SYSTEM REFERENCE MANUAL

dlilgliltlall

decsUscenic
SYSTEM REFERENCE MANUAL

DEC-10-XSRMA-A-D

digital equipment corporation - maynard. massachusetts

Ist Edition, May 1968
2nd Edition, December 1971
3rd Edition, August 1974

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1971, 1972, 1973, 1974, 1975 by Digital Equipment CORPORATION

The postage prepaid READER’S COMMENTS form on the last page of this document requests
the user’s evaluation to assist us in preparing future documentation.

Changes are indicated by a triangle (A) in the outside margin.

The following are standard trademarks of Digital Equipment Corporation:

CDP DIGITAL KA10 QUICKPOINT
COMPUTER LAB DNC KI10 RAD-8
COMSYST EDGRIN LAB-8 RSTS
COMTEX EDUSYSTEM LAB-8/e RSX

DDT FLIP CHIP LAB-K RTM

DEC FOCAL OMNIBUS RT-11
DECCOMM GLC-8 0S/8 SABR
DECSYSTEM-10 IDAC PDP TYPESET-8
DECTAPE IDACS PHA TYPESET-10
DIBOL INDAC PS/8 UNIBUS

1/75-15

Preface

This manual explains the machine language programming and operation of
the DECsystem—10, for both instructional and reference‘purposes. Basically
the manual defines in detail how the central processor and the peripherals
function, exactly what their instructions do, how they handle data, what
their control and status information means, and what programming tech-
niques and procedures must be employed to utilize them effectively. The
programming is given in machine language, in that it uses only the basic
instruction and device mnemonics and symbolic addressing defined by the
assembler. The treatment relies on neither any other Digital software nor
any of the more sophisticated features of the assembler; moreover the
manual is completely self-contained — no prior knowledge of the assembler
is required.

The text of the manual is devoted almost entirely to functional description
and programming. Chapter 1 discusses the general characteristics of the
system, defines the formats of the words used for numbers and instructions,
and also explains the conventions needed to program the system and under-
stand the examples given in the text. Chapter 2 covers all phases of the
central processor, including the general principles of in-out programming and
handling the interrupt system. The remaining chapters are devoted to the
various categories of peripheral equipment. Chapters 3 and 4 cover the
simple character-oriented devices that use form paper, paper tape and cards.
Chapter 5 treats the data interfaces that are employed in the tape, disk and
data communication systems covered in the three chapters following. Finally
Chapter 9 describes the various terminals that can be used either at the
console or in communication systems; this chapter includes both pro-
gramming and operating information.

The first three appendices contain the basic reference tables for the
programmer — word formats, instruction and device mnemonics, IO codes,
IO bit assignments showing conditions and status, and a shorthand presenta-
tion of instruction actions in symbolic form. The next two appendices
provide additional programming information of less general use: Appendix D
gives the instruction times and Appendix E documents the differences among
the several central processor models. The final three appendices provide a
complete guide to the operation of the central processors, memories and
peripheral devices (except terminals). This treatment is entirely in hardware
terms, describing all lights and switches, how to load the devices, and so
forth, but not how to run the system in terms of interacting with any Digital
software — that information is given in the DECsystem—10 Operator’s Guide.

iii

Contents

1.4

2.1
2.2

2.3

24

2.5

2.6

2.7
2.8
2.9

2.10
2.11

INTRODUCTION

Number System
Floating point arithmetic 1-8

Instruction Format
Effective address calculation 1-11

Memory
K110 memory allocation 1-14
KA 10 memory allocation 1-14

Programming Conventions

CENTRAL PROCESSOR

Half Word Data Transmission

Full Word Data Transmission
Move instructions 2-10
Pushdown list 2-12

Byte Manipulation

Logic
Shift and rotate 2-24
Fixed Point Arithmetic
Arithmetic shifting 2-30

Floating Point Arithmetic
Scaling 2-33
Number conversion 2-34
Single precision with rounding 2-36
Single precision without rounding 2-38
Double precision operations 2-42

Arithmetic Testing
Logical Testing and Modification

Program Control
Overflow trapping 2-69

Unimplemented Operations

Programming Examples
Processor identification 2-72

2-9

2-15

2-17

2-26

2-31

2-45
2-51
2-58

2-70
2-72

vi

2.12

2.13

2.14

2.15

2.16

2.17

3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2

Parity 2-72

Counting ones 2-75

Number conversion 2-77

Table searching 2-78

Double precision floating point 2-79

Input-Output
Readin mode 2-85
Console-program communication 2-86

Priority Interrupt
KI10 interrupt 2-88
KA10 interrupt 2-94

Processor Conditions
KI10 processor conditions 2-98
KA10 processor conditions 2-101

KI10 Program and Memory Management
Paging 2-105
Page failure 2-104
Monitor programming 2-111
Executive XCT 2-114

KA10 Program and Memory Management
User programming 2-119
Monitor programming 2-119

Real Time Clock DK10

CONSOLE IN-OUT EQUIPMENT

Paper Tape Reader
Readin mode 3-3

Paper Tape Punch
Console Terminal

HARDCOPY EQUIPMENT

Line Printer LP10
Plotter XY 10

Card Reader CR10
Card Punch CP10

DATA INTERFACES

Data Channel DF10

Twelve- and Eighteen-Bit Computer Interface DA10
PDP-10 instructions 5-7
Twelve-bit computer instructions 5-8
Eighteen-bit computer instructions 5-10
Programming considerations 5-11

2

2

2

-81

-87

98

2-104

2-117

2-120

S~ b

3-1
3-1

34
3-6
4-1
4-1
4-8
-11
-15
5-1

5-1
5-7

6

Part I

6.1

6.2
6.3
6.4

6.5

Part I1

6.6
6.7
6.8

6.9

6.10

MAGNETIC TAPE

DECtape

Tape Format
Standard format DECtape 6-3
Compatibility 6-3

Tape Handling Characteristics
Instructions

Normal Programming
Timing 6-12
Readin mode 6-14

Formatting a Tape

Standard Magnetic Tape

Tape Format
Instructions

Tape Functions
Interrupt when unit ready 6-27
Write 6-27
Mark end of file 6-28
Erase 6-28
Erase and write 6-28
Read record 6-28
Read multirecord 6-29
Read-compare record 6-29
Read-compare multirecord 6-30
Space records forward 6-30
Space file forward 6-30
Space records reverse 6-30
Space file reverse 6-31
Rewind 6-31
Rewind and unload 6-31

Programming Considerations
Readin mode 6-32

Timing
Tape transport TU10 6-33
Tape transport TU20 6-34
Tape transport TU30 6-35
Tape transport TU40 6-35

6-1

6-2

6-4
6-5
6-11

6-14
6-16

6-16
6-19
6-27

6-31

6-33

Vil

viii

7
Part I

7.1
7.2
7.3

7.4
Part 11

7.5
7.6

7.7
7.8

7.9

8.2

8.3

8.4

APPENDICES

A

DISKS AND DRUMS 7-1
RC10 Disk/Drum System 7-2
Data Format 7-3
Instructions 7-4
Programming Considerations 7-10
Timing 7-11
Operation 7-14
RP10 Disk Pack System 7-18
Data Format 7-18
Instructions 7-20
Disk Pack Functions 7-27
Programming Considerations 7-28
Timing 7-29
Operation 7-30
DATA COMMUNICATIONS 8-1
 Communication Signals and Procedures 8-3
Bell System data sets 8-6
Data Communication System DC68A 8-7

Data multiplexing 8-11

Modem control DCO8F 8-17

Call control DCO8H 8-19

689AG: Part I, modem control 8-21
689AG: Part II, call control 8-24

Data Line Scanner DC10 8-26
Instructions 8-29
Data line programming 8-33
Modem control programming 8-35

Single Synchronous Line Unit DS10 8-36
Instructions 8-37
Programming considerations 8-40

INSTRUCTIONS AND MNEMONICS A-1

Word Formats A-2

Mnemonic Derivation A-4
Numeric Listing A-5
Alphabetic Listing A-8

Device Mnemonics A-12
Algebraic Representation A-13

F1

F2

H1

H2
H2.1

IN-OUT CODES
ASCII Code B-2
Line Printer Codes B-4
Card Codes B-8

10 BIT ASSIGNMENTS
KI10 Processor C-2
KA10 Processor C-6
Console I0 C-8

Peripheral devices follow in alphabetical order

TIMING
KI10 Instruction Times D-3
KA10 Instruction Times D-9

PROCESSOR COMPATIBILITY

PROCESSOR OPERATION

KI10 Operation
Indicators F1-2
Operating keys F1-6
Operating switches F1-8
Real time clock DK10 F1-13

KA10 Operation
Indicators F2-1
Operating keys F2-3
Operating switches F2-7
Real time clock DK10 F2-9

MEMORY OPERATION
Address Structure G-3
MA10 Core Memory G-4
MB10 Core Memory G-5
MD10 Core Memory G-6
ME10 Core Memory G-8
MF10 Core Memory G-9

OPERATION OF PERIPHERAL EQUIPMENT

Console Equipment
Paper tape reader Hi-1
Paper tape punch H1-1
Console terminal H1-2

Hardcopy Equipment

Line Printer LP10
Models LP10F, H H2-1

D-1

F-1
F1-1

F2-1

H1-1

H2-1
H2-1

ix

H2.2
H2.3

H2.4
H3

H4
H4.1
H4.2

H5
Ho6

H7
H7.1

H7.2
H7.3

INDEX

Models LP10B, C, D, E H2-4
Model LP10A H2-6

Plotter XY 10

Card Reader CR10
Models CR10D, E, F H2-7
Model CR10A/B H2-9

Card Punch CP10
Data Interfaces (to be added)

Magnetic Tape
DECtape TD10

Standard Magnetic Tape TM10
Tape transport TU10 H4-4
Tape transport TU20 H4-6
Tape transport TU30 H4-7
Tape transport TU40 H4-8

Disks and Drums (o be added)

Data Communications
Data line scanner DC10 H6-1
Single synchronous line unit DS10 H6-2

Cleaning Procedures
Tape Equipment
DECtape H7-1
Standard magnetic tape H7-2
Tapes H7-3
Disk Packs
Other Equipment
Paper tape reader and punch H7-4
Line printer H7-4
Card reader and punch H7-4

H2-6
H2-7

H2-9
H3-1
H4-1
H4-1
H4-3

H5-1
Ho6-1

H7-1
H7-1

H7-3
H7-4

I-1

1

Introduction

The DECsystem—10 is a general purpose, stored program computing system
that includes at least one PDP-10 central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch, teletypewriter,
card reader and punch, line printer, DECtape, magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory, some of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much morelimited program capabil-
ity and serve to connect large, fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem—10 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a subsystem in toto is con-
nected to a PDP-10 in-out bus and is treated by the PDP-10 as a peripheral
device. Unless otherwise specified, the words “‘processor” and ‘“‘central pro-
cessor’” refer to the large-scale PDP—10 central processor, and ‘““in-out bus”
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the DF1u data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present there are two types of PDP-10 central processors, the KA10
and the KI10. The latter is faster and more powerful, having a somewhat
larger instruction repertoire including double precision floating point. Both
processors handle words of thirty-six bits, which are stored in a memory
whose maximum capacity depends upon the addressing capability of the
processor. Internally both processors use 18-bit addresses and can thus
reference 262,144 word locations in memory. This is the total addressing
capability of the KA10, but in the KI10 it is only the virtual address space
available to a single program. Paging hardware supplies four additional
address bits to map pages in the program virtual address space into pages
anywhere in a physical memory that is sixteen times as large. Thus for
a number of different programs, the processor actually has access to a

1-1

Confusion could result only
in a chapter dealing with a
small-computer subsystem.
Here the small processor is
usually referred to by its
name (PDP-8, PDP-11) and
the words “computer” and
“memory” refer to the small
computer. To differentiate,
the PDP-10 is referred to by
its name or as the “DEC-
system—10 central processor”,
and the large scale memory
connected to the PDP-10
memory bus is referred to as
“DECsystem—10 main mem-
ory”.

1-2

INTRODUCTION

physical memory with a capacity of 4,194,304 words. Storage in memory
is usually in the form of 37-bit words, the extra bit producing odd parity
for the word. The bits of a word are numbered 0-35, left to right (most
significant to least significant), as are the bits in the registers that handle
the words. The processor can handle half words, wherein the left half
comprises bits 0—17, the right half, bits 18—-35. There is also hardware
for byte manipulation — a byte is any contiguous set of bits within a word.
KA10 registers that hold addresses have eighteen bits, numbered 18-35
according to the position of an address in a word. KI10 internal address
registers have eighteen bits, but a register that must supply a complete
address to physical memory has twenty-two bits (numbered 14-35). Words
are used either as computer instructions in the program, as addresses, or as
operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is incre-
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer are the sense
switches and the 36-bit data switch register DS on the processor console:
through these switches the program can read information supplied by the
operator. The processor also contains flags that detect various types of
errors, including several types of overflow in arithmetic and pushdown opera-
tions, and provide other information of interest to the programmer.

The processor has other registers but the programmer is not usually con-
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can
examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc-
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.
This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. In the KII0, AR and the adder each have a 28-bit left
extension for handling double precision floating point numbers.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations

1-3

CORE MEMORY CORE MEMORY CORE MEMORY
MEMORY BUS CENTRAL
% 7 PROCESSOR
FAST
MEMORY
16 X 36
| 4
AT — —| IR
af 18 18
ARITHMETIC
LOGIC |—» MI o
, (AR, BR, MQ)
‘ AS PC — -— DS
4! 18 18 36
IN-OUT BUS t
PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT READER PUNCH TELETYPE

DECSYSTEM-10 SIMPLIFIED

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,

The KI10 actually has four
fast memory blocks, but only
one of these is available to a
program at any given time.

The KI10 allows unrestricted
in-out with a limited number
of devices for special real
time applications.

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overflow or a parity error to signal the program.

Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily. A program that runs in executive mode — the Monitor — is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to

operation in executive mode (specifically kernel mode in the KI10).

The KA10 has the two modes discussed above, user and executive. It also
has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected, ie the user cannot
alter its contents.

The KI10 has paging hardware for the mapping of pages from the limited
virtual address space into pages anywhere in physical memory. A page map
for each program specifies not only the correspondence from virtual address
to physical address, but also whether an individual page is accessible or not,
alterable or not, and public or concealed. Both user and executive modes are
subdivided according to whether the program is running in a public area or a
concealed area. Within user mode these are the public and concealed modes;
within executive mode, the supervisor and kernel modes. A program in
concealed mode can reference all of accessible user memory, but the public
program cannot reference the concealed area except to transfer control into
it at certain legitimate entry points.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and the program
can even address some of memory directly (ie unpaged); in the paged address
space, individual pages may be restricted as inaccessible or write-protected,
but it is the kernel mode program that establishes these restrictions. In
supervisor mode the Monitor handles the general management of the system
and those functions that affect only one user at a time. This mode has
essentially the same instruction and memory restrictions as user mode,
although the supervisor mode program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor program
with information the latter cannot alter (even though the information is not
write-protected from the kernel program). In either mode the Monitor
automatically uses fast memory block O (the hardware requires this). The
kernel program is responsible for assigning fast memory blocks to the various
user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block 1 is assigned to all other users.

The illustration on the next page shows a typical layout of the virtual
address space for the various modes. The space is 256K, made up of 512
pages numbered 0-777 octal. Any program can address locations 0—17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
write-protected. The public program cannot access any locations in the
concealed areas except to fetch instructions from prescribed entry
points. The concealed mode user program has access to both public and
concealed areas, but it cannot alter any write-protected location whether
public or concealed, and fetching an instruction from the public area
automatically returns the processor to public mode.

The supervisor mode program is confined within the paged area of the
address space, pages 340 and above. Part of the public area in this space may

E Pl

1-5

The concealed area would or-
dinarily be used for proprie-
tary programs that the user
can call but cannot read or
alter.

1-6

400

7717

INTRODUCTION

USER MODE

PUBLIC

FAST MEMORY

PUBLIC
WRITEABLE

N\

PUBLIC
WRITE-PROTECTED

CONCEALED
ENTRY POINTS

.

0

400

777

SHADED AREAS ARE INACCESSIBLE

TYPICAL VIRTUAL ADDRESS SPACE CONFIGURATION

CONCEALED

FAST MEMORY

PUBLIC
WRITEABLE

CONCEALED
WRITEABLE

/

2
PUBLIC

WRITE-PROTECTED

CONCEALED
WRITE-PROTECTED

.

340

400

7

EXECUTIVE MODE

SUPERVISOR

KERNEL

FAST MEMORY

0

FAST MEMORY

.

WRITE- PROTECTED

UNPAGED
340
PUBLIC PUBLIC
CONCEALED CONCEALED
400
PUBLIC PUBLIC
WRITEABLE WRITEABLE
PUBLIC PUBLIC

WRITE-PROTECTED

CONCEALED

CONCEALED
WRITEABLE

CONCEALED
WRITE-PROTECTED

\

77

§1.1 NUMBER SYSTEM

be write-protected, but the program can read information in the concealed
areas — it cannot alter any location in a concealed area whether that area is
write-protected or not. Pages 340-377 constitute the per-process area, which
contains information specific to individual users and whose mapping
accompanies the user page map. In other words the physical memory
corresponding to these virtual pages can be changed simply by switching
from one user to another, rather than the Monitor changing its own page
map. The kernel mode program can access all of the unpaged area without
restriction and can reference all of the accessible paged area, both public and
concealed, with the usual restriction that it cannot alter a write-protected
area. As in the case of concealed user mode, fetching an instruction from a
public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit O (the leftmost bit) represents the sign, O for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2" —x, and its ones complement is (2" — 1) — x, or equivalently (2" —x) — 1.
Subtracting a number from 2" — 1 (ie, from all 1s) is equivalent to perform-
ing the logical complement, ie changing all Os to 1s and all 1s to Os. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153,, = +2315 =[000 000 000 000 000 000 000 000 000 010 011 001

0 35
~153,0 = —231g =[111 111111111 111 111 111 111111101 100 111]
0 35

Zero is represented by a word containing all 0s. Complementing this
number produces all s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation, all
even numbers both positive and negative end in O, all odd numbers in 1 (a

1-7

The adder actually acts as
though the words represented
36-bit unsigned numbers, ie
the signs are treated just like
magnitude bits. In the absence
of a carry into the sign stage,
adding two numbers with the
same sign produces a plus sign
in the result. The presence of
a carry gives a positive answer
when the summands have dif-
ferent signs. The result has a
minus sign when there is a
carry into the sign bit and
the summands have the same
sign, or the summands have
different signs and there is
no carry.

Thus the program can in-
terpret the numbers processed
in fixed point addition and
subtraction as signed numbers
with 35 magnitude bits or as
unsigned 36-bit numbers. A
computation on signed num-
bers produces a result that

AUGUST 1974

1-8

is correct as an unsigned 36-
bit number even if overflow
occurs, but the hardware in-
terprets the result as a signed
number to detect overflow.
Adding two positive numbers
whose sum is greater than or
equal to 2% gives a negative
result, indicating overflow;
but that result, which has
a 1 in the sign bit, is the
correct answer interpreted as
a 36-bit unsigned number
in positive form. Similarly
adding two negatives gives
aresult which is always correct
as an unsigned number in
negative form.

Multiplication produces a
double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null.

This convention for bit 0 of
the low order word is incon-
sistent with that used for
floating point arithmetic [see
below]. This should cause no
problem however, as fixed
divide ignores bit 0 of the
low order word in a double
length dividend.

AUGUST 1974

INTRODUCTION 81.1

number all 1s represents —1). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 400000 000000 and its magnitude is one greater
than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the Is. In twos
complement notation each negative number is one greater than the
complement of the positive number of the same magnitude, so one can read
a negative number by attaching significance to the rightmost 1 and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1s may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because
it still has a 1 that possesses significance; but if a portion including the
rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement.

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to con-
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre-
sented by a single word is —23° to 23°— 1 or —1 to 1 — 27%. Since multiplica-
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit O of the high
order word is the sign, and bit 0 of the low order word is made equal to
the sign. The range for double length integers and proper fractions is thus
=27 t02 ~1land —1to1—-2779,

Floating Point Arithmetic. The KI10 has hardware for processing single
and double precision floating point numbers; the KA10 can generally process
only single precision numbers, although the hardware does include features
that facilitate double precision arithmetic by software routines. The same
format is used for a single precision number and the high order word of a
double precision number. A floating point instruction interprets bit O as the
sign, but interprets the rest of the word as an 8-bit exponent and a 27-bit
fraction. For a positive number the sign is 0, as before. But the contents of
bits 9-35 are now interpreted only as a binary fraction, and the contents of
bits 1-8 are interpreted as an integral exponent in excess 128 (200g)
code. Exponents from —128 to +127 are therefore represented by the
binary equivalents of 0 to 255 (0-3775). Floating point zero and negatives
are represented in exactly the same way as in fixed point: zero by a word
containing all Os, a negative by the twos complement. A negative number
has a 1 for its sign and the twos complement of the fraction, but since every
fraction must ordinarily contain a 1 unless the entire number is zero (see

§1.1 NUMBER SYSTEM

below), it has the ones complement of the exponent code in bits 1-8. Since
the exponent is in excess 128 code, an actual exponent x is represented in a
positive number by x + 128, in a negative number by 127 —x. The
programmer, however, need not be concerned with these representations as
the hardware compensates automatically. Eg, for the instruction that scales
the exponent, the hardware interprets the integral scale factor in standard
twos complement form but produces the correct ones complement result for
the exponent.

+15310 = +2318 = +4628X 28 =
[o[10 001 000[100 110 010 000 000 000 000 000 000]
01 89 35
~153;p = —2315 = —.4624X28 =

[1jo1 110 111]011 001 110 000 000 000 000 000 000

01 89 35

Except in special cases the floating point instructions assume that all
nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to % and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of % to 1—27?7. Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is % to 1
decreased by the value of the least significant bit. In all formats the
exponent range is —128 to +127.

The precaution about truncation given for fixed point multiplication
applies to most floating point operations as they produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
single precision division the two words of the result are quotient and
remainder, but in the other operations they form a double length number
which is stored in two accumulators if the instruction is executed in “long”
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9-35 of each word. The sign and exponent are in bits 0 and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the remaining part of the less significant word, bit 0 is 0, and bits
1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 28 +2718 has this two-word representation in software

19

An instruction that generates
a double length result sets
the low word exponent part
to zero whenever the low
order fraction is zero, and
sets the whole low order word
to zero whenever the low
order exponent overflows or
underflows.

AUGUST 1974

Essentially there are five num-
ber formats. Fixed point
additive operations can be
regarded as being performed
on 36-bit unsigned numbers,
which are equivalent to logical
words. Otherwise fixed point
arithmetic uses the fixed point
format; numbers are single
length with the exception that
products and dividends can be
double length, and there is
provision for shifting a double
length operand arithmetically.
Double length format is an
extension of single length for-
mat to two 36-bit words.
Single precision floating
point instructions use two
formats: single precision float-
ing point format and soft-
ware double precision floating
point format. The latter ap-
pears only in the result of a
long mode add, subtract or
multiply, as the dividend in a
long mode divide, and as the
operand for an instruction
that negates a number specifi-
cally in that format. Operands
for double precision floating
point instructions are exclu-
sively in hardware double
precision floating point for-
mat (and these instructions are
not available on the KA10).

AUGUST 1974

INTRODUCTION §1.2

double precision format:

010 010 011 |100 000 000 000 000 000 000 000 000

01 89 35

lojo1 111 000|000 000 000 100 000 000 000 000 000

01 89 35

whereas its negative is

l1jo1 101 100[011 111 111 111 111 111 111 111 111]

01 89 35

|01 111 000[111 111 111 100 000 000 000 000 000]

01 89 35

The double precision floating point instructions use a more straight-
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit O is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

0[10 010 011|100 000 000 000 000 000 000 000 000

01 89 35

[oJoo 000 000 010 000 000 000 000 000 000 000 000]

01 35

and its negative is

1/01 101 100011 111 111 111 111 111 111 111 111
01 89 35

loJt1 111 111 110 000 000 000 000 000 000 000 000
01 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9—-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

§1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 14—17 spec-
ify an index register for use in address modification, and the remaining
eighteen bits (18—35) address a memory location. The instruction codes

ADDRESS TYPE

ACCUMULATOR INDEX REGISTER
ADDRESS / ADDRESS
T
rINSTRUCTION CODE I \ [o | MEMORY ADDRESS —l
0 89 121314 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are performed by the processor
as so-called ‘“‘unimplemented operations”.

An input-output instruction is designated by three Is in bits 0—2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10—12 specify the operation. The rest of the word is the same as in
other instructions.

ADDRESS TYPE

INSTRUCTION INDEX REGISTER
CODE / ADDRESS
/ l N T T
| 7 DEVICE CODE l l r MEMORY ADDRESS —l
0 23 910 121314 1718 35

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

x| Y

1314 1718 35

indirect bit, bits 14—17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address E of the instruction depends on the values of 7, X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If 7 is 0, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if 7 is 1,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the
effective address if / is 0, otherwise they are used for yet another level of
address retrieval. This process continues until some referenced location is
found with a 0 in bit 13; the 18-bit number calculated from the X and Y
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-

Among the unimplemented
operations are some that are
specified as ‘“unimplemented
user operations” or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu-
nication with the Monitor
(MUUOs). In general, unas-
signed codes act like MUUO:s.

On the other hand, please note
that this calculation is carried

1-12

out only for words indicated
in the text as having the for-
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim-
ply because it happens to con-
tain an address [see page C-2].

<

PLEASE READ THIS

The calculation of E is the
first step in the execution of
every instruction. No other
action taken by any instruc-
tion, no matter what it is,
can possibly precede that cal-
culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory loca-
tion that can in any way
affect its own effective ad-
dress calculation.

AUGUST 1974

INTRODUCTION §1.3

tion word is 0 and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in some kind of test instruction, conditions to bé¢
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18—35 do not contain an ad-
dress when 7 is 0. But when 7 is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as / remains 1. When a location is found in which /
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper-
and even have an ‘“‘immediate” mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I/, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KI10 further increases the speed of memory
operation by overlapping memory cycles. Eg it can start one memory to
read a word before receiving a word previously requested from a different
memory.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads or writes a word directly
(note: to write, the KA10 must first clear the location and then load it).

§1.3 MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten feet (three meters) of cable. Fast memory times are
for referencing as a memory location (18-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
considerably shorter.

Read Write Modify

Access Access Cycle Completion Size
161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 .49 1.8 1.33 16K
164 Core Memory
MB 10 Core Memory} .60%* .20% 1.65%* .97 16K
MA10 Core Memory .61 .20 1.00 57 16K
MD10 Core Memory .83 .33 1.8 1.23 32-128K
ME10 Core Memory .61 .20 1.00 .65 16K
MF10 Core Memory .61 .20 1.00 .63 32K, 64K
KA10 Fast Memory 21 21 16
KI10 Fast Memory .28 .0 16

From the simple hardware addressing point of view, the entire memory is
a set of contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KA10 address is octal 777777,
decimal 262,143; the largest KI10 address is 17777777, decimal
4,194,303. (Addresses are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with 18-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen for the
location. The times given above assume the addressed memory is idle when
access is requested. To avoid waiting for a previously requested memory
cycle to end, the program can make consecutive requests to different
memories by taking instructions from one memory and data from
another. All memories can be interleaved in pairs in such a way that
consecutive addresses actually alternate between the two memories in the
pair (thus increasing the probability that consecutive references are to
different memories). Appropriate switch settings at the memories
interchange the least significant address bits in the memory selection and
location parts, so that in any two memories numbered n and n» + 1 where n is
even, all even addresses are locations in the first memory, all odd addresses
are locations in the second. Hence memories O and 1 can be interleaved as
can 6 and 7, but not 3 and 4 or 5 and 7. Some memories can be interleaved
in contiguous groups of four, where the number of the first memory in the

1-13

*Add .1 in a multiproces-
sor system.

MD10 can be increased in
units of 32K up to 128K.

KI10 access to accumulators
and index registers effectively
takes no time — it is done in
parallel with instruction oper-
ations that are required any-
way. Retrieval of instructions
or memory operands from
fast memory is generally
not worthwhile because of
the extensive overlapping that
speeds up core access. How-
ever, except in instructions
that use two accumulators,
storage of a memory operand
in fast memory not only takes
no time but actually decreases
slightly the nonmemory time.

Information on memory set-
up is given in Appendix G.

AUGUST 1974

The kernel mode program
can always address locations
0-337777 as these are un-
paged. Virtual pages 340 and
above are mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for itself for
each KI10 processor. In the
text, the phrase “the user
process table” refers to the
process table currently speci-
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex-
ecutive process table for the

processor under consideration.

The initial control word ad-
dress for the DF10 Data
Channel must be less than
1000.

AUGUST 1974

INTRODUCTION §1.3

group is divisible by four (eg memories 0-3 or 14-17). In this case all
addresses ending in O or 4 reference the first memory in the group, all ending
in 1 or 5 reference the second, and so forth.

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KA10 the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KI10 the possible
program address space is the set of all 18-bit addresses just as in the KA10,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called “‘small user”, the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0—17 are never restricted or relocated).

KI10 Memory Allocation. The KI10 hardware defines the use of certain
memory locations, but most are relative to pages whose physical location is
specified by the Monitor. The auto restart uses location 70. The only other
physical locations uniquely defined by the hardware are those in fast memory,
whose addresses are the same for all programs: location O holds a pointer
word during a bootstrap readin, 0—17 can be addressed as accumulators, and
1-17 can be addressed as index registers. The only addresses uniquely speci-
fied in the user virtual space are for user local UUOs — locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware-oriented situations, are
to locations within a page specified by the Monitor for a particular user
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, billing
information, and job tables. The detailed configuration of the
hardware-defined parts of the process tables (user and executive) is given in
§2.15.

KA10 Memory Allocation. The use of certain memory locations is
defined by the KA10 hardware.

0 Holds a pointer word during a bootstrap readin

0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed

§ 1.4 PROGRAMMING CONVENTIONS

140-161 Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS
assembles as 213000 000000, and
MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc-
tion, produces the twos complement negative of the word in memory loca-
tion 2570.

NortE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi-
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570
assembles as 213020 002570, and produces indirect addressing. Placing the

1-15

All information given in this
manual about memory loca-
tions 40-61 for a KA10 ap-
pliesinstead to locations 140~
161 for programming a second
KA10 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

INTRODUCTION §1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0—17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302
which assembles as 700600 001302, or equivalently
CONO PI,1302

The programming examples in this manual use the following addressing
conventions:
¢ A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-
bolically as A.
¢ The period represents the current address, eg

ADD 5,42
is equivalent to
A: ADD 5,A+2

¢ Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]
and

ADD 12,A

§1.4 PROGRAMMING CONVENTIONS

A: 7256004

are equivalent. The bracketed quantity can be given as the left and right
halves separated by a double comma, not only eliminating the need to insert
leading zeros for the right half, but allowing use of a minus sign for a
negative half word as well. In other words

[-246,,135]
is equivalent to
[777532000135]

Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.

AUGUST 1974

2

Central Processor

This chapter describes all PDP-10 instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as 0s. The letters indicate portions that must be added to the mne-
monic to produce a complete instruction word.

For many of the non-10 instructions, a description applies not to a unique
instruction with a single code in bits 0—8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in-
struction is the source and which the destination of the data, in test instruc-
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0—8) for the various modes.

In a description FE refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the 7, X and Y parts
of the instruction word. In an instruction that ordinarily references mem-
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in-
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains £ in one half and zero in the other, and is represented either as
0, E or E,0 depending upon whether E is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A4; in the description,
“AC” refers to the accumulator addressed by A. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses 4 and A+1, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss —
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2-1

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.

<>

PLEASE READ THIS

The calculation of E is the
first step in the execution of
every instruction. No other
action taken by any instruc-
tion, no matter what it is,
can possibly precede that cal-
culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory loca-
tion that can in any way
affect its own effective ad-
dress calculation.

AUGUST 1974

CENTRAL PROCESSOR §2.1

well to operation in executive mode. For completeness, the effects of restric-
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, §2.9
discusses trapping, §2.13 describes the priority interrupt, and 8§2.15 and
2.16 describe the special effects and restrictions associated with program and
memory management in the KI10 and the KA10 respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum-
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc-
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being “‘executed.” To
“execute” an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc-
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap, etc.
It is assumed that control will shortly be returned to PC, at the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes PC.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in §2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter-
mined by which half of the source word is moved to which half of the des-
tination, and by which of four possible operations is performed on the other

§2.1 HALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination
Do nothing None

Zeros Z Places Os in all bits of the other half
Ones o Places 1s in all bits of the other half
Extend E Places the sign (the leftmost bit) of

the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num-
bers — the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter-
mines the source and destination of the half word moved.

Mode Suffix Source Destination
Basic E AC
Immediate I The word O, F AC
Memory M AC E
Self S E E, but full word result also

goes to AC if A4 is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left
500 |m] a4 [1] x] Y B
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un-
affected; the original contents of the destination left half are lost.

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.

HLLZI merely clears AC. If 4
is zero, HLLZS merely clears
the right half of location E.

HLLOI sets AC to all Os in
the left half, all 1s in the

right.

CENTRAL PROCESSOR §2.1

HLL Half Left to Left 500
HLLI Half Left to Left Immediate 501
HLLM Half Left to Left Memory 502
HLLS Half Left to Left Self 503
HLLZ Half Word Left to Left, Zeros

510 (M| 4 1] x | Y |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513
HLLO Half Word Left to Left, Ones

520 |m| 4 i x | Y |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones 520
HLLOI Half Left to Left, Ones, Immediate 521
HLLOM Half Left to Left, Ones, Memory 522
HLLOS Half Left to Left, Ones, Self 523
HLLE Half Word Left to Left, Extend

530 |[mM] a4 il x | Y |
o 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit O of the source. The source is unaffected, the original contents of the
destination are lost.

§2.1 HALF WORD DATA TRANSMISSION

HLLE Half Left to Left, Extend 530
HLLEI Half Left to Left, Extend, Immediate 531
HLLEM Half Left to Left, Extend, Memory 532
HLLES Half Left to Left, Extend, Self 533
HRL Half Word Right to Left

504 |M| 4 |1] x | Y
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504
HRLI Half Right to Left Immediate 505
HRLM Half Right to Left Memory 506
HRLS Half Right to Left Self 507
HRLZ Half Word Right to Left, Zeros

s14 |M| 4 |1l x | Y |
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514
HRLZI Half Right to Left, Zeros, Immediate 515
HRLZM Half Right to Left, Zeros, Memory 516
HRLZS Half Right to Left, Zeros, Self 517
HRLO Half Word Right to Left, Ones

s24 |M| a4 |1l x | Y)
0 67 89 1213 14 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word E,O
into AC. .

2-6

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

CENTRAL PROCESSOR §2.1

HRLO Half Right to Left, Ones 524
HRLOI Half Right to Left, Ones, Immediate 525
HRLOM Half Right to Left, Ones, Memory 526
HRLOS Half Right to Left, Ones, Self 527
HRLE Half Word Right to Left, Extend

| 534 |m| a 1] x | Y]
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend 534
HRLEI Half Right to Left, Extend, Immediate 535
HRLEM Half Right to Left, Extend, Memory 536
HRLES Half Right to Left, Extend, Self 537
aRR Half Word Right to Right

| 540 [m| a4 [1] x | Y |
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR Half Right to Right 540
HRRI Half Right to Right Immediate 541
HRRM Half Right to Right Memory 542
HRRS Half Right to Right Self 543
HRRZ Half Word Right to Right, Zeros

| ss0 M| 4 [1] x | Y B
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
HRRZI Half Right to Right, Zeros, Immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553
HRRO Half Word Right to Right, Ones

560 (M| a4 1] x | Y
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560
HRROI Half Right to Right, Ones, Immediate 561
HRROM Half Right to Right, Ones, Memory 562
HRROS Half Right to Right, Ones, Self 563
HRRE Half Word Right to Right, Extend

| 570 [m] a4 i x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE Half Right to Right, Extend 570
HRREI Half Right to Right, Extend, Immediate 571
HRREM Half Right to Right, Extend, Memory 572
HRRES Half Right to Right, Extend, Self 573
HLR Half Word Left to Right

| saa |m| a il x] | Y]
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

2-7

HRRZI loads the word 0,E
into AC. If 4 is zero, HRRZS
merely clears the left half of
location E.

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to all 1s in
the left half, all Os in the

right.

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR Half Left to Right 544
HLRI Half Left to Right Immediate 545
HLRM Half Left to Right Memory 546
HLRS Half Left to Right Self 547
HLRZ Half Word Left to Right, Zeros

| ssa |m| a 1] x | Y |
0 67 89 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un-
affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
HLRZI Half Left to Right, Zeros, Immediate 555
HLRZM Half Left to Right, Zeros, Memory 556
HLRZS Half Left to Right, Zeros, Self 557
HLRO Half Word Left to Right, Ones

564 M| a [1] x | Y
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate ; 565
HLROM Half Left to Right, Ones, Memory 566
HLROS Half Left to Right, Ones, Self 567
HLRE Half Word Left to Right, Extend

574 M| 4 il x | Y |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to
bit O of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE Half Left to Right, Extend 574
HLREI Half Left to Right, Extend, Immediate 575
HLREM Half Left to Right, Extend, Memory 576
HLRES Half Left to Right, Extend, Self 577

ExampLes. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. FEg this pair of instructions loads the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI XR,M
HRRI XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC

HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange

250 | 4 |1l x | Y]

0 89 121314 1718 35

Move the contents of location £ to AC and move AC to location E.

HLREI is equivalent to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

2-10

For a reverse BLT procedure
(highest addresses first), refer
to the POP instruction on
page 2-13.

A convenient way to clear a
block in memory is to clear
the first location and then
use a BLT to transfer the
zero successively from one
location to the next. Suppose
the block starts at A and
contains B words.

MOVE AC,[A,A+1]
CLEAR A
BLT AC,A+B

Vis-a-vis the BLT, the source
block runs from AtoA+B—1,
the destination block from
A+1toA+B.

Besides the move instructions
for single words there are also

NOVEMBER 1974

CENTRAL PROCESSOR §2.2

BLT Block Transfer
T 251 | 4 1] x | Y |
0 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area

of memory beginning at the location addressed by AC right. Continue until

a word is moved to location E. The total number of words in the block is
A thus £ — ACyp + 1. If ACy = E, the BLT moves one word to location AC; .

CauTtIoN

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, 4 and X must not address the
same register as this would produce a different effective address calcula-
tion upon resumption should an interrupt occur; and the instruction
must not attempt to load an accumulator addressed either by A or X
unless it is the final location being loaded. Furthermore, the program
cannot assume that AC is the same after the BLT as it was before.

ExawmpLes. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI ;Put 2000 000000 in AC 17

BLT

17,2000
17,17

But to transfer the block in the opposite direction requires that one accumu-
lator first be made available to the BLT:

;Move AC 17 to 2017 in memory
;:Move the number 2000 to AC 17

MOVEM 17,2017
MOVEI 17,2000
BLT 17,2016

If at the time the accumulators were loaded the program had placed in loca-
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH
BLT

17,2017
17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode Suffix Source Destination
Basic E AC
Immediate I The word 0, F AC
Memory M AC E
Self S E FE, but also AC

if A is nonzero

MOVE Move
200 |m| a4 |1 x | Y |
0 67 89 121314 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate 201
MOVEM Move to Memory 202
MOVES Move to Self 203
MOVS Move Swapped

204 (M| 4 |1l x | Y |
0 67 89 121314 1718 35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped 204
MovsI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207
MOVN Move Negative

| 210 |mM| a4 il x | Y |
0 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —235 (400000 000000) set the

2-11

four transmission instructions
that handle double length
operands (operands of two
adjacent words). These are
available, however, only in
the KI10; and since they are
principally for use in hardware
double precision floating point
operations, they are described
with the floating point instruc-
tions in §2.6

MOVEI loads the word 0,EF
into AC and is thus equiva-
lent to HRRZI. If A4 is zero,
MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word E,Q into
AC. MOVSI is thus equivalent
to HRLZI.

2-12

In the KI10 a move executed
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, £ and
can set no flags.

In the KI10 a move executed
asan interrupt instruction can
set no flags.

The word 0,E is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEIL

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point —1 X 2!?7
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry O and Carry 1. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap 1 flag in the
KI10.

MOVN Move Negative 210
MOVNI Move Negative Immediate 211
MOVNM Move Negative to Memory 212
MOVNS Move Negative to Self 213
MOVM Move Magnitude

214 |M| 4 |1l x | Y |
0 67 89 121314 1718 , 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —23%
(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva-
lent floating point —1 X 2!?7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KI10.

MOVM Move Magnitude 214
MOVM| Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num-
ber 200 001400 is stored in location M, the instruction

MOVE ACM

loads 200 into AC left and 1400 into AC right. If the same word, or its nega-
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,

§2.2 FULL WORD DATA TRANSMISSION

and the program can keep a control count in the left half. There are also
two subroutine-calling instructions that utilize a pushdown list of jump ad-
dresses [§2.9].

PUSH Push Down

x| Y

121314 1718 35

261 | 4
0 89

Add one to each half of AC, then move the contents of location £ to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero, set the Pushdown Overflow flag in the KA10, set the
Trap 2 flag in the KI10. The contents of E are unaffected, the original
contents of the location added to the list are lost.

Note: The KA10 increments the two halves of AC by adding 10000014
to the entire register. In the KI10 the two halves are handled independently.

POP Pop Up

262 | a4 [1] x | Y

0 89 121314 1718 35

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach —1, set the Pushdown Overflow flag in the KA 10, set the Trap 2
flag in the KI10. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

Note: The KA10 decrements the two halves of AC by subtracting
10000014 from the entire register. In the KI10 the two halves are handled
independently.

In the KA 10, incrementing and decrementing both halves of AC together
is effected by adding and subtracting 1 000001g. Hence a count of —2 in AC
left is increased to zero if 2'8 —1 is incremented in AC right, and conversely,
1 in AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re-
moved at any given time is the last item in the list. This is usually referred
to as ““first in, last out” or “last in, first out”. Suppose locations a, b, ¢, ...
are set aside for a pushdown list. We can deposit data in aq, b, ¢, d, then read

2-13

In the KI10 a PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KI10 a POP executed
as an interrupt instruction
cannot set Trap 2.

A POP can be used to imple-
ment a reverse BLT, ie to
transfer a block of words
from one area of memory to
another, starting at the largest
addresses and proceeding to
the smallest. To move a block
of N words from a source area
to a destination area whose
maximum addresses are S and
D respectively, the program
must first set up a push-
down pointer in accumula-
tor T, where T left contains
N — 1 + 400000 and T right
contains S. The transfer is
then effected by this pair
of instructions

POP T,D-S(T)
JUMPL T,.~1

AUGUST 1974

2-14

where the jump returns to the
POP until T left is less than
400000, ie until it looks posi-
tive. The 400000 added into
T left prevents pushdown
overflow, but also limits the
block to 2!7 words.

AUGUST 1974

CENTRAL PROCESSOR §2.2

d, then write in d and e, then read e, d, ¢, etc.

Note that by trapping or checking overflow and keeping a control count in
AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini-
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most N items, the following suffices.

MOVSI P,-N
HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N— 1. Using Macro to full advantage one could
instead give

MOVE P,[IOWD N,BLIST]
where the pseudoinstruction
IOWD J, K

is replaced by a word containing —J/ in the left half and K — 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions —
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,P)

Of course this does not shorten the list — the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive ractor. Thus we can
retrieve the next to last item by giving

MOVE AC,—-1(P)
and so forth. Similarly

PUSH P,-3(P)

§2.3 BYTE MANIPULATION

adds the third to last item to the end of the list;
POP P,—2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address F is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

P s 1l x| Y

0 56 11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if P is 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: /, X and Y are used to cal-
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

T/
I W//s BITS / P BITS
/77777777

0 35-P-S+1 35-P 35-P+1 35

where the shaded area is the byte.

To facilitate processing a series of bytes, several of the byte instructions
increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P — S, unless
there is insufficient space in the present location for another byte of the
specified size (P—S < 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 — S to point to the first byte at
the left in the new location.

Caution (K410 ONLY)
Do not allow Y to reach maximum value. The whole pointer is incre-

2-15

Note that E is calculated
before the contents of P are
changed.

In a KA10 without byte ma-
nipulation hardware, all of the
instructions presented in this
section are trapped as un-
assigned codes [§2.10].

Bit 12 is reserved for future
use and should be 0.

AUGUST 1974

2-16

In the KI10, incrementing
maximum Y produces a zero
address without affecting X.

The A portion of this instruc-
tion is reserved for future use
and should be zero (at present
it is ignored).

NOVEMBER 1974

CENTRAL PROCESSOR §2.3

mented, so if Y is 28— 1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri-
ority interrupt should occur before the calculation is complete, the in-
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LDB Load Byte
| 135 | 4 1] x | Y
0 89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

DPB Deposit Byte

137 | 4 1] x | Y |

0 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

1BP Increment Byte Pointer
| 133 | a4 |1 x | Y]
V] 89 121314 1718 35

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte
134 | a4 [1] x | Y
(1] 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre-
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

§2.4 LOGIC

IDPB Increment Pointer and Deposit Byte

[136 | 4 |1l x | Y j
V] 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (44;5). Incrementing then replaces the 36 with 36 —.S to point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]).

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100 — S rather than 36 —S. For
S > 36 the byte is at most the entire word; for P = 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P +S > 36,
a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the
byte are deposited in position P.

24 LOGIC

For logical operations the PDP-10 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane-
ously. Thus in the anp function of two words, each bit of the result is the
AND of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all 1s) the
modes differ only in the destination of the result, so basic and immediate

SETZ and SETZI are equiva-
lent (both merely clear AC).
In them, I, X and Y are re-
served for future use and
should be zero (at present £
is ignored).

MAcro also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent. In them, /, X and Y are
reserved for future use and
should be zero (at present E
is ignored).

AUGUST 1974

CENTRAL PROCESSOR

§2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu-

lator addressed by A, even when there is no AC operand.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word 0, E AC
Memory M E E
Both B E ACand F
SETZ Set to Zeros
| 400 |mM| 4 |1l x Y
0 67 89 1213 14 1718 35
Change the contents of the destination specified by M to all Os.
SETZ Set to Zeros 400
SETZI Set to Zeros Immediate 401
SETZM Set to Zeros Memory 402
SETZB Set to Zeros Both 403
SETO Set to Ones
| 474 M| a |1l x Y
0 67 89 121314 1718 35
Change the contents of the destination specified by M to all 1s.
SETO Set to Ones 474
SETOI Set to Ones Immediate 475
SETOM Set to Ones Memory 476
SETOB Set to Ones Both 477
SETA Setto AC
424 |[m| 4 |1 x | Y |
0 67 89 121314 1718 35

Make the contents of the destination specified by M equal to AC.

§2.4 LOGIC

SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427
SETCA Set to Complement of AC

| 450 [m| 4 [1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement
of AC.

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453
SETM Set to Memory

414 (M| a4 |1l x Y
0 67 89 121314 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417
SETCM Set to Complement of Memory

| 460 M| 4 |1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand.

2-19

SETA and SETAI are no-ops.
In them, I, X and Y are re-
served for future use and
should be zero (at present E
is ignored).

SETAM and SETAB are
both equivalent to MOVEM
(all move AC to location E).

SETCA and SETCAI are
equivalent (both complement
AC). In them, I, X and Y are
reserved for future use and
should be zero (at present E
is ignored).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0,F to AC
and is thus equivalent to
MOVEIL SETMM is a no-op
that references memory.

AUGUST 1974

2-20

SETCMI moves the comple-
ment of the word 0,E to AC.
SETCMM complements loca-
tion E.

CENTRAL PROCESSOR §2.4

SETCM Set to Complement of Memory 460
SETCMI Set to Complement of Memory Immediate 461
SETCMM Set to Complement of Memory Memory 462
SETCMB Set to Complement of Memory Both 463
AND And with AC

| 404 M| a4 [1I] x | Y]
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the aND function
of the specified operand and AC.

AND And 404
ANDI And Immediate 405
ANDM And to Memory 406
ANDB And to Both 407

ANDCA And with Complement of AC

410 [m| a4 |1 x | Y J

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
ANDCAI And with Complement of AC Immediate 411
ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

| 420 [m|[a4 i x | Y B

67 89 1213 14 1718 35
Change the contents of the destination specified by M to the aND function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory ' 420
ANDCMI And Complement of Memory Immediate 421

8§2.4 LOGIC
ANDCMM And Complement of Memory to Memory 422
ANDCMB And Complement of Memory to Both 423

ANDCB And Complements of Both

440 M A Il X Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function of
the complements of both the specified operand and AC. The result is the
Nor function of the operands.

ANDCB And Complements of Both 440
ANDCBI And Complements of Both Immediate 441
ANDCBM And Complements of Both to Memory 442
ANDCBB And Complements of Both to Both 443
I0R Inclusive Or with AC

[434 |m] a4 1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and AC.

I0R Inclusive Or 434
I0RI Inclusive Or Immediate 435
I0RM Inclusive Or to Memory 436
I0RB Inclusive Or to Both 437
ORCA Inclusive Or with Complement of AC

454 M| 4 1] x | Y }
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
ORCAI Or with Complement of AC Immcdiate 455
ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

2-21

MACRO also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-
monics.

2-22

CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC
464 |m| a 1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complement of the specified operand and AC.

ORCM Or Complement of Memory 464
ORCMI Or Complement of Memory Immediate 465
ORCMM Or Complement of Memory to Memory 466
ORCMB Or Complement of Memory to Both 467
ORCB Inclusive Or Complements of Both

L 470 [m] 4 [1i] x | Y |
1] 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complements of both the specified operand and AC. The
result is the NaND function of the operands.

ORCB Or Complements of Both 470
ORCBI Or Complements of Both Immediate 471
ORCBM Or Complements of Both to Memory 472
ORCBB Or Complements of Both to Both 473
XOR Exclusive Or with AC

430 |m| a 1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the exclusive or
function of the specified operand and AC.

XOR Exclusive Or 430
XORI Exclusive Or Immediate 431
XO0RM Exclusive Or to Memory 432
XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the resuit.

§2.4 LOGIC

EQV Equivalence with AC

[444 [m| a4 [1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive or function of the specified operand and AC (the result has Is
wherever the corresponding bits of the operands are the same).

EQV Equivalence 444
EQVI Equivalence Immediate 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3—6 of the instruction word.

AC o 1 0 1

Mode Specified Operand 0 0 1 1
SETZ 0O 0 o0 O
AND 0O o0 o0 1
ANDCA O o0 1 O
SETM 0o o0 1 1
ANDCM O 1 o0 O
SETA o 1 o0 1
XOR 0 1 1 0
IOR 0 1 1 1
ANDCB 1 0 0 O
EQV 1 0 0 1
SETCA 1 0 1 O
ORCA 1 0 1 1
SETCM 1 1 0 O
ORCM 1 1 0 1
ORCB 1 1 1 0
SETO 1 1 1 1

2-23

2-24

LSH

LSHC

ROT

ROTC

ASH

ASHC

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A+1 (mod 20g), concat-
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

A 0
0 35
A N 4+1 0
0 35 0 35
A
0 35
- A A+1
0 35 0 35
> A 0
1 35
A+
0
A A+ 1 0
1 35 1 35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

§2.4 LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see §2.5.]1 In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 2% in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive £ produces motion to the left, a negative £ to the right.
In the KA10, maximum movement is 255 places. The KI10 eliminates re-
dundant movement by logical shifting at most 72 places regardless of the
value of F, and rotating £ mod 72 places (except 72 places if £ is a nonzero
multiple of 72).

LSH Logical Shift

242 4 |1l x | Y

0 89 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit O is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined
| 246 | 4 [1] x | Y
0 89 121314 1718 35

Concatenate accumulators 4 and A+1 with 4 on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 36 is shifted into bit
35; data shifted out of bit O is lost. If E is negative, shift right bringing Os
into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate
[241 [a4 [i] x] Y]
0 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit O is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

2-25

AUGUST 1974

2-26

Overflow is determined di-
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

In the KI10 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

CENTRAL PROCESSOR §2.5

ROTC Rotate Combined
[245 | 4 i x | Y]
0 89 1213 14 1718 35

Concatenate accumulators A and A+1 with 4 on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit O is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP—10 has instructions for arithmetic shift-
ing (which is essentially multiplication by a power of 2) as well as for per-
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§ 1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators 4 and A+1 (mod 20g), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper-
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry O and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word
[§2.7]. In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica-
tion, too large a number to convert to fixed point [§2.6], and loss of signi-
ficant bits in left arithmetic shifting. In the KI10 any condition that sets
Overflow also sets the Trap 1 flag.

These flags can be read and controlled by certain program control instruc-
tions [§82.9, 2.10]. KI10 overflow is handled by trapping through the

§2.5 FIXED POINT ARITHMETIC

setting of Trap 1 [§2.9], but in the KA10, the program must make direct
use of the Overflow flag, which is available as a processor condition (via an
in-out instruction) that can request a priority interrupt if enabled [§2.14].
The conditions detected can only set the arithmetic flags and the hardware
does not clear them, so the program must clear them before an instruction

if they are to give meaningful information about the instruction afterward.

However, the program can check the flags following a series of instructions

to determine whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word O, F AC
Memory M E E
Both B E ACand E
ADD Add

x| Y |

121314 1718 35

| 270 [mM] 4
0 6 89

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is = 235 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235.
If the sum is < —23% set Overflow and Carry O; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 23°. Set both
carry flags if both summands are negative, or their signs differ and their mag-
nitudes are equal or the positive one is the greater in magnitude.

7

ADD Add 270
ADDI Add Immediate 271
ADDM Add to Memory 272
ADDB Add to Both 273
SUB Subtract

| 274 [m] a4 [1] x] Y |
0 67 89 121314 1718 35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is = 235 set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235. If the difference is < —23° set Overflow and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to

2-27

User overflow is handled by
the Monitor according to
instructions from the user.
Refer to Chapter 3 of
DECsystem—10 Monitor Calls.

Besides indicating error types,
the carry flags facilitate per-
forming multiple precision
arithmetic.

AUGUST 1974

2-28

A Remember that bit 0 of the
low order word is equal to
the sign of the product.

CAUTION

In the KA10, an AC operand
of =235 is treated as though
it were +235, producing the
incorrect sign in the product.

NOVEMBER 1974

CENTRAL PROCESSOR §2.5

the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

SUB Subtract 274
SUBI Subtract Immediate 275
SUBM Subtract to Memory 276
SUBB Subtract to Both 277
MUL Multiply

| 224 |m| 4 |1 x | Y B
0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator A+1. If both oper-
ands are —235 set Overflow; the double length result stored is —27°.

MUL Multiply 224
MULI Multiply Immediate 225
MULM Multiply to Memory 226
MULB Multiply to Both 227
IMUL Integer Multiply

220 (M| a4 il x | Y]
0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is = 235 or < =235 (ie if the high order word of the
double length product is not null); the high order word is lost.

IMUL Integer Multiply 220
IMULI Integer Multiply Immediate 221
IMULM Integer Multiply to Memory 222
IMULB Integer Multiply to Both 223
DIv Divide

| 234 [m| a4 1] x | Y |
0 67 89 121314 1718 35

a If the high order word of the magnitude of the double length number in

§2.5 FIXED POINT ARITHMETIC

accumulators A and A+1 is greater than or equal to the magnitude of the
operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula-
tors A and A+1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator A+1.

DIV Divide 234

DIVI Divide Immediate 235

DIVM Divide to Memory 236

DIVB Divide to Both 237

IDIV Integer Divide

| 230 |m| 4 [1] x | Y

0 67 89 121314 1718 35

If the operand specified by M is zero, or AC contains —23 and the operand
specified by M is 1, set Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way. Otherwise divide AC by the specified operand, calculating a
quotient of 35 magnitude bits including leading zeros. Place the unrounded
quotient in the specified destination. If M specifies AC as the destination,
place the remainder, with the same sign as the dividend, in accumulator 4+1.

IDIV Integer Divide 230
IDIVI Integer Divide Immediate 231
IDIVM Integer Divide to Memory 232
IDIVB Integer Divide to Both 233

ExampLes. The integer multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register.

Suppose we wish to reverse the order of the digits in the 6-bit character
abcdef, where the letters represent the bits of the character. We first dupli-
cate it three times to the left and shift the result left one place producing

a bcd efa bed efa bed efa bed ef0

where the bits are grouped corresponding to the octal digits in the word.
Anding this with

1 000 100 100 010 010 000 001 000

2-29

NOVEMBER 1974

2-30

*HAKMEM 140, page 78
(Artificial Intelligence Memo-
randum, No. 239, February
29, 1972, MIT Artificial In-
telligence Laboratory).

These examples require that
the rest of A, outside the
character, be clear.

AUGUST 1974

CENTRAL PROCESSOR §2.5

gives
a 000 e00 00 0Of0 0OcO 000 004 000

Now it just so happens this number is configured such that the residues of
the values of its bits modulo 28 — 1 are in exactly the opposite order from
the bits of the original character and have the binary orders of magnitude
0-5. In other words this number is equal to the sum of the numbers in the
upper row below, and dividing each of these summands by 255 gives the
remainder listed in the lower row.

Dividend X213 eX2% gX23 X210 pX27 gX2%#
Remainder fX2° eX24 dX23 ¢X2? bX2! aX?2°

The remainder in a division is equal to the sum, modulo the divisor, of the
remainders left by dividing each of the dividend summands by the same
divisor. And the sum of the terms in the lower row is obviously fedcbha.
The above procedure is implemented by this sequence (due to Schroeppel*)
where the character is right-justified in accumulator A, and its reverse
appears right-justified in accumulator A+1.

IMUL A,[2020202] ;4 copies shifted left one
AND A,[104422010] ;Pick bits for reverse
IDIVI A,3777 ;Divide by 28 — 1

To reverse eight bits we can use a similar procedure (also due to Schroeppel)
where again the original character is right-justified in A and its reverse
appears right-justified in A+1. But this time we cannot manage the manipu-
lation within a single length word, so we must use multiply, divide, and a
pair of ANDs.

MUL A,[100200401002] ;5 copiesin A and A+1
AND A+1,[20420420020] ;Pick bits for reverse via
ANDI A4l ;residues mod 210 — 1

DIVI A,1777 ;Divide by 210 — 1

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-
ber in AC or the double length number in accumulators 4 and A+1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis-
cussed here is similar to logical shifting [see §2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted —
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single

FIXED POINT ARITHMETIC

§2.5

shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift £ is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. In the KA10,
maximum movement is 255 places. The KI10 eliminates redundant move-

ment by shifting at most 72 places regardless of the value of E.

ASH Arithmetic Shift
240 | 4 1] x | Y |
0 89 121314 17138 35

Shift AC arithmetically the number of places specified by £. Do not shift
bit 0. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num-
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, 1s if negative; data shifted out of bit 35 is’lost.

ASHC Arithmetic Shift Combined
244 | 4 |1l x | Y |
0 89 121314 1718 35

Concatenate the magnitude portions of accumulators A and A+1 with 4 on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num-
ber of places specified by £. Do not shift AC bit 0, but make bit 0 of AC
A+1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi-
tive, shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 37 (bit 1 of AC
A+1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a O in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1s if nega-
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)

2-31

An arithmetic right shift trun-
cates a negative result differ-
ently from IDIV if 1s are
shifted out. The result of the
shift is more negative by one
than the quotient of IDIV.

To obtain the same quo-
tient that IDIV would give
with a dividend in A divided
by N=2K use

SKIPGE A
ADDI A,N-1
ASH A—K

For K <20 this is only slightly
faster than IDIVI, except in
the KA10 where it takes only
5-6 us as opposed to about
16 us for IDIVL.

Note that the effect of a shift
on bit 0 of the low order word
is consistent with the conven-
tion used for double length
fixed point numbers. When
there is no shift however, the
result may be inconsistent
with that convention.

In a KA10 without floating
point hardware, all of the in-
structions presented in this
section are trapped as un-
assigned codes [§2.10].

AUGUST 1974

A

2-32

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con-
taining only one bit of signi-
ficance.

CENTRAL PROCESSOR §2.6

and negating double length numbers (software format) as well as performing
addition, subtraction, multiplication and division of numbers in single pre-
cision floating point format. Moveover the KI10 has instructions for per-
forming the four standard arithmetic operations on floating point numbers
in hardware double precision format, for moving double precision numbers
(with the option of taking the negative) between a pair of accumulators and
a pair of memory locations, and for converting single precision numbers
from fixed format to floating and vice versa. Except for the conversion in-
structions and the simple moves, all instructions treated here interpret all
operands as floating point numbers in the formats given in §1.1, and
generate results in those formats. The reader is strongly advised to reread
§1.1 if he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the pro-
gram can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length operands.
Instructions without rounding have a “long” mode, which supplies a two-
word result for greater precision; the other modes save time in one-word
operations where rounding is of no significance.

Actually the result is formed in a double length register in addition, sub-
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re-
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result (“result” shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi-
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no
normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

Among the floating point instructions available only in the KI10, those
that convert between number types operate only on single words. The in-
struction that converts to floating point assumes the operand is an integer
and always normalizes and rounds the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the pro-
gram. The instructions for the four standard operations using double pre-
cision have no modes. In division the processor always calculates a two-word
quotient that is normalized if the original operands are normalized, but
rounding is not available. In addition, subtraction and multiplication, the
result is formed in a triple length register, wherein bits of significance in the
lowest order part supply information for limited normalization and then
for rounding, which is automatic.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or

§2.6 FLOATING POINT ARITHMETIC

too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Except where the result would be
in fixed point form, any of these circumstances sets Overflow and Floating
Overflow. If only these two are set, the exponent of the answer is too large;
if Floating Underflow is also set, the exponent is too small. No Divide being
set means the processor failed to perform a division, an event that can be pro-
duced only by a zero divisor if all nonzero operands are normalized. Any con-
dition that sets Overflow in the KI10 also sets the Trap 1 flag. These flags can
be read and controlled by certain program control instructions [§§2.9, 2.10].
KI10 overflow is handled by trapping through the setting of Trap 1 [§2.9],
but in the KA 10, the program must make direct use of Overflow and Floating
Overflow, which are available as processor conditions (via an in-out instruc-
tion) that can request a priority interrupt if enabled [§2.14]. The conditions
detected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before a floating point instruction if
they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding % X 22 and 0 X 29 gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit O and Os in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
“fraction’ with value —1. This unnormalized number can produce an incor-
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag-
nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 2835 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive £
increases the exponent, a negative £ decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range —256 to
+255.

2-33

In the KI10 an arithmetic
instruction executed as an in-
terrupt instruction can set no
flags.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom-
panying exponent adjustment
thus multiply the number
both by 2 and by % simulta-
neously, leaving its value un-
changed.

Note that with normalized
operands, the processor uses
at most two bits of informa-
tion from the lowest order
part to normalize the result.
In multiplication this is
obvious, since squaring the
minimum fractional magni-
tude % gives a result of %. In
an addition or subtraction of
numbers that differ greatly in
order of magnitude, the result
is determined almost com-
pletely by the operand of
greater order. A subtraction
involving two like-signed num-
bers with equal exponents re-
quires no shifting beforehand
so there is no information in
the lowest order part. Hence
an addition or subtraction
never requires shifting both
before the operation and in
the normalization;when there
is no prior shifting, the nor-
malization brings in Os.

2-34

This instruction can be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(2335 = 155, = 128 +27).

In the KA1O these instruc-
tions are trapped as unassigned
codes.

This overflow test checks for
a value > 2% assuming the
operand is normalized.

This is the standard Fortran
truncation (““fixation”). For
it, the processor drops the

CENTRAL PROCESSOR §2.6

FSC Floating Scale
[132 | 4 |1l x | Y |
0 89 121314 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2%), normal-
ize the resulting word bringing Os into bit positions vacated at the right, and
place the result back in AC.

NoTE

A negative E is represented in standard twos com-
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one.
If < —128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Number Conversion

Although FSC can be used to float a fixed point number, the KI10 has three
single precision instructions specifically for converting between integers and
floating point numbers. In all cases the operand is taken from location E,
and the converted result is placed in AC.

FIX Fix

122 [4 Ji] x | Y |
0 89 121314 1718 35
If the exponent of the floating point number in location £ is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of £ in any way.

Otherwise replace the exponent X in the word from location £ with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N =X — 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (0Os for positive, 1s for negative) into bit 1, and then
truncate to an integer. Place the result in AC.

Truncation produces the integer of largest magnitude less than or equal to
the magnitude of the original number. Eg a number > +1 but < +2 becomes
+1; a number < —1 but > —2 becomes —1.

§2.6 FLOATING POINT ARITHMETIC

FIXR Fix and Round

[126 | a4 |1 x | Y |
0 89 121314 1718 35

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of £ in any way.

Otherwise replace the exponent X in the word from location £ with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N =X — 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (Os for positive, 1s for negative) into bit 1, and then round
the integral part. Place the result in AC.

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is = % in a positive number but
> % in a negative number. Eg +1.4 (decimal) is rounded to +1, whereas
+1.5 and +1.6 become +2; but with negative numbers, —1.4 and —1.5
become —1, whereas —1.6 becomes —2.

FLTR Float and Round

x| Y |

121314 1718 35

127 | 4

0 89

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in proper form) into bits 1-8 to move
the shifted binary point to the left of bit 9 (35 =27 + 8), and normalize the
fraction bringing first the bits originally shifted out and then Os into bit
positions vacated at the right. If fewer than eight bits (left shifts) are needed
to normalize, use the next bit to round the single length fraction. Place
the result in AC.

The rounding function is the same as that used by the standard floating
point arithmetic instructions [see below].

Since the largest fixed point magnitude (without considering sign) is
235 — 1, a floating point number with exponent greater than 35 (and
assumed normalized) cannot be converted to fixed point. There is no limit
in the opposite direction, but precision can be lost as floating point format
provides fewer significant bits. A fixed integer greater than 227 — 1 cannot
be represented exactly in floating point unless all its significant bits are
clustered within a group of twenty-seven.

2-35

fractional part in a positive
number, but adds one to the
integral part (as required by
twos complement format) if
any bits of significance are
shifted out in a negative
number.

This overflow test checks for
a value > 2% assuming the
operand is normalized.

This is the Algol standard for
real to integer conversion. For
it the processor adds one to
the integral part if the frac-
tional part is = % in a posi-
tive number or (as required
by twos complement format)
is < % in a negative number.

2-36

In the hardware the rounding
operation is actually some-
what more complex than
stated here. If the result is
negative, the hardware com-
bines rounding with placing
the high order word in twos
complement form by decreas-
ing its magnitude if the low
order part is < %LSB. More-
over an extra single-step re-
normalization occurs if the
rounded word is no longer
normalized.

CENTRAL PROCESSOR §2.6

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word E,0 AC
Memory M E E
Both B E ACand E

Note however that floating point immediate uses £,0 as an operand, not
0,E. In other words the half word E is interpreted as a sign, an 8-bit expo-
nent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating Overflow; the result stored has an expo-
nent 256 less than the correct one. If <-—128, set Overflow, Floating Over-
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR

| 144 M| 4
67 89

0

Floating Add and Round

1 x| Y l

121314 1718 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR Floating Add and Round 144
FADRI Floating Add and Round Immediate 145
FADRM Floating Add and Round to Memory 146
FADRB Floating Add and Round to Both 147

§2.6 FLOATING POINT ARITHMETIC
FSBR Floating Subtract and Round
154 (M| 4 |1 x | Y
0 67 89 121314 1718 35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under-
flow as described above, and place the result in the specified destination.

FSBR Floating Subtract and Round 154
FSBRI Floating Subtract and Round Immediate 155
FSBRM Floating Subtract and Round to Memory 156
FSBRB Floating Subtract and Round to Both 157
FMPR Floating Multiply and Round

164 M A Il X Y
0 67 89 121314 1718 35

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for exponent overflow or underflow
as described above, and place the result in the specified destination.

FMPR Floating Multiply and Round 164
FMPRI Floating Multiply and Round Immediate 165
FMPRM Floating Multiply and Round to Memory 166
FMPRB Floating Multiply and Round to Both 167
FDVR Floating Divide and Round

174 |m| a4 |1} x | Y
0 67 89 121314 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Overflow, Floating Over-
flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec-
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise round the fraction using the extra bit calculated. If the original

2-37

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

2-38

Note that this instruction can
be used to negate numbers in
software double precision for-
mat only; for the KI10 hard-
ware double precision format,
the program must use the
double moves.

Usually the double length
number is in two adjacent
accumulators, and E' equals
A+1. There is no overflow
test, as negating a correctly
formatted floating point num-
ber cannot cause overflow.

DFN AC,AC is undefined.

The caution given below for
FAD applies to this instruc-
tion as well.

AUGUST 1974

CENTRAL PROCESSOR §2.6

operands were normalized, the single length quotient will already be
normalized; if it is not, normalize it bringing Os into bit positions vacated
at the right. Test for exponent overflow or underflow as described above,
and place the result in the specified destination.

FDVR Floating Divide and Round 174
FDVRI Floating Divide and Round Immediate 175
FDVRM Floating Divide and Round to Memory 176
FDVRB Floating Divide and Round to Both 177

Single Precision without Rounding

Instructions that do not round are faster for processing floating point
numbers with fractions containing fewer than 27 significant bits. On
the other hand the long mode provides double precision (software format)
or allows the programmer to use his own method of rounding. Besides
the four usual arithmetic operations with normalization, there are two
nonnormalizing instructions that facilitate software double precision arith-
metic [§2.11 gives examples of double precision floating point routines].
These two instructions have no modes.

DFN Double Floating Negate
| 131 | 4 [1] x | Y
0 89 121314 1718 35

Negate the double length floating point number composed of the contents of
AC and location £ with AC on the left. Do this by taking the twos comple-
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location F without altering the original contents
of bits 0—-8 of that location.

UFA Unnormalized Floating Add
130 | 4 |1 x | Y
0 89 1213 14 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear accumulator A+1. Otherwise normalize the sum
only if the magnitude of its fractional part is = 1, and place the high order
part of the result in AC 4+1. The original contents of AC and E are
unaffected.

§2.6 FLOATING POINT ARITHMETIC

NoTE

The result is placed in accumulator A+/. This is
the only arithmetic instruction that stores the
result in a second accumulator, leaving the original
operands intact.

If the exponent of the sum following the one-step normalization is > 127,
set Overflow and Floating Overflow; the result stored has an exponent 256
less than the correct one.

The remaining single precision floating point instructions perform the four
standard arithmetic operations with normalization but without rounding.
All use AC and the contents of location F as operands and have four modes.

Mode Suffix Effect
Basic High order word of result stored in AC.
Long L In addition, subtraction and multiplica-

tion, the two-word result (in the software
double length format described in §1.1)
is stored in accumulators A and A+1. In
division the dividend is the double length
word in A and A+1; the single length
quotient is stored in AC, the remainder

in ACA+1.
Memory M High order word of result stored in E.
Both B High order word of result stored in AC
and E.

In each of these instructions, the exponent that results from normaliza-
tion is tested for overflow or underflow. If the exponentis > 127, set Over-
flow and Floating Overflow; the result stored has an exponent 256 less than
the correct one. If < —128, set Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one.

FAD Floating Add

140 M| a4 1] x | Y |

0 67 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M, clearing both accu-
mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or

2-39

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

CAUTION

In single precision addition the
term with the smaller expo-
nent is right shifted in a double

AUGUST 1974

2-40

length register, specifically a
register with 54 magnitude
bits. Now if the difference in
the exponents is < 54, there
is at least one significant bit
after the shift (assuming
normalized operands); and if
the difference is > 64, the
hardware throws the term
away by substituting zero.
But when the exponent dif-
ference lies in the range 54 to
64, the procedure disposes of
all significant bits without
actually substituting zero.
This means that if the shifted
term is positive it appears in
the addition as all Os, but if
negative it appears as all Is.
The latter case gives an answer
that is less by one LSB.

The caution given above for
addition applies also to sub-
traction, which is done by
adding with the minuend
negated. Here the lesser
answer (as against a true zero
substitution) occurs when the
term with the smaller expo-
nent is negative after the
minuend negation, ie when it
is a negative subtrahend but a
positive minuend.

AUGUST 1974

CENTRAL PROCESSOR §2.6

underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is <—101 (—128 + 27) or the
low order half of the fraction is zero, clear AC A+1. Otherwise place a low
order word for a double length result in A+1 by putting a 0 in bit 0, an
exponent in positive form 27 less than the exponent of the sum in bits 1-8,
and the low order part of the fraction in bits 9-35.

FAD Floating Add 140
FADL Floating Add Long 141
FADM Floating Add to Memory 142
FADB Floating Add to Both 143
FSB Floating Subtract

| 150 |m| a |1l x | Y |
V] 67 89 121314 1718 35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M, clear-
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo-
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

In long mode if the exponent of the difference is <—101 (—128 +27) or
the low order half of the fraction is zero, clear AC A+1. Otherwise place a
low order word for a double length result in A+1 by putting a 0 in bit 0, an
exponent in positive form 27 less than the exponent of the difference in bits
1-8, and the low order part of the fraction in bits 9-35.

FSB Floating Subtract 150
FSBL Floating Subtract Long 151
FSBM Floating Subtract to Memory 152
FSBB Floating Subtract to Both 153
FMP Floating Multiply

160 M| a4 1] x | Y |

0 67 89 121314 1718 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length

§2.6 FLOATING POINT ARITHMETIC

product bringing Os into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination.

In long mode if the exponent of the product is > 154 (127 +27) or
< -101 (=128 +27) or the low order half of the fraction is zero, clear AC
A+1. Otherwise place a low order word for a double length result in 4+1
by putting a O in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction
in bits 9-35.

FMP Floating Multiply 160
FMPL Floating Multiply Long 161
FMPM Floating Multiply to Memory 162
FMPB Floating Multiply to Both 163
FDV Floating Divide

170 [m| a 1| x | Y
0 67 89 121314 1718 35

If the magnitude of the fraction in AC (in long mode, the high order part of 4

the magnitude of the double length fraction in accumulators A and A+1) is
greater than or equal to twice the magnitude of the fraction in location E,
set Overflow, Floating Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way.

If division can be performed, floating divide the AC operand by the
contents of location £. In long mode the AC operand (the dividend) is the
double length number in accumulators 4 and A+1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction
is zero, clear the destination specified by M, clearing both accumulators in
long mode if the double length dividend was zero. A quotient with a non-
zero fraction will already be normalized if the original operands were nor-
malized; if it is not, normalize it bringing Os into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.

If the remainder exponent is < —128 or the fraction is zero, clear AC A+1.

Otherwise place the floating point remainder (exponent and fraction) with
the sign of the dividend in AC A+1.

FDV Floating Divide 170
FDVL Floating Divide Long 171
FDVM Floating Divide to Memory 172
FDVB Floating Divide to Both 173

2-41

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

In long mode a nonzero un-
normalized dividend whose
entire high order fraction is
zero produces a zero quo-
tient. In this case the second
AC is cleared in the KII10
but may receive rubbish in
the KA10.

NOVEMBER 1974

2-42

In the KA 10 these instructions
are trapped as unassigned
codes.

An arithmetic instruction exe-
cuted as an interrupt instruc-
tion can set no flags.

CENTRAL PROCESSOR §2.6

Double Precision Operations

Although double precision floating point arithmetic can be done by routines
using the single precision instructions and the software double length format,
the KI10 has instructions specifically for handling double length operands
in the hardware double precision format described in §1.1. Four of the
instructions use two double length operands, perform the standard arith-
metic operations, and store double length results. The other four instructions
each move one double length operand between the accumulators and
memory, either unchanged or negated.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A+1 (mod 20g) just as they do for the double length operands used in some
shift, rotate and single precision arithmetic instructions. The memory
locations have addresses £ and E+1 (mod 2'¥), where the second address
is 0 if £ is 7777717.

For the two instructions that simply move a pair of words without
altering them, the format of those words is actually irrelevant. The other
six instructions process each word pair as a double length number in the
hardware floating point format. Hence they ignore bit O in the low order
word of every operand and clear that bit in the result.

The four nonmove instructions perform the standard arithmetic opera-
tions. All use two double length operands in the hardware double precision
format, one from the accumulators and one from memory. Addition
and subtraction always normalize the result; in multiplication and division
the result is guaranteed to be normalized only if the original operands
are normalized. In all cases the result, rounded except in division, is
placed in the accumulators. The rounding function is the same as that
used in single precision: if the part of the answer being dropped (the
low order part of the fraction) is greater than or equal in magnitude to
one half the LSB of the double length part being retained, the magnitude
of the latter part is increased by one LSB (with appropriate adjustment for
a twos complement negative).

In each of these instructions, the exponent that results from normaliza-
tion and rounding (if done) is tested for overflow or underflow. If the
exponent is > 127, set Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < —128, set Overflow,
Floating Overflow and Floating Underflow; the result stored has an
exponent 256 greater than the correct one. Setting Overflow also sets
the Trap 1 flag.

DFAD Double Floating Add
110 | 4 1] x | Y |
0 89 121314 1718 35

Floating add the operand of locations £ and E+1 to the operand of
accumulators 4 and A+1. If the high order 70 bits of the fraction in the

§26 FLOATING POINT ARITHMETIC

sum are zero, clear A and A+1. Otherwise normalize the triple length sum
bringing Os in at the right, round the high order double length part, test for
exponent overflow or underflow as described above, and place the result
in ACs 4 and A+1.

DFSB Double Floating Subtract
[111 | 4 |1 x | Y
0 89 121314 1718 35

Floating subtract the operand of locations £ and E+1 from the operand of
accumulators 4 and 4+1. If the high order 70 bits of the fraction in the
difference are zero, clear 4 and A+1. Otherwise normalize the triple
length difference bringing Os into bit positions vacated at the right, round
the high order double length part, test for exponent overflow or underflow
as described above, and place the result in ACs 4 and A+1.

DFMP Double Floating Multiply
112 | a4 |1l x | Y |
0 89 121314 1718 35

Floating multiply the operand of accumulators 4 and 4+1 by the operand
of locations £ and E+1. If the high order 70 bits of the fraction in
the product are zero, clear 4 and A+1. Otherwise, if there are any
bits of significance among the high order 35, do at most one normalization
shift if required; if the high order 35 bits are zero, shift the fraction
left 35 places (adjusting the exponent), and then do at most one normaliza-
tion shift if required. Round the high order double length part, test for
exponent overflow and underflow as described above, and place the result
in ACs 4 and A+1.

DFDV Double Floating Divide
113 | a i x] Y
0 89 121314 1718 35

If the magnitude of the fraction in the operand of accumulators A and 4+1
is greater than or equal to twice that of the fraction in the operand of
locations E and E+1, set Overflow, Floating Overflow, No Divide and
Trap 1, and go immediately to the next instruction without affecting the
original AC or memory operands in any way.

If the division can be performed, floating divide the AC operand by the
memory operand, calculating a quotient fraction of 62 bits. If the fraction

2-43

The 35-bit shift can be done
only if the original operands
are unnormalized.

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

2-44

A nonzero quotient is normal-
ized if the original operands
are normalized.

Do not use the instruction
DMOVEM AC,AC+1. Atpre-
sent thé processor places AC
in both AC+1 and AC+2, but
this result is not guaranteed.

Note that these two instruc-
tions can be used to negate
numbers in hardware double
precision format only; for
software double precision, the
program must use DFN.

Note also that there is no
overflow test, as negating a
correctly formatted floating
point number cannot cause
overflow.

Do not use the instruction
DMOVNM AC,AC+1. Atpre-

CENTRAL PROCESSOR §2.6

is zero, clear A and A+1. Otherwise test for exponent overflow or under-
flow as described above, and place the double length quotient part of the
result in ACs A and A+1 (the remainder is lost).

DMOVE Double Move

120 4 1l x Y

V] 89 121314 1718 35

Move the contents of locations £ and E+1 respectively to accumulators A
and A+1. The memory locations are unaffected, the original contents
of the ACs are lost.

[

DMOVEM Double Move to Memory
124 | a4 |/ x | Y |
0 89 121314 1718 35

Move the contents of accumulators 4 and A+1 respectively to locations £
and F+1. The ACs are unaffected, the original contents of the memory
locations are lost.

DMOVN Double Move Negative
121 | 4 |1 x | Y |
0 89 121314 1718 35

Negate the double length floating point number taken from locations F and
E+1, and move it to accumulators 4 and A+1. The memory locations are «
unaffected, the original contents of the ACs are lost.

DMOVNM Double Move Negative to Memory
125 | 4 |/ x | Y |
0 89 121314 1718 35

Negate the double length floating point number taken from accumulators
A and A+1, and move it to locations £ and E+1. The ACs are unaffected,
the original contents of the memory locations are lost.

§2.7 ARITHMETIC TESTING

Although the configuration of the operands is irrelevant in DMOVE and
DMOVEM, none of the above instructions is available in the KA10.
Therefore unless a program is actually doing floating point arithmetic in the
hardware double precision format, it is recommended that the double
moves not be used in KI10 programs so they will be compatible with
the KA10. Simply to move a two-word operand unaltered requires two
one-word moves. To negate a two-word operand that is actually in the
hardware format requires a somewhat longer substitution; eg this sequence
is equivalent to DMOVN AC,E.

SETCM AC,E ; Take ones complement of high word
MOVN AC+1,E+1 ;Take twos complement of low word
TLZ AC+1,400000 ;Clear bit 0

SKIPN AC+1 ;If low part is zero, change high word
ADDI AC,1 ;to twos complement

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive
| 252 | a |1l x | Y
0 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is greater than or equal to zero (ie if bit O is 0, and hence a negative count
in the left half has reached zero or a positive count has not yet reached
217), take the next instruction from location E and continue sequential
operation from there.

Note: The KA10 increments the two halves of AC by adding 1 0000014
to the entire register. In the KI10 the two halves are handled independently.

AOBJN Add One to Both Halves of AC and Jump if Negative

| 253 | a4 [1] x | Y |

0 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is less than zero (ie if bit 0 is 1, and hence a negative count in the left half
has not yet reached zero or a positive count has reached 2!7), take the next
instruction from location £ and continue sequential operation from there.

2-45

sent the processor places the
negative of AC (the comple-
ment, if AC+1 originally con-
tains zero) into AC+1, and
the negative of that into
AC+2, but this result is not
guaranteed.

AUGUST 1974

2-46

In the KI10 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

CENTRAL PROCESSOR §2.7

Note: The KA10 increments the two halves of AC by adding 1 0000014
to the entire register. In the KI10 the two halves are handled independently.

In the KA10, incrementing both halves of AC together is effected by
adding 1 0000014. A count of —2 in AC left is therefore increased to zero if
2'8 —1 is incremented in AC right.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI XR,—N ;Put —N in XR left (clear XR right)
MOVEI AC,3 ;Put 3in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.—1 ;Update XR and go back unless all

;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode Suffix

Never

Less L
Equal E
Less or Equal LE
Always A
Greater or Equal GE
Not Equal N
Greater G

Instructions with one operand compare AC or the contents of location £
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip — the action is always taken regard-
less of how the two quantities compare.

The last four of these instructions perform arithmetic operations, which
are checked for overflow. In the KI10 any condition that sets Overflow
also sets the Trap 1 flag.

§2.7 ARITHMETIC TESTING

CAl Compare AC Immediate and Skip if Condition Satisfied

| 30 | m]| a | x | Y

0 56 89 121314 1718 35

Compare AC with E (ie with the word 0, F) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAl Compare AC Immediate but Do Not Skip 300

CAIL Compare AC Immediate and Skip if AC Less than F 301

CAIE Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC Less than 303
or Equal to E

CAIA Compare AC Immediate but Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than 305
or Equal to £

CAIN Compare AC Immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than £ 307

CAM Compare AC with Memory and Skip if Condition Satisfied

| 31 [m] a 1] x | Y

0 56 89 121314 1718 35

Compare AC with the contents of location £ and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310

CAML Compare AC with Memory and Skip if AC Less 311

CAME Compare AC with Memory and Skip if Equal 312

CAMLE Compare AC with Memory and Skip if AC Less 313
or Equal

CAMA Compare AC with Memory but Always Skip 314

CAMGE Compare AC with Memory and Skip if AC Greater 315
or Equal

CAMN Compare AC with Memory and Skip if Not Equal 316

CAMG Compare AC with Memory and Skip if AC Greater 317

JUMP Jump if AC Condition Satisfied

32 M| a |1 x | Y
0 56 89 121314 1718 35

Compare AC (fixed or floating) with zero, and if the condition specified by

2-47

CAl is a no-op in which I, X
and Y are reserved for future
use and should be zero (at
present E is ignored).

CAM is a no-op that refer-
ences memory.

AUGUST 1974

2-48

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry). In it, I, X
and Y are reserved for future
use and should be zero (at
present E is ignored).

If A is zero, SKIP is a no-op;
otherwise it is equivalent to
MOVE. (Instructien code 330
has mnemonic SKIP for sym-

metry.)

SKIPA is a convenient way to
load an accumulator and skip
over an instruction upon en-
tering a loop.

AUGUST 1974

CENTRAL PROCESSOR

§2.7

M is satisfied, take the next instruction from location E and continue

sequential operation from there.

JUMP Do Not Jump

JUMPL Jump if AC Less than Zero

JUMPE Jump if AC Equal to Zero

JUMPLE Jump if AC Less than or Equal to Zero
JUMPA Jump Always

JUMPGE Jump if AC Greater than or Equal to Zero
JUMPN Jump if AC Not Equal to Zero

JUMPG Jump if AC Greater than Zero

320
321
322
323
324
325
326
327

SKIP Skip if Memory Condition Satisfied
33 | m| a4 |1I] x Y
0 56 89 121314 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.

If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip 330
SKIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337
AQJ Add One to AC and Jump if Condition Satisfied
34 M A Il X Y
0 56 89 121314 1718 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained 235 — 1, set the Overflow and Carry 1 flags; if —1,

set Carry O and Carry 1.

A0J Add One to AC but Do Not Jump
AOJL Add One to AC and Jump if Less than Zero
AOQJE Add One to AC and Jump if Equal to Zero

AQJLE Add One to AC and Jump if Less than or Equal to Zero

340
341
342
343

§2.7 ARITHMETIC TESTING
AOQJA Add One to AC and Jump Always 344
AO0JGE Add One to AC and Jump if Greater than or Equal 345
to Zero

AQJN Add One to AC and Jump if Not Equal to Zero 346
A0JG Add One to AC and Jump if Greater than Zero 347
AOS Add One to Memory and Skip if Condition Satisfied

35 M A |Il X Y
0 56 89 121314 1718 35

Increment the contents of location £ by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 —1, set the Overflow and Carry 1 flags; if —1, set Carry 0 and Carry 1.
If A is nonzero also place the result in AC.

A0S Add One to Memory but Do Not Skip 350

AOSL Add One to Memory and Skip if Less than Zero 351

AOSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or Equal 353
to Zero

AOSA Add One to Memory and Skip Always 354

AOSGE Add One to Memory and Skip if Greater than or 355
Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356

AO0SG Add One to Memory and Skip if Greater than Zero 357

soJ Subtract One from AC and Jump if Condition Satisfied

[36 | M| a [1] x] Y |

0 56 89 121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained —235, set the Overflow and Carry O flags; if any other
nonzero number, set Carry 0 and Carry 1.

S0J
SOJL
SOJE
SOJLE

Subtract One from AC but Do Not Jump
Subtract One from AC and Jump if Less than Zero
Subtract One from AC and Jump if Equal to Zero

Subtract One from AC and Jump if Less than or
Equal to Zero

360
361
362
363

2-49

2-50

This procedure is invalid in
the KA10 if the programmer

CENTRAL PROCESSOR 8§2.7

S0JA Subtract One from AC and Jump Always 364
SOJGE Subtract One from AC and Jump if Greater than or 365
Equal to Zero
SOJN Subtract One from AC and Jump if Not Equal to Zero 366
S0JG Subtract One from AC and Jump if Greater than Zero 367
S0s Subtract One from Memory and Skip if Condition Satisfied
37 | M| a4 |1i] x | Y
0 56 89 121314 1718 35

Decrement the contents of location £ by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
—235 set the Overflow and Carry O flags; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

S0S Subtract One from Memory but Do Not Skip 370

SoSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero 372

SOSLE Subtract One from Memory and Skip if Less than or 373
Equal to Zero

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater 375
than or Equal to Zero

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero

S0SG Subtract One from Memory and Skip if Greater 377
than Zero

Some of these instructions are useful for determining the relative values of
fixed and floating point numbers; others are convenient for controlling
iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to —1. Either
processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location.

§2.8 LOGICAL TESTING AND MODIFICATION

AOSE LOCK ;Skip to interlocked code only if
JRST 1 ;LOCK is zero after addition
JInterlocked code starts here

SETOM LOCK ;Unlock

Since it takes several days to count to 23¢, it is alright to keep testing the
lock.

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to 1s in the mask and they are
referred to as the ‘“‘masked bits”. The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked
by the word 0, E)

Left L AC left is masked by E (AC is masked by
the word F,0)

Direct D AC is masked by the contents of loca-
tion £

Swapped S AC is masked by the contents of loca-
tion EF with left and right halves inter-
changed

The third letter determines the way in which those bits selected by the mask
are modified.

Modification Letter Effect on AC

No N None

Zeros Z Places Os in all masked bit positions
Complement C Complements all masked bits

Ones 0] Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-
ifies the condition the masked bits must satisfy to produce a skip.

2-51

is making use of the drum
split feature (which is not
used by any DEC equipment).

2-52

These mode names are con-
sistent with those for arith-
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is O
or not every masked bit is O.

TRN is a no-op in which I, X
and Y are reserved for future
use and should be zero (at
present E is ignored).

AUGUST 1974

CENTRAL PROCESSOR §2.8

Mode Suffix Effect
Never Never skip
Equal E Skip if all masked bits equal O
Always A Always skip
Not Equal N Skip if not all masked bits equal O

(at least one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi-
tional skip — the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied
60 Mo A Il X Y
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600

TRNE Test Right, No Modification, and Skip if All 602
Masked Bits Equal 0

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Skip if Not 606

All Masked Bits Equal O

TRZ Test Right, Zeros, and Skip if Condition Satisfied
62 |mlo a4 |1 x Y
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in F satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE Test Right, Zeros, and Skip if All Masked Bits 622
Equaled O

TRZA Test Right, Zeros, but Always Skip 624

TRZN Test Right, Zeros, and Skip if Not All Masked 626
Bits Equaled O

§2.8 LOGICAL TESTING AND MODIFICATION
TRC Test Right, Complement, and Skip if Condition Satisfied
64 Mo a4 |1l x | Y
0 56 7809 1213 14 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Skip if All Masked 642
Bits Equaled O

TRCA Test Right, Complement, but Always Skip 644

TRCN Test Right, Complement, and Skip if Not All 646

Masked Bits Equaled 0

TRO Test Right, Ones, and Skip if Condition Satisfied
| 66 [mlo] 4 [1] x | Y
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660

TROE Test Right, Ones, and Skip if All Masked Bits 662
Equaled 0

TROA Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked 666

Bits Equaled O

TLN Test Left, No Modification, and Skip if Condition Satisfied
60 |mp| a4 |1 x | Y
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in F satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip 601

TLNE Test Left, No Modification, and Skip if All 603
Masked Bits Equal O

TLNA Test Left, No Modification, but Always Skip 605

TLNN Test Left, No Modification, and Skip if Not 607

All Masked Bits Equal 0

2-53

TLN is a no-op in which 7, X
and Y are reserved for future
use and should be zero (at
present E'is ignored).

AUGUST 1974

2-54

CENTRAL PROCESSOR §2 8

TLZ Test Left, Zeros, and Skip if Condition Satisfied
62 (M| a4 J1I] x | Y]
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits 623
Equaled 0

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled O

TLC Test Left, Compiement, and Skip if Condition Satisfied
64 M|l A |[I|] X Y
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in F satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641

TLCE Test Left, Complement, and Skip if All Masked 643
Bits Equaled O

TLCA Test Left, Complement, but Always Skip 645

TLCN Test Left, Complement, and Skip if Not All 647

Masked Bits Equaled O

TLO Test Left, Ones, and Skip if Condition Satisfied
|66 [mif 4 Jff x | Y]
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in F satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661

TLOE Test Left, Ones, and Skip if All Masked Bits 663
Equaled O

TLOA Test Left, Ones, but Always Skip 665

TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled O

§2.8 LOGICAL TESTING AND MODIFICATION
TDN Test Direct, No Modification, and Skip if Condition Satisfied

| 61 |ml] 4 |1 X Y

0 56 789 1213 14 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un-
affected.

TDN Test Direct, No Modification, but Do Not Skip 610

TDNE Test Direct, No Modification, and Skip if All 612
Masked Bits Equal O

TDNA Test Direct, No Modification, but Always Skip 614

TDNN Test Direct, No Modification, and Skip if Not 616

All Masked Bits Equal O

TDZ Test Direct, Zeros, and Skip if Condition Satisfied
63 |mlo] 4 |1 x Y
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to Os; the rest of AC is unaffected.

TDZ Test Direct, Zeros, but Do Not Skip 630

TDZE Test Direct, Zeros, and Skip if All Masked Bits 632
Equaled O

TDZA Test Direct, Zeros, but Always Skip 634

TDZN Test Direct, Zeros, and Skip if Not All Masked 636

Bits Equaled O

TDC Test Direct, Complement, and Skip if Condition Satisfied
65 |m| a4 |1 x | Y
(1] 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

TDC Test Direct, Complement, but Do Not Skip 650

TDCE Test Direct, Complement, and Skip if All Masked 652
Bits Equaled 0

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled O

2-55

TDN is a no-op that refer-
ences memory.

2-56

TSN is a no-op that refer-
ences memory.

CENTRAL PROCESSOR §2.8

TDO Test Direct, Ones, and Skip if Condition Satisfied
67 MI0f A4 |I| X Y
V] 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location F satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1s; the rest of AC is unaffected.

TDO Test Direct, Ones, but Do Not Skip 670

TDOE Test Direct, Ones, and Skip if All Masked Bits 672
Equaled O

TDOA Test Direct, Ones, but Always Skip 674

TDON Test Direct, Ones, and Skip if Not All Masked 676

Bits Equaled O

TSN Test Swapped, No Modification, and Skip if Condition Satisfied
61 M| 4 [1] x | Y
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611

TSNE Test Swapped, No Modification, and Skip if All 613
Masked Bits Equal O

TSNA Test Swapped, No Modification, but Always Skip 615

TSNN Test Swapped, No Modification, and Skip if Not 617
All Masked Bits Equal 0

T8Z Test Swapped, Zeros, and Skip if Condition Satisfied

63 M A |Il X Y
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location £ with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

182 Test Swapped, Zeros, but Do Not Skip 631

TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633
Equaled O

TSZA Test Swapped, Zeros, but Always Skip 635

TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled O

§2.8 LOGICAL TESTING AND MODIFICATION

TSC Test Swapped, Complement, and Skip if Condition Satisfied

[65 |mp] a |1 x | Y

0 56 789 1213 14 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651

TSCE Test Swapped, Complement, and Skip if All 653
Masked Bits Equaled O

TSCA Test Swapped, Complement, but Always Skip 655

TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

TS0 Test Swapped, Ones, and Skip if Condition Satisfied
[67 [mi] a4 |1 x | Y
0 56 789 121314 1718 35

If the bits in AC corresponding to Is in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1s; the rest of
AC is unaffected.

TS0 Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked Bits © 673
Equaled O

TSOA Test Swapped, Ones, but Always Skip 675

TSON Test Swapped, Ones, and Skip if Not All Masked 677

Bits Equaled O

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro-
cedure, since locations 1-17 are addressable as index registers, is to use AC 0
as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by 1s right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M TLO F.M
and tested and cleared by one of these:

TRZE F,.M TRZN F,M TLZE F,M TLZN F,M

2-57

AUGUST 1974

2-58

KA10 instruction codes 247
and 257 are reserved for in-
structions installed specially
for a particular system. They
execute as no-ops when run
on a KA10 that contains no
special hardware for them,
but for program compatibility
it is advised that they not be
used regularly as no-ops.

CENTRAL PROCESSOR §2.9

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where X
is a binary number containing a single 1 in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu-
lator F are both on:

TRC
TRCE

FX+Y
FX+Y

;Complement flags X and Y

;Test both and restore original states
;Do this if not both on

;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAI, SETMM, CAI, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these, SETA, SETAI, CAI, JUMP, TRN and TLN do
not use the calculated effective address to reference memory.

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there-
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator.

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The bits saved in the left half of

FLOATING FLOATING
OVERFLOW OVERFLOW UNDERFLOW
/ CARRY | CARRY P st USER ADDRESS ! NO
0) PART | USER |\ “our | PUBLIC [FAILURE| TRAP 2| TRAP 1 DIVIDE 0 0 0 0 0
DONE INHIBIT
0 1 2 3 4 5 6 7 8 9 10 il 12 13 14 15 16 17

Note that nothing is stored in
bits 13-17, so when the PC
word is addressed indirectly it
can produce neither indexing
nor further indirect address-
ing.

AUGUST 1974

this PC word in KI10 user mode are as shown here. In the KA10, bits 7—-10
are not used. In KI10 executive mode, bit 6 receives the same flag although
it has a different meaning, and bit O receives a different flag altogether [see
below]. In either processor all unused bit positions are cleared.

The following lists the left PC-word bit positions that receive information
and explains the meaning of the flags at the time they are saved. Certain

§2.9 PROGRAM CONTROL

instructions can set up these flags to restore them to their original states
following an interruption or to control specific situations. The explanations
assume the flags reflect normal circumstances — not arbitrary rigging. In the
following an X in a mnemonic indicates any letter (or none) that may appear
in the given position to specify the mode, eg ADDX comprises ADD,
ADDI, ADDM, ADDB. '

Bit Meaning of a 1 in the Bit
0 Overflow — any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive
number or a 0 out in a negative number.

An MULX has multiplied —23° by itself (product 279).

An IMULX has multiplied two numbers with product = 235 or
< =-2%,

An FIX or FIXR has fetched an operand with exponent > 35.
Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

1 Carry 0 — if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:
An ADDX has added two negative numbers with sum < —23%,

An SUBX has subtracted a positive number from a negative num-
ber with difference < —235,
An SOJX or SOSX has decremented —235.
But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDX both summands were negative, or their signs differed
and their magnitudes were equal or the positive one was the
greater in magnitude.

In an SUBX the signs of the operands were the same and AC was
the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJX or AOSX has incremented —1.
An SOJX or SOSX has decremented a nonzero number other than

_235.
An MOVNJX has negated zero.
2 Carry 1 — if set without Carry O (bit 1) being set, causes Overflow to

be set and indicates that one of the following has occurred:
An ADDX has added two positive numbers with sum > 235,

An SUBX has subtracted a negative number from a positive num-
ber with difference = 235,

2-59

In user mode, bit O reflects
the state of Overflow. But
when the flags are saved in
KI10 executive mode, bit 0
represents the Disable Bypass
flag, which the Monitor uses
to control certain aspects of
the execution of an instruc-
tion by an executive XCT
[see below and §2.15]. Al-
though these are two separate
flags that are read in different
circumstances, when a PC
word is used to restore or set
up the flags, bit 0 conditions
both of them.

Remember [§2.5], overflow
is determined directly from
the carries, not from the
flags. The carry flags give
meaningful information only
if no more than one instruc-
tion that can set them occurs
between clearing and reading
them.

AUGUST 1974

2-60

Floating point instructions
that cannot overflow are
FLTR, DMOVN, DMOVNM
and DFN.

Although this flag is set upon
completion of the first part of
every interruptable two-part
instruction, it is seldom rele-
vant to the programmer as it
is always cleared by the com-
pletion of the second part.
The flag is seen only in an
interruption, and its effect on
the repeated first part is auto-
matic provided only that it is
properly restored at the
return.

In the KA10, User In-out is
applicable only to user mode
[§2.16]. In the K110 this flag
has the stated effect when the
processor is in user mode, but
is used in executive mode to
control certain aspects of the
execution of an instruction
by an executive XCT [see
below and §2.15].

AUGUST 1974

10

CENTRAL PROCESSOR § 2.9

An AOJX or AOSX has incremented 235 — 1.

An MOVNX or MOVMX has negated —23.

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

Floating Overflow — any of the following has set Overflow:

In a floating point instruction, the exponent of the result was > 127.
DMOVNM or DFN, the exponent of the result was > 127.

Floating Underflow (bit 11) has been set.
No Divide (bit 12) has been set in an FDVX, FDVRX or DFDV.

First Part Done — the processor is responding to a priority interrupt
between the parts of a two-part instruction or to a page failure in the
second part. A 1 in this bit indicates that the first part has been
completed, and this fact should be taken into account when the
processor restarts the instruction at the beginning upon the return to
the interrupted program. Eg if an ILDB or IDPB is interrupted after
the processing of the pointer but before the processing of the byte,
the pointer now points not to the last byte, but rather to the byte
that should be handled at the return [§2.13]. Thus when the pro-
cessor restarts the instruction, it must retrieve the pointer but not
increment it.

Besides indicating a priority interrupt in the middle of a byte
instruction, the KI10 First Part Done indicates a page failure in the
processing of a byte, in the transfer of the second (low order) word
in a DMOVEM or DMOVNM, or in a noninterrupt data 1O instruc-
tion that results from a block IO instruction (following the processing
of the pointer [§2.12]).

User — the processor is in user mode [§ §2.15, 2.16].

User In-out — even with the processor in user mode, there are no
instruction restrictions (but memory restrictions still apply).

Public (KI10 only) — the last instruction performed was fetched
from a public area of memory, ie the processor is in user mode public
or executive mode supervisor.

Address Failure Inhibit (KI10 only) — an address failure cannot occur
during the next instruction [§2.15].

Trap 2 (KI10 only) — if bit 10 is not also set, pushdown overflow has
occurred. Unless the executive paging system is disabled, the setting
of this flag immediately causes a trap as explained at the end of this
section. At present, bits 9 and 10 cannot be set together by any
hardware condition.

Trap 1 (KI10 only) — if bit 9 is not also set, arithmetic overflow has
occurred. Unless the executive paging system is disabled, the setting
of this flag immediately causes a trap as explained at the end of this
section. At present, bits 9 and 10 cannot be set together by any
hardware condition.

§2.9 PROGRAM CONTROL 2-61

11 Floating Underflow — in a floating point instruction, the exponent
of the result was < —128 and Overflow and Floating Overflow have
been set.

12 No Divide — any of the following has set Overflow:
In a DIVX the dividend was greater than or equal to the divisor.
In an IDIVX the divisor was zero, or the dividend was —23° and

the divisor was * 1. A
In an FDVX, FDVRX or DFDV the divisor was zero, or the divi- If normalized operands are
dend fraction was greater than or equal to twice the divisor fraction used, only a zero divisor can

in magnitude; in either case Floating Overflow has been set. cause floating division to fail.

XCT Execute In user mode and in the
KA10, the 4 portion of this in-
256 A Il x Y struction is ignored. It should
then be zero for compatibility
0 89 121314 1718 35 with KI10 executive mode
In user mode or in the KA10, execute the contents of location £ as an in- ?II: isfrolsli)b;: future use even
struction. Any instruction may be executed, including another XCT. If an '
XCT executes a skip instruction, the skip is relative to the location of the CauTIiON
XCT (the first XCT if there are several in a chain). If an XCT executes a In concealed or kernel mode,

an XCT that executes an in-
struction in a public page
places the processor in public

jump, program flow is altered as specified by the jump (no matter how many
XCTs precede a jump instruction, when PC is saved it contains an address

one greater than the location of the first XCT in the chain). or supervisor mode. Hence
In KI10 executive mode this instruction performs as stated only when A4 is unless the executed instruc-
zero. Nonzero A results in a so called “executive XCT”, whose ramifications tion changes PC to a public

area, the instruction following
the XCT must be a valid entry
point back into the concealed
area or a page failure, in par-

are far more widespread than indicated here [for details refer to §2.15].

JFFO Jump if Find First One ticular a proprietary violation,
will result. A valid entry point

243] A | Il X l Y J is one containing a particular

form of the JRST instruction

0 89 121314 1718 35 .
described below.

If AC contains zero, clear AC 4+1 and go on to the next instruction in

sequence.

If AC is not zero, count the number of leading Os in it (Os to the left of Note that when AC is nega-
the leftmost 1), and place the count in AC A+1. Take the next instruction Fi"el, thedsej,cond gccumt;ll(:;tgr
from location E and continue sequential operation from there. :? Zéaifer;];;toas it would be

In either case AC is unaffected, the original contents of AC A+1 are lost. To left-normalize a positive A

integer in AC:
JFFO AC,.+1
JFCL Jump on Flag and Clear LSH AC.—1(AC+1)
255 | F 1] x | Y

0 89 121314 1718 35

If any flag specified by F is set, clear it and take the next instruction from

NOVEMBER 1974

2-62

This instruction can be used
simply to clear the selected
flags by having the jump ad-
dress point to the next con-
secutive location, as in

JFCL 17,.+1

which clears all four flags
without disrupting the nor-
mal program sequence. A
JFCL that selects no flag is
the fastest no-op as it neither
fetches nor stores an operand,
and bits 18-35 of the instruc-
tion word can be used to
store information.

The A portion of this instruc-
tion is reserved for future use
and should be zero (at present
it is ignored).

AUGUST 1974

CENTRAL PROCESSOR §2.9

location E, continuing sequential operation from there. Bits 9-12 are pro-
grammed as follows.

Bit Flag Selected by a 1
9 Overflow

10 Carry 0

11 Carry 1

12 Floating Overflow

To select one or a combination of these flags (which are among those des-
cribed above) the programmer can specify the equivalent of an AC address
that places ls in the appropriate bits, but Macro recognizes mnemonics for
some of the 13-bit instruction codes (bits 0—-12).

JFCL JFCL O, No-op 25500
JOvV JFCL 10, Jump on Overflow 25540
JCRYO JECL 4, Jump on Carry 0 25520
JCRY1 JFCL 2, Jump on Carry 1 25510
JCRY JFCL 6, Jump on Carry O or 1 25530
JFOV JFCL 1, Jump on Floating Overflow 25504
JSR Jump to Subroutine

264 | 4 1] x | Y]
0 89 121314 1718 35

Place the current contents of the flags (as described above) in the left half of
location £ and the contents of PC in the right half (at this time PC contains
an address one greater than the location of the JSR instruction). Take the
next instruction from location £ + 1 and continue sequential operation from
there. The flags are unaffected except First Part Done, Address Failure
Inhibit, and the trap flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored
is 1 and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

JSP Jump and Save PC
265 A Il X Y
0 89 121314 1718 35

Place the current contents of the flags (as described above) in AC left and

§2.9 PROGRAM CONTROL

the contents of PC in AC right (at this time PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location E and continue sequential operation from there. The flags
are unaffected except First Part Done, Address Failure Inhibit, and the trap
flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored
is 1 and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

JRST Jump and Restore

254 F (Il X Y

0 89 121314 1718 35

Perform the functions specified by F, then take the next instruction from
location £ and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit Function Produced by a 1

9 Restore the channel on which the highest priority interrupt is cur-
rently being held [§2.13].

This function cannot be performed at all in a K110 user or super-
visor program and cannot be performed in a KA10 user program
unless User In-out is set. Instead of restoring the channel, it acts
just like an MUUO [§2.10].

10 Halt the processor. When it stops, the AR lights on the KI10 and the
MA lights on the KA10 display an address one greater than that of
the location containing the instruction that caused the halt, and PC
displays the jump address (the location from which the next instruc-
tion will be taken if the operator causes the processor to resume
operation without changing PC).

This function cannot be performed at all in a KI10 user or super-
visor program and cannot be performed in a KA10 user program
unless User In-out is set. Instead of halting the processor, it acts
just like an MUUO [§2.10].

11 Restore the flags listed above from the left half of the word in the
last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or
indirect addressing.

Restoration of all but the user and Public flags is directly according
to the contents of the corresponding bits as given above: a flag is set
by a 1 in the bit, cleared by a 0. A 1 in bit 5 sets User but a 0 has no
effect, so the Monitor can restart a user program by restoring flags
but the user cannot leave user mode by this method. A O in bit 6
clears User In-out, but a 1 sets it only if the JRST is being performed

2-63

AR or MA actually displays
the address of the location
that would have been exe-
cuted next had the JRST
been replaced by a no-op. So
except fora JRST ina priority
interrupt, the lights point to
the location one beyond that
containing the instruction
that caused the halt. This
instruction is ordinarily the
JRST or perhaps an XCT, but
could even be a UUO.

By manipulating the contents
of the left half word used to
restore the flags, the program-
mer can set them up in any
desired way except that a
user program cannot clear
User or set User In-out, and

AUGUST 1974

2-64

no public program can clear
Public for itself. As an ex-
ample, setting First Part Done
prevents incrementing in the
next ILDB, IDPB or noninter-
rupt KI10 block IO instruc-
tion provided there is no inter-
vening JSR, JSP or PUSHJ.
Note that if overflow traps are
enabled, setting a trap flag
immediately causes one.

JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program.

AUGUST 1974

CENTRAL PROCESSOR §2.9

by the Monitor, ie if User is clear. A 1 in bit 7 sets Public, buta 0
clears it only if the JRST is being performed in executive mode with
a 1 in bit 5 (fe User is being set). These conditions imply that the
processor is entering user mode: hence the user cannot enter con-
cealed mode by clearing Public; and although the supervisor can
place the processor in user mode concealed, it cannot use this
procedure to enter kernel mode.

12 KA10. Enter User mode. The user program starts at relocated
location E.

KI10. The instruction is simply a jump except when fetched from

a nonpublic area, in which case it clears Public. In other words a

location containing a JRST 1, is a valid entry to a nonpublic area

and the instruction places the processor in concealed or kernel mode.

To produce one or a combination of these functions the programmer can
specify the equivalent of an AC address that places 1s in the appropriate bits,
but Macro recognizes mnemonics for the most important 13-bit instruction
codes (bits 0—-12).

JRST JRST O, Jump 25400
JRST 10, Jump and Restore Interrupt 25440
Channel
HALT JRST 4, Halt 25420
JRSTF JRST 2, Jump and Restore Flags 25410
PORTAL JRST 1, Allow Nonpublic Entry (KI110) 25404
Jump to User Program (KA10)
JEN JRST 12, Jump and Enable 25450

In a JRSTF or JEN the flags are restored from bits 0—12 of the final word
retrieved in the effective address calculation; hence any JRST with a 1 in bit
11 must use indirect addressing or indexing, which takes extra time. If the
PC word was stored in AC (as in a JSP), a common procedure is to use AC to
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec-
tive (jump) address. If the PC word was stored in core (as in a JSR), one
must address it indirectly (remember, bits 13—17 of the PC word are clear,
so again its right half is the effective address). A JRSTF (AC) is con-
siderably faster than a JRSTF @PCWORD.

CauTrioN

Giving a JRSTF or JEN without indexing or
indirect addressing restores the flags from the
instruction code itself,

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5 of the PC word stored is 1 and
the processor leaves user mode.

a3

§2.9 PROGRAM CONTROL

JFCL is the only jump that can test any of the flags directly. In fact it is
the only basic program control instruction that can do so — several of the
flags can be tested as processor conditions by in-out instructions, but these
are ordinarily illegal in user programs anyway. But JFCL can test only four
of the flags, and it saves no information for a subsequent return from a sub-
routine. Hence it serves as a branch point for entry into either one of two
main paths, which may or may not have a later point in common. FEg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine.

JSR and JSP are regularly used to call subroutines. They are uncondi-
tional, but the execution of such an instruction can be the result of a
decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

Jov 42
JRST 42 ;Faster than skipping
JSR OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
read the flags into a test accumulator T and then use a test instruction.

JSP T,.+1 ;Store flags but continue in sequence
TLNE T,40 ;40 left selects bit 12
JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return-
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a
JRST N(ACQ).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain the
following:

JSP T,PRINT ;Put PC word in accumulator T
;Text inserted here by ASCIZ pseudo-
;instruction, which automatically
;places a zero (null) character at the
;end
;Next instruction here

2-65

The fastest skip is CAIA in
the KA10, TRNA in the KI10.

2-66

CENTRAL PROCESSOR §2.9

The subroutine can use T as a byte pointer which already addresses the first
word of data. For the print routine, characters are loaded into another

accumulator CH.

PRINT: HRLI T,440700 ;Initialize left half of pointer
ILDB CH,T ;Increment pointer and load byte
JUMPE CH,1(T) ;Upon reaching zero character return
;to one beyond last data word
;Print routine

JRST PRINT+1 ;Get next character

JSA Jump and Save AC
| 266 | a4 i x | Y]
89 1213 14 1718 35

Place AC in location E, the effective address E in AC left, and the contents
of PC in AC right (at this time PC contains an address one greater than the
location of the JSA instruction). Take the next instruction from location
E+1 and continue sequential operation from there. The original contents
of E are lost.

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5.of the PC word stored is 1 and
the processor leaves user mode.

JRA Jump and Restore AC
267 | 4 il x | Y
0 89 121314 1718 35

Place the contents of the location addressed by AC left into AC. Take the
next instruction from location £ and continue sequential operation from
there.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multiple-
entry subroutines. In a.subroutine called by a JSR, the returning JRST must
refer to the (single) entry point. Since a JRA can retrieve the original PC by
addressing AC as an index register, it is independent of any entry point

)

§2.9 PROGRAM CONTROL

without tying up an accumulator to the extent a JSP would.

The accumulator contents saved by a JSA are restored by a JRA paired
with it despite intervening JSA-JRA pairs. Hence these instructions are
especially useful for nesting subroutines, as shown by this example.

;Main program

;ISA 17,81 -;Call to first subroutine (4)
Si: O ;First subroutine starts here

;ISA 17,S2 ;Call to second subroutine (B)

jIRA 17,(17) ;Return to A + 1 in main program
S2: 0 :Second subroutine starts here

.:I SA 17,S3 ;Call to third subroutine (C)

iIRA 17,(17) ;Return to B + 1 in first subroutine
S3: 0 ;Third subroutine starts here

.J RA 17,(17) ;Return to C+ 1 in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the
left and right of AC 17, saves the previous contents of AC 17 in E (the first
subroutine location), and jumps to £+ 1. To return to the next higher level,
a JRA restores the previous contents of AC 17 from the location addressed
by AC 17 left (the first subroutine location) and jumps to the location
addressed by AC 17 right (the location following the JSA in the higher sub-
routine). If N lines of data for the next subroutine follow a JSA, the return
to the location following the data is made by giving a JRA 17,N(17).

PUSHJ Push Down and Jump
260 | 4 |1 x | Y |
(1] 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the addition
causes the count in AC left to reach zero, set the Pushdown Overflow flag
in the KA10, set the Trap 2 flag in the KI10. Then place the current
contents of the flags (as described above) in the left half of the location now
addressed by AC right and the contents of PC in the right half of that
location (at this time PC contains an address one greater than the location of
the PUSHJ instruction). Take the next instruction from location £ and con-
tinue sequential operation from there.

2-67

In the KI10a PUSHJ executed
as an interrupt instruction
cannot set Trap 2.

2-68

I, X and Y are reserved for
future use and should be zero
(at present E is ignored). In
the KI10 a POPJ executed as
an interrupt instruction can-
not set Trap 2.

CAUTION

The jump is completed before
the processor responds to
overflow, whether by trap or
interrupt. Hence it is impos-
sible to determine the location
of the POPJ that caused the
overflow.

AUGUST 1974

CENTRAL PROCESSOR §2.9

The flags are unaffected except First Part Done, Address Failure Inhibit,
and the trap flags, which are cleared. However, pushdown overflow overrides
the Trap 2 clear, so if the list overflows, Trap 2 sets and the KI10 traps
instead of jumping. The original contents of the location added to the list
are lost.

Note: The KA10 increments the two halves of AC by adding 1 0000014
to the entire register. In the KI10 the two halves are handled independently.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored is 1
and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

POPJ Pop Up and Jump
| 263 | a4 1] x | Y
0 89 121314 1718 35

Subtract one from each half of AC and place the result back in AC. If the
subtraction causes the count in AC left to reach — 1, set the Pushdown Over-
flow flag in the KA1O, set the Trap 2 flag in the KI10. Take the next in-
struction from the location addressed by the right half of the location that
was addressed by AC right prior to the decrementing, and continue
sequential operation from there.

Note: The KA10 decrements the two halves of AC by subtracting
1 0000014 from the entire register. In the KI10 the two halves are handled
independently.

The address of the top item in the pushdown list is kept in the right half
of the pointer in AC, and the program can keep a control count in the left
half. In the KA10, incrementing and decrementing both halves of AC
together is effected by adding and subtracting 1 0000015. Hence a count of
—2 in AC left is increased to zero if 2'® — 1 is incremented in AC right, and
conversely, 1 in AC left is decreased to —1 if zero is decremented in AC right.

Since the pushdown list is independent of the subroutine called, PUSHJ-
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by
level is inherent in the structure of a pushdown list [§2.2], so paired
PUSHIJ-POPJ instructions are excellent for nesting subroutines: there can be
any number of subroutines at any level, each with more subroutines nested
within it. Recursive subroutines are also possible.

Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but
the usual procedure is to keep both data and jump addresses in a single list so
only one AC is required for the most complex pushdown operations. The
programmer must keep track of whether a given entry in the list is data or
a PC word; in other words, every item inserted by a PUSH should be
removed by a POP, and every PUSHJ should be matched by a POPJ. If flag

§2.10 UNIMPLEMENTED OPERATIONS

restoration is desired, the returning
POPJ P,
can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data
m=v be stored in the left halves of the PC words in the stack, reducing the
1cquired pushdown depth.

By trapping or checking overflow and keeping a control count in AC left, the
programmer can set a limit to the size of the list by starting the count
negative, or he can prevent the program from extracting more items than
there are in the list by starting the count at zero, but he cannot do both at
once. If only jump addresses are kept in the list, the first procedure limits
the depth of nesting. A technique to catch extra POPJs is to put a PC word
addressing an error routine at the bottom of the list,

Overflow Trapping

In the performance of a program there are many events that cannot be fore-
seen and whose occurrence requires special action by the program. There are
instructions that test for the conditions produced by such events, but in say
a long string of computations, it would be both cumbersome and time con-
suming to test for overflow at every step. It is far better simply to allow an
event such as overflow to break right into the normal program sequence.

For situations of this nature, various internal conditions can act through
the priority interrupt system. However the processor also has a trapping
mechanism that allows conditions due directly to the program, and which
are often permitted to happen as a matter of course, to interrupt the
program sequence without recourse to the interrupt system. In some cases,
traps are used to handle the restrictions that play a role in program and
memory management [as explained in later sections], but here we are con-
cerned specifically with action by the processor in response to overflow.

Overflow produced by an interrupt instruction cannot be detected. In any
other circumstances, an instruction in which an arithmetic overflow condi-
tion occurs sets Overflow and Trap 1, and an instruction in which a
pushdown overflow occurs sets Trap 2. At the completion of an instruction
in which either trap flag is set, rather than going on to the next instruction as
specified by PC, the processor instead executes an instruction taken from a
particular location in the process table for the program (user or executive).
The location as a function of the trap flags set is as follows.

Trap Flags Set Trap Type Trap Number Location
Trap 1 only Arithmetic overflow 1 421
Trap 2 only Pushdown overflow 2 422
Trap 1 and 2 Not used by hardware 3 423

2-69

NoOTE

This feature is not available in
the KA10. That processor
is limited to the wuse of
internal conditions that can
act through the priority inter-
rupt system [§2.14].

Note that it is the overflow
condition that sets Trap 1 —
not the state of the Overflow
flag. Hence an overflow is
trapped even if Overflow is
already set.

Note also that the trap
flags have no effect at all
when executive paging is
disabled [§2.15].

A trap can be produced arti-
ficially simply by setting up
the trap flags with a JRSTF or
MUUO. In this way the pro-
gram can also use trap number

2-70

3, which at present cannot
result from any hardware-
detected condition (it is re-
served for future use by DEC).

The location of the instruc-
tion that caused the overflow
can be determined from PC
unless the instruction jumped,
in which case its location can
be determined only for a
PUSHJ, from the stack entry.

An arithmetic instruction that
overflows on every iteration
produces an infinite loop if
used as a trap instruction
for arithmetic overflow. A
pushdown instruction in a
pushdown overflow trap can
overflow only once. (The
memory allocated to a push-
down stack should have at
leust one extra location to
handle this case — two extras
if the program and the trap
both use the same pointer.)

These are convenience mne-
monics that mean nothing to
the assembler. UUOs are also
sometimes called ‘“‘program-
med operators”.

CENTRAL PROCESSOR §2.10
A trap instruction is executed in the same address space as the instruction
that caused it. Overflow in a user instruction traps to a location in the user
process table, and any addresses used in the instruction in that location are
interpreted in the user address space. Thus a user program can handle its
own traps, eg by requesting the Monitor to place a PUSHJ to a user routine
in the trap location. An MUUO must be used if the Monitor is to handle
a user-caused trap.

The trap instruction (the final instruction in an XCT and/or LUUO string)
clears the trap flags, so the processor returns to the interrupted program
unless the trap instruction changes PC. Thus the trap instruction can be a
no-op (which ignores the trap), a skip, a jump, or anything else. However,
should the trap instruction itself set a trap flag (not necessarily the same
one), a second trap occurs.

An interrupt can occur between an instruction that overflows and the trap
instruction, but the latter will be performed correctly upon the return pro-
vided the interrupt is dismissed automatically or the interrupt routine
restores the flags properly. If a single instruction causes both overflow and a
page failure, the latter has preference; but the overflow trap will be taken
care of after the offending instruction has been restarted and completed
successfully. A trap instruction that causes a page failure does not clear the
trap flags; hence after the page failure is taken care of, the trap instruction
will correctly handle the trap when it is restarted.

2.10 UNIMPLEMENTED OPERATIONS

Codes not assigned as specific instructions act as unimplemented operations,
wherein the word given as an instruction is trapped and must be interpreted
by a routine included for this purpose by the programmer. Codes in the
range 001-077 are unimplemented user operations, or UUOs. Half of these
(001-037) are for the local use of the user or Monitor (LUUOQSs); the other
half (040-077) are set aside for user communication with the Monitor
(MUUOs) and are interpreted by it (although they may be used by the
Monitor as well). Codes 100 and above that are not used for instructions
are regarded as the ‘“‘unassigned codes’; 000 is not regarded as a legal code
at all. Instructions that violate the instruction restrictions act in the same
manner as MUUO:s.

Local Unimplemented User Qperation

001-037 | 4 |1 x | Y

0 89 121314 1718 35

Store the instruction code, 4 and the effective address £ in bits 0—-8, 9-12
and 18-35 respectively of location 40; clear bits 13-17. Execute the
instruction contained in location 41. The original contents of location 40
are lost.

§2.10 UNIMPLEMENTED OPERATIONS

Every LUUO uses some pair of locations numbered 40 and 41, but which
such pair depends upon the circumstances. An LUUO in a user program uses
relocated locations 40 and 41 and is thus entirely a part of and under control
of the user program. An LUUO in KA10 executive mode uses unrelocated
locations. In KII10 executive mode an LUUO uses locations 40 and 41 in

the executive process table.

The actions of MUUOs and unassigned codes depend to a considerable
degree on the processor. All use at least two consecutive locations, where
the first receives the information specified above tor an LUUO (in the KI10
a third nonconsecutive location is also used). The unassigned codes are
included so that the Monitor steps in when a user gives an incorrect code.
The code 000 acts in exactly the same way as an MUUO but is not a standard
communication code: it is included so that control returns to the Monitor
should a user program wipe itself out.

KI10. MUUOs and unassigned codes in user or executive mode act in
exactly the same way. They store the information specified above for an
LUUO in location 424 of the user process table, save the flags and PC (the
current PC word) in location 425, set up the flags and PC according to a new
PC word taken from a third location, and restart the processor in normal
sequence at the location then addressed by PC. In the PC word saved in
location 425, bit 0 may represent either Overflow or Disable Bypass
depending upon the mode the processor is in when the MUUO is given. If
the MUUO is given directly by the program, the address in the right half of
the PC word saved is one greater than the location of the MUUO; otherwise
it depends upon the circumstances in which the MUUO is executed. The
new PC word can be taken from among the eight locations in the user
process table listed here depending upon the mode at the time the MUUO is
given, and whether or not it is executed as the result of a trap (page failure
or overflow).

Mode Execution Location
Kernel No trap 430
Kernel Trap 431
Supervisor No trap 432
Supervisor Trap 433
Concealed No trap 434
Concealed Trap 435
Public No trap 436
Public Trap 437

There are no restrictions on the manner in which the new PC word of an
MUUO can set up the flags. It can switch the processor from any mode to
any other. A 1 in bit O sets both Overflow and Disable Bypass; a O clears
both. Hence bit 0 should be adjusted to produce the desired state in the flag
that is relevant to the mode the processor is entering.

2-71

If a single memory serves as
memory number 0 for two
KAT10 processors, the second
(with the trap offset) uses
unrelocated 140-141 and 160-
161 respectively for each in-
stance in which 40-41 and
60-61 are given here. The
offset does not apply to user
LUUOs as it is assumed the
Monitor would relocate these
to different physical blocks.

The wunassigned codes are
100-107, 114-117, 123 and
247.

Note that even in a dedicated
system, the program must still
define a user process table.

Note that unless executive
paging is disabled, setting a
trap flag immediately causes
a trap.

2-72

Note that in executive mode,
LUUOs and MUUOs act
identically.

Codes 247 and 257, although
not assigned as specific in-
structions, are nonetheless
not regarded as ‘“‘unassigned”
codes. They execute as no-
ops unless implemented by
special hardware.

§2.11

CENTRAL PROCESSOR

KA10. MUUOs and unassigned codes, regardless of mode, perform
exactly the operations given above for an LUUO with the exception that
MUUOs use unrelocated 40-41 and unassigned codes use unrelocated 60-61
(140-141 and 160-161 for a second processor). The unassigned codes are
100-127. The codes 130-177, which are the floating point and byte
manipulation instructions, are equivalent to the unassigned codes if unimple-
mented, ie if the hardware for them is not included. In this case all codes
100-177 trap to unrelocated 60-61.

The important point is that an MUUO or unassigned code results in
executing an instruction in an unrelocated location, ie an instruction under
the control of the Monitor. This would most likely be a jump that leaves
user mode, saves the PC word and enters a routine to interpret the MUUO
configuration. In the instruction descriptions, any reference to events
resulting from execution by an MUUO should be taken to include the
unassigned and illegal codes as well.

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider some
simple programs that demonstrate the use of a variety of the instructions
described thus far.

Processor Identification

The instruction repertoires of the KI10, the KA10, and the 166 processor
used in the PDP-6 are very similar, and most programs require no changes to
run on any of them. Because of minor differences and the fact that some
instructions are not available on the earlier machines, a program that is to be
compatible with all three should have some way of distinguishing which
machine it is running on. This simple test suffices.

JFCL 17,.+1 ;Clear flags
JRST A1 ;Change PC
JFCL 1,PDP6 ;PDP-6 has PC Change flag
MOVNI AC,1 ;Others do not, make AC all 1s
AOBIJN AC,.+1 :Increment both halves
JUMPN AC,KA10 ;KA10 if AC= 1000000
JRST KI10 ;KIT0 if AC=0 (no carry between
;halves)
Parity

Parity procedures are used regularly to check the accuracy of stored informa-
tion. Parity generation and checking is generally handled automatically by
memory and high speed, block-oriented peripheral devices, but must be
handled by the program for character-oriented devices. Consider 8-bit
characters, for which the program carries out two procedures: for output it

§2.11 PROGRAMMING EXAMPLES
generates a parity bit from seven data bits to produce an 8-bit character with
parity; following input it checks the parity of the eight bits received. In
either case however, the program can simply find the parity of an 8-bit
character, by regarding the seven output data bits as eight including an
irrelevant extra bit. The two procedures then differ only in the final action.
In the first case the program uses the result to adjust the eighth bit for
correct parity, whereas in the second it checks the result for an indication
of error.

Assuming the character is right-justified in accumulator A, the simplest
and quickest procedure would be to use A to index an XCT into a table,
each of whose locations contains an instruction that adjusts the parity for
output or jumps to a routine for erroneous input. This procedure would
normally be unacceptable because of the very large memory requirements.
However the table can be reduced to sixteen entries without excessive loss in
speed, by exclusive oring the left and right halves of the character and
indexing on the result (parity is invariant under the exclusive or function,
which essentially disposes of pairs of 1s). This example, which uses a second
accumulator T for character manipulation, requires six memory references
to generate odd parity.

PARITY: MOVEI T,(A) ;Copy character in T
LSH T,-4 ;Line up halves
XORI T,(A) ;Reduce paritywise to 4 bits
ANDI T,17 ;Wipe out unwanted bits
XCT PARTAB(T) ;Execute indicated table item
POPJ P,
PARTAB: XORI A,200 ;0 — change high bit
JFCL ;1 — no-op
JFCL ;2
XORI A,200 ;3
JFCL 4
XORI A,200 ;5
XORI A,200 ;6
JFCL ;7
JFCL ;10
XORI A,200 ;11
XORI A,200 ;12
JFCL ;13
XORI A,200 ;14
JFCL , ;15
JFCL ;16
XORI A,200 ;17

To handle even parity, interchange the JFCLs and XORIs in the table, or
change the MOVEI T,(A) to MOVEI T,200(A).

The next example does exactly the same thing but substitutes a little more
computation for use of a table. In other words it takes a little more time
(7%>» memory references average) but less than half the memory.

2-73

We assume the rest of A, out-
side the character, is clear, as
it would be were the character
placed in A by a load-byte in-
struction or a DATAIL. The
next two examples, however,
work even if the rest of A
is not clear.

Numbers of memory refer-
ences and locations given do
not include those for the
POPIJ, which we will regard as
subroutine overhead. Simi-
larly every example also re-
quires that the program give
a PUSHJ to get to the sub-
routine.

2-74

CENTRAL PROCESSOR §2.11

PARITY: MOVEI T,200(A) ;Copy character with high bit comple-
LSH T,—4 ;mented, then fold copy into 4 bits
XORI T,(A) ;with opposite parity
TRCE T,14 ;Are left two both 0?
TRNN T,14 ;Or both 17
XORI A,200 ;Yes, change high bit
TRCE T,3 ;Are right two both 07
TRNN T,3 ;Or both 1?
XORI A,200 ;Yes, change for even, restore for odd
POPJ P,

For even parity change the address in the MOVEI from 200 to O.

Finally let us consider the extreme of substituting computation for
memory. Starting with the character abcdefgh right-justified in A, we first
copy it in T and then duplicate it twice to the left producing

abc def gha bcd efg hab cde fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the
result by

cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
111111114 generates the following partial products:

c fadgbeh
c fadgbeh
c fadgbehn
c fadgbehn
c fadgbehn
c fadghbeh
c fadgbeh
c fadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the par-
ity of the character, O if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence:

PARITY: MOVEI T,(A) ;Copyin T
IMULI T,200401 ;Duplicate twice
AND T,ONES ;Pick LSBs

&

§2.11 PROGRAMMING EXAMPLES
IMUL T,ONES ;Generate product
TLNN T,10 ;Is bit 14 odd?
XORI A,200 ;No, change parity
POPJ P,

ONES: 11111111

This procedure uses a minimum of both memory references and memory
space, but takes considerably more time because the instructions themselves
are slow.

The following table shows the trade-off of memory references against
memory space for the above four procedures. The time is proportional to
the number of references except in case 4.

References Locations
1. 2 257
2. 6 21
3. 7% 9
4. 72 7

Counting Ones

Suppose we wish to count the number of 1s in a word. We could of course
check every bit in the word. But there is a quicker way if we remember
that in any word and its twos complement the rightmost 1 is in the same
position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right-
most 1 are complements). Hence using the negative of a word as a mask for
the word in a test instruction selects only the rightmost 1 for modification.
The example uses three accumulators: the word being tested (which is lost)
is in T, the count is kept in CNT, and the mask created in each step is stored
in TEMP.

MOVEI CNT,0 ;Clear CNT

MOVN TEMP,T ;Make mask to select rightmost 1
TDZE T, TEMP ;Clear rightmost 1 in T

AOJA CNT,.—2 ;Increase count and jump back

;Skip to here if no 1sleftin T

CNT is increased by one every time a 1 is deleted from T. After all 1s have
been removed, the TDZE skips.

The preceding example uses little memory, but contains a loop so the time
it takes is proportional to the number of 1s. The next example takes more
memory but is constant; hence it is slower than the above when there are
few 1s (less than eight), but is much faster when there are many. The word,
which is lost, is in accumulator A, and the answer appears in accumulator

2-75

2-76

*HAKMEM 140, item 169,
page 79 (Artificial Intelligence
Memorandum, No. 239, Feb-
ruary 29, 1972, MIT Artificial
Intelligence Laboratory).

In general terms this is the
statement that the sum S of
the digits in any number N
in base b is Nmod (b—1) —
provided b is deliberately
chosen such that S < b-—1.
The condition holds here of
course as the number of 1sin
a PDP-10 word is at most 36.
And it is in fact to make this

CENTRAL PROCESSOR §2.11
A+1 (for convenience we let B= A+1). The routine (due to Gosper, Mann
and Leonard*) has three distinct parts and is based on the fact that in a
binary word, counting 1s is equivalent to calculating the sum of the digits.
The first part, of seven instructions, manipulates the octal digits of the word
so as to replace each digit by the number of 1s in it. Taking D as an octal
digit and [x] as the largest integer contained in x, the algorithm used to
make the substitution is

D - [D/2] - [D/4]

Of course the computer always acts in binary terms regardless of programmer
interpretation. In this case the procedure carried out on each 3-bit piece
abc is

abc—ab—a

The instructions effect this algorithm by shifting a copy of the word right
one place, masking out the LSB of each shifted octal digit to prevent it from
interfering with the next digit at the right (ie to isolate the digits), and
subtracting the shifted word from the original. The same process is then
repeated, this time masking out what was originally the middle bit in each
digit. That this algorithm gives the correct substitution is evident from the
following table, in which it is seen that the bottom number in a given column
is the sum of the bits in the octal digit given at the top of the column.

Original digit 0 1 2 3 4 5 6 7
Subtract 6o o 1 1 2 2 3 3

0 1 1 2 2 3 3 4

Subtract 6 6 0 0o 1 1 1 1
Number of 1s 0 1 1 2 1 2 2 3

We have now replaced the original word with a set of twelve numbers,
whose sum is equal to the number of 1s in the original. The next three in-
structions add together pairs of adjacent numbers so as to replace the twelve
by six whose sum is still the same. Since these new numbers are isolated in
6-bit pieces of the word, we shall revise our point of view, and regard them
as digits in a number in base 64. Now any number is simply the sum of the
values of its digits, ie of its digits each multiplied by an appropriate power of
the base. Dividing each such summand by 1 less than the base gives the digit
itself as remainder. Hence the third part of the routine just divides our
6-digit number by 63, producing in B a remainder that is the sum of the
remainders from the individual digits, ie that is the sum of the digits.

MOVE BA ;Copy in B

LSH B,—1 ;Right one

AND B,[333333,,333333] ;Masks out LSBs
SUB AB ;D — [D/2]

LSH B,—1 ;Right one again

AND B,[333333,,333333] ;Mask out middle bits
SUBB AB :D—[D/2] — [D/4]; two copies

§2.11 PROGRAMMING EXAMPLES 2-77

LSH B,—3 ;Shift right one octal digit condition hold that the rou-
ADD AB ;Add numbers in digit pairs tine converts from base 8 to
AND A,[070707,070707] ;Throw out extra pair sums 02%¢ &%
IDIVI A77 ;Divide by 63, sum in B
If it is known that the 1s in the word are entirely contained within bits

22-35 (the right fourteen bits), we can use the following somewhat shorter

routine, which is faster than the loop for more than seven 1s. It first treats

the number in quaternary, replacing each digit with the number of 1s in it,

and then converts from quaternary to hexadecimal.
MOVEI B,(A)
LSH B,—-1
ANDI B,12525 ;Mask out LSBs
SUBB AB :D— D/2]; two copies
LSH B,—2 ;Right one quaternary digit
ANDI A,31463 ;Mask out some of digits in A Note that here we must get
ANDI B,31463 ;The rest in B rid of one out of each set of
ADDI A,(B) :Now combine digit pairs two identical bit pairs before

adding. This is because there

IDIVI A,17 ;Divide by 15, sum in B can be digit overflow, e a
resulting hexadecimal digit
can have more than two signi-

. ficant bits.
Number Conversion

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

N/b = q,+r/b r<b
q./b = q,+nr/b r,<b
q./b = q3+r/b rs<b
Gn-1/b = 0+r,/b ra<b

The number in base b is then r,...r;3ryr,. Eg the octal equivalent of 61
decimal is 75:
61/8 = 7+5/8
7/8 = 0+7/8
The following decimal print routine converts a 36-bit positive integer in

accumulator T to decimal and types it out. The contents of T and T+1 are
destroyed. The routine is called by a PUSHJ P,.DECPNT where P is the

pushdown pointer.

DECPNT: IDIVI T,12 1124 =104,
PUSH P, T+1 :Save remainder

2-78

MACRO interprets a number
following 1D as decimal.

CENTRAL PROCESSOR §2.12
SKIPE T ;All digits formed?
PUSHJ P,DECPNT ;No, compute next one
DECPN1: POP P, T ;Yes, take out in opposite order
ADDI T,60 ;Convert to ASCII (60 is code for 0)

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPNI1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits
in the left halves of the locations that contain the jump addresses. This is
accomplished in the decimal print routine by changing

PUSH P,T+1 to HRLM T+1,P)
and
POP P,T to HLRZ T,P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is
replaced by

LSHC T,—1D35 ;Shift right 35 bits into T+1
LSH T+1,—-1 ;Vacate the T+1 sign bit
DIVI T,12 :Divide double length integer by 10

Table Searching

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T contains
the item. The right half of A is used to index through the table, while the
left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,—-N ;Put—=N,0in A

CAMN T, TAB(A) ;Skip if current item not the one
JRST FOUND ;Item found

AOBIN A,.-2 ;Try next item until left count=0

;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different pro-
cedure would be

HRLZI A,—N ;
CAME T, TAB(A) ;Skip if current item is the one
AOBIN A,.—1
JUMPL A,FOUND ;Jump if left count < 0
;Item not found

L

§2.11 PROGRAMMING EXAMPLES

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of
accumulator T. At the end the final item is in T right.

MOVE T,(T) ;Move next item to T
FIND: TRNE T,777777 ;Skip if AC right =0

JRST =2

HLRZS T ;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI CNT,0 ;Clear CNT

JUMPE T,OUT ;Jump out if T contains O
HRRZ T,(T) ;Get next address

AOJA CNT,.—-2 ;Count and go back

Double Precision Floating Point

The following are straightforward routines for handling double precision
floating point arithmetic in software format, ie using single precision instruc-
tions, as would be required with a KA10 processor. [§2.6 describes the
floating point instructions.]

DFAD: UFA A+1,M+1 ;Sum of low parts to A+2

FADL AM ;Sum of high parts to A, A+1
UFA A+1,A+2 ;Add low part of high sum to A+2
FADL A,A+2 ;Add low sum to high sum
POPJ P,

DFSB: DFN AA+1 ;Negate double length operand
PUSHJ] P,DFAD ;Call double floating add
DFN AA+1 —(M—AC)=AC—-M
POPJ P,

DFMP: MOVEM A,A+2 ;Copy high AC operand in A+2
FMPR A+2,M+1 ;One cross product to A+2
FMPR A+1,M ;Other to A+1
UFA A+1,A+2 ;Add cross products into A+2
FMPL AM ;High product to A, A+1
UFA A+1,A+2 ;Add low part to cross sum in A+2
FADL A,A+2 ;Add low sum to high part of product
POPJ P,

A double precision division is of the form

A a+ X2

B b+ dx27

2-79

These routines are given to
show the mechanics of double
precision floating point oper-
ations. They produce correct
results in all ordinary circum-
stances, but do not handle
pathological cases.

2-80

CENTRAL PROCESSOR - §2.11

Using the relationship
A/b = q+rX2?%/p

where g and r are the quotient and remainder produced by FDVL, the
following routine computes a double length quotient by the approximation

— -27
A g+ Z4DX2
B b

o~

which gives a result correct to the next-to-last bit in the iow order half.

DFDV: FDVL AM ;Get high part of quotient
MOVN A+2,A ;Copy negative of quotient in A+2
FMPR A+2,M+1 ;Multiply by low part of divisor
UFA A+1,A+2 ;Add remainder

FDVR A+2M ;Divide sum by high part of divisor
FADL A,A+2 ;Add result to original quotient
POPJ P,

Proof: Using the expansion

1 = l[l_l+.}_’__y_+] (y2<x2)
x+y x x x? x3

and letting x = b and y = d27? gives

=27 =27 2n-54 3»-81
4 _ <q+r2)[1_d2 L2 @2 +]
B b b b2 b?

Multiplying out and gathering like terms gives

A 1 d d?
= = g+-0-qd2V - =@—qd)2*+ = (r—qd)2™®¥ — ..
3 g+ r—q 2 749 PEAA
where the first two terms on the right are those in the approximation
given above.
The ratio of adjacent terms is

Tn+ 1 — _d2 -27

T, b

In an alternating convergent series, the error due to truncation is smaller
than the first term dropped. Therefore

d2 =27

|Error] < T,

Since the maximum value of d is less than 1 and the minimum value of b
(normalized) is Y2,

|Error| < T,27%

§2.12 INPUT-OUTPUT

2.12 INPUT-OUTPUT

The input-output instructions govern all transfers of data to and from the
peripheral equipment, and also perform many operations within the proc-
essor. An instruction in the in-out class is designated by 111 in bits 0-2, ie
its left octal digit is 7. Bits 3-9 address the device that is to respond to the
instruction. The format thus allows for 128 codes, two of which, 000 and
004 respectively, address the processor and priority interrupt, and are used
for the console as well. The KA10 also uses the first two codes for the time
share hardware, but the KI10 has a separate code, 010, for this purpose.
A chart in Appendix A lists all devices for which codes have been assigned,
and gives their mnemonics and DEC option numbers. Electrical and logical
specifications of the IO bus are given in the interface manual.

Bits 13—-35 are the same as in all other instructions: they are the 7, X, and
Y parts, which are used to calculate an effective address, set of conditions,
or mask to be used in the execution of the instruction. The remaining bits,
10-12, select one of the following eight IO instructions.

NoTE

All instructions described in the remainder of this manual are in-out
instructions, which are affected by the time share instruction restric-
tions. In the KA10 no in-out instruction can be performed by a user
mode program unless the User In-out flag is set. In the KI10, in-out
instructions using device codes 740 and above are not restricted. But
an instruction using a device code under 740 cannot be performed by a
user mode program unless User In-out is set and cannot be performed
in supervisor mode at all (in-out is normally handled in kernel mode).
Any in-out instruction that violates these restrictions does not perform
the functions given for it in the instruction description. Instead it acts
just like an MUUO [§2.10].

These restrictions will not be mentioned in the instruction descrip-
tions, as they apply to all instructions from this point on.

CONO Conditions Qut
7] b J20[i] x | Y
0 23 910 121314 1718 . 35

Set up device D with the effective initial conditions £. The number of con-
dition bits in E that are actually used depends on the device.

CONI Conditions In
7 p |24 x Y
0 23 910 121314 1718 35

Read the input conditions from device D and store them in location E. The

2-81

Input and output for system
users is normally handled by
the Monitor using MUUOs
and various software formats.
For information on user
procedures vis-a-vis Monitor
handling of wuser 10 re-
quirements, refer to Chapters
4-6 of DECsystem—10 Moni-
tor Calls, manual DEC-10-
MRRx-D.

E will always be regarded as
being bits 18-35, even though
it is actually placed on both
halves of the bus and many
devices receive the informa-
tion from the left half.

2-82

CENTRAL PROCESSOR §2.12

number of condition bits stored depends on the device; the remaining bits
in location E are cleared.

DATAO Data Qut

(7] o Juaff x | Y]
0 23

910 121314 1718 35

Send the contents of location £ to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location F
are unaffected.

DATAI Data In

7 D 04 || X Y

0 23 910 121314 1718 35

Move the contents of the data buffer in device D to location E, and perform
whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are

cleared.

CONSZ Conditions In and Skip if Zero

7 D 30 (1] X Y

0 23 910 121314 1718 35

Test the input conditions from device D against the effective mask £. If all
condition bits selected by 1s in E are Os, skip the next instruction in
sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

CONSO Conditions In and Skip if One

(7] o [34]] x | Y]

0 23 910 121314 1718 35

Test the input conditions from device D against the effective mask E. If any
condition bit selected by a 1 in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

~

§2.12 INPUT-OUTPUT

BLKO Block Qut

7] b Jiof]l x | Y

0 23 910 121314 1718 35
BLKI Block In

7] b Joolr] x | Y

0 23 910 121314 1718 35

Add one to each half of a pointer in location E, and place the result back
in E. Then perform a data IO instruction in the same direction as the block
10 instruction, using the right half of the incremented pointer as the
effective address. If the given instruction is a BLKO, perform a DATAO;
if a BLKI, perform a DATAL
- The remaining actions taken by this instruction depend on whether it is
executed as a priority interrupt instruction [§2.13].

¢ Not as an Interrupt Instruction. 1f the addition has caused the count in
the left half of the pointer to reach zero, go on to the next instruction in
sequence. Otherwise skip the next instruction.
¢ As an Interrupt Instruction. 1If the addition has caused the count in the
left half of the pointer to reach zero, execute the instruction in the second
interrupt location for the channel. Otherwise dismiss the interrupt and
return to the interrupted program.

Note: The KAI10 increments the two halves of the pointer by adding
10000014 to the entire register. In the KI10 the two halves are handled
independently.

The above eight instructions differ from one another in their total effect,
but they are not all different with respect to any given device. A BLKO acts
on a device in exactly the same way as a DATAO — the two differ only in
counting and other operations carried out within the processor and memory.
Similarly, no device can distinguish between a BLKI and a DATAI; and a
device always supplies the same input conditions during a CONI, CONSZ or
CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre-
sented by the first four instructions described above. Moreover, a.complete
treatment of the programming of any device can be given in terms of these
four instructions, two of which are for input and two for output. The four
exhaust the types of information transfer that occur in the IO system, at
least three of which are applicable to any given device. Thus all instruction
descriptions in the rest of this manual will be of the CONO, CONI, DATAO
and DATALI instructions combined with the various device codes. The dis-
cussion of each device will present timing information pertinent to device
operation, as internal device timing is depcndent only upon the device and
not upon processor instruction time (which is given in Appendix D).

Every device requires initial conditions; these are sent by a CONO, which

2-83

A block IO instruction is
effectively a whole in-out
data handling subroutine. It
keeps track of the block loca-
tion, transfers each data
word, and determines when
the block is finished.

Initially the left half of the
pointer contains the negative
of the number of words in
the block, the right half con-
tains an address one less than
that of the first word in the
block.

The word ““input” used with-
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; “output” refers
to the transfer in the opposite
direction.

2-84

A DATAI that addresses an
output-only device simply
clears location E. DATAI PI,
(code 70044) produces only
this effect as the priority in-
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAO, CONO or CONSO
is a no-op, a CONSZ is an
absolute skip, a DATAI or
CONI clears location E.

Busy and Done both set is a
meaningless situation.

Occasionally a device with a
second code may use a
DATAI or DATAO to trans-
mit additional control or
maintenance information.

CENTRAL PROCESSOR §2.12
can supply up to eighteen bits of control information to the device control
register. The program can determine the status of the device from up to
thirty-six bits of input conditions that can be read by a CONI (but only the
right eighteen can be tested by a CONSZ or CONSO). Some input bits
simply reflect initial conditions sent by a previous CONO; others are set up
by output conditions but are subject to subsequent adjustment by the
device; and still others, such as status levels from a tape transport, have no
direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit
words. Each transfer between memory and a device data buffer requires a
single DATAI or DATAOQO. Every device has a CONO and CONI, but it may
have only one data instruction unless it is capable of both input and output.
Eg, the paper tape reader has only a DATALI, the tape punch has only a
DATAO, but the console terminal has both. (A high speed device, such as a
disk file, can be connected to a direct-access processor, which in turn is
connected directly to memory by a separate memory bus and handles data
automatically. This eliminates the need for the program to give a DATAO
or DATAI for each transfer.)

A Typical 10 Device. Every device has a 7-bit device selection network, a
priority interrupt assignment, and at least two flags, Busy and Done, or some
equivalent. The selection network decodes bits 3-9 of the instruction so
that only the addressed device responds to signals sent by the processor over
the in-out bus. To use the device with the priority interrupt, the program
must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, a
CONO or DATAO sets Busy. If the device will be used for output, the pro-
gram must give a DATAO that sends the first unit of data — a word or char-
acter depending on how the device handles information. When the device has
processed a unit of data, it clears Busy and sets Done to indicate that it is
ready to receive new data for output, or that it has data ready for input.
In the former case the program would respond with a DATAO to send more
data; in the latter, with a DATAI to bring in the data that is ready. If an
interrupt channel has been assigned to the device, the setting of Done signals
the program by requesting an interrupt; otherwise the program must keep
testing Done to determine when the device is ready.

All devices function basically as described above even though the number
of initial conditions varies considerably. Besides Busy and Done flags, the
tape reader and punch have a Binary flag that determines the mode of
operation of the device with respect to the data it processes — alphanumeric
or binary. The terminal has no binary flag, but it has two Busy flags and two
Done flags — one pair for input, another for output. A complicated device,
such as magnetic tape, may require two device codes to handle the large
number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape control is to
perform; input conditions include error flags and transport status levels.

Most IO devices involve motion of some sort, usually mechanical (in a
display only the electron beam moves). With respect to mechanical motion

&

§2.12 INPUT-OUTPUT

there are two types of devices, those that stay in motion and those that do
not. Magnetic tape is an example of the former type. Here the device
executes a command (such as read, write, space forward) and the done flag
indicates when the entire operation is finished. A separate data flag signals
each time the device is ready for the program to give a DATAI or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CONO every time. The reader logic is set up so that a
DATALI not only reads the data, but also clears Done and sets Busy. Hence
if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start
the tape, and one to stop it after the final DATAIL

Other devices operate in one or the other of these two ways but differ in
various respects. The tape punch and terminal output are like the reader.
Terminal input is initiated by the operator striking a key rather than by
the program. The card reader reads an entire card on a single CONO, with
a DATAI required for each column. The DECtape stays in motion, and
the program must give a CONO to stop it or it will go all the way to the
end zone.

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. Its principal use is to read in a short loader
program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the
validity of the information read.

Pressing the readin key on the console activates readin mode by starting
the processor in a special hardware sequence that simulates a DATAI fol-
lowed by a series of BLKI instructions, all of which address the device whose
code is selected by the readin device switches at the left just above the
console operator panel. Various devices can be used, and for each there are
special rules that must be followed. But the readin mode characteristics of
any particular device are treated in the discussion of the device. Here we
are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre-
ceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word.

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. This key function
first duplicates the action of the console reset key, which clears both the
processor and the in-out equipment; in particular it places the processor in
executive mode, and in the KT10 selects kernel mode with executive paging
disabled, so all access will be to the first 256K of physical memory unpaged.
Following this the processor places the device in operation, brings the first

2-85

At present readin is limited to
paper tape, DECtape, and
standard magnetic tape.

2-86

MAcCRoO also recognizes the
mnemonic RSW (Read
Switches) as equivalent to
DATAI APR,.

CENTRAL PROCESSOR §2.12

word (the pointer) into location 0, and then reads the data block, placing the
words in the locations specified by the pointer. Data can be placed any-
where in the first 256K of memory (including fast memory) except in
location 0. The operation affects none of memory except location 0 and
the block area.

Upon completing the block, the processor leaves readin mode and begins
normal operation. This is done in the KI10 by jumping to the location con-
taining the last word in the block, in the KA10 by executing the last word as
an instruction. In the KA10 the processor stops after executing the first
instruction if the single instruction switch is on.

Console-Program Communication

Neither the processor nor the priority interrupt system require all four types
of IO instructions, so the program can make use of their device codes for
communicating with the console. Both processors have two instructions that
transfer data between console and program. But in the KI10, the program
can actually operate some of the switches on the console. For this purpose
it uses a data-out instruction with the device code for the paper tape reader
(an input-only device). The KI10 program can also inspect the states of a
number of operating and sense switches, but the bits for these are included
in the left half words of the standard input conditions for the interrupt
and processor [§§2.13, 2.14].

DATAI APR, Data In, Console

| 70004 1] x | Y

0 121314 1718 35

Read the contents of the console data switches into location E.

DATAO PI, Data Out, Console
70054 7l x | Y |
0 121314 1718 35

Unless the console MI program disable switch is on, display the contents of
location E in the console memory indicators and turn on the triangular light
beside the words PROGRAM DATA just above the indicators (turn off the
light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi-
tion selected from the console [Appendix F] can load them until the
operator turns on the MI program disable switch, executes a key function
that references memory, or presses the reset key.

-

§2.13 PRIORITY INTERRUPT

DATAO PTR, Operating Data Out, Console

| 71054 il x Y

0 121314 17 18 35

Unless the MI program disable switch is on, set up the console address and
address-condition switches according to the contents of location £ as shown
(a 1 in a bit turns on the switch, a O turns it off).

INST DATA WRITE ADDRESS| EXEC USER
FETCH FETCH BREAK | PAGING | PAGING
! 0 1 2 4 7
| 3 5 f___J 8
e
| r—
ADDRESS SWITCHES

0 6 14 35

For complete information on the use of these switches, see Appendix F1.

2.13 PRIORITY INTERRUPT

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service them,
but they must be serviced within a short time after they request it. Failure
to service within the specified time (which varies among devices) can often
result in loss of information and certainly results in operating the device
below its maximum speed. The priority interrupt is designed with these
considerations in mind, ie the use of interruptions in the current program
sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the
processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a
priority chain, with assignment of devices to channels entirely at the discre-
tion of the programmer. To assign a device to a channel, the program sends
the number of the channel to the device control register as part of the condi-
tions given by a CONO (usually bits 33—35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device
from the interrupt channels altogether. Any number of devices can be
connected to a single channel, and some can be connected to two channels
(eg a device may signal that data is ready on one channel, that an error has
occurred on another).

When a device requires service it sends an interrupt request signal over the
in-out bus to its assigned channel in the processor. The processor accepts the
request depending upon certain conditions, such as that the channel must be
aclive (on). The request signal is a level so it remains on the bus until turned
off by the program (CONO, DATAO or DATAI, depending on the device).
Thus if a request is not accepted when made, it will be accepted when the

2-87

On the KI10 console, all
switches are pushbutton-
flipflop combinations; the in-
struction of course controls
the flipflops, not the buttons.

2-88

The request signal is generally
derived from a flag that is set
by various conditions in the
device. Often associated with
these flags are enabling flags,
where the setting of some
device condition flag can re-
quest an interrupt on the
assigned channel only if the
associated enabling flag is also
set. The enabling flags are in
turn controlled by the condi-
tions supplied to the device by
a CONO. Eg a device may
have half a dozen flags to
indicate various internal condi-
tions that may require service
by an interrupt; by setting up
the associated enabling flags,
the program can determine
which conditions shall actual-
ly request interrupts in any
given circumstances.

Note that there are therefore
two orders of priority asso-
ciated with an interrupt: first
the channel, and then for all
devices requesting interrupts
simultaneously on the same
channel, proximity to the
processor on the bus. For
priority purposes, all devices
on the left bus are closer than
those on the right bus.

§2.13

CENTRAL PROCESSOR

conditions are satisfied. A single channel will shut out all others of lower
priority if every time its service routine dismisses the interrupt, a device
assigned to it is already waiting with another request. The program can
usually trigger a request from a device but delay its acceptance by turning
on the channel later.

Having accepted a request, the processor will do nothing further with it
unless the priority interrupt system is on. But even with the system off, the
processor will continue to accept requests on other channels; and when the
system is finally turned on, it will respond as though all requests had just
been accepted, handling the highest priority one first.

The way in which interrupts are handled, the conditions that affect them,
and so forth depend upon the type of processor.

KI10 Interrupt

A request made to an active channel is accepted immediately unless some
channel is already waiting for an interrupt to start or an interrupt is starting
for some channel. Once a request is accepted with the system on, the
channel must wait for the interrupt to start. The processor however will
delay any action on the request if it is already holding an interrupt for the
same channel or for a channel with priority higher than those on which
requests have been accepted (in other words if the current program is a
higher priority interrupt routine). When a waiting channel has priority
higher than the current program, the processor sends an interrupt-granted
signal for the waiting channel that has highest priority. This action makes
use of the IO bus. Should the bus be busy, the grant is sent as soon as the
bus becomes available, taking precedence over any IO instruction that may
also be waiting (note that in this situation the program actually stops). The
grant signal goes out on the bus and is transmitted serially from one device
to the next. Upon receiving the grant, a device that is not requesting an
interrupt on the specified channel sends the signal on to the next device. A
device that is requesting an interrupt on the specified channel terminates the
signal path and sends an interrupt function word back to the processor.

Upon receipt of the function word, the processor stops the current pro-
gram at the first allowable point to start an interrupt for the waiting channel
for which the grant was made. Allowable stopping points are at the com-
pletion of an instruction, following the retrieval of an address word in an
effective address calculation (including the second calculation using the
pointer in a byte instruction), between transfers in a BLT, between steps in
the calculation of the first part of the quotient in double floating division,
and while an IO instruction is waiting for the bus. When an interrupt starts,
PC points to the interrupted instruction, so that a correct return can later be
made to the interrupted program.

The action taken by the processor in starting an interrupt depends upon
the function specified by the function word returned to the processor. Two
fixed locations in the executive process table are associated with each
channel: locations 40+ 2N and 41 + 2N, where N is the channel number.
Channel 1 uses locations 42 and 43, channel 2 uses 44 and 45, and so on to

§2.13 K110 INTERRUPT
channel 7 which uses 56 and 57. The processor starts a ‘“‘standard’’ interrupt
for channel N by executing the instruction in the first interrupt location for
the channel, ie location 40 +2N. The fixed locations however need not be
used. The interrupt function word sent by the device may specify a standard
interrupt using the fixed locations, or an equivalent interrupt using a pair of
locations specified by the function word, or some other interrupt function
entirely. The format of the function word and the operations the processor
performs in response to the function selected by bits 3—-5 of the word are
as follows.

FUNCTION
\ INCREMENT INTERRUPT ADDRESS
3 56 1718 35
Bits 3-5 Interrupt Function
0 Processor waiting. If no response, perform a standard interrupt
(see function 1).
1 Standard interrupt — execute the instruction in location 40 + 2N
of the executive process table.
2 Dispatch — execute the instruction in the location specified by
bits 18-35.
3 Increment — add the contents of bits 6—17 to the contents of the

location specified by bits 18—35. The increment is a fixed point
number in twos complement notation, bit 6 being the sign, and
bit 17 corresponding to bit 35 of the memory word.

4 DATAO — do a DATAO for this device using the contents of
bits 18-35 as the effective address.

5 DATAI — do a DATAI for this device using the contents of
bits 18-35 as the effective address.

Not used — reserved by DEC.
7 Not used — reserved by DEC.

Regardless of what mode the processor is in when an interrupt occurs, the
interrupt operations are performed in kernel mode. No interrupt operation
can set Overflow or either of the trap flags; hence an overflow trap can never
occur as a direct result of an interrupt. A page failure that occurs in an
interrupt operation is never trapped; instead it sets the In-out Page Failure
flag, which requests an interrupt on the channel assigned to the processor
[§2.14]. These considerations of course do not apply to a service routine
called by an interrupt instruction.

Interrupt Instructions. An instruction executed in response to an inter-
rupt request and not under control of PC is referred to elsewhere in this
manual as being “‘executed as an interrupt instruction.” Some instructions,
when so executed, have different effects than they do when performed in
other circumstances. And the difference is not due merely to being per-

2-89

A device designed originally
for use with the KA10 will
work when connected to the
KI10 bus, where it always
requests a standard interrupt
by providing no response to
the grant. Note that for simul-
taneous requests on a given
channel, all KI10 devices that
return a function word have
priority over all KA10 devices
and over any KI10 devices
that do not return a function
word. The last group includes
the reader, punch and tele-
typewriter, which are con-
tained in the processor, as
well as the processor itself
acting as a device [see proc-
essor conditions, §2.14].

At present, functions 6 and 7
produce standard interrupts.

2-90

These locations may be the
fixed ones for a standard in-
terrupt or those given by the
function word for a dispatch
interrupt.

Satisfaction of the condition
does not change PC, as this
would skip the next instruc-
tion in the interrupted pro-
gram. Ineffect the instruction
skips back to the interrupted
program by skipping the sec-
ond interrupt location.

Note that the interpreta-
tion of a BLKI or BLKO as a
skip instruction is consistent
with the description given in
§2.12, the condition being
that the count is not zero.

CENTRAL PROCESSOR §2.13

formed in an interrupt location or in response (by the program) to an inter-
rupt. To be an interrupt instruction, an instruction must be executed in the
first or second interrupt location for a channel, in direct response by the
hardware (rather than by the program) to a request on that channel. §2.12
describes the two ways a BLKO is performed. If a BLKO is contained in an
interrupt routine called by a JSR, it is not ““executed as an interrupt instruc-
tion” even in the unlikely event the routine is stored within the interrupt
locations and the BLKO is executed by an XCT. The interrupt instructions
executed in a standard or dispatch interrupt fall into three categories.

¢ AOSX, SKIPX, SOSX, CONSX, BLKX. If the skip condition specified by
the instruction is satisfied, the processor dismisses the interrupt and returns
immediately to the interrupted program (ie it returns control to the un-
changed PC). If the skip condition is not satisfied, the processor executes
the instruction contained in the second interrupt location.

CauTION

In the second interrupt location, a skip instruction
whose condition is not satisfied hangs up the pro-
cessor, which will keep repeating the instruction
until the condition is satisfied.

¢ JSR, JSP, PUSHJ, MUUO. The processor holds an interrupt on the
channel, takes the next instruction from the location specified by the jump
(as indicated by the newly changed PC), and enters either kernel mode or the
mode specified by the new PC word of the MUUO. Hence the instruction is
usually a jump to a service routine handled by the Monitor.

¢ All Other Instructions. In general the processor simply executes the
instruction, dismisses the interrupt, and then returns to the interrupted
program. If the instruction is a jump (other than those mentioned above),
the processor jumps to the newly specified location; but it dismisses the
interrupt and returns to the mode it was already in when the interrupt
occurred. Hence it effectively returns to the interrupted program but in a
different place, and the original contents of PC are lost.

Since the interrupt operations are performed in kernel mode regardless of
the actual mode of the processor, an XCT is performed as an executive XCT
[§2.15]. The ultimate effect of the XCT depends of course on the instruc-
tion executed — and its effect is as described here for the various categories.

CaurIioN

Neither an LUUO, a BLT, a DMOVEM, nor a
DMOVNM will function in a reasonable manner as
an interrupt instruction. Therefore do not use them.

Dismissing an Interrupt. Unless the interrupt operation dismisses the
interrupt automatically, the processor holds an interrupt until the program
dismisses it, even if the interrupt routine is itself interrupted by a higher
priority channel. Thus interrupts can be held on a number of channels
simultaneously, but from the time an interrupt is started until it is dismissed,

L

§2.13 KI10 INTERRUPT

no interrupt can be started on that channel or any channel of lower priority
(requests, however, can be accepted on lower priority channels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be on when the JEN
is given). This instruction restores the channel on which the interrupt is
being held, so it can again accept requests, and interrupts can be started on
it and lower priority channels. JEN also restores the flags, whose states were
saved in the left half of the PC word if the routine was called by a JSR,
JSP, PUSHIJ, or MUUO. If flag restoration is not desired, a JRST 10, can
be used instead.

CaurioN

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority will be
disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in-
terrupt system by means of condition IO instructions. The device code is
004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt
| 70060 Il x | Y]
0 121314 1718 35

Perform the functions specified by the effective conditions £ as shown (a 1
in a bit produces the indicated function, a O has no effect).

2-91

DROP PROGRAM INITIATE DEACTIVATE ACTIVATE

REQUESTS ON INTERRUPTS P PI

SELECTED ON

CHANNELS / \ /
CLEAR | CLEAR |[DISABLE| ENABLE TURN TURN
POWER |paRITY pwwlmon \ LR BEREEER / SELECT CHANNELS FOR BITS 22, 24, 25,26
L

INTERRUPT SYSTEM SELECTED CHANNELS

FLAG | FLAs i ! ! V2] s] 45)6 |7
18 19 20 I 2 22 23 24 25 2 21 28 29 T 30 3 32 I 33 34 35

20 Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

22 On channels selected by 1s in bits 29-35, turn off any interrupt
requests made previously by the program (via bit 24).

23 Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but
are still waiting, and dismiss all interrupts that are currently being
held.

Bits 18-21 are actually for
processor conditions [§2.14].

2-92

For other than the highest
priority channel, the greater
the number of higher priority
channels active, the greater
the amount of program time
available both initially and
between successive interrupts.
If the program forces an inter-
rupt on the lowest priority
channel when all are active,
there can be as much as 40 us
of program time between the
CONO PI, and its interrupt.

CENTRAL PROCESSOR 8§2.13

24 Request interrupts on channels selected by Is in bits 29-35, and
force the processor to accept them even on channels that are off.
The request remains indefinitely, so as soon as an interrupt is com-
pleted on a given channel another is started, until the request is
turned off by a CONO that selects the same channel and has a
1 in bit 22.

Remember that the processor allows the program to continue
while it grants an interrupt. Thus when this bit forces acceptance of
a request, another program instruction or two may be performed
before the interrupt, even on the highest priority channel. Moreover
if the request is allowed to remain, additional instructions may be
performed between successive interrupts.

Turn on the channels selected by 1s in bits 29-35 so interrupt
requests can be accepted on them.

25

Turn off the channels selected by 1s in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

26

28 Activate the priority interrupt system so the processor can accept

requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

70064 Y

x|

121314 1718

0 35

Read the status of the priority interrupt (and nine console operating
switches) into location E as shown.

INST | DATA WRITE ADDRESS [ADDRESS | EXEC USER PAR NXM PROGRAM REQUESTS ON CHANNELS
FETCH | FETCH STOP | BREAK | PAGING | PAGING | STOP | STOP
1 | 2 | 3 | 4 | 5 | 6 | 7
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
INTERRUPT IN PROGRESS ON CHANNELS SYspTlEM CHANNELS ON (ACTIVE)
]2 | 3 | 4| 5 |86 | 7 | ™ 1]2 | 3| 4 | 5 | 6 |7
18 19 20 21 22 23 24 25 %6 | 21 28 29 30 3 32 33 34 35

Channels that are active are indicated by ls in bits 29-35; 1s in bits
21-27 indicate channels on which interrupts are currently being held; 1s in
bits 11-17 indicate channels that are receiving interrupt requests generated
by a CONO PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt
system is on.

The remaining conditions read by this instruction have nothing to do with
the interrupt. Bits 0-8 reflect the settings of various console operating
switches; for information on these switches refer to Appendix F1.

§2.13 KI10 INTERRUPT

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,
it need never wait longer than 10 us.

Special Considerations. On a return to an interrupted program, the proc-
essor always starts the interrupted instruction over from the beginning. This
causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that holds
the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the
same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a
two-part byte instruction. When this happens, First Part Done is set. This
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if the User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in
the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
¢ No requests can be accepted, not even on higher priority channels, while
an interrupt is starting. Therefore do not use lengthy effective address cal-
culations in interrupt instructions.
¢ Most in-out devices are designed to drop an interrupt request when the
program responds, usually with a DATAI or DATAO. If an interrupt is
handled neither by a BLKI or BLKO interrupt instruction nor by a service
routine, the programmer must make sure the device is configured to drop the
request on receipt of whatever response the program does give.
¢ The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.
¢ The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. FEg computations that can be performed
outside the routine should not be included within it.

2-93

2-94

Interrupt locations for a sec-
ond processor on the same
memory are 140+2N and
141+ 2N.

CENTRAL PROCESSOR §2.13

¢ If the routine uses a UUO it must first save the contents of the pair of
locations that will be changed by it in case the interrupted program was in
the process of handling a UUO of the same type. For an MUUO the routine
must save locations 424 and 425 of the user process table. For an LUUO the
routine must save location 40 in the executive process table and the location
used by the UUO handler instruction to store the PC word.

¢ The routine must dismiss the interrupt (with a JEN) when returning to the
interrupted program. The flags and UUO locations should be restored.

KA10 Interrupt

A request made to an active channel is accepted at the next memory access
unless the processor is starting an interrupt for any channel or holding an
interrupt for the same channel. Once a request is accepted with the system
on, the channel must wait for the interrupt to start. The processor however
cannot start an interrupt if it is already holding an interrupt for a channel
with priority higher than those on which requests have been accepted (in
other words if the current program is a higher priority interrupt routine).
When there is a higher priority channel waiting, the processor stops the
current program at the first allowable point to start an interrupt for the
waiting channel that has highest priority. Allowable stopping points are
following the retrieval of an instruction, following the retrieval of an address
ward jn. an effective address calculation (including the second calculation
using the pointer in a byte instruction), ‘and between transfers in a BLT.
When an interrupt starts, PC points to the interrupted instruction, so that a
correct return can later be made to the interrupted program.

Two memory locations are associated with each channel: unrelocated
locations 40 + 2N and 41 + 2N, where N is the channel number. Channel 1
uses locations 42 and 43, channel 2 uses 44 and 45, and so on to channel 7
which uses 56 and 57. The processor starts an interrupt for channel N by
executing the instruction in location 40+ 2N. Even though the processor
may be in user mode when an interrupt occurs, interrupt instructions are
performed in executive mode.

Interrupt Instructions. An instruction executed in response to an inter-
rupt request and not under control of PC is referred to elsewhere in this
manual as being ‘“‘executed as an interrupt instruction.” Some instructions,
when so executed, have different effects than they do when performed in
other circumstances. And the difference is not due merely to being per-
formed in an interrupt location or in response (by the program) to an
interrupt. To be an interrupt instruction, an instruction must be executed in
location 40 + 2N or 41 + 2N, in direct response by the hardware (rather than
by the program) to a request on channel N. §2.12 describes the two ways a
BLKO is performed. If a BLKO is contained in an interrupt routine called
by a JSR, it is not “executed as an interrupt instruction’ even in the unlikely
event the routine is stored within the interrupt locations and the BLKO is
executed by an XCT. There are two categories of interrupt instructions.
¢ Non-I0 Instructions. After executing a non-IO interrupt instruction, the
processor holds an interrupt on the channel and returns control to PC.

§2.13 KA10 INTERRUPT

Hence the instruction is usually a jump to a service routine. If the processor
is in user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or
JRST, the processor leaves user mode (the Monitor thus handles all interrupt
routines [§2.16]).

If the interrupt instruction is not a jump, the processor continues the
interrupted program while holding an interrupt — in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction
might just move a word to a particular location. Such procedures are
usually reserved for maintenance routines or very sophisticated programs.
¢ Block or Data 10 Instructions. One or the other of two actions can result
from executing one of these as an interrupt instruction.

If the instruction in 40+ 2N is a BLKI or BLKO and the block is not
finished (ie the count does not cause the left half of the pointer to reach
zero), the processor dismisses the interrupt and returns to the interrupted
program. The same action results if the instruction is a DATAI or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach
zero, the processor executes the instruction in location 41 + 2N. This
cannot be an 10 instruction and the actions that result from its execution
as an interrupt instruction are those given above for non-IO instructions.

CauTtiOoN

The execution, as an interrupt instruction, of a
CONO, CONI, CONSO or CONSZ in location
40 + 2N or any 10 instruction in location 41 + 2N
hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only
in a DATAI or DATAO, or in a BLKI or BLKO with an incomplete block.
Following any non-lIO interrupt instruction, the processor holds an interrupt
until the program dismisses it, even if the interrupt routine is itself inter-
rupted by a higher priority channel. Thus interrupts can be held on a
number of channels simultaneously, but from the time an interrupt is started
until it is dismissed, no interrupt can be started on that channel or any
channel of lower priority (requests, however, can be accepted on lower
priority channels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be on when the JEN is
given). This instruction restores the channel on which the interrupt is being
held, so it can again accept requests, and interrupts can be started on it and
lower priority channels. JEN also restores the flags, whose states were saved
in the left half of the PC word if the routine was called by a JSR, JSP, or
PUSHJ. If flag restoration is not desired, a JRST 10, can be used instead.

CaurIionN

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority will be

295

2-96

CENTRAL PROCESSOR §2.13

disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Interrupt Conditions. The program can control the interrupt system by
means of condition 10 instructions. The device code is 004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

70060 Il X Y

121314 1718 35

Perform the functions specified by the effective conditions £ as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

INITIATE DEACTIVATE ACTIVATE
INTERRUPTS Pl Pl
ON \ /
[
CLEAR | CLEAR |DISABLE | ENABLE CLEAR f]TURN TURN \ /
FOWER | PARITY | oo oon £ on ! oFF SELECT CHANNELS FOR BITS 24, 25, 26
INTERRUPT SYSTEM SELECTED CHANNELS
FLAG | FLAG ER . X v | 2 | 3 | 4 | 5 | 6 |7
18 19 20 I 21 23 24 25 2 27 28 29 | 30 3 32 1 33 32 35

Bits 18-21 are actually for
processor conditions [§2.14].

22

20 Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

23 Deactivate the priority interrupt system, turn off all channels, elimi-
nate all interrupt requests that have already been accepted but are
still waiting, and dismiss all interrupts that are currently being held.

24 Request interrupts on channels selected by 1s in bits 29-35, and
force the processor to accept them even on channels that are off.
There is at most one interrupt on a given channel, and a request is
lost if it is made by this means to a channel on which an interrupt is
already being held.

25 Turn on the channels selected by 1Is in bits 29-35 so interrupt
requests can be accepted on them.

26 Turn off the channels selected by 1s in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.
28 Activate the priority interrupt system so the processor can accept

requests and can start, hold and dismiss interrupts.

§2.13 KA10 INTERRUPT 2-97

CONI PI, Conditions In, Priority Interrupt
| 70064 7] x | Y B
121314 1718 35

Read the status of the priority interrupt (and several bits of processor con-
ditions) into location £ as shown.

PARITY ERROR
INTERRUPT
ENABLED

POWER | PARITY / INTERRUPT IN PROGRESS ON CHANNELS SYSPTIEM CHANNELS ON (ACTIVE)

FAILURE| ERROR
]2 | 3 | 4 | 5|6 |71 ON 12 | 3 | 4 |5 |6 |71
18 19 20 21 22 23 | 24 5 26 | 21 28 29 T 30 31 32 1 33 34 35

Channels that are on are indicated by 1s in bits 29-35; Is in bits 21-27
indicate channels on which interrupts are currently being held. A 1 in bit 28
means the interrupt system is on.

The remaining conditions read by this instruction have nothing to do with
the interrupt. Bits 18-20 actually read processor status condition [§2.14]
as follows.

18 Ac power has failed. The program should save PC, the flags and fast Note that PC may point to
memory in core, and halt the processor. an interrupt service routine
The setting of this flag requests an interrupt on the channel rather than the main program.
assigned to the processor. If the flag remains set for 5 ms, the
processor is cleared.

19 A word with even parity has been read from core memory. If bit 20
is set, the setting of the Parity Error flag requests an interrupt on the
channel assigned to the processor, at which time PC points to the
instruction being performed or to the one following it.

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,
it need never wait longer than the time required for the processor to finish
the instruction that is being performed when the request is made. The maxi-
mum time can be considered to be about 15 us for FDVL, but a ridiculously
long shift could take over 35 us.

Special Considerations and Programming Suggestions. If the interrupt
routine uses a UUO it must first save the contents of the pair of locations
that will be changed by it in case the interrupted program was in the process
of handling a UUO. Hence the routine must save unrelocated location 40
and the location used by the UUO handler instruction to store the PC word.
In all other respects, the special considerations and programming suggestions
given at the end of the section on the KI10 interrupt hold for the KA10.

298

The error conditions are gen-
erally regarded as important
enough to be assigned to the
highest priority channel. How-
ever for conditions that may
be associated with user in-
structions (a parity error or
unanswered memory refer-
ence), the common practice is
for the error interrupt to
switch over to the lowest
priority channel by means of
a program-set request. Then
the time taken to handle the
situation, which may well be
considerable, cannot interfere
with high priority events.

CENTRAL PROCESSOR §2.14

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by
requesting an interrupt on a channel assigned to the processor. Condition 10
instructions are used to control the appropriate flags and to inspect other
internal conditions of interest to the program.

KI10 Processor Conditions

In the KI10, page failures and overflow are handled by trapping, but other
internal conditions use the interrupt system. The program can actually
assign two channels to the processor — one for error conditions and one
specifically for the clock. Control over the Power Failure and Parity Error
flags is exercised by a CONO that addresses the priority interrupt system
[§2.13]. Control over other conditions and inspection of all are handled by
condition 10 instructions that address the processor; the CONI also reads
some console switches and maintenance functions. The processor also has
a data-out instruction through which the program can perform margin
checking of the system in both speed and voltage.

One of the features controlled by the CONO for the processor is the auto-
matic restart after power failure. This restart applies only when the levels on
the power mains go below specification while the processor is running, and
the power switch is on when power is restored — the machine never begins
operation by itself when the operator turns the power switch on or off.
Inadequate power, over temperature, etc are indicated by the Power Failure
flag. In order for the processor to restart itself, the program must respond in
a particular way to the setting of Power Failure. If the program fails to
respond properly, there is no restart.

The processor device code is 000, mnemonic APR.

CONO APR, Conditions Qut, Arithmetic Processor
[70020 1] x Y
0 121314 17 18 35

Assign the interrupt channels specified by bits 30-35 of the effective condi-
tions £ and perform the functions specified by bits 18-29 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

RESET ALL | DISABLE | ENABLE
TIMER [IN-OQUT | TIMER | TIMER
DEVICES

CLEAR DISABLEI ENABLE DISABLEI ENABLE CLEAR
AUTO RESTART

CLEAR
NONEXISTENT
MEMORY
CLOCK CLEAR IN-OUT PRIORITY INTERRUPT | PRIORITY INTERRUPT
INTERRUPT CLOCK PAGE ASSIGNMENT-ERROR | ASSIGNMENT-CLOCK

| FAILURE | | | i

18 19 20 21

23 24 25 26 27 28 29 30 3 32 33 34 35

A 1 in bit 19 produces the IO reset signal, which clears the control logic

§2.14

PROCESSOR CONDITIONS

in all of the peripheral equipment (but affects neither the priority interrupt
system nor the processor conditions).

CONI APR, Conditions In, Arithmetic Processor
70024 /] x] Y B
0 121314 1718 35

Read the status of the processor (as well as various console switches and
maintenance functions) into location E as shown.

299

MAINTENANCE
MODE
MEM Ml [CONSOLE / VOLTAGE
DISABLE DISABLE[LOCK LOW 1 [2 | 3 1 4 | 5 | 6
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 1 15 16 17
PARITY CLOCK
ERROR INTERRUPT NONEXISTENT
INTERRUPT ENABLED MEMORY
* ENABLED » / - * */
AuTO / IN-0UT / PRIORITY INTERRUPT | PRIORITY INTERRUPT
TIME | PARITY TIMER | POWER
RESTART CLOCK PAGE _ -
OUT | ERROR ENABLED | FAILURE [jich i en FAILURE ASSlGINMENT :ERROR ASSIG?MENT l(:LOCK
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35

Interrupts are requested on the error channel (assigned by bits 30-32 of
the CONO) by the setting of Power Failure, In-out Page Failure, Nonexistent
Memory, and if enabled, Parity Error. The setting of Clock Flag, if enabled,
requests an interrupt on the clock channel (assigned by bits 33—-35 of the
CONO).

Bits 12—-17 reflect the states of the console sense switches, which are
specifically for operator communication with the program. Bits 1-5 reflect
the settings of various console operating switches; for information on these

switches refer to Appendix F1.

Bits 7-10 are maintenance functions for

which the reader should refer to Chapter 10 of the maintenance manual.

6

18

19

The system is operating on 50 Hz line power. This is important to
the program, not only because some IO devices run slower on 50 Hz,
but because the program must compensate for the time difference
when using the line frequency clock (bit 26).

Bit 21 is 1 and the program has not reset the timer (CONO APR,
bit 18) during the last 1.2 seconds (the period of the timer may vary
from 1.2 to 1.5 seconds). The setting of this flag clears the processor
and the peripheral equipment, and restarts the processor in kernel
mode at location 70.

A word with cven parity has been read from core memory. If bit 20
is 1, the setting of Parity Error requests an interrupt on the error
channel [see cautions below].

*These bits cause interrupts.

The processor does not actu-
ally have a maintenance mode
— the bit is simply the or
function of a number of con-
sole switches, any one of
which being on implies that
the processor is being op-
erated for maintenance pur-
poses.

The timer provides a restart
similar to that following
power failure. Running the
machine under margins may
result in significant logical
errors. If the timer is enabled,
failure of the program to
reset it about every second
allows it to time out. The re-
start instruction should set up
PC, which would otherwise
be clear.

2-100

The restart instruction should
set up PC, which would other-
wise be clear.

An interrupt page failure
caused by the console address
break switch sets this flag in-
stead of producing an address
failure [§2.15].

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

Remember that during the
grant procedure, the inter-
rupt system is otherwise static
and the program continues.
Moreover the processor is
effectively at the far end of
the bus.

Inany event, it is generally not
worthwhile to return to any
program without first finding
out what has gone wrong.

CENTRAL PROCESSOR §2.14

22 Ac power has failed. The program should save PC, the flags, mode
information and fast memory in core, and halt the processor. Note
that PC may point to an interrupt service routine rather than the
main program.

The setting of this flag requests an interrupt on the error
channel. After 4 ms the processor is cleared. But at that time, if
the power switch is on and the program has cleared Power Failure
(CONO PI,400000) and enabled the auto restart (CONO APR,
010000), then when adequate power levels are restored, the processor
will resume normal operation by executing the instruction in location
70 in kernel mode.

26 This flag is set at the ac power line frequency and can thus be used
for low resolution timing (the clock has high long term accuracy). If
bit 25 is 1, the setting of the Clock flag requests an interrupt on the
clock channel.

28 A page failure has occurred in an interrupt instruction. The setting
of this flag requests an interrupt on the error channel.
Note: A page failure in an interrupt instruction is regarded as a
fatal error, and it causes an interrupt instead of a page failure trap.
The kernel mode program is expected to set up the interrupt instruc-
tions so that a page failure simply cannot occur.

29 The processor attempted to access a memory that did not respond
within 100 us. The setting of this flag requests an interrupt on the
error channel [see cautions below].

Programming Cautions. When handling parity error or nonexistent mem-
ory interrupts, the programmer should beware of the following.
¢ Should an error flag be set during an interrupt grant, the processor would
handle a lower priority interrupt before getting to the processor intzrrupt.
This means PC may be pointing to a lower level interrupt service routine
rather than the program level at which the error occurred.
¢ Even without inadvertent interference from another channel, it is quite
likely the processor will perform one or perhaps two more instructions
between the time the error flag sets and its interrupt starts. Hence even
though PC is at the correct program level, it may well be pointing to the first
or second instruction following the one in which the error occurred.
¢ A processor error interrupt that switches over to a lower priority channel
should not return to the interrupted program, as the error may simply recur,
producing a second processor interrupt before the error-handling interrupt

for the first. This could happen because PC is actually pointing to the

offending instruction, but beyond that, one error often begets another —
consider the case of PC counting into a nonexistent memory.

¢ The error may have originated from a console key function, and thus be
hidden from any investigation by the program.

9

§2.14 PROCESSOR CONDITIONS
DATAO APR, Maintenance Data Out, Arithmetic Processor
70014 7] x | Y
0 121314 1718 35

Supply diagnostic information and perform diagnostic functions according
to the contents of location E as shown.

2-101

This instruction is primarily
for maintenance, for which
further information is given
in Chapter 10 of the KI10

Maintenance Manual.

o]
VOLTAGE MARGIN ADDRESS
MARlGle | | | |
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 1 15 16 17
TURN TURN
WRITE
EVEN OFFSPEEDON MARGIN VALUE
PARITY MARGINS
| | | | | |
18 19 20 21 22 23 | 24 25 26 27 28 29 30 3 2 1 33 34 35

The margin value supplied by bits 30—35 of the output word is translated
to a voltage in the range 0-10 volts by a D-A converter, whose output is
available at pin 2S02V2. Running margins requires a slowdown capacitor
in the converter. But turning off the margin enable switch cuts out the
capacitor, making the converter output suitable for external use, such as for
operating audio equipment to play Bach or rock or Bacharach.

KA10 Processor Conditions

All KA10 processor conditions act through the interrupt on a single channel
assigned to the processor. Flags for power failure and parity error are
handled by the condition IO instructions that address the priority interrupt
system [§2.13]. The remaining flags are handled by condition instructions
that address the processor. Its device code is 000, mnemonic APR.

CONO APR, Conditions Out, Arithmetic Processor
70020 [[] x Y |
0 121314 1718 35

Assign the interrupt channel specified by bits 33-35 of the effective condi-
tions E and perform the functions specified by bits 18-32 as shown (a1l ina
bit produces the indicated function, a 0 has no effect).

Most of these conditions are
generally regarded as impor-
tant enough to be assigned to
the highest priority channel.
Except in the case of a power
failure however, the common
practice is for the processor
interrupt to switch over to
the lowest priority channel
by means of a program-set
request. Then the time taken
to handle the situation, which
may well be considerable,
cannot interfere with high

priority events.

CLEAR CLEAR CLEAR CLEAR CLEAR
PUSHDOWN MEMORY NONEXISTENT FLOATING OVERFLOW
OVERFLOW PROTECTION MEMORY FLAG OVERFLOW
| FLAG, ,
CLEAR CLEAR \ / DISABLE| ENABLE | ¢ ¢ g |DISABLE | ENABLE ' DISABLE| ENABLE , PRIORITYT
i[RI S L ST
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

2-102

CENTRAL PROCESSOR §2.14
Enabling a particular flag to interrupt means that henceforth the setting
of the flag will request an interrupt on the channel assigned (by bits 33-35)
to the processor. Disabling prevents the flag from triggering a request.
A 1 in bit 19 produces the IO reset signal, which clears the control logic in
all of the peripheral equipment (but affects neither the priority interrupt sys-
tem, nor the processor flags cleared by this instruction or CONO PIL,).

CONI APR, Conditions In, Arithmetic Processor

X Y

70024 1
0 1213 14

1718 35

Read the status of the processor into the right half of location E as shown
(all interrupt requests are made on the channel assigned to the processor).

PUSHDOWN
OVERFLOW

MEMORY
PROTECTION
FLAG

NONEXISTENT
MEMORY

*

CLOCK
INTERRUPT

FLOATING
OVERFLOW
INTERRUPT
ENAQLED

FLOATING
OVERFLOW

*

OVERFLOW
INTERRUPT
ENABLED

*

OVERFLOW

\

USER
IN-OUT

» *
ADDRESS

BREAK

/

ENABLED

CLOCK

\

/

TRAP
OFFSET

PRIORITY
INTERRUPT
ASSIGNMENT
| 1

18 19

20

21 22

23 24

*
25 26

27 28

29 30

3

32

33 34

35

*These bits cause interrupts
on the channel assigned to the
processor, as do Power Failure
and Parity Error, bits 18 and
19 read by a CONI PI,.

PC bears no relation to the
break if the access was re-
quested for a console key
function.

NOVEMBER 1974

With the possible exception of an illegal memory reference on an instruc-
tion fetch, if the highest priority active channel is assigned to the processor,
then the occurrence of any processor interrupt condition is guaranteed to
produce a processor interrupt with no lower priority interrupt intervening
between it and the program level at which the processor condition occurred.
The actual relationship between PC and the instruction associated with a
given condition is as stated in its description.

19 Pushdown Overflow — in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached —1. The setting
of this flag requests an interrupt, at which time PC points to the
instruction following that in which the overflow occurred. The loca-
tion of the offending instruction is implied by PC for PUSH or POP,
is indicated by the last item in the stack for PUSHJ, but is indeter-
minate for POPJ.

User In-out — even if the processor is in user mode, there are no
instruction restrictions (but memory restrictions still apply) [§2.16].

Address Break — while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

20

21

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con-
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

§2.14

22

23

26

29

30

32

PROCESSOR CONDITIONS

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory, other than in a read-modify-write.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.

Memory Protection — a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area and the user instruction was terminated at that time. The setting
of this flag requests an interrupt, at which time PC points either to
the instruction that caused the violation or to the one following it,
unless the illegal reference was for fetching an instruction. In this
exceptional case it is possible for a lower level interrupt to occur
between the violation and its interrupt, even with the processor
assigned to the highest priority active channel.

Nonexistent Memory — the processor attempted to access a memory
that did not respond within 100 us. The setting of this flag requests
an interrupt, at which time PC points either to the instruction con-
taining the unanswered reference or to the one following it.

Clock — this flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
accuracy). If bit 25 is set, the setting of the Clock flag requests an
interrupt.

Floating Overflow — this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of §2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over-
flow occurred.

Trap Offset — the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

Overflow — this is one of the flags saved in a PC word, and the condi-
tions that set it are given at the beginning of §2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred.

CavurIioN

For an address break, a memory protection violation, a
parity error, or a nonexistent memory, a processor error
interrupt that switches over to a lower priority channel
should not return to the interrupted program, as the proc-
essor will fetch the next user instruction before it accepts
the program-set interrupt request. This makes it very likely
that the same error will recur, producing a loop between
the processor interrupt and the interrupted program.

2-103

This flag can also be set by
an instruction executed from
the console while the USER
MODE light is on, in which
case PC bears no relation to
the violation.

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

NOVEMBER 1974

2-104

CENTRAL PROCESSOR

2.15 KI10 PROGRAM AND MEMORY MANAGEMENT

General information about the machine modes and paging procedures is
given in Chapter 1, in particular at the end of the introductory remarks and
at the end of §1.3. Here we are concerned principally with the special
instructions the Monitor uses to operate the system, the special effects that
ordinary instructions have in executive mode, and certain hardware pro-
cedures, in particular paging and page failures, that are necessary for an
understanding of executive programming.

User Programming. As far as user programming is concerned, all of the
necessary information has already been presented. For convenience however
we list here the rules the user must observe. [Refer to the Monitor manual
for further information including use of the Monitor for input-output.)
¢ If possible, limit your memory needs to 32K, using addresses 0-37777
and 400000-437777, to gain the savings afforded by having the status of a
“small user”. There are no restrictions of any kind on addresses 0—17 as
these are in fast memory and are available to all users (even though page O
may otherwise be inaccessible).
¢ If an area of memory is write-protected, eg for a reentrant program shared
by several users, do not attempt to store anything in it. In particular do not
execute a JSR or JSA into a write-protected page.
¢ Use the MUUO codes 040-077 only in the manner prescribed in the
Monitor manual. In general, unless they are prescribed for special circum-
stances, code 000 and the unassigned codes should not be used.
¢ Do not use HALT (JRST 4,) or JEN (JRST 12, (specifically JRST 10,)).
¢ Unless User In-out is set do not give any IO instruction with device code
less than 740. The program can determine if User In-out is set by examining
bit 6 of the PC word stored by JSR, JSP or PUSH]J.
¢ If your public program has the use of concealed programs, do not
reference a location in a concealed page for any purpose except to fetch an
instruction from a valid entry point, ie a location containing a JRST 1,.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way);and a | in bit 6
does not set User In-out, so the user cannot void any of the instruction
restrictions himself. Note that a 0 in bit 6 will clear User In-out, so a user
can discard his own special privileges. Similarly a 1 in bit 7 sets Public, but a
0 does not clear it, so a public program cannot enter concealed mode this way.

The above rules are the result of KI10 hardware characteristics. Butina

real sense many of these rules are actually transparent to the user, in
particular the whole paging setup is invisible. Although the hardware allows
for user virtual address spaces that are scattered and/or very large (eg larger
than available physical core), the actual constraints will be dictated by the
particular Monitor and the system manager. It may be desirable (for com-
patible operation with KA10 systems) to enforce a two-segment virtual
address space that mimics the one imposed by the KA10 hardware. In any
case the user must write a sensible program, which can be handled easily and
cheaply by the system; if he uses addresses a few to a page all over memory,
his program can be run but will require a much larger amount of core than
necessary or cause excessive page swapping.

§2.1

§2.15

KI10 PROGRAM AND MEMORY MANAGEMENT

Paging

All of memory both virtual and physical is divided into pages of 512 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by 18-bit addresses, where the left
nine bits specify the page number and the right nine the location within the
page. Physical memory can contain 8192 pages and requires 22-bit addresses,
where the left thirteen bits specify the page number. The hardware maps the
virtual address space into a part of the physical address space by trans-
forming the 18-bit addresses into 22-bit addresses. In this mapping the right
nine bits of the virtual address are not altered; in other words a given
location in a virtual page is the same location in the corresponding physical
page. The transformation maps a virtual page into a physical page by sub-
stituting a 13-bit physical page number for the 9-bit virtual page number.
The mapping procedure is carried out automatically by the hardware, but
the page map that supplies the necessary substitutions is set up by the kernel
mode program. Each word in the map provides information for mapping
two consecutive pages with the substitution for the even numbered page in
the left half, the odd numbered page in the right half.

The paging hardware contains two 13-bit registers that the Monitor loads
to specify the physical page numbers of the user and executive process
tables. To retrieve a map word from a process table, the hardware uses the
appropriate base page number as the left thirteen bits of the physical address
and some function of the virtual page number as the right nine bits. Eg the
entire user space of 512 virtual pages at two mappings per word requires a
page map of just half a page, and this is the first half page in the user process
table. Thus locations 0—377 in the table hold the mappings for pages 0 and
1 to 776 and 777. To find the desired substitution from the 9-bit virtual
page number, the hardware uses the left eight bits to address the location
and the right bit to select the half word (0 for left, 1 for right). If the
Monitor specifies a program as being a small user, that program is limited to
two 16K blocks with addresses 0—-37777 and 400000-437777. This is
pages 0—-37 and 400-437, and the mappings are in locations 0—17 and
200-217 in the page map.

The executive virtual address space is also 256K but the first 112K are not
paged — in other words any address under 340000 given in kernel mode
addresses one of the first 112K locations in physical memory directly. The
other 144K is paged for supervisor or kernel mode anywhere into physical
memory. For this there are two maps. The map for the second half of the
virtual address space uses the same locations in the executive process table as

are used in the user process table for the user map (locations 200-377 for
pages 400-777). The map for the remaining 16K in the first half of the

executive virtual address space is in the user process table, the mappings for
pages 340—377 being in locations 400—417. Thus the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user.

The illustrations on the next two pages show the organization of the
virtual address spaces, the process tables and the mappings for both user and
executive. The first illustration gives the correspondence between the
various parts of each address space and the corresponding parts of the page

2-105

Actually page O has only 496
locations using addresses 20—
777, as addresses 0—17 refer-
ence fast memory, which is
unrestricted and available to
all programs. (In general a
user cannot reference the first
sixteen core locations in his
virtual page 0.) Throughout
this discussion it is assumed
that all references are to core
and are not made by an
instruction executed by an
executive XCT [see below].

Thus when switching from
one user to another, the Moni-
tor need change only the user
process table. This single sub-
stitution can make whatever
change is necessary in the
executive address space for a
particular user.

CENTRAL PROCESSOR

§2.15

EXECUTIVE
PROCESS
TABLE

40, WORDS
INTERRUPT

1205 WORDS

/
400-777

| 30, WORDS
TRAP 4

|
|
3545 WORDS /{236

| //

/

/ SHADED AREAS
ARE NOT USED

BY HAROWARE

2-106
EXECUTIVE
VI%%%RAL VIRTUAL
ADDRESS ADDRESS
SPACE SPACE
0 0
\
16K \
\
40000 \
\
N
\
\
\\
\ \
\
\\
\ USER 12K
\\ PROCESS NOT PAGED
\ TABLE (KERNAL MODE ONLY)
\[_ SMALL USER 0—37 |16
112K
40-377 12
/|__SWALL USER 400-437_|16
/
/
/7
S/ 440777 12 340000
/ P
// // //// 16K
r/ d 400000
400000 / EXECUTIVE 340 — 377 |16 _ ————
/ / TRAP & MUUO 16
16K / |
/ / /
440000 |
/
/
/
/
| 3405 WORDS /] 224
/
/
|
/
II
/ 128K
112K |
/
/
|
/
I
|
|
/
|
/
/
/
/
77777 e

VIRTUAL ADDRESS SPACE AND PAGE MAP LAYOUT

§2.15 KI10 PROGRAM AND MEMORY MANAGEMENT 2-107

USER PROCESS TABLE EXECUTIVE PROCESS TABLE
ol USER PAGE 0 | USER PAGE 1 | ol]
: | I |AVAILABLE TO SOFTWARE !
17| USER PAGE 36 | USER PAGE 37 | 37
20 | USER PAGE 40 | USER PAGE 41 | 40 [EXECUTIVE LUUO STORED HERE
| I [41 [LUUO HANDLER INSTRUCTION
: : : 42
| | | ISTANDARD PRIORITY INTERRUPT INSTRUCTIONS
| AVAILABLE TO SOFTWARE IF SMALL USER | 57
| | |
: ! : |AVAILABLE TO SOFTWARE
177 | USER PAGE 376 USER PAGE 377 177
200 [USER PAGE 400 USER PAGE 401 | 200 [EXECUTIVE PAGE 400 |EXECUTIVE PAGE 401
| | | | I I
217| USER PAGE 436 USER PAGE 437 | | |
220 | USER PAGE 440 USER PAGE 441 | | I
| | | [| |
| | | | |
| : . . .
:AVA/LABLE TO SOFTWARE IF SMALL USER : [: :
I | | l | I
I | I
| [l I l
| I | |
377 | USER PAGE 776 | USER PAGE 777 377 |EXECUTIVE PAGE 776 |EXECUTIVE PAGE 777
400 | EXECUTIVE PAGE 340 | EXECUTIVE PAGE 341 400
| | ! |AVAILABLE TO SOFTWARE
417| EXECUTIVE PAGE 376 | EXECUTIVE PAGE 377 417
420 [USER PAGE FAILURE TRAP INSTRUCTION 420 [EXECUTIVE PAGE FAILURE TRAP INSTRUCTION
421 [USER ARITHMETIC OVERFLOW TRAP INSTRUCTION 421 [EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION
422 | USER PUSHDOWN OVERFLOW TRAP INSTRUCTION 422 [EXECUTIVE PUSHDOWN OVERFLOW TRAP INSTRUCTION
423[USER TRAP 3 TRAP INSTRUCTION 423 [EXECUTIVE TRAP 3 TRAP INSTRUCTION
424 [MUUO STORED HERE 424

425 PC WORD OF MUUO STORED HERE |
426 | EXECUTIVE PAGE FAILURE WORD I
427 |USER PAGE FAILURE WORD I
430 | KERNEL NO TRAP NEW MUUO PC WORD |
431 | KERNEL TRAP NEW MUUO PC WORD |
432 [SUPERVISOR NO TRAP NEW MUUO PC WORD |
433 SUPERVISOR TRAP NEW MUUO PC WORD :
434 CONCEALED NO TRAP NEW MUUO PC WORD |AVAILABLE TO SOFTWARE
I
|
I
I
I
|
|

435 CONCEALED TRAP NEW MUUO PC WORD
436 PUBLIC NO TRAP NEW MUUO PC WORD
437 [PUBLIC TRAP NEW MUUO PC WORD

440

AVAILABLE TO SOFTWARE

777 777

PROCESS TABLE CONFIGURATION

2-108

There is no requirement that
the accessible space be con-
tinuous — it can be scattered
pages. The convention how-
ever is for the accessible space
to be in two continuous virtual
areas, low and high, beginning
respectively at locations 0 and
400000. The low part is
generally unique to a given
user and can be used in any
way he wishes. The (perhaps
null) high part is a reentrant
area, which is shared by sev-
eral users and is therefore
write-protected. The small
user configuration is consist-
ent with this arrangement.

The program can inspect the
contents of the page table by
using the MAP instruction
and IO instructions that ad-
dress the paging hardware [see
below] .

CENTRAL PROCESSOR §2.15
map for it. The second illustration lists the detailed configuration of the
process tables. Any table locations not used by the hardware can be used by
the Monitor for software functions. Note that the numbers in the half
locations in the page map are the virtual pages for which the half words give
the physical substitutions. Hence location 217 in the user page map contains
the physical page numbers for virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessible.
The Monitor also specifies whether each page is public or not and writeable
or not. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE

PHYSICAL PAGE
ADDRESS BITS 14-26

17 181920212223 35

PHYSICAL PAGE
AP W|S|X ADDRESS BITS 14-26 AP\W|S| X

012345

Bits 5-17 and 23-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1s in the remaining bits are as
follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Public

W Writeable (not write-protected)

S Software (not interpreted by the hardware)
X Reserved for future use by DEC (do not use)

Associative Memory. If the complete mapping procedure described above
were actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this the
paging hardware contains a 32-word associative memory, in which it keeps
the more recently used mappings for both the executive and the current user.
Each word is divided into two parts with one part containing a virtual page
number specified by the program and the other containing the corresponding
physical page number as determined from the page map. Hence the
associative memory is a page table made up of a list of virtual pages and a list
of physical pages, each with thirty-two corresponding locations. In the
virtual list, each entry contains a 9-bit virtual page number, a single bit that
indicates whether the specified page is in the user or executive address space,
and a bit that indicates whether the entry is valid or not (it is not suitable to
clear a location as O is a perfectly valid page number). Each corresponding
entry in the physical list contains a 13-bit physical page number and the
P, W and S bits from the map half word for that page. The A bit is not
needed in the table as the mapping is not entered into the table at all if the
page is not accessible.

At each reference the hardware compares the page number supplied by

<

§2.15 KI10 PROGRAM AND MEMORY MANAGEMENT

the program with those in the virtual part of the page table. If there is a
match for the appropriate address space, the corresponding entry in the
physical list is used as the left thirteen bits in the physical address (provided
of course that the reference is allowable according to the P and W bits). If
there is no match, the hardware makes a memory reference to get the neces-
sary information from the page map and enters it into the page table at the
location specified by a reload counter. This counter is incremented when-
ever it is used to reload the table, and also whenever the location to which it
points is used for a mapping. Hence the counter tends to stay away from
locations containing the page numbers most frequently referenced.

Page Failure

A page failure that occurs during an interrupt instruction terminates the
instruction and sets the In-out Page Failure flag, requesting an interrupt on
the error channel assigned to the processor. In all other circumstances, if the
paging hardware cannot make the desired memory reference, it terminates
the instruction immediately without disturbing memory, the accumulators
or PC, places a page fail word in the user process table, and causes a page
failure trap. If the attempted reference is in user virtual address space, the
page fail word is placed in location 427 of the user process table, and the
processor executes the trap instruction in location 420 of the same table.
If the attempted reference is in executive virtual address space, the page fail
word is placed in location 426 of the user process table, and the processor
executes the trap instruction in location 420 of the executive process table.
The trap instruction is executed in the same address space in which the
failure occurred. The page fail word supplies this information.

- FAILURE
U VIRTUAL PAGE TYPE

89 17 31 35

- < 1-35
IF BIT 31 IS 0, BITS 31-3 OAWST

HAVE THIS FORMAT

3132333435

Whether the violation occurred in user or executive virtual address space is
indicated by a 1 or a 0 in bit 8. If bit 31 is 1, the number in bits 31-35
(= 20) indicates the type of ““hard” failure as follows.

23 Address failure — this is a simulated page failure caused by the satis-
faction of an address condition selected from the console. It indi-
cates ‘that while the console address break switch was on and the
Address Failure Inhibit flag was clear (bit 8 of the PC word), the
processor initiated a page check for access to the memory location
that was specified by the paging and address switches and for which a
comparison was enabled, and the intended memory reference was for
the purpose selected by the address condition switches as follows:

The instruction fetch switch was on and the requested access was
for retrieval of an ordinary instruction, including an instruction
executed by an XCT or an LUUO (address 41).

2-109

This memory reference is re-
ferred to as a “page refill
cycle.”

When a page failure trap in-
struction is performed, PC
points to the instruction that
failed (or to an XCT that
executed it), unless the failure
occurred in an overflow trap
instruction, in which case PC
points to the instruction that
overflowed. After taking care
of the failure, the processor
can always return to the inter-
rupted instruction. Either the
instruction did not change
anything, or the failure was in
the second part of a two-part
instruction, where First Part
Done being set prevents the
processor from repeating any
unwanted operations in the
first part.

Since a user page failure trap
instruction is executed in user
address space, the Monitor
should be careful not to have
the trap instruction do in-
direct addressing that might
cause another page failure.

Whether or not a comparison
can be made is a function of
the settings of the paging
switches [4ppendix FI] and
the state of the User Ad-
dress Compare Enable flag
[see below].

2-110

Virtual addresses are supplied
to the paging hardware via
the address bus. An inad-
vertent failure occurs when
the bus is not used for an
access, but it accidentally con-
tains the number set into
the address switches. The data
fetch switch also catches the
attempt to retrieve a dispatch
interrupt instruction or in-
advertently a standard inter-
rupt instruction, but the page
failure sets the In-out Page
Failure flag instead of result-
ing in a trap for an address
failure.

Using this flag, the Monitor
can return to a user instruc-
tion that caused an address
failure and “‘set by it.”

Tests for hard page failures
are actually made in the order
given here.

The type of reference implies
nothing about the cause of
failure — it indicates only the
reason the failed reference
was being made.

In a soft page failure, the
mapping entry for the page is
removed from the page table
on the assumption that the
Monitor will change it. When
the instruction is restarted,
the hardware must go to the
page map to get a new entry
for the page table.

CENTRAL PROCESSOR §2.15
The data fetch switch was on and the requested access was for
retrieval of an address word in an effective address calculation or
read-only retrieval of an operand (other than in an XCT). This
switch can also cause a failure inadvertently on the retrieval of a
trap instruction or a PC word in an MUUO.

The write switch was on and the requested access was for writing,
either write-only or read-modify-write, including writing by an
LUUO (address 40). This switch also causes a failure on the first
write in an MUUO if the address switches contain the effective
address of the MUUO (even though that address is not used for the
access), and can cause a failure inadvertently on the second write.

The Address Failure Inhibit flag, which can be set only by a
JRSTF or MUUO, prevents an address failure during the next instruc-
tion — the completion of the next instruction automatically clears it.
If an interrupt or trap intervenes, the flag has no effect and it is saved
and cleared if the PC word is saved. If it is not saved, it affects the
instruction following the interrupt or trap. Otherwise it affects the
instruction following a return in which it is restored with the
PC word.

22 Page refill failure — this is a hardware malfunction. The paging hard-
ware did not find the virtual page listed in the page table, so it loaded
paging information from the page map into the table but still could
not find it.

20 Small user violation — a small user has attempted to reference a
location outside of the limited small user address space.

21 Proprietary violation — an instruction in a public page has attempted
to reference a concealed page or transfer control into a concealed
page at an invalid entry point (one not containing a JRST 1,).

If the violation is not one of these, then bits 31-35 have the format shown
above where A, W and S are simply the corresponding bits taken from the
map half word for the page, and T indicates the type of reference in which
the failure occurred — O for a read reference, 1 for a write or read-modify-
write reference.

The page fail trap instruction is set by the Monitor to transfer control to
kernel mode. After rectifying the situation, the Monitor returns to the inter-
rupted instruction, which starts over again from the beginning. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores the First Part Done flag.

Note that a failure does not necessarily imply that anything is “wrong”.
The virtual address space of even a small user is 32K words, which may well
be more than is needed in a given run. Hence the Monitor may have only ten
or twenty pages of the user program in core at any given time, and these
would be the virtual pages indicated as accessible. When the user attempts to
gain access to a page that is not there (a virtual page indicated in the page
map as inaccessible), the Monitor would respond to the page failure by

§2.15 KI10 PROGRAM AND MEMORY MANAGEMENT

bringing in the needed page from the drum or disk, either adding to the user
space or swapping out a page the user no longer needs.

The same situation exists for writeability. When bringing in a user
program, the Monitor would ordinarily indicate as writeable only the buffer
area and other pages that will definitely be altered. Then in response to a
write failure, the Monitor makes the page writeable and indicates to itself
(perhaps by means of the software bit in the page map) that that page has in
fact been altered. When the user is done, the Monitor need write only the
altered pages back onto the drum.

Monitor Programming

The kernel mode program is responsible for the overall control of the system.
It is the only program that has access to any of physical core unpaged and
that has no instruction restrictions. The kernel program handles all in-out
for the system and must set up the page maps, trap locations, interrupt loca-
tions and the like. The supervisor program labors under the same instruction
restrictions as the user but has no way of bypassing them — they always
apply. Supervisor mode is limited to the 144K paged part of the executive
address space, although within that space it can read but not alter concealed
pages (the kernel program supplies data tables of all kinds to the supervisor
program, and the latter cannot affect them). The supervisor can give a
JRSTF that clears Public provided it is also setting User; in other words the
supervisor can return control to a concealed program but cannot enter kernel
mode by manipulating the flags. The PC words supplied by MUUOs can
manipulate the flags in any way, switching arbitrarily from one mode to
another, but these are in the process table and assumed to be under control
solely of kernel mode.

For accumulator, index register and fast memory references, the Monitor
automatically uses fast memory block 0. For each user, the kernel mode
program must assign a block. The usual procedure is to assign blocks 2 and 3
to individual user programs on a semipermanent basis for special applications
and to assign block 1 to all other users. In this way the Monitor need not
store blocks 2 and 3 when the special users are not running, and it need not
store block 1 when it takes over control from an ordinary user temporarily.
When switching from one user to another, the Monitor usually stores the
first user’s accumulators in his shadow area — this is locations 0—17 in user
virtual page 0, an area not generally accessible to the user at all — and loads
the new user’s accumulators from his shadow area, where they were stored
after the last time the new user ran.

Even while User is set, the interrupt instructions are not part of the user
program and are thus subject only to executive restrictions. As interrupt in-
structions, JSR, JSP and PUSHJ automatically take the processor out of user
mode to jump to an executive service routine. An MUUO can also be used.

The paging hardware has one non-IO instruction and two condition 10
instructions primarily for diagnostic purposes. Otherwise control over the
system is exercised by data IO instructions. The device code for the paging
hardware is 010, mnemonic PAG.

2-111

If the Monitor shared block 0
with any users, it would have
to store the user accumulators
even when taking control only
temporarily.

The page failure and overflow
trap instructions are executed
in the user address space if
caused by the user.

2-112

Invalidating all data in the
associative memory means
setting the Word Empty bit in
each location to indicate that
the rest of the word is mean-
ingless and should not be used.

CENTRAL PROCESSOR §2.15

DATAO PAG, Data Out, Paging
70114 1] x Y
0 121314 1718 35

Invalidate all data in the associative memory, and set up the paging hardware
according to the contents of location E as shown.

USER
USER FAST

LOAD SMALL |ADDRESS
LoaD MEHoRY MALL |Z0ORESS USER BASE ADDRESS

1 ENABLE 1 | | | |] 1 | I |]]
0 1 2 3 4 s | ¢ 7 g ! 9 10 1m o 13 14 1 15 16 17
LOAD PAGE
Load chcE EXECUTIVE BASE ADDRESS

1 | | | | | | | | | | | |

18 19 20 21 22

The Address Compare Enable
bit functions in conjunction
with the console paging
switches, as explained in
Appendix F1.

An executive mode program
that does not set bit 22 and
avoids other special KI10
features will run on a KA10
as well. This is useful for
hardware diagnostics and
bootstrap loaders [see readin
mode, §2.12].

NOTE

Neither turning on power nor
pressing the reset switch in-
validates the data in the asso-
ciative memory. Therefore,
after power has been off, the
starting kernel mode program
must do a DATAO PAG, to
clear the associative memory
of random data before enter-
ing executive or user paged
address space.

23 | 24 25 26 | 27 28 29 | 30 31 32 1 33 34 35

Bits 0 and 18 are change bits. If bit 0is 0, ignore the rest of the left half
word. But if bit 0 is 1, load bits 5—17 into the user base register to select the
user process table, select the fast memory block specified by bits 1 and 2 for
the user, limit the address space to that of a small user if bit 3 is I, and
enable address comparison if bit 4 is 1.

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise
load bits 23-35 into the executive base register to select the executive
process table, and enable executive paging if bit 22 is 1. For normal opera-
tion of the system, bit 22 must be 1. A 0 in this bit disables overflow
traps, and disables executive paging so there is no supervisor mode and
no executive virtual addressing — in other words an executive mode pro-
gram automatically runs in kernel mode with all access in the first 256K of
physical memory unpaged.

DATAI PAG, Data In, Paging
70104 I| X Y
0 121314 1718 35

Read the status of the paging hardware into location £E. The information
read is the same as that supplied by a DATAO (bits 0 and 18 are 0).

CONO PAG, Conditions Qut, Paging
70120 Il X Y
0 121314 1718 35

Load the executive stack pointer from bits 18—-22 and the page table reload
counter from bits 31-35 of the effective conditions E as shown.

-

KI10 PROGRAM AND MEMORY MANAGEMENT

§2.15

2-113

EXECUTIVE AC
STACK POINTER
1 | | | | | |

| 1 |

PAGE TABLE
RELOAD COUNTER
|] | |

18 19 20 ' 210 22 23 | 24 25 25%27 8 29 | 30

The executive stack pointer specifies a block of sixteen locations in the user
process table by supplying the left five bits for a 9-bit address that references
a location in the table; this function is used only for accessing stacked fast
memory blocks in an instruction executed by an executive XCT [see below].
Loading the reload counter causes it to point to the specified location in the

page table.

CONI PAG, Conditions In, Paging

Y

70124 71l x

0 121314

1718 35

Read the processor serial number, the page table reload counter, and the
contents of the location in the virtual page table specified by the counter
into the right half of location E as shown.

31

32 133 34

PROCESSOR SERIAL NUMBER

|
10 THREEE

EXECUTIVE
ADDRESS
SPACE
| | | 1 1 |

WORD

COMPLEMENT OF VIRTUAL PAGE NUMBER EMPTY

PAGE TABLE
RELOAD COUNTER
| | | 1

18 19 20 | 21 22 23 | 24 25 26 27 30

Note that bits 18-26 contain the complement of the virtual page number in
the selected location. A 1 in bit 27 indicates the page is in the executive
address space; a 1 in bit 30 means the information in bits 18—-27 is invalid.

MAP Map an Address

A |1l x | Y

121314 1718

257

0 89

35

Map the virtual effective address £ and place the resulting map data in AC
right in the same format as it is in the page map, ie bits P, W and S in
bits 19-21 and the physical page number in bits 23-35. Clear AC left.

3

32 | 33 34 35

It is possible for the reload
counter to change between
the CONI and the CONO, so
the CONI might read a differ-
ent location than was selected
by the CONO.

Note that unlike all other in-
structions since §2.10, this is
not an IO instruction.

NOVEMBER 1974

2-114

CENTRAL PROCESSOR §2.15

PAGE NO
FAILURE s ¥ d MATCH

PHYSICAL PAGE
ADDRESS BITS 14-26
| 1 1]] !] 1 L 1 L 1

18 19 20 21 22

These three instructions can
be used to inspect the contents
of the associative memory.
The CONO selects a location,
the CONI reads the contents
of the virtual-page part of
that location, and an MAP
that addresses the specified
virtual page reads the con-
tents of the physical-page part
of that location.

Read the next four paragraphs
very carefully (reading them
two or three times is highly
recommended).

23 | 24 25 26 | 27 28 29 | 30 31 32 1 33 34 35

This instruction cannot produce a page failure, but if a page failure would
have resulted had an ordinary instruction in the same mode attempted to
write in location E, place a 1 in AC bit 18. If no match can be made by the
paging hardware, place a 1 in bit 22. This results in four possible situations
as a function of the states of bits 18 and 22.

Bit 18 Bit 22 Meaning
0 0 AC right contains valid map data.
0 1 There is no page failure but also no match, so the

instruction must have made an unmapped reference —
perhaps to fast memory or to the unpaged area in
kernel mode.

1 0 There is a page failure but the map data is correct as
a match exists.
1 1 There is a page failure, and since there is no match,

the failure must have resulted from the instruction
referencing an inaccessible page or from some prior
failure (such as a page refill malfunction). Hence AC
right contains invalid information.

Executive XCT

Ordinarily an instruction in a user program is performed entirely in user
address space and an instruction in the executive program is performed
entirely in executive address space. In order to facilitate communication
between Monitor and users, the XCT instruction allows the executive to
execute instructions whose memory operand references can cross over the
boundary between user and executive address spaces.

It is very important to note that the only difference between an instruc-
tion executed by an executive XCT and an instruction performed in normal
circumstances is in the way the memory operand references are made. There
is no difference in the XCT itself. Everything in the XCT is done in executive
address space, and the instruction fetched by the XCT is fetched in executive
space. Moreover, in the executed instruction all effective address calculation
and accumulator references are in executive space. If the instruction makes
no memory operand references, as in a jump, shift or immediate mode in-
struction, its execution differs in no way from the normal case. The only
difference is in memory operand references.

Control over the special effects of the executed instructions is determined
by the User In-out flag (whose implied meaning is confined to user mode)
and bits 11 and 12 of the A portion of the XCT instruction word (in user
mode A4 is ignored). If the A bits are both 0, the XCT acts as described in
§2.9, and the executed instruction differs in no way from the normal case.

§2.15 KI10 PROGRAM AND MEMORY MANAGEMENT

But if these bits are not both 0, then some memory operand references are
made to user virtual address space, where the type of reference is determined
by the A bits and the type of memory is selected by User In-out. With this
flag set, the A bits affect both core memory and fast memory references,
whereas with User In-out clear, the A bits affect only fast memory references.
For the memory operand references selected by User In-out, the effect of 1s
in bits 11 and 12 is as follows: a 1 in bit 12 causes the executed instruction
to perform all selected read and read-modify-write memory operand refer-
ences to be performed in user virtual address space; a 1 in bit 11 causes all
selected memory operand write references to be performed in user space;
and 1s in both bits cause all types of selected memory operand references in
the executed instruction to be performed in user space.

The meaning of user space is obvious in terms of core memory references,
but not so for fast memory. When User In-out is set, the user space for fast
memory references depends on which fast memory block is currently
selected for the user. If block O is selected, fast memory operand references
of the types specified by bits 11 and 12 are made to the user shadow area. If
some other block is selected, the specified fast memory references are made
to the selected block.

If User In-out is clear, all core memory references are in executive
address space. Fast memory references of the types specified by bits 11
and 12 are made to the user process table, in particular to that set of
sixteen locations specified by the executive stack pointer. The pointer is
given by a CONO PAG,.

User Space Fast Memory References
User Fast Memory Block Selected

User In-out Zero Nonzero
1 Shadow area Selected block
0 AC stack AC stack

There is another flag that plays a role in the execution of instructions by
an executive XCT. This is Disable Bypass, bit 0 of the PC word. When
Disable Bypass is clear, a bypass in the logic allows an executed instruction
to access the concealed user area from supervisor mode. With the flag set, an
attempt to do this results in a page failure. Generally the new MUUO PC
word would set this flag when the Monitor is being called from public mode,
so the concealed area can be accessed only when such access is requested by
the concealed program.

Individual Instruction Effects. The effects of execution by an executive
XCT on different types of instructions is as follows.
¢ Instructions without memory operand references are not affected. This
includes shifts, jumps, immediate mode instructions, CONSO, CONO, and
even an XCT. In fact not only is an executive XCT not affected when
executed by an executive XCT, but the first destroys any eflect the second
would otherwise have on a third instruction (in other words, a pair of
executive XCTs is equivalent to a pair of ordinary XCTs).

2-115

2-116

This makes a different set of
sixteen words available at each
level using the same addresses.

CENTRAL PROCESSOR §2.15

¢ Instructions that refer to one memory location for reading only or reading
and writing are controlled by the read bit (MOVE, MOVES, ADDM, AOS).
The read bit controls writing when the write is done to the same location as
the read, whether the memory references are done as a single cycle including
both read and write or as separate read and write cycles.

¢ Instructions that refer to one memory location for writing only are con-
trolled by the write bit (MOVEM, MAP, HRLZM).

¢ Instructions that refer to two different memory locations are controlled
by the read bit in the read part of the instruction and by the write bit in the
write part (BLT, PUSH).

¢ BLKI and BLKO are controlled by the write bit and the read bit respec-
tively. The pointer reference is done in the same address space as the
data transfer.

¢ In byte instructions all pointer calculations are done in executive address
space. The read and write bits affect only the second part, ie the load
or deposit.

Philosophy. The purpose of the executive XCT is to facilitate the
handling of user requirements by the Monitor, but the selection made by
User In-out of the references affected by the read and write bits is to allow
the Monitor to make recursive calls to itself, ie to perform MUUOs in the
process of carrying out an MUUO given by the user. Specifically the state of
User In-out differentiates between the Monitor response directly to the user
MUUO and its response to its own MUUOs.

The new PC word of an MUUO from the user would set User In-out so
that core memory references can be made across the user-executive
boundary, and fast memory references can be made to the user AC block.
The point in choosing between the shadow area and the selected block if not
block O is to reference the information that was held in the user AC block
before the Monitor took over. If the user shared block O with other users
and the Monitor, the Monitor will have saved his ACs in the shadow area of
his address space. The other AC blocks are not disturbed when the Monitor
takes over temporarily, so the Monitor need not save them and they will still
hold the user information.

If in the course of carrying out a user MUUO, the Monitor should itself
give an MUUO, the new PC word would clear User In-out. Thus at this level
all core memory references are in the executive address space and fast
memory references are to an AC block in the user process table as specified
by the executive stack pointer. MUUO calls by the Monitor to itself can be
nested to a number of levels, but in all cases User In-out is left clear. The
particular AC block used at any level is specified by the stack pointer. Hence
the AC stack in the user process table is effectively a pushdown list kept by
the stack pointer; at each level the program must change the pointer to
specify the appropriate block. Each user process table would contain the
blocks needed for carrying out MUUOs for that user.

ExampLE. Suppose that the Monitor has been called by an MUUO from
the user (hence User In-out is set) and wishes to save the user’s ACs in the
shadow area. Assume that every user runs with AC block 1, 2 or 3, and that
the Monitor always sets up executive virtual page 342 to point to the same

§2.16 KA10 PROGRAM AND MEMORY MANAGEMENT 2-117

physical page as user page 0. Using accumulator T in block 0, the Monitor
saves the user ACs by giving these two instructions,

MOVEI T,342000 ;Initialize pointer: from 0 to 342000
XCT I,[BLT T,342017]

and restores them with these two.

MOVSI T,342000 ;From 342000 to 0
XCT 2,[BLT T,17]

2.16 KA10 PROGRAM AND MEMORY MANAGEMENT

The KA10 has only user and executive modes and uses protection and
relocation hardware.

Every user is assigned a core area and the rest of core is protected from
him — he cannot gain access to the protected area for either storage or
retrieval of information. The assigned area is divided into two parts. The
low part is unique to a given user and can be used for any purpose. The
high part may be for a single user, or it may be shared by several users. The
Monitor can write-protect the high part so that the user cannot alter its
contents, ie he cannot write anything in it. The Monitor would do this when
the high part is to be a pure procedure to be used reentrantly by several
users. One high pure segment may be used with any number of low impure
segments. The user can request that the Monitor write-protect the high part
of a single program, eg in order to debug a reentrant program. All users write
programs beginning at address O for the low part, and beginning usually at
400000 for the high part. The programmed addresses are retained in the
object program but are relocated by the hardware to the physical area
assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protection
and relocation addresses for the low and high blocks. The protection address
determines the maximum address the user can give; any address larger than
the maximum is illegal. The relocation address is the address, as seen by the
Monitor and the hardware, of the first location in the block. The Monitor
defines these addresses by loading four 8-bit registers, each of which
corresponds to the left eight bits (18-25) of an address whose right ten bits
are all 0.

To determine whether an address is legal its left eight bits are compared
with the appropriate protection register, so the maximum user address
consists of the register contents in its left eight bits, 1777 in its right ten bits
(ie it is equal to the protection address plus 1777). Since the set of all
addresses begins at zero, a block is always an integral multiple of 1024,
(20004) locations. Relocation is accomplished simply by adding the contents
of the appropriate relocation register to the user address, so the first address
in a block is a multiple of 2000. The relative user and relocated address
configurations are therefore as illustrated here, where P;, R;, P, and R, are
respectively the protection and relocation addresses for the low and high

2-118

Note that the relocated low
part is actually in two sections
with the larger beginning at
R;+20. This is because ad-
dresses 0-17 are not relo-
cated, all users having access
to the accumulators. The
Monitor uses the first sixteen
locations in ' the low user
block to store the user’s accu-
mulators when his program is
not running.

Some systems have only the
low pair of protection and
relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

If a relocated address is in
the range 0-17, the refer-
ence is to core rather than
fast memory.

CENTRAL PROCESSOR §2.16

0 _________
=== ---- 0 17
Low |\
\\
P, + 1777 \
NN , Ry, + 400000
NN /| HiGH
\ \\ Y R, + P, + 1777
/
ILLEGAL \ /\V/
AN
/N7 N\
/ /A\ \
AN B Rig, +20
/ \
400000 // \ Low
HIGH | / R, + P+ 1777
P, + 1777
! |
[! Ry, MUST BE NEGATIVE
ILLEGAL ! | UNLESS SYSTEM HAS A
| Non. | MEMORY LARGER THAN
I I 128K
| EXISTENT
: MEMORY :
] |
| 1
| |
777777 Lo -

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER RELOCATION

USER ADDRESSES
BEFORE RELOCATION

parts as derived from the 8-bit registers loaded by the Monitor. If the low
part is larger than 128K locations, ie more than half the maximum memory
capacity (P, = 400000), the high part starts at the first location after the low
part (at location P, + 2000). The high part is limited to 128K. If the Monitor
defines two parts but does not write-protect the high part, the user has a
two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CONI APR,), and an interrupt is requested on the
channel assigned to the processor [§2.14].

Addressing Summary. Let A, be the address supplied by the user, and let
A, be the physical core address generated from it by the relocation hardware.

If 4, <17, then A, = A, (fast memory, no relocation).
If20< A4, <P+ 1777, then 4, = (4, + R)) mod 2'®.

400000
P, + 2000

then 4, = (4, + R,) mod 2'8.

If the greater of{ } <A, P, + 1777,

Any other value of A, is illegal. These are A, > F,+ 1777 if either

A, < 400000 or A, > P, + 1777.

§2.16 KA10 PROGRAM AND MEMORY MANAGEMENT
User Programming. The user must observe the following rules when pro-

gramming on a time shared basis. [Refer to the Monitor manual for further

information including use of the Monitor for input-output.]

¢ Use addresses only within the assigned blocks for all purposes — retrieval

of instructions, retrieval of addresses, storage or retrieval of operands. The

low part contains locations with addresses from O to the maximum; the high

part contains from the greater of 400000 or P, + 2000 to the maximum.

Either part can address the other.

¢ If the high part is write-protected, do not attempt to store anything in it.

In particular do not execute a JSR or JSA into the high part.

¢ Use instruction codes 000 and 040-127 only in the manner prescribed in

the Monitor manual.

¢ Unless User In-out is set do not give any IO instruction, HALT (JRST 4,)

or JEN (JRST 12, (specifically JRST 10,)). The program can determine if

User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or

PUSHIJ.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the restrictions
himself. Note that a 0 in bit 6 will clear User In-out, so a user can discard
his own special privileges.

LUUOs (001-037) function normally and are relocated to addresses 40
and 41 in the low block [§2.10].

Monitor Programming. The Monitor must assign the core area for each
user program, set up trap and interrupt locations, specify whether the user
can give 10 instructions, transfer control to the user program, and respond
appropriately when an interrupt occurs or an instruction is executed in
unrelocated 41 or 61. Core assignment is made by this instruction.

DATAQ APR, Data Out, Arithmetic Processor
| 70014 1] x] Y |
0 121314 1718 35

Load the protection and relocation registers from the contents of location
E as shown, where P,, P,, R, and R, are the protection and relocation

P118—25 Ph18—25 P Rlls-zs Rh18~25

Lllllil Ilii!'l | U N T U S | ISR S U TR Y |

1 ; l |
0 789 1617 18 252627 34 35

addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the
user to write in the high part of his area.

2-119

The user can actually write
any size program: the Monitor
will assign enough core for his
needs. Basically the user must
write a sensible program; if he
uses absolute addresses scat-
tered all over memory his
program cannot be run on a
time shared basis with others.

These instructions are illegal
unless User In-out is set.

For a two part nonreentrant
program, set P = 0. For a one-
part nonreentrant program,
make P, < P,. If the hardware
has only one set of protection
and relocation registers, the
user area is defined by P; and
R;, the rest of the word is
ignored.

2-120

The trap locations are 140-
141 and 160-161 in a second
KA10 processor.

The clock referred to through-
out this section is the DK10
real time clock and should
not be confused with the
line frequency clock whose
flag is one of the processor
conditions [§2.14].

CENTRAL PROCESSOR §2.17

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle
his own input-output. The Monitor can also transfer control to the user with
this instruction by programming a 1 in bit 5 of the PC word, or it may jump
to the user program with a JRST 1, which automatically sets User. The set
state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program and
are therefore completely unrestricted, namely those executed in the interrupt
locations (which are not relocated) and in unrelocated trap locations 41 and
61. Illegal instructions and UUO codes 000 and 040-077 are trapped in
unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and
BLKO can be used in the even interrupt locations, and if there is no over-
flow, the processor returns to the interrupted user program. JSR should
ordinarily be used in the remaining even interrupt locations, in odd interrupt
locations following block IO instructions, and in 41 and 61. The JSR clears
User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are
acceptable in that they clear User, but the first two require an accumulator
(all accumulators should be available to the user) and the latter two do not
save the flags.

After taking appropriate action, the Monitor can return to the user program
with a JRSTF or JEN that restores the flags including User and User In-out.

2.17 REAL TIME CLOCK DKI10

This processor option can be used to signal the end of a specified real time
interval or to measure the real time taken by an event. With appropriate
software the DK10 can easily be used to keep the time of day. The basic
element in the clock is an 18-bit binary counter that is incremented repeated-
ly by a clock source; a 100 kHz *+ .01% crystal-controlled source is available
internally, or a source of any frequency up to 400 kHz can be provided ex-
ternally. Operation is synchronized so that the program can read the counter
at any time without missing a count. Associated with the counter is an 18-bit
interval register, which can be loaded by the program. Each time the count
reaches the number held in the register, the clock requests an interrupt while
the counter clears and begins a new count. With the internal clock source,
whose period is 10 us, the total count is about 2.6 seconds.

The program turns the clock on and off by enabling and disabling the
counter. The clock has two modes of operation: with the User Time flag
clear, the counter operates continuously; with User Time set, the counter
stops while the processor is handling interrupts. Hence in the latter mode
the clock discounts interrupt time and can be used to time user programs.
In a system that contains two clocks, one can be used by the Monitor to
time user programs while the other is used to kcep the time of day.

Instructions. The clock device code is 070, mnemonic CLK. A second
clock would have device code 074.

§2.17 REAL TIME CLOCK DK10
CONO CLK, Conditions Out, Clock

70720 1] x | Y]
0 121314 1718 35

Assign the interrupt channel specified by bits 33-35 of the effective condi-
tions £ and perform the functions specified by bits 23-32 as shown (a 1 in
a bit produces the indicated function, a 0 has no effect).

SET

2-121

CLEAR

COUNT COUNT
OVERFLOW OVERFLOW
SET CLEAR | SET | TURN | TuRN / CLEAR PRIORITY
CLEAR INTERRUPT
COUNT | COUNT USER | USER | cLOck | cLock COUNT
DONE CLOCK | Timg | TiME | OFF ON DONE ASISIGN MEINT
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35

A 1 in bit 26 clears the clock counter and the Count Done, Count
Overflow and User Time flags, turns off the clock, and dismisses the PI
assignment (assigns zero). The effect of giving conflicting conditions
is indeterminate.

CONI CLK, Conditions In, Clock
| 70724 | x | Y]
0 121314 1718 35

Read the contents of the interval register into the left half of location E and
read the status of the clock into bits 26—35 as shown.

A 1 in bit 25 increments<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>