 

6361 If TO TEN EMPTY = 1: skip 702221 If TO TEN EMPTY = 1: skip 

6371 If FROM TEN FULL = 1: skip 702241 If FROM TEN FULL = 1: skip 

6351 0-+ (TO TEN) 702201 0-+ (TO TEN) 

6354 (AC) -+ (TO TEN )0-11 702204 (AC) -+ (TO TEN )0-17 

6364 (AC) -+ (TO TEN )12-23 702224 (AC) -+ (TO TEN )18-35 

6374 (AC) -+ (TO TEN h4-35 702212 (TO TEN)0-17 -+ (AC) 

6352 (TO TEN )0-11 V (AC) -+ (AC) 702232 (TO TEN )18-35 -+ (AC) 

6362 (TO TEN)12-23 v (AC) -+ (AC) 

6372 (TO TEN h4-35 v (AC) -+ (AC) 

DAlO 

PRIORITY 
INTERRUPT 

ASSIGNM ENT 
I I 

33 34 35 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

33 3 4 35 



DCIO-l 

CONO DLS, 72420 

27 28 29 

CONI DLS, 72424 

27 28 29 

DATAl DLS, 72404 

9 10 11 

DC10E 

DC10E 

27 28 

CLEAR 
DCtO 

30 

30 

12 

29 

10 BIT ASSIGNMENTS 

DATA LINE SCANNER DCtO 
DLS 240 

31 

31 

RESET 
SCANNER 

32 

RCVR 

32 

PRIORITY INTERRUPT 
ASSIGNMENT 

33 34 35 

PRIORITY INTERRUPT 
ASSIGNMENT 

33 34 35 

LINE NUMBER 

13 14 15 16 17 

30 31 32 33 

DATA 
LINE ABANDON 'CARRIER 

OCCUPIED CALL DETECTED 
/ 

I I I READY I Ip~:~TI 
I 

TI 
DIGIT 

ENABLE 

29 30 31 32 33 

Alternates: 'CLEAR TO SEND tRESTRAIN DETECTED 
DATA SET READY 

34 35 

t RING 
INDICATOR 

71 
34. 35 



DATAO DLS, 

DC10B 

9 10 

8 Bits 

72414 

USE 
THIS 
LINE 

11 12 

TURN 
OFF 

XMTR BIT 8 I 

27 28 

5 Bits 

27 28 

DC10E 

9 10 II 12 

SET READY 
STATUS ENABLE CALL 

FLAG 

27 28 29 30 

DATA LINE SCANNER DCIO DC 10-2 

LINE NUMBER 

13 14 IS 16 17 

DATA 
BIT 7 BIT 6 I BIT 5 I BIT 4 I BIT 3 I BIT 2 I BIT 1 

29 I 30 31 32 
I 

33 34 35 

TURN DATA ON 
XMTR BIT 5 I BIT 4 I BIT 3 I BIT 2 I BIT I 

I 
29 30 31 32 33 34 35 

LINE NUMBER 
I 

13 14 IS 16 17 

LOAD 
DIGIT DIGIT 

I I I 
I 

31 32 33 34 35 



DC68A-1 10 BIT ASSIGNMENTS 

DATA COMMUNICATION SYSTEM DC68A 

DC08A Serial Line Multiplexer 40-47 

LINE NUMBER 

o 2 3 4 5 6 7 8 

LINE STATUS WORD 

6411 

Clock 1 

6424 

6421 

6422 

Clock 2 

6434 

6431 

6432 

o ~ (LSR) 

Clock 3 

6444 

6441 

6442 

6412 (ACh-11 v (LSR) ~ (LSR) 

6404 (AC)l1 ~ LINE 

(AC)i ~ (AC)i + 1 
o ~ (AC)o 

6471 o ~ (LCe) 

6472 (ACh-11 v (LCC) ~ (LCC) 

6402 (LSWh-8 ~ (LSR) 

Clock 4 

6454 

6451 

6452 

6401 

6414 

6461 

6464 

SAMPLING COUNT 

9 10 11 

Enable CLOCK 

If CLOCK FLAG = 1: skip 

Disable CLOCK 

(LSR) + 1 ~ (LSR) 

(LSR) V (ACh-11 ~ (ACh-ll 

(LCC) + 1 ~ (LCC) 

(LCC) V (AC)S-11 ~ (ACh-ll 

If [(LSW)o = 0] v [LINE HOLD = 1]: ~ LINE ~ (LSW)o 

If [(LSW)o = 1] /\ [LINE HOLD = 0]: (LSWh-ll + 1 ~ (LSWh-ll 

If (LSW)9-11 = 2: 
if LINE HOLD = 0: (CAW)i ~ (CAW)i+l 

LINE ~ (CA W)o 

If (CAW)l1 = 1: 
if (LCe) = 0: 1 ~ LINE HOLD skip 
if (LCe):f= 0: (CAW) ~ (AC) 

o ~ LINE HOLD 

DC08F Modem Control 70-73 

6704 Enable flags 
Select modem by (ACS - 11 ) 

6712 Disable 

If (LSW)9-11 :f= 2: skip 2 

If (CAW)ll = 0: skip 



r, 

.", 

DATA COMMUNICATION SYSTEM DC6SA 

6701 If RING FLAG = 1: skip 

6702 (RING SCANNER) V (ACh-ll ~ (AC)S-ll 

6734 

6711 

6714 

6724 

6731 

6732 

6721 

6722 

o ~ RING FLAG Enable RING SCANNER 

If CARRIER FLAG = 1: skip 

(CARRIER SCANNER) V (AC)S-l1 ~ (ACh-ll 
CARRIER DETECTED V (AC)o ~ (AC)o 

o ~ CARRIER FLAG Enable CARRIER SCANNER 

o ~ CARRIER CHANGE for line selected by (AC) S-l1 

1 ~ DATA TERMINAL READY for line selected by (AC)S-ll 

1 ~ REQUEST TO SEND for line selected by (ACh-11 

o ~ DATA TERMINAL READY for line selected by (ACh-11 

o ~ REQUEST TO SEND for line selected by (AC)S-ll 

DC08H Call Control 74,75 

6754 Select ACU by (ACS - ll ) 

6756 If [POWER ON = 1] A [DATA LINE OCCUPIED = 0]: 1 ~ CALL REQUEST 

If [POWER ON = 0] V [DATA LINE OCCUPIED = 1]: 1 ~ CALL STATUS 

6751 If CALL STATUS = 1: skip 

6755 o ~ CALL STATUS STATUS V (AC)O-4 ~ (AC)O-4 

POWER DATA ABANDON DATA PRESENT 
LINE SET NEXT 

ON OCCUPIED CALL STATUS DIGIT 

0 2 3 4 S 

6753 If DIGIT REQUEST = 1: skip 

6741 o ~ DIGIT REQUEST 

6757 (AC)g-ll ~ ACU 
If CALL REQUEST = 1: 1 ~ DIGIT PRESENT 

6752 o ~ CALL REQUEST o ~ DIGIT PRESENT 

DC68A-2 



DC68A-3 10 BIT ASSIGNMENTS 

689AG Modem Control 70-74 

6704 Enable flags and GROUP 6714 Disable 

6721 0-+ (GROUP) 6731 (GROUP) + 1 -+ (GROUP) 

6701 If RING FLAG = 1: skip 6742 o -+ RING FLAG 

6711 If CARRIER FLAG = 1: skip 6741 0-+ CARRIER FLAG 

6704 RING STATUS V (AC)4-11 -+ (AC)4-11 

6714 CARRIER STATUS V (AC)4-11 -+ (AC)4-11 

6722 1 -+ DATA TERMINAL READY for lines selected by AC4 - 11 

6732 1 -+ REQUEST TO SEND for lines selected by AC4 - 11 

6724 0 -+ DATA TERMINAL READY for lines selected by AC4 - 11 

6734 0 -+ REQUEST TO SEND for lines selected by AC4 - 11 

o 2 3 4 5 6 7 8 9 10 11 

689AG Call Control 75-77 

6752 Select ACU by (AC)lO-11 

6761 If [POWER ON = 1] 1\ [DATA LINE OCCUPIED = 0]: skip 

6764 If [POWER ON = 1] 1\ [DATA LINE OCCUPIED = 0]: 1 -+ CALL REQUEST 

6751 If DIGIT REQUEST = 0: skip 6762 o -+ DIGIT REQUEST 

6754 (AC)8-11 -+ ACU 
If CALL REQUEST = 1: 1 -+ DIGIT PRESENT 

6771 If INCOMPLETE CALL = 1: skip 6772 o -+ INCOMPLETE CALL 



DFIOC 22-bit Address 

Normal transfer I 
0 

Discard input I 
0 

Jump I 
0 

Halt I 
0 

DFIO I8-bit Address 

Normal transfer I 
0 

Discard input I 
0 

Jump I 
0 

Halt I 
0 

DATA CHANNEL DFI0C/DFI0 

DATA CHANNEL DFIOC/DFIO 
Control Words 

-WORD COUNT INITIAL DATA ADDRESS - 1 
1314 

-WORD COUNT ZERO 

1314 

ZERO I CONTROL WORD ADDRESS 

1314 

ZERO I ZERO 

13 14 

-WORD COUNT INITIAL DATA ADDRESS - 1 
1718 

-WORD COUNT I ZERO 

1718 

ZERO I CONTROL WORD ADDRESS 

1718 

ZERO ZERO 

1718 

DFIO 

35 

35 

35 

35 

35 

I 
35 

I 
35 

I 
35 



OKlO 

CO NO CLK, 70720 

18 19 20 21 22 

CONI CLK, 70724 

18 19 2 o 21 22 

DATAO CLK, 70714 

DATAl CLK, 70704 

10 BIT ASSIGNMENTS 

REAL TIME CLOCK DKIO 
eLK 070 

SET 
COUNT 

IERFLOW 

SET 
COUNT 
DONE 

23 24 

2 3 24 

COUNT CLEAR 
CLOCK 

25 26 

EXTERNAL 
SOURCE 

'\. 

25 26 

(E)R ~ (INTERVAL) 

(COUNTER) ~ (E)R 

CLEAR SET TURN 
USER USER CLOCK 
TIME TIME OFF 

27 28 29 

USER 
TIME 

27 28 29 

CLEAR 
COUNT 

TURN 

IERFLOW 

CLEAR 
CLOCK 

ON 

30 

COUNT 
OVERFLOW 

31 

'\.* 
CLOCK 

ON 

30 31 

COUNT 
DONE 

32 

* 
COUNT 
DONE 

32 

PRIORITY 
INTERRUPT 

A SIS IGN ME~T 

33 3 4 35 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

33 3 4 35 



I, 

Data Formats 

Immediate mode 

3 5 

Indirect mode 

o 1 23 5 

A 
o 
1 

Access 
Read or write 
Read only 

Pointer modes 

IpS I -WORD COUNT 

14 

o 

o 23 56 1314 

S Byte Mode 

2 16-bit 
o 

3 12-bit 
o 

4 8-bit 
o 

5 7-bit 

2 

PDP-ll DATA LINK DLI0 

PDP-ll DATA LINK DLIO 
DLB 060 DLC 064 

DATA 

20 

ADDRESS 

35 

35 

Word Position Specified by P 

WORD POSITION 0 

WORD POSITION 1 

16 

WORD POSITION 2 

20 

WORD POSITION 3 

ADDRESS 

35 

Byte Positions Specified by P 

BYTE 0 BYTE 1 

1516 31 

BYTE 0 BYTE 1 BYTE 2 

DLlO-l 

35 

1112 2324 35 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

78 1516 2324 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 ~ 
o 67 1314 2021 2728 34 

6 6-bit BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 

o 56 1112 1718 2324 2930 35 



DLlO-2 10 BIT ASSIGNMENTS 

PDP-II Control and Status Registers 

DATO 100000 (Conditions out) 

SET I CLEAR SET I CLEAR SET I CLEAR SET I CLEAR 

11 INTERRUPT 10 INTERRUPT NONEX MEMORY PARITY ERROR 

I I 

I 5 I 14 13 12 II 10 9 I 8 

DATI 100000 (Status) 

* * * 
11 10 NONEX PARITY 

INTERRUPT INTERRUPT MEMORY ERROR 

15 14 13 12 11 10 9 8 

tInterrupts PDP-IO. 

PDP-I 0 Standard Instructions 

CONO DLB, 70620 

BASE ADDRESS (12 HIGH BITS) 

I I I 
SK ~PTION (9 IBITS) 

I I I 
18 1 9 20 I 21 2 2 23 I 24 25 26 

CONO DLC, 70660 

ACTION PDP-II-3 PDP-II-2 CLEAR LOCK OF IS: 
DUO DLlO o CLEAR 11 .1 PORT 1 10 11 .1 PORT Ii 10 

1 SET INT'RUPT ENABLE INT'RUPT INT'RUPT ENABLE INT'RUPT 

18 19 20 21 22 23 24 25 26 

CONI DLC, 70664 

DIAG 11-3 
DIAG DIAG DIAG DIAG DIAG I DIAG INH 8K MSYN C0 Cl R2 RI CYC OPTION 

0 I 2 3 4 5 6 7 8 

·fct * 
GOT PDP-11-3 PDP-I1-2 
OlIO 

" .1 PORT 1 10 11 rI PORT 1 10 LOCKED INT'RUPT ENABLE INr'RUPT INT'RUPT ENABLE INT'RUPT 

18 19 20 21 22 23 24 25 26 

t Interrupts PDP-II. 

I 
I 

SET I CLEAR ERROR 11 INTERRUPT 
WORD COUNT INTERRUPT INTERRUPT ASSIGNMENT OVERFLOW ENABLE ENABLE 

I I 

7 6 5 4 3 2 I 0 

* 
WORD THIS ERROR 11 INTERRUPT 
COUNT PORT INTERRUPT INTERRUPT ASSIGNMENT 

OVERFLOW ENABLED ENABLE ENABLE 
1 

7 6 5 4 3 2 o 

MASK FOR SIZE 
PDP-l1 OF POINTER BLOCK 

I I I I I I 
2 7 28 29 30 31 32 I 33 34 35 

PDP-11-1 PDP-11-0 PRIORITY 
INTERRUPT 

"1 PORT I 10 INT'RUPT ENABLE INT'RUPT 
11 .1 PORT 1 10 

INT'RUPT ENABLE INT'RUPT A~SIGNMEINT 

27 

11-2 
SK 

OPTION 

9 

*t 

28 

11-1 
SK 

OPTION 

10 

PDP-l1-1 

29 

11-0 
SK 

OPTION 

11 

* 
11 rI PORT 1 10 

INT'RUPT ENABLE INT'RUPT 

2 7 28 29 

30 

lOC 
LOCK 

ON 

I 2 

*t 

31 

----IOC 
LOCK 

DELAY 
ON 

13 

PDP-tl-O 

32 

----IOC 
LOCK I 

OUT 

14 

* 
11 rI PORT 1 10 

INT'RUPT ENABLE INT'RUPT 

30 31 32 

33 

----IOC 
LOCK 0 

OUT 

1 5 

34 35 

STANDARD 
INTERRUPT 

~ -
IS-SIT 

ADDRESS 

16 t7 

PRIORITY 
INTERRUPT 
A~SIGNME,NT 

33 34 35 

.\ 

" 



DATAO DLC, 

CLEAR J SET 
SELECTED 
LEFT, BITS 

o 2 

1 8 , 9 20 

DATAl DLC, 

0 1 2 

PDP-ll DATA LINK OLIO 

70654 

PDP-"- 3 PDP-l'-2 PDP-II- 1 PDP-t1-0 
WORD WORD WORD WORD 

NONEX.I PARITY 1 COUNT 
MEMORY ERROR OVERFLO 

NONEX ,I PARITY 1 COUNT 
MEMORY ERROR OVERFLO 

NONEX,I PARITY 1 COUNT 
MEMORY ERROR OVERFLO 

NONEX 'I PARITY 1 COUNT 
MEMORY ERROR OVERFLO 

3 4 5 6 7 8 9 10 11 12 13 14 

PDP-11-3 PDP-11-2 PDP-l1-1 PDP-"-0 

STOP I START STOP I START STOP I START STOP I START 

2 1 22 23 24 25 26 27 28 29 30 31 32 

70644 (All interrupts to PDP-l J) 

* * * PDP-t1-3 
WORD 

NONEX 'I PARITY I COUNT 
MEMORY ERROR OVERFLO 

3 

PORT 
EXISTS 

21 

4 

PDP-t1-3 

5 

REMOTE 
POWER 

23 

* * * PDP-It-2 
WORD 

NONEX 'I PARITY I, COUNT 
MEMORY ERROR OVERFLO 

6 

PORT 
EXISTS 

24 

7 8 

PDP-tt-2 

* * * * * PDP-It-l PDP-1f-O 
WORD WORD 

NONEX, I PARITY I COUNT 
MEMORY ERROR OVERFLO 

NONEX I PARITY I, COUNT 
ME MORY ERROR OVERFLO 

9 1 o II 12 

PDP-tl-l 
REMOTE PORT 
POWER EXI STS 

29 30 

13 

PDP-tt-O 

14 

REMOTE 
POWER 

32 

15 

33 

15 

33 

DLlO-3 

STANDARD 
INTERRUPT 

\ -
16 17 

34 35 

11- 3 
NO 

REMOTE 
CONSOLE 

16 17 

34 35 

PDP-10 Diagnostic Instructions 

DATAO DLB, 

I OIAG 
OIAG OIAG 

MSYN C0 

o 2 

DATAl DLB, 

CLOCK ---CLOCK 
READY SYNC 

I 015 

o 2 I 

70614 

OIAG SELECT INPUT OIAG 

CI REGISTER INH 

R2 J 
3 4 

70604 

RI CYC 

5 6 7 8 

R = 01: (MB) -+ (E) 
R = 23: As shown 

UNIBUS 

014 I 013 I 012 I Oil I 010 I 09 I 08 

3 4 5 I 6 7 8 I 9 

PULSE 
CLOCK 

33 34 35 

DATA - UBX 

I 07 I 06 I 05 I 04 I 03 I 02 I 01 1 00 

10 It 
, 

12 13 14 
, 

15 16 17 

REQ REQ --- REa ___ REQ 
LOW UBX .. 

BYTE OATOX A DATA A P JI A 

32 33 34 35 



DLlO-4 

CONI DLB, 

R=O 

o 

I I 

18 19 

R=l 

MC MC PARITY PARITY ODD 

o 

R=2 

P 
PSO I PSI I 

o 

I I 

18 19 

R=3 

18 19 

2 

I 
20 I 

MC 
MPXR 
ACK 

2 

PS2 

2 

I 

20 I 

20 I 

10 BIT ASSIGNMENTS 

70624 

MEMORY ADDRESS (BITS 18-35) 

3 4 5 6 7 8 9 10 11 I 12 13 14 I 15 16 17 

ADDRESS PDP-11-0 MASK --- REO I --- REO PDP-ll-0 BASE MB MB 

I I I I I i I I i i J 
DATA A ANDC A 

21 22 23 I 24 25 26 I 27 28 29 30 31 32 I 33 34 35 

MC MC MC MBI MBI 
--- MBI 

___ MBI MBI MBI MBI MBI 
--- MC MC Me MC REO REO 

RESUME ADR READ REWRITE WRITE READ REO CYC CYC MADR MADR MADR MADR MADR MADR 
ACK RESTART XMIT FAST SLOW 19 20 14 15 16 17 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 

PDP-1H BASE ADDRESS PDP-1H MASK 

29 30 33 34 35 

PS T 
S WCOV AWRO TI T2 T3 T3A T4 T5 T5A T5B T5C T6 

PS3 I PS4 I PS5 ENB 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 

PDP-II-2 BASE ADDRESS PDP-I I -2 MASK 
---P 
CLR 

I I I I I 1 I I ~ I 1 
MBti A 

21 22 23 I 24 25 26 I 27 28 29 30 31 32 I 33 34 35 

DO 

17 

21 

PDP-II-3 BASE ADDRESS 

I I I 
22 23 24 25 26 I 27 28 29 

PDP-l'-3 MASK 

30 I 31 I 32 I 33 
I I 

34 35 



'- ? 

CONO DSI, 
CONI DSI, 

27 28 

CONO DSS, 
ENTER 
DIAGNOSTIC 

'T SELECT ENABLE 
8-BIT 

LENGTH IDLE 

18 19 20 

CONI DSS, 
DIAGNOSTIC 

8-BIT 

MT 
IDLE 

LENGTH ENABLED 

18 19 20 

DATAO DSS, 

DATAl DSS, 

Data formats 

74660 
74664 

29 

74620 

21 22 

74624 

SINGLE SYNCHRONOUS LINE UNIT OSlO 

SINGLE SYNCHRONOUS LINE UNIT DS10 
DSS 460 DS! 464 

PRIORITY INTERRUPT 
ASSIGNMENT - FLAGS 

30 31 32 

TURN TURN ON 
INHIBIT DATA 

OFF 
ECHO TERMINAL RECEIVER 

READY 

23 24 25 26 

PRIORITY INTERRUPT 
ASSIGNMENT - DATA 

33 34 35 

ENABLE CLEAR 
RING RING 

27 28 29 30 

TRANSMITTER 
ACTIVE 

RECEIVER ECHO CLEAR DATA 
RING 

DATA 
IDLE TO TERMINAL SET RING 

ACTIVE INHIBIT SEND READY ENABLED READY 

\ 
* 

21 22 23 24 25 26 27 28 29 30 

74614 (E) --+ (TRANSMITTER BUFFER) 

o --+ TRANSMITTER DONE 

74604 (RECEIVER BUFFER) --+ (E) 
0--+ (RECEIVER BUFFER) 

o --+ RECEIVER DONE 

FIRST SECOND THIRD FOURTH FIFTH SIXTH 

0 5 6 11 12 17 18 23 24 29 30 35 

6-BIT CHARACTERS 

FIRST SECOND THIRD FOURTH 

o 7 8 15 16 23 24 31 32 35 

8-BIT CHARACTERS 

DS10 

CLEAR CLEAR CLEAR 
END DATA EOT 

ERROR ERROR RECEIVED 

31 32 33 34 35 

TRANSMITTER 

END DATA EOT RECEIVER 

* * "'9 * 

ERROR ERROR RECEIVED DONE 

31 32 33 34 35 



DSll-l 10 BIT ASSIGNMENTS 

MULTIPLE LINE SYNCHRONOUS INTERFACE DSll 

Register addresses 

775xxO 
775xx2 
775xx4 
775xx6 

Line 0 

Line 15 

Receiver status 
Receiver data 
Transmitter status 
Transmitter data 

775400 -775406 

775570 -775576 

DATO 775xxO (Receiver conditions out) 

CLEAR CLEAR CLEAR CLEAR BIT CHARACTER CARRIER SYNC STATE RING OVERRUN OVERRUN LOST 
I 

15 14 13 12 11 10 9 

DATI 775xxO (Receiver status) 

* * * * 
RING BIT CHARACTER CARRIER 

SYNC STATE CARRIER 
OVERRUN OVERRUN LOST DETECTED 

I 

15 14 13 12 11 10 9 

DATA 
TERMINAL 

READY 

B 

DATA 
TERMINAL 

READY 

B 

tSync state interrupts at 01. 

DATO 775xx4 (Transmitter conditions out) 

CLEAR CLEAR CLEAR DATA CLEAR BIT CHARACTER TO SEND TERMINAL 
OVERRUN OVERRUN LOST READY 

15 14 13 12 11 10 9 B 

DATI 775xx4 (Transmitter status) 

* * * 
CLEAR CLEAR DATA BIT CHARACTER TO TO TERMINAL OVERRUN OVERRUN SEND SEND READY LOST 

15 14 1 3 12 11 10 9 B 

CHARACTER 
LENGTH 

I 

7 6 5 4 

DATA 
DONE SET 

CHARACTER 
READY LENGTH 

I 

7 6 5 4 

SET CHARACTER 
DONE LENGTH 

I 

7 6 5 4 

* 
DATA 

DONE SET 
CHARACTER 

READY LENGTH 
I 

7 6 5 4 

DONE 
INTERRUPT RING RECEIVER 

ASSIG~MENT 
ENABLE ENABLE 

3 I 2 o 

DONE 
INTERRUPT RING RECEIVER 

ENABLE ENABLE 
ASSIG~MENT 

3 I 2 o 

DONE 
REQUEST 

INTERRUPT IDLE TO 
ASSIGNMENT SEND 

3 1 2 o 

DONE REQUEST 
INTERRUPT IDLE TO 
ASSIG~MENT SEND 

3 I 2 o 



DATI 775xx2 

DATO 775xx2 

MULTIPLE LINE SYNCHRONOUS INTERFACE DSll 

Read RECEIVER DATA 

o -+ RECEIVER DONE 

Load TRANSMITTER DATA 

o -+ TRANSMITTER DONE 

DSII-2 

114-------------12-BIT CHARACTER ------------..-j 
I i"" .. ..._------8-BIT CHARACTER ---------1-1 

I I I I I I I I I I I I 

15 I 14 13 12 I 11 10 9 I 8 

DATO 775600 (Interface conditions out) 

VECTOR 
ADDRESS 
HIGH BITS 

I I i I I I 

1 5 I 4 1 3 12 I 11 10 9 I 8 

DATI 775600 (Interface status) 

ADAPTER ADAPTER ADAPTER VECTOR 
3 2 1 ADDRESS 
IN IN IN HIGH I BITS 

1 5 14 1 3 1 2 11 10 9 I 8 

Interrupt vector address 

VECTOR 
0 0 0 0 0 0 ADDRESS 

HIGH BITS 
I 

1 5 14 1 3 1 2 11 1 o 9 I 8 

7 6 I 5 

ENTER USE 
PROGRAM DIAGNOSTIC CLOCK MODE (BIT 0) 

7 6 5 

DIAGNOSTIC PROGRAM 
MODE CLOCK 

7 6 5 

LINE NUMBER 

I L I 

7 6 I 5 

4 3 I 2 

CLEAR 
BIT 

COUNTER 

4 

4 

4 

3 

I 

3 I 

TRANSMITTER 
INTERRUPT 

2 

DIAGNOSTIC 
BIT COUNTER 

I 

2 

STATUS 
0 

I 
INTERRUPT 

3 2 1 

o 

INCREMENT 
BIT 

COUNTER 

o 

I 

o 

0 

o 



LPlO 10 BIT ASSIGNMENTS 

LINE PRINTER LPIO 
LPT 124 

CONO LPT, 71260 

I 

I CLEARI 

I I 

PRIORITY INTERRUPT PRIORITY INTERRUPT 

I 
PRINTER BUSY DONE ASSIGNMENT - ERROR ASSIGNMENT - DONE 

I I I I 

24 25 26 27 28 29 30 31 32 33 34 35 

CONI LPT, 71264 "-
~ 

ERROR 

24 25 26 27 28 29 30 31 32 33 34 35 

DATAO LPT, 71254 (E) ~ (BUFFER) 

O~ DONE 

1 ~ BUSY 

FIRST SECOND THIRD FOURTH FIFTH I I 
0 67 1314 2021 2728 34 

DATA FORMAT 

-' 



.) 

CONO DSK, 71720 

CLEAR 
SECTOR CLEAR TRACK- CLEAR CLEAR 

COUNTER UNIT SECTOR NOT POWER 
ERROR ERROR REAOY FAILURE 

I 

18 19 20 21 22 23 

DISK/DRUM SYSTEM RCIO 

DISK/DRUM SYSTEM RCIO 
DSK 170 

CLEAR CLEAR CLEAR CLEAR 
DEVICE DATA CONTROL NO CLEAR CLEAR 

PAR ITY PARITY WORD SUCH ILLEGAL DATA 

ERROR ERROR PARITY MEMORY WRITE LATE 
ERROR 

24 25 26 27 28 29 

RClO 

t t 
PRIORITY WRITE CLEAR INTERRUPT CONTROL STOP DONE WORD A~S'GNME,NT 

30 31 32 33 34 35 

t Bits 31 and 32 both 1: Clear disk system 

DATAO DSK, 71714 If BUSY = 0: 0 -+ Flags 

UNIT TRACK SECTOR 
100S IIllS 1 S '0S I ' S 

I I I I 
0 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 

NO NO 
DEVICE DATA WRITE 

LPCC BIAS PARITY PARITY WRITE INITIAL CONTROL WORD ADDRESS EVEN 
ERROR ERROR PARITY 

I I I I I STOP STOP I I I I I I I 
18 19 20 I 21 22 23 24 25 26 27 28 29 I 30 31 32 I 33 34 35 

CONI DSK, 71724 

22-81T SECTOR 
LOW PROTECTION BOUNDARY 

DRUM AREA UNIT TRACK ADDRESS 80 SAFE I 111!0S I '~S I 'r I I I I I 
0 1 2 3 4 5 6 7 8 I 9 10 11 I 12 13 14 I 15 16 17 

* * * * * * * * * * * * 
TRACK- DEVICE DATA 

CONTROL NO CONTROL PRIORITY 
SEARCH SEARCH UNIT 

SECTOR NOT POWER 
PARITY PARITY WORD 

SUCH 
ILLEGAL DATA 

WORD BUSY DONE INTERRUPT 
DONE ERROR ERROR ERROR READY FAI LURE ERROR ERROR PARITY MEMORY WRITE LATE 

WRITTEN ASSIGNMENT 
ERROR 

I I 
I 8 I 9 () ? 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

DATAl DSK, 71704 

PARITY REGISTER SECTOR SECTOR 
COUNTER II1!S I IS 

I I I I I I I I I ~ I I I 
18 19 20 I 21 22 23 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35 



RPlO-l 10 BIT ASSIGNMENTS 

DISK PACK SYSTEM RPIO 
DPC 250 

DATAO DPC, 72514 If BUSY = 0: 0 -+ Flags 

Write Data CYLINDER 

0 2 3 5 6 13 14 18 1920 23 25 27 34 35 

I At Ease I 5 I DRI VE I I ATTENTION I 
I I I I 011,21314151617 

o 2 3 5 27 28 29 30 31 32 33 34 

Select Drive 6 

I 
DRIVE 

I 
0 2 3 5 

CYLINDER DISABLE CHANNEL DATA 
MSB (RP03) PARITY ERROR STOP 

Write Format f I 
0 2 3 5 6 13 14 1819 25 27 34 35 

*Write even parity in memory. 

\ ... 

" 



DISK PACK SYSTEM RPIO RPIO-2 

CONO DPC, 72520 

CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR WRITE PRIORITY 
POWER SEARCH DATA NO PARITY DISK ILLEGAL ILLEGAL SECTOR SURFACE CONTROL STOP CLEAR INTERRUPT 

FAILURE ERROR LATE SUCH ERROR 
SYSTEM WRITE DATAO ADDRESS ADDRESS WORD DONE ASSIGNMENT 

MEMORY FLAGS ERROR ERROR I I 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

DATAl DPC, 72504 

* * * * * 
POSITION HEADS DISK FI LE NO READ WRITE 

DRIVE CYLINDER FAILURE IN ON UNSAFE SUCH ONLY HEADER 

I I I I I I I I I 
POSITION LINE DRIVE LOCKOUT 

o 2 3 4 5 I 6 7 8 I 9 10 11 12 13 14 15 16 17 

* * * * * * * * 
CYLINDER BAD ATTENTION SECTOR MSB RP03 SPOT 

I I I I 
IRP03J 0 I 1 1 2 1 3 I 4 I 5 I 6 I 7 

18 19 20 I 21 22 23 24 25 26 27 28 29 I 30 31 32 I 33 34 35 

CONI DPC, 72524 

* * * * 
CONTROL SECTOR CHANNEL DISK 

22-BIT WORD PARITY DATA WORD 
ADDRESS PARITY ERROR PARITY PARITY 

I I I I I I I I I I I I ERROR ERROR ERROR 

o 2 I 3 4 5 I 6 7 8 I 9 10 11 I 12 13 14 15 16 17 

* * * * * * * * * * * 
END NO SECTOR SURFACE CONTROL PRIORITY 

SEARCH OF POWER SEARCH DATA SUCH PARITY NOT ILLEGAL ILLEGAL ADDRESS ADDRESS WORD BUSY INTERRUPT INTERRUPT 
DONE CYLINDER FAILURE ERROR LATE MEMORY ERROR READY WRITE DATAO ERROR ERROR WRITTEN ASSIGNMENT 

1 I 
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

... ' 



TDIO-I 

CO NO DTC, 73220 

INHIBIT 

O~ Flags 

IO BIT ASSIGNMENTS 

DECTAPE TDIO 
DTC 320 DTS 324 

STOP GO GO START SELECT DESELECT UNIT FUNCTION FORWARD REVERSE DELAY 
I 

18 19 20 21 22 23 24 25 

CONI DTC, 73224 

NO 
SELECTION 

STOP FORWARD REVERSE 

18 19 20 

CO NO DTS, 

PARITY DATA JOB 
ERROR MISSED DONE 

18 19 20 

CONI DTS, 

TAPE 
SELECTED 

21 22 

73260 

ILLEGAL 
OPERATION 

\ 
END 
ZONE 

21 22 

73264 

ILLEGAL 
OPERATION 

1 
23 

BLOCK 
MISSED 

23 

PA"" 1 "" _I "08 1 fiEND 1 'UlC" ERROR MISSED DONE ZONE MISSED 
INTfRRUPTSI ENABLEp ON FL~G CHAN~EL 

o 2 

* * * 
PARITY DATA JOB 
ERROR MISSED DONE 

18 19 20 

NOVEMBER 1974 

I 3 4 

ILLEGAL 
OPERATION 

t * 
END 

ZONE 

21 22 

5 

* 
BLOCK 
MISSED 

23 

UNIT 

I 

24 25 

CLEAR 
DECTAPE 
SYSTEM 

24 25 

DELAY IN 
PROGRESS 

i 
ACTIVE 

6 7 

WRITE WRITE 

LOCK MARK 
SWITCH 

24 25 

I 

I 

26 27 

26 27 

26 27 

UP BLOCK 
TO NUMBER SPEED 

8 9 

INCOMPLETE 
BLOCK 

(-

26 27 

I I 

28 29 

FUNCTION 

I I 

28 29 

28 29 

LEADING 
PARITY DATA 

10 11 

* * 
MARK SELECT 
TRACK ERROR ERROR 

28 29 

PRIORITY 
INTERRUPT 

ASS IIGNMENT ~DATA 

30 31 32 

PRIORITY 
INTERRUPT 

ASSI~NMENT~DATA 

30 31 32 

30 31 32 

TRAILING 
FINAL PARITY IDLE 

12 13 14 

30 31 32 

PRIORITY 
INTERRUPT 

ASSI~NMENT -~LAGS 

33 34 35 

PRIORITY 
INTERRUPT 

ASSI~NMENT-~LAGS 

33 

33 

BLOCK 
NUMBER 

READ 

15 

33 

34 

STOP 
ALL 

TAPES 

34 

35 

SET 
FUNCTION 

,-STOP\ 

35 

FUNCTION 
STOP 

\ 
\ 

16 17 

* * 
FLAG DATA 

REQUEST REQUEST 

34 35 

" 



12 12 

FORWARD FORWARD 
BLOCK SYNCHRONIZING 

NUMBER AREA 

DATAO DTC, 73214 

DATAl DTC, 73204 

DATAO DTS, 73254 

DATAl DTS, 73244 

DECTAPE TDlO 

NUMBER OF FRAMES 
6 24+12N 6 

FORWARD REVERSE 
PARITY DATA AREA PARIT Y 

AREA AREA 

- - - FORWARD TAPE MOTION - - -

~ ~ ~ REVERSE TAPE MOTION ~ --

BLOCK FORMAT 

(E) ~ (BUFFER) 

o ~ DATA REQUEST 

(BUFFER) ~ (E) 
o ~ DATA REQUEST 

Clear time: 
Set time: 

TPO 
TP1 

(0 indicates mark) 

If (Eb = 1: 1 ~ TUPSO 
(Ehs ~ MARK TRACK SHIFT 

I LP BUFFER I RW BUFFER 

1 S 2021 261 

-------------' ,---------------

BN IJATA 
REV FWD 

BN ENIJ DATA DATA DATA HN SYNC 
SPACE 

(26) 
SYNC 

END (70) END (S I) 
(2S) (32) 

(10) (73) 

27 28 29 30 31 32 33 34 35 

TD10-2 

12 12 

REVERSE REVERSE 
SYNCHRONIZING BLOCK 

AREA NUMBER 



TMlO-l 

CO NO TMC, 

UNIT 

I 

18 19 20 

CONI TMC, 

[ [ [ 

o 2 

UNIT 

I I 

8 1 9 20 

CO NO TMS, 

18 19 20 

CONI TMS, 

o 2 

* 
UNIT LOAD 
HUNG POINT 

18 19 20 

NOVEMBER 1974 

73420 

PARITY 
CORE 
DUMP 

21 22 

73424 

[ [ 

10 BIT ASSIGNMENTS 

STANDARD MAGNETIC TAPE TMIO 
TMC 340 TMS 344 

o ~ BR 0 ~ Flags 

FUNCTION 

NEXT UNIT 
INTERRUPT 

fABLE 

DENSITY 
PRIORITY PRIORITY 

INTERRUPT INTERRUPT 
ASSIGNMENT-FLAGS ASSIGNMENT-PATA 

I I I 

23 I 24 25 26 27 28 29 30 31 32 33 34 35 

[ [ [ [ I "'" "" """ . EOR 

3 4 5 678 9 10 11 12 13 14 15 16 17 

CORE 
PARITY FUNCTION DUMP 

I I 

21 22 23 I 24 25 

73460 

CLEAR 
TAPE 

SYSTEM 

21 22 23 24 25 

73464 

3 4 5 6 7 

* 
TAPE END END READ-

ILLEGAL PARITY OF 
POINT 

COMPARE 
ERROR FILE ERROR 

21 22 23 24 25 

I 

26 

26 

8 

RECORD 
LENGTH 
DIFFERS 

26 

NEXT UNIT 
INTERRUPT 

fABLE 

DENSITY 

27 

27 

22-BIT 
ADDRESS 

9 

DATA 
LATE 

27 

I 

28 29 

28 29 

LOW READ 

THRErOLD 

CONTROL 
WORD 
PARITY 
ERROR 

10 11 

* 
BAD JOB 

TAPE DONE 

28 29 

PRIORITY 
INTERRUPT 

ASSI~NMENT -~LAGS 

30 

LOW 
READ 
THRESHOLD 

1 
30 

NO 
SUCH 

MEMORY 

12 

31 

CLEAR 
DATA 

PARITY 
ERROR 

31 

* 
DATA 

PARITY 
ERROR 

13 

UNIT CHANNEL 
IDLE FLAG 

30 31 

32 

CLEAR 
CONTROL 

WORD 
WRITTEN 

32 

* 
CONTROL 

WORD 
WRITTEN 

4 

WRITE 
LOCK 

32 

PRIORITY 
INTERRUPT 

ASSI?NMENT -pATA 

33 34 35 

WRITE MOVE CONTROL 
BR-HR 

STOP 
WORD 

33 34 35 

CHARACTER 
COUNTER 

15 16 17 

* * 
7 LOAD DATA 

NEXT 
REQUEST TRACK UNIT 

33 34 35 



STANDARD MAGNETIC TAPE TMIO 

Data formats 

I FIRST SECOND THIRD FOURTH FIFTH SIXTH 

o 5 6 \1 12 17 18 23 24 29 30 35 

FIRST 

o 78 

FIRST 

o 78 

DATAO TMC, 

DATAl TMC, 

DATAO TMS, 

7-TRACK BYTE DISTRIBUTION 

SECOND THIRD FOURTH 

1516 2324 31 32 

9-TRACK BYTE DISTRIBUTION 

SECOND THIRD FOURTH Z FIFTH 

1516 2324 

CORE DUMP BYTE DISTRIBUTION 

73414 If- Read: 0 -+ DATA REQUEST 

TMIOA: (E) -+ (HR) 

73404 If Read: 0 -+ DATA REQUEST 

If JOB DONE = 1: 0 -+ (BR) 
TMIOA: (HR) -+ (E) 
TMIOB: (BR) -+ (E) 

73454 TMIOA: (HR) -+ (BR) 

3031 

TMIOB: (Eh7-34 -+ CONTROL WORD ADDRESS 

If (Ehs = 1: Select even parity 

3S 

35 

TMI0-2 



XYlO 

CONO PLT, 

27 

CONI PLT, 

27 

DATAO PLT, 

RAISE 
PEN 

30 

71420 

29 30 

71424 

29 

71414 

LOWER 
PEN 

31 

POWER 
ON 

30 

-tlX 
(DRUM 

UP) 

32 

10 BIT ASSIGNMENTS 

PLOTTER XYIO 
PLT 140 

DONE 

32 33 34 35 

DONE 
PRIORITY INTERRUPT 

ASSIGNMENT 

32 33 34 35 

+tlX +~y -~y 
(DRUM (CARRIAGE (CARRIAGE 
DOWN) LEFT) RIGHT) 

33 34 35 



APPENDIX D 

TIMING 

This appendix contains tables and charts for determining the time taken by 
instructions in PDP-IO processors. But some advice is in order before the 
reader turns to the timing information. It is quite likely that inspecting tables 
and charts for the fastest instructions takes more time than is saved using 
them. Moreover there are other considerations of far greater import to good 
programming than speed. The primary objective should be to generate code 
that is correct, clear and concise. Only after producing code having these 
qualities should the programmer concern himself with the timing; and even 
then there are general principles whose employment is considerably more 
valuable than searching through charts and tables. 

The most important single factor in writing fast code is to pick a fast 
algorithm. Here are some guidelines. 

• Loops are slow. 

Always try to use one big loop instead of many small ones. 

Put loops in subroutines, rather than subroutine calls in loops. 

Set up data structures to minimize searching; instead index directly 
into tables. If direct indexing is not feasible, divide tables into sublists 
wherever possible. 

Avoid testing inside loops for conditions that are constant throughout the 
loop. Avoid recomputing constants. 

Use pointers rather than moving blocks of data. 

• UUOs are slow. If an extra ten instructions will save you from doing a 
UUO half the time, use them. 
• 10 is very slow. Keep information in core as much as possible. When it is 
not possible, move data to disk, but always keep in core that part most likely 
to be needed next. In any event always keep track of what information is 

~ where; nothing wastes time more than bringing in the same data twice. It is 
also a good idea to keep track of what is in your buffers if there is any 
chance you will have to back up. 

After finding the best procedure for doing a particular job, try to minimize 
the number of instructions, and following that the number of memory 
references. These two are obviously related, as every instruction requires at 
least the memory reference to fetch it. Generally speaking the fewer instruc­
tions, the faster the code will go; and there is the added benefit of fewer 
places for coding errors. But such rules should never be followed blindly, 
as there are various tradeoffs that must be taken into consideration. It is 
seldom useful to decrease the number of instructions or references by 10%, 
only to double the storage requirement in the process. For an exposition of 
such tradeoffs, refer to the discussion of parity procedures given in § 2.11. 

D-I 



D-2 TIMING 

The reason that minimizing the number of instructions and/or memory 
references tends to minimize time is that for most of the simpler instructions 
- data handling, Boolean, test - memory access is the dominant factor in 
instruction time. This is not true however for those instructions that contain 
extensive repetitive procedures, such as multiply and divide. A single MUL 
may entail a dozen additions, but it requires no more memory time than a 
single ADD. Substituting an MUL for two or three Boolean or test instruc­
tions rarely saves time. A good rule of thumb for approximating program 
time is to figure about a microsecond per memory reference, and then add a 
factor for shift operations. The KA 10 requires 150 nanoseconds per shift; 
the KIlO requires 110 nanoseconds, but right shifting is done two places at a 
time (in other words, 55 nanoseconds per place shifted right). Remember 
that shifting occurs not only in shift-rotate, multiply and divide instructions, 
but also in JFFO, byte manipulation, unnormalizing one operand with 
respect to the other in floating add and subtract, fixing and floating a 
number, and normalizing a floating point result. Note also that multiplica­
tion and division require addition or subtraction combined with shifting. 

After coding using the above guidelines and suggestions, run SNOOPY and 
TATTLE to determine where the program is really spending its time and 
whether further local optimization is worthwhile. It usually is not, but 
where it is, use the information given in the following pages. A note of 
caution, however, concerning that information. No instruction times are 
measured. The timing charts are constructed from delay times and published 
times for various circuits used in the hardware. Specific instruction times 
listed in tables and elsewhere are calculated from the timing charts. There 
are therefore manifest sources of inaccuracy in the information without con­
sidering the obvious fact that no two machines ever run exactly alike. Be 
especially leery of attaching any significance to the last digit. 

Do not assume that the fastest algorithm on one type of PDP-1 0 proc­
essor will be the fastest on another, or that instruction times given for one 
processor can be regarded as a relative indication of the times for another. 
Each new processor is faster than its predecessors, but different instructions 
are speeded up different amounts. Since the shorter instructions are depend­
ent almost entirely on memory cycle time, it is generally the slowest 
instructions that get speeded up the most in a new machine. In all processors 
the fastest no-op is JFCL, and the fastest jump is JRST; but the fastest 
absolute skip is CAIA on a KA1 0, TRNA on a KIlO. One thing a programmer 
can safely assume is that with each new machine, equivalent instructions will " 
tend toward taking the same amount of time. Suppose we wish to change a 
single bit in the right half of AC: in the KA10 an XORI is faster than a 
TRC, but in the KIl 0 they are the same. 



KIlO TIMING 

KilO INSTRUCTION TIMES 

The table on the next two pages lists the processor execution time in micro­
seconds for each instruction beginning with its address calculation. The times 
do not include the instruction fetch (.89 microsecond), as this is overlapped 
with the preceding instruction execution; in each case the processor time 
needed to complete the instruction fetch depends upon the extent of the 
overlap, a factor that varies from one instruction to another. The time listed 
is that required for direct addressing without indexing (ie with no effective 
address calculation), and assuming E addresses an MElD or MFlO core loca­
tion (1 J.J.s cycle), except in DFN and UF A, which are most frequently used 
with E equal to A + 1. It is further assumed that no conflicts develop in 
memory access - in other words there are a number of interleaved memories, 
and data blocks are kept in separate memories from instructions, so the 
processor need never wait for operand access while a given memory -com­
pletes a cycle from an instruction fetch. 

To arrive at more complete execution times for various circumstances, 
make the following adjustments to the figures given in the table. For indexing 
add .06; for indirect addressing add 1.02 for each address cycle without 
indexing, 1.08 for each with indexing. If the final address cycle includes 
indexing, add .12 to JRA, POP and POPJ, and add .11 to any instruction 
that does not fetch a memory operand. If memory operand storage is in fast 
memory, subtract .08 unless there is also storage in a second accumulator, in 
which case add .03. 

Following the table is a chart (with intervals in nanoseconds) that can be 
used for calculating the instruction time in almost any circumstances, with 
any memory, etc. However neither table nor chart includes any information 
about interrupts, page failures, bus conflicts between interrupts and 10 
instructions, or other special situations. 

Memory access by the processor is divided into three parts: page check, 
request setup, and the actual access cycle over the memory bus. In an instruc­
tion fetch, the first two of these can be overlapped with operand storage, but 
not the third. The effect of this on instruction fetch time is as follows. If an 
instruction does not store a memory operand (either because it has no 
operand or stores the result in an accumulator), probably the next instruction 
fetch will be overlapped entirely: hence the second instruction will be ready 
by the time the first is done. If an instruction stores a memory operand, 
there is no overlap on the bus, but most likely the page check and request 
setup will already have been performed (these show up as the 175 preceding 
each read access in the chart). After the write access is complete an instruc­
tion has 147 nanoseconds to go, during which period the read access for the 
next instruction can begin. Finally some instructions put off triggering the 
next instruction fetch until near the very end, but even in the worst case 
(BLT) there is a minimum overlap of 87 nanoseconds, which is enough for 
the page check (81). 

D-3 

For more esoteric considera­
tions: add 1.11 for each page 
refill cycle; add .09 to every 
page check in an instruction 
executed by an executive 
XCT, from the console, or in 
an interrupt; and add .20 per 
read access if the machine is 
running with the parity stop 
switch on. 

The time given for MAP 
assumes no page failure. 



0-4 TIMING 

KilO INSTRUCTION TIMES 

Full Words Half Words 

EXCH 1.61 MOVE MOVS 1.26 Basic 1.26 

MOVEI MOVSI .45 Immediate .45 

BLT 1.35 MOVEM MOVSM 1.06 Memory, no action 1.72 

+ per word MOVES MOVSS 1.61 Memory, some action 1.06 

Memory -'> memory 1.59 MOVN MOVM 1.32 Self 1.61 

AC -'> memory 1.21 MOVNI MOVMI .51 

Memory -'> AC 1.42 MOVNM MOVMM 1.12 

MOVNS MOVMS 1.67 

Byte Pushdown Arithmetic Test In-out 

IBP 1.90 PUSH 1.94 AOBJP AOBJN .57 BLKO 1.51 + DATAO 

LDB 2.87-6.72 POP 2.16 CAl .62 BLKI 1.51 + DATAl 

DPB 3.12-4.99 PUSHJ 1.12 CAM 1.43 Fast Slow 

ILDB 3.54-7.39 POPJ 1.43 JUMP .56 DATAO 3.13 4.12 

IDPB 3.80-5.67 AOJ SOl .62 DATAl CONI 2.05 3.37 

SKIP 1.37 CONO 2.32 3.31 

AOS SOS 1.78 CONSO CONSZ 1.55 2.87 

Program Control Logical Test 

JSR .95 TLN .45 TRN .34 TDN 1.15 TSN 1.26 

JSP .45 TLNE .62 TRNE .51 TDNE 1.32 TSNE 1.43 

JRST .34 TLNA .56 TRNA .45 TDNA 1.26 TSNA 1.37 

JEN .34 TLNN .62 TRNN .51 TDNN 1.32 TSNN 1.43 

PORTAL .34 TLZ .56 TRZ .45 TDZ 1.26 TSZ 1.37 

JRSTF .45 TLZE .73 TRZE .62 TDZE 1.43 TSZE 1.54 

JSA 1.06 TLZA .67 TRZA .56 TDZA 1.37 TSZA 1.48 

JRA 1.59 TLZN .73 TRZN .62 TDZN 1.43 TSZN 1.54 

JFCL .34 TLC .56 TRC .45 TDC 1.26 TSC 1.37 

JFFO .79-2.66 TLCE .73 TRCE .62 TDCE 1.43 TSCE 1.54 
" XCT .34 TLCA .67 TRCA .56 TDCA 1.37 TSCA 1.48 

LUUO 1.06 TLCN .73 TRCN .62 TDCN 1.43 TSCN 1.54 

MUUO 2.83 TLO .67 TRO .56 TDO 1.32 TSO 1.48 

MAP .60 TLOE .73 TROE .62 TDOE 1.43 TSOE 1.54 

TLOA .67 TROA .56 TDOA 1.37 TSOA 1.48 

TLON .73 TRON .62 TDON 1.43 TSON 1.54 



KilO TIMING 

Boolean 

AND ANDCA ANDCM 
SETZ SETO ANDCB SETM SETCM lOR ORCA 

SETA SETCA XOR EQV ORCM ORCB 

Basic .45 1.26 1.37 

Immediate .45 .45 .56 

Memory, Both .95 1.61 1.72 

Fixed Point Arithmetic 

ADD SUB 1.32 MUL 3.63-7.l4 DIV 8.10-8.51 

ADDI SUBI .51 MULl 2.82-6.33 DIVI 7.29-7.70 

ADDM SUBM 1.67 MULM 3.76-7.27 DIVM 8.23-8.64 

ADDB SUBB 1.67 MULB 3.87-7.38 DIVB 8.34-8.75 

IMUL 3.47-6.38 IDIV 8.l6-8.45 

IMULI 2.66-5.57 IDIVI 7.35-7.64 

IMULM 3.82-6.73 IDIVM 8.29-8.58 

IMULB 3.82-6.73 IDIVB 8.40-8.69 

Single Precision Floating Point Arithmetic 

FAD 2.45-6.20 FSB 2.62-6.37 

FADL 2.79-6.54 FSBL 2.96-6.71 

FADM FA DB 2.80-6.55 FSBM FSBB 2.97-6.73 

FADR 2.45-6.26 FSBR 2.62-6.43 

FADRI 1.75-5.56 FSBRI 1.98-5.79 

FADRM FADRB 2.80-6.61 FSBRM FSBRB 2.98-6.79 

DFN 

UFA 

FSC 

FIX FIXR 

FLTR 

DFAD 

DFSB 

1.50 

1.91-3.86 

1.02, 1.19 

1.72-3.31 

2.10-6.07 

2.59-7.00 

2.59-7.19 

FDV 7.12-7.75 

FDVL 7.77-8.52 

FDVM FDVB 7.47-8.10 

FDVR 7.49-7.95 

FDVRI 6.79-7.25 

FDVRM FDVRB 7.84-8.30 

Double Precision Floating Point Arithmetic 

DFMP 

DFDV 

No Divide 

6.89-10.59 

14.88-15.24 

2.62,2.70 

D-5 

Shift-rotate 

Left 1.14-5.10 

Right 1.19-3.17 

Left long 1.14-9.06 

Right long 1.19-5.l5 

No Divide 

Immediate 

Other 

.90-1.08 

1.71-1.89 

FMP 3.65-4.83 

FMPL 3.99-5.17 

FMPM FMPB 4.00-5.18 

FMPR 3.65-4.89 

FMPRI 2.95-3.59 

FMPRM FMPRB 4.00-5.24 

No Divide 

FDVL 

FDVRI 

Other 

DMOVE 

DMOVEM 

DMOVN 

2.l1,2.29 

1.24, 1.30 

1.94,2.00 

1.73 

1.85 

2.07,2.13 

DMOVNM 2.31 



0-6 

NOTES 

WAIT TILL 
PREVIOUS 

INSTRUCTION 
OONE 

NO 

SINGLE MEMORY 
OPERAND READ 

EXCEPT JRA, 
POP, POPJ 

All times are nominal maxima in nanoseconds 

If PAR STOP on add 195 to each read acca,. 

INSTRUCTION 
FETCH -
OVERLAPPED 
WITH PREVIOUS 
INSTRUCTION 

ALSO ADDRESS 
FETCH FOR 
INDIRECT 

AOORESS 
CALCULATION 

Moves Memory 
Half words Memory, 

some action 

MEMORY OPERAND 
STORAGE ONLY 

* +87 if executed by executive XCT, by interrupt, or from console; for refill add 
492 + read access 

t Trigg.r write request at this point if core 
In floating point 0 IS exponent difference 

Right shifting is done 2 places at a time; number of steps is N/2 when N is even, otherwise 
(N-1)/2 

KI10 INSTRUCTION TIMING PART I 

TIMING 

GROUP I 
AUTO INSTRUCTION FETCH 

BoDie basic except SETZ, SETA, SETCA, SETO 
BoDie Memory or 80th 
ADO, AD OM, ADDB, SUB, SUBM, SUBB 
Moves basic or Self 
Half words basic or Self 
Half words Memory, no action 
Test Diract or Swapped, never skip 
EXCH, IBP, Byte second time 
MUL, IMUL, OIV, IDIV except Immediate 
FAD, FSB, FMP, FOV except Immedi'te 
UFA,DFN 
FIX, FIXR, FLTR 

GROUP 2 
INSTRUCTION FETCH NEXT 

Fetch starts 110 later except 170 later in 
instructions marked by asterisk if indexing 
in final address cycle 

BoDie Immediate 
SETZ, SETA, SETCA, SETO 
ADDI', SUBI' 
MOVEI, MOVSI, MOVNI', MOVMI' 
Half words Immediate 
TlSt Right Of Left, never skip 
Shift·rotate 
MUll', IMULI', DlVI, IDiVI 
FADRI, FSBRI', FMPRI, FOVRI, FSC 

r---------------------~--------~FORB~& 

NO MEMORY 
OPERAND 

REFERENCE 

INSTRUCTION 
FETCH 

XCT, JEN, PORTAL, 
JFCL with flag 

INSTRUCTION 
FETCH NEXT 
GROUP 2 

AUTO INSTRUCTION 
FETCH 

NO 

DOUBLE MEMORY 
OPERAND FETCH, 
GO TO PART II 

" 



KIlO TIMING 

JRST, JEN, PORTAL, JFCL, XCT, TON, TRN 110 MUL 2150 + 60 per addition +t 220 
Maximum except MUll 3450 (18 adds) + 60 negative multiplier Boole except all modes IDA, ORCA, ORCM, ORCS; Half words 

except Memory; MOVE, MOVS except Memory; EXCH, JSR, 
JSP, JRA, JRSTF; TOC, TONA, TOZ, TLN, TRC, TRNA, 
TRZ, TSN; MAP 

INSTRUCTION FETCH 
MaXimum MUll 2910 (9 adds) 

ADD, SU8, POPJ; MOVN, MOVM except Memory; TONE, 
TONN, TRNE, TRNN 

lOR, ORCA, ORCM, ORCB; MOVEM, MOVSM; Half wo,ds 
Mem"y; JSA, SKIP, JUMP; TOCA, TOO, TOOA, TOZA, TLC, 
TLNA, TLZ, TRCA, TRO, TROA, TRZA, TSC, TSNA, TSZ 

AO BJP, AO BJN 

MOVNM, MOVMM; CAM, CAl, AOS, SOS, AOJ, SOJ; 
TOCE, TOCN, TOOE, TOON, TOZE, TOZN, TLNE, TLNN, 
TRCE, TRCN, TROE, TRON, TRZE, TRZN, TSNE, TSNN 

POP 

TLCA, TLO, TLOA, TLZA, TSCA, TSO, TSOA, TSZA 

TLCE, TLCN, TLOE, TLON, TLZE, TLZN, TSCE, TSCN, 
TSOE, TSON, TSZE, TSZN 

JFFO 

PUSH 

PUSHJ 

LUUO 

MUUO 

560 + 110 X number 
leading Os mod 18 

170 + 115" +1 148 

170 + 115" +1 148 

110 + 125* +t 248 

First time 110 + 125* +t 248 
Second time 110 + 125* +t 138 
Third time 220 

IBP 510 

LOB, ope First time 270 Go to C1 

ILOB,IOPB First time 510 

LOB,ILDB Second time 610 + 110 x position count/2 

OPB,IOPB Second time 170 + 110 x position count +t 330 

110 At End 

JSR, JSP 

180 JRSTF 
AOBJP, AOBJN 
JFCL without flag 

330 
POPJ 
CAM, CAl 

340 SKIP, AOS, SOS 
JUMP, AOJ, SOJ 
MAP 

390 110 Before End 
418 JSA, JRA 
440 Test except never skip 

500 

Instruction fetch after 390 

Auto instruction fetch 93 after t 

Instruction fetch atend 

Instruction fetch 110 before end 

InstructtOn fetch atend 

1800 E .;;;; 72 l I Zero shift - go to C5 
Shift·rotate Left: 740 otherwlsef 1 Nonzero: + 110 + 110 x number places 

740 I Zero shift - go to C5 
Right: Nonzero: + 220 + 110 x number placesl2 

OMOVEM First time 110 
Second time 170 + 125* +t 248 Auto instruction fetch 93 after t 

DMOVNM First time 610 
Second time 170 + 115" +t 308 Auto instruction fetch 93 aftert 

NO 

MEMORY TIMING 

MEMORY FAST MAIO MB10 MOlO ME10 MF10 
CYCLE - 1000 1650; 1800 1000 1000 
READ ACCESS 135 610 600; 830 610 610 
WRITE ACCESS 0 100 100; 330 100 100 
MOOIFY - 570 970 1130 650 630 COMPLETION 

~ Add 100 tor multiprocessor system 
Memory access times include delay introduced by 10 feet of cable 

IMUL MUL + 60 

DIV 6280 + 180 negative dividend +t 560 + 60 negative dividend + 
170 negative Quotient 

No divide 610 + 180 negative dividend 

IDIV 60 --120 negative dividend + DlV 

OFN 560 

UFA 1070 + maybe 60 to negate 0 + (110 + 110 per 2-place unnormalize shift) 
0< 0 .;;;; 64 + 230 nonzero result + 170 negative result 

FAD, FADR 960 + 110 Immediate + maybe 60 to negate 0 + (110 + 110 per 2·place 
unnormalize shift) 0 < 0 .;;;; 64 + 110 per normalize shift + (larger of 

FS8, FSBR 

FMP, FMPR 

170 negative result or 230 must round) +t 110 + 230 nonzero result + 
120 nonzero Lang result 

170 60 Immediate + FAD 

2270 + 110 Immediate + 60 per addition + 110 unnormalized + (larger of 
110 negative product or 230 must round) +t 110 + 230 nonzero product + 
120 nonzero Long product 

Maximum add time except FMPRI 840 (14 adds) + 60 negative multiplier 
Maximum add time FMPRI 300 (5 adds) 

FSC 

FLTR 

FIX, FIXR 

FOVR 

No Divide 

FOV except FOVL 

No Divide 

FOVL 

No Divide 

BLKO, BLKI 

CONO,OATAO 

CONI,OATAI, 
CONSO, CONSZ 

RESULT 
TO 

MEMORY 

YES 

560 + 170 negative result + 230 nonzero result 

830 + 110 per normalize shift + (larger of 170 negative operand or 230 
must round) + 230 nonzero operand 

340 + 110 no overflow + 230 no shift + (400 + 110 per shift) left < 9 + 
(280 + 110 per 2·place shift) right < 28 

6110 + 110 Immediate + 120 negative dividend + 110 Idivisor! .;;;; 
Idividendl + 170 negative Quotient +t 110 + 230 nonzero quotient 
900 + 110 Immediate + 60 negative dividend 

5740 + 120 negative dividend + 170 Idivisor! " Idividendl + 340 negative 
quotient +t 110 + 230 nonzero quotient 
900 + 60 negative dividend 

6050 + 240 negative dividend + 110 Idivisorl " Idlvidendl + 340 negative 
quotient + 460 nonzero Quotient 
1070 + 180 negative dividend 

340 60 First Part Done 

110 + ' ~t:: ~:~~ +" 110 

110 + ~I:S: 2;~~ +"t 220 

Wait till 700 since last bus discharge 

CORE 

YES 

Instruction fetch CONSO, 
CONSZ at end; otherwise 
110 before I 

'Start bus discharge 

Triggered att unless 
from data fetch read 
access (read·modify·write) 

STORE SECOND 
ACCUMULATOR 

OMOVEM, OMOVNM, MUUO 

MUUO 
BLKO 
BLKI 

Second time 
Second time 
Turn into OATAD 
Turn into DATAl 

Go to C4 
Go to C2 
Go to C2 
Go to C3 

D-7 



D-8 

FROM ADDRESS CALCULATION IN PART I 

NO 

NOTES 

All times are nominal maxima in nanoseconds 

If PAR STOP on add 195 to each read access 

* +87 if executed by executive XCT, by interrupt, or from console; for 
refill add 492 + read access 

t Instruction fetch 

o is exponent difference 

KilO INSTRUCTION TIMING PART II 

OMOVE 

OMOVN 

DFAO 

OFSB 

417 

TIMING 

HIGH 
OPERAND 
FETCH 

DMOVE, DMOVN 110 
OFAO, OFSB 450 + maybe 60 to negate 0 
OFMP 450 
OFOV 450 + 81 negative dividend 

757 + 60 zero low word 

382 + (110 + 220 AC exponent < memory exponent + 110 per 2-place normalize shift) 0 < 0 ,e;;;; 64 + 191 0" 64 or 
AC exponent> memory exponent +t 

Result ~ 0: 330 + 411 high 35 bits Os + 110 unnormalized + 110 per 2-place normalize shift + 500 must round + 
390 nonzero result 

Normalize shift limited to 34 places; result with 70 leading Os taken as zero (no normalize shifting) 
Result < 0: 890 + 411 per 35 leading ls + 110 unnormalized + 110 per normalize shift + 21 must round 

191 D 0;;;;; 64 or AC exponent < memory exponent + DFAD 
DFMP 4682 + 81 per addition +t 720 + 220 unnormalized + (170 + 21 must round) negative product + 500 must round 

positive product 
Maximum add time 2916 (36 adds) + 60 negative multiplier 

DFDV 12734 + 191 Idivisorlo;;;;; Idividendl + 220 nonzero quotient + (60 + 110 nonzero low part) negative quotient +t 440 
No divide 1133 



KAIO TIMING 

KAIO INSTRUCTION TIMES 

Instruction times for the KAl 0 can be calculated from the chart on the next 
two pages (intervals are in microseconds). Times derived from this chart are 
given with the instruction descriptions in the original PDP-] 0 System 
Reference Manual, which should be available to you if your system is based 
on a KAlO. For more exact times than those given in that manual, add .06 
to the listed time, plus an additional .03 for each memory operand read 
access, and another .03 if the instruction does not write a result in memory. 

D-9 



D-IO 

KA10 

INSTRUCTION 
FETCH 

ADDRESS 
CALCULATION 

INSTRUCTION TIMING 
FLOW CHART 

INSTRUCTIONS THAT USE READ/MODIFY 

All Boolean in Memory and Both modes except SETZ, SETA, SETCA, SETO 
ADDM, ADDB, SUBM, SUBB 
HRRM, HRlM, HlRM, HllM and all half words in Self mode 
MOVES, MOVNS, MOVMS, MOVSS 
I lDB, I DPB (first time only) 
IBP, BlKl, BlKO, DFN, EXCH 
AOS, SOS in all modes 

TIMING 

DATA FETCH 

*(.11) 
1+----/ * IF IN USER MODE 



, 

KAIO TIMING 

INSTRUCTION EXECUTION 

Bool •• n (except AN DCA, ANDCB, ORCA, ORCB), 
Half Words (except HLR, H LRI, HRL, HRLI), MOVE, 
MDVS, EXCH, JFCL, JRST, JSP, XCT, UUO .21 

ANDCA, ANDCB, DRCA, ORCB, HLR, HLRI, 
HRL, HRLI, JSR, JSA, JRA, Test class 

MOVN, MOVM, ADD, SUB, AOBJP, AOBJN, 
CAM, CAl, SKIP, JUMP, AOJ, AOS, SOJ, SOS 

PUSH, PUSHJ, POP, POPJ, DFN 

JFFO 

BLT 

IBP 

LOB, DPB First time 

IL08,IDPB First time 

ILD8, LOB Second time 

IOPB, OPB Second time 

Shift group 

MUL 
Average except MUll 

IMUL 
Average except IMULI 

FMP 
Average except FMPRI 

.62 

.45 

.80 

.80 + .19 times number of leading Os mod 18 

.69 (+ .11 il User) + memory write access + .52 
II not done + .09 and go to C3 

.3~ + .26 if overflow word boundary 

.61 + .15 per size count Go to Cl 

.14 { + .15 per size count} 
+ .26 il overllow Go to Cl 

.45 + .15 per position count 

.95 + .15 per position count 

{.39 Left } 
.23 Right + .15 pershilt 

6.02 +.13 per transition 
8.36 (18 transitions for 2.34) 

6.34 + .13 per transition 
1.51 (9 transitions for 1. 11) 

6.39 + .13 per transition 
8.21 (14 transitions for 1.82) 

Note: Immediate mode multiplication has only half the average number of transitions 
OIV,IDIV 

FSC 

FAa, UFA 
Average 

FSB 

Rounding (except divide) only when actually done 

Long mode (except divide) 

FOVR, FDV (except FOVL) 

FDVL with fest ACs 

FOVL without fast ACs 

CONO, CONI, CaNSO, CONSZ, OATAO, DATAl 
CON 0, CONI, DATAO, DATAl 
CaNSO, CONSZ 

BLKO, BLKI 

13.18 

1.52 

2.38 
4.33 

+ .25 per shift to normalize 

{ + .15 per shift to unnormalize 
+ .25 per shift to normalize 

S.me as FAa + .18 

+.96 

+.69 

12.00 

13.28 

12.32 (+ .11 if User) + memory read access + .89 

.12 Then wait until 4.50 has passed since last here 
+2.69 
+2.90 

.60 Then turn into DATAO, OATAI and go to C2 

.' MEMORY TIMING 

MEMORY MAtO MBIO MBIO 

PROCESSORS SINGLE SINGLE MULTI OR MULTI 

CYCLE 1.00 1.65 I. 75 

READ ACCESS .61 .60 .70 

WRITE ACCESS .20 .20 .30 

MODIFY .57 .97 .97 COMPLETION 

NOTES, 

MEMORY ACCESS TIMES INCLUDE DELAY 
I NTRODUCED BY 10 FEET OF CABLE 

ALL TIMES ARE NOMINAL MAXI MUMS 

FAST MD10 ME10 MFIO 

SINGLE SINGLE SINGLE SINGLE 
(BUILT INl OR MULTI OR MULTI OR MULTI 

- 1. B 1.00 1.00 

.21 .B3 .61 .61 

.21 .33 .20 .20 

- 1.23 .65 .63 

DATA STORE 

SEE MEMORY 
TIMING CHART 

FOR CYCLE 
COMPLETION TIME 

D-II 



,. 



APPENDIX E 

PROCESSOR COMPATIBILITY 

The table beginning below identifies the programming differences among the 
various central processors. The reader is forewarned not to assume that 
he can program a new processor simply by glancing through this table. The 
simpler differences, principally those associated with individual user instruc­
tions, are explained adequately in the table entries. But in more complex 
cases, the table entries serve only to identify the area of difference and refer 
the reader to the real substance in Chapter 2. In particular, all programmers, 
regardless of previous experience with other processors, should read Chapter 
I; and all system programmers should read the later material in Chapter 2 on 
interrupts, processor conditions, and program and memory management. 

The table is limited to programming differences, and console switches are 
mentioned only insofar as they affect programming. Operating differences 
are so extensive, that upon approaching a new processor an operator must 
read the complete operating information given for it in Appendix F. 

Address Break 

Address Failure 
Inhibit 

Address stop 

Auto restart 

BLKI, BLKO 
(also see 10 
instructions) 

Byte pointer 
incrementing 

PDP-6 

No. 

Not applicable. 

Address switches are com· 
pared with virtual addresses 
(unrelocated). 

No. 

Pointer is incremented by 
adding 100000 I to it. 

Address overflow carries into 
index field, and effective ad­
dress calculation from the 
pointer uses the newly speci­
fied index register. 

KAlO 

Switch and flag - satisfaction 
of the address condition sets 
the flag, which is a processor 
condition and causes an inter­
rupt [refer to CONI APR, 
§2.14 and Appendix F2 for 
the address conditions] . 

Not applicable. 

Address switches are com­
pared with physical addresses 
(relocated). 

No. 

Same as PDP-6. 

Address overflow carries into 
index field, hut effective ad­
dress calculation from the 
pointer in an IDPB or ILDB 
uses the originally specified 
index register unless an inter-

E-I 

KIlO 

Switch but no flag - satisfac­
tion of an address condition 
causes an address failure [refer 
to Page Failure, § 2.15 and 
Appendix Fl for the address 
conditions] . 

In PC word - see Address 
Break. 

Address switches are com­
pared with virtual addresses 
in space selected by paging 
switches [Appendix Fl]. 

Yes [§2.l4]. 

The two halves of the pointer 
are incremented independ­
ently. 

Address overflow does not 
carry into indcx field. 



E-2 

Carry flags 

Clock 

Console 
programming 

D-A 

DFAD, DFSB, 
DFMP,DFDV 

DFN 

DMOVE, DMOVN 

FAD, FSB, FMP, FDV 

First Part Done 

FIX, FIXR 

PROCESSOR COMPATIBILITY 

PDP-6 

Subtraction is done in three 
steps: complement minuend, 
add, complement sum. The 
resulting effect on the Carry 
flags is the opposite of that 
listed for SUB, SOJ, SOS at 
the beginning of §2.9. Eg an 
SOS that decrements _235 

sets Carry I and has no effect 
on Carry o. 

Program must disable Clock 
interrupts when operator is 
using single instruction mode. 

DATAl APR,. 

Must have 10 device. 

No. 

No. 

No. 

See floating point. 

Set only by interrupt between 
parts of an IDPB or ILDB, 
and cleared only when the PC 
word is saved by an interrupt 
instruction or an instruction 
executed by a UUO. (Flag is 
often referred to as Byte In­
crement Suppression.) 

No. 

KAIO 

rupt occurs between the two 
parts of the instruction, in 
which case the new index 
field is used and the result is 
as on the PDP-6. 

Subtraction is done by direct­
ly adding the twos comple­
ment of the subtrahend, giving 
the Carry flag effects listed 
in §2.9. 

The flag is disabled while the 
single instruction switch is on. 

DATAl APR, and DAT AO 
PI, to load MI [§2.12]. 

Same as PDP-6. 

No. 

Yes. 

No. 

Set same as PDP-6, but 
cleared whenever the PC word 
is saved. 

No. 

KIlO 

Same as KAlO. 

Same as KAlO. 

Same as KAlO plus controls 
some switches with DAT AO 
PTR, [§2.12] and reads 
switches in left half of CONI 
PI, [§2.13] and CONI APR, 
[§2.14] . 

Programmed with DATAO 
APR, [§2.l4]. 

Yes. 

Yes. 

Yes. 

Set by interrupt same as 
KAlO, but also set by page 
failure in second part of IDPB, 
ILDB, DMOVEM, DMOVNM, 
or noninterrupt BLKO or 
BLKI. Cleared same as KAlO. 

Yes. 

Flags See JFCL, JRSTF, PC word, processor conditions, intemlpt status, and individual flags. 

Floating Overflow No. Yes - in PC word and proc­
essor conditions. 

Yes - in PC word. 



Floating point 

Instructions 
[ §2.6] 

Immediate 
mode 

Long mode 
FADL, 
FSBL, 
FMPL 

With 
rounding 

FDVL 

Normalization 

Rounding 

Floating 
Underflow 

FLTR 

FMP, FSB 

FSC 

HALT 

PROCESSOR COMPATIBILITY 

PDP-6 

(Also see overflow.) 

FSC plus four single precision 
standard operations, with and 
without rounding, in basic, 
Long, Memory and Both 
modes. 

No. 

In low order word, fraction 
begins in bit I (no exponent), 
and sign is not forced to 0. 

Stores meaningless low order 
word or remainder. 

Remainder is incorrect and 
lacks exponent. 

In add, subtract and multiply, 
if high order word of double 
length result is (positive) zero, 
no normalization takes place. 
Hence except in long mode, 
all bits of significance are lost. 
In FSC, hardware does not 
normalize result. 

If low order part is exactly 
*LSB in a negative number, 
rounding is toward zero (de­
creasing magnitude). 

No. 

No. 

See floating point. 

Hardware does not normalize 
result. 

MA lights display address one 
greater than that containing 
instruction that caused halt. 

Cannot be performed in 
user mode. 

KAIO 

PDP-6 complement except 
Immediate replaces Long with 
rounding, plus UF A and DFN 
to facilitate software double 
precision operations. 

Yes - operand E,O, but only 
with rounding (FADRI, 
FSBRI, FMPRI, FDVRI). 

Low order word has fraction 
and exponent in standard soft­
ware format described in § 1.1. 

Replaced by immediate mode. 

Correct remainder is in stand­
ard floating point format but 
is not normalized. 

Result is always normalized 
(except of course in UF A 
and DFN, and remainders and 
low order words are never 
normalized separately). 

A low order part of exactly 
*LSB is rounded away from 
zero (increasing magnitude). 

Yes - in PC word and proc­
essor conditions. 

No. 

Hardware does normalize 
result. 

Address display same as 
PDP-6. 

Can be performed in user 
mode only if User In-out set. 

IBP See byte pointer incrementing. 

IDIV 

IDPB,ILDB 

Overflow if dividend - 235 . 

See byte pointer incrementing 

Dividend -235 OK except No 
Divide if divisor ± I. 

E-3 

KIlO 

KAlO complement plus num­
ber conversion (FIX, FIXR, 
FLTR) and hardware double 
precision (DMOVE, DMOVN, 
DMOVEM, DMOVNM, DFAD, 
DFSB, DFMP, DFDV). 

Same as KAlO. 

Same as KAlO. 

Same as KAlO. 

Same as KAlO. 

Same as KAlO. 

Same as KAlO. 

Yes - in PC word. 

Yes. 

Same as KAlO. 

AR lights display address 
instead. 

Cannot be performed in 
user or supervisor mode. 

Same as KAlO. 



E-4 

In-out Page 
Failure 

Interrupt [§ 2.13] 

Interrupt 
locations 

Interrupt 
instructions 

Interrupt points 
(besides be­
tween BLT 
transfers) 

Program 
initiated 
interrupts 

CONO PI, 

CONI PI, 

PROCESSOR COMPATIBILITY 

PDP-6 

Not applicable. 

Standard interrupt only. 

Executive (physical) locations 
42-57. 

Must use JSR to enter inter­
rupt routine. Only a com­
pleted BLKX goes to second 
location. Only a DATAX or 
incomplete BLKX dismisses 
automatically. A condition 10 
instruction in first location or 
any 10 instruction in second 
location hangs up processor. 

Before instruction fetch and 
each address word fetch. 

KA10 

Not applicable. 

Standard interrupt only. 

Executive locations 42-57, or 
142-157 if offset. 

Can use JSR, JSP, JSA, 
PUSHJ or JRST to enter 
interrupt routine. Otherwise 
same as PDP-6. 

After instruction fetch and 
each address word fetch. 

KIlO 

In processor conditions. 

Device returns function word 
that selects one of five inter­
rupt functions described in 
§2.13. 

Locations 42-57 in executive 
process table. 

Can use JSR, JSP, PUSHJ, 
or MUUO to enter interrupt 
routine. Go to second loca­
tion only when skip condition 
not satisfied in AOSX, SKIP X, 
SOSX, CONSX or BLKX. All 
other instructions dismiss 
automatically except that: 

In the second location a 
skip instruction whose con­
dition is not satisfied hangs 
up the processor; 
LUUO, BLT, DMOVEM 
and DM OVNM will not 
work as interrupt instruc­
tions. 

After instruction done, after 
each address word fetch, in 
first half of DFDV, and when 
10 waiting for bus. 

The variation from one processor to another in allowable stopping points for an interrupt produces 
differences in the way the interrupt system responds to error situations (address break, memory 
protection violation, parity error, nonexistent memory). A common procedure is for the interrupt 
program, once it has recognized the error, to turn off the flag and get out of the processor channel 
quickly by switching over to a lower priority channel, dismissing the processor interrupt to the 
unmodified PC word. This works fine on the PDP-6 because it recognizes the lower priority inter­
rupt before fetching the next instruction. But the greater complexity of the other processors leads to 
problems explained in the cautions that accompany the discussion of processor conditions in §2.14. 

Request dropped after inter­
rupt. 

22 Not used 

Left half not used. 

18 Power Failure 
19 Parity Error 
20 Parity Error Interrupt 

Enabled 
21-27 Not used 

Same as PDP-6. 

22 Not used 

Left half not used. 

18 Power Failure 
19 Parity Error 
20 Parity Error Interrupt 

Enabled 
21-27 Interrupts in progress 

Request stays on until turned 
off by program. 

22 Drop selected program 
requests 

Left half used for switches and 
program requests [§ 2.13] . 
18 Not used 
19 Not used 
20 Not used 

21-27 Interrupts in progress 



IO instructions 

JEN 

JFCL bit 12 
(JFCL 1, JFOV) 

JFFO 

JRST 1, 

JRSTF 
(JRST 2,) 

PROCESSOR COMPATIBILITY 

PDP-6 

Can be performed in user 
mode only if User In-out set. 

Cannot be performed in user 
mode. 

PC change. 

No. 

Enter user mode. 

When used solely with in­
dexing (no indirect), restores 
flags correctly only if previous 
instruction leaves left half of 
AR clear. 

KAlO 

Same as PDP-6. 

Can be performed in user 
mode only if User In-ou t set. 

Floating Overflow. 

Yes. 

Enter user mode. 

No problem. 

LUUO See UUa. 

Maintenance 
programming 

MAP 

Memory 
management 

Memory 
Protection 
interrupt 

Memory areas 
(= modes) 

No. 

No. 

One each, protection and re­
location registers define user 
area. User illegal memory 
reference sets Memory Pro­
tection flag, a processor con­
dition. 

After an illegal user reference, 
the interrupt occurs before 
the next instruction fetch. 

User (relocated) and executive 
(unrelocated). 

No. 

No. 

Two each, protection and re­
loca tion registers define a 
two-part user area where the 
high part can be write­
protected [§2.l6]. User il­
legal memory reference sets 
Memory Protection flag, a 
processor condition. 

After an illegal user reference, 
the processor executes a zero 
instruction (UUO), which is 
trapped in executive location 
40. The interrupt occurs after 
the instruction in executive 
location 41 is fetched. 

Same as PDP-6. 

E-5 

KIlO 

Cannot be performed in super­
visor mode. Can be performed 
in user mode only with device 
codes 740 and above or if 
User In-out set. 

Cannot be performed in user 
or supervisor mode. 

Floating Overflow. 

Yes. 

PORTAL - clears Public when 
fetched from a non public 
area, so is valid entry. 

No problem. 

Yes [§2.14]. 

Yes [§2.15]. 

Paging hardware, where illegal 
memory reference causes page 
failure [§2.15]. 

Not applicable (page failures 
are trapped immediately). 

User and executive areas 
divided into public and con­
cealed areas distinguished by 
Public flag. User program 
execution thus in public or 
concealed mode; executive 
similarly in supervisor or ker­
nel mode. 



E-6 

Memory 
references 

MUL 

PROCESSOR COMPATIBILITY 

PDP-6 

Unnecessary memory refer­
ences are made in SETZ, 
SETO, SETA and SETCA. Eg 

SETZ AC,-l 

fetches location 777777, 
which would likely be a non­
existent memory reference or 
a protection violation. 

KAIO 

The unnecessary references of 
the PDP-6 are not made. 

KIlO 

Same as KA1O. 

For memory reference instructions in which the mode configuration happens to produce a no-op -
such as SETMM AC,M or SKIP O,M or TDN AC,M - all machines make the reference even though 
it is unnecessary. 

AC supplies multiplicand, 
which if _235 is treated as 
though it were +235 • 

Same as PDP-6. AC supplies multiplier. 

MUUO See UUO. 

No Divide 

Overflow 

PC Change 

PC word 

Processor 
conditions 

CONO APR, 

No. 

Overflow (arithmetic) and 
Pushdown Overflow flags, 
which cause interrupts. Over­
flow conditions set flags in 
all circumstances. 

Yes. 

0 Overflow 

3 PC Change 
7 Not used 
8 Not used 
9 Not used 
10 Not used 
11 Not used 
12 Not used 

18 Clear Pushdown 
Overflow 

20 Not used 
21 Not used 
22 Clear Memory 

Protection 
23 Clear Nonexistent 

Memory 
27 Disable PC Change 

Interrupt 

Yes - in PC word. 

Same as PDP-6 plus Floating 
Overflow, Floating Underflow 
and No Divide flags. 

No. 

0 Overflow 

3 Floating Overflow 
7 Not used 
8 Not used 
9 Not used 
10 Not used 
11 Floating Underflow 
12 No Divide 

18 Clear Pushdown 
Overflow 

20 Not used 
21 Clear Address Break 
22 Clear Memory 

Protection 
23 Clear Nonexistent 

Memory 
27 Disable Floating 

Overflow Interrupt 

Same as KA1O. 

Same arithmetic flags as KAI0 
but no pushdown flag, and 
overflow handled by trapping 
instead of interrupts (arith­
metic, Trap 1 ; pushdown, 
Trap 2). Overflow conditions 
set no flags in interrupt 
instructions. 

No. 

0 Overflow in user mode, 
Disable Bypass in exec-
utive mode. 

3 Floating Overflow 
7 Public 
8 Address Failure Inhibit 
9 Trap 2 
10 Trap 1 
11 Floating Underflow 
12 No Divide 

18 Reset timer 

20 Disable timer 

21 Enable timer 
22 Disable auto restart 

23 Enable auto restart 

27 Not used 

.0 

"' 



'j. 

CONI APR, 

DATAO APR, 

Parity Error 

POP, POP} 
(also see 
overflow) 

POP AC,AC 

Power Failure 

Processor serial 
number 

Program 
management 

PROCESSOR COMPATIBILITY 

PDP-6 

28 Enable PC Change 
Interrupt 

29 Clear PC Change 

30 Disable Overflow 
Interrupt 

31 Enable Overflow 
Interrupt 

32 Clear Overflow 
33-35 Processor PIA 

Left half not used. 

18 Not used 
19 Pushdown Overflow 
20 User In-out 

21 Not used 

22 Memory Protection 
23 Nonexistent Memory 
28 PC Change Interrupt 

Enabled 

29 PC Change 
30 Not used 
31 Overflow Interrupt 

Enabled 
32 Overflow 
33-35 Processor PIA 

No. 

No. 

Pointer is decremented by 
subtracting 1000001 from it. 

AC receives decremented 
pointer. 

No. 

Not available. 

User can never give HALT or 
JEN, can use 10 only if User 
In-out set. Illegal instruction 
executes as UUO. 

KAIO 

28 Enable Floating 
Overflow Interrupt 

29 Clear Floating 
Overflow 

30 Disable Overflow 
Interrupt 

31 Enable Overflow 
Interrupt 

32 Clear Overflow 
33-35 Processor PIA 

Left half not used. 

18 Not used 

19 Pushdown Overflow 

20 User In-out 

21 Address Break 

22 Memory Protection 

23 Nonexistent Memory 
28 Floating Overflow 

Interrupt Enabled 

29 Floating Overflow 
30 Trap Offset 
31 Overflow Interrupt 

Enabled 
32 Overflow 
33-35 Processor PIA 

No. 

Read by CONI PI,. 

Same as PDP-6. 

AC receives word taken from 
stack and pointer is lost. 

Read by CONI PI,. 

Not available. 

10, HALT and JEN illegal un­
less User In-out set, in which 
case all are legal. Illegal in­
struction executes as MUUO. 

KIlO 

28 Clear In-out Page 
Failure 

29 Clear Nonexistent 
Memory 

30-32 Processor PIA­
error 

33-35 Processor PIA­
clock 

E-7 

Left half used for switches, 
etc [§2.14]. 

18 Time Out 

19 Parity Error 

20 Parity Error 
Interrupt Enabled 

21 Timer Enabled 

22 Power Failure 
23 Auto Restart Disabled 

28 In-out Page Failure 

29 Nonexistent Memory 
30-32 Processor PIA­

error 

33-35 Processor PIA -
clock 

Yes - maintenance and D-A 
[§2.14] . 

Read by CONI APR,. 

The two halves of the pointer 
are decremented independ­
ently. 

Same as KA10. 

Read by CONI APR,; also 
Power Alarm and auto restart 
feature [§ 2.14] . 

Can be read by CONI PAG,. 

User always has 10 with codes 
740-774, can use all 10 if 
User In-out set. Supervisor 
can never use 10. Neither 
can ever give HALT or JEN. 



E-8 PROCESSOR COMPATIBILITY 

Programmable 
margins 

Public 

PUSH,PUSHJ 
(also see 
overflow) 

Pushdown Overflow 

Read in 

Shift-rotate 

PDP-6 

No. 

Not applicable. 

Pointer is incremented by 
adding 1000001 to it. 

See overflow. 

No hardware read in; key 
allows access to readin area 
(first 16 core locations) for 
bootstrap. 

Shifts number of places speci­
fied by E (maximum 255). 

SOJ, SOS See Carry flags. 

KAIO 

No. 

Not applicable. 

Same as PDP-6. 

Yes. Ends by executing the 
last word in the block as an 
instruction [§ 2.12] . 

Same as PDP-6. 

Status See PC word, processor conditions, interrupt status. 

SUB See Carry flags. 

Timer 

Trap flags, 
trapping 

Trap Offset 

UFA 

Unassigned codes 

No. 

No (except UUO). 

No. 

No. 

100-131,243,247,257. On 
most machines these execute 
like UUOs but use executive 

No. 

No (except UUO). 

Turning on MA TRP OFF­
SET switch sets flag (a proc­
essor condition) and substi­
tutes executive locations 
140-161 for MUUO, inter­
rupt and unassigned code 
locations 40-61 to distinguish 
between two processors using 
same memory. 

Yes. 

100-127 execute like DUOs 
but use executive locations 
60-61 (160-161 if offset). 

KIlO 

Illegal instruction executes as 
MUUO. 

Yes [§2.l4]. 

In PC word; differentiates be­
tween public and concealed 
modes in memory manage­
ment [§2.15]. 

The two halves of the pointer 
are incremented independ­
ently. 

Yes. Selects kernel mode with 
executive paging disabled. 
Ends by jumping to the loca­
tion containing the last word 
in the block [§2.12]. 

Eliminates redundant shifting: 

Arithmetic or logical shift 
at most 72 places; 

Rotate E mod 72 places 
(except 72 places if E a 
nonzero multiple of 72). 

Yes - processor conditions 
[§2.l4] . 

Yes - for arithmetic and push­
down overflow [§2.9], page 
failures [§2.15], and DUO; 
trap flags in PC word. 

Not applicable. 

Yes. 

100-107, 114-117, 123 and 
247 execute like MUUOs. 

" , 



Unimplemented 
operations 

User In-out 

UUO 

XCT 

PROCESSOR COMPATIBILITY 

PDP-6 

locations 60-61; on some 
machines they execute as no­
ops (there is no standard). 

If floating point and byte 
instructions are not imple­
mented in hardware, codes 
132 - 1 77 act like unassigned 
codes. 

Allows IO instructions to be 
performed in user mode. Flag 
is in PC word and processor 
conditions. 

All UUOs 000-077 use exec­
utive locations 40-41. 

Same in all program modes. 

KAIO 

247 and 257 are not regarded 
as unassigned and execute as 
no-ops unless implemented by 
special hardware. 

Turning on FP TRP switch 
causes floating point and byte 
codes 130-177 to act like 
unassigned codes. 

Allows 10 instructions, HALT 
and lEN to be performed in 
user mode. Flag is in PC word 
and processor conditions. 

LUUOs 001-037 use user 
locations 40-41 in user mode, 
executive locations 40-41 in 
executive mode. MUUOs 000 
and 040-077 use executive 
locations 40-41. (Trap offset 
changes executive locations 
40-41 to 140-141.) 

Same as PDP-6. 

E-9 

KIlO 

All assigned codes are imple­
mented in hardware. 

Allows IO instructions with 
device codes under 740 to be 
performed in user mode. Also 
used to control special effects 
in executive XCT [§2.15]. 
Flag is in PC word only. 

LUUOs 001-03 7 use user 
locations 40-41 in user mode, 
locations 40-41 in executive 
process table in executive 
mode. MUUOs 000 and 040-
077 store CODE A,E in loca­
tion 424 of the executive 
process table, save the PC 
word in 425, and restart with 
the processor configured ac­
cording to a new PC word 
[for details refer to § 2.1 0] . 

In executive mode, can be., 
performed as executive XCT 
[§2.l5] . 





<, 

• 

'. 

APPENDIX F 

PROCESSOR OPERA nON 

Sections F 1 and F2 of this appendix describe the switches and indicators 
used in normal operation and program debugging on the KII 0 and KAIO 
processors respectively. Mounted on the front of the right bay of each 
processor are console operator and maintenance panels. Indicator panels are 
at the tops of the processor bays. Operating information for the memories 
and peripheral equipment is given in Appendices G and H. The real time 
clock is included in the processor discussion. 

For information on the running of hardware diagnostics and the use of 
the switches and indicators for hardware troubleshooting, refer to the 
appropriate maintenance manual. 

FI 

F2 

KIlO Operation 
Indicators F 1-2 
Operating keys F 1-6 
Operating switches FI-8 
Real time clock DKIO FI-13 

KA 1 0 Operation 
Indicators F2-1 
Operating keys F2-3 
Operating switches F2-7 
Real time clock DKIO F2-9 

Oeaning the Equipment 

FI-I 

F2-1 

The exterior of all equipment in the DECsystem -10 should be cleaned at 
least weekly. Vacuum all outside surfaces including cabinet tops and, where 
possible, underneath the cabinets. Pay special attention to air intake gratings 
such as on the top of the KI I 0 processor cabinets and on the bottom front 
of the KA I 0 cabinets. 

CAUTION 

When cleaning, be careful not to change the position of 
any switches as this could easily cause a software crash. 
Also be very careful not to jar any disk or drum equip­
ment as serious head problems may result. 

It is alright to use spray cleaner on exposed vertical 
surfaces, but do not use it around switches, near intake 
gratings, or near any other openings, because the "guck" 
can cause severe problems if it gets inside the equipment. 

Interior cleaning is necessary only for certain items of peripheral equip­
ment. Specific instructions for such cleaning are given in Appendix H7. 

F-l 

The "alright" in this caution 
applies to the sheet metal. 
Whether the carcinogens that 
come out of aerosol cans are 
alright for your lungs is up to 
you to decide. It has never 
been shown that the presence 
or absence of fingermarks or 
other stains has any effect 
whatever on the operation of 
the system. And anyway, it is 
probably much healthier to 
get a little exercise using some­
thing like Spic and Span. 





KII 0 OPERA nON 

Fl KilO OPERATION 

Most of the controls and indicators used for normal operation of the proc­
essor and for program debugging are located on the console operator panel, 
shown on the next page with the maintenance panel above it. In the upper 
half of the operator panel are four rows of indicators, and below them are 
three rows of two-position keys and switches. Physically both are push­
buttons, but the keys are momentary contact whereas the switches are 
alternate action. Relative to the internal logic, the switches are actually flip­
flops that are controlled by the buttons but which in many cases can also be 
"operated" by the program. A switch is on or represents a I when it is 
illuminated. Buttons that actually trigger operating sequences in the proc­
essor are the operating keys, which are located in the right half of the 
bottom row. Operating switches are those that supply control levels for 
governing various processor operations; these include the buttons in the left 
half of the bottom row (except SINGLE PULSER), the paging switches at 
the left end of the third row, and the buttons at the left in the top two rows 
at the left end of the maintenance panel. The remaining buttons are sense 
switches, groups that constitute switch registers, and various other special 
keys and switches that supply information to the program or to specific 
hardware functions, or perform special functions of various sorts separate 
from the normal processor operating sequence. 

The thirty-six numbered switches in the second row from the bottom on 
the operator panel and the twenty-two numbered switches in the row above 
them are the data and address switches, through which the operator can 
supply words and addresses for the program and for use in conjunction with 
the operating keys and switches. At the right end of each of these switch 
registers is a pair of keys that clear or load all the switches in the register 
together. The load button sets up the switches according to the contents 
of the corresponding bits of the memory indicators (MI) in the fourth 
row. At the left end of the maintenance panel are switches to select the 
device for readin mode and a set of sense switches, which can be interro­
gated by the program. 

The center section of the maintenance panel contains a voltmeter and 
controls for margin checking, and the right section contains speed controls 
for slowing down the program. Between these is a counter that registers the 
total time processor power has been on (the counter reads hours if the line 
frequency is 50 Hz, but at 60 Hz it counts six for every five hours). Below 
the counter are four special buttons, two of which are locks that are used to 
prevent inadvertent manipulation of the keys and switches while the 
processor is running: the console data lock disables the data and sense 
switches; the console lock disables all other buttons except those that 
are mechanical, which group comprises the four under the counter and 
the readin device switches. 

Power is supplied to the system by means of the switch at the right end in 
the group under the counter. This switch is lit while power is on, but the 
power light in the upper right corner of the operator panel is lit only when 
the system is actually in operation or is ready for operation; after power turn­
on the light does not come on until power is stabilized in the correct range. 

FI-I 

A panel indicator is worthless 
if the bulb is burned out. 
Before attempting to use the 
information presented by the 
panels, press the LAMP TEST 
button below the counter on 
the maintenance panel; this 
turns on all of the lamps so 
any that are burned out can 
easily be detected. 



-,;;, 
'" 00 

FI-2 

"'~~~~!!!!!!!I!ItI 

PROCESSOR OPERATION 

At the left of the margin check con­
trols are three red lights that indicate 
an overtemperature condition some­
where in the processor logic, a tripped 
circuit breaker, or a cooling assembly 
door open. Whenever any of these 
lights goes on the Power Failure flag 
sets and power automatically shuts 
down. 

Indicators 

When any indicator is lit the associated 
flipflop is I or the associated function 
is true. Some indicators display useful 
information while the processor is 
running, but many change too fre­
quently and can be discussed only in 
terms of the information they display 
when the processor is stopped. The 
program can stop the processor only 
at the completion of the HALT in­
struction; the operator can stop it at 
the end of every instruction, in certain 
memory references, or following every 
clock pulse (the last allows extremely 
slow speed operation with the clock 
running slowly or each clock pulse 
triggered individually by the operator). 

Of the large groups of lights on the 
operator panel, the right half of the 
second row displays the contents of 
PC, the third row displays the instruc­
tion being executed or just completed, 
and the fourth row is the memory 
indicators. The left third of the third 
row displays IR; in an 10 instruction 
the left three instruction lights are on, 
the remaining instruction lights and 
the left accumulator light are the 
device code, and the remaining accu­
mulator lights complete the instruction 
code. The right half of the row dis­
plays the virtual address on the address 
bus, and the 1 and index lights reflect 
the states of the corresponding bits of 
the memory buffer. Hence the right 
two thirds of the row changes with 
every memory reference, and the 1 and 



Kii 0 OPERA nON 

index lights actually display the indirect bit and the index register address 
only following an instruction fetch or an indirect reference in an effective 
address calculation. 

Above the memory indicators appear two pairs of words, PROGRAM 
DATA and MEMORY DATA. If the triangular light beside the former pair 
is on, the indicators display a word supplied by a DAT AO PI,; if any other 
data is displayed the light beside MEMORY DATA is on instead. While the 
processor is running, the addresses used for memory reference are compared 
with the contents of the address switches in a manner determined by the 
paging switches and the User Address Compare Enable flag. Whenever the 
two addresses are equal and the comparison is enabled, the contents of the 
addressed location are displayed in the memory indicators. However, once 
the program loads the indicators, they can be changed only by the program 
until the operator turns on the MI program disable switch, executes a key 
function that references memory, or presses the reset key [see below J. 

The four sets of seven lights at the left display the state of the priority 
interrupt channels. The PI ACTIVE lights indicate which channels are on. 
The lOB PI REQUEST lights indicate which channels are receiving request 
signals over the in-out bus; the PI REQUEST lights indicate channels on 
which the processor has accepted requests. Except in the case of a program­
initiated interrupt, which is shown in the PI GEN lights at the left end in 
the bottom row on the indicator panel at the top of the console bay, a 
REQUEST light can go on only if the corresponding ACTIVE light is on. 
The PI IN PROGRESS lights indicate channels on which interrupts are 
currently being held; the channel that is actually being serviced is the lowest­
numbered one whose light is on. When an IN PROGRESS light goes on, the 
corresponding REQUEST goes off and cannot go on again until IN 
PROGRESS goes off when the interrupt is dismissed. PION indicates the 
priority interrupt system is active, so interrupts can be started (this corre­
sponds to CONI PI, bit 28). PI OK 8 indicates that there is no interrupt 
being held and no channel waiting for an interrupt; this signal is used by the 
real time clock to discount interrupt time while timing user programs. 

The four lights at the center of the top row indicate the processor mode. 
One and only one of these lights can be on and they represent the combined 
states of the User and Public flags. The rest of the top row contains the 
power light and the following control indicators. 

RUN 
The processor is in normal operation with one instruction following another 
(although the light remains on at a stop in a memory reference). When the 
light goes off, the processor stops. 

STOP MAN 
The operator has stopped the processor by pressing STOP or RESET. 

FI-3 

Opposite: Console Operator 
and Maintenance Panels 

Note: If a REQUEST light 
stays on indefinitely with the 
associated IN PROGRESS 
light off and PC is static, 
check the PI CYC light on the 
indicator panel at the top of 
the console bay. If it is on, a 
faulty program has hung up 
the processor. Press RESET. 



Fl-4 PROCESSOR OPERATION 

STOP PROG 
The processor has been stopped by a HALT instruction. At the completion 
of the instruction the address lights display the jump address (the location 
from which the next instruction will be taken if the operator presses 
the continue key), and the AR lights at the top of bay 2 display an 
address one greater than that of the location containing the instruction 
tha t caused the halt. 

STOP MEM 
The processor has stopped at a memory reference. This can be due to satis­
faction of an address condition selected at the console, reference to a 
nonexistent memory location, or detection of a parity error. 

KEY MAINT 
One of the following switches is on (this light is equivalent to CONI APR, 
bit 8): FM MANUAL, MEM OVERLAP DIS, SINGLE PULSE, MARGIN 
ENABLE, SINGLE INST, STOP PAR. Anyone of these switches being on 
implies that the processor is being operated for maintenance purposes, and 
is not running at maximum speed. 

KEY PG FAIL 
A key function has caused a page failure. No page fail trap is executed in 
response to a key-induced failure; if the processor is running, it continues 
the program. 

The remaining processor lights are on the indicator panels at the tops of 
the bays [illustrated on next page]. The large groups of lights on the panel 
at the top of bay 2 display the contents of the adder, the AR, BR and MQ 
registers, and the selected location in fast memory. The bottom row displays 
the AR flags - FXU is Floating (exponent) Underflow, DCK is No Divide 
(divide check). FXU HOLD is a nonprogram flag that plays a role in 
determining underflow conditions. At the end is the flipflop that inhibits 
the clock. 

The right halves of the top two rows of the bay 1 panel display the con­
tents of the AD and AR extensions. BYF6 in the top row is the First Part 
Done flag; the TN lights at the right end of the fourth row are the trap flags 
(TN 0 is Trap 2). The right half of the bottom row displays the physical 
address for each memory reference and the type of memory request. At the 
left are the lights for the associative memory. The AB 14-17 lights at the 
center are always either off or reflect the states of address switches 14-17. 

The lights in the top row of the panel on the console bay (bay 3) display 
either the contents of the in-out bus, the paper tape reader buffer, MB, or 
the information supplied by the last DATAO PAG, as selected by the 
4-position switch in the right section of the maintenance panel. The large 
groups of lights in the second row display the user and executive base 
registers; at the left end are the Small User and User Address Compare 



'" '" '" '" 

'" '" '" '" '" 

'" 
'" '" '" '" 

Indicator Panel, KIl 0 Arithmetic Processor, Bay I 

Indicator Panel, KIl 0 Arithmetic Processor, Bay 2 

Indicator Panel, KIl 0 Arithmetic Processor, Console Bay 

, " 

c 
o 
o 
"0 
i:rj 
;:0 

>­.., 
(3 
z 

'"Ij 

I 

VI 



Fl-6 

The remaining lights on the 
panels are for maintenance. If 
the operator must use them, 
he should consult the main­
tenance manual and the flow 
charts. 

CAUTION 

READ IN does not clear the 
associative memory, whose 
contents are unpredictable at 
power turnon. 

PROCESSOR OPERATION 

Enable flags, and a pair of lights that indicate which fast memory block is 
currently selected for the user program. The bottom two rows include the 
indicators for reader, punch and console terminal, which are described in 
Appendix H, and the processor flags. Note that the TRAP ENABLE light at 
the center of the second row is the Page Enable flag, which also enables over­
flow traps (DATAl PAG, bit 22). PAGE LAST MUUO PUB at the very 
center of the panel is the Disable Bypass flag. The User lOT flag is in the 
middle of the third row, and CaMP ADR BRK INH near the left end of 
the bottom row is Address Failure Inhibit. 

Opera ting Keys 

The operating keys can be used whether RUN is on or off. If the processor 
is running when a key is pressed, it simply pauses at an appropriate point in 
the program to perform a key cycle to execute the function. These key 
functions are effectively of three types. The first three keys on the left are 
for the initiating functions, read in, start, and continue: these functions 
place the processor in operation under conditions determined primarily by 
the function itself. The next two keys are for the terminating functions, 
stop and reset: if the processor is running, these functions stop it. The last 
five keys are for the independent functions, execute, examine, examine next, 
deposit, and deposit next. These functions have no inherent effect on proc­
essor operation: if the processor is not running it simply performs a key 
cycle and stops; if it is running, it pauses to perform a key cycle and con­
tinues the program. (However the data deposited or the instruction executed 
may have an effect.) Moreover the independent functions are affected by 
the setting of the paging switches, which determine the address space in 
which the function is performed. 

The logic responds to the keys in two stages. When a key is pressed or 
several are pressed simultaneously, the logic latches them. From among the 
buttons latched, the processor then accepts the request for the function that 
has priority; the priority order is the same as the order of the keys from left 
to right on the panel except that reset has first priority. As soon as a 
function request is accepted, the corresponding button lights up and remains 
lit until the function is completed. If the processor is not already in opera­
tion, it performs the accepted function immediately; otherwise it saves the 
function until it can be performed. While any button is lit, however, no 
function request can be accepted; in other words, although the processor will 
interrupt the program to perform a key function, it will not interrupt one 
key function for another. It will however do one key latch while a key is lit 
and accept the highest priority latched function once the current function is 
done. Provision is also made in the logic so that the RESET key can be used 
to stop the processor no matter what. 

READ IN 
Clear all 10 devices and all processor flags. Turn on RUN and EXEC MODE 
KERNEL (trapping and paging will both be disabled as TRAP ENABLE at 
the top of the console bay will be off). Execute DATAl D,O where D is the 



KIlO OPERATION 

device code specified by the readin device switches at the left end of the 
maintenance panel. Then execute a series of BLKI D,O instructions until 
the left half of location 0 reaches zero. After storing the last word in the 
block, fetch that word as an instruction from the location in which it was 
stored as specified by Pc. Since RUN has been set the processor begins 
normal operation at the location containing the last word. [For information 
on the data format refer to §2.l2]. 

Codes of readin devices are: PTR 104, DTC 320, DTC2 330, TMC 340, 
TMC2 350. 

START 
Turn on RUN and EXEC MODE KERNEL, and begin normal operation by 
fetching the instruction at the location specified by address switches 18-35. 
The memory subroutine for the instruction fetch loads the address into PC 
for the program to continue. This function does not disturb the flags or 
the 10 equipment. 

CO NT (Continue) 
If STOP MEM is on begin normal operation at the point at which the 
processor is stopped in a memory subroutine. Otherwise turn on RUN and 
begin normal operation by fetching an instruction from the location 
specified by Pc. 

STOP 
Turn off RUN so the processor stops with STOP MAN on. At the stop PC 
points to the location of the instruction that will be fetched if CONT is 
pressed (this is the instruction that would have been done next had the 
processor not stopped). 

RESET 
Clear all 10 devices, disable auto restart, high speed operation and margin 
programming, clear the processor flags (lighting EXEC MODE KERNEL), 
turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA), turn off RUN and stop the processor. Do not 
clear the associative memory. 

If this function is not performed within 10 ms (eg because READ IN is 
lit), the key triggers a panic reset that produces all of the standard reset 
actions and also clears all but the mechanical console keys and switches. 

XCT 
Execute the contents of the data switches as an instruction without 
incrementing PC, even if a skip condition is satisfied in the instruction. 
If PAGING USER is on and PAGING EXEC is off, execute the instruction 
in user virtual address space; otherwise use executive address space. If the 
instruction is an XCT or LUUO, the instruction called by it is also executed. 

Fl-7 

The rightmost device switch 
is for bit 9 of the instruction 
and thus selects the least sig­
nificant octal digit (which is 
always 0 or 4) in the device 
code. 

CAUTION 

Note that the key function 
lasts throughout the proces­
sing of the entire block. This 
means that read in cannot be 
interrupted for another key 
function. Hence if it must be 
stopped (eg because of a 
crumpled tape), press RESET. 

The memory restart is not a 
key function in the sense 
defined above. In other words, 
use of CONT to continue at a 
memory stop is not subject to 
the restrictions given above 
for use of the operating keys. 

The processor may stop in 
the middle of a two·part in­
struction, but pressing CONT 
restarts the instruction with­
out repeating any first-part 
actions that would adversely 
affect the result. 

If STOP ever fails to stop 
the processor, pressing this 
key will, but not without 
destroying information. To 
save the processor state, stop 
by pressing SINGLE INST 
and SINGLE PULSE simul­
taneously. 

Note that an instruction exe­
cuted from the console can 
alter the processor state like 



FI-8 

an instruction in the program: 
it can halt the processor, can 
change PC by jumping, alter 
the flags, or even cause a non­
existent memory stop (but 
not a page fail trap, even if it 
turns on the KEY PC FAIL 
light). 

PROCESSOR OPERATION 

NOTE 

The remaining key functions all reference memory. They can therefore 
light KEY PG FAIL and set such flags as Nonexistent Memory and 
Parity Error, and they all turn on the triangular light beside MEMORY 
DATA, turning off the light beside PROGRAM DATA. Performing one 
of these functions with the ADDRESS STOP switch on stops the 
processor in the memory subroutine (with STOP MEM on). 

These functions use an address supplied by the address switches, and 
the way that address is interpreted is determined by the paging switches. 
If both paging switches are off, the function uses a 22-bit absolute 
physical address supplied by address switches 14 - 35, and fast memory 
references are made to the block selected by the FM block switches at 
the left end of the maintenance panel. If either paging switch is set, the 
function uses a virtual address supplied by address switches 18-35 and 
the FM block switches have no effect (in other words the function 
has access to one of the virtual address spaces defined for a normal 
program). If PAGING EXEC is on, the function has access to executive 
address space; if PAGING EXEC is off and PAGING USER is on, the 
function has access to user address space. 

EXAMINE THIS 
Display the contents of the location specified by the paging and address 
switches in the memory indicators. 

EXAMINE NEXT 
Add 1 to the address displayed in the address switches, and display the con­
tents of the location then specified by the paging and address switches in 
the memory indicators. 

DEPOSIT 
Deposit the contents of the data switches in the location specified by 
the paging and address switches, and display the word deposited in the 
memory indicators. 

DEPOSIT NEXT 
Add 1 to the address displayed in the address switches, deposit the contents 
of the data switches in the location then specified by the paging and address 
switches, and display the word deposited in the memory indicators. 

Operating Switches 

Besides defining the address space for the independent key functions, the 
paging switches also perform this service for address comparison and for the 
group of five switches just at the left of the operating keys. Whenever the 
processor references memory or an accumulator, it may compare the virtual 
address used with that specified by address switches 18-35 and may take 
some action if the two are identical. There are a number of conditions that 



.. 

KIl 0 OPERATION 

affect the comparison. First, .comparison can be made only for memory 
references and accumulator write references - there is never a comparison 
for an index register reference or an accumulator read reference. Given the 
proper type of reference, the comparison must be enabled by the paging 
switches and the User Address Compare Enable flag, as described below. In 
a reference of the correct type with the comparison enabled, if the virtual 
address on the address bus or the fast memory address is identical to the 
address in switches 18-35, the processor displays the contents of the 
addressed location or accumulator in the memory indicators (unless the light 
beside PROGRAM DATA is on). 

Except in an AC reference, the same situation that causes the word 
display can also be made to stop the processor or produce an address failure, 
depending upon the purpose of the reference as selected by the three address 
condition switches. The logic that implements the address stop conditions 
differs from that for the address break conditions in the data fetch case 
(the break conditions are a subset of the stop conditions). However the dif­
ferences in the statement of the conditions appear quite large. This is 
because the conditions are stated in terms of their consequences. And the 
consequences differ considerably because an address failure occurs in the 
page check that is done when a memory reference is requested, whereas an 
address stop occurs after a memory reference is actually made. 

The address conditions for a failure are explained in detail in § 2.15. 
Whenever there is a page check for a memory reference that satisfies both 
the comparison conditions and any selected address condition, ADDRESS 
BREAK being on causes an address failure except in an instruction per­
formed while CaMP ADR BRK INH is on. 

Whenever the processor actually makes a memory reference that satisfies 
both the comparison conditions and any selected address condition, 
ADDRESS STOP being on halts the processor with STOP MEM on and PC 
pointing to the instruction that is being performed (running with ADDRESS 
STOP on slows down the processor). The stop conditions selected by the 
address condition switches are as follows: 

FETCH INST selects access for retrieval of an ordinary instruction, 
including an instruction executed by an XCT or an LUUO (address 41), 
and a page refill for same. 

FETCH DATA selects access for retrieval of an address word in an 
effective address calculation, any retrieval of an operand other than in an 
XCT (read-only and in the read part of a read-modify-write), retrieval of a 
dispatch interrupt instruction, and a page refill for any of these and for 
any of the conditions selected by the WRITE switch (ie any reference 
except an instruction fetch). This switch can also cause a stop inadvert­
ently on the retrieval of a trap instruction, a PC word in an MUUO, or 
a standard interrupt instruction. 

WRITE selects access for writing, both write-only and read-modify-write, 
including writing by an LUUO (address 40), a page refill for any of these, 
and also for retricval of the operand in a read-modify-write - in other 
words the processor stops separately on the read and write parts of a read­
modify-write. This switch also causes a stop on the first write in an 

FI-9 

When the ADDRESS BREAK 
and ADDRESS STOP switches 
are both on, the former has 
precedence because the page 
failure cancels the requested 
access. 



FI-IO 

Besides controlling USER 
ADR COMP with a DAT AO 
PAG, a debugging program 
can directly manipulate the 
paging, address, address con­
dition, and address break 
switches by means of a 
DAT AO PTR,. But for the 
program to control address 
stopping (other than by 
USER ADR COMP), the op­
erator must turn the switch 
on, and the program can then 
inhibit its effect by turning 
off all three address condition 
switches. Should it be pre­
ferred that the address condi­
tion be controlled solely by 
the operator, the program can 
still disable the stop by setting 
the address switches to a num­
ber that is unlikely to appear 
on the address bus, such as 
zero, or better still an address 
greater than any used in the 
program. It might seem that 
an address all I s is a good 
candidate for this purpose, 
but it is in fact a very poor 
choice and results in inadvert­
ent stops at traps, MUUOs 
and the like. The reason for 
this is that various types of 
special access do not use the 
address bus; and when the bus 
is not used, it is generally left 
free to follow the adder, 
which in turn puts out all Is 
when neither of its input 
mixers is enabled. 

Note that read in cannot be 
done in single instruction 
mode, as the function extends 
over many instructions and 
there is thus no way to con­
tinue. 

PROCESSOR OPERATION 

MUUO if the address switches contain the effective address of the MUUO 
(even though that address is not used for the access), and can cause a 
failure inadvertently on the second write. 

ADDRESS STOP also stops any examine or deposit function in the 
memory subroutine. 

The way the paging switches enable the comparison is as follows. 
If PAGING EXEC is on and PAGING USER is off, the comparison is 
enabled for executive address space. If PAGING EXEC is off and PAGING 
USER is on, the comparison is enabled for user address space provided the 
program has turned on USER ADR COMP (User Address Compare Enable 
flag) in the upper left corner of the bay 3 indicator panel. If both paging 
switches are on, the comparison is enabled for executive address space, pro­
vided USER ADR COMP is on (in other words with both switches on, 
PAGING USER applies the flag condition to PAGING EXEC). 

Displaying the contents of a selected location and catching a particular 
type of reference to a selected location, as described above, are traditional 
debugging techniques. The paging switches allow these techniques to be used 
more flexibly in a large system that handles many users. The configuration 
PAGING EXEC on and PAGING USER off would be used for debugging the 
Monitor itself or some other executive program, which quite likely would be 
the only program running. PAGING EXEC off and PAGING USER on 
limits the procedures to user address space; and control over the comparison 
by the executive through a flag allows debugging an individual user program 
without interfering with either the executive or other users. Similarly both 
switches on allows investigation of that part of the executive associated with 
a given user, interfering with neither the rest of the executive nor any user. 
One who uses these switches often works in conjunction with a debugging 
or diagnostic program, and in the flag-limited cases one would be more 
apt to use the address break than the address stop, as the latter terminates 
all operations. 

Conditions associated with the comparison are displayed by the COMP 
lights in the middle of the bay 3 indicator panel. From left to right these 
indicate an accumulator write reference, a memory read reference, equal 
addresses in a synchronous reference (an operand reference, but limited to 
the first in a double operand), and equal addresses in an asynchronous 
reference (an instruction fetch or the second in a double operand). 

The description of each of the remaining switches relates the action it 
produces while it is on. 

SINGLE INST 
Whenever the processor is placed in operation, clear RUN so that it stops at 
the end of the first instruction. Hence the operator can step through a pro­
gram one instruction at a time, pressing START for the first one and CONT 
for subsequent ones. Each time the processor stops, the lights display the 
same information as when STOP is pressed. 

APR CLK FLAG (Clock flag) on the bay 3 indicator panel is held off to 
prevent clock interrupts while SINGLE INST is on. Otherwise interrupts 
would occur at a faster rate than the instructions. 



KIlO OPERATION 

CAUTION 

It is not generally worthwhile to attempt to use the 
interrupt system in single instruction mode except 
with the slowest start-stop devices, such as reader, 
punch and teletypewriter. In any event an interrupt 
hangs up the processor, and the operator must dis­
pose of it manually before single instruction 
operation can continue. 

SING LE PULSE 
Inhibit the clock so that a single clock pulse is generated each time SINGLE 
PULSER is pressed. If the processor is not already in operation, an operating 
key must be pressed before SINGLE PULSER can be used. If the processor 
is running, it converts to single pulse operation at the beginning of the 
instruction cycle; hence the clock will not stop if the processor does not 
reach the instruction cycle, say because it is hung up in a multiply or divide 
sequence. To force the processor into single pulse operation regardless of its 
position in the operating sequence, turn on both SINGLE INST and SINGLE 
PULSE - this stops the processor dead in its tracks. 

STOP PAR 
Stop with STOP MEM on at the end of any memory reference in which even 
parity is detected in a word read. A parity stop is indicated by the following: 
PAR ERR FLAG (Parity Error flag) is on in the bottom row on the bay 3 
indicator panel; and among the PAR lights in the third row from the bottom, 
ERR is on, IGN (ignore parity) is off, and BIT displays the parity bit for the 
word read. MA points to the location in which the error occurred. 

STOP NXM 
Stop with STOP MEM on if a memory reference is attempted but the 
memory does not respond within lOO ps. This type of stop is indicated by 
FLAGS NXM (Nonexistent Memory flag) being on in the bottom row on the 
bay 3 indicator panel. 

REPEAT 
If SINGLE PULSE is on and the processor is placed in operation, slow down 
the clock so that the processor runs at a clock rate determined by the speed 
controls at the right end of the maintenance panel. If the processor is not 
already running, it can be placed in single-pulse repeat operation by pressing 
an operating key and then pressing SINGLE PULSER. If the processor is 
running and the switches are turned on in the order REPEAT jSINGLE 
PULSE, then it goes into single pulse operation automatically at the 
beginning of the instruction cycle. If the processor is running with REPEAT 
off, it stops at the beginning of the instruction cycle when SINGLE PULSE 
is turned on; to restart it, turn on REPEAT and then press SINGLE PULSER 
twice. The lamp in the SINGLE PULSER button goes off at each clock 
pulse and turns back on each time the clock is retriggered; hence the button 

FI-ll 

SINGLE INST will not stop 
the processor if a hang up pre­
vents it from getting to the 
end of an instruction. Use 
STOP, RESET, or SINGLE 
PULSE. 

This type of stop destroys no 
information, the way pressing 
RESET would. 

If IGN is on (it displays a sig­
nal from the memory), parity 
errors are not detected and 
no stop can occur. Running 
with STOP PAR on slows 
down the processor. 



FI-12 

So long as REPEAT remains 
on, the selected key remains 
lit and its function continues 
in effect. In other words the 
operating keys are disabled. 

The function is often repeated 
once more after the switch 
is turned off, but this is 
noticeable only with very 
long repeat delays. 

The remammg switches are 
located at the left end of the 
maintenance panel. 

PROCESSOR OPERATION 

glows with an intensity that is relative to the clock duty cycle (eg for a 
given speed, the light will be dimmer for a program with many memory 
references). When either REPEAT or SINGLE PULSE is turned off, 
operation terminates after one more clock. 

If SINGLE PULSE is off and any operating key is pressed, then every time 
the repeat delay can be retriggered, wait a period of time determined by the 
setting of the speed control and repeat the given key function. The point at 
which the processor can restart the repeat delay depends upon the type of 
key function being repeated as follows. 

For an initiating function the delay starts when the processor stops with 
RUN off. This is either when the program gives a HALT instruction 
(STOP PROG) or following the first instruction if SINGLE INST is on. 

For an independent function the delay starts every time the function is 
done whether RUN is on or off. 

A terminating function stops the processor and the delay starts every time 
the function is repeated. Reset is generally used only to provide a chain of 
reset pulses on the 10 bus, and stop is used to troubleshoot the clock. 

In any case continue to repeat the function until REPEAT is turned off. 
The speed control includes a six-position switch that selects the delay 

range and a potentiometer for fine adjustment within the range. Delay 
ranges are as follows. 

FM MANUAL 

Position 

2 

3 
4 

5 

6 

Range 

200 ns to 2 IlS 

2 IlS to 20 IlS 

20 IlS to 500 IlS 

500 IlS to 6 ms 
6mstol60ms 
160 ms to 4 seconds 

All fast memory references for any purpose (index register, accumulator, 
memory) and under any conditions are made to the fast memory block 
selected by the FM BLOCK switches. When FM MANUAL is off, the block 
switches control fast memory references only in examine and deposit type 
key functions with both paging switches off (ie with the function using physi­
cal addressing). Turning on FM MANUAL overrides all other conditions so 
that all fast memory references are controlled by the block switches. 

MI PROG DIS 
Turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA) and inhibit the program from loading any 
switches or displaying any information in the memory indicators. The indi­
cators will thus continually display the contents of locations selected 
from the console. 

-. 



KIlO OPERATION 

MEM OVERLAP DIS 
Prevent memory control from overlapping cycles on the memory bus. 

MARGIN ENABLE 
Enable maintenance operation, including writing with even parity in memory 
and checking speed or voltage margins. Maintenance actions attempted by 
the program are indicated by the last four lights on the left end of the 
second row from the bottom on the bay 3 indicator panel. With maintenance 
operation enabled, writing with even parity and checking speed margins are 
otherwise entirely under program control. Voltage margins may be checked 
by the program or the operator. 

Real Time Clock DKIO 

The real time clock for the KI lOis usually installed under the console 
operator panel in bay 3 and has a small control panel mounted directly on 
the logic behind the cabinet door. In the lower part of the panel is a switch 
for selecting the internal source or an external input from the BNC con­
nector at the right. The external input must be supplied through a 100 ohm 
coaxial cable and must have a frequency no greater than 400 kHz; its 
triggering voltage change must be from -3 volts to ground. If the input is a 
pulse train, the minimum pulse width is 100 ns. If the input is a sequence of 
level changes, it must have a minimum low level (-3 volts) duration of 
400 ns before each positive-going change, a rise time of 60 ns maximum, and 
a high level duration of 40 ns minimum. 

The leftmost light in the upper row at the top of the panel indicates when 
the clock is on (ie when the counter is enabled). The next two lights are the 
Count Overflow and Count Done flags. TIME OUT indicates when the num­
bers in the interval register and the clock counter are identical - this light 
goes out as soon as either changes state. The remaining lights in the upper 
row are the PI assignment. The two lights at the left in the lower row display 
signals that synchronize the DATAl and DATAO to the clock so that count­
ing is postponed while the counter is being read and there is no sampling 
while the interval is being loaded. PI OK 8 is a processor-generated signal 
which indicates that there is no interrupt being held and no channel waiting 
for an interrupt; the next light is the User Time flag. The final two lights 
indicate the origin of the clock source. 

Fl-13 

This has no effect on pipe­
lining within memory control, 
such as overlapping the page 
checking of consecutive mem­
ory subroutines. 

For information on mainten­
ance operation, including use 
of the MARGIN SELECT 
and MANUAL MARGIN AD­
DRESS switches, refer to 
Chapter 10 of the mainten­
ance manual. 

Clock Control Panel 





• 

KAIO OPERATION 

F2 KA 10 OPERATION 

Most of the controls and indicators used for normal operation 
of the processor and for program debugging are located on 
the console operator panel shown here. The indicators are on 
the vertical part of the panel; in front of them are two rows 
of two-position keys and switches (keys are momentary 
contact, switches are alternate action). A key or switch is 
on or represents a 1 when the front part is down. 

The thirty-six switches in the front row and the eighteen 
at the right in the back row are respectively the data and 
address switches through which the operator can supply 
words and addresses for the program and for use in conjunc­
tion with the operating keys and switches. The correspond­
ence of switches to bit positions is indicated by the numbers 
at the bottom row of lights. At the left end of the back row 
are ten operating switches, which supply continuous control 
levels to the processor. At their right are ten operating keys, 
which initiate or terminate operations in the processor. The 
names of the operating keys and switches appear on the ver­
tical part of the panel below the lights. 

Also of interest to the operator is the small panel shown 
overleaf, which is located above the main panel at the left 
of the tape reader. The upper section of this panel contains 
a total hours meter and the margin-check controls. The lower 
section contains the power switch, speed controls for slowing 
down the program, switches to select the device for read in 
mode (lower part in represents a 1), and four additional 
operating switches. The normal position for these last four 
is with the upper part in; in this position FM ENB (fast 
memory enable) is on, the others are all off. 

Indicators 

When any indicator is lit the associated flipflop is 1 or the 
lssociated function is true. Some indicators display useful 
information while the processor is running, but many change 
too frequently and can be dis.cussed only in terms of the 
information they display when the processor is stopped. The 
program can stop the processor only at the completion of the 
HALT instruction; the operator can stop it at the end of 
every instruction or memory reference, or for maintenance 
purposes, after every step in any operation that uses the shift 
counter (shifting, multiplication, division, byte manipulation). 

Of the long rows of lights at the right on the operator 
panel, the top row displays the contents of PC, the middle 
row displays the instruction being executed or just completed, 
and the bottom row are the memory indicators. The right 
half of the middle row displays MA, the left half displays IR. 

F2-1 



F2-2 

Above: Margin Check and 
Maintenance Panel 
Overleaf" Console Operator 
Panel 

Note: If a REQUEST light 
stays on indefinitely with the 
associated IN PROGRESS 
light off and PC is static, 
check the PI CYC light on the 
indicator panel at the top of 
bay 2. If it is on, a faulty 
program has hung up the 
processor. Press STOP. 

PROCESSOR OPERATION 

In an 10 instruction the left three instruction lights 
are on, the remaining instruction lights and the left 
AC light are the device code, and the remaining AC 
lights complete the instruction code. The I, index 
and MA lights change with each indirect reference in 
an effective address calculation; at the end of an 
instruction I is always off. 

Above the memory indicators appear two pairs of 
words, PROGRAM DATA and MEMORY DATA. If 
the triangular light beside the former pair is on, the 
indicators display a word supplied by a DA TAO PI,; 
if any other data is displayed the light beside 
MEMORY DATA is on instead. While the processor 
is running the physical addresses used for memory 
reference (the relocated address whenever relocation 
is in effect) are compared with the contents of the 
address switches. Whenever the two are equal the 
contents of the addressed location are displayed in 
the memory indicators. However, once the program 
loads the indicators, they can be changed only by the 
program until the operator turns on the MI program 
disable switch, executes a "key function that references 
memory, or presses the reset key (see below). 

The four sets of seven lights at the left display the 
state of the priority interrupt channels [§2.13]. The 
PI ACTIVE lights indicate which channels are on. 
The lOB PI REQUEST lights indicate which channels 
are receiving request signals over the in-out bus; the 

PI REQUEST lights indicate channels on which the processor has accepted 
requests. Except in the case of a program-initiated interrupt, a REQUEST 
light can go on only if the corresponding ACTIVE light is on. The PI IN 
PROGRESS lights indicate channels on which interrupts are currently being 
held; the channel that is actually being serviced is the lowest-numbered one 
whose light is on. When an IN PROGRESS light goes on, the corresponding 
REQUEST goes off and cannot go on again until IN PROGRESS goes off 
when the interrupt is dismissed. 

At the left end of the panel are a power light and these control indicators. 

RUN 
The processor is in normal operation with one instruction following another. 
When the light goes off, the processor stops. 

PION 
The priority interrupt system is active so interrupts can be started (this 
corresponds to CONI PI, bit 28). 



KAIO OPERATION 

PROGRAM STOP 
IR now contains a HALT instruction. If RUN is off, MA displays an 
address one greater than that of the location containing the instruction that 
caused the halt, and PC displays the jump address (the location from which 
the next instruction will be taken if the operator presses the continue key). 

USER MODE 
The processor is in user mode (this corresponds to bit 5 of a PC word). 

MEMORY STOP 
The processor has stopped at a memory reference. This can be due to single 
cycle operation, satisfaction of an address condition selected at the console, 
reference to a nonexistent memory location, or detection of a parity error. 

The remaining processor lights are on the indicator panels at the tops of 
the bays [illustrated on next page]. Bay 2 displays AR, BR and MQ, the 
output of the AR adder, and the parity buffer which receives every word 
transmitted over the memory bus. The RL and PR lights at the lower right 
display the relocation and protection registers for the low part of the area 
assigned to a user program and the left eight bits of the relocated address 
for that part. 

The upper four rows on the bay I panel include the indicators for reader, 
punch and tenninal, which are described in Appendix HI. The bottom row 
displays the information on the data lines in the 10 bus. The AR lights at 
the upper right are the flags - FXU is Floating (exponent) Underflow, DCK 
is No Divide (divide check). OV COND is the condition that the 0 and I 
carries are different, ie the ~ondition that indicates overflow. The First 
Part Done flag is BYF6 in the MISC lights in the top row; User In-out is 
lOT USER in the EX lights at the center of the panel. The CPA lights in 
the top row and the five lights under them at the left are the processor 
conditions - PDL OV is Pushdown (list) Overflow. The AS= lights in the 
middle row indicate when the (relocated) core memory address or the fast 
memory address is the same as the address switches. 

Operating Keys 

. Each key except STOP turns on one of the key indicators at the upper right 
on the bay 2 panel. These are for flipflops that allow the key functions to be 
repeated automatically and also allow certain of them to be synchronized to 
the processor time chain so they can be performed while the processor is 
running. 

F2-3 

If RUN and PROGRAM 
STOP are both on, the proc­
essor is probably in an in­
direct address loop. Press 
STOP. 

The remaining lights on the 
panels are for maintenance. If 
the operator must use them, 
he should consult the main­
tenance manual and the flow 
charts. 

CAUTION 

Never press two keys simul­
taneously as the processor 
may attempt to perform both 
functions at once. 



Indicator Panel, KAID Arithmetic Processor, Bay I 

Indicator Panel, KAID Arithmetic Processor, Bay 2 

J 

'"I1 
N 

I 

~ 

"C 
;tI 
o 
I'"l 
ttl 
rJ) 
rJ) 

o 
;tI 

o 
"C 
ttl 
;tI 
> ..., 
(3 
z 



'. 

KA10 OPERATION 

READ IN 
Clear all 10 devices and all processor flags including User; turn on the RIM 
light in the upper right on bay I and the KEY RDI light in the upper right 
on bay 2. Execute DATAl D,O where D is the device code specified by the 
readin device switches on the small panel at the left of the reader. Then 
execute a series of BLKI D,O instructions until the left half of location 0 
reaches zero, at which time turn off RIM and KEY RDI. Stop only if the 
single instruction switch is on; otherwise turn on RUN and execute the last 
word read as an instruction. [For information on the data format refer to 
§2.12.J 

Codes of readin devices are: PTR 104, DTC 320, DTC2 330, TMC 340, 
TMC2 350. 

START 
Load the contents of the address switches into PC, turn on RUN, and begin 
normal operation by executing the instruction at the location specified by 
PC. 

This key function does not disturb the flags or the 10 equipment; hence 
if USER MODE is lit a user program can be started. 

CO NT (Continue) 
Turn on RUN (if it is off) and begin normal operation in the state indicated 
by the lights. 

STOP 
Turn off RUN so the processor stops before beginning the next instruction. 
Thus the processor usually stops at the end of the current instruction, which 
is displayed in the lights. However, if a key function that can he performed 
while RUN is on has been synchronized, the processor performs that func­
tion before stopping. In either case PC points to the next instruction. 

If the processor does not reach the end of the instruction within 100 Jl.s, 
mhibit further effective address calculation - it is assumed the processor is 
caught in an indirect addressing loop. Pressing CONT when the processor is 
stopped in an address loop causes it to start the same instruction over. 

RESET 
Clear all 10 devices and clear the processor including all flags. Turn on the 
triangular light beside MEMORY DATA (turn off the light beside PRO­
GRAM DATA). If RUN is on duplicate the action of the STOP key before 
clearing. 

F2-5 

If RUN is on, pressing this 
key has no effect. 

The rightmost device switch 
is for bit 9 of the instruction 
and thus selects the least sig­
nificant octal digit (which is 
always 0 or 4) in the device 
code. 

CAUTION 

Do not initiate any other key 
function while RIM is on. If 
read in must be stopped (eg 
because of a crumpled tape), 
press RESET (see below). 

If RUN is on, pressing this 
key has no effect. 

If STOP will not stop the 
processor, pressing this key 
will. 



F2-6 

Note that an instruction exe­
cuted from the console can 
alter the processor state just 
like any instruction in the 
program: it can change PC by 
jumping or skipping, alter the 
flags, or even cause a non­
existent-memory stop. 

If RUN is on, pressing this 
key has no effect. 

If RUN is on, pressing this 
key has no effect. 

PROCESSOR OPERATION 

XCT 
Execute the contents of the data switches as an instruction without incre­
menting PC. If RUN is on, insert this instruction between two instructions 
in the program. Inhibit priority interrupts during its execution to guarantee 
that it will be finished. 

If USER MODE is lit all user restrictions apply to an instruction executed 
from the console. 

NOTE 

The remaining key functions all reference memory. 
They use an absolute address and all of memory is 
available to them; in other words protection and 
relocation are not in effect even if USER MODE is 
lit. However they can set such flags as Address 
Break and Nonexistent Memory. 

EXAMINE THIS 
Display the contents of the address switches in the MA lights and the con­
tents of the location specified by the address switches in the memory indica­
tors. Turn on the triangular light beside MEMORY DATA (turn off the 
light beside PROGRAM DATA). If RUN is on, insert this function between 
two instructions in the program. 

EXAMINE NEXT 
Add I to the address displayed in the MA lights and display the contents of 
the location specified by the incremented address in the memory indicators. 
Turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA). 

DEPOSIT 
Deposit the contents of the data switches in the location specified by the 
address switches. Display the address in the MA lights and the word 
deposited in the memory indicators. Turn on the triangular light beside 
MEMORY DATA (turn off the light beside PROGRAM DATA). If RUN is 
on, insert this function between two instructions in the program. 

DEPOSIT NEXT 
Add I to the address displayed in the MA lights and deposit the contents of 
the data switches in the location specified by the incremented address. Dis­
play the word deposited in the memory indicators. Turn on the triangular 
light beside MEMORY DATA (turn off the light beside PROGRAM DATA). 

.' 



" 

KAIO OPERATION 

Operating Switches 

Whenever the processor references memory at the location specified by the 
address switches (relocated if USER MODE is on), the contents of that loca­
tion are displayed in the memory indicators (unless the light beside 
PROGRAM DATA is on). The group of five switches at the left of the keys 
allows the operator to make the processor halt or request an interrupt when 
reference is made to the specified location in core memory for a particular 
purpose (no action is produced by fast memory reference). The purpose is 
selected by the three address condition switches. INST FETCH selects the 
condition that access is for retrieval of an instruction (including an instruc­
tion executed by an XCT or contained in an interrupt location or a trap for 
an unimplemented operation) or an address word in an effective address cal­
culation. DATA FETCH selects access for retrieval of an operand other than 
in an XCT (read-only or read-modify-write). WRITE selects access for 
writing only. Whenever reference to the specified location satisfies any 
selected address condition, the processor performs the action selected by the 
other two switches. ADR STOP halts the processor with MEMORY STOP 
on (PC points to the instruction that was being executed, or if the MC WR 
light on bay 2 is on, PC may point to the one following it). ADR BREAK 
turns on the CPA ADR BRK light (Address Break flag, CONI APR, bit 21) 
on bay 1, requesting an interrupt on the processor channel. 

The description of each switch relates the action it produces while it is on. 

SING INST 
Whenever the processor is placed in operation, clear RUN so that it stops at 
the end of the first instruction. Hence the operator can step through a pro­
gram one instruction at a time, by pressing START for the first one and 
CONT for subsequent ones. Each time the processor stops, the lights display 
the same information as when STOP is pressed. 

CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts 
while SING INST is on. Otherwise interrupts would occur at a faster rate 
than the instructions. 

SING CYCLE 
Whenever the processor is placed in operation, stop it with MEMORY STOP 
on at the end of the first core memory reference. Hence the operator can 
step through a program one memory reference at a time, by pressing START 
for the first one and CO NT for subsequent ones. To determine what infor­
mation is displayed in the lights, consult the flow charts. 

PAR STOP 
Stop with MEMORY STOP on at the end of any memory reference in which 
even parity is detected in a word read. A parity stop is indicated by the fol­
lowing: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the 

F2-7 

AC and index register refer­
ences can be included by 
turning off the FM ENB 
switch (see below). 

If the interrupt for an address 
break is started before the 
completion of the instruction 
that caused it, that instruc­
tion will be restarted upon 
the return from the interrupt 
routine unless provision is 
made by the program to do 
otherwise. In such a case, the 
address break will recur, pro­
ducing a loop between the 
processor interrupt and the 
interrupted program. The op­
erator can free the processor 
by momentarily releasing the 
break switch. 

SING INST will not stop the 
processor if a hangup prevents 
it from getting to the end of 
an instruction. Use STOP or 
RESET. 

To stop at AC and index 
register references, turn off 
the FM ENB switch (see 
below). 



F2-8 

If IGN is on (it displays a sig­
nal from the memory), parity 
errors are not detected and no 
stop can occur. 

The key function is repeated 
once after REPT is turned 
off, but this is noticeable only 
with very long repeat delays. 

The end of a key function is 
equivalent to completion of 
all processor operations asso­
ciated wlth the function only 
for read in, examine, examine 
next, deposit, and deposit 
next. In other cases the proc­
essor continues in operation. 
Eg the execute function is 
finished once the instruction 
to be executed is set up 
internally, but the processor 
then executes that instruc­
tion. Hence when using speed 
range 6, the operator must be 
careful not to allow the key 
function to restart before the 
processor is really finished. 

PROCESSOR OPERATION 

PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are 
off, STOP is on, and BIT displays the parity bit for the word in the parity 
buffer at the left. 

NXM STOP 
Stop with MEMORY STOP on if a memory reference is attempted but the 
memory does not respond within 100 IlS. This type of stop is indicated by 
CPA NXM FLAG (Nonexistent Memory flag) on bay I being on. 

REPT 
If any key (except STOP) is pressed, then every time the key function is 
finished, wait a period of time determined by the setting of the speed control 
and repeat the given key function. If CONT is pressed and no switch is on 
that would stop the program (eg SING INST, SING CYCLE), then continue 
following the repeat delay whenever a HALT instruction is executed. Con­
tinue to repeat the key function until RESET is pressed or REPT is turned 
off. 

The speed control includes a six-position switch that selects the delay 
range and a potentiometer for fine adjustment within the range. Delay 
ranges are as follows. 

MI PROG DIS 

Position 

I 
2 
3 
4 
5 
6 

Range 

270 ms to 5.4 seconds 
38 ms to 780 ms 
3.9 ms to 78 ms 
390 IlS to 7.8 ms 
27 IlS to 540 IlS 

2.2 IlS to 44 IlS 

Turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA) and inhibit the program from displaying any in­
formation in the memory indicators. The indicators will thus continually 
display the contents of locations selected from the console. 

REPT BYP 
If REPT is on, trigger the repeat delay at the beginning of the key function. 
Hence the function is repeated even if it does not run to completion. 

FM ENB 
This switch is left on for normal operation with a fast memory. Turning it 
off (lower part in) substitutes the first sixteen core locations for the fast 
memory. The switch is left off if there is no fast memory, and it can be used 
to allow stopping or breaking at fast memory references. 

..' 



KAlO OPERATION 

SHIFT CNTR MAINT 
Stop before each step in any shift operation. Pressing CONT resumes the 
operation. Once a shift has been stopped, the processor will continue to 
stop at each step throughout the rest of the given shift operation even if the 
switch is turned off. 

At the right end of panel 11 behind the bay doors are two toggle switches. 
FP TRP causes the floating point and byte manipulation instructions (codes 
130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap 
and interrupt locations to 140-161 for a second processor connected to the 
same memory. 

Real Time Clock DKIO 

The real time clock for the KIlO is usually installed under the console 
operator panel in bay 3 and has a small control panel mounted directly on 
the logic behind the cabinet door. In the lower part of the panel is a switch 
for selecting the internal source or an external input from the BNC con­
nector at the right. The external input must be supplied through a 100 ohm 
coaxial cable and must have a frequency no greater than 400 kHz; its 
triggering voltage change must be from -3 volts to ground. If the input is a 
pulse train, the minimum pulse width is 100 ns. If the input is a sequence of 
level changes, it must have a minimum low level (-3 volts) duration of 
400 ns before each positive-going change, a rise time of 60 ns maximum, and 
a high level duration of 40 ns minimum. 

The leftmost light in the upper row at the top of the panel indicates when 
the clock is on (ie when the counter is enabled). The next two lights are the 
Count Overflow and Count Done flags. TIME OUT indicates when the num­
bers in the interval register and the clock counter are identical - this light 
goes out as soon as either changes state. The remaining lights in the upper 
row are the PI assignment. The two lights at the left in the lower row display 
signals that synchronize the DATAl and DATAO to the clock so that count­
ing is postponed while the counter is being read and there is no sampling 
while the interval is being loaded. PIOK8 is a processor-generated signal 
which indicates that there is no interrupt being held and no channel waiting 
for an interrupt; the next light is the User Time flag. The final two lights 
indicate the origin of the clock source. 

F2-9 

Clock Control Pane} 

... 
I .... 

i 





APPENDIX G 

MEMORY OPERATION 

The DECsystem-lO memory comprises a number of individual memories of 
various types, whose size and timing are given in § 1.3. A memory may be 
accessed by up to four different processors; in other words any memory may 
be connected to four memory buses and thus be part of the memory systems 
of four different processors. The more recent memories are designed for use 
with either a 22- or 18-bit address and may therefore be used with any 
PDP-IO processor. Earlier memories were designed specifically for use with 
the KAIO; these memories are limited to an 18-bit address and can be used 
with other PDP-lO processors only by placing a KII O-M adapter in the bus. 
Although the programmer usually regards an address simply as the number 
of a location somewhere in memory, the memory system interprets the 
address in two parts: the left part is the number of a memory, and the right 
part is the number of a location in the memory selected by the left part. 
Every memory has switches for selecting its number, ie the number to which 
that particular memory will respond when it appears in the appropriate bits 
on the address bus. For a given address length, the number of bits used for 
the memory number depends upon the size of the individual memory - the 
larger the size the more bits are needed to specify the location within the 
memory and the fewer there are needed to select the memory itself. Besides 
address switches, every memory has a power switch, interleave and deselect 
switches, a restart or reset switch, and a single step switch. 

To deselect a memory relative to a given processor means to remove that 
memory logically from the bus for that processor; in other words for the 
given processor that memory no longer exists. If a memory fails, it must be 
deselected if the system is to continue to run. Moreover, if the processor is a 
KAlO or the Monitor is a version earlier than 5.06, the deselected memory 
must be replaced so there is no gap in the physical address space. This may 
be done by resetting the switches on the highest numbered memory so it fills 
the gap left by the deselected one. When a system is installed, the system 
administrator (in consultation with Field Service) should work out a separate 
procedure to be followed in the event that any given memory fails. In other 
words there should be a set of procedures, and the set should contain as 
many procedures as there are memories in the system. A procedure might be 
as simple as filling a gap left by a deselected memory, but it may also involve 
the software or entail other complications. Whenever the organization of the 
system is changed in any way, that fact should be recorded, and the 
administrator should review, and if necessary change, the procedures to 
make sure they are appropriate to the new configuration. 

Memory setup and operation differs among types, and these are discussed 
separately in the following pages. However there are general interleaving 
principles that are the same for all. Some memories can be interleaved only 
in pairs, whereas others can be interleaved in either pairs or quadruplets. In 

G-I 

The same considerations apply 
to use wi th direct access proc­
essors; eg using an 18·bit 
memory with a DFIOC or a 
KilO-type bus on a DLlO 
requires an adapter. 

With the MFIO and earlier 
memories, each unit actually 
has a separate set of ad­
dress, interleave and deselect 
switches for each of the four 
processors to whose buses it 
may be connected. Hence a 
given memory may be number 
2 for processor 0 but be 
number 7 for processor I; by 
the same token it may be 
interleaved with some other 
memory relative to processor 
1 but be deselected altogether 
from processors 2 and 3. A 
given memory should, how­
ever, have the same number 
with respect to all processors 
controlled by a single Monitor; 
eg if the Monitor running in 
central processor 0 sets up 
a direct-access processor to 
move data in or out of the 
memory connected to proc­
essor 0, those memory units 
used by both processors 
should have the same numbers. 



G-2 

The system administrator 
should be aware that even if 
the hardware and software are 
capable of dealing with non­
contiguous memory, some of 
the programs being run may 
require that the memory be 
contiguous. This could be 
necessitated only by real time 
programs, but in general it is 
best to avoid having memory 
gaps unless they are known to 
be of no consequence. 

Note that to avoid gaps in 
a system with different size 
memories requires arranging 
them so the smaller memories 
are at the top or are grouped 
so as to fill the spaces between 
the larger memories. Consider 
a system with two 32K mem­
ories and one 16K memory. 
The 32K memories must be 
numbered 0 and 1, and using 
the same numbering scheme, 
the 16K unit must be num­
bered 2.0 (really 4 in 16K 
terms). If there were two 16K 
units we could number them 
2 and 3, with their space 
straddled by the 32K modules 
numbered 0 and 2 (ie the 
16K modules are numbered 1 
and 1~ in 32K terms). 

All transfers between bus and 
core are made through the 
buffer. 

Some memories identify all 
processors currently making 
requests. There are also lights 
that reflect the internal 
state of the memory (for 
further information refer to 
the appropriate maintenance 
manual). 

MEMORY OPERATION 

any event the memories in a group that is to be interleaved must all be the 
same size and must occupy a contiguous area of the overall address space. 
For a two-way interleave, the pair of memories must be numbered nand 
n+ I, where n is even. The interleaving is accomplished by setting the inter­
leave switches for the same processor at both memories to the INTL position. 
This action interchanges the least significant bits of the memory number and 
the location, so the least significant address switch at the memory is actually 
selecting a state for memory address bit 35. Hence all even addresses given 
by the processor in the interleaved set actually address the even-numbered 
memory, and all add addresses address the odd-numbered memory. A four­
way interleave must be done on a group of memories numbered n, n+l, n+2 
and n+3, where n is divisible by four. The interleave is accomplished by 
interchanging both the least significant bits of the memory number and 
location and the next more significant bits of those two quantities. The 
illustration on the next page shows the complete address structure for 
memories of all sizes, with and without interleaving. 

Most or all of the switches on a memory are located on a switch panel 
mounted with the logic wiring inside the front door of the bay. The lights 
are always on an outside panel at the top of the bay. Every indicator panel 
has sets of memory address and memory buffer lights. These indicate the 
last location accessed and display the information read from or written into 
that location (except the buffer lights are off after the read part of a 
read-modify-write). The four ACTIVE lights identify the processor that 
currently has access, and the two LAST lights indicate which of processors 
2 and 3 more recently had access. Priority among processors is their 
numerical order, with 0 first. However adhering strictly to this priority in a 
memory used by four processors might easily lead to the total exclusion of 
the lowest priority processor. To make this occurrence less likely, in a con­
flict between processors 2 and 3, access is granted to the one that has had it 
less recently. The panel also has a power indicator, lights that identify the 
type of request, and a parity bit. A memory in operation but idle is indi­
cated by the AW light, meaning the memory is awaiting a request. STOP 
goes on only following completion of a cycle in single step mode. In a read 
access a memory completes its cycle without need of further communication 
from a processor. Following the read part of a write or read-modify-write 
however, the memory waits with SYNC on for a write restart, receipt of 
which is indicated by a light often labeled RS. Failure of the processor to 
supply the restart turns on the INC light (if present). Such an incomplete 
request mayor may not hang up a specific type of memory, but it always 
results in leaving the addressed location clear. Since the system uses odd 
parity, a subsequent read at that location will result in a bad parity zero. 
Completion of a cycle is sometimes indicated by a CYC DONE light. 



Address 
Memory Bit Pairs 

Size Switched 

" 

8K None 

16K None 

16K 

16K 2 

32K None 

32K 

32K 2 

64K None 

64K 

64K 2 

128K None 

128K 

128K 2 

256K None 

256K 

256K 2 

INTRODUCTION G-3 

ADDRESS STRUCTURE 

~ Memory number 

I/HI Stack address (location) 

Minimum 
Total Address Bit Configuration 

Memory 14 15 16 17 18 192021 22 232425262728293031 32333435 

~} ••••.•... < .•••.........•.......•.....•.•.•.....•••••••••••.••••••.•• ><><·····./ ••••••• 1 

~> ••.•••......... 

32K 
~i~" ...................... <~ 

64K ~.*u~ .. ··<······· 
............................................. >~ 

64K 

128K ~ ••••• >u>/.·.·.··············· 
~ ..... . 

128K 

256K ~~* •.•.•.... } ............ » ••.......... 

~ •••••••.• / ..•••••••••••••.•.•••••••••.•.•.•........... ········································\······/ .• ··.H\ •••• > •• <1 

256K 

512K ~ •• i ••••• tUU ••• H .• · •.•..•.••• >·············· 
..............................................• ~ 

~ •••••••••••••• » ............ . .... ....................................................>.·············>.· .. · .... ·.· ........ · .... > ••. ·iU ••••••• ·•·· •• 1 

512K 

1024K 



G-4 MEMORY OPERATION 

MAlO CORE MEMORY 

This unit has a capacity of 16K words, a cycle time of 1.00 JlS, and operates 
only with an IS-bit address, of which four bits select the unit. At the left 
inside the front door are two tall panels of margin check switches, all of 
which should be set left. The switch panel is in the lower right corner. Note 
that there is no power switch: power is controlled by the circuit breaker on 
the power control panel on the rear plenum door. The three switches at the 
bottom of the panel are for all processors. Ordinarily an incomplete cycle 
does not affect memory operation; the unit simply drops the unfinished 
cycle and awaits the next request. But running with ERROR STOP on 
causes the memory to cease operation with INC on when a processor fails to 

Above: Switch Panel 
Left: Indicator Panel 

supply a write restart. To free the memory so 
it may await further processor requests, push 
the RESTART button. Pressing RESTART 
while SINGLE STEP is on allows the memory 
to respond to just one processor request. Once 
this single cycle has been completed, STOP 
goes on and the memory will acknowledge no 
further requests, thus giving a nonexistent 
memory indication in any processor that 
makes one. Pressing RESTART again allows 
the memory to respond to one more request. 
It is possible for a power line transient to hang 
up the memory in a request; to free it, tum 
the power off and back on again by means of 
the circuit breaker at the back. 

The remaining switches are in four sets for 
the individual processors. In each set the 
MADR switches allow selection of the memory 
number for address bits lS-21. Setting the 
fifth toggle to INTL interchanges address 
bits 21 and 35 for a two-way interleave. 
Setting the deselect switch to the 16 position 
deselects the whole unit from the corre-

sponding processor. However the switch also has positions for deselecting 
the lower or higher half of the memory, resulting in an SK memory with a 
5-bit number. Eg setting the switch to LS deselects the lower half and selects 
a 1 for address bit 22; the unit is then an SK memory whose locations are 
addressable in the upper half of the original 16K address space. For SK 
operation the interleave switch should always be set to NORM. 

~. 

,I 



MBIO CORE MEMORY 

MBIO CORE MEMORY 

This unit has a capacity of 16K words, a cycle time of 1.65 MS, and 
operates only with an l8-bit address, of which four bits select the unit. 

Several switches for all processors are located on the indicator panel. Inside 
the front door are three switch panels. The one in the upper right corner has 
a rotary switch for selecting operation with any single processor or selecting 
the more usual multiprocessor operation. Also on this small panel is a button 
labeled RESTART, even though there is another button with the same label 
on the indicator panel. Should a processor fail to supply a write restart, the 
memory ceases operation with SYNC remaining on; to free the memory so it 
may await further processor requests, push both restart buttons at the same 
time. Pressing the indicator panel RESTART while SINGLE STEP is on 
allows the memory to respond to just one processor request. Once this single 
cycle has been completed, STOP goes on and the memory will acknowledge 
no further requests, thus giving a nonexistent memory indication in any 
processor that makes one. Pressing the top RESTART again allows the 
memory to respond to one more request. It is possible for a power line 
transient to hang up the memory in a request; to free it, turn the power 
off and back on again. 

On the two small panels in the lower right corner are four sets of switches 
for the individual processors. Each set contains a deselect switch, an inter­
leave switch, and four MA switches that allow selection of the memory 
number for address bits 18-21. Setting the interleave toggle to INTL 
interchanges address bits 21 and 35 for a two-way interleave. 

G-5 

Indicator Panel 

Switch Panels 

The toggles at the left end of 
the logic rows are margin 
check switches, all of which 
should be set down. The 
toggle on the little panel be­
tween rows U and V should 
be set left (+ 1 0 FXD). 



G-6 

Upper: Indicator Panel 
Lower: Switch Panel 

MEMORY OPERATION 

MDIO CORE MEMORY 

This unit may contain up to four 32K memory modules, which are numbered 
and interleaved independently, but which share a common interface with the 
bus and therefore otherwise act as a single memory of 32, 64, 96 or l28K 
words. The cycle time is 1.8 p.s or less, and the unit operates only with an 

l8-bit address, of which four bits select the individual module. Interleaving 
among modules within a single MDlO is useless, because the whole unit is 
tied up whenever any module is performing a cycle even if it has already 
disconnected from the bus, as while a word is being written. Hence inter­
leaving must be done between a module and one or three other 32K 
memories, which may themselves be modules in other MDlOs. Note that 
there is no requirement of continuity of the address space within a given 
MDlO - if there were, interleaving would be impossible. Suppose a memory 
system consisted of two full-size MD lOs with complete two-way interleaving. 
The modules in one unit could just as well be numbered 0, 3, 5 and 6, with 
the remaining numbers applied to the modules in the other unit. 

Several switches for all processors are located on the indicator panel. 
Pressing RESTART while SINGLE STEP is on allows the memory to 



.. 

MDIO CORE MEMORY 

respond to just one processor request. Once this single cycle has been com­
pleted, STOP goes on and the memory will acknowledge no further request, 
thus giving a nonexistent memory indication in any processor that makes one. 
Pressing RESTART again allows the memory to respond to one more request. 

The remaining switches are on the big panel inside the front door. This 
panel has four large sections for the individual processors and a column at 
the left end for all processors. The upper four toggles in the column allow 
deselecting a single module from all processors. The button at the bottom is 
not used, and the remaining switch actually has three positions, including an 
unmarked center one. With this switch in the unmarked position, an incom­
plete cycle does not affect memory operation; the unit simply drops the 
unfinished cycle and awaits the next request. But running with the switch 
up in the HUNG position causes the memory to cease operation with 
INC RQ on when a processor fails to supply a write restart. To free the 
memory so it may await further processor requests, press the switch down 
to the momentary-contact CLEAR position. 

Each of the large sections of the panel contains four sets of MA switches 
for independently selecting the numbers of the individual modules for 
address bits 18-21. (Note that each of the upper four rows of switches 
extending across the entire panel affects the single module specified by the 
label at the left end.) Each deselect switch allows the operator to disconnect 
the entire unit from the specified processor. The right column of each 
section contains five interleave switches, of which the upper four are for 
two-way interleaving of individual modules and the bottom one is for four­
way interleaving of all modules together. Setting one of the upper four 
switches right interchanges address bits 20 and 35 only for the given module 
with respect to the specified processor. Setting the bottom toggle to the 
right interchanges address bits 19 and 34 only for the specified processor but 
for all modules in the unit. 

Hence for a given processor some modules can be used normally while 
others are interleaved on a two-way basis with other memories outside the 
unit. But if one module enters into a four-way interleave with respect to a 
given processor, all modules must. This means that when a unit is used in a 
four-way interleave for a given processor, among the switches for that 
processor the 19/34 switch and all four 19/35 switches must be set to INTL. 
If four-way interleaving is used among MOlOs, there must be four of them 
and each must contain the same number of modules. 

G-7 

Above the switch panel is 
a narrow panel with three 
margin check switches, all of 
which should be in the center 
NOM position. Above that is 
a power supply panel whose 
switch is not operative. The 
margin toggles at the bottom 
left should all be set down. 

Note that one can deselect all 
modules from one processor, 
or one module from all proc­
essors, but not a single module 
from a single processor. 

The restriction on number of 
units can be bypassed through 
worthless interleaving among 
modules within a single unit. 
This produces somewhat lop­
sided interleaving - eg one 
could have a three-way inter­
leave of three MDlOs with 
32K, 32K and 64K. 



G-S 

":' -<t o 
III 

MEMORY OPERATION 

MEIO CORE MEMORY 

This unit has a capacity of 16K words, a cycle time of 1.00 p.s, and operates 
with either a 22- or IS-bit address, of which eight or four bits select the unit. 
At the left inside the front door is a tall panel of margin check switches, all 
of which should be set left. The switch panel is at the lower right. Note that 
there is no power switch: power is controlled by the circuit breaker on the 
power control panel on the rear plenum door. The three switches at the 
bottom of the panel are for all processors. Ordinarily an incomplete cycle 

Above: Switch Panel 
Left: Indicator Panel 

does not affect memory operation; the unit 
simply drops the unfinished cycle and awaits 
the next request. But running with ERROR 
STOP on causes the memory to cease opera­
tion with INC on when a processor fails to 
supply a write restart. To free the memory so 
it may await further processor requests, push 
up the RESET switch. Pressing RESET up 
while SING STEP is on allows the memory to 
respond to just one processor request. Once 
this single cycle has been completed, STOP 
goes on and the memory will acknowledge no 
further requests, thus giving a nonexistent 
memory indication in any processor that 
makes one. Pressing RESET again allows the 
memory to respond to one more request. 

The rest of the panel is in four sections for 
the individual processors. Each section has 
two rows of MADR switches for selecting the 
memory number. If the bus supplies a 22-bit 
address, all eight MADR switches are used to 
select the memory number for address bits 
14-21. For an IS-bit address the upper row 
must all be set to the center IGN position, 
and the lower row is used to select the 
memory number for address bits lS-21. 
Completing each panel section are a deselect 
switch and a pair of interleave switches. 
Setting the 35 toggle to INTL interchanges 
address bits 21 and 35 for a two-way inter­
leave. Setting the 34 toggle up interchanges 
bits 20 and 34 for a four-way interleave. 

.. 



MFlO CORE MEMORY 

MFIO CORE MEMORY 

This unit has a capacity of either 32K or 64K words, a cycle time of 1.00 fJ.s, 
and operates with either a 22- or 18-bit address. The number of bits that 
select the unit depends on both the address length and the unit capacity. All 
switches are on panels in the lower half of the unit inside the front door. 
The tall panel at the left has margin check switches, all of which should be 
set left. At the upper right is a small maintenance panel, of interest in that it 
contains a size switch, which is set by MADR '. " 

Field Service to make the unit operate in ~~0e; 'i"e +<8 
a manner appropriate to the installed I~ 

+& capacity, and whose position therefore 
indicates that capacity. Note that there 
is no power switch: power is controlled 
by the circuit breaker on the power 
control panel on the rear plenum door. 

The four-part switch panel is at the 
lower right. The three switches at the 
bottom are for all processors. Ordinarily 
an incomplete cycle does not affect 
memory operation; the unit simply drops 
the unfinished cycle and awaits the 
next request. But running with ERROR 
STOP on causes the memory to cease 
operation with INC RQ on when a 
processor fails to supply a write restart. 
To free the memory so it may await 
further processor requests, push up the 
RESET switch. Pressing RESET up 
while SING STEP is on allows the 
memory to complete only one cycle in 
response to a single processor request. In 
the absence of a second request in the 
interim, pressing RESET again allows 

Above: Switch Panel 
Right: Indicator Panel 

another request-cycle combination. However, if following completion of a 
cycle, a processor makes a request before RESET is pressed, the memory will 
return an acknowledgement, thus avoiding a nonexistent memory indication. 
Of course the memory will hang in the second cycle, either waiting to write 
or with the processor awaiting a read restart. Pressing RESET in this circum­
stance causes the memory to complete its cycle leaving it free to acknowledge 
yet another request. 

The remaining switches are in four sets for the individual processors. Each 
set has two rows of MADR switches for selecting the memory number. If 
the bus supplies a 22-bit address, the upper row is used to select the left four 
bits (address bits 14-17) in the 6- or 7-bit memory number. Foran 18-bit 
address the upper switches must all be set to the IGN position. The con­
figuration of the switches in the lower row depends only on memory size. 
For a 32K unit these switches correspond to address bits 18-20 and are used 
to select a 3-bit memory number or the right three bits in a 7-bit number. 

G-9 



G-IO MEMORY OPERATION 

For a 64K unit the left switch must be set to the center IGN position; the 
other two correspond to address bits 18 and 19 and are used to select a 2-bit 
memory number or the right two bits in a 6-bit number. Completing the 
switch complement for each processor are a deselect switch and a pair of 
interleave switches. Setting the 35 toggle to INTL interchanges either 
address bit 19 or 20 (depending on unit size) with bit 35 for a two-way 
interleave. Setting the 34 toggle up interchanges either address bit 18 or 
19 with bit 34 for a four-way interleave. 



# 

APPENDIX H 

OPERATION OF PERIPHERAL EQUIPMENT 

This appendix describes the various switches and indicators associated with 
the peripheral equipment and outlines procedures for loading tapes, changing 
paper, and so forth. Although such procedures are given here, the best and 
easiest way to learn how to do any of these things is to have someone who 
knows show you how. The final section of the appendix describes various 
cleaning procedures that are generally performed by the operator and which 
must be performed periodically. 

H·I 





CONSOLE IN-OUT EQUIPMENT 

HI CONSOLE IN-OUT EQUIPMENT 

The console terminal is generally on a stand by the console_ The reader and 
punch are located in a drawer above the operator panel, but the face of the 
reader is available on the front of the drawer, and at its right are a slot for 
removing tape from the punch and a pair of switches for feeding tape 
through reader and punch_ Indicators for all three devices are on the panel at 
the top of the console bay on the KIl 0 and at the top of bay 1 on the KA 10. 

Paper Tape Reader 

On the KIlO the contents of the reader buffer can be displayed in the top 
row of lights on the console indicator panel by setting the IND SELECT 
switch on the maintenance panel to PTR. Busy, Done and the PI assignment 
are displayed in the PTR lights in the middle of the bottom row; the 
remaining flags and maintenance lights are near the left end of the second row. 

On the KA 10 the paper tape reader lights in the second row from the 
bottom on the bay 1 indicator panel display the contents of the buffer. The 
flags, PI assignment and maintenance signals are displayed in the PTR lights 
in the middle of the third row (EaT is the Tape flag). 

Tapes for the reader must be unoiled and opaque. To load the reader, 
place the fanfold tape stack vertically in the bin at the right, oriented so that 
the front end of the tape is nearer the read head and the feed holes are away 
from you. Lift the gate, take three or four folds of tape leader from the bin, 
and slip the tape into the reader from the front. Carefully line up the feed 
holes with the sprocket teeth to avoid damaging the tape, and close the gate. 
Make sure that the part of the tape in the left bin is placed to correspond to 
the folds, otherwise it will not stack properly. Briefly press the feed switch 
at the right, making sure not to go beyond the leader into the data area; this 
sets the Tape flag to signal the program that the tape is loaded. After the 
program has finished reading the tape, run out the remaining trailer by 
pressing the feed switch; do not simply remove the tape from the read head 
by hand - run it out in order to clear the Tape flag. 

Paper Tape Punch 

Indicators for the punch are the PTP lights near the middle of the bottom 
., two rows on the console indicator panel on the KIlO, in the top row 

on the bay 1 indicator panel on the KAIO. The numbered lights display 
the last line punched. 

The punch is behind the reader in the console drawer. Fanfold tape is 
fed from a box at the rear of the drawer. After it is punched, the tape 
moves into a storage bin from which the operator may remove it through 
the slot on the front. Pushing the feed switch beside the slot clears the 
punch buffer and punches blank tape as long as it is held in. Busy being 
set prevents the switch from clearing the buffer, so pressing it cannot 
interfere with program punching. 

To load tape, first empty the chad box behind the punch. Then tear off 
the top of a box of fanfold tape (the top has a single flap; the bottom of the 

Hl-l 

Photographs of the indicator 
panels of the KilO and KAlO 
appear on pages Fl-5 and 
F2-4 respectively. 



HI-2 OPERA TION OF PERIPHERAL EQUIPMENT 

box has a small flap in the center as well as the flap that extends the full 
length of the box). Set the box in the frame at the back and thread the tape 
through the punch mechanism. The arrows on the tape should be under­
neath and should point in the direction of tape motion. If they are on top, 
turn the box around. If they point in the opposite direction, the box was 
opened at the wrong end; remove the box, seal up the bottom, open the top, 
and thread the tape correctly. 

To facilitate loading, tear or cut the end of the tape diagonally. Thread 
the tape under the out-of-tape plate, over the rear guide plate, and through 
the punch die block; open the front guide plate (over the sprocket wheel),. 
push the tape beyond the sprocket wheel, and close the front guide plate. 
Press the feed switch long enough to punch about a foot and a half of leader. 
Make sure the tape is feeding and foldIng properly in the storage bin. 

To remove a length of perforated tape from the bin, first press the feed 
switch long enough to provide an adequate trailer at the end of the tape (and 
also leader at the beginning of the next length of tape). Remove the tape 
from the bin and tear it off at a fold within the area in which only feed holes 
are punched. Make sure that the tape left in the bin is stacked to correspond 
to the folds; otherwise, it will not stack properly as it is being punched. 
After removal, turn the tape stack over so the beginning of the tape is on 
top, and label it with name, date, and other appropriate information. 

Console Terminal 

Operating information for terminals that may be used at the console is given 
in Chapter 9. Appendix B does however include a complete table of the 
ASCII code from which the character sets of the various terminals are drawn. 
Besides the standard definitions of the control characters, the table gives 
additional information about their generation and effect in relation to the 
more commonly used console terminals. 

KilO indicators for the terminal interface are the TTl, TTO and TTY 
lights in the right half of the bottom two rows on the bay 3 indicator panel. 
The flags and PI assignment are in the bottom row. Among the TTO lights, 
ACTIVE indicates when the transmitter is in operation and the numbered 
lights display the contents of the buffer. The numbered TTl lights display 
the last character typed in from the keyboard (bit 8 is parity on most 
DECsystem-1O terminals). The KAla indicators are the TTY lights in the 
second row of the bay 1 indicator panel. The ACT lights indicate activity in .-' 
the transmitter and receiver. The numbered lights display the last character 
typed in from the keyboard. At the right are the flags and PI assignment 
(the Input and Output Done flags are labeled TTl FLAG and TTO FLAG). 

Connections for the console terminal are at a vertical panel behind the 
door below the console table. In the upper half of the KI I a panel are two 
rotary switches that select the input and output speed, a toggle switch that 
selects the signal type, and a pair of sockets for the signal cable. If the 
terminal were a typical Model 35 Teletype, both rotary switches would be 
set to 110, the toggle would be set to CURRENT, and the signal cable would 
be plugged into the upper socket. For a terminal that uses EIA standard 
levels, the toggle would be set to EIA and the cable would be plugged into 



f' 

CONSOLE IN-OUT EQUIPMENT 

the lower socket. In the lower half of the panel are switched and unswitched 
convenience outlets for the terminal, scopes, and other equipment used at 
the console. 

In the KAlO the connector panel is at the right and has a convenience 
outlet for the power cable. Mode and speed changes must be handled 
by Field Service. 

HI-3 





.> 

c 

HARDCOPY EQUIPMENT 

H2 HARDCOPY EQUIPMENT 

DEC supplies the interfaces for line printer, plotter, card reader and card 
punch as a single unit, the BA 10 hardcopy control. This control handles all 
four devices simultaneously, but is limited to one of each type. Indicators 
for the interfaces are on a panel at the top of the control cabinet. Inclusion 

of a single printer, reader or punch in the system requires a BAI O. But inter­
face logic for a plotter is also available separately for mounting in the same 
cabinet with a DECtape control, in which case the indicators are in the 
bottom row on the DECtape control panel. 

H2.l LINE PRINTER LPlO 

Lights for the printer interface are in the top two rows on the hardcopy 
control indicator panel. The top row displays the contents of the character 
buffer; the 7-bit characters are shifted left for processing. The shift and 
column counters at the left end of the second row indicate the last character 
processed (0-4) and the last buffer position loaded. The group of lights at 
the right display the status conditions. Of the group in the center, BUFF 
AVAIL indicates the printer line buffer is ready for the next character; the 
remaining lights are for maintenance. 

Models LPlOF, H 

These two models are essentially the same machine - they differ only in 
drum size, and hence in printing speed. Most controls and indicators are 
on a pair of panels, the operator panel at the left on top of the printer 
[illustrated on page H2-3] , and the test panel mounted above the card cage 
inside the door on the left side. Controls for normal operation are those 
visible on the front part of the operator panel; controls on the back half of 
the panel are covered by a plate, which can be lifted from the front. 

When the POWER and READY lights are on, the operator can place the 
unit on line by pressing the ON/OFF LINE switch. While the ON LINE 

H2-1 

Indicator Panel, 
BAIO Hardcopy Control 



H2-2 

With extremely short forms 
(two inches or less), the 
printer may think the paper 
has run out upon completing 
the second to last form. 

TOP OF FORM actually 
spaces the paper as indicated 
by column 1 on the format 
tape. If there is no format 
tape, the switch steps the 
paper one line. 

Line Printer LPlOF, H 

OPERATION OF PERIPHERAL EQUIPMENT §H2.1 

indicator is lit, pressing this same switch takes the unit off line. The unit 
also goes off line and unready when any of the error lights at the back of the 
panel goes on. The left light indicates simply that the drum gate is unlatched. 
Paper faults indicated by the center light are runaway paper motion, that the 
paper has run out or is torn, that the format tape loop is not installed 
properly, or the ribbon has reversed a specified number of times. The third 
light indicates an electrical malfunction or that the operator has inhibited 
printing by means of a switch located in the card cage. When the operator 
takes the unit off line or a ribbon change is indicated, the unit does not 
actually go off line until the buffer is empty (in other words until the printer 
finishes printing a line currently being loaded or printed). Paper running out 
is recognized only upon completion of the final line of the final form. 
READY goes out immediately if any other alarm condition occurs or power 
fails. When ON LINE is out or the cable to the interface is not connected, 
the Error flag is set and the printer cannot respond to the program. While 
the unit is off line, the operator can use the TOP OF FORM switch to 
position the paper or the format tape. 

To load paper follow this procedure. 

I. Open the doors in the lower part of the printer front and set in a new box 
of fanfold paper. A box of paper with forms eleven inches or less in length 
will fit inside the printer with the doors closed. For longer forms, the 
printer must be run with the doors open. 

2. Open the window at the top of the printer. Inside at the right end of the 
drum gate is a tall lever with a knob 
on the end. Push the lever to the left 
to unlatch the gate and pull it forward 
to swing the gate open to the left. 

CAUTION 

Do not proceed until the 
printer drum has stopped 
rotating. 

3. Press TOP OF FORM to position 
the format tape and run out the rest 
of the old paper. 

4. At the top on the right end of the 
paper carriage is a lever for selecting 
the number of copies. Set this for the 
form being used. The total thickness 
of multicopy forms must be no more 
than .020 inch. 

5. Line up the upper and lower left 
tractors vertically. 

6. On the outsides of the right trac­
tors are fine adjustment thumbwheels 
and tractor locks. On both upper and 



.. 

§H2.l HARDCOPY EQUIPMENT 

lower right tractors tum the thumbwheels clockwise as far as they will go, 
unlock the traCtors, and move them to the extreme right. 

7. Open the pressure plates on all four tractors. Set the left edge of the 
form in the upper left tractor, with the tractor pins through the feed holes, 
and close the pressure plate to hold the paper in place. 

8. Slide the upper right tractor to the correct position, aligning the feed 
pins with the right feed holes. Lock the tractor to the guide shaft and close 
the pressure plate. 

9. On the top at the right end of the carriage is a 
knob for controlling paper tension, and around 
the shaft of the knob is a locking disk. Unlock the 
knob and then tum it counterclockwise as far as 
it will go. 

10. Install the paper in the lower left tractor and 
close the pressure plate. Slide the lower right trac­
tor to position, install the paper, lock the tractor 
to the guide shaft, and close the pressure plate. 

11. Tum the paper tension knob clockwise until 
there is a slight deformation in the tops of the feed 
holes. Lock the knob. 

12. On both upper and lower right tractors, tum 
the fine adjustment thumbwheels counterclockwise 
until there is a slight deformation of the right edges 
of the feed holes. 

13. At the extreme right end of the carriage is a 
RUN/ADJUST lever, and at the very top at the left 
end is a thumbwheel for controlling the paper drive 
mechanism. Move the lever to the ADJUST posi­
tion, and tum the thumbwheel to move the paper 
until the top of form (the desired top line of 
the form) is aligned with the print hammers. For 
precise alignment of a special form, an alignment 
scale is contained in a sheath on the right side of 
the paper storage area. To align a special form, 
mount the scale across the hammer bank using the 
dowel pins located on castings at both sides of the 
bank. Horizontal paper position is controlled by 
the thumbwheel at the right end of the upper 
tractor guide shaft, and fine adjustment of the 
paper vertically is made by means of the knob just 
to the left of the tension knob. Using the thumb­
wheel, move the paper horizontally until the first print column is lined up with 
the first column on the scale; then using the knob, line up the top of form 
with the print line on the scale. Remove the alignment scale and put it back. 

14. Move the RUN/ADJUST lever to RUN, close and latch the drum gate, 
close the printer window, and close the doors to the paper storage area. 

H2-3 

The printer can accommodate 
paper 4-19 inches wide. 

LP lOF, H Operator Panel 

For precise alignment of pre­
printed forms, the vertical 
position knob can be manip­
ulated while the printer is 
running. 



H2-4 

In other words the same 
switches that select the low 
order digit of the character 
code also select the tape 
column. 

OPERA TlON OF PERIPHERAL EQUIPMENT §H2.l 

15. Check the paper tension by pressing TOP OF FORM several times, 
making sure the paper does not pull loose from the tractors. 

At the back of the operator panel (under the plate) is a POWER switch 
that operates in conjunction with a LOCAL/REMOTE switch on the test 
panel. In LOCAL, power is controlled entirely from the operator panel; in 
remote, the POWER switch is left on, and power is controlled from the 
processor. Pressing MASTER CLEAR initializes the printer logic. At the 
back left of the panel is a rocker switch for selecting the printing speed. 

CAUTION 

Change the drum speed only when the drum motor 
is not running. This means that either the power 
must be off or the drum gate unlatched. 

The pair of concentric controls at the back right are for regulating penetra­
tion and phase. The penetration control allows varying the hammer force to 
compensate for the difference between new and old ribbons, to match a 
preprinted form, and to improve the quality of multiple copies. The phase 
control is used to equalize the top-to-bottom density of the characters; this 
adjustment is necessary only when the operator has changed the penetration 
or the drum speed. 

Adjustments discussed above are generally made during a test run. 
Pressing the TEST MODE switch lights the unmarked indicator behind it and 
causes the unit to print lines of the character selected by the numbered 
switches on the test panel. If the toggle at the lower left on the test panel is 
set to NOT-FORM, the unit prints every line. With the toggle set to FORM, 
the printer spaces between lines according to the format tape column 
selected by the right three numbered toggle switches (numbers 0-7 select 
tape columns 1-8). Adjustments are a little easier if the NORMAL/SLOW 
toggle is set to SLOW: this reduces the printing speed by about 55%. 

At the left end of the drum gate is a counter with switches by which the 
operator can set the number of allowable ribbon reversals. Once the ribbon 
has reversed the specified number of times, an alarm light on the counter 
turns on; this in turn lights the paper fault indicator on the operator panel 
and takes the unit off line. Also on the counter is an alarm override switch 
that allows the operator to put the printer back on line and continue to run. 

Complete instructions for changing ribbons, preparing and installing a 
special format tape, changing drums, and switching to eight lines per inch are 
given in Chapter 3 of the Data Products manual for Line Printer Model 2470. 

Models LPIOB, C, D, E 

At the left on the front of the printer are two round indicators and two 
columns of square buttons and indicators, some of which are not used. The 
round lights indicate whether the printer has power: green light for power 
on, red for off. 

The buttons at the top of the columns operate the printer. Pushing 
START places the printer on line so it can respond to the program (the 



<. 

§H2.1 HARDCOPY EQUIPMENT 

button is lit while the unit is on line). Pushing STOP takes the unit off line; 
the operator can then use the TOP OF FORM button to position the paper 
(or the format tape). If the program has left anything in the buffer, it can 
be printed by pressing MANUAL PRINT. The maintenance button TEST 
can also be used while STOP is lit. START, STOP and TOP OF FORM are 
duplicated at the rear of the printer. 

At the bottom of the columns are four alarm lights that indicate when the 
paper supply is low, the printer is out of paper or the paper is broken, the 
yoke is open, or there is a circuit malfunction (ALARM STATUS). When 
the operator presses STOP or there is a paper low alert, START does not go 
out until the buffer is empty (in other words until the printer finishes 
printing a line currently being loaded or printed). START goes out immedi­
ately if any other alarm condition occurs or power fails. When START is 
out or the cable to the interface is not connected, the Error flag is set and 
the printer cannot respond to the program. 

The printer usually shuts down somewhere within the final form, but 
pressing START while PAPER LOW 
ALERT is lit allows the program to 
print a single line (after a noticeable 
delay). Hence the operator can allow 
the program to complete the form by 
pressing START for each line. How­
ever this should be done only if the 
program is set up to stop itself upon 
sending out the data for the last line 
of the present form. It is difficult for 
the operator to see exactly what line 
is being printed, and it is therefore up 
to the program to stop after the last 
line even if the operator should again 
press START. Otherwise the printer 
may be damaged by printing after the 
paper has run out. 

To load the paper follow this 
procedure. 

1. Press STOP. If START does not 
go out, the program probably left the 
last line in the buffer: press MANUAL 
PRINT. When printing is complete, 
the light will go out. 

2. Press TOP OF FORM to position 
the format tape. 

3. Open the printer cover. At the left and right front are two toggle 
switches; switch both of them to OPEN. The printer yoke will slide forward. 
Lift the guide plates over the two pairs of tractors and pull out any 
remaining paper. 

4. Bring the new paper up through the open yoke throat and thread it on 
the upper tractors so the paper feed holes fit over the pins. Just outside the 

H2-5 

r 

Line Printer LPlOB 



H2-6 

For precise alignment of pre­
printed forms, the vertical 
position knob can be manip­
ulated while the printer is 
running. 

OPERATION OF PERIPHERAL EQUIPMENT §H2.2 

lower tractors are knobs for moving the right and left pairs of tractors 
horizontally; use these to adjust the tractor positions to the paper width. 
Close the upper guide plates. 

5. Grasp the paper below the yoke and gently pull it taut. Place the feed 
holes over the pins of the lower tractors and close the guide plates. 

6. Establish the appropriate horizontal tension by adjusting the right trac­
tors until there is a slight deformation of the right edges of the feed holes. 

7. Beside the left yoke toggle switch is a knob for adjusting the vertical 
tension of the paper. The correct vertical tension is a slight deformation in 
the tops of the feed holes at the upper tractors. 

8. Behind the yoke is a plastic scale - it should be leaning against the yoke. 
Lay this scale back against the paper. Close the lock lever on the lower right 
tractor so all four tractors move together horizontally. Using the vertical 
lines on the plastic scale for reference, move the tractors to set the left 
margin of the paper. 

9. Open all four guide plates. Without moving the tractor pins, move the 
paper vertically until the top of form (the desired top line of the form) is 
approximately between the two black lines across the bottom of the scale. 
Thread the paper back on the tractor pins and close the guide plates. At the 
top left of the tractor carriage is a knob for fine vertical adjustment of the 
paper. Use this knob for closer alignment of the top of form between the 
lines on the scale. 

10. Release the tractor lock, switch the toggles to CLOSE, close the cover, 
and press START. After the paper has been advanced enough to reach the 
rear of the printer, position it between the paper puller roller rings and over 
the static eliminator bar. 

At the left end on top of the yoke is a penetration control, which allows 
varying the hammer force to compensate for the difference between new 
and old ribbons, to match a preprinted form, and to improve the quality 
of multiple copies. 

Model LPIOA 

This printer is smaller than the LP lOB, but otherwise very similar. The lights 
are at the right, the single PAPER ALARM indicates the paper is either low 
or tom, and there are no buttons on the back. With the cover open the yoke 
is controlled by two unmarked plastic switches on either side at the top. 
Pressing them in at the end nearer the front opens the yoke. This printer has 
only one pair of tractors, but it has a pair of bars below the yoke. The paper 
must go over the stationary bar and under the movable one. 

82.2 PLOTTER XYIO 

Lights for the plotter are the group at the right end in the bottom row on 
the hardcopy control indicator panel [page H2-J]. These display the status 



§H2.3 

conditions and the plotting data sup­
plied by the last DATAO. 

On the drum plotter the supply roll 
is behind the drum. Bring the paper 
over the drum, down in front, and 
above and behind the pickup roll 
underneath the drum (use a piece of 
masking tape to attach the paper, or 
roll some onto the tube). 

The controls are on the front. To 
put the plotter on line simply turn on 
the power and the chart drive. The 
remaining controls are for manual oper­
ation: raising and lowering the pen, 
moving the carriage and drum in either 
direction, rapidly or single step. The 

HARDCOPY EQUIPMENT 

switch that selects the step size on a 600-series plotter is on the back. The 
bed plotter has similar controls. 

82.3 CARD READER CRIO 

Lights for the reader interface are in the bottom two rows on the hardcopy 
control indicator panel [page H2-J]. The left section of the upper row dis­
plays the contents of the card column buffer; the lights are marked by card 
row. The left section of the bottom row displays bits 24-35 of the status 
conditions. (The second light from the left is labeled HOP EMPTY, but it 
goes on when the hopper is empty or the stacker is full.) Of the five lights in 
the center, the left one is the momentary offset signal, which is applicable 
only to the CR lOA/B. READ is on when a read command has been given 
but the reader is not yet ready. The next two lights display bits 18 and 19 
of the status conditions, and the last light is on while an interrupt is being 
requested whatever the cause. 

Models CRIOD, E, F 

The CRIOD reader is illustrated below. The other models are very similar: 
the F is smaller and slower, whereas the E is a floor model that is much 
larger and faster, and has an end-of-file button that the others lack. On all 
models the input hopper is on the right and the stacker is on the left. To 
load a deck, first fan the cards and jog them on the top of the reader. Pull 
the hopper follower back and put the deck into the hopper with the front of 
the cards toward the front of the reader and the 9 edge down so column 1 
is read first. Add more cards as desired, but only until the hopper is 
loosely filled. 

CAUTION 

Do not pack the hopper so full as to inhibit the 
riffle action. 

H2-7 

Plotter XYI OA 

Approximate hopper and 
stacker capacities are: 

CRlOD 950 
CRlOE 2200 
CRlOF 550 



H2-8 

Card Reader CRIOD 

OPERA TION OF PERIPHERAL EQUIPMENT §H2.3 

Cards can be added to the hopper 
while the reader is running provided 
the hopper is a third to a half full so 
there is enough pressure on the front 
of the deck to maintain the riffle 
action. Cards can be removed from 
the stacker at any time simply by pull­
ing the stacker barrier forward and 
lifting them out. 

The reader is operated by the row 
of illuminated buttons and indicators 
at the left front. Power is controlled 
by the switch at the left end except on 
the CRIOF, which has only an indi­
cator on the front and a power switch 
on the panel at the rear Pushing 
RESET places the reader on line so the 

program can read cards. Pushing STOP turns off the reader, taking it off line. 
The four alarm indicators in the middle of the row are as follows. 

READ CHECK 

PICK CHECK 

STACK CHECK 

Either there is a failure in the read electronics, or more 
likely, the card just read has a tom leading or trailing 
edge or has punches outside of columns 1-80. 

The reader has received a pick command but the card 
has failed to reach the read station. Inspect the cards in 
the hopper for mutilated edges, tom webs, staples or 
extreme warpage. If nothing appears wrong with the 
cards, check the picker face for buildup of ink glaze, 
and clean it with solvent if necessary [see § H7.3] . 

The last card read is not properly seated in the stacker. 
Make sure the card track is clear and check the stacker 
for a badly mutilated card. 

HOPPER CHECK The hopper is empty or the stacker is full. 

When one of these lights goes on, the RESET light goes out (the reader 
always finishes the current card before stopping). Do not attempt to reread 
a worn or damaged card that has caused a read, pick or stack failure -
duplicate if first. After the trouble has been corrected, press RESET to 
allow the program to continue reading the deck. If the trouble persists, 
enter it into the system log and notify maintenance personnel. 

At the right end of the row on the CRIOE only is an END OF FILE 
button. Pressing this button when the reader is off line, as when the hopper 
is empty, sets the End of File flag. 

On the back of the reader is a panel with a lamp test button and two 
toggle switches. For normal operation the MODE toggle is in REMOTE and 
the SHUTDOWN toggle is in AUTO. Switching MODE to LOCAL takes the 
reader off line so the operator can pick individual cards by pressing RESET. 
Switching SHUTDOWN to MANUAL keeps the riffle blower running con­
tinuously even when the hopper is empty. 



§H2.4 

Model CRlOA/B 

The CR 1 OA/B reader has a 
hopper and stacker capacity of 
1000 cards. To load a deck, 
first fan the cards and jog 
them on the reader shelf. Turn 
the deck over and put the first 
hundred cards (about an inch 
of the deck) into the hopper 
(upper right) with the 9 edge 
against the back so column 1 
is read first. Place the rest of 
the deck on top of the first 
part. Cards can be added to 
the hopper while the reader is 
running, but always stop the 
reader before removing cards 
from the stacker. 

The reader is operated 
by the buttons at the left. 
The alternate-action POWER 
switch lights green when 
power is on. Pushing START 
places the reader on line so the 

HARDCOPY EQUIPMENT 

program can read cards. Pushing STOP turns off the reader, taking it off line. 
The lights at the right indicate an empty hopper, a full stacker, a pick 

failure, a card motion error, and a photocell output that is too weak or too 
strong. When one of these lights goes on the STOP light also goes on (the 
reader always finishes the current card before stopping). Do not attempt to 
reread a worn or damaged card that has caused a pick failure or motion 
error - duplicate it first. If any trouble light remains on after the problem is 
corrected press the CLEAR button; this turns off both the lights and the 
corresponding status signals read by a CONI. Press START to allow the 
program to continue reading the deck. If the trouble persists, enter it in the 
system log and notify maintenance personnel. 

Pressing the END OF FILE button (at the right) when the reader is off 
line, as when the hopper is empty, sets the End of File flag. When the TEST 
MODE light is on, the reader processes cards off line (the test switch is 
behind the panel under the shelf). 

H2.4 CARD PUNCH CPIO 

Lights for the punch interface are in the second row from the bottom on the 
hardcopy control indicator panel [page H2-J]. The middle section of the 
row displays the contents of the card column buffer; the lights are marked 
by card row. Among the lights in the right section, PI REQ is on while an 
interrupt is being requested whatever the cause. The remaining lights display 
some of the status conditions read by a CONI. 

H2-9 

.. 

Card Reader CRIOA/B 



H2-10 

A good way to reduce card 
problems in the punch is to 
first run the blank cards 
through the reader in local. 
Then any cards that fail in 
the reader can be removed 
from the deck before it is 
loaded into the punch. 

Card Punch CP 1 0 
(without pedestal) 

OPERA nON OF PERIPHERAL EQUIPMENT §H2.4 

The CPIO card punch has a hopper and stacker capacity of 1000 cards. 
To load the hopper, first fan the cards and jog them on the punch shelf. 
Turn the deck over and put the first hundred cards (about an inch of the 
deck) into the hopper (upper right) with the 9 edge against the back so 
column I is punched first. Hold the right end higher so the leading edge 
of the bottom card rests against the picker throat, and drop the cards in 
place. Put the rest of the deck on top of the first part. Cards can be 
added to the hopper while the punch is running, but always stop the punch 
before removing cards from the stacker. To remove cards, push down the 
elevator and lift the stack out. 

The punch is operated by the buttons in the upper part of the panel at 
the right. The alternate-action POWER switch lights green when power is on. 
Pushing START places the punch on line so the program can punch cards. 

The OPERATE indicator at 
the lower right lights green 
when the punch motor is up 
to speed. Pushing STOP takes 
the reader off line but does 
not stop the motor; the motor 
is turned off only by pressing 
CLEAR. 

The lights in the bottom 
row indicate an empty hopper 
or full stacker, a full chip box, 
a pick failure, an eject failure, 
and a stack failure. When one 
of these lights other than CHIP 
BOX goes on, the STOP light 
also goes on (the punch always 
finishes the current card before 
stopping). If any trouble light 
remains on after the problem 
is corrected, press the CLEAR 
button; this turns off both the 
lights and the corresponding 

status signals read by a CONI. Pressing CLEAR also ejects a card if one is in 
the head assembly, and the button glows red when clear action is required 
(eg when a card has gotten stuck). For a pick failure, empty the hopper, 
throw out the bottom card, and reload. Press START to allow the program 
to continue punching. If the trouble persists enter it in the system log and 
notify maintenance personnel. 

A full chip box does not stop the punch, but once it has been stopped by 
some other condition (such as an empty hopper), pressing START will not 
place the unit on line until the box has been emptied. 

At the right is a light for the Card in Punch flag. The ERROR light dis­
plays the signal that sets the Error flag; it goes off when CLEAR is pressed. 
The CHECKOFF light is not used. When the TEST light is on, the device 
punches cards off line in a test pattern (the test switch is behind the panel 
under the shelf). 



DATA INTERFACES H3-1 

H3 DATA INTERFACES 

To be added - in the meantime refer to Chapter 5. 





§H4.l MAGNETIC TAPE 

84 MAGNETIC TAPE 

The maxim for tape operations is cleanliness is next to godliness. Nothing 
can ruin a tape run more easily than dust, ash or a piece of dirt. The trans­
port should be kept clean and well adjusted, and in particular the tape 
path should be cleaned frequently. Maintenance personnel are generally 
responsible for most tape servicing procedures, but often the operator should 
expect to do daily cleaning. Instructions are given in § H7 .1. 
• Never smoke in a computer room or tape storage area. Tobacco smoke 
and ash are especially damaging to magnetic tape. 
• Paper dust is very damaging to tape. Never put a tape transport near a line 
printer or other device that uses paper. Never place any notes or labels 
inside tape containers. 
• Always store tapes inside their containers in an area with temperature 
between 40 and 90°F and relative humidity between 20 and 80%. Keep 
empty containers shut so that no dust or dirt can get inside. Always hold a 
standard tape reel with the hand through the hub hole - squeezing the reel 
flanges damages the tape edges. Never touch the tape with your fingers inside 
the markers; never touch any part of the tape to clothes, or allow the end of 
the tape to drag on the floor, or get cleaning fluids or solvents on the tape. 
• Do not use cellophane mending tape. To mark reels, use only labels with 
adhesive that leaves no residue and does not shed. 
• Inspect all tapes, reels and containers frequently. Cut off the end of a 
tape that has been damaged. Replace takeup reels that are old or damaged. 
• Do not eat in a computer or tape storage area, and keep such areas clean 
at all times. 

84.1 DECTAPE TDto 

Several DECtape transports are often mounted in the same cabinet with the 
control as illustrated here. There are two transport models, but operationally 
both are essentially equivalent. The TU56 contains two drives that utilize 
solid state switching circuits; the TU55 has a single drive that utilizes relay 
switching. At the control panel of any drive, the operator selects the number 
of the drive by dialing the thumbwheel in the center of the panel; the 
selector also has an OFF LINE position in which the drive cannot be selected 
from the control. At the right end of the panel is the mode switch Gust right 
of the thumbwheel on the TU55). Turning this switch OFF idles the drive, 
turning off power to the drive motors and releasing the motor hubs and 
brakes so the operator can handle the tape reels (the switch does not turn off 
logic power in the drive; this is supplied by the control). With the mode 
switch in OFF, the drive can be selected by giving the number dialed into the 
thumbwheel, but only for purposes of checking status - the drive cannot be 
placed in operation. Turning the switch to REMOTE places the drive in the 
hands of the DECtape control; the light at the right of the switch (above on 
the TU55) goes on when the transport is selected. Turning the mode switch 
to LOCAL allows the operator to run the drive from the panel. The TU56 

H4-l 

For further information refer 
to "Cutting expenses by tak­
ing care of your tape", by 
Robert G. Devitt, Computer 
Decisions, Vol. 2 No. 10, 
October 1970, pp. 42-45. 

DEC tape System 



H4-2 

... - ". 

.' ... . 
rUS6 Control Panel 

russ Control Panel 

Never use adhesive to attach 
the tape to the reel. 

rDlO Control Panel 

OPERATION OF PERIPHERAL EQUIPMENT §H4.1 

has a single rocker switch with large arrows at top and bottom and an 
unmarked, spring-loaded center off position; pushing in the top or bottom of 
this switch causes the tape to run in the direction indicated by the arrow so 
long as the switch is held in. The TU55 has two switches under the large 
arrows at either end of the panel; pushing in the upper part of either of these 
switches causes the tape to run in the indicated direction. The WRITE 
ENABLE(D)/WRITE LOCK switch controls writing on the tape by the 
control. Pressing in the upper part of the switch lights the indicator at its 
left (above on the TU55) and allows the control to write information on the 
tape when the program gives a write function. Pushing in the lower part of 
the switch prevents writing and sets Write Lock, CONI DTS, bit 24. 

To load tape, tum the mode switch to OFF and simply press a full reel of 
tape onto the left hub and an empty reel on the right hub. Unreel about a 
foot of tape from the supply reel, place the tape over the guides and the tape 
head, and wind one or two revolutions of tape onto the takeup reel. The for­
ward direction is defined as tape motion from the left reel to the right reel. 

To rewind a tape place the transport in local and make sure the thumb­
wheel is set to a number that is not selected by the control. Then, while 
holding in the reverse switch, put the transport in remote. Release the 
reverse switch and the entire tape will rewind onto the left reel. 

The switches and indicators for the control are on a panel at the top of the 
control cabinet. The switches in the lower left are turned on by pushing 
them up. Turning on WRTM allows the program to execute a Write Mark 
Track function in which data supplied by the program is written in the mark 
track and the timing track is also recorded. Turning on MANUAL takes the 

control off line and enables the remaining two switches. MANUAL CLEAR 
duplicates the 10 reset. TAPE ROCKER simulates readin mode within the 
control but without any data connection to the processor; the control selects 
unit 8 and executes a Read Data function back and forth the entire length of 
the tape, turning it around every time the end zone is encountered. 

The RWB lights, in the upper right of the DECtape control panel, display 
the contents of the read-write buffer through which all data passes between 
control and tape. The remaining lights in the top row display the conditions 
read by a CONI DTC, except that the left three lights differ somewhat in 
meaning. The GO light indicates that the selected transport is in motion and 



§H4.2 MAGNETIC TAPE 

is thus the opposite of bit 18 of the input conditions. The on and off states 
of the second light indicate reverse and forward motion, and are thus equiv­
alent to 1 s in bits 20 and 19 respectively. Similarly the third light indicates 
whether the addressed unit is selected or not, and thus the on or off state is 
equivalent to a 1 in bit 23 or 22. The other two rows of lights are mostly for 
status conditions. The interrupt enabling lights in the second row are not 
labeled, but they correspond to the flags as labeled in the third row; UPS 1 is 
Up to Speed (CONI DTS, bit 8). At the right end of the two rows are 
several control flipflops. WREN enables writing, and it is on whenever 
Active (ACT) is set, provided there is no conflict with a switch setting in a 
write function. READ IN is on at the beginning of readin mode until the 
first data is read, but it is on throughout a tape rocker operation. DA T A 
NEED indicates that the buffer is ready to receive a word from the program 
in a write function; Data Missed sets if DATA NEED is still on when the 
control is ready to take another half word from the buffer. 

H4.2 STANDARD MAGNETIC TAPE TMIO 

In a tape system, activity by an operator is confined to the transport, but in­
formation about the internal operation of the control is displayed on a panel 
at the top of the control cabinet. The lights in the left half of the top row 
display bits 18-35 (ie the right half word) of the input conditions read by a 

CONI TMC,; the NEXT UNIT lights located at the right display bits 15-17. 
The next three lights control the synchronization of tape commands: WAIT 
is on from the time a function is given until the addressed transport is ready; 
UNIT OK is on from the time a new unit number is loaded until the control 
starts moving tape (or Job Done sets in a function that does not involve tape 
motion); CONT is on between functions when the tape remains in motion. 
The rest of the lights in the top row are for the data channel and include the 
initial control word address and Write Even Parity. The three remaining 
lights indicate the following conditions: STRT indicates the channel is 
connected to this device or any device of lower priority, ACT is on from the 
time the control needs the channel until it disconnects, and SYNC is on 

H4-3 

TM I 0 Indicator Panel 



H4-4 OPERATION OF PERIPHERAL EQUIPMENT §H4.2 

while the control is waiting to connect to the channel. 
The left half of the second row displays the status conditions read by 

CONI TMS, except that GO is the inverse of Load Next Unit, ie it is on while 
the control is moving tape. (BOT, EOF and EOT respectively are beginning 
of tape, end of file and end of tape.) The next set of lights is as follows. 

DATA SYNC 

DATA FLAG 

XFER ACT 

DATA PRES 

CM DIR 

READ IN 

LAT ERR 

Synchronizes the data 10 instructions to the TMIOA and 
the data channel to the TM I OB. 

This is an internal data request flag: it synchronizes trans­
fers to and from BR. 

Transfers and spacing occur while this light is on; it is 
turned off by a CONO TMS, I or an internal stop condition. 

The tape is within a data record. 

This light goes on when the selected tape is up to speed 
in reverse, and then stays on until a tape is up to speed 
forward or the control stops tape and executes a function 
that does not move tape. 

The control is initiating Rewind in readin mode. 

A lateral parity error has been detected. This light is not 
equivalent to Tape Parity Error, which can go on 
spuriously during a record. 

The rest of the row displays the character counter and a counter that 
controls tape motion outside of the record areas. 

The third row of lights displays BR. The fourth row displays the character 
buffers through which data is sent to and received from the transport and 
the registers in which CRC and LPCC are computed. 

Tape Transport TUIO 

The control panel is at the lower left of the transport door. At the bottom 
center of the panel is a thumbwheel switch for selecting the transport 
number. The remaining controls are all rocker switches, of which the two on 
either side of the thumbwheel have three positions and the three in the row 
above have two. The lights above the switches indicate the state of the trans­
port, whether produced by the switches or the program. 

The upper left switch controls power to the transport, whose state is indi­
cated by the PWR light at the top. When the lower left switch is in the 
unmarked center position, the vacuum motor is off and the brakes are on; 
pressing in the lower part of the switch releases the brakes, whereas pressing 
in the upper part turns on the vacuum motor to draw tape into the buffer 
columns. Pushing the upper part of the switch above the thumbwheel places 
the unit on line provided it is ready for use by the program, ie the tape is 
properly loaded, etc. Pressing the lower part takes the unit off line and 
enables the operator to control tape motion by means of the two switches at 
the right: the upper switch starts and stops the tape, which moves in the 
direction selected by the lower switch. 

Of the lights at the top, LD PT and END PT indicate tape position; FWD, 



§H4.2 MAGNETIC TAPE 

REV and REW indicate tape motion called for by the program or the 
operator. The remaining lights indicate the following. 

LOAD 

RDY 

The vacuum is on and tape is in the buffer columns. 

The transport is ready for use by the control. 

FILE PROT 

OFF LINE 

The right enable ring is absent from the supply reel. 

The transport is unavailable to the control, and the 
operator can use the switches to manipulate the tape. 

SEL The transport is currently selected by the control. 

WRT The control is now writing or erasing tape. 

To load a tape, first clean the tape path [§ H7.1], then follow this 
procedure. 

1. Place a write enable ring in the groove on the supply reel if writing is to 
be allowed; if the data on the tape must not be written over or erased, make 
sure there is no ring in the groove. 

2. With the brakes on and the vacuum motor off (the LOAD/BR REL 
switch in the unmarked center position), rotate the reel holddown knob of 
the lower hub counterclockwise as far as it will go, and place the supply 
reel over the holddown knob with the groove toward the back. Hold the 
reel firmly against the hub flange and turn the holddown knob clockwise 
until it is tight. If there is no take up reel, install one on the top hub in 
the same manner. 

3. Press BR REL and pull the tape from the supply reel. The tape should 
unwind from the left with the oxide (dull) side toward the hub. If the tape 
unwinds from the top, check that the reel is mounted with the groove 
toward the back. 

4. The large plate at the left of the reels covers the vacuum columns. At the 
upper right of the large plate is a smaller plate that covers the tape heads, 
and at the top is an even smaller one that covers the upper tape guide. The 
two small plates protrude beyond the surface of the large plate. Grasp the 
tape in both hands with the left hand at the end and the right hand back 
about a foot. Place the tape against the bottom and left side of the head 
cover over the threading slot. Pull the tape taut and slide it upwards and 
into the slot. Lead the tape around the upper right corner of the vacuum 
column cover, slide it into the slot between the cover and the upper tape 
guide, and lead it around the guide. Place the end of the tape over the top 
of the takeup reel hub, and wind about six turns of the tape clockwise 
on the reel. 

5. Press LOAD to draw tape into the vacuum columns. Select FWD and 
push START to advance the tape to loadpoint. When the loadpoint marker 
is sensed, the tape stops, the FWD light goes out, and LD PT comes on. 

NOTE 

If tape motion continues for more than ten sec­
onds, the tape must be beyond loadpoint. Press 
STOP, select REV and press START. The tape 
should move back and stop at loadpoint. 

H4-5 

TUlO Control Panel 

CAUTION 

If the reel is mounted cor­
rectly but the tape unwinds 
from the right or the shiny 
side is toward the hub, the 
tape has been wound im­
properly and cannot be used. 

-6 
<t -t-



H4-6 

CAUTION 

When hand winding tape, do 
not jerk the reel. This could 
cause irreparable damage by 
stretching or compressing the 
tape. 

TU20 Control Panel 

OPERATION OF PERIPHERAL EQUIPMENT §H4.2 

To remove a reel, first rewind to loadpoint. Press BR REL and wind the 
remaining tape onto the supply reel. Turn the holddown knob counterclock­
wise and remove the reel. 

Tape Transport TU20 

At the left on the control panel at the top of the transport is a thumbwheel 
switch for selecting the transport number. In the center of the control panel 
are the operating switches, which are turned on by pushing in the upper part. 
The lights above the switches indicate the state of the transport whether 
produced by the switches or the program. The switch at the right applies 

power to the transport. The switch at its left places the unit on line provided 
it is ready for use by the program, ie the tape is properly loaded, the door 
closed, etc. The rightmost switch in the group at the left takes the transport 
off line, enabling the remaining switches for local control. The LOAD light 
indicates the tape is in the vacuum columns; pressing the LOAD switch 
moves the tape forward to loadpoint. REWIND, REV and FWD move the 
tape in the specified manner. RESET stops the tape, but the tape also stops 
automatically if loadpoint or endpoint is encountered in forward or load­
point is encountered in rewind. Of the lights at the right, LOADPOINT and 
ENDPOINT indicate tape position and the numbered lights indicate the 
transport type (7 or 9 track). The remaining lights indicate the following. 

SELECT The transport is currently selected by the control. 

READY The transport is ready for use by the control. 

WRITE LOCK The write enable ring is absent from the supply reel. 

WRITE STATUS The control is now writing or erasing tape. 

REWIND The tape is now rewinding. 

To load a tape, first clean the tape path [§ H7.1 ], then follow this 
procedure. 

1. Place a write enable ring in the groove on the supply reel if writing is to 
be allowed; if the data on the tape must not be written over or erased, make 
sure there is no ring in the groove. 

... 
,;, 
o ... 
'" 



§H4.2 MAGNETIC TAPE 

2. Rotate the reel holddown knob of the upper reel counterclockwise as far 
as it will go, and place the supply reel over the holddown knob with the 
groove toward the back. Hold the reel firmly against the turntable and turn 
the holddown knob clockwise until it is tight. 

3. The section at the left between the two reels is the head cover; just at the 
right of it is the threading slot, and still further right is the transport switch. 
Hold the switch in the BRAKES position while pulling about three feet of 
tape from the supply reel. The tape should unwind from the bottom of the 
reel with the oxide (dull) side toward the hub. If the tape unwinds from the 
top, check that the reel is mounted with the groove toward the back. 

4. Grasp the tape in both hands with the right hand at the end and the left 
hand back about fifteen inches. Place the tape against the right side of the 
raised portion of the head cover over the threading slot. Pull the tape taut 
and move it downward and into the threading slot. Pull the remaining slack 
tape through the slot, wrapping it around the vacuum chamber guides. 

5. Place the end of the tape over the top of the takeup reel hub. Push the 
transport switch to BRAKES and wind about six turns of tape clockwise on 
the reel. Make sure there is no slack between the two reels and release the 
transport switch. 

6. Make sure the tape is properly lined up with the openings of the vacuum 
chambers. Push the transport switch to START; this causes the reel motors 
to pull the tape into the vacuum chambers. When the motors have stopped, 
release the switch. 

7. Close the door, press LOAD to position the tape at loadpoint, and when 
the tape stops, place the unit on line. 

To remove a reel, first rewind the tape to loadpoint. Open the door, push 
the transport switch to BRAKES and wind the remaining tape onto the 
supply reel. Turn the holddown knob counterclockwise and remove the reel. 

Tape Transport TU30 

At the right of center on the control panel at the top of the transport is a 
thumbwheel switch for selecting the transport number (positions 8 and 9 
are not used). The round lights at the left of the thumbwheel indicate the 
density when the unit is selected by the control. The square lights at the 
right indicate when a write enable ring is in the supply reel and when the 
tape is beyond the endpoint. 

At the left are six illuminated pushbuttons, five of which light when on. 

mDmDoma T U 30 

H4-7 

CAUTION 

If the reel is mounted cor­
rectly but the tape unwinds 
from the top or the shiny side 
is toward the hub, the tape 
has been wound improperly 
and cannot be used. 

TU30 Control Panel 



H4-8 

CAUTION 

If the reel is mounted cor­
rectly but the tape unwinds 
from the left or the shiny side 
is toward the hub, the tape 
has been wound improperly 
and cannot be used. 

OPERA TlON OF PERIPHERAL EQUIPMENT §H4.2 

AUTO places the unit on line provided it is ready for use by the program, 
ie the tape is properly loaded, the door closed, etc. LOCAL-RESET takes 
the unit off line, enabling the remaining switches for local control. LOAD­
POINT initiates a search that positions the tape at loadpoint: the tape first 
moves forward, and if it does not reach the loadpoint within twenty-five feet, 
the tape then goes in reverse until it does (the light is on only when the tape 
is so positioned). FORWARD and REVERSE move tape in the direction 
indicated; pressing LOCAL-RESET or AUTO stops the tape, but the tape 
also stops automatically if it reaches endpoint going forward or loadpoint 
going reverse. The last button rewinds the tape to loadpoint. 

To load a tape, first clean the tape path [§ H7.1 ], then follow this 
procedure. 

1. Place a write enable ring in the groove on the supply reel if writing is to 
be allowed; if the data on the tape must not be written over or erased, make 
sure there is no ring in the groove. 

2. Rotate the reel holddown knob of the right reel counterclockwise as far 
as it will go, and place the supply reel over the holddown knob with the 
groove toward the back. Hold the reel firmly against the turntable and turn 
the holddown knob clockwise until it is tight. 

3. Located just below and between the two reels is the head cover; just 
below it is the threading slot, and still further below is the transport switch. 
Hold the switch in the BRAKES position while pulling about three feet of 
tape from the supply reel. The tape should unwind from the right side of 
the reel with the oxide (dull) side toward the hub. If the tape unwinds from 
the left, check that the reel is mounted with the groove toward the back. 

4. Grasp the tape in both hands with the left hand at the end and the right 
hand back about fifteen inches. Bring the tape up against the protruding lip 
at the bottom of the head cover over the threading slot. Pull the tape taut 
and move it left and into the threading slot. Pull the remaining slack tape 
through the slot, with it running outside the supply reel guide. 

5. Run the tape outside the take up guide and over the top of the takeup reel 
hub. Push the transport switch to BRAKES and wind about six turns of 
tape clockwise on the reel. Make sure there is no slack between the two reels 
and release the transport switch. 

6. Make sure the tape is properly lined up with the openings of the vacuum 
chambers. Push the transport switch to START; this causes the reel motors 
to pull the tape into the vacuum chambers. When the motors have stopped, 
release the switch. 

7. Close the door, press LOADPOINT to position the tape, and when the 
tape stops, place the unit on line. 

To remove a reel first rewind the tape to loadpoint. Open the door, push 
the transport switch to BRAKES and wind the remaining tape onto the 
supply reel. Turn the holddown knob counterclockwise and remove the reel. 

Tape Transport TU40 

At the left on the control panel at the top of the transport is a rotary switch 
for selecting the transport number; the selected number appears in the 



§H4.2 MAGNETIC TAPE 

window above the switch. The lower part of the panel contains a row of 
pushbuttons, all of which are momentary-contact except the one at the right 
end, which controls power to the transport. The lights above the switches 
indicate the state of the transport, whether produced by the switches or the 
program. Pressing START places the unit on line provided it is ready for 
use by the program, ie the tape is properly loaded, the window closed, etc. 
The transport being on line is indicated by the READY light, and SELECT 
goes on whenever the transport is selected by the control. FILE PROTECT 
means the write enable ring is absent from the supply reel. 

Pressing RESET stops the tape and takes the unit off line, enabling the 
remaining switches for local control. Note however that if the transport is 
rewinding, pressing RESET once switches the unit from rewind to normal 
reverse speed, and the switch must be pressed again to stop tape. LOAD 
REWIND raises the transport window and loads tape from supply reel to 
takeup reel, unless the tape is already loaded, in which case it rewinds the 
tape to loadpoint. Detection of a failure of any sort during loading opera­
tions lights LOAD CHECK and the unit shuts down. Pressing UNLOAD 
REWIND rewinds the tape to loadpoint, and then unloads it entirely onto 
the supply reel and lowers the transport window. A tape positioned at load­
point or endpoint is indicated by the BOT and EOT lights (beginning of tape, 
end of tape). 

To load a tape, first clean the tape path [§ H7.l), then follow this 
procedure. 

1. Place a write enable ring in the groove on the supply reel if writing is to 
be allowed; if the data on the tape must not be written over or erased, make 
sure there is no ring in the groove. 

2. If the transport is closed, press UNLOAD REWIND to lower the window. 
Pull one end of the reel lock release on the right hub and place the supply 
reel over the hub. If the reel does not have a cartridge, slip the end of the 
tape into the shoe at the lower right of the reel. If the reel has a cartridge, 
place it on the hub so that the projections from the cartridge fit into the two 
reel positioning guides. The pin on the motor face plate should go into the 
opening on the tape cartridge. 

3. Press LOAD REWIND to load the tape automatically. After the window 
rises (in about seven seconds), press START to place the unit on line. 

H4-9 

TU40 Control Panel 

The tape should unwind from 
the right with the oxide (dull) 
side toward the hub. If the 
tape unwinds from the left, 
check that the reel is mounted 
with the groove toward the 
back. 



H4-10 

Tape Marker and 
Write Enable Ring 

OPERATION OF PERIPHERAL EQUIPMENT §H4.2 

'" o 
'" <:t 

To remove a reel, press RESET and then 
UNLOAD REWIND. Once the window has opened, 
remove the tape by opening the reel lock release 
and pulling the reel from the hub. 

.., 



DISKS AND DRUMS HS-I 

HS DISKS AND DRUMS 

To be added - in the meantime refer to Chapter 7. 





DATA COMMUNICA nONS 

H6 DAT A COMMUNICA nONS 

Some data communication systems actually include small computers, and for 
information about such computers the operator must refer to the appropriate 
computer handbook. In particular the DC68A is based on a PDP-8/I com­
puter and has no controls or indicators of any kind except those on the 
minicomputer and on the DAlO interface [Appendix H3] through which it 
is connected to the PDP-l O. 

Data Line Scanner DCto 

The lights and switches on the DClO indicator panel are primarily for main­
tenance, although the programmer should keep Ready Hold on continuously 
by pushing up the DTR DIS toggle switch; the state of the signal is indicated 
by the DTR OS light (the program triggers a one-shot to hold it on). 

The scanner actually checks groups of eight lines, and only on encounter­
ing a group with some flag on (indicated by the SCAN light) does it then scan 
through the individual lines in the group. It stops when it finds an individual 
flag on, and either TRAN FGST or RCVR FGST goes on depending on 
whether a transmitter or receiver flag is strobed (both lights may go on at 
once). PI REQ goes on indicating the scanner is requesting an interrupt on 
the channel indicated by the lights in the center of the top row, for the line 
whose number is displayed by the lights in the left half of the bottom row. 
Then CNT RSTR and CNT HOLD go on, the latter stopping the count clock. 
If RCVR FGST is on, RCVR FLAG also goes on; it is this flipflop in the 
scanner logic that actually controls the direction of transfer and the restarting 
conditions. When the program responds, RCVR FLAG being on causes the 
DATAl to read data and turn off CNT RSTR; otherwise, the program must 
give a DATAO (indicated by the light so labeled), which loads the transmitter 
and turns off CNT RSTR. This last flipflop synchronizes the restarting of 
the scanner: when it goes off, the next pulse from the clock source turns off 
CNT HOLD so that subsequent pulses advance the scan counter. 

Setting the MAINT switch up completely divorces the scanner from the 10 
bus (except for the 10 reset) and disables Ready Hold, allowing the operator 
to check the scanner and terminal circuits without a program and without 

H6-1 

OCtO Control Panel 

TRANS FGST and RCVR 
FGST are input condition bits 
31 and 32; RCVR FLAG is 
DATAl bit 27. 



H6-2 

DSIO Indicator Panel 

OPERATION OF PERIPHERAL EQUIPMENT 

interference from remote stations through the data sets. With the switch on, 
any character typed in from a terminal is transmitted back over the same line. 
The transmitter and receiver flags strobed by the scanner for the line selected 
by the group and unit rotary switches are indicated by LINE TRAN and 
LINE RCVR, which stay on for about a tenth of a second. In response 
to a receiver flag, the maintenance logic loads and enables the transmitter; 
in response to a transmitter flag, the maintenance logic simply turns off 
the transmitter. 

Single Synchronous Line Unit DS 1 0 

The indicator panel contains two identical sets of lights for two DS I Os 
mounted in the same cabinet. The high- and low-priority lights at the right 
end in each set indicate respectively the PI channel assignments for data and 
flags; the INTER lights indicate when an interrupt is being requested on the 
corresponding channel. The line status lights in the second row display the 
actual modem control signals, several of which are available to the program 
as status. The clock lights are the receiver and transmitter clocks from the 
data set. 

Although some lights represent flags that may remain on for a significant 
interval, most are relatively meaningless while the unit is running unless they 
represent repetitive functions, wherein a soft glow indicates that the function 
is operative (as with the clock lights). The remaining lights are as follows. 

XMIT 

ACTIVE 

INC CNT 

IDLE 

SYNC CHAR 

LAST BIT 

RECEIVE 

ACTIVE 

Transmitter Active. 

The counter that controls character transmission is 
now being incremented. 

Idle. 

The first character in the transmitter word buffer is 
the sync character. 

The last bit of a character is now being transmitted. 

Receiver Active. 



INC CNT 

SYNC CHAR 

EaT CHAR 

CONTROL 

UNIT SELECT 

XMIT FLAG 

REC FLAG 

6-BIT MODE 

END FLAG 

ERROR FLAG 

EaT FLAG 

DATA COMMUNICATIONS 

The counter that controls the assembly of a character 
is now being incremented. 

The character just received is a sync character. 

The character just received is an EaT character. 

This DSIO is now being selected by an 10 instruction 
(with either device code). 

Transmitter Done. 

Receiver Done. 

Inverse of the 8-bit Length flag. 

End error. 

Data Error. 

EaT Received. 

H6-3 





§H7.1 CLEANING PROCEDURES 

H7 CLEANING PROCEDURES 

As indicated at the beginning of Appendix F, the exterior of all equipment 
should be vacuumed at least weekly. Here we are concerned with special 
procedures for cleaning the interiors of specific peripherals. Every installa­
tion should have the following equipment and materials for cleaning. 

A vacuum cleaner with rubber or plastic attachments and an air blower 
outlet. 

Ordinary commercial cleaners and solvents for use on sheet metal and 
glass panels. 

Unt free wipers (cloth or paper), such as Kimwipes type 900-S, stock 
no. 3415 (about 8" X 5"). 

Isopropyl alcohol, at least 90%, such as Merck or NF (99% by weight) or 
Lilly (91 % by volume). 

Various size swabs (cotton-tipped sticks), such as Q-tips. 

A small stiff brush. 

Cleaning procedures are most critical for tapes and disk packs, but other 
equipment must receive regular attention as well. It is especially important 
to clean air intake filters on all equipment regularly. 

H7.1 TAPE EQUIPMENT 

It is imperative that the tape path be kept clean. Allowing the oxide that 
wears off the tape to build up in the path can cause data errors and even 
tape damage. 

DEC tape 

DECtape is somewhat less sensitive to dirt than standard magnetic tape, 
but should still be cleaned at least weekly, and much more frequently 
with heavy usage or in an excessively dirty environment. Use only the 
head cleaning solvent supplied in the DEC head cleaning kit (Potter Cleaning 
Kit A425484B). 

Unload all tapes, and with a wiper remove all lint, dust and loose oxide 
from the front mounting panel. With a swab moistened in solvent clean the 
oxide from the edges of the tape guides and abutting surfaces. If very old, 
hard oxide deposits have formed on the edges of the tape guides, remove 
them with a pointed wooden dowel that has been soaked in solvent. Clean 
the tape guide path and the top of the read/write head with a wiper 
moistened in solvent, and then remove excess solvent with a dry wiper. Wait 
at least a minute for any remaining solvent to evaporate before reloading 
the tapes. 

At least monthly clean the exterior and the interior of the cabinet with a 
vacuum cleaner and other ordinary cleaning materials. Clean the most fre­
quently used tapes by placing a clean, dry wiper over the read/write head 

H7-1 

Store alcohol in its original 
container or in glass. 

CAUTION 

Do not allow the solvent to 
come in contact with the tape 
or any painted surface, and 
make sure that all cleaned 
surfaces are completely dry 
before loading tape. 

Be careful not to contaminate 
the solvent in the container 
with dirt from a used swab 
or wiper. 



H7-2 

The slide panel in the trans­
port door is made of plexi­
glass, so clean it only with 
soap and water or some com­
mercial cleaner. Do not wipe 
it with a dry cloth as this will 
create a static charge that 
attracts dust. 

OPERATION OF PERIPHERAL EQUIPMENT §H7.1 

and manually running the tape over the cloth. Periodically clean all tapes in 
this manner. Clean any takeup reel on which oxide appears around the hub. 

Standard Magnetic Tape 

Always unload the tape before cleaning any part of a transport. Every week 
vacuum the interior surfaces of the transport using a brush attachment, dust 
and clean the transport door, and clean the reel hubs with a wiper moistened 
in alcohol. The tape path should be cleaned at least once every shift using 
the following procedures. 

TU 10. Open the door over the tape buffer columns (the door is held by 
the two chrome screws on the front). With a swab moistened in alcohol, 
clean the tape-bearing surfaces of the head, head guides, and the upper and 
lower guides. Gently clean the capstan and the buffer columns with a wiper 
moistened in alcohol. Do not scrub the capstan and do not touch it with 
your hands. Wipe the inside glass surface of the door and replace it. 

TU20. Carefully remove the two glass buffer covers and the path cover. 
Move the shield away from the head by setting the transport switch to the 
BRAKES position. With a swab moistened in alcohol, clean the surfaces of 
the head and shield that normally make contact with the tape and clean the 
rubber pinchrollers. Gently clean the buffers and the glass buffer covers 
with a wiper moistened in alcohol. Replace the buffer covers and the 
tape path cover. 

TU30. Remove the head cover and lower the capstan cover. With a wiper 
moistened sparingly in alcohol, scrub the interior metal surfaces and glass 
cover of one vacuum chamber and its fixed and rotary guides. Clean the 
other chamber and guides with a fresh wiper. Moisten another wiper and 
clean the surface of the head and the guides adjacent to the head. Hold the 
cleaning switch up and with another moistened wiper or swab, clean the 
forward (left) capstan and pinchroller, gently scrubbing across their surfaces 
from the left. Hold the cleaning switch down and with a fresh wiper or swab, 
clean the reverse (right) capstan and pinchroller, scrubbing gently from the 
right. Clean the vacuum chamber covers using a wiper moistened with a 
commercial glass cleaner. Raise the capstan cover and replace the head cover. 

Every forty hours clean the tape cleaners. Remove the head cover and 
lower the capstan cover. Carefully remove the caps and ceramic washers of 
the two tape cleaners. With a swab moistened in alcohol, clean the interiors 
of the tape cleaners, the cleaning slots, and the ceramic washers. Reassemble 
the tape cleaners, making sure the round-edged sides of the ceramic washers 
face the transport. If the washers are installed incorrectly, tape will guide 
against their sharp edges, dropping mylar and oxide particles in the head area. 

TU40. Open the tape path cover and lower the ferrite head shield by 
pressing the black release button at the left. With a swab moistened in 
alcohol, clean the surfaces of the head and shield that make contact with the 
tape, the tape cleaner blade, the tape guides, and threading channels .. With a 
moistened wiper clean the air bearings, the vacuum columns and the glass 
vacuum column surfaces. Oxide deposits may be removed with a small 
brush. Cover your finger with a wiper and rotate the capstan while lightly 
wiping the rubber surface with another wiper moistened in alcohol. Wipe 



§H7.2 CLEANING PROCEDURES 

the capstan surface dry, raise the ferrite shield and close the tape path cover. 
Tapes. The tapes themselves should also be cleaned occasionally. The best 

way to do this is by using a commercial tape-cleaning machine or service. If 
a tape contains wanted data, make sure it is only cleaned and not error 
checked or certified, which involves erasing and rerecording. Even tapes that 
are not used (archival tapes) should be rewound about once a year to 
redistribute stresses and minimize print-through noise. 

H7.2 DISK PACKS 

Fixed-head disks and drums are sealed units requiring no interior cleaning. 
Since disk packs are removable, the heads and the packs themselves must be 
kept clean. Cleaning should be done by competent maintenance personnel 
using the following equipment in addition to the standard materials listed at 
the beginning of this appendix. 

Pipe cleaners. 

Wooden tongue depressors, 6" X %". 

A high intensity light or other strong light source. 

A piece of white cardboard or stiff paper (8Yz" X II"). 

Inspect the heads for dirt accumulation at least twice monthly (weekly for 
around-the-clock operation). When necessary, clean them carefully with a 
swab soaked in alcohol, and clean out the two holes in each head with a pipe 
cleaner, also soaked in alcohol. Keep all cabinet and pack filters clean and 
fresh, as dirty heads can be caused by poor head flight due to poor air flow 
through the pack or cabinet. Always replace a single head that collects dirt 
while others in the same drive remain clean. 

Do not clean all of the packs at an installation frequently just for the sake 
of cleaning them. If a pack is subject to random errors, or vital information 
that is not duplicated elsewhere cannot be retrieved, and the problem is not 
alleviated by cleaning the heads, then clean the pack. In any event, depend­
ing upon environmental conditions, test all packs every few months by clean­
ing a couple of surfaces at random in each; clean all surfaces in any pack in 
which dirt is discovered. 

To clean a pack, mount it on a drive from which the upper case panels 
have been removed or on a free-standing spindle mechanism that allows the 
pack to be turned by hand with the cover removed. Place the light with the 
white cardboard as a background so that plenty of light shines into the pack. 
Follow this procedure for cleaning each surface. 

1. Position the light so the surface is clearly visible. 

2. Wrap a fresh wiper around a depressor with the wiper extending % inch 
beyond the wood at one end. 

3. Soak one side of the wrapped depressor with the alcohol (be sure to wet 
the full width of the depressor). 

4. Spin the pack by hand at 40-60 rpm (use the flat top surface of the 
plastic bezel on the top of the pack). 

H7-3 



H7-4 OPERATION OF PERIPHERAL EQUIPMENT §H7.3 

5. With the pack spinning, insert the prepared depressor with the protected 
end toward the center, and press the wet side against the surface. Maintain 
the pack spin while applying about 5 -1 0 pounds pressure against the surface, 
making sure to wet the surface across the full width of the tracks. The pres­
sure may be lightened as the surface dries, but be sure to keep the wiper on 
the surface with the pack spinning until the surface is completely dry and 
has a high gloss. Keep the pack spinning while removing the depressor, and 
check the wiper for dirt. 

6. Inspect the surface carefully for scratches. If a scratch corresponds in 
position to a bad sector as determined by the program, then further cleaning 
is unlikely to make the sector usable. 

WARNING 

Do not attempt to use the drive motor when 
cleaning a pack. Always tum drive power off and 
spin the pack manually. 

Do not clean a pack if either the pack or the 
alcohol is below 40°F (otherwise water vapor 
might condense on the surface). 

H7.3 OTHER EQUIPMENT 

Paper Tape Reader and Punch 

Simply wipe the reader clean, being especially careful around the light bulb 
and the area under it. The punch should be cleaned at least every shift, or 
better yet every time a new box of tape is loaded. Empty the chad box and 
then blowout and vacuum the entire unit. 

Line Printer 

Check the line printer every time paper is loaded, and clean it at least daily. 
With the power off, blowout the paper path through the printer and vacuum 
the entire unit. Inspect the drum for excessive ink or paper residue. 
Generally Field Service will clean the drum and ribbon areas, but the 
operator may clean the drum by wiping it with alcohol and vacuuming the 
drum housing. If the printer has a changeable drum, remove it for cleaning. 

Card Reader and Punch 

In this equipment, the critical area is the card track, where the accumulation 
of card dust and chad may cause data errors or even a card jam. The reader 
track should be cleaned at least weekly, more often if the equipment is 
used heavily. The punch track should be cleaned every 2000 cards but 
at least daily. 

CRIOD, E, F. With a swab moistened in alcohol clean the Neoprene sur­
face of the picker sector. If any of the vacuum holes are plugged with card 



§H7.3 CLEANING PROCEDURES 

debris, gently push it through the holes with a paper clip (the vacuum system 
will remove it). Using a %4 allen wrench, remove the four button-head 
screws holding the top track cover. Remove the cover and vacuum the card 
track, particularly around the picker and stacker castings. Use a small brush 
to clean around the picker and stacker rollers and the picker sector. 

CRIOA/B and CPIO. To expose the card track, press the two black release 
buttons on the top of the front cover, tilt the cover away and lift it off. 
With the power off, use the vacuum cleaner to first blowout and then 
vacuum the track from the hopper to the stacker. 

H7-5 





Index 

A 2-1 
A+l 2-1 
AC 2-1 
access time 1-13 
accumulators 1-4 
ADD 2-27 
Address Break 2-102 
address failure 2-109 
Address Failure Inhibit 2-60, 2-110 
addressing 1-4, 1-13 
address space 1-7, 2-105 
address structure G-3 
AND 2-20 
ANDCA 2-20 
ANDCB 2-21 
ANDCM 2-20 
AOBJN 2-45 
AOBJP 2-45 
AOJ 2-48 
AOS 2-49, 
APR 2-86,2-98,2-101,2-119 
AR 1-3 
arithmetic shifting 2-30, A-19 
arithmetic testing 2-45, A-20 
AS 1-2 
ASCII code B-2 
ASH 2-31 
ASHC 2-31 
associative memory 2-108 
automatic calling 8-4 
auto restart 2-98 

BAlO H2-1 
base address 2-112 
base page number 2-105 
base register 2-105 
bit assignments, in-out C-l 
BLIST 2-14 
BLKI 2-83 
BLKO 2-83 
block 10 2-83 
block transfer 2-10 
BLT 2-10 
Boolean functions 2-17, A-IS 

BR 1-3 
Busy 2-84 
byte manipulation 2-15, A-16 
byte pointer 2-15 

CAl 2-47 
CAM 2-47 
card codes B-8 
card punch CPlO 4-15 

cleaning H7-3 
operation H2-9 
timing 4-18 

card reader CRlO 4-11 
cleaning H7-3 
operation H2-7 

CRlOA/B H2-9 
CRI0D, E, F H2-7 

timing 4-15 
carries 2-26 
Carry 0, Carry 1 2-59 
CCI 5-7 
CDP 4-16 
central processor 1-1 
cleaning F-l, H7-1 
CLEAR 2-18 
CLK 2-121 
clock 

line frequency 2-99, 2-102 
real time DKI0 1-120 

operation FI-13, F2-9 
Clock flag 2-99,2-102 
communication signals 8-3 
compatibility E-l 
complement 1-7 
computer-computer interface 5-7 

see DAlO 
concealed mode 1-5, 2-64 
concealed page 2-101 
conditions in 2-84 

see status 
conditions out 2-83 

card punch 4-16 
card reader 4-11 
clock 2-121 
console 2-87, C-2 
console terminal 3-7, C-9 
DAIO 5-7 
data channel DF I 0 5-4 
DClO 8-29 
DEC tape 6-5, 6-7 
disk/drum RCI0 7-5 
disk pack RPlO 7-20, 7-21 
DSlO 8-37 
interrupt 

KAlO 2-96, C-7 
KIlO 2-91, C-2 

line printer 4-4 
magnetic tape TMIO 6-20,6-22 

I -I 

paging 2-112 
plotter 4-9 
processor 

KAIO 2-101, C-6 
KIlO 2-98, C-3 

punch 3-5, C-8 
reader 3-1, C-8 

CONI 2-81 
CONO 2-81 
CONSO 2-82 
console 2-86 
console in-out 3-1, C-8, HI-I 
console operator panel 

KAlO F2-1 
KIlO FI-2 

console terminal 3-6 
operation HI-2 

CONSZ 2-82 
counting ones 2-75 
CR 4-11 

DAlO 5-7 
instructions 5-7 
programming 5-11 
status 5-8 
timing 5-12 

data channel 5-1 
see DFlO 

data communication 8-1 
signals and procedures 8-3 

data communication system 
DC68A 8-7 

call control 
DC08H 8-19 
689AG 8-24 

data multiplexing 8-11 
modem control 

DC08F 8-17 
689AG 8-21 

DATAl 2-82 
data line scanner DC 10 8-26 

data line programming 8-33 
instructions 8-33 
modem control 8-35 
operation H6-1 
status 8-30 
timing 8-34 

DATAO 2-82 
data set 8-2,8-6 
decimal print routine 2-77 
DECtape TDlO 6-1, H4-1 

compatibility 6-4 
format 6-2 
formatting 6-14 
handling 6-4 
instructions 6-5 
operation H4-1 
readin mode 6-14 



1-2 

programming 6-11 
status 6-7,6-8 
timing 6-12 

DFlO 5-1 
conditions 5-4 
operation 5-5 

DFAD 2-42 
DFDV 2-43 
DFMP 2-43 
DFN 2-38 
DFSB 2-43 
direct-access processor 1-1 
direct addressing 1-11 
Disable Bypass 2-59, 2-115 
disk 7-1 

see disk/drum RC 10 
disk pack RP 1 0 

disk/drum RCI0 7-2 
format 7-3 
instructions 7-4 
operation 7-14 

control 7-15 
disk 7-14 
drum 7-14 

programming 7-9 
status 7-7,7-9 
timing 7-11 

disk pack RPlO 7-18 
cleaning H7-3 
format 7-18 
functions 7-27 
instructions 7-20 
operation 7-30 
programming 7-28 
status 7-23, 7-24 
timing 7-29 

dismissing an interrupt 
KAlO 2-95 
KIlO 2-90 

dispatch interrupt 2-89 
DIV 2-28 
DKlO FI-13, F2-9 
DLS 8-29 
DMOVE 2-44 
DMOVEM 2-44 
DMOVN 2-44 
DMOVNM 2-44 
Done 2-84 
double precision floating 

point 1-10,2-42,2-79 
DPB 2-16 
DPC 7-20 
drum 7-1 

see disk/ drum RC 1 0 
DS 1-2 
DSI 8-37 
DSK 7-5 
DSS 8-37 

DTC 6-5 
DTS 6-5 

E 1-11,2-1 
E+l 2-42 

INDEX 

effective address calculation 1-11 
18-bit computer interface DAlO 5-7 

see DAlO 
entry point 1-5,2-64,2-104 
EQV 2-23 
excess 128 code 1-8 
EXCH 2-9 
execute 2-2 
executive mode 1-5,2-104,2-117 
execu tive process table 2-107 
executive stack pointer 2-113,2-116 
executive XCT 2-114 

FAD 2-39 
FA DR 2-36 
fast memory 1-4 
FDV 2-41 
FDVR 2-37 
50 Hertz 2-99 
First Part Done 2-60 
FIX 2-34 
fixed point arithmetic 2-26, A-16 
fixed point numbers 1-7 

double length 1-8 
FIXR 2-35 
flags 2-58 
flag restoration 2-63 
Floating Overflow 2-60,2-102 
floating point arithmetic 2-31, A-16 
floating point numbers 1-8 

double precision 1-9, 2-79 
Floating Underflow 2-61 
FLTR 2-35 
FMP 2-40 
FMPR 2-37 
formats A-2 
FSB 2-40 
FSBR 2-37 
FSC 2-34 
full word data transmission 2-9, A-17 

half word data transmission 2-2, A-18 
HALT 2-64 
hardcopy control H2-1 
hardcopy equipment 4-1, H2-1 
hardware addressing 1-13 
hardware read in = read in 
HLL 2-3 
HLLE 2-4 
HLLO 2-4 
HLLZ 2-4 
HLR 2-7 
HLRE 2-8 

HLRO 2-8 
HLRZ 2-8 
HRL 2-5 
HRLE 2-6 
HRLO 2-5 
HRLZ 2-5 
HRR 2-6 
HRRE 2-7 
HRRO 2-7 
HRRZ 2-6 

I 1-11 
IBP 2-16 
IDIV 2-29 
IDPB 2-17 
ILDB 2-16 
IMUL 2-28 
indicator panels FI-5, F2-4 
indicators 

KAlO F2-1 
KIlO FI-2 

index registers 1-4 
indirect addressing 1-11 
initial conditions 2-83 
in-out 2-80, A-19 
in-out bit assignments C-l 
in-out devices A-l2, App. C 
In-out Page Failure 2-99,2-109 
input-output 2-80, A-19 
input-output codes B-1 
instruction format 1-10 
instruction modes 2-1 
instructions A-13 

arithmetic testing 2-45, A-20 
Boolean functions 2-18, A-IS 
byte 2-16, A-16 
double moves 2-44, A-17 
fixed point 2-27, A-16 
floating point 2-34, A-16 

double precision 2-42 
single precision 2-36 

without rounding 2-38 
with rounding 2-36 

full word 2-9, A-I 7 
half word 2-3, A-17 
in-out 2-80, A-19 
jump 2-61, A-19 
logic 2-18, A-IS 
logical testing 2-52, A-21 
move 2-11, A-17 
number conversion 2-34, A-17 
pushdown 2-13,2-67, A-19 
scaling 2-34 
shift 2-25,2-31, A-19 
rotate 2-25, A-19 

instruction times 2-2, D-l 
KAlO D-9 
KIlO D-3 



interleaving 1-13, G-l 
interrupt 2-87 
interrupt conditions 

KAlO 2-96, C-7 
KilO 2-91, C-2 

interrupt functions 2-88 
interrupt instructions 

KAlO 2-94 
KIlO 2-89 

interrupt request 2-87 
10 2-80 
10 bit assignments C-l 
lOR 2-21 
IR 1-3 

JCRY 2-62 
JCRYO 2-62 
JCRYI 2-62 
JEN 2-64 
JFCL 2-61 
JFFO 2-61 

. JFOV 2-62 
JOV 2-62 
JRA 2-66 
JRST 2-63 
JRSTF 2-64 
JSA 2-66 
JSP 2-62 
JSR 2-62 
JUMP 2-47 

kernel mode 1-5 
KEY RDI = read in 

KAlO F2-3 
KilO FI-6 

LDB 2-16 
line printer LP 10 4-1, 4-8 

cleaning H7-3 
codes B-4 
instructions 4-3 
operation 

LPlOA H2-6 
LPlOB, C, D, E H2-4 
LPI0F, H H2-1 

output format 4-2 
speed 4-3 
timing 4-6 

logic 2-17, A-15 
logical shifting 2-24, A-19 
logical testing and 

modification 2-51, A-21 
LPT 4-4 
LSH 2-25 
LSHC 2-25 
LUUO 2-70 

MA 1-2 

INDEX 

machine modes 1-4 
magnetic tape 6-1 

care for H4-1 
cleaning H7-1, H7-3 
see DEC tape 

standard magnetic tape 
maintenance panel FI-2, F2-2 
MAP 2-113 
margin check panel FI-2, F2-2 
margins 2-1OJ 
memories G-l 

MAIO G-4 
MBI0 G-5 
MDlO G-6 
MElO G-8 
MFlO G-9 

memory 1-12 
memory access time 1-13 
memory allocation 1-14 
memory management 

KAlO 2-117, C-7 
KilO 2-104, C-4 

memory protection 2-117 
Memory Protection 2-102 
memory stop FI-4, F2-3 
MI 1-2 
mnemonics 1-15, A-I 

alphabetic A-8 
derivation A-4 
device A-12 
numeric A-5 

modem 8-2 
modes, instruction 2-1 

arithmetic testing 2-46 
fixed point 2-27 
floating point 2-36, 2-39 
halfword 2-3 
logic 2-17 
logical testing 2-52 
move 2-11 

modes, machine 1-4 
Monitor programming 

KAlO 2-119 
KilO 2-111 

MOVE 2-11 
MOVM 2-12 
MOVN 2-11 
MOVS 2-11 
MQ 1-2 
MUL 2-28 
MUUO 2-71 

nested subroutines 2-67 
No Divide 2-61 
Nonexistent Memory 2-99,2-102 
no-ops 2-58 
normalization 2-33 
normalized operands 1-9 

number conversion 2-34,2-77 
number formats 1-10, A-3 
number system 1-7 

fixed point 1-7 
floating point 1-8 

octal-to-decimal conversion 2-77 
ones complement 1-7 
operating keys 

KAlO F2-3 
KIlO FI-6 

operating switches 
KAlO F2-7 
KIlO 2-99, FI-8 

operation App. F, G, H 
BAlO H2-1 
card punch H2-9 
card reader H2-7 
clock DKlO FI-13, F2-9 
console terminal HI-2 
DAI0 5-12 
data channel 5-5 
DClO H6-1 
DECtape H4-1 
disk/drum RCI0 7-14 
disk pack RPI0 7-30 
DSlO H6-2 
line printer H2-1 
magnetic tape TM 1 0 H4-3 
memories App. G 
processor F-l 

KAI0 F2-1 
KilO Fl-l 

plotter H2-6 
punch Hl-l 
reader Hl-l 
tape transport TUlO H4-4 
tape transport TU20 H4-6 
tape transport TU30 H4-7 
tape transport TU40 H4-8 

OR 2-21 
ORCA 2-21 
ORCB 2-22 
ORCM 2-22 
overflow 2-26, 2-33 
Overflow 2-59, 2-102 
overflow trapping 2-69 

PAG 2-112 
page 2-105 
Page Enable 2-112 
page failure 2-109 
page fail word 2-109 
page map 1-5,2-105 
page number 2-105 
page refill 2-109 
page refill failure 2-110 
page table 2-108 

1-3 



1-4 

paging 1-5,2-105 
paper tape punch 3-4 

cleaning H7-4 
operation Hl-l 

paper tape reader 3-1 
cleaning H7-4 
operation Hl-l 

parity 2-72 
Parity Error 

KAI0 2-97 
KIlO 2-99 

PC 1-2 
PC word 2-58 
PDP-I0 1-1 
peripheral equipment App. H 
per process area 2-105 
PI 2-86, 2-96 
plotter XYI0 4-8 

operation H2-6 
timing 4-10 

PLT 4-9 
pointer 

byte 2-15 
10 block 2-83 

POP 2-13 
POP] 2-68 
PORTAL 2-64 
Power Failure 

KAlO 2-97 
KIlO 2-99 

powers of two A-23 
printer 4-1 see line printer 
priority interrupt 2-87 

KAI0 2-94 
KIlO 2-88 

processor compatibility E-l 
processor conditions 2-98 

KAlO 2-101 
KIlO 2-98 

processor identification 2-72 
processor serial number 2-113 
process table 2-105, 2-107 
program control 2-58, A-19 
program management 

KAlO 2-119 
KIlO 2-104 

programming conventions 1-15 
programming examples 2-72 
program stop Fl-4, F2-3 
proprietary violation 2-110 
protection 2-117 
PTP 3-5 
PTR 2-87,3-1 
Public 2-60, 2-99 
public mode 1-5 
public page 2-10 1 
PUSH 2-13 
pushdown list 2-12, A-19 

INDEX 

defined 2-13 
subroutines 2-68 

Pushdown Overflow 2-102 
PUSH] 2-67 

RDI = read in 
read in Fl-6, F2-5 
readin mode 2-85,3-3,6-14,6-32 
real time clock DKlO see clock 
recursive MUUOs 2-116 
relocation 2-117 
reload counter 2-109, 2-113 
restore 2-63 
reverse BLT 2-13 
reverse digits 2-29 
RIM = read in 
ROT 2-25 
rotate 2-24, A-19 
ROTC 2-26 
rounding 2-36 
RSW 2-86 
RUN Fl-3, F2-2 

scaling 2-33 
sense switches 1-2,2-99 
serial number 2-113 
SETA 2-18 
SETCA 2-19 
SETCM 2-19 
SETM 2-19 
SETO 2-18 
SETZ 2-18 
shift A-19 

arithmetic 2-30 
logical 2-24 

single precision floating point 2-34 
single synchronous line 

unit DSI0 8-36 
instructions 8-37 
operation H6-2 
programming 8-40 
status 8-39 
timing 8-42 

SKIP 2-48 
small user 1-14,2-104 
Small User 2-112 
small user violation 2-110 
software double precision 2-79 
SOJ 2-49 
SOS 2-50 
stack pointer 2-113, 2-116 
standard magnetic tape TM 1 0 6-16 

cleaning H7-2 
format 6-16 

core dump 6-18 
7-track 6-17 
9-track 6-17 

functions 6-27 

read 6-28 
read-compare 6-29 
rewind 6-31 
space 6-30 
write 6-27 

instructions 6-19 
operation H4-1, H4-3 

control H4-3 
TUlO H4-4 
TU20 H4-6 
TU30 H4-7 
TU40 H4-8 

programming 6-31 
readin mode 6-32 
status 6-21,6-23 
timing 6-33 

TUlO 6-33 
TU20 6-34 
TU30 6-35 
TU40 6-35 

transport see operation 
status 2-84 

card punch 4-16 
card reader 4-12 
console terminal 3-7, C-9 
clock 2-121 
DAI0 5-8 
data channel 5-4 
OCI0 8-30 
DEC tape 6-7,6-8 
disk/drum RCI0 7-7, 7-9 
disk pack RPI0 7-23, 7-24 
DSlO 8-39 
interrupt 

KAlO 2-97, C-7 
KilO 2-92, C-2 

line printer 4-4 
magnetic tape TM 10 6-21, 6-23 
paging 2-113 
plotter 4-12 
processor 

KAlO 2-102, C-6 
KIlO 2-99, C-3 

punch 3-5, C-8 
reader 3-2, C-8 

SUB 2-27 
supervisor mode 1-5 
subroutines 2-65 
switches 

KAlO F2-7 
KIlO Fl-8 

table searching 2-78 
tape transport see TU 
TDlO 6-1, H4-l 

see DECtape 
TOC 2-55 
TDN 2-55 



TDO 2-56 
TDZ 2-55 
test instructions 

arithmetic 2-45, A-19 
logical 2-52, A-21 

timer 2-99 
time sharing 1-4 
timing 2-1, D-l 

card punch 4-18 
card reader 4-15 
charts 

KAIO D-9 
KIlO D-6 

clock 2-122 
console terminal 3-8 
DAIO 5-12 
OCI0 8-34 
DECtape 6-12 
disk/drum RClO 7-11 
disk pack RPlO 7-29 
DSI0 8-42 
interrupt 

KAI0 2-97 
KIlO 2-93 

line printer 4-6 
plotter 4-12 
processor D-l 

KAIO D-3 
KIlO D-9 

punch 3-6 
reader 3-2 
tape transport TUlO 6-33 
tape transport TU20 6-34 
tape transport TU30 6-35 
tape transport TU40 6-35 

Time Out 2-99 
TLC 2-54 
TLN 2-53 
TLO 2-54 
TLZ 2-54 
TM 10 see standard magnetic 

tape TMI0 
TMC 6-20 
TMS 6-20 
Trap 1, Trap 2 2-60 
Trap Offset 2-102 
trapping, traps 

overflow 2-69 
page failure 2-109 
UUO 2-70 

TRC 2-53 
TRN 2-52 
TRO 2-53 
TRZ 2-52 
TSC 2-57 
TSN 2-56 
TSO 2-57 
TSZ 2-56 

TTY 3-7 
TUIO 

INDEX 

cleaning H7-2 
operation H4-4 
timing 6-33 

TU20 
cleaning H7-2 
operation H4-6 
timing 6-34 

TU30 
cleaning H7-2 
operation H4-7 
timing 6-35 

TU40 
cleaning H7-2 
operation H4-8 
timing 6-35 

TUS5, TU56 
cleaning H7-1 
operation H4-1 

12-bit computer interface DAlO 5-7 
twos complement 1-7 

UFA 2-38 
unassigned codes 2-71 
unimplemented operations 2-70 
User 2-60 
User Address Compare Enable 2-112 
user fast memory block 2-112, 2-115 
User In-out 2-60, 2-102, 2-115, 2-119 
user mode 1-4, 2-104, 2-119 
user process table 2-107 
user programming 

KAIO 2-119 
KIlO 2-104 

UUO 2-70 

virtual address space 1-1, 1-6, 1-14, 
2-105 

Word Empty 2-113 
word format A-2 
words 

Xl-II 
XCT 2-61,2-114 
XOR 2-22 

Y 1-11 

@ 1-15 
. 1-16 
: 1-16 
[] 1-16 

1-5 





READER'S COMMENTS 

DECsystem-lO SYSTEM 
REFERENCE Manual 
DEC-lO-XSRMA-A-D 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Problem Repcrt (SPR) form (see the HOW TO OBTAIN 
SOFTWARE INFO~~TION page) • 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ______________________________________________________________ _ 

Street ____________________________________________________________________ __ 

City ___________________________ State _____________ Zip Code ____________ __ 

or 
Country 

If you do not require a written reply, please check here. [] 



-------------------------------------------------------------Fold lIere------------------------------------------------------------

------------------------------------------------ Do Not Tear - Fold lIere and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 






