
'1

;) . ,

i Ii
i

, .

(

(

76

. D53155

(1975

~,
,~

MONITOR CALLS

Qto
1

I

Qil I (!

7b
.~ .,

I 1> Ig])0315S-
G

117s
fCom

(

c

(

•

Q

.)

)

)

)

'.)

)
I

4GA6JU

, 11111111111111111111111111111111I1111111111111111111111111111111
3 4067 01477 970 5

dec
MONITOR CALLS

This manual.reflects the software of the 5.07 and
6.01 releases of the monitor.

DEC-l0-0MCMA-8-D

digital equipment corporation · maynard. massachusetts

First Printing, June 1971
Revised: January 1972

June 1972
March 1973
May 1974
November 1975

The information in this document is subject to change without notice and should not be construed as a commit­
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1971,1972,1973,1974,1975 by Digital Equipment Corporation

(jON
8901296

EcoA
The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-l0 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYFESET-8
DDT LAB-8 TYPESET-I 0
DECCOMM TYPESET-II

12/75-15

)

!

~}

)

)

)

"

)

')

-,

)

)

)

";

,~

)

CHAPTER 1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2.3
1.2.4
1.2.5
1.2.5.1
1.2.5.2
1.2.5.3
1.2.5.4
1.2.5.5

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1

CHAPTER 3
3.1
3.2

CHAPTER 4
4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

CONTENTS

USER PROGRAMMING
PROCESSOR MODES

User Mode Processing
User I/O Mode Processing ...•.
Execute Mode Processing .. .

MONITOR CALLS (pROGRAMMED OPERATORS)
Op Codes 000·037 ... '.' .. .
Op Codes 040·100 and 000 .. .
Symbols for Numbers -........... .
Restriction on Monitor Calls in Programs '
Operation Codes 100·127 .. .
Illegal Operation Codes .. .
Naming Convention for Monitor Symbols
Symbols for Numbers .. .
Symbols for Masks .. .
Symbols for Monitor Calls
Symbols for GETT AB Tables
Symbols for Error Codes .. .

Page

1·1
1·1
1·1
1·2
1·2
1·2
1·2
1·2
1·17
1·17
1·17
1·17
1·17
1·17
1·18
1·18
1·18
1·18

MEMORY FORMAT. .. 2·1
USER PROGRAMS .. 2·1
MEMORY PROTECTION AND REWCATION .. 2·1

The KA10 Processor. .. 2·2
The KIlO and KLlO Processors (Without Virtual Memory) 2·3
KIlO and KLlO Processors With the Virtual Memory Option. 2·4
Virtual Memory Organization 2·4

JOB DATA AREA .. 3·1
JOBDAT (JOB DATA AREA) '" 3·1
VESTIGIAL JOB DATA AREA .. 3·5

JOB CONTROL AND INFORMATION ... : , 4.1
JOB CONTROL .. " 4.1

Start Program Execution. .. 4.1
Stop Program Execution. .. 4.1
The HALT Instruction. .. 4.1
The EXIT Monitor Call (CALLI 12) 4·2
The LOGOUT Monitor Call (CALLI 17) 4·2
Suspend the Execution Of A Job .. 4·2
The SLEEP Monitor Call (CALLI 31) 4·2
The HIBERnate Monitor Call (CALLI 72) 4·3
The WAKE Monitor Call (CALLI 73) 4·3

SET OR OBTAIN JOB INFORMATION 4·4
Set the Program Name ~ .. 44
Set System/Job Parameters 4·5
Set the Logical Node .. 4·8
Obtain Run Time. 4.9
Obtain the Job Number of the Calling Job. .. 4·9

iii

4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3

CHAPTER 5
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

CONTENTS (Cont.)

Page

Obtain the Project-programmer Number of the Calling Job 4-9
The OTHUSR Monitor Call (CALLI 77) _. .. 4-10

:rIMING INFORMATION. ... 4-10
The DATE Monitor Call (CALLI 14) 4-11
The MSTIME Monitor Call (CALLI 23) .. 4-11
The TIMER Monitor Call (CALLI 22) .. 4-11

CONFIGURATION INFORMATION 4-11
The SWITCH Monitor Call (CALLI 20) .. 4-11
The LIGHTS Monitor Call (CALLI-I) 4-11
The DAEMON Monitor Call (CALLI 102) .. 4-12

TRAPPING, INTERCEPTION, AND INTERRUPTION 5-1
USER TRAP SERVICING. .. 5-1
ERROR INTERCEPTING. .. 5-2
SOFTWARE INTERRUPT SYSTEM. .. 5-5

Interrupt Conditions ~ .. 5-6
Interrupt Control Block. .. 5-7
Initialize the Software Interrupt System 5-8
Control the Software Interrupt System 5-9
Save the Interrupt Blocks : .. 5-11
Reload the Saved State of the Interrupt System. .. 5-12
Dismiss an Interrupt ... ~ .. 5-12
An Example of the Software Interrupt System. .. 5-12

CHAPTER 6 CORE AND SEGMENT CONTROL 6-1
6.1 CORE CONTROL. .. 6-1
6.1.1 Definitions. 6-1
6.1.2 The LOCK Monitor Call (CALLI 60) 6-1
6.1.2.1 The LOCK Monitor Call Extension 6-4
6.1.2.2 Minimizing Fragmentation. .. 6-7
6.1.3 The UNLOK, Monitor Call (CALLI 120) .. 6-8
6.1.4 THE CORE MONITOR CALL (CALL 11) 6-8
6.1.5 The SETUWP Monitor Call. 6-10
6.1.6 The PAGE. Monitor Call. .. 6-11
6.1.6.1 Page Fault Handling. .. 6-14
6.1.6.2 Format of the Page Fault Handler. ;... 6-15
6.2 SEGMENT CONTROL .. 6-16
6.2.1 The RUN Monitor CALL (CALLI 35) 6-16
6.2.1.1 Programming with the RUN Monitor Call 6-18
6.2.2 The GETSEG Monitor Call (CALLI 40) .. 6-18
6.2.3 The REMAP Monitor Calt(CALLI 37). .. 6-19
6.2.4 Testing for a Sharable High Segment. .. 6-20
6.2.5 Determining the High Segment Origin 6-21
6.2.6 Modifying Shared Segments and Meddling. .. 6-21

CHAPTER 7
7.1
7.2
7.2.1
7.2.2

I/O PROGRAMMING. 7-1
JOB INITIALIZATION .. , 7-1
DEVICE SELECTION ... , 7-2

Device Initialization
Device Names

iv

7-3
7-4

')

")

-;

)

-)

)

j

:.)

)

)

-,

)

)

)

-\

)

CONTENTS (Cont.)

Page

7.2.2.1 File Structure Names. 7-5
7.2.2.2 Logical Unit Names ;................ 7-5
7.2.2.3 Physical Controller Class Names. .. 7-5
7.2.2.4 Physical Controller Names. .. 7-5
7.2.2.5 Physical Unit Names. .. 7-5
7.2.2.6 Name Abbreviations. .. 7-5
7.3 DATA MODES ;•............... 7-6
7.3.1 UnbuffereclI)ata Modes ; 7-6
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6

CHAPTER 8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.4.1
8.4.2
8.5
8.5.1
8.6
8.6.1
8.6.1.1
8.6.1.2
8.6.1.3
8.6.1.4
8.6.2
8.6.2.1

Buffered Data Modes 7-9
Buffered Input. .. 7-9
Buffered Output. .. 7-9
Synchronization of Buffered I/O 7-10
Buffer Structure. .. 7-10
Buffer Ring Header Block. .. 7-10
Buffer Ring ... '. 7-11
Monitor Generated Buffers. .. 7-12
User Generated Buffers .. 7-12

DEVICE TERMINATION AND REASSIGNMENT. .. 7-13
RELEASE A Device .. 7-13

The RESDV. Monitor Call : 7-13
The REASSIGN Monitor Call. .. 7-14
The DEVLNM Monitor Call. .. 7-14

DEVICE INFORMATION.. 7-15
The DEVSTS Monitor Call (CALLI 54) .. 7-15
The DEVCHR Monitor Call (CALLI 4) ,.................... 7-15
The DEVTYP Monitor Call (CALLI 53) .. 7-16
The DEVSIZ Monitor Call (CALLI 101) 7-16
The WHERE Monitor Call (CALLI 63) 7-19
The DEVNAM Monitor Call (CALLI 64) .. 7-19

FILES.. 8-1
FILE DEFINITION. 8-1
STRUCTURE OF DISK FILES.. 8-1

File Directories. .. 8-1
Job Search List. .. 8-4
Storage Allocation Table (SAT) Blocks 8-5

DISK FILE FORMAT ' 8-5
ACCESS PROTECTION ...•.. 8-6

File Access Privileges .. 8-6
Directory Privileges ... 8-7

FILE NAMES .. 8-8
The RENAME Monitor Call (OP Code 50) .. 8-8

FILE SELECTION .. 8-10
LOOKUP/ENTER A File ... 8-10
The LOOKUP Operator. 8-10
Extended Arguments to LOOKUP, ENTER and RENAME 8-11
The ENTER Operator ... 8-11
Error Recovery for ENTER and RENAME Monitor Calls 8-19
Data Transmission .. 8-19
The FILOP. Monitor Call (CALLI 155) 8-20

v

')
CONTENTS (Cont.)

Page

8.7 THE PATH. MONITOR CALL (CALLI 101) 8-20
'-1 J

8.7.1 - PATH. Examples '. 8-25
8.8 USETI AND USETO MONITOR CALLS 8-27
8.9 THE SEEK MONITOR CALL (CALLI 56) 8-29
8.10 THE CHKACC MONITOR CALL (CALLI 100) 8-30
8.11 THE STRUUO MONITOR CALL (CALLI 50) 8-32 ')

8.12
8.13

THE JOBSTR MONITOR CALL (CALLI 47) 8-32
THE GOBSTR: MONITOR CALL (CALLI 66)1 . 8-33

8.14 THE SYSSTR MONITOR CALL (CALLI 46) 8-33
8.15 THE SYSPHY MONITOR CALL (CALLI 51) 8-34
8.16
8.17

THE DEVPPN MONITOR CALL (CALLI 55) 8-34
THE DSKCHR MONITOR CALL (CALLI 45) 8-36)

8.18 THE DISK. MONITOR CALL (CALLU 11) . 8-39
8.19 FILE STATUS, , , , '. 8-41
8.19.1 The GETSTS Monitor Call (Op Code 62) : 8-42
8.19.2 STATO/STATZ (Op Codes 62 and 63)] 8-43
8.19.3 The SETSTS Monitor Call (Op Code 060) . 8-43
8-20 TERMINATE A FILE " , ,.... 8-44

CHAPTER 9 I/O PROGRAMMING FOR DEC TAPE 9-1
9.1
9.2

DECTAPE ... ,..... 9-1 -\
DATA MODES .. 9-1)

9.2.1 Buffered Data Modes. 9-1 /
9.2.2 Unbuffered Data Modes .. 9-2
9.3 DECTAPE FORMAT.. 9-2
9.3.1 DEC tape Directory Format .. 9-2
9.3.2 DECtape File Format'........................... 9-4
9.3.3 Block Allocation .. 9-5
9.4 I/O PROGRAMMING .. 9-5
9.4.1 The Lookup Operator. 9-5
9.4.2
9.4.3

The ENTER Operator " 9-7)'
The RENAME Operator. 9-7

9.4.4 INPUT, OUTPUT, CLOSE, RELEASE................................ 9-8
9.5 SPECIAL MONITOR CALLS ... ' 9-9
9.5.1 USETI Channel, Addr .. 9-9
9.5.2 USETO Channel, Addr . 9-9
9.5.3 UGETF Channel, Addr : 9-9
9.5.4 UTPCLR AC, (CALLI 13) 9-9
9.5.5 MTAPE Channel, 1 And MTAPE Channel, 11 MTAPE. 9-9
9.5.6 Devsts Monitor Call After Each Interrupt, . 9-9
9.6 FILE STATUS '. 9-9
9.7 IMPORTANT CONSIDERATIONS..................................... 9-11

CHAPTER 10 I/O PROGRAMMING FOR MAGNETIC TAPE 10-1 '1

10.1 DATA MODES '. 10-2
10.2 SPECIAL MONITOR CALLS FOR MAGNETIC TAPE 10-3
10.2.1 The MTAPE Monitor Call. 10-3
10.2.1.1
10.2.2

Function 11, Rewind and Unload 10-4
The MTCHR, Monitor Call (CALLI 112) 10-5

)

vi

')

10.2.3
10.2.3.1

~ 10.2.4
10.3

CHAPTER 11
11.1

", 11.2
11.2.1
11.2.1.1
11.2.2
11.2.3
11.2.4
11.3
11.4
11.5
11.6
11.7
11.7.1
11.7.2
11.7.3
11.7.4

) 11.7.4.1
11.7.4.2
11.7.4.3
11.7.4.4
11.7.4.5

CHAPTER 12
12.1
12.1.1
12.1.2

) 12.1.3
12.2
12:2.1
12.2.1.1
12.2.1.2
12.2.1.3
12.2.1.4
12.2.1.5
12.2.1.6
12.2.2
12.2.3
12.3
12.3.1

-\ 12.3.2
12.3.3
12.3.3.1
12.3.2.2
12.3.4)

CONTENTS (Cont.)

The TAPOP. Monitor Call (CALLI 154)
Function. TFMOD (Data Modes)
The MTAID. Monitor Call (CALLI 126)1

FILE STATUS

I/O PROGRAMMING WITH TERMINALS ,
INTRODUCTION
TERMINAL MONITOR CALLS

The TTCALL Monitor Call (Op Code 051)
TTCALL Examples•.........
The GETLIN Monitor Call (CALLI 34)
The TRMNO. Monitor Call (CALLI 115)
The TRMOP. Monitor Call (CALLI 116)

DATA MODES•.............
FILE STATUS
PAPER-TAPE INPUT FROM THE TERMINAL (FULL-DUPLEX SOFTWARE) ..
PAPER-TAPE OUTPUT AT THE TERMINAL (FULL-DUPLEX SOFTWARE) ..
·PSEUDO-TTYS (pTYs)

Concepts
The HIBER Monitor Call
File Status
Special Monitor Calls .. .

OUTPUT, OUTPUT•.........
IN, INPUT ..•.....
RELEASE Monitor Call .. .
JOBSTS Monitor Call•...........
CTLJOB Monitor Call•....

l»age

10-6
10 .. 11
10-12
10-12

11-1
11-1
11-1
11-1
11-3
11-4
11-5
11-5
11-9
11-12
11-13
11-13
11-14
11-14
11-15
11-15
11-16
11-16
11-16
11-16
11-16
11-17

I/O PROGRAMMING WITH UNIT RECORD DEVICES... 12-1
THE CARD PUNCH (CDP) 12-2

Data Modes and Buffer Zones 12-2
Monitor Calls .. 12-2
File Status .. 12-3

THE CARD READER (CDR) '" .. 12-4
Data Modes .. 23-4
ASCII, Octal Code 0 ... ~. 12-4
ASCII Line, Octal Code 1 .. 12-4
Image, Octal Code 10 .. 12-4
Image Binary, Octal Code 13 12-4
Binary, Octal Code 14. .. 12-4
Super-Image, Octal Code 1102 .. 12-4
Monitor Calls .. 12-4
File Status .. 12-5

DISPLAY WITH LIGHT PEN ... 12-6
Data Modes
Background '
Display Monitor Calls .. .
INPUT
OUTPUT
File Status

vii

12-6
12-6
12-6
12-6
12-6
12-8

12.4
12.4.1
12.4.1.1
12.4.1.2
12.4.1.3
12.4.2
12.4.3
12.5
12.5.1
12.5.1.1
12.5.1.2
12.5.1.3
12.5.1.4
12.5.1.5
12.5.2
12.5.3
12.6
12.6.1
12.6.1.1
12.6.1.2
12.6.1.3
12.6.1.4
12.6.1.5
12.6.2
12.6.3
12.7
12.7.1
12.7.1.1
12.7.1.2
12.7.1.3
12.7.1.4
12.7.1.5
12.7.2
12.7.3

CHAPTER 13
13.1
13.1.1
13.2
13.3
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.4.5

CHAPTER 14
14.1
14.1.1

CONTENTS (Cont.)

Page

UNE PRINTER ... 12-9
Data Modes .. .
ASCII. Octal Code 0 ;
ASCII Line, Octal Code 1 .. .
Image, Octal Code 10
Monitor Calls .. .
File Status .. .

THE PAPER-TAPE PUNCH .. .
Data Modes .. .
ASCII, Octal Code O .••••••••••••••••••.•..••••••..•••••.••••••.•
ASCII Line, Octal Code 1 .. .
Image, Octal Code 10 .. .
Image Binary, Octal Code 13
Binary, Octal Code 14 .. .
Monitor Calls
File Status .. .

THE PAPER-TAPE READER·
Data Modes (Input Only) .. .
ASCII, Octal Code 0
ASCII Line, Octal Code 1 .. .
Image, Octal Code 10 .. .
Image Binary, Octal Code 13
Binary, Octal Code 14 .. .
Monitor Calls .. .
File Status .. .

PLOTTER .. .
Data Modes .. .
ASCII, Octal Code O ••.•• '.' •.•..•••••••..••••.••..•.••..
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13 :
Binary, Octal Code 14
Monitor Calls
File Status

12-9
12-9
12-9
12-9
12-9
12-9
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-13
12-13
12-13
12-13
12-13
12-13
12-13
12-13
12-13

THE MULTIPLEX CHANNEL FEATURE .. 13-1
BUFFER RING EXTENSION , 13-1

Device Chains ... 13-2
DATA MODES . 13-2
DEVICE IDENTIFICATION , 13-2
MPX MONITOR CALLS . 13-2

The CNECT. Monitor Call (CALU 130). 13-2
The ERLST. Monitor Call (CALU 132). . .. 13-3
The SENSE. Monitor Call (CALU 133) 13-4
The CLRST. Monitor Call (CALU 134). 13-5
The IONDX. Monitor Call (CALU 127r . 13-5

REAL-TIME PROGRAMMING. 14-1
THE 'RTTRPMONITOR CALL (CALU 57)... 14-1

Interrupt,Level UseofRTTRP,..................................... 14-4

viii

)

;

)

-)

)

"_'I

)

)

14.1.2
14.1.3

'1 14.1.4
14.2
14.2.1
14.2.2

CHAPTER 15
15.1
15.1.1
15.1.2
15.1.3

) 15.104
15.1.5

, 15.1.6
15.1.7
15.2
15.3
1504
15.5
15.6
15.7

) 15.8
15.9

CHAPTER 16
16.1
16.1.1
16.1.2
16.1.3
16.2
16.2.1
16.2.2
16.2.3
16.2.3.1
16.2.3.2

CHAPTER 17
17.1
17.2
17.3

~ 1704
17.5

CHAPTER 18

'"' APPENDIX A

APPENDIXB

APPENDIXC

APPENDIXD

CONTENTS (Cont.)

Page

Restrictions ... 14-4
Removing Devices from a Priority Interrupt Channel. 14-5
Dismissing the Interrupt. 14-5

THE TRPSET MONITOR CALL (CALLI 25) . 14-5
UJEN (Op Code 100). 14-7
The HPQ Monitor-Call (CALLI 71) 14-7

INTER-PROCESS COMMUNICATION FACILITY 15-1
PACKETS. 15-1

Flags .. 15-1
PIDs .. 15-1
Length of the Packet Data Block. 15-4
Address of the Packet Data Block. 15-4
Sender's Project-Programmer Number. 15-5
Capabilities of Sender. 15-5
Packet Data Block ... 15-5

SENDING A PACKET. .. 15-5
RECEIVING A PACKET ,............................ 15-6
[SYSTEM] INFO ... 15-6
[SYSTEM] ICPP .. 15-7
STATUS OF AN INPUT QUEUE . 15-10
RETRIEVE AND IPCF PACKET . 15-11
SEND AN IPCF PACKET . 15-11
IPCF EXAMPLE. 15-13

ENQUEUE/DEQUEUE FACILITY ;.. 16-1
OVERVIEW OF ENQUEUE/DEQUEUE. 16-1

Shared Ownership and Exclusive Ownership 16-1
Pooled Resources .. 16-2
Sharer's Group. 16-4

ENQUEUE/DEQUEUE MONITOR CALLS 16-5
The ENQ. Monitor Call (CALLI 151). 16-5
The DEQ. Monitor Call (CALLI 152). 16-7
The ENQC. Monito"r Call (CALLI 153) 16-9
Status Information ... 16-9
Modifying the Queue Structure 16-11

METERING ... 17-1
OVERVIEW OF METERING .. 17-1
POINT ROUTINES. 17-2
USING THE TRACE CHANNEL . 17-2
ADDING A METER POINT . 17-3
THE METER MONITOR CALL (CALLI 111). 17-4

GETTABS .. .

COMPARISON OF DISK DEVICES

COMPARISON OF MAGNETIC TAPE SYSTEMS

18-1

A-I

B-1

CARD AND TAPE CODES . C-1

COMPARISON OF TERMINALS D-1

ix

APPENDIXE

APPENDIXF

APPENDIXG

APPENDIXH
H.1
H.Ll
H.2
H.3
HA
H.5

APPENDIX I

APPENDIXJ

CONTENTS (Cont.)

ERROR CODES .. .

DECSYSTEM-lO AT-A-GLANCE

MEMORIES

FILE RETRIEVAL POINTERS
A GROUP POINTER

Folded Checksum Algorithm
END·OF-FILE POINTER .. .
CHANGE OF UNIT POINTER
DEVICE DATA BLOCK .. .
ACCESS BLOCK .. .

DATA COMMUNICATIONS

UUOSYM.MAC

Page

E-1

F-1

G-1

H-1
H-1
H-1
H-1
H·2
H-2
H-2

1-1

J-1

INDEX .. Index·1

FIGURE 2-1
2-2
2-3
5-1
5·2
5-3
6-1
7-1
7-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
9-1
9-2
9-3
9-4
11-1
13·1

FIGURES

Page

KAlO User Address Relocation .. 2-2
KIlO/KLlO Paging Configuration (Without Virtual Memory) 2-3
Physical and Virtual Page Limits 2-5
Software Interrupt Process .. 5-6
Interrupt Control Block .. 5-7
Saved Status Block Structure. .. 5-11
Locking Jobs in Core. .. 6·9
Buffer Ring Header Block. .. 7-11
Buffer Structure .. 7-11
Basic Disk File Organization for Each File Structure. 8·2
Disk File Organization .. 8-3
Access Protection Code. .. 8-7
ENTER Argument Block ... 8-18
FILOP. Argument Block ... 8-21
PATH. Argument Block .. 8-22
Directory Paths on a Single File Structure 8-26
Directory Paths on Multiple File Structures. .. 8-26
DISK. Priority Level ... 8-40
DECtape Directory Format _ .. _ . _ .. _ . _ 9-3
Format of a File on a DECtape ... _ _ _ ... _ 9-5
Format of a DECtape Block . _ _ . _ . _ _ . _ 9-5
LOOKUP/ENTER/RENAME Argument Block .. _" _. _. _. ___ . _ ... _. ____ .. 9-6
Pseudo-TTY _ __ . _ ... _ ... 11-14
MPX Buffer Ring Header Block _ _ . _ ... _ ... _ ____ . _ . _ 13-1

x

'j

.,

)

)

)

!"

-'

)

"j

.~);.

(J

)

)

)

'"

--l

)

FIGURE 15-1

TABLE

15-2
15-3
15-4
15-5
15-6
16-1
16-2
16-3
16-4
16-5
16-6
16-7
17-1

1-1
1-2
2-1
3-1
3-2
4-1
4-2
4-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
7-1
7-2
7-3

FIGURES (Cont.)

Page

Representation of an IPCF Packet 15-2
Request to [SYSTEM] INFO .. 15-6
[SYSTEM] INFO Response Format 15-8
Request to [SYSTEM] IPCC•............................ 15-8
Response from [SYSTEM] IPCC 15-10
An Associated Variable. .. 15-11
Shared Ownership : 16-2
Shared and Exclusive Ownership Requests. .. 16-3
Exclusive Ownership. .. 16-3
Pooled Resources ... 164
ENQ. Argument Block ... 16-5
Lock-Block Dump. .. 16-12
Queue-Block Dump ... 16-12
Metering .. 17 -1

TABLES

Page

Op Codes 040-100 .. 1-3
CALLIs/Monitor Calls ... '.' . .. 1-6
VM Abbreviations .. 2-5
Job Data Area Locations. .. 3-1
Vestigial Job Data Area Locations. .. 3-6
HIBERnate Conditions ... 4-4
SETUUO Functions ... 4-5
DAEMON Functions .. 4-12
APRENB Flags ... 5-2
Error Intercepting Class Bits .. , .. 5-3
I/O Interrupt Conditions ... 5-7
Non-I/O Interrupt Conditions .. 5-8
Control Flags. .. 5-9
Argument Block Flags ... 5-10
PISYS. Error Codes ... 5-10
PISAV. Error Codes ... 5-11
PIRST. Error Codes ... 5-12
LOCK Bits. .. 6-2
LOCK Monitor Call Error Codes .. 6-3
LOCK Extension Functions. .. 6·7
Values Returned from a CORE Monitor Call. .. 6-9
PAGE. Monitor Call Functions. .. 6-11
Bits Returned from Function .PAGCA 6-13
PAGE. Monitor Call Error Codes. .. 6-14
Page Fault Word .. 6-15
Non-Directory Devices. .. 7-2
OPEN Status Bits _ .. 7-4
Format of Device Names. 7-4

xi

TABLE 7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10

8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
12-1
13-1
13-2
13-3
13-4
13-5
14-1

TABLES (Cont.)

Physical Disk Unit Names .. .
Data Modes
DEVLNM Error Codes
Device Characteristics
Device Type Bits _ ... _
DEVSIZ Error Codes .. .
Node/Station Status Bits
Access Protection Codes
Access Privileges to UFDs and SFDs
LOOKUP Argument Block
Extended Arguments to ENTER, LOOKUP, and RENAME
.RBSTS Bit Definitions .. .
FILOP. Function Codes .. .
PATH. Function Codes .. .
PAIH. Switches and Flags
USETI/USETO Function Codes
CHKACC Access Codes

JOB/GOBSTR Status Bits .. .
GOBSTR Error Codes
Ersatz Devices .. .
DSKCHR Argument Block
DSKCHR Status Bits .. .
DISK. Function Codes .. .
DISK. Error Codes
Disk File Status Bits .. .
DECtape Devices .. .
Format of Words 105 -126 in the DECtape Directory Block
LOOKUP Parameters
ENTER Parameters
RENAME Parameters
Magnetic Tape Data Modes
MTAPE Functions '.'
MTCHR. Returned Values
Values Returned to the AC After MTCHR
TAPOP. Function Codes .. .
TAPOP. Error Codes .. .
Terminals .. .
TTCALL Functions .. .
Terminal Line Characteristics
TRMOP. Function Codes .. .
Transmit/Receiving Speeds
TRMOP. Error Codes
JOB Status Bits
Summary of Some Non-Directory Devices
CNECT. Operation Codes .. .
CNECT. Error Codes
ERLST. Error Codes
SENSE. Error Codes
CLRST. Error Codes
RTTRP Monitor Call Error Codes

xii

Page.

7·6
7·7
7-15
7-17
7-18
7-19
7-19
8·6

,.

8-8
8-11
8-12
8-17
8-22
8-23

)
8-23
8-28
8-31

8-32
8-34
8-35
8-37
8-38
8-40
8-41

)
8-42
9-1
9-3
9-6
9-7
9-8
10-2
10-3
10-5)
10-6
10-7
10-10
11-1
11-2
11-4
11-6
11-9
11-9
11-17
12-1
13-3
13-3
13-4
13-5
13-5)
14-3

)

TABLE lS-l

lS-2
lS-3

-, lS4

lS-S

16-1
16-2
16-3
16-4
16-S

16-6
17-1
17-2
18-1
18-2
18-3

184
18-S

18-6
18-7
18-8
18-9

) 18-10
18-11
18-12
18-13
18-14

18-15

18-16
18-17

) 18-18
18-19
18-20
18-21
18-22
18-23
18-24
18-25

" 18-26
18-27

A-I
B-1
C-1
C-2
D-1
E-1

) F-1
G-1
1-1

TABLES (Cont.)

Packet Flags .. ,
IPCF Capabilities of a Sender
[SYSTEM] INFO Functions ','
[SYSTEM] IPCC Functions .. .
IPCF Error Codes ,
ENQ. Function Codes , ,
DEQ. Function Codes ,
Current State of Resource ... , .
ENQC. Function Codes
ENQC. Flags
Enqueue/DequeueiError Codes ,
METER. Function Codes ,
METER. Error Codes , .- , .. ,
GETTAB Tables , -........... .
Priyilege Table (.GTPRV, GETTAB Table Number 6) , ,.
Configuration Table (.GTCNF, GETTAB Table Number 11)
System State Bit Settings (Item Number 17 in GETTAB Table Number 11)
Non-swapping Data Table (.GTNSW, GETTAB Table Number 12)
Swapping Data Table (.GTSDT, GETTAB Table Number 13)
ONCE-ONLY Disk Parameters (.GTODP, GETTAB Table Number 15) ... , , .. , .
LEVEL-D Parameters (.GTLVD, GETTAB Table Number 16) , .
GETTAB Immediate Word Entries (.GTSLF, GETTAB Table Number 23)
Spooling Control Table (.GTSPL, GETTAB Table Number 36)
Time and Batch Status Table (.GTLIM, GETTAB Table Number 40)
Hardware Status Mter a Crash (.GTCRS, GETTAB Table Number 44) " .
System Wide Data Table (.GTSYS, GETTAB Table Number 51)
CPUO Control Data Block Constants Table (.GTCOC, GETTAB Table
Number 55) .. .
CPUO Control Data Block Variable Table (.GTCOV, GETTAB Table
Number 56) .. .
Response Sub table
Parity Sub table -........................... _
Feature Table (.GTFET, GETTAB Table Number 71). ~
SCanner Table (.GTSCN, GETTAB Table Number 73)
SEND-ALL Text (.GTSND, GET'fAB Table Number 74)
IPCF Miscellaneous Data (.GTIPC, GETTAB Table Number 77)
IPCF Statistics Per Job (.GTIPA, GETTAB Table Number 104)
IPCF Flags and Quotas (.GTIPQ, GETTAB Table Number 107)
General Virtual Memory Data (.GTVM, GETTAB Table Number 113)
Scheduler Statistics (.GTSST, GETTAB Table Number 115)
Special PID Table (.GTSID, GETTAB Table Number 126)
ENG./DEQ. Statistics (.GTENQ, GETTAB Table Number 127)

Disk Devices
Magnetic Tape Systems .. .
ASCII Card Codes
ASCII Codes and BCD Equivalents
Terminals .. .
Error Codes ,
DECsystem-10 _
Core Memories .. .

Page
15-3
15-5
15-7
15-8
15-12
16-7
16-8
16-10
16-11
16-12
16-13
17-4
17-5
18-2
18-6
18-6
18-11
18-12
18-13
18-14
18-14
18-16
18-17
18-17
18-18
18-18

18-19

18-20
18-21
18-22
18-23
18-26
18-26
18-26
18-26
18-27
18-27
18-28
18-28
18-29

A-I
B-1
C-1
C-3
D,l
E-1
F-1
G-1

Communication Systems ... 1-1

xiii

(

(

(

(

'.

(

)

j

)

I

I

1.1 PROCESSOR MODES

CHAPTER 1

USER PROGRAMMING

In a single-user, non-timesharing environment, a user's program is limited only by those conditions inherent in the
hardware. The program must

1. stay within the memory capacity,
2. observe the hardware restrictions placed on the use of certain memory locations, and
3. observe the restrictions on interrupt conditions.

In a timesharing environment, the hardware limits the central processor to one of three modes:

1. user mode, which on a KIIO/KLl0 is divided into concealed and public modes,
2. user I/O mode, and
3. executive mode, which on the KIlO/KLlO is divided into kernal mode and supervisor mode.

1.1.1 User Mode Processing
The processor is usually in user mode when user programs are executed. In this mode, user programs must operate
within an assigned area of core and certain instructions are illegal. The illegal instructions are:

the op codes 700 through 777 1,
a JRST 10, instruction,
a JRST 4, instruction,
unimplemented op codes,
and, on the KLl 0, any JRST except JRST 0, JRST 1, or JRST 2.

All illegal instructions trap to the monitor, stop the program, and print one of the following messages on the user's
terminal.

?HALT AT USER PC addr
?ILLEGAL INSTRUCTION AT USER PC addr
?KIlO or KLlO INSTRUCTION AT USER PC addr
?KLl 0 ONLY INSTRUCTION AT USER PC addr

The CaNT and CCONT commands can be used to continue the execution of the user program only after a HALT.

User mode processing is used to guarantee the integrity of the monitor and each user program. The user mode of the
processor is characterized by the following conditions.

1. Automatic memory protection and mapping, refer to Chapter 3.
2. Trap to the monitor on any of the following:

op codes 040 through 077 and op code 00,
I/O instructions (DATAl, DATAO, BLKI, BLKO, CONI, CONO, CONSZ, and CONSO),1
HALT (i.e., JRST 4,)

3. Trap to location 40 in the user area on the execution of op codes 001 through 037.

1except I/O instructions using a device code greater then 734 on a KIlO/KL10.

1-1

User Programming

1.1.2 User I/O Mode Processing
The user I/O mode (i.e., bits 5 and 6 of the PC word equal to 11 2) of the central processor allows privileged user
programs to be executed with automatic protection and mapping in effect, as well as the normal execution of all
defined operation codes (except the HALT instruction on the KIlO/KLl0 processors.) User I/O mode provides
some protection against partially debugged monitor routines and it provides infrequently used device service routines
to be executed as user jobs. Direct control of special devices, which is particularly important in real-time applica­
tions, may be obtained by a user program.

To utilize user I/O mode, the system administrator must have set bit 15 (JP.TRP) in the privilege word (refer to
.GTPRV, GETTAB Table Number 6). All user I/O mode activities are terminated by the execution of the RESET
monitor call. User I/O mode is not used by the monitor, and it is not, normally, available to the unprivileged time­
sharing user.

1.1.3 Executive Mode Processing
The monitor operates with the processor in executive mode, which is characterized by special memory protection
and mapping (refer to Chapter 3) and by the normal execution of all defined op codes.

When user programs execute in user mode, the monitor schedules user programs, services the interrupts, performs all
input/ output operations, takes action when control returns froll) a user program, and performs any other legal user­
requested operations not available in user mode. Monitor services and how a user program obtains these services are
described in Chapters 4 and 5.

1.2 MONITOR CALLS (PROGRAMMED OPERATORS)
Operation codes 000 through 100 on the DECsystem-lO are monitor calls. These are sometimes referred to as pro­
grammed operators (UUOs). Monitor calls are software-implemented instructions. Their functions, from a hardware
point of view, are not prespecified. Some monitor calls trap to the monitor; others trap to the user program.

When a monitor call is executed:

the effective address is calculated,
the contents of the instruction register (along with the effective address) is stored,
and an instruction is executed out of the normal sequence of operations.

Refer to the DECsystem-l 0 System Reference Manual for further details on Monitor Call handling by the central
processor.

1.2.1 Op Codes 000-037
Op codes 000 through 037 do not affect the mode of the central processor. When these op codes are executed in
user mode, they trap to location 40. This allows the user program complete freedom when using these operators.

If an undebugged program executes one of these op codes accidentally, the following message is printed:

HALT AT USER PC addr

where: addr is the location of the user's monitor call.

The message is typed because the users relative location 41 contains a HALT instruction, unless the user program
overtly changed it. This HALT instruction is provided by LINK-10.

1.2.2 Op Codes 040-100 and 000
Op codes 040 through 100 trap to absolute location 40 on KAlO-based systems. On KIlO/KLlO-based systems, the
call is stored at location 424, and the new pc is loaded from location 436 of the user's process table (the central proc­
essor operates in executive mode). These monitor calls are interpreted by the monitor to perform I/O operations
and other control functions for the user program.

1-2

J

\
)

)

)

User Programming

) Op code 000 always returns to monitor mode, and the following error message is printed:

?ILLEGAL UUO AT USER PC addr

Table 1-11ists the op codes 040 through 100, their mnemonics, and their meanings.

.~?'
Table 1-1

Op Codes 040-100

Op Code Call Meaning

;, 040 CALL ac, [SIXBIT/name/ Programmed operator extension.
nameac,

041 INIT channel, status Initialize a device and associate it with an I/O

)

{~~BIT/deVice/ } channel.

XWD obut, ibuf
error return

normal return

042-046

047 CALLI ac, n Programmed operator extension.

050 OPEN channel, spec Initialize a device and associate it with an I/O
error re turn channel.

normal return

)
spec: EXP status

{SIXBIT/device/ }
udx
XWD obut, ibuf

051 TTCALL aC,addr Extend the operations on job-controlling
te rrninals.

052-054 Reserved to Digital for future expansion.

055 RENAME channel, addr Rename or delete a file on a
error return

normal return

addr: SIXBIT / filename / directory device.
SIXBIT / ex tension/

addr: SIXBIT / filename / DECtape.
SIXBIT / extension/ "hi-date
0, ,low-date

addr: SIXBIT / filename / disk unit.
,Co SIXBIT / ex t/ ,hi-date, datel

prot, mode,time, low-date2
ppn

056 IN channel, addr Transmit data from a file to a user's core area,
normal return skip on an error or an EOF.)

error return

1-3

Op Code

057

060

061

062

063

064

065

066

067

070

071

072

073

074

075

076

Call

OUT channel, addr
normal return

error return

SETSTS channel, addr
return

STATO channel, status
normal return

error return

GETSTS channel, addr
return

STATZ channel, status
normal return

error return

INBUF channel,n
return

OUTBUF channel,n
return

INPUT channel, addr
return

OUTPUT channel, addr
return

CLOSE channel, option
return

RELEASE channel,
return

MTAPE channel,function
return

UGETF channel, addr
return

USETI channel, addr
return

USETO channel, addr
return

LOOKUP channel, addr
error return

normal return

addr: SIXBIT I filenamel
SIXBIT/extl

addr: SIXBIT I filenamel

User Programming

Table 1-1 (Cont.)
Op Codes 040-100

Meaning

Transmit data from a user's core area to a file,
skip in an error or an EOF.

Change the file status.

Skip if any file status bits are equal to one.

Copy file status to addr.

Skips if all status bits are zero.

Set up input buffer ring with n buffers.

Set up output buffer ring with n buffers.

Transmit data from a file to the user's core area.

Transmit data from a file to the user's core area.

Terminate file operations.

Release a device.

Perform tape positioning operations.

Get next free block number on DECtape.

Set next input block number on disk or
DECtape.

Set next output block number on disk or
DECtape.

Select a file for input on a

non-directory device

disk unit.
SIXBIT I ex tl ,date, date
prot, mode, time, date
XWD proj,prog

1-4

)

,'-'''''\

)

)

)

Op Code

077

100

)

)

I ~

Call

ENTER channel, addr

User Programming

Table 1-1 (Cont.)
Op Codes 040-100

Meaning

Select a file for output on a
error return

normal return

addr: SIXBIT/filename/ non-directory device.
SIX BIT / ex tension/

addr: SIXBIT / filename/ DECtape.
SIXBIT/ext/,date
o "date

addr: SIXBIT/filename/ disk unit.
SIXBIT/ext/, date, date
prot, moUe, time, date
XWD proj, prog

UJEN Dismiss a real-time interrupt.
return

1-5

CALLI #

-2, ...

-1

2

4

10

11

12

13

14

151

16

17

20

Call

Customer defined.

LIGHTS ac,
only return

RESET ac,
return

MOVEI ac, start-addr
SET DDT ac,
return

User Programming

Tablet -2
CALLIs/Monitor Calls

Function

Reserved for customer definition.

Display the contents of the AC in the lights.

Reset an I/O device.

Set the protected DDT starting address.

tOVE ac. [SIXBIT/d"iCCIl} Get device characteristics.
MOVE aC,channel
MOVEI aC,udx
DEVCHR ac,
return

{MOVEI ac, channel } Wait until device is inactive.
MOVEI aC,udx
WAIT channel
return

MOVE ac, [XWD hi, 10] Allocate core.
CORE ac,

error return
normal return

EXIT ac, Reset is performedwhen AC = 0, job is stopped when
return here on continue AC not equal to O.

{MOVEI ac, channel} Clear a DECtape directory.
MOVEI aC,udx
UTPCLR ac,
only return

DATE ac, Return the date.
only return

MOVE ac, [XWD -n,loc] Privileged call available only to system privileged pro-
LOGIN ac, grams. It is a no-op if executed by a job already
only return logged in.

MOVEI ac, bits Enable central processor traps.
APRENB ac,
return

LOGOUT ac, Privilege monitor call available only to system privi-
no return leged programs. It is treated as an EXIT monitor call

if executed by a non-system privileged program.

SWITCH ac, Read the console data switches.
return

1-6

\
\

)

)

)

CALLI #

21

22

23

24

)

25

26

27
)

30

31

)
32

33

34

35

Call

MOVEI aC,job-number

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Reassign a device.

Function

{MOVE
MOYEI

ac+ 1, [SIXBIT/deVice/]}
ac+ 1 , channel

REASSIGN ac,
only return

TIMER ac, Return the time of day in jiffies.
only return

MSTIME ac, Return the time of day in milliseconds.
only return

GETPPN ac, Return the project-programmer number of the current
normal return job.

error return

MOVE ac, [XWD n, loc] Set a trap for user I/O mode.
TRPSET ac,

error return
normal return

loc: JSR TRAP

Historical monitor call.

{MOVEI ac,job number} Return the job's running time in milliseconds. (0 indi-
MOVEI ac,O cates the cu'rrentjob).
RUNTIME ac,
only return

PJOB ac, Return the job number.
only return

MOVEI ac, sees. to sleep Stop ajob for a specified number of seconds (68
SLEEP ac, seconds is the maximum).
only return

Historical monitor call.

MOVEI aC,addr Return the contents of a specified executive address.
PEEK ac,
only return

GETLIN ac, Return the SIXBIT physical name of the terminal that
only return the current job is attached to.

MOVSI ac, start-addr-inc Allow programs to transfer control to one another.
HRRl ac,loc Both the low and the high segments of the user's
RUN ac, addreSSing space are replaced with the program being

error return called.
normal return

1-7

CALLI #

36

37

40

I

41

42

43

44

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Function

loc: SIXBIT/device/
SIXBIT / ex tension/
SIXBIT / filename /
0
XWD proj,prog
XWD hi-addr, core

MOVEI ac, bits Set or clear user mode write protect for high segment.
SETUWP ac,

error return
normal return

{MOVEI ac, hi in low seg } Remap top of low segment into the high segment.
MOVE ac, [XWD hiorigin, 10]
REMAP ac,

error return
normal return

MOVEI ac,addr Replace the high segment in user's addressing space.
GETSEG ac,

error re turn
normal return

addr: SIXBIT/device/
SIXBIT /filename/
0
XWD proj,prog
0

{MOVSI ac, job-number } Return contents of monitor table or location.
MOVSI ac, index-number
HRRI ac, table-number
GETTAB ac,

error return
normal return

MOVEI ac, hi-phys-addr Make physical core assignment for examination of
APY ac, monitor.

error return
normal return

MOVE ac, [SIXBIT/name/] Set program name in monitor table.
SETNAM ac,
only return

MOVE ac, [XWD code, block] Allow temporary in-core file storage for the job.
TMPCOR ac,

error return
normal return

1-8

\

)

)

)

CALLI #

45

,1.

46

47

50

)

) 51

52

53

;.:

54

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Function

block: XWD name, 0
IOWD bulen, buffer

MOVEI ac, [XWD +n, lac] Return disk characteristics.
DSKCHR ac,

error return
normal return

lac: SIXBIT! diskname /

MOVEI ac,O Return all of the file structures names in the system.
MOVE ac, [SIXBIT/fsname/]
SYSSTR ac,

error return
normal return

MOVE ac, [XWD n, lac] Return next file structure name in job search list.
JOBSTR ac,

error return
normal return

MOVE ac, [XWD n, lac] Manipulate the structures.
STRUUO ac,

error return
normal return

lac: function

argn-l

MOVEI ac,O Return all physical disk units.
MOVE ac, [SIXBIT/name/]
SYSPHY ac,

error return
normal return

Reserved for future use.

rOVE ac, [SIXBIT/d"'ice/]} Return properties of a device.
MOVEI aC,channei
MOVEI aC,udx
DEVTYP ac,

error return
normal return

rOVEI
ac,channel } Remove hardware device status word.

MOVE ac, [SIXBIT/device/]
MOVEI aC,udx
DEVSTS ac,

error return
normal return
._--------- ._-- L..- -----

1-9

CALLI #

55

56

57

60

61

62

63

65

66

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Function

{MOVE ac, [SIXBIT/deVice/]} Return the project-programmer word.
MOVEI ac,channel
DEVPPN ac,

error return
normal return

SEEK channel, Perform a SEEK to current selected block for soft-
return ware channel AC.

MOVEI ac,loc Connect real-time device to the Plsystem.
RTTRP ac,

error return
normal return

{MOVE ac, [XWD hi, 10] } Lock job in core.
MOVE ac, [XWD -n, addr]
LOCK ac,

error return
normal return

rOVEI ac, channel } Return status information about device TTY and/or
MOVE! ac,job-number . controlled job.
MOVE! ac,udx
JOBSTS ac,

error return
normal return

MOVEI ac, station-number Change the job's logical station/node number.
LOCATE ac,

error return
normal return

rOVEI ac, channel } Return physical name of device obtained through
MOVE ac, [SIXBIT/device/] generic INIT/OPEN/FILOP. or logical device
MOVEI aC,udx assignment.
DEVNAM ac,

error return
normal return

MOVEI aC,job-number Return job number of controlling job.
CTLJOB ac,

error re turn
normal return

MOVE ac, [XWD n, loc] Return next file structure name in an arbitrary job's
GOBSTR ac, search list.

error return
normal return

loc: job-number
XWD proj, prog
SIXBIT/name/
-1
0
status-bits

1-10

')

."

)

)

)

)

')

CALLI #

67

70

71

"',
72

73

74

) 75

76

77

100
)

101

'1

102

)

Call

MOVEI ac,hpq
HPQ ac,

error return
normal return

MOVSI ac, enable bits
HRRl ac, sleep time
HIBER ac,

error return
normal return

MOVEI ac,job-number
WAKE ac,

error return
normal return

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Reserved to Digital.

Reserved to Digital.

Function

Place job in high priority scheduler's run queue.

Allow job to become dormant until the specified event
occurs.

Allow job to activate the specified dormant job.

MOVE ac, [XWD proj,prog] Change project-programmer number.
CHGPPN ac,

error return
normal return

MOVE ac, [XWD function,arg] Set system and job parameters.
SETUUO ac,

error return
normal return

Reserved for Digital.

OTHUSR ac, Determine if another job is logged into the same
non-skip return project-programmer number.
skip return

MOVEI ac,loc Check user's access to the me specified.
CHKACC ac,

error return
normal return

loc: access, prot, prot
directory ppn
user ppn

MOVE aC,loc Determine buffer size.
DEVSIZ ac,

error return
normal return

MOVE ac, [XWD length,addr] Request DAEMON to perform a specified function.
DAEMON ac,

error return
normal return

1-11

I

CALLI #

103

104

105

106

107

110

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Function

addr: function
arg1

argn

MOVE ac,addr Read or write another job's core.
JOBPEK ac,

error return
normal return

MOVE ac, [XWD line#,job#] Attach the job to the specified TTY line number.
ATTACH ac,

error return
normal return

MOVE ac, [XWD length,addr] Indicate that the request to the DAEMON program
DAEFIN ac, has been completed.

error re turn
normal return

MOVE ac, [XWD length, addr] Indicate that the request to the DAEMON program
FRCUUO ac, has been completed.

error return
normal return

rOVE ac, [SIXBIT / d",,;ce/ } Set a logical name for this device.
MOVEI ac,channel
MOVEI ac,udx
MOVE ac+ 1, [SIXBIT/logical/]
DEVLNM ac,

error return
normal return

MOVE ac, [XWD length,addr] Read or modify the default directory path or read the
PATH .. ac current path of a file OPEN on a channel, or set and/

error return or test the additional path.
normal return

addr: n
SIXBIT/name/
scan switch
XWD proj,prog
sfd name
sfd name

1-12

)

)

\
)

)

CALLI #

111

112

113

)

114

115

116

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Functiom

MOVE ac, [XWDn+l,loc] Provide performance analysis and metering of dynamic
METER. ac, system variables.

error return
normal return

lac: function
argl

argn

rOVE ac, [XWD n, Ioc 1 l Return characteristics of a magnetic tape.
MOVEr ac,channel
MOVEI aC,udx
MOVE ac, [SIXBIT / device /]
MTCHR. ac,

error return
normal return

MOVE ac, [2, ,block] Execute the specified function of SETUUO for a job.
JBSET ac,

error return
normal return

block: O,job#
function" value

MOVE ac, [3 "block] Alter the specified location in the monitor.
POKE. ac,

error return
normal return

block: location
old value
new value

MOVEI ac,job# Return the number of the terminal currently con-
TRNMO. ac, trolling the specified job.

error return
normal return

MOVE ac, [XWD n,addr] Perform miscellaneous terminal functions.
TRMOP. ac,

error return
normal return

1-13

CALLI#

117

120

121

122

123

124

125

126

127

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call

{ MOVEI
MOVEl
RESDV.

ac, Channel}
ac,udx
ac,

error return
normal return

{MOVSI ac, 1 }
MOVSI ac,O

{HRRI ac,l. }
HRRI ac,O
UNLOK. ac,

error return
normal return

MOVE
DISK.

ac, [XWD function,addr]
ac,

error return
normal return

{
MOVE ac, [SIXBIT/deVice/]}
MOVEI ac, channel
MOVEI ac, udx
DVRST. ac,

error return
normal return

{
MOVE ac, [SIXBIT/deVice/]}
MOVEI ac, channel
MOVEI ac, udx
DVURS. ac,

error return
normal return

MOVE ac, [XWD n,addr]
CALLI1. ac,

error return
normal return

{MOVE
MOVE!
MOVE

ac, [SIXBIT/deVice/]}
aC,channel
aC+ 1, [SIXBIT /reelid/]

MTAID. ac,
error return

normal return

{MOVE I
MOVE
IONDX.

ac, channel }
ac, [SIXBIT /device/]
ac,

error return
normal return

Function

Reset the specified channel.

Unlock a locked job in core.

Set or read a disk or file system parameter.

Restrict the specified device to a privileged job.

Remove the restricted status of a specified device.

Reserved to Digital.

Front-end debug monitor call.

Associate a visual identification with a magnetic tape
drive during a mount.

Return the universal I/O index for a device.

1-14

)

)

)

)

CALLI#

130

131

132

133

)

135

136

137

140

L-______

User Programming

Table 1-2 (Cont.)
CALLIs/Monitor Calls

Call Function

MOVEI ac, list Connect/disconnect devices to/from an MPX
CNECT. ac, channel.

error return
normal return

{MOVEI ac, channel } Move a buffer ring header between core locations.
MOVE ac, [outaddr, inaddr 1
MVHDR. ac,

error return
normal return

MOVEI aC,addr Provide a list of non-operational devices connected to
ERLST ac, an MPX channel.

error return
normal return

addr: #Words, channel
#devices
UDX"GETSTS

MOVE ac, [XWD length,addr] Allow a device to continue after a device error
CLRST. ac, condition has occurred.

error return
normal return

addr: udx
channel
SIXBIT/device/
O,SETSTS value

MOVE ac, base-addr Initialize the software interrupt system.
PUNI. ac,

error return
normal return

MOVE ac, [XWD flags, addr 1 Control the software interrupt system.
PISYS. ac,

error return
normal return

DEBRK. Dismiss a software interrupt.
return

MOVE ac, [XWD size, addr 1 Save the state of the software interrupt system.
PISAV. ac,

error return
normal return

1-15

I

I
I

CALLI#

141

142

143

144

145

146

User Programming

Table 1·2 (Cont.)
CALLIs/Monitor Calls

Call Function

MOVEI aC,addr Restore the state of the software interrupt system.
PIRST. ac,

error return
normal return

MOVE ac, [XWD n, loc] Receive an IPCF packet.
IPCFR. ac,

error return
normal return

loc: [lags
sender's PID
receiver's PID
message length"addr

MOVE ac, [XWD n, loc] Send an IPCF packet.
IPCFS. ac,

error return
normal return

loc: [lags
sender's PID
receiver's PID
message length, ,addr

MOVE ac, [XWD n, loc] Obtain information about an IPCF input queue.
IPCFQ. ac,

error return
normal return

loc: [lags
sender'sPID
receiver's PID
message length, ,addr

MOVE ac, [XWD junction, loc] Manipulate pages and the data associated with these
PAGE. ac, pages.

error return
normal return

MOVE ac, [XWD n, loc] Set the next I/O block number.
SUSET. ac,

error return
normal return

1·16

)

)

)

)

)

)

-';

User Programming

1.2.2.1 Symbols for Numbers - Some system programs, e.g., LOGOUT, require I/O to specific physical devices
regardless of the logical name assignments. Therefore, for any monitor call, if bit 19 (UU.PHS) in the effective
address of the call is not equal to bit 18, only physical device for any names will be used; logical device assignments
will be ignored. This suppression of logical device names is helpful, for example, when using the results of the
DEVNAM monitor call where the physical name corresponding to a logical name is returned.

1.2.2.2 Restriction on Monitor Calls in Programs - A number of restrictions on monitor calls that involve a high
segment prevent naive or malicious users from interfering with other users while sharing segments and minimize
monitor overhead in handling two-segment programs. The basic rules are as follows:

1. All monitor calls can be executed from either the low or high segment although some of their arguments
cannot be in or refer to the high segment.

2. No buffers or buffer headers may exist in the high segment for reading from or writing to any I/O
device.

3. No I/O is processed into or out of the high segment except via the SAVE, OSA VE, NSA VE and SSA VE,
OSSA VE, NSSAVE commands.

4. As a convenience in writing user programs, the monitor makes a special check so that the INIT monitor
call can be executed from the high segment, although the calling sequence is in the low segment. The
monitor also allows the effective address of the OPEN monitor call (which contains the status bits,
device name, and buffer header addresses) in the high segment. The address of TTCALL 1, and
TTCALL 3, may be in the high segment for convenience in typing messages.

1.2.3 Operation Codes 100-127
OP Code 100 (UJEN) Dismiss real-time interrupt from user mode.

OP Codes 101-106 Monitor prints ?ILLEGAL INSTRUCTION AT USER n and stops the job.

1 07,114-11 7

OP Codes 110-113

1.2.4 Illegal Operation Codes

These op codes are valid only on the KLl O. The message ?KLl 0 ONLY
INSTRUCTION will be printed if an attempt is made to execute them on any
other system.

These op codes are valid on the KIlO or the KLlO. If used on the KA10, the
monitor prints ?KIlO or KLlO INSTRUCTION AT USER n and stops the job.

The eight I/O instructions (e.g., DATAl) and JRST instructions with bit 9 or 10 equal to 1 (e.g., HALT, JEN) are
interpreted by the monitor as illegal instructions (refer to the DECsystem-20 SYSTEM Reference Manual). The job
is stopped and a question mark is printed immediately. A carriage-return/line-feed sequence is performed, followed
by an error message. For example, a DATAl instruction would produce the follOWing:

?
?ILLEGAL INSTRUCTION AT USER addr

1.2.5 Naming Convention for Monitor Symbols
The names of the monitor's data base symbols contain dots or percent signs so that they can be made user·mode
symbols without conflicting with previously-coded user programs. Data symbols can be divided into five classes:

1. numbers
2. masks
3. monitor call names
4. GET TAB arguments
5. error codes

1.2.5.1 Symbols for Numbers - Symbols defining numbers begin with a dot, followed by a 2-letter prefix
indicating the type of number, and end with a 3-character abbreviation representing the specific number. Numbers
are 18-bit quantities and include core addresses and function codes. The following are examples of various numbers:

1-17

.JBxxx

.GTxxx

.RBxxx

User Programming

Job Data Area
GETTAB Table Numbers
Extended arguments for LOOKUP, ENTER, RENAME monitor calls

1.2.5.2 Symbols for Masks - Names for masks start with a 2-letter prefix indicating the individual word, followed
by a dot, and end with 3 characters representing the specific mask. Masks are 36-bit quantities that include bits and
fields. The following are examples of names of masks:

JP.xxx
JW.xxx
PC.xxx

Privilege word bits
WATCH word bits
PC word bits

1.2.5.3 Symbols for Monitor Calls - Names for monitor calls implemented after the 5.03 release of the monitor
are 5 or fewer characters followed by a dot. For example:

PATH.
TRMOP.

The monitor call to modify a directory path
The monitor call to perform terminal operations

1.2.5.4 Symbols for GETTAB Tables - Individual words within a GETTAB table start with a percent sign,
followed by 2 characters representing the generic name of the table, and end with 3 characters identifying the
specific word. For example:

%NSCMX
%CNSTS

CORMAX word in the nonswapping data table
The states word in the configuration table

Names of bytes and bits within a GETT AB table begin with 2 characters representing the word, followed by a
percent sign, and end with 3 characters designating the specific byte.

ST%DSK
ST%SWP

Byte representing the disk system; this is contained in the states word
Byte indicating a swapping system; this is contained in the states word

1.2.5.5 Symbols for Error Codes - Error codes returned because of an monitor call error have names following the
pattern: 2 characters indicating the call name, three characters designating the failure type, and a terminating
percent sign. The following are examples of error code symbols:

DMILF%
RTDIU%
LKNLPL%

DAEMON error code
RTTRP error code
LOCK error code

Many of the values useful in user programming are encoded in the parameter file UUOSYM.MAC (refer to
Appendix J) for the convenience of writing and modifying programs.

1-18

)

)

)

)

2.1 USER PROGRAMS

CHAPTER 2

MEMORY FORMAT

User programs must be loaded into core memory before they can be executed. There are two methods of loading a
user program into core. The simpler method is to load a core image stored on a retrievable device (refer to the RUN
and GET commands in the DECsystem-10 Operating System Commands Manual). The other method is to load a
collection of relocatable binary (.REL) mes using LINK-lO.

The address space of a user program can be divided into two segments, high and low; all user programs must have
at least a low segment. A user program can have one of several me name extensions, depending on its me type and

) how it was stored.
/

,
) ,

)

. EXE The me is an exact copy of the user's core image .

. SAV The me is a low segment me .

.LOW l The me has two segments: a low segment (.LOW) and a high segment (.HGH) .

. HGH J

. LOW}

.sHR
The me has two segments: a low segment and a sharable high segment (.SHR) .

The low segment is always used by one individual program, and each user program has its own low segment.

By default, the monitor will write-protect the high segment, preventing a user from altering it. Any suitably privileged
program can clear the write-protect bit of a high segment. This clearing to modify the write-protect bit is necessary
for debugging the high segment.

A high segment can be shared by any number of jobs that have unique low segments. For instance, if five users have
low segments containing their own FORTRAN user programs, they may share a high segment containing the
FORTRAN compiler. The monitor performs this sharing function automatically; each user believes that he has his own
high segment containing the FORTRAN compiler, and is unaware of sharing the high segment with the others.

Any user job attempting to modify a write-protected high segment will be aborted and will receive an error message.
If the user's job has two segments and he has asked the monitor to clear the high segment's write-protection, his job
will be a two-segment writable job.

All user programs are assembled and loaded as if to execute in an address space starting at location zero in core memory.
However, user programs are never started at location zero, but at the most convenient location in core. All references
to locations made by the user program during its execution are relocated to actual physical core memory addresses.
Relocation is accomplished in different ways, depending on the type of processor in the system.

2.2 MEMORY PROTECTION AND RELOCATION
When a user program is executing, the processor operates in user mode. In this mode, certain operations are illegal
(e.g., I/O instructions), and all address references are relocated. The relocation hardware prevents a user from
accessing any location not assigned to him by the monitor; conversely, the relocation hardware prevents access to
his assigned area by another user.

2-1

I

Memory Format

The user specifies the size of his program; from that information the DECsystem-1O monitor determines the position)
in core memory where his program will reside.

There are three types of processors available with the DECSystem-1O - the KA1O, the KIlO, and the KLlO.
Monitors for the KIlO and KLlO processors are available with the virtual memory option. The methods for relo­
cating user programs into core memory are:

• the KA10 method,
• the KIlO jKLlO method, or
• the KIlOjKLlO with virtual memory method.

Each method determines the core resident size and position of each user's area in a different way. A program running
on a KIlO-based system (or KLlO) with the virtual memory option is upwards compatible with those running on the
KIlO without virtual memory and with those running on the KA10.

2.2.1 The KAIO Processor
With a KA10 processor, the monitor relocates each user program on a per segment basis. The segments of a user pro­
gram (i.e., just a low segment, or both high and low segments) are relocated into core memory, occupying contiguous
blocks of 1024 words each. The relocation is accomplished by protection and relocation registers. Besides relocation,
segment protection is performed by these registers, which prevents one user job from accessing memory assigned to
the monitor or to another user job.

Each segment of a user program has a relocation and a protection address. The relocation address is the absolute core
address of the first location in the segment, as seen by the hardware. The protection address of each segment is the
maximum relative address that the user may reference. The hardware defines both these addresses in units of 1024-
word blocks. Relocation is accomplished dynamically by adding the contents of the appropriate relocation register
to every user address reference.

All physical address locations are invisible to the user, as is the process of relocation. The relative user address and
relocated address configuration on the KA10 are shown in Figure 2-1, where PL, RL, PH, and RH are the protection
and relocation addresses of the low and high segments, respectively. If the low segment is more than half the maximum
capacity (i.e.,PL is greater than or equal to 400000), the high segment will start at the first location after the low
segment ends (i.e., at PL+200000). The high segment is limited to l28K.

o

17
"-

LOW SEGMENT

PL+I777
\

ILLEGAL

, , , , ,
\ \ ~ , x~

\/ \

o
REGISTERS

17

ILLEGAL

RH+400000

HIGH SEGMENT

400000 --~ \, \ .. /
)..--~ ,

~~ \ ,
-~~ \, , ,

RH+PH+1777

PL + 1777

777777

HIGH SEGMENT

ILLEGAL

USER ADDRESS

SPACE BEFORE

RELOCATION

ILLEGAL

RL

LOW SEGMENT ,
RL+ PL+I777

ILLEGAL

TYPICAL ADDRESS

CONFIGURATION AFTER

RELOCATION

Figure 2-1 KA10 User Address Relocation

2-2

)

\
)

)

)

)

)

)
/

)

Memory Format

In summary, the KAlO relocates each segment of a user program into contiguous blocks of core memory. Relocation
and protection are accomplished via the relocation and protection registers. At anyone time during a program's
execution, the entire program is core resident.

2.2.2 The KIlO and KLlO Processors (Without Virtual Memory)
KIlO and KLlO based programs are relocated and protected just as KAlO based programs are; relocation is accomplished
by paging hardware. A KIlO or KLlO processor relocates user programs into core memory in the form of pages. A
page consists of 51210 words, and the maximum possible user address space is 51210 pages (or 256K) of core. A
user program of more than 512 words, when relocated, will consist of several pages.

The pages composing a user program are relocated into core individually. One page's physical placement has no con·
nection with that of' any other page. The monitor maintains a map for translating user addresses into their actual
physical addresses. The map, which is invisible to the user, is kept in a page known as the user process table or the
user map page. The paging hardware in the KIlO and the KLlO employs the user process table to relocate all user
address references. Since all address references must be mapped through the process table, a user program can access
only those physical pages contained in that program's process table. Therefore, the paging hardware provides pro·
tection and relocation capabilities compatible with the KAlO's protection and relocation registers.

The important difference between the KAlO and the KIlO/KLlO (without virtual memory) is that the pages of a
segment do not have to be contiguous on the KIlO/KLlO as they do on the KAlO. All pages forming a program,
however, must be in core whenever that program is executed.

Figure 2·2 illustrates the KIlO/KLlO paging method (without virtual memory).

0
I 0

LDW
SEGMENT

2

3

ILLEGAL

400000
256

257
HIGH

SEGMENT
258

259

ILLEGAL

USER ADDRESS SPACE
BEFORE RELOCATION

I
I
I

'--_____ ~I 17777777

TYPICAL PHYSICAL
ADDRESS CONFIGURATION
AFTER RELOCATION

Figure 2·2 KIlO/KLlO Paging Configuration (Without Virtual Memory)

2·3

Memory Format

2.2.3 KIt 0 and KLl 0 Processors With the Virtual Memory Option
The virtual memory option of the 6.01 and 6.02 monitors makes further use of the KIlO/KUO's paging hardware.
The pages of a user program are relocated individually, but not all pages need reside in core memory during execu­
tion. Some pages may be in core and the rest in secondary storage (i.e., disk or drum). Therefore, the virtual memory
option makes it possible to run programs that are significantly larger than the physical core memory available for
their execution.

Assume that user A has a 50-page program but core memory has only 20 pages blank. With the virtual memory
option, the monitor can swap into core several of user A's pages, while keeping the rest on a secondary storage
device. When one of the stored pages is referenced, it is brought into core while another page is swapped out to
make room for it.

Deciding which pages are initially swapped to core and which pages are swapped into secondary storage is a function
of the page fault handler. The page fault handler also decides which page will be swapped into secondary storage
to make room in core for a new page. A user may create his own page fault handler; ifhe does not, the system
default page fault handler will be used.

For more information concerning the page fault handler and virtual memory, refer to Chapter 4 and to GUIDES
TO VIRTUAL MEMORY.

Using virtual memory is a privilege granted (or denied) by the system administrator at each installation. There­
fore, not all users at an installation may utilize the virtual memory features, if the system administrator so chooses.

2.2.3.1 Virtual Memory Organization - Virtual memory permits a program to reference an address space that
is larger than the actual physical core occupied during that program's execution. Programs running on a Vlftll:aJ.

memory system need no modifications from the same programs running on non-virtual memory systems. It is pos­
sible with the virtual memory option to execute very large programs (e.g., BLISS-lO programs) on small systems.

For efficiency and rapid response, the monitor is always core resident. High segments can be paged or shared,
but not both. A sharable high segment must be completely core resident during its execution.

Not all programs utilize virtual memory during their execution. If a user is authorized to employ the virtual memory
feature, his program will go virtual only when one of the following events occurs:

1. The program exceeds the user's physical core limit when he issues a GET or RUN command.
2. The program uses the CORE monitor call (or command) to expand the program's memory

beyond the user's physical core limit; subsequently, the program references one of the newly
created pages.

3. The program assumes direct control ofits memory management with the PAGE. monitor call.

Figure 2-3 illustrates the limits imposed on a virtual memory system.

Figure 2-3 uses several abbreviations, which are described in Table 2-1.

At the moment a job's current physical page count becomes greater than its physical page limit, i.e.,

CPPC> CPPL

that job will go virtual. A user with virtual memory privileges can control how much of his job will be core
resident at any time. If a user lowers a program's physical page limit to fewer than the number of pages within
the program, he will force the program to use virtual memory. A user controls the current physical page limit via
the SET PHYSICAL LIMIT command and the current virtual page limit via the SET VIRTUAL LIMIT command.

2-4

')

)

CPPC

CPPL

MPPL

OJ GPPL

256K

)
Abbreviation

GPPL

GVPL

) MPPL

CPPL

CPPC -,

CVPL

~

CVPC

)

o

f--------

PHYSICAL
LIMITS

Memory Format

~ ET BY PA
LT HAN

GE

/FAI
ILER

US

AD

SETBY
ER PROG lAM

SET BY
USER

SET BY
SYSTEM

MINISTRA TOR

~ SET BY
SYSTEM

MINISTRA AD
TOR\

o

VIRTUAL
LIMITS

CVPC

CVPL

MVPL

256K

GVPL

Figure 2-3 Physical and Virtual Page Limits

Table 2-1
VM Abbreviations

Meaning

The global physical page limit set by the system
administrator using a privileged SETUUO.

The global virtual page limit set by the system ad-
ministrator using a privileged SETUUO.

The maximum physical page limit set by the system
administrator using a privileged SETUUO.

The current physical page limit which can be set by
each user via the SET PHYSICAL LIMIT command
or an unprivileged SETUUO.

The current physical page count established by the
user program or by the page fault handler.

The current virtual page limit set by the user via
the SET VIRTUAL LIMIT command or an unprivileged
SETUUO.

The current virtual page count established by the user
program.

2-5

Memory Format

The system administrator establishes a maximum virtual page limit (MVPL) for each user, a maximum physical
limit for all users (GPPL), and a combined virtual limit that applies to the total amount of virtual memory (i.e.,
secondary storage) in use by all virtual memory users (GVPL). These limits are set by LOGIN using the privileged
functions of the SETUUO.

2-6

)

.'"

)

,,-.

')

~

)

)

)

)

3.1 JOBDAT (JOB DATA AREA)

CHAPTER 3

JOB DATA AREA

The first 140 octal locations in the user's core area are allocated to the Job Data Area. The locations within this area
are given mnemonic assignments, where the first three characters are always .JB.

The function of the Job Data Area is to store information of interest to the monitor and to the user. Some loca­
tions within the Job Data Area, such as .JBSA and .JBDDT, are set by the user's program for use by the monitor.
Other locations, such as .JBREL, are set by the monitor for use by the user's program. .

The JOBDAT locations that are of Significant importance to the user are listed in Table 3-1. The JOBDAT loca­
tions that are not listed within this table are those used by the monitor and those unused at the present time.
User programs should not be written to reference any location in the Job Data Area that is not described in Table
3-1.

JOBDAT is loaded automatically (when needed) during LINK-lO's library search for undefined global references;
the values are assigned to the mnemonics at this time also. JOBDAT exists as a .REL fIle on device SYS: so that
it may be loaded with the user programs that symbolically refers to locations within it. When a user program refers
to a JOBDAT location, the location's assigned mnemonic should be used. The mnemonic must first be declared as
an EXTERNal reference to the assembler (refer to the MACRO-IO Programmer's Reference Manual). All mnemonics
beginning with the characters .JB within this manual refer to locations within the Job Data Area (JOBDAT).

Mnemonic LocatioJ!

.JBUUO 40

.JB41 41

.JBERR 42

.JBREL 44

Table 3-1
Job Data Area Locations

(for user program reference)

Description

User's location 40 which is used by the hardware, when processing
user monitor calls (001 through 037), for storing the op code and
the effective address.

This instruction is executed to start the user's programmed operator
service routine (usually this is a JSR or a PUSHJ).

Left Half: Reserved.

Right Half: The accumulated error count from one system
program to the next. System programs should be
written to look at the right half of this location
only.

Left Half: Zero.

Right Half: The highest relative core location available to the
user (i.e., the contents of the memory protection
register when this user program is executing).

3-1

Mnemonic Location8

.JBDDT 74

. JBPFI 114

.JBHRL 115

. JBSYM 116

\

.JBUSY 117

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations

(for user program reference)

Description

Left Half: The last address of DDT.

Right Half: The starting address of DDT. If the contents
of .JBDDT are zero, it indicates that DDT has
not been loaded. If the monitor includes the virtual
memory option and thisJocation contains zero,
the monitor will attempt to read into core
SYS:DDT.VMX when the user executes a DDT
command (refer to the DECsystem-10 Operating
System Commands Manual). If successful,
SYS:DDT.VMX is brought into the program's
virtual address space, starting at the user virtual
address 700000. The left and right halves of
.JBDDT will then be set to the appropriate
values.

All user I/O references must be to locations greater than 114 .

Left Half: The first relative free location in the high segment
(relative to the high segment origin, so it is the same
as the high segment length). This location is set by
LINK·lO and on subsequent GETs, even if there is
no fIle to initialize the low segment. The left half
is a relative quantity because the high segment can
appear at different user origins at the ,same time.
The SA VB command uses this value to determine
how much to write from the high segment.

Right Half: The highest legal address in the high segment. This
value is set by the monitor each time a user program
begins execution or executes a CORE or REMAP
monitor call .. JBHGA allows this value to be any non-
zero value. The proper way to test if a high segment
exists is to test this half-word for a non-zero value .

A pointer to the symbol table created by LINK-lO.

Left Half: The negative ofthe length of the sYmbol table.

Right Half: The lowest address used by the symbol table.

A pointer to the table of undefined symbols created by LINK-lO
or defined by DDT. If .JBUSY contains a value greater than or equal
to zero, there are no undefined symbols.

Left Half: The negative of the length of the undefmed symbol
table.

3-2

)

)

)

)

)

Mnemonic Location8

.JBSA 120

.JBFF 121

.JBPFH 123

)

. JBREN 124

. JBAPR 125

.JBCNI 126

.JBTPC 127

'--

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations

(for user program reference)

Description

Right Half: The lowest address used by the undefined symbol
table.

Left Half: The first free location in the low segment, which is
set by LINK-1O.

Right Half: The starting address of the user's program.

Left Half: Zero.

Right Half: The address of the first free location following the
low segment. This value is set to the contents of
.JBSA (left half) each time a RESET monitor call
is executed.

Left Half: The last address of the page fault handler.

Right Half: The starting address of the page fault handler. If the
contents of .JBPFH are zero, the user program does not
currently have its own page fault handler. When a
page fault occurs, the monitor will read in
SYS:PFH.VMX to the top of the user program's
virtual address space; the left and right halves of
.JBPFH will be set accordingly.

Left Half: Unused .

Right Half: The REENTER start address. This value is set by the
user program or by LINK-1O, and it is used when the
REENTER command is executed as an alternate entry
point.

Left Half: Zero .

Right Half: This value is set by the user program as a trap address
when the user is enabled to handle APR traps (such
as illegal memory references, push-down list overflows).
Refer to the APRENB monitor call description,
Chapter 5.

The state of the APR as stored by a CONI APR when a user-
enabled APR trap occurs.

The PC of the next instruction to be executed after a user-enabled
APR trap occurs. This value is set by the monitor.

3-3

Mnemonic Locationg

.JBOPC 130

.JBOVL 131

.JBCOR 133

.JBINT 134

.JBOPS 135

. JBCST 136

.JBVER 137

-- -- ---- ---

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations

(for user program reference)

Description

The previous contents of the job's last user mode program counter
(PC). This value is set by the monitor each time a DDT, REENTER,
START, or CSTART command is executed. Location .JBOPC con-
tains the address of the HALT instruction, when the user program
contains a HALT instruction followed by the execution of a
START,DDT, CSTART, or REENTER command. In order to pro-
cess at the address specified by the effective address, the user
program must recompute the effective address of the HALT instruc-
tion and use that address to start. Similarly, after an error has occur-
red during execution of a monitor call followed by a START, DDT,
CSTART, or REENTER command, .JBOPC will point to the address
of the monitor call.

Left Half: Zero .

Right Half: A pointer to the header block for the root link.

Left Half: The highest location in the low segment loaded with
a non-zero. If .JBCOR is less than 140, a low seg-
ment file will not be written when a SAVE or
SSA VE command is executed. This value is set by
LINK-lO.

Right Half: The user specified argument on the last execution
of a SAVE or GET command. This value is set by
the monitor.

Left Half: Reserved for the future .

Right Half: Zero or the address of the error-intercepting block.

Reserved for all object-time systems.

Reserved for customers .

The program version number; its bit definitions are:

Bits 0-2 =0 indicates that the Digital development group last
modified the program.

=1 indicates that other Digital employees last modi-
fied the program.

=2} =3 indicates that a customer last modified the program.
=4

3-4

')

~,

'>

)

l
/

)

)

)

)

)

)

~\'

Mnemonic Location8

.1BDA 140

3.2 VESTIGIAL JOB DATA AREA

Job Data Area

Table 3-1 (Cont.)
Job Data Area Locations

(for nser program reference)

Description

=S} =6 indicates that a customer's user last modified
=7 the program.

Bits 3-11 Digital's latest major revision number, which is
usually incremented by 1 after a release.

Bits 12-17 Digital's minor version number, which is usually 0,
but may be > 0 if an update is needed to a program
after work has started on the next major release.

Bits 18-35 The edit number, which is increased by 1 after each
edit. This value not reset.

The VERSION and the SET WATCH VERSION commands output
the version number in the standard format, refer to the DECsystem-lO
Operating System Commands Manual.

The firstlocation available to the user.
-

Some constants in the job data area may be loaded by a two-segment, one-file program without executing a GET
command, and some locations are loaded by the monitor when a GET command is executed. The vestigial Job
Data Area (the first ten (octal) locations of the high segment) is reserVed for these low-segment constants. There­
fore, a high segment program is loaded at the high segment origin+ 10 (refer to .JBHGA in Table 3-2) instead of
at the high segment origin (refer to Table 3-1). By placing the vestigial job data area within the high segment,
LINK-lO automatically loads the constant data into the Job Data Area without requiring a low segment file when
executing a GET or RUN command, or a RUN monitor call. The SAVE command writes a .LOW fIle for a two­
segment program only if the left half of .1BCOR is 140(8) or greater (refer to Table 3-1).

3-5

I

Job Data Area

Table 3-2
Vestigial Job Data Area Locations)

Mnemonic Location8 Description

.JBHSA 0
8

A copy of .JBSA (location 120) in Table 3-1).

.JBH41 1 A copy of .JB41 (location 41 8) in Table 3-1).

.JBHCR 2 A copy of .JBCOR (location 1338 in Table 3-1).

.JBHRN 3 Left Half: Restores the left half of .JBHRL (location 1158

in Table 3-1).

Right Half: Restores the right half of .JBREN (location 124 8 in
Table 3-1).

.JBHVR 4 A copy of .JBVER (refer to Table 3-1, location 137 for the bit)
definitions).

'JBHNM 5 The high segment name which was set on the execution of a SAVE
command.

.JBHSM 6 A pointer to the high segment symbols, if there are any .

. JBHGA 7 Bits 0-9 indicate the high segment origin. The monitor places the
high segment at location 400000 8 or if the segment is larger than
128K, at the first available page boundary (lK on KAlO systems))
above the low segment. This nine-bit b_yte should always be zero on
KAlO systems. However, if the field is non-zero on KIlO or KLlO
systems, it is taken as the page where the high segment is to start.
This value is set by LINK-lO. Bits 10-35 are unused fields that are
reserved for future expansion and must contain zero .

. JBHDA 10 The rust location not used by the vestigial Job Data Area.
I

1
Relative to the origin of the high segment, usually .JBHGH = 4000008.

)
------------ ----------- --------- -------

-"

)

3-6

4.1 JOB CONTROL

4.1.1 Start Program Execution

CHAPTER 4

JOB CONTROL AND INFORMATION

One user program may start the execution of another by either the RUN or the GETSEG monitor call (refer to
sections 5.2.3 and 5.2.4). A user may start the execution of a user program with any of the following operating
system commands:

1. R
2. RUN
3. START
4. CSTART
5. CaNT
6. CCONT
7. REENTER

Refer to the DECsystem-l a Operating System Commands Manual for specific information concerning these com­
mands. The user program's start address can be the argument of a command, or it can be stored in the program's
Job Data Area.

4.1.2 Stop Program Execution
A running program may be stopped in several ways:

1. The user can type one CTRL!C from his terminal if his program is in TTY input wait state (TI);
otherwise, he needs two CTRL!Cs to stop his program from the terminal.

2. The program contains a monitor detected error.
3. The program can execute one of the following monitor calls:

HALT see paragraph 4.1.2.1
EXIT function, see paragraph 4.1.2.3
LOGOUT ac, see paragraph 4.1.2.3

4.1.2.1 The HALT Instruction - The HALT instruction is an exception to the illegal instructions rule (refer to
section 1.1.1). HALT traps. to the monitor, stops the current job, and prints at the user terminal

?HALT AT USER PC addr

where: addr is the location of the HALT instruction.

If the HALT instruction is in location 41 and the program executes a user call (op-codes 001 through 037), the
address in the error message will be that of the user call instead of address 41.

To continue the program at the effective address of the HALT instruction (provided that the effective address
does not equal zero), the user can issue either the CaNT or CCONT command from his terminal. After a user pro­
gram executes a HALT instruction followed by either a START, DDT, CSTART, or REENTER command, location

4-1

I

Job Control and Information

.JBOPC in the Job Data Area will contain the address of the HALT instruction. To continue from the effective
address specified, the user or the user's program must recompute the effective address of the HALT instruction.
HALT should not be used to terminate the execution of a program; its main use is to indicate possible error
conditions.

4.1.2.2 The EXIT Monitor Call (CALLI 12) - The EXIT monitor call will stop ajob (with optional RESET). Its
calling sequence is

EXIT function,
return on a continue ; if function = 1

where: function is either 1 or O. A I stops the job; a 0 performs a RESET.

The EXIT Monitor call performs the following functions:

1. All I/O devices (including real-time devices) are RELEASED.
2. The job is unlocked from core.
3. The user mode write-protect bit for the high segment is set.
4. The APR traps are reset to zero.
5. The PC flags are cleared.
6. The job is stopped.

If timesharing was stopped by a TRPSET monitor call, it is resumed. After releasing all devices that close mes, a
RESET is performed. A carriage return/line feed sequence is performed, and the word EXIT is printed at the user's
terminal, which is left in monitor mode. The CONT and CCONT commands will not continue the recently stopped
user program.

When the function specified is 1, the job is stopped, and a return is made to monitor mode. The CONT or CCONT
commands can be used to continue the program's execution. In other words, this form of the EXIT monitor call
does not affect the state of the job except to stop it and return the user's terminal to monitor mode. Note that pro­
grams using EXIT with a function code of 1 (MONRT.) should RELEASE all devices first.

4.1.2.3 The LOGOUT Monitor Call (CALLI 17) - The LOGOUT monitor call is used by the LOGOUT program to
release all I/O devices associated with the job and to return them to the monitor pool along with the job's allocated
core and job number. If a program other than LOGOUT uses this monitor call, the LOGOUT call functions identi­
cally to EXIT (function 0).

4.1.3 Suspend the Execution Of A Job
There are two monitor calls that can suspend the execution of ajob. The SLEEP monitor call suspends execution
for a specified amount oftime; the HIBERnate monitor call suspends execution until a specified event occurs.

4.1.3.1 The SLEEP Monitor Call (CALLI 31) - The SLEEP monitor call allows a user program to stop or "sleep"
for a specified number of seconds. Its .calling sequence is

MOVEI ac, seconds
SLEEP ac,
only return

where: seconds is the number of seconds the job is to sleep.

SLEEP will temporarily stop a job and continue it automatically after the specified number of real-time seconds has
elapsed. If the SLEEP monitor call is issued with a zero argument, the job will sleep for one clock tick. The explicit
maximum is approximately 68 seconds (82 seconds in 50-Hz. countries and on the KLlO using 50-Hz.). A program

4-2

)

)

)

)

;-

r

)

~

)

Job Control and Information

that requires a SLEEP time longer than 68 seconds should call DAEMON (via the .CLOCK function) to put it to
sleep (refer to DAEMON in section 4.4.3). After invoking DAEMON, the program can use the HIBERnate monitor
call with no clock request and DAEMON will awaken the job.

4.1.3.2 The HIBERnate Monitor Call (CALLI 72) - The HIBERnate monitor call stops the current job until a
specified event occurs. Its calling sequence is

MOVSI ac, bits
HRRI ac, sleep time
HIBER ac,

error return
normal return

where: bits specifies one or more HIBERnate conditions, as listed in Table 4-1.

sleep time is the number of milliseconds for which the current job is to sleep. This value is rounded up
to an even multiple of jiffies (with a maximum value of 68 seconds). A 0 specifies an infinite sleep
time (Le., no clock request).

If the HIBERnate monitor call has not been implemented in the current system, the error return is taken; under this
circumstance, the SLEEP monitor call can be used.

The normal return is taken after an enabled HIBERnate condition occurs.

To prevent a job from oversleeping and missing an event, the monitor sets the wakeup bit (even if the event occurs
while the job is awake). Another HIBERnate monitor call will clear the wakeup bit. A job issuing a monitor call
should test all events that may have caused it to wakeup; however, the job cannot assume that anyone of the events
actually happened.

Privileged jobs (those running with the JACCT bit set or those logged in under [1,2]) can be written to wake any
HIBERnating job.

A RESET monitor call always clears the job's protection code and wake-enable bit. Until the first HIBERnate mon­
itor call, therefore, there is no protection against wakeup commands from other jobs. To guarantee such protection,
the calling job should execute aWAKE monitor call on itself followed by a HIBERnate monitor call with the desired
protection codes. The WAKE call ensures that the first HIBERnate call takes the normal return immediately, which
leaves the job with the correct protection code. Note that a correctly written program wi1lnot fail if it was
AWAKEned for no apparent reason.

4.1.3.3 The WAKE Monitor Call (CALLI 73) - The WAKE monitor call allows one job to activate a dormant job
when some event occurs. Its calling sequence is

MOVEI ac, job number
WAKE ac,

error return
normal return

where: job number is the number of the job to be awakened. (The number -1 indicates the calling job.)

Real-time process control jobs can cause other process control jobs to run in response to a specific alarm condition.
WAKE can be called from an RTTRP job running at interrupt level, thereby allowing a real-time job to wake its back­
ground portion quickly to respond to some real-time condition. (Refer to the RTTRP monitor call for restrictions
on accumulators when using the call at interrupt level.)

4-3

Bit Mnemonic

0 HB,SWP
,

10 HB.IPC

11

12 HB.RPT

13 HB.RTL

14 HB.RTC

15 HB.RWT

16 HB.RWP

17 HB.RWI

Job Control and Information

Table 4-1
HIBERnate Conditions

Meaning

Job will be swapped out immediately.

The job will be awakened on the delivery of an IPCF packet to an input
queue.

The job will be awakened when asynchronous I/O is finished.

The job will be awakened when PTY activity occurs since the last
HIBERnate.

The job will be awakened when a line of input is ready.

The job will be awakened when a character is ready.

The calling job and the HIBERnating job must have the same project
number (a WAKE protection code).

The calling job and the HIBERnating job must have the same pro-
grammer number (a WAKE protection code).

The HIBERnating job can be awakened only by itself.

If the calling job does not have the appropriate privileges, the error return will be taken. If any of the enabled con­
ditions specified in the last HIBERnate monitor call occur, the wake bit is set for that job. A wake bit is associated
with each job. At the next HIBERnate call, the wake bit is cleared and the call returns immediately. The wake bit
eliminates the problem of a job's oversleeping a WAKE condition.

On a normal return, the referenced job will be awake and start at the return location of the HIBERnate that caused
the job to become dormant.

4.2 SET OR OBTAIN JOB INFORMATION

I

There are several monitor calls that can obtain and set system/job information. The user can set the current pro­
gram's name and set various system/job parameters (like the time between virtual time traps). He can change a job's
current logical node/station number, or obtain its accumulated run time,job number, or project-programmer
number.

4.2.1 Set The Program Name
The SETNAM monitor call (CALLI 43) allows the user program to set the program name used in the Job Data
Area. The calling sequence for SETNAM is

MOVE ac, [SIXBIT/name /l
SETNAM ac,
only return

where: name is a left-justified SIXBIT program name.

SETNAM stores the specified program name in the monitor job table, which is used by the SYSTAT system pro­
gram. SETNAM performs several addition functions: it clears the SYS; program bit (JB.LSY, which is used by
Batch); it clears the execute-only and JACCT bits; and it causes a version typeout to occur on the user's terminal if
version watching has been enabled by the SET WATCH VERSION command (refer to the DECsystem-lO Operating
System Commands Manual).

44

)

)

)

)

')

)

)

)

Job Control and Information

4.2.2 Set System/Job Parameters
The SETUUO monitor call (CALLI 75) allows the user program to set various system and/or job parameters. To
set system parameters, the calling program must be running with the JACCT bit set in the privilege word, or the
job must be running under [1,2]. The calling sequence for SETUUO is

MOVE ac, [XWD function, arg]
SETUUO ac,

error return
normal return

where: function is one of the SETUUO function codes listed in Table 4-2.

arg is the argument needed for the specified function. The arguments are also listed in Table 4-2.

The error return is taken if one of the following conditions occurs:

1. The monitor call has not been implemented.
2. The user is not suitably privileged for the function specified.
3. The argument is invalid.

Code Mnemonic

0 .STCMXl

1 .STCMN1

2 .STDAyl

3 . STSCH1

4 .STCDR

IThis is a privileged function.

Table 4-2
SETUUO Functions

Argument

The largest size that any job may assume (Le., the sum of the high
segment and low segment). The minimum value is,10K unless changed
via MONGEN at monitor generation time. The maximum value is the
size of user (non-monitor) core. (This value is known as CORMAX.)

The guaranteed amount of contiguous core that a single unlocked job
may assume. The minimum value is 0; the maximum value is the value
of CORMAX. (This value is known as CORMIN.)

A decimal number (in the range 0-2359) representing the DAYTIME
(Le., time is computed using a 24-hour clock, hours * 100 + minutes) .

An octal argument stored in the right half of the STATES word in
COMMON.

0 regular timesharing

1 no further LOGINS are allowed (except from CTy)

2 no further LOGINs from remote terminals, data sets are not
answered

4 no further LOGINs are allowed (except for Batchjobs)

10 the system is running stand-alone

100 device mounts without operator intervention are allowed

200 unspooling is allowed

400 no operator coverage

The input name for this job. This value (3-SIXBIT characters) will be
stored in the left half of .STSPL.

4-5

Code Mnemonic

5 .STSPL2

6 .STWTC

7 .sTDATl

10 .STOPRI

11 . STKSyl

12 . STCLM1

13 .sTTLMl

14 . STCPU

15 .STCRNI

Job Control and Information

Table 4-2 (Cont.)
SETUUO Functions

Argument

The bits are 31-35 of .STSPL:

Bit Mnemonic Meaning

35 JS.PLP LPT spooling

34 JS.PPL PLT spooling

33 JS.PPT PTP spooling

32 JS.PCP CDP spooling

31 JS.PCR CDR spooling

Bits are 18-23 of -STWCH:

Bit Mnemonic Meaning

19 ST.WDY Watch daytime at start.

20 ST.WRN Watch run time.

21 ST.WWT Watch wait time.

22 ST.WDR Watch disk reads.

23 ST.WDW Watch disk writes

24 ST.WVR Watch versions.

25 ST.WMT Watch MTA Statistics

The decimal number of days since January 1,1964. (DATE = «year -
1964) * 12 + (month - 1) * 31 + day = 1))

The address of the word which contains the SIXBIT physical name of the
TTY to be used as the Operator terminal .

The decimal number of minutes until timesharing ceases. If 0, time-
sharing is not to be stopped (This value is known as KSYS) .

The maximum amount of core (in words) for the job. This value is
stored in bits 1-9 (JB.LCR) of .GTLIM(units of 512-word pages) .

The job's time limit in seconds.

The CPU specification for this job .

Bit Mnemonic CPU

35 SP.CRO CPUO

34 SP.CR1 CPUl

33 SP.CR2 CPU2

32 SP.CR3 CPU3

31 SP.CR4 CPU4

30 SP.CR5 CPU5

Bits which indicate a CPU's runnability. If bit 35 = 1, CPUO is runnable.
If bit 34 = 1, CPUI is runnable, and so on.

I This is a privileged function.
2This is not a privileged function unless the user is un spooling devices.

- --- -------------------

4-6

)

)

)

)

)

)

"'

"'

)

)

"

Code Mnemonic

16 .STLMX1

17 .STBMX1

20 . STBMN1

21 . STDFL2

22 . STMVM1

23 . STMVRI

Job Control and Information

Table 4-2 (Cont.)
SETUUO Functions

Argument

The maximum number of jobs allowed to be logged in at anyone time.
The maximum value for this symbol is JOBN, which is the system limit
specified at monitor generation time via MONGEN. The minimum value
is 1. If LOGMAX is a value smaller than the number of jobs currently
logged in, no new jobs are allowed to LOGIN until enough current jobs
LOGOUT to get the system below LOGMAX. The number of jobs cur-
rently logged in (referred to as LOGNUM) can be obtained from the
GETT AB table .GTCNF, item number S4 (%CNLOG). (This value is
referred to as LOGMAX.)

The maximum number of Batch jobs that are allowed to be logged-in con-
currently (BATMAX). The maximum value is the smaller of either the
BATCON limit of 14 or the system limit of JOBN. The initial value is 14.
The number of jobs currently logged-in (BATNUM) can be obtained from
the GETTAB table .GTCNF, Item Number SS (%CNBAT) .

The number of jobs guaranteed for batch jobs (BATMIN). The maximum
value is either the BATCON limit of 14 or the value of JOBN-l (one job
must be reserved for BATCON), whichever is smaller. The initial value
is O. Therefore, the maximum number of non-Batch jobs is JOBN minus
BATMIN .

DSKFUL for this job. An argument of 0 (.DFPSE) causes a pause and an
argument of 1 (.DFERR) causes an error when the disk is full or the user's
quota is exceeded. The current setting can be obtained by using an argu-
ment other than 0 or 1. The value returned in the AC is either 0 or 1
depending on whether PAUSE or ERROR is set. The initial setting is
ERROR .

The system-wide virtual memory limit. The value returned on a normal
return is dependent on the value of the call's argument. The returned
value will be either:

1. The total amount of virtual memory in use by VM users, if the
current argument is less than the current virtual memory page
count.

2. The total amount of available swapping space, if the argument
is greater than the current available swapping space.

3. The call's argument, if the argument is greater than the total
amount of virtual memory currently in use .

The address of the word that contains either the SYSTEM or the JOB
designation and the virtual memory page fault rate.

Left half = 0:

Set the system-wide page fault rate to RATE.

Left Half = 1:

Set the per-job page fault rate for this job to RATE.

Right Half = RATE:

The number of page faults per CPU second.

IThis is a privileged function.
2This is not a privileged function unless the user is unspooling devices.

4·7

,

I

I

Code Mnemonic

24 .STUVM1

25 .STCVM2

26 .STTVM

27 .sTABK

30 . STPGM

31 . STDER

Job Control and Information

Table 4-2 (Cont.)
SETUUO Functions

Argument

The address of the word that contains the maximum virtual memory page
limit and the maximum physical page limit.

Left half = maximum virtual page limit.

Right half = maximum physical page limit.

If the left half of the word contains zero, the user cannot utilize the
virtual memory option. If the right half of the word contains zero, all
of core is indicated.

The user's current virtual memory maximum, which is stored in a word
with the format:

Right half = current virtual page guideline

Left half = current virtual page limit

If either the left half or the right half is zero, the current value is unchanged.
If bit 18 = 1, bits 19 -25 contain the guideline.

The time interval between virtual time traps in milliseconds. This type of
trap causes a code 5 page fault to the page fault handler each time the time
interval has elapsed.

The address break condition. On a normal return, the new address break
condition and the break address will have been set. Address conditions are:

° Break on EXECUTE

1 Break on READ

2 Break on WRITE

3 Break on the execution of a monitor call

Bits 9-17 contain a quantity that specifies the number of times the break
address is to be referenced before the interrupt occurs.

Bits 18-35 contain the break address.

Note that if bits 0, 1,2, and 3 are equal to 0, the address break is cleared.
If the user is enabled for address break interrupts, the software interrupt
system will interrupt when an address break occurs.

Set the program to run .

Set deferred spooling .

lThis is a privileged function.
2This is not a privileged function unless the user is unspooling devices.

4.2.3 Set The Logical Node
A user program (via LOCATE, CALLI 62) can change a current job's logical node number. The calling sequence
for the LOCATE monitor call is

MOVE
MOVEI

ac, [SIXBIT /node-name /]
ac, station-number

LOCATE ac,
error return

normal return

4-8

)

I
I
!

,

I

!

I)

I

I

')

I

I
I

I

)

I

I

)

)

)

)

Job Control and Information

where: node-number can be one of the following:

-1 Changes the job's location to the physical node of the job's terminal.

o changes the job's location to that of the central station.

n changes the job's location to node number n.

The normal return is taken when the node number or name has been defined and the node is in contact with the
central site. Subsequent generic device specifications are associated with the new node number/name.

The error return is taken if

1. The monitor call has not been implemented.
2. An illegal node number was specified.
3. Or, the node specified was not in contact.

For more information about remote operation, refer to future editions of the REMOTE STATION USER'S GUIDE.

4.2.4 Obtain Run Time
The RUNTIME monitor call (CALLI 27) can be used to obtain a specified job's accumulated run time. The calling
sequence for RUNTIME is

MOVEI ac, job-number
RUNTIME ac,
only return

where: job-number is the number of the job whose accumulated run time is requested. A job-number of
o returns the current job's run time.

On a return, the accumulated run time (in milliseconds) is returned as a right-justified quantity in the AC. If the
specified job number does not exist, 0 is returned in the AC.

4.2.5 Obtain The Job Number Of The Calling Job
The PIOB monitor call (CALLI 30) obtains the number of the calling job. PIOB's calling sequence is

PJOB ac,
only return

On a return, the job number of the calling job is returned right-justified in the AC.

4.2.6 Obtain The Project-programmer Number Of The Calling lob
The GETPPN monitor call (CALLI 24) obtains the project-programmer number associated with the calling job. Its
calling sequence is

GETPPN ac,
normal return

alternate return

On both a normal return and an alternate return, the project number is returned in the left half of the AC; the
programmer number is returned in the right half.

The alternate (skip) return is taken if the calling program is running with the lACCT bit set, and the project­
programmer number is associated with another logged-in job.

4-9

Job Control and Information

4.2.7 The OTHUSR Monitor Call (CALLI 77)
The OTHUSR monitor call helps the user program determine if its project-programmer number is logged-in for one
or more other jobs, OTHUSR's calling sequence is

OTHUSR ac,
normal return
alternate return

On a return, the specified AC will contain the project-programmer number of the job executing the OTHUSR moni­
tor call. The call has two return points: normal return (non-skip) and alternate (skip) return. The normal return
is taken if one of the following occurs.

1. The monitor call has not been implemented, in which case the AC remains unchanged.
2. The monitor call is implemented and no other job is logged-in with the same project-programmer

number, in which case the AC contains the calling job's project-programmer number.

The skip return is taken only if the monitor call is implemented, and one or more other jobs are logged-in with the
same project-programmer number as that of the calling job. OTHUSR is utilized by KJOB.

4.3 TIMING INFORMATION
There are three methods of generating timing information: the APR clock (KA10/KIlO), the DKIO (internal
accounting clocks) (KAI O/KIl 0), and internal clocks (EBOX,MBOX on the KLlO).

The APR clock, driven by the power source frequency (60 Hz. in North America, 50 Hz. in most other countries),
is accurate over long periods of time. For this reason, it is used to keep the time of day (e.g., for the TIMER call).
This clock can also account for the processor time used by each job. In this application, however, the APR clock
loses some accuracy, because its tick is often longer than a job's run time period.

The DKIO clock (1 OOK~Hz.) is accurate over short periods of time. If it is present in the system, it can be used to
account for processor run time instead of the APR clock. The DK10 clock, however, is more accurate than the
APR clock.

On the KLlO processor, user run time is computed utilizing internal clocks which use the EBOX/MBOX time
accounting counts instructions executed and memory references very accurately.

With all of these clocks, monitor overhead can optionally be included in the run time statistics for the current job.
This parameter is set during Monitor Generation Time via MONGEN. Monitor overhead is the CPU time spent in
taks like clock queue processing, command decoding, core shuffling, swapping, and scheduling.

The traditional DECsystem-lO date (which can be obtained via the DATE monitor call) is a IS-bit integer. This
integer is incremented by 1 each day, by 31 each month (regardless of the actual number of days in the month), and
by 12 * 31 each year (regardless of the actual number of days in the year). The date format is easily resolved into
the year-month-day format; however, the difference between two dates in this format is not necessarily the actual
number of days between the two.

For convenience, the local (host computer) time can be converted to a universal date-tim£! standard, where the
word's left half is the day, and its right half is the time. This day is uniformly incremented at midnight, with 1 equal
to November 18, 1858. The November date is used for consistency with the Smithsonian Astronomical Date
Standard and other computer installations and systems. (Refer to GETTAB Table Number 11, Item Number 64.)

The time is specified as a fraction of the day, allowing the 36-bit value to be in units of days, with a binary point
between the right and left halves of the word. The resolution is approximately one-third of a second (Le., the least
significant bit (bit 35) represents approximately one-third of a second).

4-10

)

)

)

)

"}

)

Job Control and Information

The monitor maintains a set of GETTAB values which give the local date and time in terms of year, month, day,
hours, minutes, and seconds. (Refer to GETTAB Table Number 11, Items 56 through 63.)

4.3.1 The DATE Monitor Call (CALLI 14)
The DATE monitor call returns the current date. Its calling sequence is

DATE ac,
only return

The current date will be returned in the AC as a right-justified IS-bit integer. This date is computed using the
formula

((((year - 1964) * 12) + (month = 1) * 31 + (day - 1))) = date

where: January 1, 1964 is the base date.

4.3.2 The MSTIME Monitor Call (CALLI 23)
The MSTIME monitor call returns the current time of day. Its calling sequence is

MSTIME ac,
only return

The time is returned in the AC (in milliseconds) as a right-justified binary integer.

4.3.3 The TIMER Monitor Call (CALLI 22)
The TIMER monitor call returns the day time in jiffies, right-justified in the AC. Its calling sequence is

TIMER ac,
only return

A jiffy is 1/60 of a second (16.2 milliseconds) for 60-cycle power and 1/50 of a second (20 milliseconds) for 50-
cycle power. MSTIME should normally be used so that the time is not a function of the power.

4.4 CONFIGURATION INFORMATION

4.4.1 The SWITCH Monitor Call (CALLI 20)
The SWITCH monitor call returns the contents of the central processor data switches in the specified AC; its calling
sequence is

SWITCH ac,
only return

Users should issue this call with cau.tion because the data switches are an allocated resource and are always available I
to all users. This call is meaningful only for KAlO and KIl 0 systems, since the KLl 0 has no data switches.

4.4.2 The LIGHTS Monitor Call (CALLI -1)
The LIGHTS monitor call displays the contents of the AC in the console lights. The calling sequence is

LIGHTS ac,
only return

This monitor call is meaningful only for KA10 and KIlO systems, because the KLlO has no console lights.

4-11

I

Job Control and Information

4.4.3 The DAEMON Monitor Call (CALLI 102)
The DAEMON monitor call invokes the DAEMON system program to perform a specified function. The calling
sequence for DAEMON is

MOVE ac, [XWD length,addr]
DAEMON ac,

error return
normal return

addr: function
argument list

where:

Code

1

2

3 1

51

length is the number of arguments in the list plus one. If this number is fixed, length is zero.

addr points to the first word of the argument list.

function is the code of the DAEMON function desired. All DAEMON functions are described in
Table 4-3. Some function codes are privileged; to use these, the user program must be running with
the JACCT bit set or the user must be logged-in under (1,2] .

argument list varies with the function code specified; the possible arguments are described along with
the DAEMON functions codes in Table 4-3.

Mnemonic

.DCORE

.CLOCK

.FACT
-

.DMERR

Table 4-3
DAEMON Functions

Arg Block Meaning

1 Writes a dump file of the current job's core
SIXBIT / dev / area. If argument list is omitted, the default
SIXBIT / file / is the same as default for DCORE. Refer to
SIXBIT / ex t / the Operating System Commands Manual.
0,,0

2 Enters a request in the clock queue awaken
seconds the current job after a specified number of

seconds have passed. As soon as the request
has been entered into the queue, the HIBER
call should be used with no clock request.
An argument of 0 clears the job's entry in
the clock queue and wakes the job.

3 Makes entry in the system accounting file
arg1 (F ACT). The FACT file entry must be less

than 20 octal words in length. The entry will
not be instantly written in FACT .SYS, but
may be stored in core for as long as ten

arg208 minutes.

5 Makes an entry in the error file; the block-2
code is put into the error file.
word 1

word2

1This is a privileged function.
~~--

4-12

)

)

)

)

~

,)

CHAPTER 5

TRAPPING, INTERCEPTION, AND INTERRUPTION

The execution of a program is normally performed in a sequential manner, whereby one instruction is executed fol­
lowed immediately by the next and so on. By using skip and branch instructions, it is possible for a program to
deviate from the normal sequential method of execution. Deviation from normal program flow may also be accom­
plished by trapping to user trap-servicing routines (APRENB monitor call), enabling for error interception (utilizing
.JBINT), or using the software interrupt system.

Using trap-servicing routines and error interception are simple methods for controlling error conditions; the software
interrupt system is much more general and complex.

APR trapping allows a user program to handle traps that occur while the job is running, including illegal memory
references and push-down list overflows. Error interception may be used when certain conditions occur in a user
program. The monitor will intercept, when the condition occurs, and will examine location .JBINT in the Job Data
Area. The monitor does this to find out whether or not an error interception routine has been provided. In addi­
tion, the monitor provides a generalized software interrupt mechanism for interrupting the sequential flow of opera·
tion under a wide variety of special conditions.

Two important reasons for wishing a program to deviate from simple sequential operation are as follows:

1. The program may wish to respond to special conditions without testing for them wherever they may
occur. For example, it is possible for a program to test for an arithmetic overflow condition after every
instruction that might cause the condition to occur. However, it is easier to have normal sequential
operation interrupted each time an overflow occurs and then have control transferred to an error
routine.

2. A program could respond to asynchronous events without testing for those events repeatedly. For
example, some programs react to CTRLjC by taking a special action rather than permitting control to
be returned immediately to monitor level.

If a program were to test regularly and frequently for the possibility of a user typing a CTRLjC, an
unreasonable constraint would be placed on the program's design. The program instead could be inter­
rupted each time a CTRLjC was typed; control would be transferred to a special processing routine
before control would be returned to the monitor. The interrupt would eliminate the need for repeated
testing.

5.1 USER TRAP SERVICING
The APRENB monitor call (CALLI 16) enables a user program for trap servicing. The calling sequence for
APRENB is

MOVEI ac, flags
APRENB ac,
only return

where: flags specifies the central processor flags to be tested on a trap condition. The sequence for APRENB
flags that may be set are listed in Table 5-1.

When one of the specified conditions occurs while the central processor is in user mode, the state of the central
processor is conditioned (CONI) into the Job Data Area location .JBCNI, and the PC is stored in location .JBTPC

5·1

Trapping, Interception, and Interruption

Mnemonic Value

AP.REN 400000
AP.POV 200000
AP.lLM 20000
AP.NXM 10000
AP.PAR 4000
AP.CLK 1000
AP.FOV 100
AP.AOV 10

Table 5-1
APRENB Flags

Bit

18
19
22
23
24
26
29
32

.. - '-.

Trap Condition

Repetitive enable.
Pushdown list overflow.
Memory protection violation.
Non-existent memory flag.
Parity error.
Clock tick flag.
Floating point overflow.
Arithmetic overflow.

----_._--

in the Job Data Area. After the arithmetic and floating point flags have been cleared, control is transferred to the
user trap-servicing routine specified by the contents of the right half of .JBAPR in the Job Data Area. The j ob is
stopped, however, if the PC is equal to the first or second instruction in the user's trap-servicing routine.

The user program must set up location .JBAPR before executing the APRENB monitor call. To return control to
the interrupted program, the user's trap-servicing routine must execute a JRSTF .JBTPC, which clears the bits that
have been processed and restores the state of the processor.

The APRENB monitor call normally clears traps for only one occurrence of any selected condition, and it must be
reissued after each trap. To disable this feature, the user program can set bit 18 to a I when ex~cuting the monitor
call. However, even when bit 18 equals 1, clock interrupts must be reenabled after each trap.

If the user program does not enable for traps, the monitor sets the processor to ignore arithmetic and floating-point
overflows, but the monitor enables interrupts for other error conditions in the list above. If the user program pro­
duces such a,n error condition, the monitor will stop the user j ob and print one of the following messages:

?ILL MEM REF AT USER PC addr
?MEM PAR ERROR AT USER PC addr
?NON-EXMEM AT USER PC addr
?PC OUT OF BOUNDS AT USER PC addr
?PDL OV AT USER PC addr

After one of the above messages, the CONT and CCONT commands will not succeed.

5.2 ERROR INTERCEPTING
When certain conditions occur in a user program, the monitor intercepts them and examines location .JBINT in the
Job Data Area. Depending on the contents of this location, control is either retained by the user program or it is
transferred to the monitor. If this location contains zero, the job will be stopped, and the user (and pOSSibly the
operator) will be notified with an appropriate message, if any. If location .JBINT contains a non-zero value, the
contents of the location will be interpreted as the address of a block that has the following format:

loc: XWD n, intloc
loc+l: XWD bits, class
loc+2: 0
loc+3: 0

where: n is the number of words in the block which must be at least 3.
intloc is the location at which the program is to be restarted.
bits may be 0 or 1 as described below:

5-2

')

"-

)

)

)

.,

)

Trapping, Interception, and Interruption

bit 0 = 1 causes an error message, if any, to be printed on the user's terminal and/or the
operator's terminal.

class contains bits which may be set to determine the action taken on a given error condition; the class
bits are listed in Table 5-2.

For each type of error condition, there is an associated class bit. The job is interrupted for an error only if the
appropriate bit in the class word is 1 and 10c+2 contains zero. The job will be stopped if the appropriate bit is 0 or
if the contents of 10c+2 is not zero. The requirement that 10c+2 contains zero precludes a loop.

Therefore, the monitor examines the class bits and 10c+ 2 to determine whether to stop or interrupt the j ob after an
error occurs. If the monitor interrupts, it stores the follOWing information in 10c+2 and 10c+3:

Bit

35

34

33

Ioc+2:

loc+3:

the last user PC word

Right Half: the channel number (if applicable)
Left Half: the error bit as defined in class

The job is then restarted from the location specified in intloc.

Mnemonic

ER.IDV

ER.ICC

ER.OFL

Table 5-2
Error Intercepting Class Bits

Error Condition

A device error occurred that can be corrected by human intervention. The following
message is printed

DEVICE xxx OPR zz ACTION REQUESTED

where xxx is the device name, and zz is the operator's station number. The follOWing
message is printed on the operator's terminal:

%PROBLEM ON DEVICE xxx FOR JOB n

where xxx is the device name, and n is the job number of the job stopped. When the
operator has corrected the error and continued the job with the JCONT command,
the message

CONTBYOPR

appears on the user's terminal to indicate that the error has been corrected.

A user has typed a CTRL/C, interrupting the program. This interrupt allows the user
program to process a CTRL/C instead of returning the job automatically to monitor
level when a CTRL/C is typed, but it will instead trap to the user's interrupt routine.
No messages will be printed on either the user's terminal or the operator's terminal.
When this bit is set, the job should normally exit immediately by releasing any special
resources and issuing an EXIT monitor call. The CONT command can be issued by
the user to continue the job.

A disk unit has dropped off-line. The following message is printed on the user's
terminal:

DSK IS OFF-LINE. WAITING FOR OPERATOR ACTION. TYPE-C
TO GET A HUNG MESSAGE (IN 15 SECONDS). DON'T TYPE ANY­
THING WAIT FOR THE OPERATOR TO FIX THE DEVICE.

If the user has a system resource, this additional message will be printed on the user's
terminal:

THE SYSTEM WILL DO NO USEFUL WORK UNTIL THE DRIVE IS
FIXED OR YOU TYPE A -C

5-3

Bit Mnemonic

32 ER.FUL

31 ER.QEX

30 ER.TLX

29 ER.EIJ

Trapping, Interception, and Interruption

Table 5-2 (Cont.)
Error Intercepting Class Bits

Error Condition

The following message is printed on the operator's terminal:

UNIT xxx WENT OFF-LINE (FILE UNSAFE)l
PLEASE POWER DOWN AND THEN TURN IT ON AGAIN

A file structure has been filled with data (Le., there are no free blocks). There will be
no messages printed.

The user's disk: quota has been exhausted. The following message is printed on his
terminal:

[EXCEEDING QUOTA file-structure name]

The user's run time limit, as set by the SET TIME command, has been exhausted.
This error condition applies only to non-BATCH jobs. The following message is
printed on the user's terminal:

?TIME LIMIT EXCEEDED

The job has a fatal error. The following are a few of the possible error messages which
may be printed on the user's terminal:

?ILLEGAL DUO AT USERPCaddr
?ADDRESS CHECK AT USER PC addr
?PC OUT OF BOUNDS AT USER PC addr

lonly if the disk went unsafe
----- - ----- -- -- -- ------

The follOWing example shows how to enable and handle a CTRL/C intercept. Note that the user is returned to
monitor level as quickly as possible.

LOC 134 :SET POINTER IN .JBINT
EXP INTBLK :TO THE INTERRUPT BLOCK
RELoC

INTBLK: XWD 4,INTLUC :4 WORDS LoNG"PLACE TO START
XWD 0,2 ;NO MESSAGE CONTRoL"TYPE 2 (-C)
Z ;GETS LAST USER PC
Z :LH GETS INTERRUPT TYPE

;THE INTERRUPT ROUTINE STARTS HERE

INTLOC! MoVEM
HLRZ
CAlE
HALT

EXIT
lolOVE
EXCH
PUSH
SETZM
PoPJ

TEMP1: Z

1,TEMPl
1,INTBLK+3
1,2

1,
1,INTBLK+2
1,TEMPl
P,INTBLK+2
INTBLK+2
P,

:SAVE AC 1
:GET REASON FOR INTERRUPT
:SEE IF CONTROL-C
:ERRoR IF NOT
:RELEASE ANY SPECIAL RESOURCES HERE
:BUT BE CAREFUL THAT THIS DOES NOT
:TAKE VERY LONG OR CAUSE A LOOP.
;RETURN TO MONITOR
:GET RETURN PC
:RESTORE AC
:SAVE RETURN ADDRESS
:CLEAR INTERRUPT TO ALLOW ANOTHER ONE
:RETURN TO WHERE PROGRAM STOPPEO

:TEMPORARY

5-4

)

"

)

)

)

)

Trapping, Interception, and Interruption

The following example shows processing of a user CTRLjC by a program that prevents return to the monitor by
means of a CTRLjC.

LOC
EXP
RELOC

INTBLK! 3,INTLUC

134
INTBLK

XWD 0,2
Z
Z

:THE INTERRUPT ROUTINE

INTLOC! SKIPL RENFLA
JRST .+3

SETZM INTBLKt2
JRST REENRT

SETOM RENSWH

PUSH P,INTBLK+2
SETZM INTBLKt2
POPJ p,

5.3 SOFTWARE INTERRUPT SYSTEM

:SET UP .JBINT TO POINT TO
:THE INTERRUPT BLOCK

:3 WORDS LONG"PLACE TO START
:NO MESSAGE CONTROL"TYPE 2 (-C)
:GETS LAST USER PC
:LH GETS INTERRUPT TYPE

:OK TO FAKE A REENTER?
:NO, CURRENT ROUTINE CANNOT BE
:INTERRUPTED.
:YES, RE-ENABLE INTERRUPT AND GU
:TU INTERRUPT ROUTINE

:SET FLAG TO SAY "REENTER AS SOUN AS
:YOU CAN"
:GET LAST PC, PUSH/POP
:RE-ENABLE INTERRUPT
:GO BACK TO INTERRUPTED ROUTINE
rNOTE THAT IF A CONTROL-C IS
:TYPED AFTER THE SETZM, THE
:INTERRUPTS NEST.

The Software Interrupt System is a generalized mechanism for interrupting sequential program execution under a
wide variety of conditions. An interrupt allows the system to respond dynamically to external conditions, and to
requests for servicing error conditions. The monitor transfers control to a specified routine that services the inter­
rupt. After interrupt servicing is complete, a transfer of control is made to the pOint of interruption (from which
point normal execution will proceed).

The Software Interrupt System is initialized by the PUN!. monitor call. PUN!. allows the user program to specify
the base address of an interrupt vector containing one or more four-word interrupt control blocks that control the
operation of the Software Interrupt System. Note that the interrupt vector block must be in page O. After initializ­
ing the Software Interrupt System, the user program must turn the system on with the PISYS. monitor call. This
call also specifies

the conditions on which the user wishes control to be passed to an interrupt servicing routine, and

the location of the appropriate interrupt control block (specified as an offset from the base of the
interrupt vector).

Interrupts occur after the execution of one instruction and before the execution of the next. When an interrupt
condition occurs, the monitor first determines if this type of condition is to cause a transfer of control to an inter­
rupt servicing routine. If a transfer is to take place, control will be transferred to the location specified in the
appropriate interrupt control block. If not, the condition's default action will occur. Figure 5-1 charts the soft­
ware interrupt process.

5-5

Trapping, Interception, and Interruption

PROGRAM (USER)
LEVEL

INTERRUPT
CONDITION

OCCURS

NO

TAKE DEFAULT
ACTION (E.G., DO
NOTHING, STOP

JOB, PRINT ERROR
MESSAGE)

USER PROGRAM

INTERRUPT
LEVEL

THE INTERRUPT
SERVICING ROUTINE

YES .. I DESIGNATED BY THE
APPROPRIATE IN­

TERRUPT CONTROL
BLOCK

DEBRK.
MONITOR CALL

Figure 5-1. Software Interrupt Process

After an interrupt request has been granted, the program operates at interrupt level until the user issues a DEBRK_
monitor call. DEBRK. dismisses the interrupt, re-enables the interrupt control block (if it was disable!!), and caUses
any pending interrupt requests to be granted. If there are no pending interrupt requests, the user program will be
restarted as though no interrupt had occurred.

The granting of an interrupt request does not change any of the conditions causing the interrupt. If a user program
issues a DEBRK. monitor call without doing anything else, the result will be the same as if the interrupt condition
was never enabled. However, any special action (e.g., stopping the job on a CTRL/C) is not taken. The mortitor does
not clear any reason bits on the DEBRK. monitor call; the user program must clear these bits_ EXCEPTION: If the
interrupt occurs while the monitor is executing a call for the user program, that call will be aborted. The only con­
ditions which can cause interrupts during the processing of monitor calls are error conditions in the calls themselves.
All other interrupt conditions are deferred until the monitor call exits.

5.3.1 Interrupt Conditions
The interrupt conditions that can be requested by a user program are divided into two categories: I/O interrupts
and non-I/O interrupts. For any device, the user program can specify interrupt processing for one or more of the
I/O conditions listed in Table 5-3.

5-6

')

'I

)

)

)

)

)

~.

'j

)

.:'",

. '

)
I

Trapping, Interception, and Inte"uption

Table 5-3
I/O Interrupt Conditions

Bit Mnemonic Meaning Bit Mnemonic Meaning

19 PS.RID Input done. 24 PS.RDO Device off-line.

20 PS.ROD Output done. 25 PS.RDF Device full.

21 PS.REF End-of-file. 26 PS.RQE Quota exceeded.

22 PS.RIE Input error. 27 PS.RWT I/O wait.

23 PS.ROE Output error.

The non-I/O interrupt conditions are listed in Table 5-4.

5.3.2 Interrupt Control Block
The Interrupt Control Block is the controller of the Software Interrupt System. It keeps track of

the instruction that was last executed when an interrupt occurred,

The location of the interrupt servicing routine for processing the current interrupt, and

the reason for the current interrupt.

There may be more than one interrupt condition associated with the same interrupt control block, but the pre­
ferred usage is to associate one interrupt condition with one interrupt control block. An interrupt control block is
represented in Figure 5-2.

o

where:

17 18 35

new PC .PSVNP

old PC .PSVOP

control flags I reasons .PSVFL

status word ,PSVIS

Figure 5-2. Interrupt Control Block

new pc is the location of the routine that will service the interrupt.

old pc is the current contents of the program counter (PC) at the time of the interrupt. If a monitor
call is executed, old PC will contain the address of the call's return location (either error return or
normal return). If an attempted monitor call is aborted~ old pc will contain the address of the monitor
call.

control flags are used to indicate the circumstances under which an interrupt is to occur (refer to
Table 5-5).

reason is the type of interrupt condition that has occurred (refer to Table 5-3) .

status word contains status information pertinent to the type of interrupt detected. This information
is listed in Table 5·4 for those conditions that cause information to be returned in the status word.

5-7

I

Trapping, Interception, and Interruption

Table 5-4
Non-I/O Interrupt Conditions

Code I Mnemonic Interrupt Condition

-1 . PCTLE The time limit for ajob has been exhausted. (Applicable only for non-Batch jobs) .
The run time (in milliseconds) for the job is returned in the status word.

-2 Reserved for Digital.

-3 .PCSTP A CTRL/C has been issued from a user terminal. If the terminal is in input-wait state
when this interrupt occurred, bit 0 in the status word will contain a l.

4 .PCUUO A monitor call is about to be processed. The status word contains the monitor call
that was executed.

-5 .PCIUU An illegal monitor call has been executed. The status word contains the illegal
monitor call.

-6 . PCIMR An illegal memory location has been referenced .

-7 . PCACK An address check has occurred. The status word will contain the device name .

-10 . PCARI An arithmetic exception has occurred .

-11 . PCPDL A push-down list overflow has occurred .

-12 Reserved for Digital.

-13 . PCNXM A non-existent memory location has been referenced .

-14 .PCAPC The line frequency clock has ticked. The status word will contain the universal date/
time word.

-15 . PCUEJ A fatal error has occurred in the user'sjob .

-16 . PCXEJ An external condition has caused a fatal error in the job .

-17 .PSKSY A KSYS warning has occurred. The status word will contain the minutes left until
KSYS.

-20 . PCDSC The dataset status has changed. The status word will contain the new dataset status .

-21 .PCDAT Either an ATTACH or a DETACH monitor call has been executed. If DETACH, the
status word will contain a -1; if ATTACH, the status word will contain the TTY's UDX
(universal device index).

-22 .PCWAK A WAKE monitor call has been executed. The status word will contain the job number
of the waker.

-23 .PCABK An address break condition has occurred.

-24 .PCIPC The job has received an IPCF packet in its input queue_ The status word will contain
the length of the packet in its right half, and the right half of the flags word in its left
half.

-25 .PCRMC Reserved.

I
-26 .PCQUE An ENQ/DEQ resource is available for ownership. The request ID is returned in the

status word.

5.3.3 Initialize the Software Interrupt System
The PIINI. monitor call (CALLI 136) initializes the software interrupt system. Its calling sequence is

MOVEI
PUNI.

aC,addr
ac,

error return
normal return

5-8

)

)

\
)

)

"

)

)

)

where:

Trapping, Interception, and Interruption

addr is the base address of the interrupt vector block. Note that the interrupt vector block must be in
page 0 on a VM system.

The PIINI. monitor call performs the following functions:

Bit

0

1

2

3

4

5

6

1. It turns off the software interrupt system.
2. It unlinks any devices with which enabled interrupt conditions are associated.
3. It stores the base address ofthe interrupt vector block.

Mnemonic

PS.VPO

PS.VTO

PS.VAI

PS.VDS.

PS.VPM

PS.VIP

Reserved to Digital.

Table 5-5
Control Flags

Meaning

Disable all interrupts until a PISYS. monitor call re-enables them.

Disable all interrupts until a DEBRK. monitor call is executed.

Allow additional interrupts to be received by this interrupt block. Normally, no other
interrupts for the current block are permitted until a DEBRK. monitor call is executed.
The use of this bit is not recommended since it could interrupt the service routine and
therefore lose information.

Dismiss any additional interrupt requests for this control block that are received while an
interrupt is in progress. This bit is useful if the interrupt service routine wants to perform
functions that would cause another interrupt.

Print the standard message (if any relevant to this interrupt condition).

This bit indicates that an interrupt is in progress for this block. The user should clear this
bit at the start of the program. It is set and cleared by the monitor as interrupts are proc-
essed, and it should not be altered by the user.

5.3.4 Control the Software Interrupt System
The PISYS. monitor call (CALLI 137) allows a user program to control the Software Interrupt System. Its calling
sequence is

MOVE ac,[j1ags"addrj
PISYS. ac,

error return
normal return

addr: type

where:

vector-offset"enabled reasons
0,,0

flags may be set which control the software interrupt system (see Table 5-6).

addr points to the first word of the three-word interrupt argument block.

type (.PSECN) specifies a device or a condition to be associated with the interrupt. The type can be one
of the following:

SIXBIT /device-name/
channel-number
UDX (universal device index)
a negative number specifying a non-I/O condition (see Table 5-3)

vector offset (left half of .PSEOR) is the offset from the base address of the four-word interrupt control
block to be associated with this interrupt condition.

5-9

Trapping, Interception, and Interruption

enabled reasons (right half of .PSEOR) specifies the type of interrupt desired. This half-word should be\
zero, if a device is not specified by type (refer to Table 5-12).)

The PISYS. monitor call is the primary means by which the user program can control the software interrupt system.
The call accepts a three-word argument block that specifies the type of condition the user wishes to service with an
interrupt servicing routine. It also specifies the offset from the interrupt vector base address that points to the
appropriate interrupt control block. Since each interrupt control block is four words long, the offset is always
specified in multiples of four words. . ,\

Bit Mnemonic

1 PS.FOF

2 PS.FON

3 PS.FCP

4 PS.FCS

5 PS.FRC

6 PS.FAC

Table 5-6
Argument Block Flags

Meaning

Turn off the interrupt system.

Turn on the interrupt system.

Clear all pending interrupts.

Clear all pending interrupts for a specified device.

Remove the specified device or condition.

Add the specified device or condition.

The possible error codes resulting from a PISYS. monitor call are listed in Table 5 -7.

Code Mnemonic

0 PSTMA%

1 PSNFS%

2 PSUKF%

3 PSOOF%

4 PSUKC%

5 PSDNO%

6 PSPRV%

7 PSIVO%

10 PSUKR%

11

12 PSNRW%

13 PSPND%

14 PSARF%

Table 5-7
PISYS. ,Error Codes

Meaning

The right half of the AC is non-zero; no bits in the left half require an
argument block.

The left half of the AC does not have any function bits set.

The left half of the AC contains function bits which have been set but have
no defined meaning.

The bits in the left half of the AC that turn the system on and off have
been set.

The contents of addr do not specify a valid address.

The device specified by the contents of addr has not been INITed for this
job.

A restricted (illegal) condition has been specified.

The vector table offset is too large or not a multiple of four words. A
GETTAB table (Table number ii, item number 76) provides the maximum
value that the vector offset may assume.

An invalid bit was set in word 3 of the argument block; word 3 should be
all zeroes.

,Reserved.

The reserved half-word (the right half of word three) is non-zero.

A PUN!. monitor call was not executed.

Both the 'add the device' bit and the 'remove the device' bit have been set.
-------- ------- ----

5-10

"

)

)

)

)

~y

)

)

)

. ~

},

~

Trapping, Interception, and Interruption

5.3.5 Save the Interrupt Blocks
The PISAV. monitor call (CALLI 140) returns the entire monitor base related to the software interrupt system. The
call can be used by modules such as QMANGR to save and reload (via PIRST.) the complete interrupt system. It
can also be used to provide detailed error message reporting. The calling sequence for PISAV. is

MOVE ac,[size"addrJ
PISAV. ac,

error return
normal return

where:

o 1

x

where:

size is the length (in words) of the block pOinted to be addr. The size of this block can be determined
by the algorithm

(3 *number-ofargument-blocks) + 2 = size-in-words

addr pOints to a block of three words. This block is represented in Figure 5-3.

17 18 35

00000000000000000 count .PSSFC

base address .PSSIV

start-ofthe-three-word-argument-blocks .PSSBL

Figure 5-3. Saved Status Block Structure

x (PS.SON, bit 0) can be 1 or 0; 1 indicates that the software interrupt system is turned on; 0 indicates
that it is off.

bits 1 through 17 must contain zero.

count is the number of words that the monitor actually returned with the saved status block.

base address is the address of the interrupt vector block which contains one or more four-word
interrupt control blocks.

start points to the first location of the three-word argument blocks.

The location pOinted to by the third word of the block represented in Figure 5-3 is the beginning of one or more
argument blocks. The interrupt argument blocks are those that the user has set up by means of the PISYS. monitor
call .

The possible errors resulting from the PISAV. monitor call are listed in Table 5-8.

Code Mnemonic

0 PSBTS%

Table 5-8
PISA V. Error Codes

Meaning

The block is too small to hold the data. The right half of the first word contains
the count of the number of words which would have been returned, if the block
had been long enough.

5-11

Trapping, Interception, and Interruption

5.3.6 Reload the Saved State of the Interrupt System
The PIRST. monitor call reloads the saved state of the software interrupt system. This call does not, however,
remember any pending interruptions. If the interrupt control block has not been cleared of its condition, the
interrupt will be granted. The PIRST. monitor call should not be used to load the interrupt system of program
initialization time; this function is performed by the PIINI. monitor call. The calling sequence for PIRST. is

MOVEI aC,addr
PIRST. ac,

error return
normal return

where: addr is the address of the saved status block specified in the PISA V. monitor call.

The possible error codes resulting from a PIRST. monitor call are listed in Table 5-9.

Code Mnemonic

0 PSNRS%

5.3.7 Dismiss an Interrupt

Table 5-9
PIRST. Error Codes

Meaning

The user program has been modified to prevent the PIRST. monitor call
from performing its specified task.

The DEBRK. monitor call dismisses a software interrupt, re-enabling anything which may have been disabled by the
occurrence of the interrupt. The calling sequence for the DEBRK. call is

DEBRK.
return 1
return 2

)

)

)

The DEBRK. call normally returns to old PC. Return 1 is taken if DEBRK. is not implemented; return 2 is taken if
there was no interrupt in progress. The DEBRK. call scans the pending interrupt queue, looking for any conditions
which may require servicing by an interrupt servicing routine. If such a condition exists, its interrupt request will be
granted, and a transfer will be made to the interrupt servicing routine. If there are no pending interrupts, DEBRK.
will restart the interrupt process beginning at the point within the user job where interruption occurred (e.g., the
instruction after the last instruction executed).)

5.3.8 An Example of the Software Interrupt System

TITLE PI5AMP -- SAMPLE PROGRAM TO SHOW PSISER USE WITH NON-BLOCKING 1//0

iTHIS PROGRAM WRITES A FILE CONTAINING THE NUMBERS 1 TO 100.000
WHILE DOING A COMPUTE-BOUND BACKGROUND COMPUTATION. BECAUSE THE
NEVER BLOCKS FOR I/O. IT CAN USE 100~ OF THE AVAILABLE CPU TIME.
THE PI SYSTEM IT CAN DRIVE THE DISK AT FULL SPEED.

iAC USEAGE
T1=1
N=2

i I/O CHANS.
DSK=1

SEAI':CH C

i INITIALIZATION

iTEMPORARY
iNUMBER TO WRITE ON THE DISK

.; THE C'I SK FILE

.; S'r'P1BOL C'EFS.

5-12

PROGRAM
B'T' USING

,~

".

)

)

)

>

)

\
)

START: RESET
MOVEI
PI IN!.

HALT
OPEN

HALT
ENTER

HALT

Trapping, Interception, and Interruption

; RESET THE WORLD
TL VECTOR ; BASE OF INTERRUPT VECTOR
T1. ; INIT PI SYSTEM

;NOT IMPLEMENTED
DSK. [UU. AIO+. IOBIN; OPEN DISK FOR AS',.'NCHRONOUS BINAR',.'
OUTPUT

SIXBIT /DSK/
OB, • (1 J

;DISK NOT aVAILABLE
DSK.[SIXBIT "SAMPLE" ; ENTER THE OUTPUT FILE

SIXBIT "BIN" ; ON THE DISK
EXP 0.0J

.; CAW T WRITE

MOVE T1.[PS. FAC+[EXP DSK
4 •• PS. ROD ; OFFSET •• OUTPUT DONE
0JJ ;PRIORITY •• RESERVED

PISYS. T1. ; CALL MONITOR TO TURN ON SYSTEM AND
; ENABLE FOR OUTPUT DONE ON CHAN DSK

HAL T .; PI 5',.'5. UUO FA I LED
MOVEI N.O ; PRESET N

; HERE ON AN OUTPUT DONE INTERRUPT OR AT THE START OF THE PROGRAM

OUTDON:

DUMPBF:

SOSGE
cTRST
IDPB
CAME
AOeTA
CLOSE
EXIT

OUT
JRST

STATZ
HALT

BYTECT
DUMPBF
N.BYTEPT
N.[-D100000J
N.OUTDON
1.

1.
OUTDON
1. 10. ERR

;ROOM IN THIS BUFFER?
; NO--GO OUTPUT BUFFER
;STORE IN BUFFER
; DONE?
; NO--WRITE NEXT NUMBER

; ALL DONE

;WRITE OUT THE BUFFER
;NO ERRORS AND MORE BUFFERS
;ANY ERRORS?
;FATAL I/O ERROR

;AT THIS POINT WE FILLED
BACKGROUND TASK.

ALL AVAILABLE BUFFERS AND WANT TO GO BACK TO THE

DEBRK. ;DISMISS THE INTERRUPT
HALT ;CAN NEVER GET HERE

; IF WE GET HERE THERE WAS NO INTERRUPT IN PROGRESS. THAT MEANS WE WERE
CALLED BY INITIALIZATION AND NOW MUST START THE BACKGROUND TASK.

MOVSI T1. CPS. FON) ; TURN ON THE PI SYSTEM SO WE CAN GET
·PISYS. T1. ; TRAPS OUT OF THE BACKGROUND TASK.

HALT ;CAN1T TURN ON SYSTEM
MOVEI T1.0
AOeTA TL.

; BUFFER RING HEADER
OB: BLOCK 1
BYTEPT: BLOCK 1
BYTECT: BLOCK 1

; INTERRUPT VECTOR
VECTOR: BLOCK 4

EXP OUTDON
EXP (1

EXP 0
EXP 0

EN[) STAIn

; SUPER SIMPLE BACKGROUND TASK

; BYTE POINTER
; BYTE COUNT

;FIRST SLOT IS UNUSED
;NEW PC
;OLD PC STORED HERE
; FLAGS
; STATUS

5-13

(

(

(

(

(

)

)

CHAPTER 6

CORE AND SEGMENT CONTROL

6.1 CORE CONTROL
For various reasons, users may wish to lock privileged jobs into core, so that they are never considered for swapping
and shuffling. Some examples of these jobs follow.

Real time jobs

Display jobs

Batch jobs

Performance
Analysis
Jobs

6.1.1 Definitions

which require immediate access to the processor in response to an interrupt from an I/O
device.

which must be refreshed from a display buffer in the user's core area in order to keep the
display picture flicker-free.

which are enhanced by locking the Batch job controller in core.

so that they can be invoked quickly with low overhead in order to record the activities of
the monitor.

Unlocked jobs occupy only those physical core locations not occupied by locked jobs. Therefore, locked jobs and
timesharing jobs contend with one another for physical core memory. In order to control this contention; the sys­
tem administrator is provided with a number of system parameters which are de~cribed below.

Total User Core is the physical core that can be used for both locked and unlocked jobs. This value equals
the total physical core minus the monitor size.

CORMIN

CORMAX

is the amount of contiguous (on a KAlO) core guaranteed a single unlocked job. This value
is a constant system parameter defined by the system administrator at monitor generation
time (via MONGEN). This value can range from 0 to TOTAL USER CORE. CORMIN may
be changed by the system administrator through the use of the SET CORMIN command
(refer to DECsystem-IO Operating System Commands) or the SETUUO monitor call.

is the largest (on a KAlO) contiguous block allowed an unlocked job. It is a time-varying
system parameter that is reduced from its initial setting as jobs are locked in core. In order
to satisfy the guaranteed size of CORMIN, the monitor never allows a job to be locked in
core if it would cause CO RMAX to be less than CO RMIN. The initial setting of CO RMAX
is defined at monitor generation time (via MONGEN), and can be changed with the SET
CORMAX command (refer to DECsystem-1 0 Operating System Commands) or the SETUUO
monitor call.

6.1.2 The LOCK Monitor Call (CALLI 60)
The LOCK monitor call provides a mechanism for locking jobs into user memory. The user may specify that the
high, the low, or both segments are to be locked, and if the core is to be physically contiguous or not. Note that on
KA10-based systems, core is always allocated contiguously, and that the job will be moved to an extremity of user
core before it is locked. The calling sequence for the LOCK monitor call is:

MOVE ac, [XWD hi-code, la-code 1
LOCK ac,

error return
normal return

6-1

where:

Core and Segment Control

hi-code and la-code are the high and low segment codes - a series of bits that specify the way in which
the high segment (left half code) and the low segment (right half code) are to be locked. The order and
the position of the bits in the left half correspond to the order and the position of the bits in the right
half, (Le., to obtain the bit number for the high segment, subtract 18 from the corresponding bit for the
low segment). The possible bits that may be set with the LOCK monitor call are listed in Table 6-1.

Table 6-1
WCKBits

Bit Mnemonic Meaning

17 LK.HLS If the bit contains 1, lock the high (or low) segment as indicated by bits
35 LK.LLS 15 or 16 (33 and 34).

16 LK.HNE If the high bit contains 0, map the high (segment) contiguously in the
34 LK.LNE exec virtual memory (always implied on a KAlO-based system). This

action causes the segment to be added to the exec virtual address space
so that it can be executed in exec mode. For example, this would be
required when exec mode real-time trapping is used. On KI10/KLl0-
based systems, the amount of exec virtual address space used by locked
jobs is a limited resource with a defined maximum limit per processor.
If mapping of the segment would cause the maximum to be exceeded,
the LKMEM% error code will be returned in the AC, and the error
return will be taken. The maximum exec virtual memory available for
the LOCK monitor call can be obtained from GETTAB table .GTCnV,
item number 43 (%CEVM), where n is the number of the CPU. The
current amount used can be obtained from .GTCnV, item number 44
(%CVEVU).

15 LK.HNP If the bit contains 1, do not attempt physical continuity. If the bit
33 LK.LNP contains 0, lock the high segment (low segment) into contiguous

physical memory locations (always implied on KAI0 based systems).
This action causes the high segment (low segment) to be moved and
remapped (if necessary) so that its physical core is contiguous. On
KAlO-based systems, the high segment (low segment) is also moved to
one end of user core, in order to minimize fragmentation of memory.

')

)
I

)

On a normal return, the job is locked into core. If there is a high segment, the left half of. the AC will contain its)
physical core address, or virtual address if meaningful (in units of 5-12(8) word pages). This value can be con-
verted to a word address by shifting it left nine bits. If there is no high segment, the left half of the AC will contain
zero. The right half of the AC will contain the page number of the low segment, which can be shifted nine bits.
If the job is locked in place so that no physical or virtual contiguity is implied (KIlO and KLlO only), the
contents of the AC on a normal return will be zero.

On an error return, the job is not locked into core, and the AC is either unchanged or contains an error code. An
error code indicates the condition that prevented the job from being LOCKed. The possible error codes are
listed in Table 6-2.

Ajob may be locked into core if all of the following conditions are satisfied:

1. The job has the LOCK privilege (bit 14, JB.LCK) in the privilege word which is set from the accounting
file, ACCT.SYS, by LOGIN.

2. The job, when locked, would not prevent another job from expanding to the ,guaranteed limit
(CORMIN).

6-2

)

)

)

)

Bit

0

1

2

3

4

5

6

Core and Segment Control

3. The job, wnen locked, would not prevent an existing job from running. Note that unlocked jobs can
exceed the value of CORMIN.

4. The job, when mapped, if specifying exec mapping, would not exceed the maximum amount of exec
virtual address space available for locking (KIlO/KLlO-based systems only).

5. The job has a non-sharable high segment when running virtual on a KIlO/KLlO-based system.

Table 6-2
LOCK Monitor Call Error Codes

Mnemonic Meaning

LKNIS% The monitor call is not included in this system, or the requested func-
tion is not implemented because it has not been defined with MONGEN
or because the appropriate feature test switch has been turned off.

LKNLP%% The job requires locking privileges, but does not have them.

LKNCA% If the job were locked into core, it would be impossible to run the largest
existing non -locked job.

LKNCM% If the job were locked into core, it would be impossible to sustain the
guaranteed maximum for unlocked jobs.

LKNEM% The allowable amount of exec virtual memory has been exhausted.

LKNIA% An illegal sub function has been specified.

LKNPU% The specified page is unavailable.

If a user program requests a segment to be locked into contiguous physical memory, the monitor will attempt to lock
it into physical memory at the lowest location possible. When the segment is locked below 128K, physical and
virtual contiguity are equivalent; therefore, virtual contiguity does not always require the exec virtual memory
resource to achieve contiguity.

On KAlO-based systems, physical memory is always allocated contiguously, and user segments are directly address­
able in exec mode (bits 15, 16, 33, and 34 are ignored).

Clearing bits 33 and 34 (bits 15 and 16 for the high segment) in KIlO/KLlO-based systems is compatible with the
implementation of the LOCK monitor call for KAlO-based systems. Code 1 is the most restrictive code, allowing a
program coded for a KAlO-based system that implicitly uses these properties to also be executed on a KIlO/KLlO­
based system. Applications that do not require all properties can add the appropriate bits the LOCK monitor call's
calling sequence.

Although memory fragmentation is minimized by the LOCK monitor call and the shuffler, the locking algorithm
always allows job-locking even though severe fragmentation may take place, as long as

1. all existing jobs can continue to run, and
2. CORMIN, at least, is available (refer to Figure 6-1).

Since memory fragmentation can degrade system throughput, system administrators must use caution when granting
locking privileges. Section 6.1.2.1 lists guidelines for minimizing fragmentation when using the LOCK monitor call
on KAlO-based systems.

NOTE
The CORE monitor call may be given for the high seg­
ment of a locked job only to remove the high segment
from the addressing space. When any segment is locked
into core, neither the CORE monitor call nor the CORE

6-3

Core and Segment Control

command with a non-zero argument can be satisfied
because they will cause an error. Before executing the
LOCK monitor call, the program should determine and
request the amount of core needed for execution.

6.1.2.1 The LOCK Monitor Call Extension - (KIlO/KLlO-based systems only) the extension to the LOCK
monitor call locks a segment into a specified page of physical core memory. Its calling sequence is

MOVE ac, [XWD -n,addr]
LOCK ac,

error return
normal return

addr; [unction

where:

argument 1

argument i

n is the number of arguments plus one (i.e., i + 1 = n).
addr points to the first word of the argument block.
[unction is one of the function codes described in Table 6·3 (currently, one function is implefllp.nted).
argument 1 ... argument i is different depending on the function used; all possible arguments are li~ted
in Table 6-6.

Before After

Monit:'h////////////j
Monitor

1\ 1\
1\ 1\
1\

1\
1\

1\
1\ 1\

CORMAX CORMAX

1\ 1\

1\ 1\

1\ 1\

1\ 1\

1\ 1\

1\ Locked job 1\

Figure 6·1 Locking Jobs in Core on KAlO Systems

6-4

)

)

)

)

Monitor

Timesharing job
issuing LOCK Monitor Call

~

Locked job

Before

Monitor

Locked job

Locked job

Core and Segment Control

1\

1\

1\

1\

1\

1\
CORMAX

1\

1\

1\

1\

1\

1\

1\

1\

1\

1\
CORMAX

1\

1\

1\

Monitor

Locked job

Locked job

After

Monitor

Locked job

Locked job

Locked job

Figure 6·1 (Cont.) Locking Jobs in Core on KAlO Systems

6-5

1\

1\

1\

1\

1\

1\
CORMAX

1\

1\

1\

1\

1\

1\

1\

1\

1\

1\
CORMAX

1\

1\

1\

Before

Monitor

Locked !:~,,,,,,,,,,,J

Locked job

Monitor

Timesharing job
issuing LOCK Monitor Call

Locked job

Core and Segment Control

1\

1\

1\

1\
CORMAX

1\

1\

1\

1\

1\

1\
1\

CORMAX
1\

1\

After

Monitor

Locked job

Locked job

Monitor

Locked job

Figure 6-1 (Cont.) Locking Jobs in Core on KAlO Systems

6-6

1\

1\

1\

1\
CORMAX

1\

1\

1\

1\

1\
1\
1\

CORMAX
1\

1\

)

)

)

)

l.

)

) .

Core and Segment Control

Table 6-3
LOCK Extension Functions

Function Mnemonic Meaning Argument I

I

0 .LKPPN Lock the high segment and/or LH = 0 Do not lock the high I

low segment into contiguous segment
physical pages, starting at the LH = n lock the high segment
physical page number specified starting with page number
in the argument. I

n
I

RH = 0 Do not lock the low
segment. I

RH = n lock the low segment I

starting with page number

I
n.

On a normal return, the segment is locked (physically and contiguously) starting at the specified physical address.
On an error return, error code 6 (LKNPU%) is returned in the AC (refer to Table 6-2). The error return will be
taken when locking the segment at the pages specified in the argument would cause any of the following conditions
to be true.

1. when locked, the two segments would overlap.
2. when locked, one or both segments would overlap another locked job.
3. when locked, one or both segments would overlap the monitor.
4. when locked, one or both segments would be outside the range of on-line memory.

Note that if the monitor call indicates that the low segment is to be locked, the physical page number specified in the
right half of argument i is where the low segment is locked into the next higher physical page location, an example of
the extended LOCK monitor call is

ADDR:

MOVE AC, [XWD -2,ADDR]
LOCK AC,

JRST ERROR

o
230,,224

In the example above, the high segment will be locked into core starting with page 230 and the low segment will be
locked into core starting with page 224.

6.1.2.2 Minimizing Fragmentation - For KAlO-based systems, the guidelines for minimizing fragmentation when
using the LOCK monitor call are listed below.

1. If two or fewer segments are locked into core, there will be no memory fragmentation.
2. If the locked jobs do not relinquish their locked status (i.e., no job that has issued the LOCK monitor

call terminates), there will be no memory fragmentation. In general, only production jobs should be
granted locked privileges.

3. If a job issuing a LOCK monitor call is to be debugged, and production jobs with locking privileges are
to be executed, the job to be debugged should be initiated and locked into core first. Locking this job
first will place it at the top of core, reserving this area for it and guaranteeing that as the job locks and
unlocks there will be no fragmentation.

6-7

Core and Segment Control

4. By appropriately setting CORMIN and the initial setting of CORMAX in relationship to 10TAL USER
CORE, the system administrator can establish a policy that guarantees the following.
a. A maximum size for any unlocked job (CORMIN).
b. A minimum amount of tcitallockable core for all jobs (TOTAL USER CORE minus CORMAX).
c. The amount of core for which locked and unlocked jobs can contend on a first-come/first-serve

basis (TOTAL USER CORE equals the initial setting for CORMAX plus CORMIN).

6.1.3 The UNLOK, Monitor Call (CALLI 120)
The UNLOK. monitor call provides a mechanism for a job to unlock itself without having to perform a RESET
monitor call. The user program specifies whether the high, the low, or both segments are to be unlocked from core.
The calling sequence for UNLOK. is

MOVSI aC,n
HRRI aC,m
UNLOK. ac,

error return
normal return

where: n is specified if the high segment is to be unlocked (LH not equal to 0).
m is specified if the low segment is to be unlocked (RH not equal to 0).
nand m are specified if both the high and low segments are to be unlocked.

The error return is taken if the monitor call has not been implemented. Under this circumstance, a job can
relinquish its locked status by executing a RESET or EXIT monitor call; locked status is relinquished also when the
monitor implicitly executes a RESET for the user program. An implicit RESET will occur when

1. The user program issues a RUN monitor call, or
2. The user types anyone of the following operating system commands: R, RUN, GET, SAVE, SSAVE,

CORE, NSA VE, NSSA VE, OSA VE, OSSA VE, or a system program-invoking command.

On a normal return, the segment (or job) is unlocked and becomes eligible for swapping and/or shuffling. Any meter
point (METER monitor call) is deactivated and, if the low segment is unlocked, any real-time device will be reset.
CORMAX is increased to reflect the new size of the largest contiguous region available to unlocked jobs. CORMAX,
however, will never be set higher than its initial value.

NOTE
A locked high segment shared by several jobs is unlocked
only when the SN%LOK bit is turned off for all of those
jobs (i.e., when all jobs which executed the LOCK moni­
tor call have performed the UNLOK. monitor call).
Refer to GETTAB Table Number 14.

6.1.4 THE CORE MONITOR CALL (CALL 11)
The CORE monitor call allows a user program to expand and contract its core allocation in either one or both seg-
ments, as its memory requirements change. Its calling sequence is

MOVE
CORE
CORE

ac, [XWD hi-seg-addr, low-seg-addr]
ac,
ac,200000

error return
normal return

6-8

)

.,

)

)

)

~

')

"

"

!\.

)

)

)

Core and Segment Control

where: hi-seg-addr is the highest user address (end point) to be assigned to the high segment. If hi-seg-addr is zero,
the current core assignment for the high segment will be unchanged.
low-seg-addr is the highest user address (end point) to be assigned to the low segment. Iflow-seg-addr is
zero, the current core assignment for the low segment will be unchanged.
The argument 200000 sets bit 19 (UU.PHY) to indicate that the core assignment is for physical core. (This
argument is meaningful only for KIlO/KLlO-based systems with virtual memory.)

The monitor will always assign the smallest amount of core that will satisfy the request. To ensure privacy of all in­
formation, all of core is cleared before assignment to the user program.

On KA10-based systems, the high segment address is relative to location 400000 or page 400. If the address specified
in the left half of the AC is smaller than either of these values, the high segment will be destroyed. If the value is
greater than either of these values, the new high segment end address will be that specified.

On KI10/KLlO-based systems the user may start the high segment at any location by using the REMAP monitor call
(a LINK-l 0 switch may also be used, refer to the LINK-JO Programmer's Reference Manual). When the CORE moni­
tor call is issued, the left half of the AC is always relative to the starting address of the high segment specified in the
REMAP monitor call.

On a normal return, the information returned in the AC is listed in Table 64.

Table 6-4
Values Returned from a CORE Monitor Call

Type of System Information Returned

Non-VM The maximum amount of lK core blocks (all of core minus the monitor,
unless an installation chooses to restrict the amount of core available to
the user. (CORMAX)

VM Systems The current virtual memory limit in 1 K core blocks assigned to the user.

On KIlO/KLlO-basedsystems, if the left half of the AC is non-zero, and it is either less than 400000 or the length of
the low segment (whichever is greater), the high segment will be eliminated. If this call is executed from the high seg­
ment, an illegal memory error message will be printed when the monitor attempts to return control to the new illegal
address.

To increase the low segment and decrease the high segment simultaneously, two CORE monitor calls should be issued
to reduce the chances of exceeding the maximum size allowed to a user.

The error return is taken on the following conditions:

1. The left half of the AC is greater than or equal to 400000, and the user has been meddling without write­
access privileges.

2. The left and the right halves of the AC are both zero.
3. The sum of the sizes of the new low segment and the old high segment is greater than the maximum

amount of core allowed to a user. (The core assignment will be unchanged, and the maximum core avail­
able for high and low segments is returned in the AC for swapping systems.

4. The sum of the new low segment and the new high segment is greater than the maximum amount of core
allowed to a user. (The core assignment will be unchanged.) The maximum core available for the user is
returned in the AC in lK core blocks.

5. The right half of the AC specifies an argument which would cause the low segment to overlay (expand
into) the high segment.

6-9

Core and Segment Control

. If the high segment is eliminated by the CORE monitor call, a subsequent CORE with the left half of the AC greater
than 400000 will create a new,ellon-sharable segment instead of re-establishing the old high segment. This segment
will become sharable if it has been

1. given the filename extension .SHR,
2. written onto a storage device,
3. closed so that a directory entry will be made, and
4. initialized from the storage device by either of the following commands: GET, R, RUN, or the RUN or

GETSEG monitor calls.

LlNK-lO and the SSAVE and GET commands use the above sequence to create and initialize new sharable segments.

A user program that expands core should compare its highest desired address with its highest legal address, which can
be obtained from location .JBREL in the Job Data Area (refer to Chapter 3). If the desired address is greater than the
highest legal address, the program should execute a CORE monitor call for the new desired address (Le., not for the
highest old legal address plus 512 or 1024).

The monitor will update .JBREL by a basic.allocation unit (Le., 1024 words for KAlO-based systems, and 512 words
for KllO/KL1O-based systems), Subsequent comparing of the desired address and the highest legal address do not
cause a CORE monitor call until the next increase of core is required. If used in this manner, the CORE monitor
call will execute the same on all three processors and will require less monitor.cpU time, because of the number of
COREs needed will be minimized.

The following example illustrates the method of obtaining core only when it is needed.

;SUBROUTINE TO GET CORE ONLY WHEN NEEDED
;CALL: MOVE TI ,HIGHEST DESIRED ADDRESS

PUSHJ P,CHKCOR
RETURN HERE UNLESS NO MORE CORE

CHKCOR: CAMG T1 ,.JBREL## ;GREATER THAN HIGHEST LEGAL ADDRESS?
POPJ P, ;NO, PRESET CORE BIG ENOUGH.
CORE TI, ;YES, GET NEXT INCREMENT OF CORE.

JRST ERROR ;NOT AVAILABLE.
POPJ P, ;NEXT INCREMENT ASSIGNED.

6.1.5 The SETUWP Monitor Call
The SETUWP monitor call allows a user program to set or clear the hardware user-mode write-protect bit and to ob­
tain the previous setting for this bit. The call must be used if the program is to modify its high segment; its calling
sequence is

MOVEI ac,bit
SETUWPac,

error return
normal return

where: bits is used to specify the setting of the user-mode write-protect bit in bit 35 of the AC (write-protect = 1
and write-privileges = 0).

The previous setting of the user-mode write-protect bit is returned in bit 35 of the AC, so that any user subroutine
can preserve the previous setting before changing it. Nested subroutines that either set or clear this bit can be written,
providing that the subroutines save the previous value of the bit and restore it on returning to the caller.

6-10

')

)

)

)

)

)

)

"

Core and Segment Control

6.1.6 The PAGE. Monitor Call
The PAGE. monitor call (only available on KIl-/KLlO-based systems with virtual memory) manipulates pages and
the data associated with those pages. Its general calling sequence is

MOVE ac, [XWD function,addr]
PAGE. ac,

error return
normal return

addr: number-of-words
argument 1

argument n

where: function is a PAGE. function code in the range 0 to 7; the possible function codes for PAGE. are listed in
Table 6-5.
addr points to the first word in the argument block.
number-aI-words is the number of arguments in the argument block.
argument is different depending on the function code specified; all arguments are described in Table 6-5
pertinent to the given function code.

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table 6-7. On a
normal return, the function specified has occurred. There are two limitations in regard to what pages may be paged
out: page zero may never be paged out; and, if the high segment is sharable, none of the high segment pages may be
paged out.

Table 6-5
PAGE. Monitor Call Functions

Function Mnemonic Meaning/Argument Format

0 .PAGIO Swaps a page in or out. Pages already allocated are swapped in and
added to the working set. Pages are deleted from the working set in
core and moved to secondary storage. The argument words are set up
as follows.

Bit 0 = 0 Swap-in
= 1 Swap-out

Bit 1 = 0 Transfer to fast secondary storage
= 1 Create page on the disk

Bits 2-26 = 0

Bits 27-35 = Page number

Multiple entries in the argument block must specify page numbers in
increasing numeric order.

6-11

Function Mnemonic

.PAGCD

2 . PAGEM

3 .PAGAA

Core and Segment Control

Table 6·5 (Cont.)
PAGE. Monitor Call Functions

Meaning/Argument Format

Creates or destroys a page. The argument word format takes the following
format.

Bit 0 = 0 Create a page
= 1 Destroy a page

Bit 1 = 0 Create a page in the working set
= 1 Create a page on disk

Bits 2·26 = 0

Bits 27·35 = Page number

Multiple entries in the argument block must specify page numbers in
increasing numeric order.

Moves or exchanges a page. A,page is moved from one location to an •
other location in user virtual address space, or two pages exchange 10·
cations. Note that a page cannot be moved to a location already allo·
cated to another page. The argument word format is in the following
format.

Bit 0 = 0 Page is moved
= 1 Page is exchanged

Bits 1·8 = 0

Bits 9·17 = Source page location

Bits 18·26 = Zero

Bits 27·35 = Destination page location

Sets or clears the access·allowed bit. If a page is a part of the working
set, its access bit can be turned off. When the access bit is off, a page
fault will occur the next time that page is accessed. The page will reo
main in core, the access bit may be turned on at time, therefore. The
argument word format is

Bit 0 = 0 The bit is set
= 1 The bit is cleared

Bits 1·26 = 0

Bits 27·35 = Page number

Multiple entries in the argument block must specify page numbers in
increasing numeric order.

6·12

')

,>

)

)

)

)

)

Function Mnemonic

4 .PAGWS

>

5 .PAGGA

"6 .PAGCA

7 . PAGCH

)

Bit Mnemonic

0 PA.GNE

1 PA.GWR

) 2 PA.GRD

.3 PA.GAA

4 PA.GAZ

'" 5. PA.GCP

6 PA.GPO
----_ .. _- ----

:~

Core and Segment Control

Table 6-5 (Cont.)
PAGE. Monitor Call Functions

Meaning/Argument Format

Returns a bit map indicating those pages in the current working set.
In the PAGE. call, number-of-words specifies the number of words
in the bit map that are to be returned (normally 17 for the entire. map.
There is one bit for each possible page (0-511). If a bit is set, the page
associated with that bit is a part of the working set. For example, word
1 contains the bits associated with pages 0 through 35; word 2 con-
tains the bits associated with pages 36 through 71, etc.

Returns a bit map indicating which pages have their access-allowed
bits set. This bit map has the same format as the one returned for
function code 4. If a bit in the map is set, the page associated with
that bit is accessible. In the PAGE. monitor call, number-of·words
specifies the number of the words in the bit map that are to be reo
turned (normally 17 for the entire map).

Determines the type of access allowed for a given page. There is no
argument block; instead, ,the AC (bits 0.17) contain the function code
and bits 18·35 contain the page number. On a normal return, one or
more of the bits described in Table 6·6 will be set.

Create a high segment .

Table 6·6
Bits Returned from Function .P AGCA

Meaning

The page specified does not exist.

The page specified is writable.

The page specified is readable.

The page specified is accessible .

The page specified is allocated but zero.

The page specified cannot be paged out.

The page specified has already been paged out.

6·13

I

I

I

Core and Segment Control

Table 6-7
PAGE. Monitor Call Error Codes

Error
Code Mnemonic Meaning

1 PAGUF% An unimplemented function has been specified.

2 PAGIA% An illegal argument has been specified.

3 PAGIP% An illegal page number has been specified.

4 PAGMF% A page must exist, but it does not.

5 PAGMI% A page must be in core, but it is not.

6 PAGCI% A page cannot be in core, but it is.

7 PAGSH% A page is in a sharable high segment.

10 PAGIO% A paging I/O error has occurred.

11 PAGNS% No swapping space is available.

12 PAGLE% Specified function is illegal when the job is locked in core.

13 PAGIL% Cannot create the specified page (an attempt was made to create a page
on the disk).

24 PAGNX% Cannot create the specified page (an attempt was made to create a
page on the disk) with virtual memory limit to zero.

6.1.6.1 Page Fault Handling - When an executing program (on KIlO/KLlO-based systems with virtual memory)
references a location in a noncore·resident page, the system transfers control to a page fault handler. The page fault
handler determines which pages are to be placed in core during program execution. A user program can utilize its own
own page fault handler, or, if the program does not include its own, the default page fault hander will be used.

The default page fault handler utilizes a modified FIFO technique in swapping pages in and out of core. An ordered
list of core-resident pages is maintained by age of page in physical core. Each page has an access-allowed bit associ­
ated with it; the access-allowed bit can be set to 1 indicating that the page is accessible, or to 0 indicating that the
page is not accessible. Periodically, the page fault handler will set every physical page's access-allowed bit to O. A page
fault will occur the next time one of these inaccessible pages is referenced; after the reference is made, the access­
allowed bit is set to 1, and execution continues.

By use of the age-ordered list, along with a periodic check on the access-allowed bit, pages are swapped on a modi­
fied first-in/first-out basis.

The page fault handler controls the entire working set of pages, and is a part of the user's core image. If the user
program does not supply its own page fault handler, the default page fault handler will be read into the top of the
user's address space from SYS:PFH.VMX. If a user-supplied handler is to be used, .JBPFH in the Job Data Area
must point to it. In .JBPFH, bits 9-17 contain the page fault handler's and address; bits 18-35 contain its start
address. Before the occurrence of the first page fault, the user program must have ensured that .JBPFH contains
these two addresses.

6-14

)

,;

)

)

)

)

)

~

~

)

)

)

Core and Segment Control

Alternatively, the user program may cause a page fault handler to be obtained from its directory by ASSIGning DSK:
as SYS:, in which case, PFH.VMX will be loaded from the user's disk area.

If the user supplied page fault handler is deleted because of a CORE or PAGE, monitor call, the default page fault
handler (Le., SYS:PFH.VMX) will be brought into core on the next occurrence of a page fault.

6.1.6.2 Format of the Page Fault Handler - The page fault handler must be in the form

PFH: JRST START
pc for fault
page fault word
virtual time
current page rate
o
o
o

START:

where: PC for fault contains the program counter location when the fault occurred.
This value is filled in by the monitor when a page fault occurs.

page fault word is filled in by the monitor when a page fault occurs; refer
to Table 6-8.

virtual time since the page fault handler was first brought into core is filled
in by the monitor when a page fault occurs.

current page rate is filled in by the monitor when a page fault occurs.

Table 6-8
Page Fault Word

Bit(s) Mnemonic Meaning

0 PF.HCB Bit 0 = 1 indicates that the working set of pages has been
changed by the monitor or the user program without the
page fault handler's control.

1-17 PF.HPN These bits contain the number of the page causing the
page fault.

18-35 PF.HFC These bits contain a code indicating the type of page
fault that has occurred.

Code Mnemonic Meaning

1 .PFHNA The access-allowed bit has been
turned off; the page is not
accessible.

2 .PFHNI The referenced page has been
swapped out; the page is not
in core.

6-15

I

~-

Core and Segment Control

Bit(s) Mnemonic

- --- --- '----

6.2 SEGMENT CONTROL

6.2.1 The RUN Monitor CALL (CALLI 35)

Table 6-8 (Cont.)
Page Fault Word

Meaning

Code Mnemonic

3 .PFHUU

4 .PFHTI

5 .PFHZI

6 .PFHZU

Meaning

A page containing a monitor
call argument has been swapped
out; a monitor detected fault
FRAG 11.
A trap occurs every n units of
virtual time as a result of reo
questing virtual time traps;
refer to the description of the
.STTVM option of the SETUUO).
The page has been allocated, but
it is a zero page.
The page has been allocated, but
it is zero after a call's execution.

--------- ----

The RUN Monitor call allqws program to transfer control to one another. Both the low and the high segments of a
user's addressing space are replaced with those of the program being called. RUN's calling sequence is

MOVESI ac, start·addr-increment

HRRI ac, addr

RUNac,

error return

; normal return is to the start address

; plus the start-addr-incremen t of the

; new program

addr: SIXBITllogical-device-namel

SIXBIT Iii/enamel

SIXBIT I extensionj ; or 0

00

XWD project-number, programmer-number ; ora

XWD 0, core assignemnt ; or 0

6-16

)

I

)

)

)

(bre and Segment Control

where: start-addr-increment is an increment to the starting address.

addr points to the first word of the six-word argument block.

logical-device-name is the name of the device storing the called program.

filename specifies the name of the file for either or both of the high and low segments.

extension is the file name extension for the low segment file. If the left half = 0, .LOW is assumed when
there is a high segment; .SAV is assumed when there is not a high segment. When the program has been
saved by the NSA VE or NSSAVE command, the extension will be .EXE.

project-programmer number specifies the owner of the called program; if 0, the project-programmer num­
ber for the calling program is assumed.

core assignment is an optional argument. If it is present the value specified is assigned to the low segment.
The left half of this word is always ignored, and it should be zero.

Normally, the calling program will set up only the first two words of the argument block leaving the rest of the words
zero. The error return is taken if any errors are detected; an error code will be returned in the AC. Possible error codes
are listed in Appendix E. The user program can attempt to recover from the error and/or give the user more informa­
tion pertaining to pro gram continuation. If the left half of the error return location contains a HALT instruction,
the monitor will return an error code in the AC,.and it will print

?HALT AT USER PC addr

on the user's terminal, which will be returned to monitor mode. By storing the HALT instruction in the left half of the
error return location, a user program can analyze the error code returned in the AC. If the error' code indicates an error
from which the user can recover, the program can issue a second RUN, including another HALT instruction stored in
the error return location. The possible error codes that can be returned in the AC as a result of the RUN monitor call
are listed in Appendix E. Note that the monitor will not attempt to return to a user program if the high or low seg­
ment containing the RUN call has been overlaid. Therefore, the RUN call should be placed in the low segment in case
the error is discovered after the high segment has been released.

For certain system programs (e.g., LOGIN and LOGOUT), the RUN monitor call will automatically set the appropri­
ate bits (e.g., JACCT and JLOG). These bits are not set (or are tumed off if they were set) for unprivileged programs
from device SYS: or for programs whose starting address offset is greater than I. These bits cannot be set by
ASSIGNING a device to be SYS:.

The execution of the RUN monitor call clears all of core. User programs, however, should not assume that this action
will occur; they must initialize core to the desired value in order to allow programs to be restarted by the CTRL/C,
START sequence without having to perform I/O.

If a user program wants to call programs from the system library, it should call them by device SYS: and the null
project-programmer number (instead of the device DSK: and aI, 4 project-programmer number). The extension
specified for these programs should also be null, so that the calling program will not have to determine if the called
program is reentrant.

Before control is transferred to the called program, the left half of the AC is added to and stored in .JBSA of the
Data Area. A CTRL/C followed by a START command will restart the program at the location specified by the RUN
monitor call; therefore the current system program may be restarted.

6-17

COre and Segment Control

If the left half of the AC does not contain either 0 or I, the user is considered to be meddling with the program un­
less the program being executed is execute-only for this job.

6.2.1.1 Programming with the RUN Monitor Call - To successfully program the RUN monitor call for systems
of all sizes and for all system programs whose size is not known at the time of RUN execution, it is necessary to
understand the sequence of operations initiated by RUN. (The RUN could be executed from either the high or the
low segment; fewer errors are returned to the user, however, if it is executed from the high segment.)

To be guaranteed of handling the largest number of errors, the cautious user should remove his high segment from
high logical addressing space (via CORE with I in the left half of the AC). The error handling core should be put in
the low segment with the RUN call and the size of the low segment should be reduced to IK. A better idea would be
to have to error handling code written once and put into a seldom used (probably non-sharable) high-segment, which
could be called via GETSEG when an error return is taken on a RUN monitor call.

The follOwing sequence occurs when a RUN monitor call is utilized for an .EXE file:

Execute
RUN call

)------------ no .1
LOOKUP
file .EXE

yes
I
I
I
I
I
I
I L ______ _

r------- no ---------(

Complete
current

processing Process file;
set up address

space according to
the access bits in

the directory

Note that if the user specifies an explicit extension to the file name specified in the RUN call, that extension will be
used when the file is LOOKedUP. If the extension specified, though, is .SAV, filename.EXE is searched for before
filename .SA V.

6.2.2 The GETSEG Monitor Call (CALLI 40)
The GETSEG monitor call replaces the high segment in the user's addressing space. Its calling sequence is

MOVEI ac, addr

GETSEGac,

error return

normal return

6-18

')

)

)

)

,.

)

(;3.'

)

)

)

J

Core and Segment Control

addr: SIXBIT/device-name/

SIXBIT/filename/

SIXBIT /extension/

0,0

XWD project-number, programmer-number

0,0

where: addr points to a six-word argument block.

device-name is the name of the device on which the high segment resides.

filename is a 1 to 6 character file name, left-justified, specifying the file containing the new high segment.

project-programmer number are the project-programmer numbers representing the directory in which the
file is stored. If this word contains zero, the project-programmer numbers under which the job is logged
in are assumed.

The GETSEG monitor call allows a user program to initialize a high segment from a file or shared segment without
affecting the low segment. This facility can be used for shared data segments, shared program overlays, and run-time
routines (e.g., the FORTRAN or COBOL object-time systems).

The GETSEG monitor call works like the RUN monitor call, except for the following differences:

1. No attempt is made to read the low segment file. If an .EXE file is found, only the pages
representing the high segment will be merged into the user's address space.

2. The contents of the ACs are not preserved.
3. The only changes made to JOBDAT are (1) to set the left half of .JBHRL to 0 and (2) to

set the right half of the highest legal user address. (Note that a SAVE/OSAVE command
can be used to save all of the high segment.)

4. If an error occurs, control will be returned to the error return location, unless its left half
contains a HALT instruction.

5. On a normal return, control is returned to one of two locations following the monitor call,
depending on whether the high or the low segment made the request. The call should be
requested from the low segment unless the normal return coincides with the starting address
of the new high segment.

6. User channels 1 through 17 are not released. Channel 0, however, is released because it is
used by the GETSEG call.

7 . .JBSA and .JBREN will be set to 0 by the monitor, if they point to a high segment that is
being removed. If this happens, the following message will be printed on the user's terminal:

?NO START ADDRESS

when a START or REENTER command is issued.

6.2.3 The REMAP Monitor Call (CALLI 37)
The REMAP monitor call remaps the top part of a specified low segment into a high segment. The previous high

) segment (if any) is removed from the user's addressing space. The new low segment will be the previous low segment
minus the amount remapped. The calling sequence for the REMAP monitor call is

6-19

Core and Segment Control

MOVEI ac, .addrl

MOVE ac, XWD origin, addrl

REMAPac,

error return

normal return

where: addrl is the highest address in the low segment.

origin is the origin of the high segment (KI10/KLlO only).

The monitor will round up the address specified to the nearest core allocation unit (i. e., on KA1O-based systems the
unit is 102410 words; on KII O/KLlO-based systems the units is 51210 words).

On a normal return, the following will occur:

1. the contents of the AC are preserved.
2 . .JBREL is set to the value of addrl.
3. The left half of .JBHRL is set to O.
4. The right half of .JBHRL is set to the highest legal user address in the

high segment (greater than or equal to 401777 or 0).
5. The hardware relocation is changed.
6. The user-mode, write-protect bit is set.

The error return is taken under the following conditions:

1. When a high segment origin is specified on a KA10-based system.
2. When the requested remapping would cause the high and the low

segments to overlap (KIlO/KLlO only).
3. When the sum of the high segment origin plus its length would cause

the high segment to start (or end) at an address outside the program's
virtual address space (i.e., greater than or equal to 256K).

4. When the specified argument addrl exceeds the length of the low
segment. (Also, remapping will not occur, and the high segment will
remain unchanged in the user's address space).

5. When the system on which the program is running does not have two­
register capability.

6.2.4 Testing for a Sharable High Segment
It is occasionally desirable for a program to determine whether or not its high segment is sharable. If the high seg­
ment is sharable, the program may decide not to modify itself. The following code determines

whether or not the system has a high segment capability (i.e., two-register capability), and

whether or not the job has a high segment.

HRROI T, .GTSGN ; see if high segment is sharable

GETTABT, ; look at monitor .GETSGN table

JRST .+2 ; table or call not present

6-20

)

)

)

)

c,

)

)

\

l'
l

"r

~

)

Core and Segment Control

TLNN T, (SNo/oSHR) ; is sharable bit on?

JRST NOTSHR ; no, go ahead and modify here if

; high segment is sharable

6.2.5 Determining the High Segment Origin
It is occasionally desirable for a program to determine the origin of its high segment (Le., the starting virtual address
of the high segment within the program's address space.) This information would be useful, for example, to a program
that was to access information in the vestigial Job Data Area or to transfer control to an entry point in a high seg­
ment which has been GETSEGed. Before the 5.07/6.01 release of the monitor, the high segment origin was normally
4000008 or the first available core allocation boundary above the low segment, if the low segmen t was larger than
129K. User programs should not assume this location for their high segment, but should find its location by using
the following procedure:

HRRZ T, .JBHRL ; highest relative address in the high segment

JUMPE Tl,NOHIGH ; jump if there is no high segment

HRRZ Tl,.JBREL ; the highest address in the low segment

TRNN Tl,400000 ; is low segment larger than 128K?

MOVEI Tl,377777 ; no, assume high segment starts at 400000

MOVE T2, XWD -2,.GTUPM ; get high segment origin from monitor table

GETTAB T2, ; .GTUPM indexed by current high segment number

HRLI TI,l(TI) ; table or call not present, use assumed

LSH TI, - t DI8 ; value. Convert to address of high segment

AND! T2,777 ; clear any low bits

MOVEM T2,HJORGN ; store as the origin of the high segment

6.2.6 Modifying Shared Segments and Meddling
A high segment is usually write-protected, but it is possible for a user program to clear the write-protect bit or to in­
crease/decrease a shared segment's core assignment by using the SETUWP monitor call or the CORE monitor call.
These calls are legal from either the low segment or the high segment only if the sharable segment has not been
meddled with (unless the user has write-privileges for the file that initialized the high segment). Even the malicious
user can have the privileges of running such a program, although he does not have the access rights to modify the
files used to initialize the shared segment.

Meddling is defined as any of the following conditions (even if the meddling user has the privileges to write the me
which initialized the sharable segment):

1. When a START or CSTART command is executed with an argument.
2. When the DEPOSIT command is issued for either the low or the high segment.
3. When the RUN monitor call is called with anything other than a 0 or a 1 in the

left half of the AC (Le., a starting address increment).
4. When the GETSEG monitor call is called.

6-21

Core and Segment Control

It is not considered to be meddling to perform any of the above commands or calls with a non-sharable program. It
is never considered to be meddling to type a CTRL/C followed by a CONT, CCONT, CSTART (with an argument),
START (without an argument), REENTER, DDT, SAVE, NSAVE, OS AVE, or E command (refer to the DECsystem-
10 Operating System Commands Manual).

When a sharable program is meddled with, the monitor will set the meddle bit for the meddling user.The error re­
turn is taken when the user attempts to clear the write-protect bit via the SETUWP monitor call. The error return is
taken, also, when the reassignment of core for the high segment (except to remove it completely) is attempted via the
CORE monitor call.

An attempt to modify the high segment via the DEPOSIT command causes the following message to be printed on
the user's terminal:

?OUT OF BOUNDS

If the user-mode, write-protect bit was not set when the user meddled, it will be set to protect the high segment in
case it is being shared. The DEPOSIT command, the SETUWP call, and the CORE call are allowed (in spite of
meddling), if the user has the access privileges to write the file which initialized the high segment. Users with access
privileges can write programs that access sharable data segments via the GETSEG call and then turn off the write­
protect bit using SETUWP.

A privileged user can specify that a sharable program is to be superseded. When a CLOSE, OUTPUT, or RENAME
monitor call is executed for a file with the same UFD and file name as the segment being shared, the name of the
segment will be set to O. New users will not be able to share the older version of the program, but they will be able to
share the newer version. The monitor, therefore, is required to read a newly created file only once before it initializes
the file. The monitor will delete the older version of the file when all users are finished with it.

When control can be transferred only to a small number of entry points (e.g., two), the shared program can .do any­
thing that it has the privileges to do. (The program, not the person running it, has these privileges.)

6-22

)

-,

:1,

)

)

)

,~.

)

)

CHAPTER 7

I/O PROGRAMMING

Within this Chapter I/O programming is generally described, specifics deal with the disk. For programming consider­
ations concerning the other devices refer to the applicable chapter. (For example, DEC tape I/O programming is
described in Chapter 9).

All user I/O programming is controlled by monitor calls. I/O is directed by

1. associating a device and a ring of buffers with one of the user's I/O channels (via INIT, OPEN, or
FILOP.),

2. optionally selecting a file (via LOOKUP, ENTER, and FILOP), and
3. passing buffers of data to and from the user program (via IN, INPUT, OUT, or OUTPUT).

Device specifications may be delayed from program generation time until program run-time because the monitor

1. allows a logical device name to be associated with a physical device (via the ASSIGN or MOUNT com­
mand), and

2. treats operations that are not pertinent to a given device as no-ops.

7.1 JOB INITIALIZATION
The RESET monitor call should normally be the first instruction in every user program; its calling sequence is

RESET ac,
only return

The call immediately stops all I/O on all devices without waiting for the devices to become inactive. All device allo­
cations made by the INIT/OPEN/FILOP. calls are cleared and, unless the devices have been assigned via ASSIGN or
MOUNT, the devices are returned to the monitor pool of available devices. The contents of the left half of .JBSA in
the Job Data Area is stored in the right half of .JBFF in the Job Data Area, so that the user buffer is reclaimed if the
program is restarted. The left half of .JBFF is cleared. Any files being written that have not been closed are deleted
on the disk. The user-mode write-project bit is automatically set if a high segment exists (whether or not the high
segment is sharable); therefore, a program cannot inadvertently store into the high segment. Additional functions of
the RESET call include the following.

1. It unlocks ajob if it was locked.
2. It releases any real-time devices.
3. It resets any high-priority queues set by the HPQ monitor call to a value set by the HPQ command (refer

to the DECsystem-lO Operating System Commands Manual).
4. It resumes timesharing, if timesharing had ceased as a result of a TRPSET monitor call with a non-zero

argument:
5. It resets the action of the HIBERnate and APRENB monitor calls.
6. It clears all PC flags except USRMODE (KLl O/KI I 0 only).
7. It drops all PIDs (IPCF) that were to be dropped on the execution of a RESET.
8. It clears the Software Interrupt System.
9. It dequeues anything locked by ENQ.

7-1

I

I/O Programming

7.2 D:EVIC:E SEL:ECTION
A specific device must be associated with a software I/O channel for every I/O operation. This specification is made
via the INIT, OPEN, or FILOP. monitor calls, which may specify a device by its logical or physical name. Some sys·
tern programs (e.g., LOGOUT) require I/O to specific physical devices regardless of any logical name assignment.

Therefore, when an OPEN monitor call is executed, if the sign bit of word 0 in the OPEN block is set to I (UU.PHS),
the device name is regarded as a physical name only, and logical names will not be searched. When an association is
made between a device and a software I/O channel via INIT, OPEN, or FILOP., the association remains in effect
until the channel is RELEASEd or until another INIT, OPEN, or FILOP., call is issued for that software I/O channel.

Non·disk and non·spooled devices may be assigned to a particular job by use of the ASSIGN or MOUNT commands.
Assignable devices are deSignated as either unrestricted devices or restricted devices. An unrestricted device can be
assigned directly by any job via the ASSIGN command, the INIT call, the OPEN call or the FILOP. call. A restricted
device can be assigned directly only by a privileged job. However, any unprivileged job can have a restricted device
assigned to it indirectly through the use of the MOUNT command.

The MOUNT command allows operator intervention for the selection or denial of a particular device; therefore, the
operator can control the use of assignable devices for the non·privileged user. This function is useful when there are
multiprogramming batch and interactive jobs competing for the same device. The restricted status of a device is set
or removed by the operator with the Ol>SER commands :RESTRICT ~nd :UNRESTRICT. (Refer to the DEC·
system-IO Operators GUide.)

The non· directory devices are listed in Table 7-1. The selection of a device is sufficient to allow I/O operations to
take place over the associated software channel.

Device

card reader

card punch

line printer

display unit

paper-tape reader

paper·tape punch

user terminal

pseudo-TTY

magnetic tape unit

plotter

console TTY

Table 7-1
Non·Directory Devices

3·Letter Generic Name

CDR:

CDP:

LPT:

DIS:

PTR:

PTP:

TTY:

PTY:

MTa:

PLT:

CTY:

2-Letter Generic Name

CR:

CP:

LP:

LL:

LU:

PR:

PP:

TT:

MT:

M7:

M9:

I

All other file specifiers directed to a non-directory device are ignored. Whether or not the program will use a direc­
tory device or a non-directory device for I/O operations, it is advisable that the program select a file, so that a direc­
tory device can be substituted for a non-directory device at run-time without notifying the program.

7-2

~)

-!

)

)

)

J, ••

)

)

I/O Programming

For directory devices (e.g., disk and DECtape), files are addressable by file name. If a directory device has a single
file directory (e.g., DECtape, refer to Chapter 9), the device and the file name are sufficient information in deter­
mining which file is desired. If the device has a multiple file directory (e.g., disk), the name of the file directory
must also be specified in determining the correct file. The file, device and directory names are specified as argu­
ments to the LOOKUP, ENTER, RENAME, and FILOP. monitor calls.

7.2.1 Device Initialization
The OPEN monitor call (op code 50) and the INIT monitor call (op code 41) initialize a device and associate it with
a software I/O channel number. These calls perform almost identical functions; the OPEN call is a reentrant form of
INIT and is preferred for this reason. Their calling sequences are:

OPEN channel, addr
error return

normal return

addr: EXP status
SIXBIT / device name/
XWD abut, ibuf

INIT channel, status
SIXBIT / devicename /
XWD obut, ibuf

error return
normal return

where: channel is the 4-bit channel number (0 to 17) to be associated with the device.

addr points to a 3-word OPEN argument block.

status contains for OPEN the OPEN status bits in its left half (refer to Table 7-2) and the SETSTS bits in
its right half. status for INrT contains the SETSTS bits in its right half.

device is the logical or physical name of the device. More information concerning this argument is given
in paragraph 7.2.2.

abuf and ibuf (used only for buffered modes), if non-zero, specify the location of .the first word of the
3-word buffer ring header block for output and input, respectively.

The normal return is taken if a device is selected and if the device is associated with a software I/O channel. The
error return is taken if the requested device is in use, if the requested device does not exist, or if the device is
restricted and has not been assigned to the job via the MOUNT command. If a device is already associated with the
specified channel, the device is released.

The symbols obuf and ibuf specify the location of the first word of the 3-word buffer ring header blocks for output
and input, respectively. Buffered data mode utilizes a ring of buffers in the user area and the priority interrupt sys­
tem to permit the user to overlap computation with his data transmission. Core memory in the user's area serves as
an intermediate buffer between the user's program and the device. The buffer storage mechanism consists of a 3-word
buffer ring header block for bookkeeping and a data storage area subdivided into one or more individual buffers
linked together to form a ring. During input operations, the monitor fills a buffer, makes that buffer available to the
user's program, advances to the next buffer in the ring, and fills that buffer if it is free. The user's program follows
the monitor, either emptying the next buffer if it is full or waiting for it to fill.

During output operations, the user's program and the monitor exchange roles; the program fills the buffers and the
monitor empties them. Only the headers that will be used need to be specified. For instance, the output header
need not be specified, if only input is to be done. Also, data modes 15, 16, and 17 require no buffer ring header
block.

If either the buffer headers or the 3-word block lies outside the user's allocated core area, the monitor will stop the
job and will print one of the following messages on the user terminal:

7-3

I/O Programming

?ILLEGAL ADDRESS IN UUO AT USER addr
?ADDRESS CHECK
?ILLEGAL ADDR AT xxxx

Note that the buffer headers cannot be in the user's AC; however, buffer headers may be in locations above .JBPFI.

The first and the third words of the buffer header are set to zero. The left half of the second word is set up with the
byte pointer size field in bits 6 through II for the selected device-data mode combination.

If the same device is INlTed on two or more channels, the monitor will retain only the buffer headers mentioned in
the last INIT, OPEN or FILOP. (A zero specification does not override a previous buffer header specification,
though.) Other I/O operations to any of the channel involved act on the buffer mentioned in the INIT/OPEN/
IFLOP. previous to the I/O operations.

Bit Mnemonic

0 UU.PHS

1 UU.DEL

2 UU.DER

3 UU.AIO

4 UU.lBC

S UU.SIE

7.2.2 Device Names

Table 7-2
OPEN Status Bits

Meaning

A search is made of physical device names only.

Error logging is disabled. Normally, this bit should not be set by the user; it is used
for user-mode diagnostics.

Error retry is disabled. Normally, this bit should not be set by the user; it is used for
user-mode diagnostics.

Non-blocking I/O will be performed.

The monitor is prevented from zeroing buffers after each output.

Synchronize on an I/O error. The monitor will not perform any more I/O for the
user program, until the error bits have been cleared.

The device name specified can be either a logical, physical, or generic name. Logical names take precedence over
physical device names. The method of device selection depends on the format of the specified SIXBIT device name;
it can be in one of the formats listed in Table 7-3.

Format Example

dddn LPT6

dddnnu LPT132

ddd LPT

dddnn LPTOI

Table 7-3
Format of Device Names

Meaning

The monitor will attempt to select device LPT6 specifically requested at the user's
current node/station.

The monitor will attempt to select device LPT2 at node/station number 13.

The monitor will attempt to select a device of the desired type (e.g., a line printer) at
the user's current node/station. If all devices of this type are in use, the error return
will be taken. If no device of the desired type exists at. the user's current node.
station, the monitor will attempt to select a device of the same type from the central
station. If the desired type of device has already been assigned to the j ob at the appro-
priate station and it has not been INlTed on another channel, it will be selected instead
of an unassigned device.

The monitor will attempt to select any line printer at node/station number 01.

7-4

)

)

)

)

)

.;

)

\
;

I/O Programming

7.2.2.1 File Structure Names - Each file structure has a SIXBIT name associated with it that is specified by the
operator at system initialization time. This name can consist of four or less alphanumeric characters, and it must not
duplicate any device name, unit names, or existing file structure names or ersatz device names (or its abbreviation,
refer to section 7.2.2.6). The recommended names for the file structures in the public pool are

DSKA
DSKB

DSKn (in order of decreasing speed)

When a specific file structure is INITed (e.g., DSKA) subsequent LOOKUP and ENTER searches are restricted only
to that file structure. Usually a channel is INITed with the generic DSK, in which case all file structures in the active
search list of the job are searched (refer to Job Search List, section 8.2.2).

7.2.2.2 Logical Unit Names - When a single file structure name is specified, the set of all units in that file structure
is implied; however, it is possible to specify a!particular logical units within a file structure (e.g., DSKAO, DSKAl,
and DSKA2 are three logical units in file structure DSKA).

The monitor deals with file structures rather than with individual units; therefore, when reading files, specifying a
logical unit within a file structure is equivalent to specifying the file structure itself. The monitor locates the file
regardless of which unit it is on within a file structure.

However, when writing a file, the monitor uses the logical unit name as a guide in allocating space and will, if pos­
sible, write the file on the unit specified. In this way, a user can apportion files among different units for increased
throughput.

7.2.2.3 Physical Controller Class Names - In addition to DSK, single file structure names (e.g., DSK) and logical
unit names (e.g., DSKAO), it is possible to specify a class of controller. If the system has one controller of the type
specified, the result is the same as if the user had specified the physical controller name. The controller classes sup­
ported by Digital are

FH ;an RC 1 0 controller
FS ;an RHlO controller
DP ;an RPlO controller
RP ;an RHlO controller

7.2.2.4 Physical Controller Names - It is possible to specify any of the units on a particular controller. The moni­
tor relates that name of the file structure which contains at least one unit on the specified controller. More than one
file structure may be specified when a physical controller name is used. The controller names that Digital supports
are

FHA FHB FHC FHD
DPA DPB DPC DPD
FSA FSB FSC FSD
RPA RPB RPC RPD

7.2.2.5 Physical Unit Names - When a physical controller names is specified, all units on that controller are
implied. It is possible to specify a physical unit name on a particular controller. The physicallJnit names that Digi­
tal supports are listed in Table 7-4.

7.2.2.6 Name Abbreviations - Abbreviations may be used as arguments to the ASSIGN command, the INIT moni­
tor call, the OPEN call, and the FILOP. monitor call. The name abbreviation is checked for a match when the

7-5

Name

FHAO, ... FHA3
FHCO, ... ,FHB3
FHCO, ... ,FHC3
FHDO, ... ,FHD3

FSAO, ... ,FSA3
FBSO, ... ,FSB3
FSCO, ... ,FSC3
FSDO, ... ,FSD3

DPAO, ... ,DPA3
DPBO, ... ,DPB3
DPCO, ... ,DPC3
DPDO, ... ,DPD3

RPAO, ... ,RPA3
RPBO, ... ,RPB3
RPCO, ... ,RPc'3
RPDO, ... ,RPD4

I/O Programming

Table 7-4
Physical Disk Unit Names

Meaning

A mixture of fixed head disk units (RDlOs) and drum units (RMlOB) on RCIO controllers.

RS04 disk units on the first, second, third and fourth RHIO controllers.

A mixture of RP02 and RP03 disk packs on the first, second, third, and fourth controllers
(RPlO).

RP04 disk units on the first, second, third, and fourth RHIO controllers.

ASSIGN, INIT, OPEN, and/or FILOP. is executed. The file structure or device eventually represent~d by a particu­
lar abbreviation depends on whether a LOOKUP, ENTER, or FILOP. follows. A LOOKUP applies to as wide a class
of units as possible, and an ENTER applies to a restricted, in order to set to allow files to be written on a particular
unit at the user's option.

7.3 DATA MODES
Data transmissions are either unbuffered or buffered. (Note that unbuffered mode is sometimes referred to as dump
mode.) The mode of transmission is specified by a 4-bit argument to the INIT, OPEN, FILOP. or SETSTS monitor
calls. Buffered mode transmits data to the disk exactly as it appears in the buffer. Data consists of 36-bit words.
The data modes are listed in Table 7-5.

All disk buffered mode operations utilize a 200 octal word buffer. Attempts to set up a non-standard buffer size are
ignored on the disk. In particular attempting to use buffer size smaller than 200 octal words for input will result in

')
/

.. ,

-+"

)

)

data being read in past the end of the buffer, which destroys what information was in the buffer (e.g., the buffer ")
header of the next buffer).

With unbuffered mode on the disk, data is read into or written from anywhere in the user's core area without regard
to the normal buffering schemes. Control for read or write operations must be via a command list in core memory.
The command list format is described in section 7.3.1. The disk control automatically measures dump data into
standard-length disk blocks of 200 octal words each. The remainder of a disk block is wasted, unless the number of
words is an exact multiple of the standard-disk block length after each command word in the command list.

7.3.1. Unbuffered Data Modes
Data modes 15, 16, and 17 (refer to Table 7-5) are unbuffered data modes that utilize a command list to specify
areas in the user's allocated core area to be read or written. The address specified in an IN, INPUT, OUTPUT, or
OUT monitor call points to the first word of this command list. There are three types of entries that may be pre­
sent within the command list:

1. IOWD n,loc
which causes n words to be transmitted from lac through lac + n - 1. The next command is obtained
from the location following the IOWD. The assembler pseudo-op generates the instruction: XWD on,
lac-i.

7-6

)

}

I/O Programming

2. XWDO,y
which causes the next command to be taken from locationy. This instruction is referred to as a GOTO.
A maximum of three consecutive GOTOs are allowed in the command list; after which an IOWD that
transfers data must be written.

3. °

Code

° 1

2

3-5

6-7

10

11

12

13

14

15

16

17

which terminates the command list.

Mnemonic

.rOASC

.rOASL

.rOPIM

.rOIMG

.rOIBN

.rOBIN

.rOIDP

.IODPR

.rODMP

Table 7-5
Data Modes

Meaning

ASCII MODE. Seven-bit bytes are packed left-justified, five characters per word .

ASCII-LINE MODE. ASCII-line mode is equivalent to ASCII mode, except that
the buffer is terminated by a form-feed, vertical tab, line feed, or ALT MODE
character. This difference is pertinent only to terminals (half-duplex software) .

Packed image mode.

Reserved for Digital.

Reserved for customer definition.

IMAGE MODE. This is a device-dependent mode. The buffer is filled with data
exactly as it is supplied by the device, in 36-bit bytes.

Reserved for Digital.

Reserved for Digital.

IMAGE BINARY MODE. This mode is similar to binary mode, except that no
autol)1atic formatting or checksumming is performed by the monitor, data is
transmitted in 36-bit bytes.

BINARY MODE. This is block format consisting of a word count, n (Le., the
right half of the first data word of the buffer), followed by n 36-bit byte data
words.

IMAGE DUMP MODE. A device-dependent mode where data is transmitted in
36-bit bytes.

DUMP MODE. Dumps data as records without core buffering. Data is trans­
mitted between any contiguous blocks of core, and one or more standard-length
records on the device for each command word in the command list. Data is
transmitted in 36-bit bytes .

DUMP MODE. Dumps one record of data without core buffering. Data is trans­
mitted between any contiguous block of core, and one record of arbitrary length
on the device for each command word in the command list. Data is transmitted
in 36-bit bytes.

On disk, every IOWD that causes data to be transferred write8 a separate record. Therefore, for all devices (except
DEC tape) the following two examples will produce the same result:

1. OUTPUT D, [IOWD 70,BUF 1
IOWD 70, BUF2
Zj

2. OUTPUT D,[IOWD 70, BUF1
Zj

OUTPUT D,[IOWD 70,BUF2
Zj

For DECtape, the first example writes one block, and the second examples writes two blocks.

7-7

I/O Programming

When the command list has been completely processed, the monitor returns control to the user. If an illegal address
is encountered while processing the command list, the monitor will stop the job and print the following message on
the user's terminal:

?ADDRESS CHECK AT USER addr

DUMP input is similar to dump output; below is an example of dump output of fixed-length records.

;SUBROUTINE TO OPEN DISK IN DUMP MODE
;CALL WITH:

PUSHJ P,DMPINI
RETURN HERE

DMPINI: OPEN DSK,OPNBLK ;OPEN THE DISK ON CHANNEL "DSK"
JRST NOTAVL ;DEVICE IS BUSY

ENTER DKS,FILE ;CREATE A NEW FILE
JRST FILBAD ;CANNOT ENTER FILE NAME IN

;DISK DIRECTORY.
POPJ P,O ;RETURN-FILE IS NOW OPEN FOR

; DUMP MODE OUTPUT

;HERE IF DEVICE DSK: CANNOT BE OPENED
NOTAVL: OUTSTR [ASCIZ "?CANNOT OPEN DSK:
"] ;PRINT AN ERROR MESSAGE

EXIT ;RETURN TO THE MONITOR

;HERE IF CANNOT ENTER DUMP.BIN
FILBAD: OUTSTR [ASCIZ "?CANNOT CREATE DSK:DUMP.BIN
"] ;PRINT ERROR MESSAGE

;RETURN TO THE MONITOR

OPNBLK: EXP .I0DMP ;SELECT DUMP MODE
SIXBIT /DSK/ ;DEVICE NAME
EXP 0 ;NOBUFFERS

FILE: SIXBIT /DUMP/ ;FILE NAME
SIXBIT /BIN/ ;EXTENSION
EXP 0 ;DEFAULT PROTECTION
EXP 0 ;DEFAULT DIRECTORY

;SUBROUTINE TO WRITE DATA IN BUFFER
;CALL WITH:

FILL BUFFER WITH DATA
PUSHJ P,DMPOUT
RETURN HERE

DMPOUT: OUT
POPJ

OUTSTR

DSK,OUTLST ;WRITE THE DATA
P,O ;NO ERRORS - RETURN TO CALLER
;ASCIZ "?OUTPUT ERROR FOR DSK:DUMP.BIN

"]
EXIT

;1/0 LIST FOR THE OUTPUT
OUTLIST: IOWD BUFSIZ,BUFFER

EXP 0
BUFFER: BLOCK BUFSIZ

;PRINT AN ERROR MESSAGE
;QUIT

;WRITE BUFSIZE WORDS FROM BUFFER
;END OF I/O LIST
;OUTPUT BUFFER

7-8

)

"

.,

)

)

)

)

)

I/O Programming

;SUBROUTINE TO CLOSE OUT FILE
;CALLWITH:

PUSHJ P,DMPDON
RETURN HWERE

DMPDON: CLOSE
STATO
POPJ
OUTSTR

"]
EXIT

7.3.2 Buffered Data Modes

DSK, ;WRITE THE END OF FILE
DSK,IO.ERR ;ANY ERRORS?
P,O ;NO-RETURN
;ASCIZ "?ERROR CLOSING DSK:DUMP.BIN

;PRINT ERROR MESSAGE
;RETURN TO THE MONITOR

Data modes 0, 1,2, 10, 13, and 14 are buffered data modes (refer to Table 7-5). The address specified in an INPUT,
IN, OUTPUT, or OUT monitor call may be used to alter the normal sequence of buffer reference. If the specified
address is 0, the address of the next buffer is obtained from the right half of the second word of the current buffer.

) If the specified address is non-zero, it is the address of the second word of the next buffer to be referenced.

)

)

"

)

The buffer pointed to by the specified address can be in a separate ring from the present buffer. Once a new buffer
location has been established, the following buffers are taken from the ring specified by address. Since buffer rings
are not changed ifIfO activity is pending, it is not necessary to issue a WAIT monitor call.

7.3.2.1 Buffered Input - If no input buffer ring was established (devices other than disk) when the first INPUT or
IN monitor call was executed, on buffered input a 2-ring buffer ring is set up. If no buffer ring was established for a
disk device when the first INPUT or IN monitor call was executed, the default number of buffers will be set up (this
default value is specified at monitor generation time via MONGEN). Buffered input may be performed either syn­
chronously or asynchronously. If bit 30 of the status word is set, each INPUT and IN monitor call will perform the
following:

1. The use bit in the second word of the buffer is cleared, thereby making the buffer available for refilling
by the monitor.

2. An advance is made to the next buffer (by moving the contents of the second word of the current buffer
to the right half of the first word of the 3-word buffer header).

3. Control is returned to the user's program if an end-of-file or error condition is encountered. Otherwise,
the monitor will start the device, which fills the buffer and stops data transmission.

4. The number of bytes in the buffer is computed from the number of words in the buffer (right half of the
first data word in the buffer) and the byte size, and the result is stored in the third word of the buffer
header.

5. The position and address fields of the byte pointer are set in the second word of the buffer header, so
that the first data byte is obtained by an ILDB instruction.

6. Control is returned to the user's program.

In synchronous buffered mode, the position of a device, relative to the current data, is easily determined. The asyn­
chronous input mode differs in that once a device has been started, successive buffers in the ring may be filled at the
interrupt level without stopping transmission until a buffer whose bit is 1 is encounted. Control is returned to the
user after the first buffer is filled .. The position of the device, relative to the data currently being processed by the
user's program, depends on the number of buffers in the ring and when the device was last stopped.

7.3.2.2 Buffered Output - If the first word of the buffer header is 0, (i.e., no output buffer ring has been estab­
lished, the following will occur when the first OUT or OUTPUT monitor call is executed the default number of
buffers will be set up. The default is established at monitor generation time viaMONGEN.

NOTE
For non-disk devices, a 2-buffer ring will be set up.

7-9

I/O Programming

If the ring use bit (bit 0 of the first word of the buffer header) is 1, it will be set to O. The current buffer will be
cleared to zeroes, and the position and address field of the buffer byte pointer (i.e., the second word of the buffer
header) will be set, so that the first byte will be properly stored in an IDPB instruction. The byte count (i.e., the
third word in the buffer header) will be set to the maximum number of bytes that can be stored in the buffer, and
control will be returned to the user's program.

The first execution of an OUT or OUTPUT monitor call initializes the buffer header and the first buffer, but it does
not transmit data. Note that a dummy OUT or OUTPUT is required in buffered mode I/O. If the ring use bit con­
tains 0 and bit 31 of the file status word is 0, the number of words to be in the buffer is computed from the address
field of the buffer byte pointer (i.e., the second word of the buffer header) and the buffer pointer (i.e., the first word
of the buffer header). The result will be stored in the right half of the third word of the buffer.

If bit 31 of the file status word contains 1, the monitor assumes that the user has already set the word count in the
right half of the third word. The buffer use bit (bit 0 of the second word of the buffer) is set to I, which indicates
that the buffer contains data to be transmitted to a device.

If the device is not currently active (i.e., not receiving data), the device is started. The buffer header is then
advanced to the next buffer by setting the buffer pointer in the first word of the buffer header. If the buffer use
bit of the new buffer contains 1, the monitor places the job into a wait state until the buffer is emptied at the inter­
rupt level. The buffer is then cleared to zeroes (provided that the OPEN bit was not specified), the buffer byte
pointer and the byte count are initialized in the buffer header, and control is returned to the user's program.

7.3.2.3 Synchronization of Buffered I/O - Sometimes it is desirable to delay a device until it completes its I/O
activities. An example of this would be when trying to recover from a transmission error. The WAIT monitor call
returns control to a user's program when all data transfers on a specific channel have been satisfied. The WAIT
calling sequence is

WAIT channel,
only return

If no device has been associated with the specified channel number control will be returned immediately. After the
device has been stopped, the position of the device, relative to the data currently being processed by the user's pro­
gram, can be determined by the buffer use bit.

7.3.3 Buffer Structure
Buffers are used when transmitting data to account for the different speeds between a sending device and a receiving

)

-,

)

)

device. Before performing any I/O, the device to be used must be associated with one of the 16 software I/O chan-)
nels. All software I/O channels are bi-directional (i.e., they may be used to perform both input and output). -

The size of the buffer is different depending on the type of device used. A buffer ring header must be declared in a
user program; it is a three words in length and is described in further detail in section 7.3.3.1. Buffers are created at
the location specified by .JBFF in the Job Data Area; when buffers are filled, .JBFF will contain a value equal to the
number of words in the buffer plus one.

7.3.3.1 Buffer Ring Header Block - The location of the buffer ring header block is specified by an argument to
either of the INIT, OPEN, or FILOP. monitor call. The information stored in the buffer ring header block is placed
there by the monitor in response to user execution of certain monitor calls. The user program has access to the
information within the buffer ring header block, which is necessary information that is required to fill and empty
buffers.

The buffer ring header block is represented in Figure 7-1.

7-10

where:

I/O Programming

o 17 18 35

use pointer to
bit

x
current buffer

byte pointer

byte counter

universal device index (MPX only)

Figure 7-1. Buffer Ring Header Block

the use bit (bit 0, BF.VBR) indicates whether or not there has been input into or output from the buffer
pointed to by pointer to current buffer. (If bit 0 equals 1, the buffer is available to the filler).

x if set (bit 1 = 1, BF .IBC) inhibits the buffer from being cleared.

pointer to current buffer (.BFADR) points to the second word of the current buffer.

byte pointer (.BFPTR) points to the byte within the current buffer which is the next input/output data.
(The byte size is determined by the data mode.)

byte counter (.BFCTR) is the count of the number of bytes remaining in the current buffer.

A user program cannot use a single buffer ring header block for both input and output. A single buffer ring header
cannot be used for more than one I/O function at the same time. Users cannot use the same buffer ring header block
for simultaneous input and output; only one buffer ring is associated with each buffer ring header block.

7.3.3.2 Buffer Ring - The buffer ring is established by the INBUF and OUTBUF monitor calls, or if neither of
these exists, when the first IN, INPUT, OUT, or OUTPUT call is executed a 2-buffer ring will be set up. The address
specified in a INBUF or OUTBUF call specifies the number of buffers in the ring. The location of the buffer ring is
specified by the contents of the right half of .JBFF in the Job Data Area. The monitor then updates .JBFF to point
to the first location past the storage area of the buffers.

All buffers in a ring are identical in structure, refer to Figure 7-2.

o 17 18 35

file status word .BFSTS

xl size buffer 2 .BFHDR

bookkeeping
word count

word .BFCNT

data word 1

data word n

Figure 7-2. Buffer Structure

7-11

where:

I/O Programming

file status word (.BFSTS) contains the status of the file when the monitor advances to the next buffer in
the ring. This word contains the errors received while working with buffered mode, they are not
recorded in the GETSTS word.

x (BF.IOU) is the use bit for the buffer which is a flag that indicates whether or not the buffer contains
active data. This bit is set to a 1 by the monitor when the buffer is full on output or it is being filled on
input (i.e., if the use bit = 0, the buffer is available to the ftller; if the use bit = 1, the buffer is available
to the emptier.) The use bit prevents the monitor and the user's program from interfering with each
other by attempting to use some of the same buffer simultaneously. Buffers are advanced by the moni­
tor calls and not by the user's program. The use bit should never be changed by a user program.

size (BF .SIZ) is the size of the data area of the buffer plus one. The size of this data area is dependent
on the type of device being used.

word count (BF.CNT) is reserved for a count of the number of words that actually contain data.

bookkeeping word is reserved for bookkeeping purposes, depending on the particular device and the data
mode. This word contains the Universal Device Index (UDX) for MPX devices.

A user program can check the contents of the use bit in the current buffer by either of the following procedures:

MOVE ac, @RING
TLNE aC,400000

if the user program
labeled the buffer
ring header block
RING.

SKlPL @RING

which skips if the use
bit contains 1.

7.3.3.3 Monitor Generated Buffers - Each device lias a specified buffer size associated with it. The INBUF and
OUTBUF calls set up a ring ofn standard-size buffers associated with the input and output buffer headers, respec­
tively, which are specified by the last OPEN/INIT call of the specified data channel. If the number of buffers is zero
for either an INBUF or an OUTBUF call, the default number of buffers for the specified device will be set up. If
the specified device has not been initialized by either an OPEN, INIT or FILOP. monitor call, the monitor will stop
the job and print the following message on the user's terminal;

?I/O TO UNASSIGNED CHANNEL AT USER addr

The storage space for a buffer ring is taken from successive locations, beginning with the location specified in the
right half of .JBFF of the Job Data Area. This location is set to the program break, which is the first free location
above the program area, by a RESET monitor call. If there is insufficient space to set up the buffer ring the moni­
tor will automatically attempt to expand the user's core allocation. If this core reallocation fails, the monitor will
stop the job and print the following message on the user's terminal:

?ADDRESS CHECK FOR DEVICE device AT USER addr

The above message is also printed when an INBUF (or OUTBUF) is attempted when the last INIT (OPEN or FILOP.)
calIon the specified channel did not specify an input (or output) buffer ring header block.

7.3.3.4 User Generated Buffers - The following code illustrates an alternative to the use of the INBUF operator.
Analogous code may replace OUTBUF. This code operates similarly to INBUF, size must be set equal to the greatest
number of data words expected in one physical record.

GO: OPEN
JRST

MOVE

I,OPNBLK ;INITIALIZE ASCII MODE
NOTAVL
0, [XWD 400000,BUF 1+ 1

7-12

)

-,

/,

~

)

)

)

)

)

h'

)

)

)

'"
.~

'1

)

I/O Programming

;THE 400000 IN THE LEFT HALF
;MEANS THE BUFFER WAS
;NEVER REFERENCED>

MOVEM
MOVE
MOVEM
JRST

O,MAGBUF ;SET UP NONSTANDARD
0, [POINT BYTSIZ,0,35] ;BYTE SIZE
0,MAGBUF+1
CONTIN ;GO BACK TO MAIN SEQUENCE

OPNBLK: °
SIXBIT/MATO/
XWD O,MAGBUF

MAGBUF: BLOCK 3

BUFl: °
XWD SIZE+1 ,BUF2+1

BLOCK SIZE + 1

;MAGNETIC TAPE UNIT °
;INPUT ONLY
;SPACE FOR BUFFER RING
;HEADER
;BUFFER 1, FIRST WORD UNUSED
;LEFT HALF CONTAINS
;DATAAREA
;SIZE+1, RIGHT HALF HAS
;ADDRESS OF NEXT BUFFER
;LEFT HALF CONTAINS DATA
;AREA.

7.4 DEVICE TERMINATION AND REASSIGNMENT

7.4.1 RELEASE A Device
When all transmission between the user's program and a device is finished, the program may relinquish the device by
performing a RELEASE monitor call. Its calling sequence is

RELEASE channel,

If no device is associated with channel, RELEASE (op code 071) returns control immediately. Otherwise both input
and output sides of channel are CLOSEd, all locks created by ENQ/ENQ are released, and the correspondence
between channel and the device, which was established by an INIT/OPEN/FILOP., is terminated.

If the device is neither associated with another data channel nor assigned by the ASSIGN or MOUNT commands, it
is returned to the monitor's pool of available facilities. Control is returned to the user's program.

7.4.2 The RESDV. Monitor Call
The RESDV. monitor call allows a program to reset a single channel. It is similar to the RELEASE call, except that
no files or buffers are closed. Its calling sequence is

MOVEI ac, channel
RESDV. ac,

error return
normal return

On a normal return, the channel is reset. Files that are being created on the channel are deleted; any older generation
with the same file name remains. All I/O transmissions on the channel are stopped; and device allocations made by
INIT or OPEN or FILOP. on the specified channel are closed. The device, is returned to the monitor's pool of avail­
able devices unless it has been ASSIGNed by either the ASSIGN, ALLOCATE, or MOUNT commands (refer to
DECSYSTEM Operating System Channel).

On an error return, the AC will contain -1 if no device was associated with the speCified channel. If the call has not
been implemented, the AC will be unchanged.

7-13

I/O Programming

7.4.3 The REASSIGN Monitor Call
The REASSIGN monitor call will reassign a device under program control to a specified job. The device's logical
name assignment is not cleared, if the program doing the REASSIGN has JACCT or [1,2] privileges. REASSIGN's
calling sequence is

MOVEI ac, job-number

MOVEI
ac+1, [SIXBIT/devicename/] f
ac+ 1, channel i
ac+1, udx ,

{
MOVE

MOVEI
REASSIGN ac,
only return

where: job number is the number of the job for which a device is to be assigned.
device is the physical or logical name of the device.
channel is the number of the channel on which the reassigned device has been initialized.
udx is the universal device index for the device.

A device can be reassigned if it is assigned to the calling job, or if it is not assigned to any job and it is not detected.
A RELEASE is performed on the device unless

1. the job issuing the call is reassigning the device to itself (-1 in the AC), or
2. the job is reassigning the device by specifying 0 in the AC.

If the device is a restricted device and 0 is in the AC when the REASSIGN call is made, the device is returned to the
restricted pool of devices and it can then be reassigned to a non-privileged job by a privileged job.

On a return, if the contents of the AC is 0, it indicates that the specified job does not exist. If the contents of the
AC is -1 it indicates that

1. the device has not been assigned to the new job.
2. the device is the job's controlling terminal.
3. the logical name is a duplicate logical name, or
4. the device specified is connected to an MPX channel, and no UDX was specified.

7.4.4 The DEVLNM Monitor Call
The DEVLNM monitor call sets the logical name for a specified device. Its calling sequence is

{MOVEI
MOVEI
MOVE
MOVE

ac, channel }
ac, udx
ac, [SIXBIT/devicename/]
ac+ 1, [SIXBIT/logicalname/l

DEVLNM ac,
error return

normal return

where: devicename is the name of the device for which a logical name is desired.
channel is the channel number on which the specified device has been initialized.
udx is the universal device index for the specified device.
logical name is the logical name to be assigned to the device.

On a normal return, the AC and AC+ 1 are unchanged. On an error return, the AC will contain one of the error codes
listed in Table 7-6.

7-14

1
)

)

)

"

\

~

~.

")

)

)

\
!

Code Mnemonic

I/O Programming

Table 7-6
DEVLNM Error Codes

Meaning

-1 DVLNBX% A non-existent device or channel number has been specified.

-2 DVLIU% The logical name specified is already in use.

-3 DVLBA% The device specified has not been ASSIGNed or INITed.

7.5 DEVICE INFORMATION

7.5.1 The DEVSTS Monitor Call (CALLI 54)
The DEVSTS monitor call retrieves the device status word of the device data block (DDB) for a specified device. Its
calling sequence is

MOVEI
MOVE
DEVSTS

ac, channel
ac, [SIXBIT/device/]
ac,

error return
normal return

where: channel is the number of the software I/O channel associated with the device.
device can be one of the following:

CDR
CDP
DTA
PTR·

PTP
DSK
LPT
PLT

The device status word is used by a device service routine to save the results of a CONI after each interrupt from the
device.

The DEVSTS monitor call is not meaningful and returns a word of zeroes under the following conditions:

1. When an MPX channel/device has been speCified.
2. When a device controlled by a front-end has been specified.
3. When a magnetic tape or disk device has been specified.
4. When used in asynchronous buffered I/O mode. Unless a WAIT monitor call has first been issued to

ensure synchronization of the actual data transferred with the device status returned.

On a normal return, the contents of the device status word is returned in the AC. If the device service routine does
not store a CONI, useless information may be returned.

Note that the error return is not taken when the device service routine does not use the device status word for its
intended purpose. Devices with both a control and data interrupt will store the controller CONI (DTA, DSK, DSK2,
DPC, DPC2).

7.5.2 The DEVCHR Monitor Call (CALLI 4)
The DEVCHR Monitor Call will return the physical characteristics associated with a specified device. Its calling
sequence is

7-15

MOVE ac, [SIXBIT/device/]

{MOVEI ac, channel}
MOVEI ac, udx
DEVCHR ac,

error return
normal return

I/O Programming

where: device is the physical/logical name of the desired device.
channel is the right-justified software I/O channel associated with the desired device.
udx is the universal device index associated with an MPX device.

If the specified device is not found or the specified channel has not been initialized, the AC will contain a zero on the
return from the call. If the device specified is found, the AC will contain the device's characteristics (refer to
Table 7-7).

7.5.3 The DEVTYP Monitor Call (CALLI 53)
The DEVTYP monitor call returns the physical properties associated with a specified device. Its calling sequence is

MOVE ac, [SIXBIT/device/]

ac, Channel} { MOVEI
MOVEI
DEVTYP ac,

ac, udx

error return
normal return

On a normal return, the device type bits will be returned in the AC, refer to Table 7-8. If the AC contains 0 on a
normal return, it is an indication that either the c device does not exist or the channel has not been initialized.

On an error return, the AC remains unchanged, indicating that the DEVTYP monitor call has not been implemented,
in which case, the DEVCGR monitor call may be used.

7.5.4 The DEVSIZ Monitor Call (CALLI 101)
The DEVSIZ monitor call is used to determine the buffer size for a device, if the user wants to allocate core. Its
calling sequence is

MOVEI . ac, addr
DEVSIZ ac,

errar return
normal return

addr: EXP data mode
addrrl: SIXBIT / device /

channel

where:

udx

addr points to a 2-word argument block. Data mode contains the bit settings the user set on an OPEN
or INIT.

device is the physical/logical name of the device.

channel is the number of the software I/O channel associated with the device.

udx is the universal device index.

If the device exists and the data mode is legal, the AC will contain in bits 0-17, the default number of buffers, and
in bits 18-35 the default buffer size (including the first three words of the buffer).

7-16

)

.-'

.>

)

)

)

)

)

Bit Mnemonic

0 DV.DRI

:1

1 DV.DSK

2 DV.CDR

3 DV.LPT

4 DV.TTA

5 DV.TTU

6

7 DV.DIS

) 8 DV.LNG

9 DV.PTP

10 DV.PTR

11 DV.DTA

12 DV.AVL

13 DV.MTA

14 DV.TTY

) 15 DV.DIR

16 DV.lN

17 DV.OUT

18 DV.ASC

19 DV.ASP

20 DV.MI7

21 DV.MI6

} 22 DV.MI5

23 DV.MI4

24 DV.M13

25 DV.MI2

26 DV.Mll

27 DV.MI0

28 DV.M7

29 DV.M6

30 DV.M5

31 DV.M4

32 DV.M3

33 DV.M2

) 34 DV.Ml

35 DV.MO

I/O Programming

Table 7-7
Device Characteristics

Meaning

The DEC tape directory is in core. This bit is cleared by an ASSIGN call or a
DEASSIGN call to the specified DECtape unit.

The device is a disk unit.

The device is either a card reader (DVIN = 1) or a card punch (DVOUT = 1).

The device is a line printer.

The device is a terminal that is controlling a job.

TTY DDB is in use.

Reserved.

The device is a display unit.

The device has a long dispatch table (monitor calls other than INPUT, OUTPUT,
CLOSE, and RELEASE perform real functions).

The device is a paper tape punch.

The device is a paper tape reader.

The device is a DECtape unit.

The device is available to this job, or this device is already assigned to this job.

The device is a magnetic tape unit.

The device is a terminal.

The device is a directory device (disk or DECtape).

The device can perform input.

The device can perform output.

The device has been ASSIGNED.

The device has been assigned via INIT/OPEN.

Mode 17 - dump - .I0DMP

Mode 16 - dump records - .I0DPR

Mode 15 - Image dump - .I0IDP

Mode 14 - Binary - JOBIN

Mode 13 - Image Binary - JOBIN

Mode 12

Mode 11

Mode 10 - image - .IOIMG

Mode 7

Mode 6

Mode 5

Mode 4

Mode 3

Mode 2 - packed image - .IPOIM

Mode 1 - ASCII line - .I0ASL

Mode 0 - ASCII - .I0ASC
-

7-17

I

I

I

I

I

I

Bit Mnemonic

0=1 TY.MAN

1 - 11

12 = 1 TY.AVL

13 = 1 TY.SPL

14 = 1 TY.INT

15 = 1 TY.VAR

16 = 1 TY.IN

17 = 1 TY.OUT

18 - 26 TY.JOB

27 - 28

29 TY.RAS

30 - 35 TY.DEV

I/O Programming

Table 7-8
Device Type Bits

LOOKUP/ENTER mandatory.

Reserved for the future.

Device is available to this job.

Meaning

Spooled on disk. (Other bits reflect properties of real device, except variable buffer
size.)

Interactive device (output after each break character).

Capable of variable buffer size (user can get his own buffer lengths).

Capable of input.

Capable of output.

Job number that currently has device INITed or ASSIGNed.

Reserved for the future.

Device is a restricted device (i.e., can be assigned only by a privileged job or the
MOUNT command).

Device type code.

Code Mnemonic Meaning

0 .TYDSK Disk of some sort
1 .TYDTA DEC tape
2 .TYMTA Magnetic tape
3 .TYTTY TTY or equivalent
4 .TYPTR Paper-tape reader
5 .TYPTP Paper-tape punch
6 .TYDIS Display
7 .TYLPT Line printer
10 .TYCDR Card reader
11 .TYCDP Card punch
12 .TYPTY Pseudo-TTY
13 .TYPLT Plotter
14 .TYEXT External task
15 .TYMPX Software MPX
16 .TYPAR PA611R on-DC44
17 .TYYCR PC 11 (R) on DC44
20 .TYPAP PA611P on DC44
21 .TYLPC LPC-ll on DC44
22 .TYPCP PC-II (P) on DC44
23-57 Reserved for Digital
60-77 Reserved for customer

The error return is taken if the call is not implemented, in which case, the AC is unchanged. On an error return, one
of the error codes listed in Table 7-9 will be returned in the AC.

7-18

)

-4

)

)

'\
)

I
"

I

)

)

)

I/O Programming

7.S.SThe WHERE Monitor Call (CALLI 63)
The WHERE mointor call returns the physical node/station number of the specified device. Its calling sequence is

Error Code Mnemonic

0 DVSDM%

-1 DVSNX%

-2 DVSIM%

MOVE ac, [SIXBIT/device/]
MOVEI ac, channel
WHERE ac,

error return
normal return

Table 7-9
DEVSIZ Error Codes

Meaning

Device exists, but the data mode is dump mode.

Non-existent device.

Illegal mode.

where: device is a left-justified SIXBIT device name.
channel is a right-justified software I/O channel number associated with the device.

If aPR is specified as the device name, the node/station number at which the job is logically located is returned. If
CTY is specified, the node/station number of the job's command decoder is returned. If TTY is specified, the node/
station number at which the job's terminal is physically located is returned.

On a normal return, the left half of the AC will contain the status of the node/station, and the right half of the AC
will contain the node/station number associated with the device. The possible status codes set for the node/station
are listed in Table 7-10.

Code Mnemonic

10 . RMSUL

4 . RMSUG

2 .RMSUD

.RMSUN

Table 7-10
Node/Station Status Bits

Meaning

The node/station is loaded .

The node/station is in the loading procedure .

The node/station is down.

The station is not in contact with the central site.

The error return is taken if the call is not implemented, the channel has not been INITed, or the device is non­
existent. Ifbit 13 = 1, the node/station is dial up.

7.S.6 The DEVNAM Monitor Call (CALLI 64)
The DEVNAM monitor call returns the SIXBIT physical hame of a device obtained through either a generic INIT/
OPEN or a logical device assignment. Its calling sequence is

MOVE ac, [SIXBIT/devicel]
MOVEI ac, channel
MOVEI ac, udx
DEVNAM ac,

error return
normal return

7-19

-

I

where:

I/O Programming

device is the logical/physical name of the device for which the physical device name is to be returned.
channel is the channel number on which the device has been INITed.
udx is the physical device index for an MPX device.

The normal return is taken if the specified device is found, and AC will contain the SIXBIT physical name. The
error return is taken if the call has not been implemented, in which case the AC is unchanged. The error return is
also taken if the specified channel has not been INITed or the specified device does not exist.

7-20

)

."

<l

)

)

)

)

)

8.1 FILE DEFINITION

CHAPTER 8

FILES

:(. A me is an ordered set of data stored on a peripheral device. The extent of a file on input is determined by an end­
of-me condition, which is different depending on the device used. The extent of a me on output is determined by
the amount of information written by an OUT or OUTPUT monitor call, up through and including the next CLOSE
and RELEASE monitor call.

)

)

c,

8.2 STRUCTURE OF DISK FILES
The me structure of a disk system minimizes the number of disk seeks needed for sequential and/or random access
to a me during I/O. The monitor automatically assigns physical space for me data, when a user program writes or
deletes a logical me.

Disk files may be any length, and each user can have as many disk mes as disk space for that user will allow. Files
can be simultaneously read and updated, allowing shared data bases (refer to Enqueue/Dequeue, Chapter 16). A new
generation of a me may be recreated by one user while other users continue to read the old generation, allowing a
smooth replacement of shared data files and programs. All users may selectively update portions of the file, rather
than creating new generations.

NOTE
The me structure described in this section is generally
transparent to the user; therefore, detailed knowledge of
this material is not essential for effective user-mode utili­
zation of the disk.

In the monitor there is one set of disk-independent routines for handling servicing of all disk and drum units. The
> set of routines interprets and operates on me structures, processes disk monitor calls, queues disk requests, and
makes optimization decisions.

All queues, statuses, and flags are organized by logical disk unit rather than physical disk unit. The monitor pri­
marily deals witn logical units within file structures, and it converts to physical units in the small device-dependent
routines just before issuing I/O commands. The device-dependent routines perform the I/O for specific storage
devices and translate logical block numbers into physical disk addresses. All references made to disk addresses refer
to the logical or relative addresses used by the system, and they do not refer to a physical addressing scheme (which
records sectors and tracks of a particular device). The basic addressable logical disk block is 200 (octal) 36-bit
words.

8.2.1 File Directories
A directory is a me which contains pointers to other mes on the disk. There are three levels of directories in each
me structure:

1. the master file directory (MFD),
2. the user me directory (UFD), and
3. sub-file directories (SFDs).

The master file directory consists of two-word entries, which are the names of the user me directories on the file
structure. The first word of the entry contains the project-programmer number of the user. The left half of the

8-1

Files

second word of the entry contains SIXBIT/UFD/; and the right half contains a pointer to the first cluster of the user
me directory (refer to Figure 8.1), The main function of the master file directory.is to serve as a directory of indio
vidual user file directories, A continued MFD is the MFDs of all file structures in the job's search list.

L
MASTER FILE

DIRECTORY

1 1

UFO -
10 10

UFO

20 20

UFO

· • •

!--

V

USER FILE
DIRECTORIES

DATA FILES

10 -0543

Figure 8·1, Basic Disk File Organization for Each File Structure

The entries within a user file directory are the names of files existing in a given project·programmer number area
within the file structure. The first word of each entry contains the file name in SIXBIT. The left half of the second
word contains the file name extension in SIXBIT, and the right half contains a pointer to the first cluster of the file
(see Figure 8·1). This pointer specifies both the unit and the block number of the file structure in which the file
appears. The right half of the directory entry is referred to as a compressed file pointer (CPF). A continued UFD is
all the UFDs for the same project·programmer number on all file structures on the job's search list.

When the user logged·in, each file structure for which he has a quota contains a UFD for his project·programmer
number. Each UFD contains the names of all the user's files for that file structure only. UFDs are created only by
privileged programs (Le., LOGIN in response to a LOGIN command, and OMOUNT/UMOUNT in response to a
MOUNT command). A user is not prevented from attempting to read a file in another user's UFD on a file structure
for which he does not have a UFD. Whether or not the user is successful depends on the protection specified for the
file being referenced.

As an entry in the user file directory, the user can include a sub·file directory (SFD), The sub·file directory is simi­
lar to the other types of directories in that it contains as 'data all of the names of files within its directory. This
directory is pointed to by a UFD or a higher-level SFD nested in any arbitrary tree structure. The maximum number
of nested SFDs allowed is defined via a MONGEN question and can be obtained from a GETTAB table (GETTAB
Table .GTLVD, Item Number 17). Files can be written or read in SFDs nested deeper than the maximum, but SFDs
cannot be created. (There is an absolute maximum of six, including the UFD.) Unlike UFDs, a sub-file directory
can be created by any program. A continued SFD, or sub-directory, is all of the SFDs on all file structures in the
job's search list with the same name and path.

)

'-...

)

)

)

This third level of directory allows groups of files belonging to the same user to be separate from each other. This is
useful when organizing a large number of files according to function. In addition, simultaneous batch runs of the
same program for a single user can use the same file names without conflicting with each other. As long as the files)
are in different sub·me directories, they are unique. Refer to Figure 8·2. .

8·2

" ~~" '-

I r RIB DATA J I RIB DATA I RIB DATA

LJ-L;..I-__ ..::N~ 1 1 1- N SAT t I r- N

1 1 UFO T - I I 4 SYS I -~ SAT

UFO T 1 4 If UFO I HOME R SYS'
UFO I SYS I -

3 3 SWAP

UFO I I SYS , I 1
MAINT U

10 10 SYS I
UFO I h -f--- BADBLK I - I--

SYS I '---I block 10,0

'- HOME N bIOC~
I sYS' -

I--
'- N ,. FILE 1 I '-----

10 10 EXT I
UFO' I -c- 1

00 w I----_-lr- L. N - 1 r--

FILEN I FILE 1 I--
SFD I I EXT'

I '--I ~
1 .. .-.---,

1 ~[J r-I-- L-I---

I SFO RIB ~A RIB SFD RIB

I '- N r- FILEY I r- N ,. N.- FILEZ Lr N

FILEN EXT I -i-J FILEY FILEZ EXi-l FILEZ

SFD , EXT' SFD 1 EXT I

I - ~
I -~

f--I - FILEZ - L-

SFO I
1O-054Z

Figure 8-2. Disk File Organization

~
iil
'"

Files

A file is uniquely identified in the system by a file structure name, a directory path, a file name and an extension.
The directory path is an ordered list of directory names, starting with a UFD, which uniquely specifies a directory
without regard to a file structure. The PATH monitor call is used to set or read the default directory path for a job
(refer to section 6.7). Default paths can be ajob's UFD, an SFD in ajob's UFD, a UFD different from the job's
UFD, or an SFD in another UFD. If a default path is not specified, it is the job's UFD. The notation
file.extension [ppn,A,B, ... ,n] designates the file named file.extension in the UFD ppn in the SFDn, which is in the
SFD ... , which is in the SFD A. A path to the file name file.extension is [ppn,A,B, ... ,n].

To improve disk access and core searching times, only UFD names are kept in the MFD (project-programmer num­
ber 1,1). All system programs are contained in another project-programmer number directory called the system
library (SYS: [1,4]). For convenience, both to users typing commands and to user programs, device name SYS:
is interpreted as the system library; therefore, no special programming is required to read a specified file from
device SYS: .

8.2.2 Job Search List
To a user, a file structure is like a device, that is, a file structure or a set of file structures may be specified by an
INIT/OPEN/FILOP. monitor call or by the first argument of the ASSIGN or MOUNT operating system command.
A console user specifies a file structure by naming the file structure and following it with a colon.

There is a flexible naming scheme that applies to file structures; however, most user programs INIT device DSK:,
which selects the appropriate file structure, unless directed to do otherwise by the user. The appropriate file struc­
ture is determined by ajob search list. Ajob search list is divided into two parts:

1. an active search list (usually referred to as the job search list), and
2. a passive search list.

The active search list is an order list of the file structures that are to be searched on a LOOKUP or ENTER when
device DSK: is used. The passive search list is an unordered list of file structures maintained by the monitor for
LOGOUT time. At this time, LOGOUT requires that the total allocated blocks on each UFD in both the active and
passive search lists be below the logged-out quota. Each job has its own active search list (established by LOGIN)
with file structures in the order that they appear in the administrative control file AUXACC.SYS. Therefore, a user
has a UFD for his project-programmer number in each file structure in which LOGIN allows him to have files. With
the MOUNT command, mounted file structures may be added to the active search list. The following is an example
of a search list.

DSKB,DSKA,FENCE,DSKC

)

)

DSKB and DSKA comprise the active search list. These file structures are represented by generic name DSK for this)
JOB. DSKC is the name of a file structure that was previously in the active search list. FENCE represents the bound-
ary between the active and the passive search lists.

Each file structure in a job search list may be modified by setting one or two flags with the JOBSTR monitor call:

1. Do not create in this structure if just generic DSK is specified.
2. Do not write in this file structure.

Setting the "do not create" flag indicates that no new files are to be created on this file structure unless explicitly
stated, For example, if the "do not create" flag is set

DSKA:FOO=

allows FOO to be created on DSKA, but

DSK:FOO=

8-4

)

')

Files

does not. For LOOKUPs on device DSK, the monitor searches the structures in the order specified by the job's
search list. For ENTERS where the me name does not exist (creating, see below), the me is placed on the first me
structure in the search list that has space and does not have the "do not create" flag set. For ENTERS when the
me name already exists on any me structure in the search list, the me is placed on the same structure that contains
the older me. If the write·lock bit is set for the me structure, a write-lock error (ERWLK%) is given. Because super­
seding is treated differently from creating, a user may explicitly place a me on a particular me structure, for'
example, a fast one with the "do not create" flag set, so that subsequent supersedes will remain on that me structure
even though generic DSK is used.

8.2.3 Storage Allocation Table (SAT) Blocks
Unique to each me name SAT.SYS. This me reflects the current status of every addressable block on the disk. Only
the monitor can modify the contents of SAT .SYS as a result of me creation, deletion, or space allocation, although
this me may be read by any user. The SAT me consists of bits indicating both the portion of me storage in use and
the portion that is available. To reduce the size of SAT.SYS, each bit can be used to represent a contiguolis set of
blocks called a cluster. Monitor overhead is decreased by assigning and releasing me storage in clusters of blocks
than in single blocks.

If a particular bit is on, it indicates that the corresponding cluster is bad or nonexistent or has been allocated to a
me. It mayor may not contain data (Le., files may contain allocated but unwritten clusters). If the bit is off, it
indicates that the corresponding cluster is empty, or available to be written on.

It is recommended that cluster sizes should evenly divide blocks on a unit. The refresher truncates to the largest
number of full clusters. With truncation, the last few blocks are not included in the addressing space, but may be
used for swapping; therefore, they are not part of SWAP.SYS even though they are in the swapping space. In addi­
tion, any bad blocks in the extra blocks are not included in SWAP.SYS.

J 8.3 DISK FILE FORMAT

)

)

All disk mes consist of two parts

1. pure data, and
2. information needed by the system to retrieve the data.

Each disk data block is 200 octal 36-bit words in length. If a user outputs a partially-filled buffer to a disk unit a
full block of data will be written to the disk (Le., trailing zeroes will be appended at the end to fill the 200 octal
words). On input at a later time, the block will appear to have 200 octal words. The word counts associated with
the individual disk blocks are not retained by the monitor, except for the last block in the me.

Data is referenced on the disk by the monitor by examining a chain composed of three links. The chain is trans­
parent to the user, but the chain may be thought of as being analogous to a DECtape directory. The first link in the
chain is a two word directory entry that points to a second link, which is the retrieval information block (Le., RIB).
The RIB points to the third link, which is the first data block in the me.

The RIB contains pointers to the entire me. The information in the RIB is stored and accessed separately from the
me data, increasing system reliability because of the decreasing probability of destroying RIB information. The
number of positionings needed for random access is reduced, improving system performance.

When a me is CLOSEd, the monitor writes a copy of the RIB immediately after the last data block in the me. If the
first RIB is bad or lost, the monitor allows a recovery program to use the copied RIB. Consequently, a data me of
n blocks has two overhead blocks:

1. relative block number 0, which contains the primary RIB, and
2. relative block number n + 1, which contains the copied RIB.

8-5

Files

8.4 ACCESS PROTECTION

8.4.1 File Access Privileges
Every file has a protection code associated with it indicating who mayor may not access the file. The protection
code is stored in 9'bits of the RIB. The 9-bits are divided into 3 classes:

1. the first three bits refer to the owner of the file,
2. the second three bits refer to users with the same project number as the owner of the file (Le., any user

logged-in under the same project number as the owner, regardless of programmer number), and
3. all other users.

Ordinarily, the owner of a file is the user whose programmer number matches the directory containing the file,
regardless of project numbers.

NOTE
Installations should not assign the same programmer number
to different users, even when the users are on separate proj­
ects .. A user who works on several projects may retain his
programmer number and retain ownership of all of his files
(regardless of their associated project number).

The definition of the file owner is determined at monitor generation time (via MONGEN). No matter what an
installation defines as the file owner, project numbers a through 7 are always independent of the project-program­
mer number. (I.e., a user having a programmer number of 1234,4 is not considered the owner of files in 1,4).

The access protection codes and their meanings are listed in Table 8-1.

Table 8-1
Access Protection Codes

Code Mnemonic Meaning

7 .PTNON The greatest protection of file access, which means there are no access
privileges. The owner may LOOKUP the file to change the access code
(via RENAME). For the file owner, a access protection code of 7 is
equal to codes 6 and 5.

6 .PTEXO The file can only be executed. If any user, other than the file owner,
issues a LOOKUP, the error return will be taken. The only way to access
the file is via the RUN or GET operating system commands, and the
RUN monitor calL

5 . PTRED The class of users can read or execute the file .

4 .PTAPP The class of users can append to the file, read the file, or execute it.

3 .PTOPD The class of users can update, read and execute the file, or append to the
file.

2 .PTWRI The class of users can write, update, append to, read and/or execute the
fIle.

.PTREN The class of users can rename the file, write, update, append to, read
and/or execute the file.

a .PTCPR The class of users can change the protection code of the file, rename the
file, write, update, append to, read and/or execute the file.

8-6

)

)

)

)

!

,.

Files

-,
) Figure 8-3 illustrates the 9-bit protection field of a file that has a protection code of OS7 .

,,,:!

\
/

)

)

"
i,

"

'"

)

owner project members others

r r_ 'r -A. 'r - A

"
I 0 I 0 I 0 I I 0 I 1 I I I I

Figure 8-3. Access Protection Code

The access protection code illustrated in Figure 8-3 indicates

1. the owner of the file has complete file privileges (code 0),
2. the project members have read and execute privileges (code S), and
3. all other ~sers have no access privileges (code 7).

The greatest protection that a file can have is code 7, and the least protection is code O. Usually the owner's field is
o or 1. However, it is always possible for the owner of a me to change the access protection code associated with the
file, even if the owner's protection is not set to O. Therefore, codes 0 and 1 are equivalent when they appear in the
owner's field. Access protection can be changed by executing the RENAME monitor call or by using the PROTECT
operating system command as follows:

PROTECT filename. extension <nnn>

where: filename. extension is the name and extension of the file for which its protection code is to be changed.
<nnn> is the desired protection code for the file.

When an ENTER call is executed that specifies a protection code and the file does not exist, the monitor will sub­
stitute the standard protection code as defined by the installation. The normal system standard is OS7. This protec­
tion prevents users in different projects from accessing another user's files; however, a standard protection of OSS is
recommended for in-house systems where privacy is not as important as the capability of sharing files among proj­
ects. No program should be coded to assume knowledge of the standard protection code. If it is necessary to use
this standard, it should be obtained through a GETTAB monitor call, refer to Chapter 19.

To preserve files with KJOB, a protection code of 1 in the owner's field should be associated with the files. KJOB
preserves all fIles in a UFD for which the protection code for the owner is greater than zero. The PRESERVE
operating system command can be used to obtain a protection code of 1 in the owner's field.

8.4.2 Directory Privileges
The protection code associated with each file completely describes the access rights to that file, independent of the
protection code for the UFD. UFDs and SFDs can be read in the same manner as files, but they cannot be written
explicitly. For UFD and SFD privileges, users are divided into the same three classes as for files. Each class has
three independent bits which are listed in Table 8-2.

The owner is permitted to control the access to his own UFD and/or SFD. It is always legal for the owner to issue
a RENAME to change the protection of his directories. Any program can create or delete SFDs; however, only
privileged programs are allowed to create, supersede, or delete an UFD. The monitor checks for the following types
of privileged programs:

1. jobs logged-in under project-programmer number 1 ,2 (e.g., FAILSAFE), and
2. jobs running with the lAcCT bit set in JBTSTS (e.g., LOGIN and LOGOUT).

8-7

Files

Table 8-2
Access Privileges to UFDs and SFDs

Bit Access Privileges !

4 Allow LOOKUPs in the UFD or SFD.

2 Allow CREATEs in the UFD or SFD.

1 Allow the UFD or SFD to be read as a file.
____ J

Privileged programs are allowed to

l. create UFDs (and SFDs),
2. delete empty UFDs (and SFDs),
3. set privileged arguments to LOOKUP, ENTER, and RENAME, and
4. ignore file protection codes.

UFD and SFD privileges are similar with the exception that SFDs can be RENAMEd and DELETEd by both privi­
leged programs and the owner of the SFD, if the owner's protection field is 7.

8.5 FILE NAMES
Every file has a file name and, optionally, a file name extension written in the following format:

filename. ex tension

where: filename can be 1 to 6 characters in length.
extension can be 1 to 3 characters in length .
. must always separate the file name from the file name extension, when the file name extension is
specified.

The name of the file is associated with a particular me when that me is created. At any time after that the name of
the me may be changed via the RENAME command (refer to DECsystem-lO OPERATING SYSTEM COMMANDS)
or the RENAME monitor call.

8.5.1 The RENAME Monitor Call (Op Code 50)
The RENAME monitor call performs the three function listed below:

1. It alters the me's name, the file name extension, and/or the me access privileges associated with a
particular file.

2. RENAME can be used to change an SFD name, but an attempt to change the extension or project­
programmer number associated with an SFD results in a protection error. An error also results if an
attempt is made to alter the name, extension, or project-programmer number associated with a UFD or
the project-programmer number of an ersatz device.

3. It deletes a me associated with a specified channel on a directory device.

a LOOKUP, an ENTER, or a FILOP. must be performed to identify the file for RENAME. The calling sequence for
the RENAME operator is

RENAME channel,addr
error return

normal return

addr: SIXBIT/filename/
SIXBIT/ ex tension/
mode, time,date
XWD project-no,programmer-no.

8-8

)

~

)

)

)

i'

'"

)

...

)

)

"

)

where:

Files

channel specifies the channel number associated with the device on which the file resides.

addr points to a two-word argument block (unless using the extended argument block, which is described
in section 8.6.1.2 and Table 8-4.

filename is a 1 to 6 character file name (specified in SIXBIT, left-justified) .

extension (bits 0-17) is 1 to 3 SIXBIT characters, left-justified.

project-programmer number can be either 0, XWD O,addr, the default ppn, or not equal to the default
ppn. If 0 is specified, no change will be made in the directory of the file. IfXWD O,addr is specified,
the file is renamed into a new SFD/UFD according to the path specified by addr. If the default ppn is
specified, the file will be renamed in that UFD. If something other than the above three alternatives is
specified, the monitor will delete the directory entry from the old directory (UFD/SFD) and will insert
the entry into the specified UFD.

The only way to RENAME a file into an SFD different from the one in which it currently resides is to give an
explicit path via an argument block.

To delete a file only after all read references have been made, specify 0 in addr+ 1 of the argument block.

To set the access protection code, bits 0 through 8 are used in addr+2 in the argument block.

If the me name and the me name extension specified in the argument block differ from the current name and exten­
sion, a search is made for the specified name and extension. If a match is not found, the following occurs:

1. the current me name is changed to the file name specified in the argument block.
2. the current file name extension is changed to the extension specified in the left half of addr+ 1 in. the

argument block.
3. the access protection code is set to the contents of bits 0-8 in addr+2 of the argument block.
4. the access date is unchanged.

The error return is taken under the following conditions. An error code will be returned in the right half of
.RBEXT.

1. When no me has been selected on the channel specified.
2. When the specified file cannot be found.
3. When the me specified is currently in the process of writing, superseding, or renaming.
4. When the user does not have the appropriate privileges to RENAME the me.
5. When the me name and extension specified differ from the current me name and extension, a search is

made for the name and extension specified. If a match is found, the error return is taken.
6. The User File Directory (UFD) has been deleted.

If no device has been previously associated with the channel specified, the monitor stops the job and prints the
following message on the user's terminal:

?I/O TO UNASSIGNED CHANNEL AT USER PC LOC addr

A CLOSE is optional because RENAME performs a CLOSE. However, a CLOSE should not be issued between a
LOOKUP and a RENAME if the me is not in the default directory path or cannot be obtained from the default
path by scanning because CLOSE erases all memory of the path of the file. If a CLOSE is performed and the file is
not in the default path, the RENAME returns the FILE NOT FOUND error. In addition, disk accesses are mini­
mized if a CLOSE does not precede a RENAME.

RENAME enters the information specified in addr through addr+3 (except for mode and access date) into the
retrieval information and proper directory. If addr contains zero, RENAME has the effect of deleting the file.

8-9

Files

Although only a privileged job can delete an empty UFD, any job can delete an empty SFD. If the directory is not
empty or if a job is currently using the directory, the RENAME returns the DIRECTORY NOT EMPTY error.
(Refer to Appendix E for the list of error codes,) Refer to section 8.6.1.4 for a note on error recovery procedures.

8.6 FILE SELECTION

8.6.1 LOOKUP/ENTER A File
There are several methods for writing on the disk, If a user does an ENTER with a file name not previously existent
in his UFD, he is creating a file. If the file name was previously existent in his UFD, the user is superseding the file
(Le., the old generation of the file stays on the disk and is available to anyone who wants to read it until the user
does the output CLOSE). At the time of a CLOSE, the user's UFD is changed to point to the new generation of the
file, and the old generation is either deleted immediately or marked for deletion at a later time if someone is cur­
rently reading it. The space occupied by deleted files is always reclaimed in the SAT tables. Finally, if a user does a
LOOKUP call followed by an ENTER using the same file name on the same channel, the user is able to modify
selected blocks of that file, using USETI and USETO (refer to section 8.8) without creating an entirely new genera­
tion; this third method of writing, called updating, eliminates the need to copy a file when making a small number
of changes. a LOOKUP followed by an ENTER and OUTPUT (in that order) writes the output to the beginning of
the file. To append information to a file, a USETI -I should be used after the ENTER call.

A standard practice, user programs should read, create, and supersede (new file with the same file name) files on dif­
ferent software I/O (i.e., user channels). However, for compatibility with DECtapes, it is possible to read and create,
or read and supersede, two files on the same software I/O channel as long as a CLOSE monitor call is executed
before successive LOOKUPs and ENTERs unless updating is intended. Updating, superseding, creating, and writing a
file may be performed by one monitor call, FILOP., (instead of the LOOKUP, ENTER, USETI/USETO, INPUT /
OUTPUT sequence). Refer to paragraph 8.6.2.1 for a description of the FILOP. monitor call.

To select a file for input the LOOKUP operator (op code 076) is used; to select a file for output the ENTER opera­
tor can be used (op code 077). The FILOP. monitor call can be used for selecting a file for either input, output, or
update.

8.6.1.1 The LOOKUP Operator - The LOOKUP operator selects a file for input on a specified channel; its calling
sequence is

LOOKUP channel, addr
error return

normal return

addr: SIXBIT/jilename/

where:

SIXBIT / ex tension/
0,,0
XWD project-no,programmer-no.

channel specifies the channel number associated (via OPEN or INIT) with the device storing the specified
file.

addr points top a four-word argument block described in Table 8-3.

filename is a 1 to 6 character, left-justified file name. (or, if a user file directory, it is the project num­
ber in the left half and the programmer number in the right half of the first argument word.)

extension isa 1 to 3 character file name extension, left-justified.

project-no. ,programmer-no. can be a specified project,programmer number or it can be O. If 0, the
specified file will be searched for from the user's default directory (i.e., it is the project-programmer

8-10

)

)

)

1
)

Files

number under which the user is logged-in). If a project-programmer number is specified, the directory
specified will be searched. An entire path will be searched only if the SCAN switch has been set via the
PATH monitor call. Therefore, if a file's protection code permits reading and the UFD permits
LOOKUPs, other user's files may be read. If project,programmer number contains XWD O,addr the file
will be read according to the path specified at addr. A path specification specified in the LOOKUP argu­
ment block supersedes any default path specification made via the PATH. monitor call, refer to
section 8.7.

On a normal return, the file has been found and the monitor returns information in the argument block as listed in
Table 8-3.

Word Bits

addr+l 18-20

addr+l 21-35

addr+2 0-8

addr+2 9-12

addr+2 13-23

addr+2 24-35

Table 8-3
LOOKUP Argument Block

Contents

the high order 3 bits of the date on which the file was originally
created. (1)

the date the file was last accessed in the format used by the DATE
monitor call.

the protection code for the file.

the date mode of the file (e.g., ASCII, binary dump).

the time that the file was originally created (represented as the number
of minutes past midnight on the creation date).

the low order 12 bits of the date on which the file was originally
created.

------ - ~-- ---------- --

An error code will be return, on an error return, in the right half of addr+ 1 (refer to AppendiX E for a list of the
possible error codes).

If a device was not previously associated with the specified channel (via an INIT, OPEN, or FILOP.), the monitor
will stop the job and print the following message on the user's terminal.

?I/O TO UNASSIGNED CHANNEL AT USER LOC addr

8.6.1.2 Extended Arguments to LOOKUP, ENTER and RENAME - As an extension to the four-word argument
block, the user can specify the length of the argument block. To do so, if addr contains a 0 in its left half and a
value greater than or equal to 3 in the right half, the right half will indicate the count of the words in the argument
block. If the right half of addr is less than 3, the error return will be taken (FILE NOT FOUND). The arguments
that the user program is allowed to supply are returned to the monitor as values. If a user program supplies an illegal
argument, the monitor will ignore the user-supplied argument and it will supply default values on the return.
Table 8-4 lists the arguments that can be supplied by a user program.

8.6.1.3 The ENTER Operator - The ENTER operator causes the monitor to store a directory entry for later entry
into the proper UFD or SFD, when the specified channel is closed or released. ENTER's calling sequence is

ENTER channel,addr
error return

normal return

where: channel is the channel number associated with the device storing the specified file.
addr points to a four-word argument block which is illustrated in Figure 8-4.

8-11

Files

Table 8-4
Extended Arguments to ENTER, LOOKUP, and RENAME

)

s
U
P

L C E U R
0 R R P E
0 E S D N
K A E A A
U T D T M'

ReI. Mnemonic P E E E E Arguments and Values

0 .RBCNT A A A The count of the number of arguments which
follow .

1 . RBPPN AO AO AO A directory name (i.e., a programmer number) or a
pointer.)
Left half: right justified project number.

Right half: programmer number or O"path.

The project-programmer number is for the user file
directory in which the file is to be LOOKUPed,
ENTERed, or RENAMEd. To LOOKUP a Master
File Directory, .RBPPN must contain a 1 in the left
half and a 1 in the right half, indicating that the file
name (i.e., .RBNAM) is to be LOOKedUP in [1,1] 's
User File Directory (i.e., the Master File Directory) .)

2 . RBNAM A A A The SIXBIT file name, left-justified with trailing
nulls. If the Master File Directory or the User File
Directory is being LOOKedUP, ENTERed, or
RENAMed, this location contains the directory
name. The argument can be 0 only on a RENAME,
in which case the file will be deleted.

3 .RBEXT A A A Bits 0-17: The SIXBIT file name extension, left-
justified with trailing nulls. Null extensions are
discouraged because they convey no information.)

V AO A Bits 18-20: The high order three bits of the IS-bit
creation date (i.e., RB.CRX).

V V V Bits 21-35: the accress date.

If an error return is taken, bits 18-35 will contain
the error code, refer to section 8.6.1.4 for a special
note on error recovery.

).

4 .RBPRV -V AO A Bits 0-8: protection codes.

V V A Bits 9-12: Data mode in which the file was created
(RB.MOD).

V AO V Bits 13-23: creation time in minutes since midnight
(RB.CRT).

V AO A Bits 24-35: the low order 12 bits of the IS-bit crea-
tion date in standard format (RB.CRD).

8-12

Files

Table 84 (Cont.)
Extended Arguments to ENTER, LOOKUP, and RENAME

s
U
P

I

L C E U R
0 R R P E I

0 E S D N !

K A E A A
U T D T M

ReI. Mnemonic P E E E E Arguments and Values
-'

5 .RBSIZ V V V The written length of the of words written into the
file. This argument is ignored, and a value is always

I returned.

6 .RBVER V A A The octal version number as .JBVER I
I

I

7 .RBSPL V A A The file name to be used to label the output from a
spooled device. The file name is specified on an
ENTER to the spooled device, or it is 0 if an
ENTER has not been performed.

10 .RBEST V A A The estimated length of the file, in positive number
of blocks. On the execution of an ENTER call, the
monitor uses this value as the number of blocks to
allocate for the file. If the requested number of
blocks cannot be allocated, partial allocation is per-
formed, and the normal return is taken. .RBALC
always contains the actual number of blocks
allocated.

11 .RBALC V A A The number of contiguous 128-word blocks
allocated to a file when an ENTER or RENAME
call is performed. The number of blocks includes
the RIBs of the file also and it is equivalent to the
last block number of the file .

. RBALC equal to 0 does not change the allocation
of the file. All of the data blocks can be deallo-
cated by superseding the file and performing no
output before the CLOSE. This argument can be
used to allocate additional space onto the end of
the file, deallocate previously allocated but
unwritten space, or truncate written blocks.

The smallest unit of disk space that the monitor can
allocate is a cluster of 1 28-word blocks. Typically,
small devices use a cluster size of I-block. If the
number of blocks allocated is not equal to the last
block of a cluster, the monitor will round up, there-
by adding a few more blocks than the user
requested. The partial allocation error (error code
17) will be returned; however, a user may still write
the file.

8-13

Files

Table 8·4 (Cont.)
Extended Arguments to ENTER, LOOKUP, and RENAME)

s
U
P

L C E U R
0 R R P E
0 E S D N
K A E A A
U T D T M

ReI. Mnemonic P E E E E Arguments and Values

NOTE
To create a file of prespecified length,
perform an extended ENTER with
.RBEST set and .RBALC equal to zero.

I You create a file of prespecified length)
with contiguous blocks, perform an
extended ENTER with .RBALC set and
.RBEST equal to zero. After an ENTER,
.RBALC will contain the accurate allo·
cated file length.

12 .RBPOS V A A The logical block number of the first allocated
block for a new group of clusters appended to the
file. The logical block number is specified with
respect to the entire file structure, beginning with
block number O. Combined with the DSKCHR)
call, this feature allows a program to allocate a file
with respect to tracks and cylinders for maximum
efficiency when the program is executed.

13 .RBTFI V A A Reserved.

14 . RBNCA A A A Reserved for customer definition .

15 .RBMTA V Al Al A 36-bit tape label, if the file has been put onto
magnetic tape. If the allocated space is zero, the
file was deleted from the disk when it was copied
onto the magtape. The argument is accepted only

\,
)

from privileged programs; otherwise, it is ignored.

16 .RBDEV V V V The logical name of the unit on which the file is
located. This value is ignored as an argument, but
it is returned as a value.

17 .RBSTS V Al Al The File status Word.

Left Half: the status of the UFD.

Right Half: The status of the file.

Refer to Table .8-6, for the bit definitions of this
word.

20 .RBELB V V V The logical block number within the unit on which
the last data error or search error (IO.DTE)
occurred, as opposed to the block within the file
structure. This value is set in the RIB by the
monitor when a CLOSE is executed and the

,

8-14

Files

)
Table 84 (Cont.)

Extended Arguments to ENTER, LOOKUP, and RENAME

s
U

'.,
P

L C E U R
0 R R P E
0 E S D N
K A E A A
U T D T M

ReI. Mnemonic P E E E E Arguments and Values

hardware either detected a hard parity error or a
search error while reading or writing the file.
Device errors, checksum errors, and redundancy

)
errors are not stored in this location. This argu-
ment is ignored, but a value is returned.

21 .RBEUN V V V Left half: The logical unit number within the file
structure on which the last bad region was detected.

Right half: The number of bad blocks in the last
detected bad region. The bad region may extend
beyond the file. This argument is ignored, and a
value is returned.

22 .RBQTF V Al Al Meaningful for the UFD only. .RBQTF contains

)
the logged-in quota. This quota is the maximum
number of data and RIB blocks that can be in this
structure's directory while the user is logged-in.
The UFD and the UFD's RIB are not included in
this count. The argument is ignored unless it is
from a privileged program.

23 .RBTQO V Al Al Meaninfgul for the UFD only. .RBQTO contains
the logged-out quota. This quota is the maximum
number of data and RIB blocks that can be left in
this structure's directory after the userlogs-off.

) LOGOUT requires that the user be below this
quota to log-off. The argument is ignored unless
it is from a privileged program.

24 Reserved.

25 .RBUSD V Al Al Meaninfgul for the UFD only. .RBUSD contains
the number of data and RIB blocks in this struc-
ture's directory when the user last logged-off.
LOGIN reads this word so that it does not have to
LOOKUP all files to set up the number of written

... blocks. LOGIN sets bit 0 of the file status word
(see Table 8-5), and LOGOUT clears it in order to
indicate whether LOGOUT gas stored the quan-
tity. The argument is ignored unless it is from a
privileged program.

26 .RBAUT V Al Al The project-programmer number of the creator or
superseder of the file, as opposed to the owner of
the file. Usually the author and the owner are the

8-15

Files

Table 84 (Cont.)
Extended Arguments to ENTER, LOOKUP, and RENAME)

s
U
P

L C E U R
0 R R P E
0 E S D N
K A E A A
U T D T M

ReI. Mnemonic P E E E E Arguments and Values

same. Only when a file is created in a different
directory are these different. This argument is used
by MPB I to validate queue entries in other direc-
tories. The argument is ignored unless it is from a
privileged program.

27 Reserved.

30 Reserved.

31 .RBPCA V Al Al Privileged argument reserved for customer-
definition.

32 .RBUFD V V V The logical block number (not the cluster number)
in the file structure of the RIB for the UFD (in
which the file name appears).

33 .RBFLR V V V The relative block number of the file to which the
first pointer of this RIB points; this is used for

)
multiple RIBS (e.g., 0 = prime RIB).

34 .RBXRA V V V The extended RIB address (i.e., the logical units
number and the cluster address of the next RIB in
a mUltiple RIB file) .

35 . RBTIM V V V The date and the time of creation of the file, in the
universal date-time standard.

Left half: the date of the creation.

Right half: the time of the creation.
)

A = an argument (supplied by either a privileged or unprivileged program) and returned by the monitor as a
value.

AO = an argument like A, except that a 0 argument causes the monitor to substitute a default value.

Al = an argument if supplied by a privileged program; if supplied by an unprivileged program, it is ignored.

V = the value returned by the monitor cannot be set even by a privileged program; the monitor will ignore the
argument.

-

8-16

)

Bit Mnemonic
7

0 RB.LOG

9 RB.UCE

10 RB.UWE

11 RB.URE

18 RB.DlR

)

19 RB.NDL

21 RB.NFS

22 RB.ABC

) 25 RB.NQC

26 RB.CMP

27 RB.FCE

28 RB.FWE

29 RB.FRE

) 32 RB.BFA

33 RB.CRH

35 RB.BDA

)

Files

Table 8-5
.RBSTS Bit Definitions

Meaning

RB.LOG = 1 if the user is logged in; LOGIN sets this bit;
LOGIN sets this bit; LOGOUT clears it.

RB.UCE = 1 if any file in this UFD has had a software check-
sum error or a redundancy check error.

RB.UWE = I if any file in this UFD has had a hard data error
while writing.

RB.URE = I if any file in this UFD has had a hard data error
while reading.

The file is a directory file; protects the system from a user
trying to modify a directory file. The protection error is given
if the extension UFD is specified on an ENTER or RENAME
and this bit is not set.

The file cannot be deleted, renamed, or superseded, even by a
privileged program.

The file should not be dumped by disk backup programs
because certain files (e.g., SWAP.SYS, SAT.SYS) contain no
useful data to write on the tape.

The file always has bad checksums (because the monitor never
recomputes a checksum) e.g., SWAP.SYS, SAT.SYS.

The file is' a non-quota checked file.

The UFD is being compressed.

The file has a software checksum error or a redundancy check
error (Le., the IO.lMP bit has been set).

The file has had a hard data error while writing. An entry is
made in the BAT block so that the bad region is not reused.

The file has had a hard data error while reading. An entry is
made in the BAT block so that the bad region is not reused.

The file is bad because of a tape read error during a restore.

The file was closed after a crash.

The file has been marked as bad by a damage assessment
program.

8-17

where:

Files

filename

extension datel date2

code mode time date 3

project-number programmer-number

- -----

Figure 8-4. ENTER Argument Block

filename is a 1 to 6 character filename (specified as SIXBIT, left-justified).

extension (bits 0-17) is a 1 to 3 SIXBIT characters, left-justified.

datel (bits 18-20) contains the high order three bits of the creation date. If a nonzero date is obtained
by conatenating the high order three bits with the low order twelve bits in date 3, the monitor will use
that value as the creation date of the file. If the date is zero, the monitor will supply the high order
three bits from the IS-bit value representing the current date.

date2 (bits 21-35) is the date that the file was last referenced. This date will be returned by the monitor;
it is ignored if changed by the user.

code (bits 0-8) is the protection code for the file. If the protection code is 0, the monitor will substitute
the installation standard as specified at monitor generation time (via MONGEN). If the code is 0 and this
this ENTER is superseding a file, the protection code for the new file is copied from the old file. The
RENAME monitor call may be used to change the protection code of a file, after the file has been com­
pletely written and when the file is being closed.

mode (bits 9-12) is tHe data mode of the file, which is supplied by the monitor. The monitor obtains
the information for mode by what the user set via the last INIT or SETSTS monitor call on the central
specified.

time (bits 13-23) is the time at which the file was originally created, represented as the number of min­
utes past midnight on the creation date. If time is 0, the monitor will supply the current time as the
creation time.

date3 (bits 24-35) is the low order 12 bits of the creation date. If date3 and datel are 0, the monitor
will supply the current date as the creation date.

project-programmer number can be 0 or a specified project-programmer number.

If this word is 0, the file will be written in the default directory. For example, if the default path is
[lO,lO,A] ,the file will be written in SFD A which is on [lO,lO]. The default path is determined by
the PATH. monitor call. If the default path is not specified, the job's UFD will be used.

If this word contains a project-programmer number, the file will be written in the specified UFD
(Le., sub-directories will not be scanned). This facility allows the user program to write in the disk area
under which the job is logged-in, although the default directory is different. Note that it is generally

8-18

)
/

)

)

)

>.

"

)

')

~.r

• '-r

)

)

)

)

Files

not possible to create (i.e., ENTER) files in another user's area of the disk, because UFDs are usually
protected from all but the owner when creating files.

If this word contains XWD O,addr, the file will be written according to the path specified by addr. The
argument block beginning at addr is the same as that specified in the PATH. monitor call, except that
the first two arguments are ignored. The scan switch (addr+ 1) is not needed since if the file is found in
the specified directory, it will be superseded; and if it is not found, it will be created at the end of the
path of the specified directory (even if the same name appears in an upper-level directory). A path
specification in the ENTER block overrides any default path specification given in the PATH. monitor
call.

On an error return, an error code will be returned in the right half of the extension word of the argument block .
Appendix E lists the possible error codes that may be returned.

When issuing an update ENTER (i.e., an ENTER after a LOOKUP on the same channel), the user should check that
locations addr through addr+3 contain the appropriate information.

When an ENTER is executed on an existent file, a new file with the same name is written, the old file is deleted
when the CLOSE (or RELEASE) monitor call is executed (providing that bit 30 of the CLOSE is O. I.e., the dele­
tion of the previous version of the me does not occur until output CLOSE time. Consequently, if the new me is
aborted while only partially written, the old generation remains. The normal return is taken; the monitor makes the
me entry; and the monitor records the file information.

Unless a specific unit is INlTed on the specified channel, the monitor will maximize the job's throughput by select­
ing some unit in the file structure for which the job has no opened mes, if such exists. Therefore, programs should
LOOKUP all input files before ENTERing output meso

If no device has been associated with the specified channel (via INIT or OPEN), the monitor will stop the job, and it
will print the following message on the user's terminal:

?I/O TO UNASSIGNED CHANNEL AT USER PC addr

8.6.1.4 Error Recovery for ENTER and RENAME Monitor Calls - Error codes for the LOOKUP, ENTER, and
RENAME monitor calls are returned in the right half of location addr+ 1 of the four-word argument block, and in
the right half of location addr+ 3 (.RBEXT) in the extended argument block. The error code overwrites the high
order three bits of the creation date and the entire access date. Since most programs recover from these errors
either by aborting or by reinitializing the entire argument block, this overwriting of data does not cause any prob­
lems. However, a small number of programs may attempt to recover from an error by fixing just the incorrect part
of the argument and then reexecuting the monitor call. These programs should always restore the right half of
addr+ 1 before reexecuting the ENTER or RENAME monitor call. (To eliminate problems when recovering from an
error in a me with a zero creation date, error codes are restricted to a maximum of 15 bits). The access date is
forced to be greater than or equal to the creation date, but never greater than the current date.

8.6.2 Data Transmission
The IN and INPUT operators transmit data from the file selected on a specified channel to the user's core area.
Their calling sequences are

INPUT channel, addr

and

IN channel, addr
normal return

error return

8-19

Files

where: channel specifies an I/O software channel.

addr, if specified, is the effective address of the next buffer to be used. If not specified, the next buffer
in sequence is implied.

The OUT and OUTPUT operators transmit data from the user's core area to the file selected on the specified chan­
nel. Their calling sequences are

OUTPUT channel, addr

and

OUT channel, addr
normal return

error return

If the specified channel has not been initialized, the monitor will stop and print the following message:

?I/O TO UNASSIGNED CHANNEL AT USER addr

If the device is a multiple-directory device, and no file has been selected on channel, bit 18 of the file status word is
set to 1, and control will be returned to the user's program. Control always returns to the location immediately
following an INPUT (op code 066) and an OUTPUT (op code 067). A check of the file status for end-of-file and
error conditions must then be made by another monitor call.

Following an INPUT, the user program should check the word count of the next buffer to determine if it contains
data. Control returns to the location immediately following an IN (op code 056) if no end-of-file or error condition
exists (i.e., if bits 18 through 22 of the file status word are 0). Control returns to the location immediately follow­
ing an OUT (op code 057) if no error condition or end-of-file exists (i.e., if bits 18 through 21 and bit 25 are 0).
Otherwise, control returns immediately to the second location following the IN/OUT. Note that IN and OUT are
the only calls where the error return is a skip and the normal return is not a skip.

8.6.2.1 The FILOP. Monitor Call (CALLI 155) - The FILOP. monitor call allows a user program to create, read,
write, update, append to, or close a file, or the user program may optionally request the monitor to update a RIB of
a file. FILOP.'s calling sequence is

MOVE ac, [XWD length,addr]
FILOP. ac,

error return
normal return

where: length is the length of the argument block pointed to by addr.
addr points to an argument block represented in Figure 8-5.

8.7 THE PATH. MONITOR CALL (CALLI 101)
The PATH. monitor call sets or reads the default directory path or reads the current directory path on a channel.
The calling sequence for the PATH. monitor call is

MOVE ac, [XWD length,addrj
PATH. ac,

error return
normal return

where: length is the length of the argument block.
addr points to an argument block, which is represented in Figure 8-6.

8-20

)

)

)

)

" .FOFNC

.FOIOS
-;

.FODEV

.FOBRH

.FOLEB

.FOPAT

)

where:

)

.;>

)

Files

o 17 18 35

X function code

device name (or UDXj

Address' of output buffer header Address of input buffer header

Number of output buffers Number of input buffers

0 Address of LOOKUP/ENTER Block

length of PATH. Address of PATH. Block

-- _._-

Figure 8-5. FILOP. Argument Block

X can be 0 or 1; if 1 and the j ob is running with the J ACCT bit set or the job is running under [1,2]
then fIle protection codes will not be checked. If 0 then protection will be checked even for [1,2] and
JACCT programs.

function code is one of the function codes listed in Table 8-6.

I/O mode is one of the data modes.

device name is either the physical or logical name of the device (or its UDX).

output buffer header is a pointer to the output buffer.

input buffer header is a pointer to the input buffer.

output buffers is the number of output buffers which are to be built. If this is 0, no buffers will be
built. If -1 the default number of buffers will be built.

input buffers is the number of input buffers which are to be built. If this is 0, no buffers will be
built. If -1 the default number of buffers will be built.

LOOKUP/ENTER Block is a pointer to the LOOKUP and ENTER blocks, refer to Table 8-5.

length is the length of the PATH. block, refer to section 8-4.

PATH. Block is a pointer to the PATH. block, refer to section 8.7.

8-21

Code Name

1 .FORED

2 .FOCRE

3 . FOWRT

4 .FOSAU

5 .FOMAU

6 .FOAPP

7 . FOCLS

10 .FOURB

o

.PTFCN

.PTSWT

.PTPPN

Files

Table 8-6
FILOP. Function Codes

Meaning

The file is to read only. No output will be done.

A new file is to be created. If the file already exists then the error return will be
taken with error code 4 (%ERAEF) returned in the AC.

The file is to be written. A new file is created on an old file is superseded .

The file is to be updated in single access mode. Only one job may open a file for
single access update at anyone time.

The file is to be updated in multi·access mode. Any number of jobs may read or
write the file at one time.

The file is to be appended to.

NOTE
If the file is to be written in buffered mode and FILOP. is used to build
the output buffers, the last block of the file will be read into the buffer
and the byte-count and byte pointer set so that data will be written
immediately after the last word of the file .

The file is to be closed. After the CLOSE a GETSTS is performed to read the file
status into the AC. If any error bits are set, the non-slip return is taken.

Checkpoint the file by writing, all output buffers on the disk, updating directories and
the end·of-file pointer. The file is still open and more I/O may be done. This func­
tion is meaningful only for files that are being written.

17 18 35

job number function code or channel number

switches and flags

project number programmer number

•
•
•

project number programmer number

000000 000000

Figure 8-6. PATH. Argument Block

8-22

')

)

)

)

:>

','"

)

')

1"

"

-;

)

)

)

..,

..

)

where:

Files

job number is the number of the specified job (in the range 1 to the highest legal job number, or the
current job, if the Job number is not in this range.)

function code is one of the functions listed in Table 8-7. (Optionally, this half-word can contain the
channel number of the desired device.)

switches and flags listed in Table 8-8.

project and programmer numbers specify the user file directory used in the PATH.

Table 8-7
PATH. Function Codes

Function Mnemonic Meaning
Code

-1 .PTFRD Read the default directory path.

-2 .PTFSD Define the default directory path.

-3 .PTFSL Define the additional path to be searched when the file is not
found in the user's directory path (i.e., set LIB:, NEW:, SYS:) .

-4 . :I>TFRL Return the additional path to be searched when a file is not
found in the user's directory path (i.e., read LIB:, NEW, SYS:).

Table 8-8
PATH. Switches and Flags

Bit(s) Mnemonic Meaning

18-29 PT.SLT The type of search list.

code mnemonic meaning

1 .PTSU JOB search
2 .PTSLA ALL
3 .PTSLS SYS: search

30 PT.IPP The implied project-programmer number. A user-supplied
project-programmer number is ignored on an ENTER or
LOOKUP call, and the implied project-programmer number of
the device is used (e.g., [1,4] for SYS:). The implied project-
programmer number is returned in addr+2.

31 PT.LlB If there is a library, it is searched.

32 PT.SYS The system directory (SYS:) is searched.

33 PT.NEW The experimental system directory is searched (i.e., NEW:).

34-35 PT.SCN The scan switch.

code mnemonic meaning

1 .PTSCN The switch is off.
2 .PTSCY The switch is on.

34 PT.SNW Search /NEW on function codes -3 and -4.

35 PT.SSY Search /SYS on function codes -3 and -4. I
--

When defining a path with a User File Directory (i.e., function code = -2), addr+ 1 is the scan switch, addr+2 is the
default project-programmer number, and the rest of the argument (up to the first zero word) defines the default
directory path. The scan switch determines whether or not the monitor will scan for the file on a LOOKUP.

8-23

Files

If bit 34 contains 1 (.PTSCN), the monitor will examine the specified directory only; higher level directories will not
be searched. If bits 34 and 35 contain 2 (.PTSCY), the following occurs:

1. The monitor will search the User File Directory or the Sub-File Directory (either by the explicit path or
the default path). If the file is found, the scan will be terminated.

2. If the file is not found, the monitor will back up one directory along the path and will continue the scan
(i.e., it will scan the directory in which the current Sub-File Directory appears). The scan will be ter­
minated when the User File Directory is searched or when the file is found.

Since any file not found in the current sub-file directory may be obtained automatically from a higher level direc­
tory scanning allows directories to be nested. Nesting of directories is useful when a user has a default directory in
use containing currently worked-on files and a higher level directory containing checked-out routines. Since sub-file
directories are continued across file structures but the depth of directory nesting is not always the same on each
structure, every scan searches the file structures that are

1. in the job's search list, and
2. have sub-file directories to the depth specified in the path.

The file structures are searched in the order that they appear in the search list.

When an ENTER is executed, the scan switch is ignored and if the file is found in the specified directory, the file will
be superseded. If the file is not found, the file will be created at the end ofthe path in the specified directory,
whether or not a file with the same name appears in a high level directory.

When an additional path is to be searched after the user's directory path is searches, addr+ 1 indicates whether SYS;
or NEW: is to be searched (bits 34 and 35); addr+2 contains the project-programmer number to be used for a user
library. These locations are used as follows:

1. If the file is not found in the user's directory path when a LOOKUP DSK: is executed, the directory
specified in addr+2 is searched for the specified file. (The contents of addr+2 must specify a User File
Directory, allowing users with different directory paths to share a common directory of files.)

2. If the file is not found in the library and bit 35 of addr+ 1 contains 1, SYS: is searched. When a
LOOKUP SYS: is searched, executed and bit 34 of addr+ 1 is set, NEW: is searched before SYS:.

When running a path, addr+ 1 contains the information listed in Table 8-8 and addr+2 through addr+n-1 contains the
path. If the path is less than n-1 words in length, a zero is stored at the end of the path. If addr contains a device
name or a channel number when PATH. is called, the file structure name or ersatz device name is returned in addr,
depending on the name specified (e.g., SYS is returned only if addr contains SYS and the job number does not have
a device with the logical name SYS). If a LOOKUP or ENTER is performed on the specified device or channel
number, the following information is returned in the argument block:

addr: SIXBIT! file-s truc ture-name
SIXBIT! ersatz-device-name

addr+ 1: scan switch
addr+2: project-programmer number
addr+ 3: actual path of the file

addr+m: 0 ; indicating the end of the path
; if m is less than n-l.

If a LOOKUP or an ENTER has not been performed on the specified device or channel number, the following infor­
mation is returned in the argument block:

8-24

)

)

)

)

)

-'

-\

)

)

)

)

addr: SIXBIT/DSKj
SIXBIT j ersatz-device-namej

addr+ 1: scan switch

Files

addr+2: job's default project-programmer number
project-programmer number of ersatz device

addr+3: the default path to the file

addr+m: 0 ; indicating the end of the path
; if m is less than n-l.

On an error return the following occurs:

1. The AC is unchanged if the PATH. monitor call has not been implemented on the system. (The sub-file
directory will remain as a reserved extension, but all sub-file directory code will disappear). The
GETTAB returning the maximum number of SFDs will return 0 or it will fail when executed. The
default path is the user's project-programmer number.

2. The AC contains 0 if the device or the channel number is not a disk unit or associated with a disk unit,
respectively.

3. The AC contains -1 if a sub-file directory in the path specification is not found.

8.7.1 PATH. Examples

Example A
The following example sets the default path to [27 ,40n,sUB] with no scanning in effect.

A: -2

Example B

1
XWD 27,4072
5 I XB I T /5 UB /
0,,0

Refer to Figure 8-7. The path plus the file name for file A is X.MAC [10,63]. The path plus the filename for file B
is Y.CBL[14,5]. The path plus the file name for file C is Z.ALG[14,5M] .

Example C
Refer to Figure 8-8. The job's search list is DSKA/N, DSKB, DSKC, and the default path is [PPN,A,B,C,D].

1. LOOKUP DSK: with no matches scans in order: DKSA:D(.SFD), DSKA:C, DSKB:C, DSKA:B,
DSKB:B, DSKA:A, DSKB:A, DSKA:PPN(.UFD), DSKB:PPN, DSKC:PPN.

2. LOOKUP DSK:file2 finds DSKA:file2[ppn,a,b,c].
3. LOOKUP DSKB:file2 or LOOKUP DSKC:file2 fails.
4. ENTER DSK:file9 receives an error since no file structure has both the no-create bit off and the direc­

tory structure [ppn,a,b,c,d] .
5. ENTER DSKA:filel creates the file at the end of the path on DSKA (the file designated by file I in the

diagram.

8-25

Files

)

)

X·MAC Y'CBl
I~.

"

Z·AlG
10-0837)

Figure 8-7. Directory Paths on a Single File Structure

)

)

10-0838

Figure 8-8. Directory Paths on Multiple File Structures

The default path is [ppn,a,b,c] : .. "

1. ENTER DSK:file6 creates DSKB:file6 [ppn,a,b,c] (the file designated by file6).
2. ENTER DSK:file2 supersedes file2 in DSKA: [ppn,a,b,c] .
3. LOOKUP DSK:file4 fails.
4. ENTER DSK:file7 supersedes file7 in DSKB: [ppn,a,b,c] .

)

8-26

')

~

:!-

)

)

..
"

)

Files

ExampleD
The user defines the following path:

MOVE 1,[XWD5,A]
PATH. 1,

HALT
MOVE 1, [XWD 3,B]
PATH. 1,

HALT
A: -2 ; define the default directory path

2 ; scanning is in effect
10,,63 ; THE UFD [10,63]

SIXBIT/NAME/ ; the SFD [NAME]

° ; the default path is [1O,63,NAME]
B: -3 ; define an additional path

3 ;both NEW: and SYS: are searched
10,,7 ; the user library is [10,7]

If the user is logged in as [10,10] and does a LOOKUP DSK: FILTST, the following directories are searched in
order:

NAME.SFD

[10,63] .UFD job's search list
[10.7] .UFD

[1,5] .UFD system's search list
[1,4] .UFD

If the useris logged in as [10,10] and does a LOOKUP DSK: PRJFIL [10,155], the following directories are'
searched:

[10,155] .UFD job's search list
[10,7] .UFD

[1.5] .UFD system's search list
[1,4] .UFD

8.8 USETI AND USETO MONITOR CALLS
The USETI/USETO monitor calls select a relative block to be either read or written in subsequent INPUT/OUTPUT
calls to the specified channel number. The calling sequences are

USETI channel, block
USETO channel, block

where: channel is the number of the software I/O channel associated with the device storing the me.

block is a block number relative to the beginning of the file; the action performed by a USETI (USETO)
depends on the value of block number, refer to Table 8-9.

The instruction sequence for reading a file is

LOOKUP
USETI
INPUT

8-27

I

The instruction sequence for writing a file is:

ENTER
USETO
OUTPUT

The instruction sequence for updating a file is

LOOKUP
ENTER
USETO
OUTPUT

;or USETI
;orINPUT

Files

If an ENTER is not performed before a USETO, or a LOOKUP before a USETI, an illegal instruction trap will result.
The monitor will stop the job and will print the following message on the user's terminal:

?ILLEGAL INST. AT USER addr

When the
Block # is

<current file
size 1 to
777777

>current file
size 1 to
777777

0

-2 to -10(8)

-1

Table 8-9
USETI/USETO Function Codes

LOOKUP USETI ENTER USETO

the block is read on the next INPUT. the block is written on the next OUTPUT.

IO.EOF is set in the file status word, data is appended to the end of the file. Moni-
causing the end-of-file return on the tor allocates the intervening blocks, writes
next INPUT. zeroes in the 1 st new block number -1, and

writes the block.

the prime RIB is read. the IO.BKT error bit is set in the file status
word.

the specified block of the RIB is an attempt is made to allocate a large num-
read. ber of blocks.

IO.EOF is set in the file status word, the most recently input or output block
causing the end-of-file return on the re-written on the next OUTPUT.
next INPUT.

The USETI/USETO calls do not actually perform any input/ output; they change the pointers to the current posi­
tion of a file. Each input/output instruction also logically advances the files. A program can rewrite/reread the same
block by issuing a USETI/USETO before issuing an INPUT/OUTPUT. When a USETI/USETO is executed, the
monitor will write all output buffers that the program filled before it changes the pointer to the files position.

Since the monitor reads/writes as many buffers as it can when an INPUT/OUTPUT is executed, it is difficult to
determine which buffer the monitor is processing when a USETI/USETO is executed. Therefore, the INPUT/
OUTPUT following the USETI/USETO might not be reading/writing the buffer that contains block number. A
single buffer ring will read/write the desired block number since the device must stop after each INPUT/OUTPUT.
A device with a multiple buffer ring can be stopped after each bufferful of data by setting bit 30 (IO.SYN) in the
file status word via INIT., OPEN or SETSTS. USETI/USETO will then specify the buffer supplied on the next
INPUT/OUTPUT.

8-28

)

)

)

)

Files

Data can be appended to the last block of an append-only file provided that the protection prevents the job from
reading the file, and the feature test switch FTDAIR is set equal to 0 at MONGEN-time, by using a USETO to the
last block followed by an OUTPUT. The monitor will read the block into the monitor buffer, copy words n + 1
through 200 from the user's buffer into the monitor buffer, and rewrite the block. The current length of the block
can be obtained by examining the LOOKUP/ENTER block. It is not necessary that a user program read the last
block of a file before appending to it, any data in the file is not changed.

When appending to the end of a file with APPEND-only protection, the IO.BKT error bit is set in the file status word
and no output is performed when

1. any block before the last block is written,
2. the last block already contains 200 words, or
3. fewer words are written than the current size of the block.

If the last block of the file is OUTPUT, the size of the last block becomes 200 and cannot be appended to.

Multiple channels of a single job and/or multiple jobs can update a single file simultaneously. The monitor imposes
no restrictions or interlocks when a file is being simultaneously updated; therefore, the user must insure that
separate jobs do not update the same block of the same file at the same time. The Enqueue/Dequeue Facility may
be used to insure that such interference does_not occur, but it does not have to be used when simultaneously
updating files.

To update a file simultaneously, perform a FILOP. monitor call with a function code of 5. A file can be updated in
this manner when the file is idle, it is being read, or it is being simultaneously updated by other jobs. A file cannot
be simultaneously updated if it is in the single-access update mode (i.e., a LOOKUP and an ENTER have been per­
formed, or a FILOP. has been performed with a function code of 4 or 6.)

NOTE
For simultaneous update, even though an extended
LOOKUPjENTER block can be specified via FILOP., the
user cannot change the attributes of the file; the current
attributes will be returned in the extended argument
block on a LOOKUP, and those same values will be used
for the ENTER. In other words, FILOP., will use the
values on the ENTER.

Files that are to be Simultaneously updated should be pre-allocated into contiguous blocks, if pOSSible, To prevent
checksums from being changed while updating, allocate the file into one contiguous section and do not write block
number 1; or do not change the first word of any block in the file.

8.9 THE SEEK MONITOR CALL (CALLI 56)
The SEEK monitor call, used in conjunction with USETI/USETO, controls the time at which positioning operations
occur on an idle disk unit. The SEEK will position the disk to the cylinder containing the specified block number
within the previous USETI/USETO. SEEK's calling sequence is

SEEK ac,
only return

The SEEK monitor call performs as a no-op if the disk is in any other state than an idle state.

SEEK may be issued for public and private file structures, allowing users to debug programs on a public pack and
later run the same program on a private pack. The following is the proper instruction sequence for issuing a SEEK
monitor call:

8-29

Files

For output: a. perform a USETO to select a block,
b. perform a SEEK to request positioning,
c. perform computations, and
d. perform an OUTPUT to request actual output.

For input: a. perform a USETI to select a block,
b. perform a SEEK to request positioning,
c. perform computations, and
d. perform an INPUT to request actual input.

8.10 THE CHKACC MONITOR CALL (CALLI 100)
The CHKACC monitor call provides a consistent and uniform method for determining whether or not a file may be
accessed. User programs should not make assumptions about the access rights of a file, but should employ CHKACC
to insure that access is permitted. This is especially true for privileged programs that are constrained by the access
privileges on a non-privileged project-programmer number for which they may be performing a task. For instance,
LPTSPL must check the access right of the user issuing a PRINT command to verify that the user is actually allowed
to read the file.

The CHKACC's calling sequence is

MOVEI ac,addr
CHKACC ac,

error return
normal return

addr: byte-access"protection
project-programmer number A
project-programmer number B

where: byte-access is the code for the type of access desired; the codes are listed in Table 8-10.

projection contains the directory protection code in bits 27-35. Refer to Table 8-2 for UFD protection
codes and Table 8-1 for file protection codes.

project-programmer number A is the project-programmer number of the directory (UFD) containing the
file.

project-programmer number B is the project-programmer number of the user who desires access to the
specified file.

NOTE
For access codes 0 through 6, the monitor will ignore the
directory protection. For codes 7 and 10, the monitor
will ignore the file protection.

The error return is taken if the monitor call has not been implemented. On a normal return, the AC is set to zeroes
if access is allowed to the specified file, and it is set to -1 otherwise.

The right to access a file is determined by:

1. the type of access desired to the file (e.g., read).
2. the project-programmer number of the user desiring access to the file,
3. the project-programmer number of the directory in which the file resides, and
4. the protection field of the file or the protection field of the directory.

Note that access to a file is not dependent on the file name. However, the file name is needed if a LOOKUP is to be
performed (e.g., to obtain the protection field of the file).

8-30

)

)

)

)

)

'-

)

)

,~

)

Access
Codes Mnemonic

0 . ACCPR

1 . ACREN

2 . ACWRl

3 .ACUPD

4 . ACAPP

5 .ACRED

6 .ACEXO

7 .ACCRE

10 .ACSRE

Files

Table 8·10
CHKACC Access Codes

Meaning

Caller would like to change the me's protection code .

Caller would like to RENAME the specified me .

Caller would like to write the specified file .

Caller would like to update the me (in old-style update mode).

Caller would like to append to the ~nd of the me .

Caller would like to read the specified me,

Caller would like to execute the me.

Caller would like to create the me in his UFD.

Caller would like to read the directory as a file.

The follOwing sample code checks to see if user [36,402] has access rights to the me specified as PRlVAT.TXT
[1206,124] .

MOVEI
HRLM
LOOKUP

JRST

LDB

HRRM
MOVE
MOVEM
MOVE
MOVEM
MOVEI
CHKACC

AC,ACRED
AC,CHKLOC
CH,LKPBLK
ERROR

AC,[POINT 9,FILPRO,8]

AC,CHKLOC
AC,FILPPN
AC,CHKLOC+ 1
AC, [XWD 36,402]
AC,CHKLOC+2
AC,CHKLOC
AC,

JRST NOTIMP

JUMPE AC,ALLOWD

NOACCESS:

LKPBLK:
FILNAM: SIXBIT/PRlVAT/
FILEXT: SIXBIT/TXT/
FILPRO: 0
FILPPN: XWD 1206,124
CHKLOC: BLOCK 3

8~31

;GET CODE FOR "READ FILE"
;STORE TYPE OF ACCESS DESIRED
;LOOKUP PRlV AT .TXT
;ERROR RETURN HERE IF
;FILE CANNOT BE FOUND
;GET FILES PROTECTION
; FIELD
;STORE PROTECTION CODE
;GET PPN OF DIRECTORY
;STORE DIRECTORY PPN
;GET USERS PPN
;STORE USERS PPN
;SET UP FOR CHKACC
;GET ACCESS RlGHTS
;FROM MONITOR
;ERROR RETURN HERE WHEN
;CALL NOT IMPLEMENTED
;ACCESS IS ALLOWED
;IF AC CONTAINS 0, ELSE
;IF AC CONTAINS -1
;ACCESS IS NOT PERMITTED

I

Files

8.11 THE STRUUO MONITOR CALL (CALLI 50)
The STRUUO monitor call manipulates file structures, and it is intended primarily for monitor support programs.
The call is described within the STRUUO Specification in the DEC-system-lO Notebooks.

8.12 THE JOBSTR MONITOR CALL (CALLI 47)
The JOBSTR monitor call returns the name of the next file structure in the job's search list, along with other infor­
mation about the file structure. This call is used by DIRECT to list a user's directory correctly and specify in which
file structure the files reside, as well as the order in which they are scanned. JOBSTR's calling sequence is

MOVE ac, [XWD length,addr]
JOBSTR ac,

error return
normal return

addr: SIXBIT / file-structure-name/
directory-name

where:

status-bits

length specifies the length of the argument block.

addr points to the first word of the argument block.

file structure name (.DFJNM) can be a file structure name in SIXBIT, which will return the next file
structure name after the specified file structure name; or it can be 0 which will return the first file struc­
ture name in the job's search list; or it can be -1 which will return the file structure name immediately
following the FENCE (see section 8.2.2)

directory-name (.DFJDR) contains the directory name.

status bits specifies one of the status bits listed in Table 8-11.

Table 8-11
JOB/GOBSTR Status Bits

Bit Mnemonic Meaning

0 DF.SWL Software write protection is in effect for this job.

1 DF.SNC Files are not to be created on this file structure, when a multiple
file structure name is specified in an INIT or OPEN monitor call.
Files can be created if a specific file structure or physical unit is
specified.

On a normal return, the first word of the argument list contains either

1. the first file structure name in the search list (if 0 was specified),
2. the next file structure name appearing after the specified name or after the FENCE (if -1 is specified),
3. 0 if the item after the specified name is FENCE, or
4. -1 is there are no more file structure names in the search list, or if the search list is empty.

The following is an example ofreading ajob's search list.

SETOM LOC ;PLACE -1 IN LOC TO GET FIRST
;NAME IN SEARCH LIST

LOOP: MOVEI AC,LOC ;SET UP AC
JOBSTR AC, ;PERFORM THE MONITOR CALL

JRST ERROR ;ERROR RETURN LOCATION

8-32

\
;

)

)

)

..

)

)

)

MOVE
JUMPE
AOJE

JRST

AC,LOC
AC,FENCE
AC,END

LOOP

Files

;GET FILE STRUCTURE NAME RETURNED
;JUMP IF IT IS THE FENCE
: JUMP IF END OF SEARCH LIST (-1)

LOC: -1

;LOC HAS NEXT FILE STRUCTURE NAME

;REPEAT WITH NEXT FILE STRUCTURE NAME.
;FILE STRUCTURE NAME

o
o

;RESERVED FOR FUTURE USE.
;STATUS BITS

8.13 THE GOBSTR MONITOR CALL (CALLI 66)1
The GOBSTR monitor call returns successive me structure names in the job's or system's search list. Its calling
sequence is

addr:

where:

MOVE ac, [XWD length,addr]
GOBSTR ac,

error return
normal return

job-number
XWD project-no. ,programmer-no.
SIXBIT f file-structure-namef
directory-name
status-bits

length is the length of the argument list.

addr points to the first word of the argument list.

job-number is the number of the job whose search list is desired; if the calling job's search list is desired,
job number should be -1. If job number is 0, the specified project-programmer number is ignored and
the system search list is used.

project-no.,programmer-no. is the project-programmer number under which the specified job number is
running. If the project-programmer number is -1, the caller's project-programmer number is used.

file-structure-name can be a me-structure-name in SIXBIT which will return the search list beginning
with the me structure name after the name specified; it can be -1 which will return the search list
beginning with the first me structure name in the list; or it can be 0 which will return the search list
beginning with the me structure name immediately following the FENCE.

directory-name is the directory name in which the me structure is found.

status bits which may be set are listed in Table 8-11.

On an error return, one of the error codes listed in Table 8-12 will be returned in the AC.

8.14 THE SYSSTR MONITOR CALL (CALLI 46)
The SYSSTR monitor call provides a mechanism to obtain all the me structure names in the system. To access all
ftles in all User Files Directories, the program should access the Master File Directory on each me structure sepa­
rately. Monitor support programs use this call to access all of the mes in the system. SYSSTR's calling sequence is

IGOBSTR is a privileged monitor call unless information being requested is either about the system search list or the jobs logged-in
under the same project-programmer number as the calling job's number. The privilege bits required are either JP.SPA or JP.SPM in
the privilege word (.GTPRV, refer to Chapter).

8-33

MOVEI aC,n
SYSSTR ac,

error return
normal return

Files

where: n is either 0 or the last value returned by a previous SYSSTR; it cannot be a physical disk unit name or a
logical name.

Error
Code Mnemonic

3 DFGIF%

6 DFGPP%

10 DFGNP%

12 DFGLN%

The error return is taken if

Table 8-12
GOBSTR Error Codes

Meaning

me-structure-name is not either 0,-1, or a me structure name in
SIXBIT.

The specified job number and project-programmer number do
not correspond to each other.

The calling job is not a privileged job.

The specified length of the argument list is invalid.

1. the monitor call has not been implemented or
2. the argument is invalid.

On a normal return, the next me structure in the specified search list is returned in the AC. If there are no more me
structures in the search list, -1 is returned in the AC. A return of 0 in the AC indicates that the list of file structure
names has been exhausted. If 0 is specified as an argument, the first file structure name is returned in the AC.

8.15 THE SYSPHY MONITOR CALL (CALLI 51)
The SYSPHY monitor call returns all physical disk units in the system.
monitor call. SYSPHY's calling sequence is

MOVEI aC,n
SYSPHY ac,

errar return
normal return

The SYSPHY call is similar to the SYSSTR

where: n is 0 or the last unit name returned by the previous SYSPHY.

The first time a call to SYSPHY is made, the AC should contain 0 requesting that the monitor is to return the first
physical unit name. On subsequent calls, the AC should contain the previously returned unit name.

The errOr return is taken if the AC does not contain a physical disk unit name or zero. On a normal return, the
next physical unit name in the system is returned in the AC. If the monitor returns a 0 in the AC, the list of physi­
cal disk units has been exhausted.

8.16 THE DEVPPN MONITOR CALL (CALLI 55)
The DEVPPN monitor call allows a user program to obtain the project-programmer number associated with a disk
device. DEVPPN's calling sequence is

8-34

)

,.

.,

)

)

)

)

'4

')
MOVE ac, [SIXBIT/device-name/]
MOVEI ac, channel
DEVPPN ac,

error return
normal return

Files

where: device-name can be either a logical, a physical, or an ersatz device name.

channel may optionally be specified instead of device-name. It specified the channel on which the
specified device has been initialized.

If a legal device is specified, the normal return will be taken and the project-programmer number associated with the
iY device will be returned in the AC. However, if the user has specified SYS: and has NEW: enabled in his search list,

the project-programmer number returned will be [1,5].

)

)

~

'I

The error return is taken under the following conditions:

1. The monitor call has not been implemented; therefore, the contents of the AC are unchanged. In this
case, to obtain the appropriate project-programmer number follow one of the procedures listed below:
it. Use the GETPPN monitor call for the user's area.
b. Use the default project-programmer numbers appearing in Table 8-13 for the special ersatz devices.

2. If the device does not exist or the specified channel has not been initialized, 0 will be returned in the AC.
3. If the device specified is not a disk 'device, the user's project-programmer number will be returned in the

AC.

Device Project-Programmer
Name Number

ALG: [5,4]

ALL: user's

BAS: [5,1]

BU: [5,5]

COB: [5,2]

CRP: [10,1]

DEC: [10,7]

DMP: [5,21]

DOC: [5,14]

DSK: user's

FAI: [5,15]

FOR: [5,6]

HLP: [2,5]

UB: set by user

MAC: [5,7]

MFD: [1,1]

Table 8-13
Ersatz Devices

Device
Name

MUS:

MXI:

NEL:

NEW:

OLD:

POP:

PUB:

REL:

RNO:

SNO:

SYS:

TED:

TST:

UMD:

UNV:

Project-Programmer
Number

[5,16]

[5,3]

[5,20]

[1,5]

[1,3]

[5,22]

[1,6]

[5,11]

[5,12]

[5,13]

[1,4]

[5,10]

[5,23]

[6,6]

[5,17]

The following is an example for reading an UFD if either device SYS: or the user's area is specified.

8-35

Files

MOVEI A,16 ;GETMFDPPN

GETTAB A, ;NO CHANGE IF NO GETTAB
MOVE A,[I,I] ; IN CASE OF LEVEL C

MOVEM A,MFDPPN ; STORE MFD DIRECTORY NUMBER

MOVE A,DEVNAM ; GET DEVICE NAME TYPED BY USER
MOVEM A,MODE+l ; STORE FOR OPEN
DEVPPN A,

JRST GETPPX ; NOT IMPLEMENTED

; BACK HERE WITH IMPLIED PPN IN A

GOTPPN: MOVEM A,PPN ; STORE PPN IMPLIED BY DEVICE NAME

OPEN I,MODE ; TRY TO OPEN DEVICE
JRST ERROR ; NOT AVAILABLE

LOOKUP I,PPN ; TRY TO LOOKUP UFD
JRST ERROR ;NOTTHERE

IN ; READ FIRST BLOCK
JRST USEIT ; GO DO USEFUL WORK

JRST ERROR ; ERROR OREND OF FILE

; HERE IF DEVPPN FAILS

GETPPX: CAMN A, [SIXBIT/SYS/] ;SEE IF DEVICE NAME SYS:
JRST GETPPS, ;YES-GO HANDLE SYS:
GETPPN A, ; NO-GET OWN PPN

JFCL ; (IN CASE OF JACCT)
JRST GOTPPN ; OK-PROCEED AVOVE

GETPPS: MOVE A,[1,,16] ; FIND SYS: PPN
GETTAB A, ; FROM MONITOR TABLES

MOVE A, [1,,1] ;IN CASE OF LEVEL C
JRST iGOTPPN ; OK-PROCEED ABOVE

MODE: 14 ; BINARY READ
0 ; DEVICE NAME
O"INBUFH ; BUFFER HEADER

PPN: 0 ; DIRECTORY NAME
SIXBIT/UFD/ ; EXTENSION
0

MFDPPN: 1,,1 ; LOOKUP UFD IN MFD

8.17 THE DSKCHR MONITOR CALL (CALLI 45)
The DSKCHRmonitor call provides the disk characteristics, which are necessary information for allocating storage
efficiently on different types of disk units. DSKCHR's calling sequence is

MOVE ac, [XWD length,addr]
DSKCHR ac,

error return
normal return

addr: argument

where: addr points to the first word of the argument block, which is represented in Table 8-14.

length is the length of the argument block.

8-36

')

'.

~

)

)

"-I

t.

d

)
/

)

Files

argument can be the name of a file structure (e.g., DSKA), a type of controller (e.g., DP), a controller
name (e.g., DPA), a logical unit name (e.g., DSKA3), a physical unit name (e.g., DPA3), or a logical
device name (e.g., ALPHA). If more than one unit is specified, the values returned in the AC are for
the first unit specified. If more than one file structure (i.e., DSK of logical device name disk) is speci­
fied, the first unit of the first file structure is returned in the AC.

On a normal return, the monitor returns the information listed in Table 8-14 in the argument block. All but the
first word are set up by the monitor; the user sets up the first word. Status information (see Table 7-2) is returned
in the AC.

Location Mnemonic

addr .DCNAM

addr+l .DCUFT

addr+2 .DCFCT

addr+3 . DCUNT

addr+4 .DCSNM

addr+5 .DCUCH

addr+6 .DCUSZ

addr+7 .DCSMT

addr+l0 .DCWPS

addr+ll . DCSPU

addr+12 .DCK4S

addr+13 .DCSAJ

addr+14 . DCULN

Table 8-14
DSKCHR Argument Block

Meaning

The argument name in SIXBIT that the user program
supplies.

The number of blocks left of the logged-in job's quota before
the User File Directory of the job is exhausted on the unit
specified in addr. If .DCUFT contains a negative value, the
user file directory contains 400000,000000), the user file
directory has not been accessed since LOGIN-time; there-
fore, the monitor is not aware of the user's quota.

The number of blocks on a first-come-first-serve basis left
for all users on the specified file structure.

The number of blocks left for all users on the specified unit .

The file structure name to which this unit belongs.

The characteristic sizes as follows

bits mnemonic meaning

0-8 DC.UCC blocks per cluster
9-17 DC.UCT blocks per track
18-35 DC.UCY blocks per cylinder

The number of 128-word blocks on the specified unit.

The mount count for the file structure, which is the number
of jobs that have performed a MOUNT command for this
file structure without executing a DISMOUNT command.
(LOGIN performs an implied MOUNT of DSK: for all
logged-in users.)

The number of words containing data bits per SAT block on
this unit.

The number of SAT blocks per unit .

The number of K allocated for swapping.

The file structure mount word, which will contain either 0,0
if non for more than one job has this file structure mounted.

-l"n if only job n has this file structure mounted, but the
file structure is not single-access.

O"n if job nm has this flie structure mounted, and the file
structure is single-access.

The unit's logical name .

8-37

I
I

--

Location Mnemonic

addr+15 . DCUPN

addr+16 .DCUID

addr+17 .DCUFS

addr+20 . DCBUM

addr+21 . DCCYL

addr+22 .DCBUC

addr+23 . DCLPQ

addr+24 . DCLTQ

Bit Mnemonic

0 DC.RHB

DC.OFL

2 DC.HWP

3 DC.SWP

4 DC.SAF

5 DC.ZMT

6

7-8 DC.STS

3 DC.STD

9 DC.MSB

10 DC.NNA

11 DC.AWL

12-14

15-17 DC.TYP

Files

Table 8-14 (Cont.)
DSKCHR Argument Block

Meaning

The unit's physical name .

The unit's ID.

The first logical block used for swapping on this unit.

The number of blocks per unit (including maintenance
cylinders) .

The current cylinder number.

The number of blocks per unit in PDP-II compatibility
mode.

The length of the position wait queue •

The length of the transfer wait queue .

Table 8-15
DSKCHR Status Bits

Meaning

The monitor must reread the home block before the next
operation, to ensure that the pack ID is correct. The monitor
will set this bit when a disk pack goes off-line.

The unit is off-line.

The unit is hardware write-protected.

The unit belongs to a file structure that is write-protected by
the software for this job.

The unit belongs to a single-access file structure.

The unit belongs to a file structure with a mount count that
has gone to zero (Le., no one is using the file structure).

Reserved.

The unit status, either

code mnemonic meaning

0 .DCSTP A pack is mounted.
2 .DCSTN No pack is mounted.

The unit is down.

The unit has more than one DAT block.

The unit belongs to a file structure for which the operator
has requested no new INITs, LOOKUPs, ENTERs, or
FILOP.'s; set by a privileged STRUUO function, see the
STRUUO SpeCification in the DECsystem-1O Software
Notebooks.

The file structure is write-locked for all jobs~

Reserved.

The type of argument passed to monitor in addr, either

8-38

')

(.r

)

\
)

)

'1

)

')

)

)

)

~.

)

Bit Mnemonic

18-20 DC.DCN

21-26 DC.CNT

27-29 DC.CNN

30-32 DC.UNT

33-35 DC.UNN

Files

Table 8-15 (Cont.)
DSKCHR Status Bits

code mnemonic

0 DCTDS

1 .DCTAB

2 .DCTFS

3 .DCTUF

4 .DCTCN

5 .DCTCC

6 .DCTPU

Meaning

meaning

a generic name

a subset of file structures
because of file structure
abbreviation

a file structure name

a unit within a file
structure

controller class name

con troller class

physical unit

The data channel number that the software believes the hard-
ware is connected to; the first data channel is O.

The controller type:

code mnemonic meaning

1 .DCCFH RC 10 controller
2 .DCCDP RP10 controller

The controller number; first controller of each type starts
with O.

The unit type; a controller-dependent field used to distin-
guish various options of a unit on its controller.

code mnemonic meaning

0 .DCUFD RD 10 Burroughs disk
(if bits 21-26= 1).

1 .DCUFM RM10B Bryant disk (if
bits 21-16=1).

2 .DCUD2 RP02 disk pack (if bits
21-26=2).

3 .DCUD3 RP03 disk pack (if bits
21-26=2).

The physical unit number within the controller; first unit
number is O.

8.18 THE DISK. MONITOR CALL (CALLI 111)
Teh DISK. monitor call sets and examines the parameters associated with disk and file systems. It allows the user to
assign a priority level for disk operations (e.g., data transfers and head positionings) either for a user I/O channel or
for ajob (i.e., all user channels). When this priority level has been set, the disk operation request with the highest
priority level, the request most satisfying disk optimization is chosen. The DISK. monitor call's calling sequence is

MOVE ac, [XWDjunction,addr]
DISK. ac,

error return
normal return

8-39

where:

Files

junction is one of the function codes listed in Table 8-16.

addr is appplicable only when specifying function code 0; it points to a word that contains the priority
level desired and the channel(s) for which this priority level is to be associated with.

Table 8-16
DISK. Function Codes

Function
Code Mnemonic Meaning

0 .DUPRI Set the priority level to that specified at addr, refer to
Figure 8-8 .

1 . DUSEM l Set the PDP-II (i.e., 22-sector) mode on the RP04.

2 .DUSTM l Set the PDP·I0 (i.e., 20-sector) mode on the RP04.

3 .DUUNL l Unload the RP04.

4 .DUOLS l The specified channel/controller will be set off-line.

5 .DUOLN l The specified channell controller is off-line now.

6 .DUONLl The specified channel/ controller is back on-line.

1 This is a privileged function.

o 17 18

priority level

{

can be set from-3
to +3; +3 is the

highest priority
level.

35

N

r ,A

n = x = set priority for channel x (x = 0 to 17)

n = -1 = set priority for all channels OPENed or INITed
by the callingjob.

n = -2 = set the priority for the entire job.

Figure 8-9. DISK. Priority Level

The range of priority levels may be specified from -3 to +3, with 0 being the normal timesharing level of priority.
A job can request a priority that is lower than the normal priority; this lower priority would be used when the asso­
ciated job is a background job.

8-40

)

)

)

)

.,

'J

~

.,

"

Files

) The maximum priority level that a job may assume is set in bits 1 and 2 (JP.PRI) of the privilege word, ,GTPRV.

)

)

)

When a priority level is set for a channel, that priority level overrides any other priority level set for any job associ­
ated with that channel. That priority level remains in effect until it is changed or until that channel is RELEASEd .

When a priority level is set for a job, that priority level remains in effect until the reset by another DISK. monitor
call or until the DSKPRI command is executed, refer to DECsystem-10 OPERATING SYSTEM COMMANDS.

The possible error codes that may be returned in the AC are listed in Table 8-17.

Table 8-17
DISK. Error Codes

Code Mnemonic Meaning

0 DISK. monitor call has not been implemented.

-1 DUILF% Illegal function has been specified.

-2 . DUILP% An illegal priority level has been specified.

8.19 FILE STATUS
This section describes the file status word, its initial setting, and how a user can examine, test, and change it.

The status of a file, including its data mode, is set initially to the contents of the file status word. After these bits are
initially set by the moriitor, the user can test and-reset the bits by using the STATZ, STATO, and SETSTS monitor
call. Bits 30-35 of the file status word are normally set by the monitor on the execution of an INIT, OPEN, or FILOP.
monitor call. If the indicated data mode is not legal for the specified device, the monitor will stop the job and print
the following message on the user terminal:

?ILLEGAL DEVICE DATA MODE FOR DEVICE devicename AT USER addr

where: devicename is the physical name of the device.
addr is the location of the INIT, OPEN or FILOP. cal.

The right half of the file status word (Le., bits 18-35) reflects the current state of a file transmission. Table 8-21ists
the file status bits for disk files; refer to Chapters 9, 10, 11, and 12 for the file status bits for files on other de­
vices.

All bits, except the end-of-file bit, are set by the monitor as a condition occurs, rather than being associated with the
buffer currently used. However, the file status bits are stored with each buffer, enabling the user to determine which
buffer produced the error.

The end-of-file bit is set when the user attempts to read past the last block of data. Therefore, when this bit is set, no
data has been placed in the input buffer.

The file status can be returned to the user via the GETSTS monitor call; it can be tested via the STATZ monitor Calli
or the STATO monitor call; and the file status may be changed via the SETSTS monitor call.

8.19.1 The GETSTS Monitor Call (Op Code 62)
The GETSTS monitor call returns the file status bits associated with a specified device, its calling sequence is

GETSTS channel,addr
only return

841

Files

where: channel is the channel number associated with the desired device.
addr is the location in which the file status bits will be stored on a return (Le., O"bits)

If a device has not been associated with the specified data channel, the monitor will stop the job and print the follow·
ing message on the user's terminal:

?I/O TO UNASSIGNED CHANNEL AT USER addr

Bit Mnemonic

18 IO.IMP

19 10.DER

20 10.DTE

21 IO.BKT

22 IO.EOF

23 IO.ACT

29 10.WHD

30 IO.sYN

31 IO.UWC

32-35 IO.MOD

Table 8-18
Disk File Status Bits

Meaning

Improper Mode. Attempt to write on a software write-locked file structure, or a
software redundancy failure occurred. This bit is usually set by the monitor. The
user cannot set this bit.

Hardware device error. The disk unit is in error, rather than the data on the disk.
However, data read into core or written on the disk is probably incorrect. The
user does not usually set this bit.

Hard data error. The data read or written has incorrect parity as detected by the
hardware. The user's data is probably unrecoverable even after the device has been
fixed. This bit is usually not set by the user.

Block too large. A disk data block is too large to fit into the buffer; or a block
number is too large for the disk unit; or DSK has been filled; or the user's quota
on the file structure has been exceeded. This bit is usually not set by the user.
This error is also returned when the user tries to close a file that has open locks
associated with it (via Enqueue/Dequeue).

End-of-me. The user program has requested data beyond the last block of the
file with an IN or INPUT call; or USETI has specified a block beyond the last
data block of the file. When IO.EOF is set, no data has been read into the buf-
fer. This bit is usually not set by the user.

I/O Active. The disk is actively transmitting or receiving data. This bit is always
set by the monitor.

Write disk pack headers. This is used in conjunction with the SUSET monitor
call to format a disk pack.

Synchronous mode I/O. Stop disk after every buffer is read or written.

User word count, supplied by the user in each buffer.

Data mode of the device.

842

)

~

~

,

)

)

)

;f

)

Files

8.19.2 STATO/STATZ (Op Codes 61 and 63)
The STATO/STATZ calls test the bits in the me status word. STATO will skip if any me status bits specified are 1;
STATZ will skip if all me status bits specified are O. Their calling sequences are:

STATO channel,bits
normal return
skip return

STATZ channel,bits
normal return
skip return

where: channel is the channel number associated with the desired device.
bits are the bits in the me status word that are to be tested.

If a device has not been associated with the specified data channel, the monitor will stop the job and print the follow­
ing message on the user's terminal:

?I/O TO UNASSIGNED CHANNEL AT USER addr

8.19.3 The SETSTS Monitor Call (Op Code 060)
The SETSTS monitor call allows a user to change the bit setting in the me status word. Its calling sequence is:

SETSTS channel,bits
return

where: channel is the channel number associated with the desired device.
bits specifies those bits which are to be changed in the me status word.

If no device has been associated with the specified channel number, the monitor will stop the job and print the follow­
ing message on the user's terminal:

?I/O TO UNASSIGNED CHANNEL AT USER addr

Bits 18, 19,20, and 21 must be cleared by this call, if the user is attempting error recovery. SETSTS can be called to
clear the end-of-me bit (bit 22, 10.EOF); but this alone is not enough to clear the end-of-me condition. Further input
to the file cannot take place until the end-of-file has been cleared by a CLOSE, USETI, MT APE., LOOKUP, or INIT
monitor call.

SETSTS will wait until the specified device is inactive before changing the me status bits. If a new data mode is speci­
fied that is not legal for the device, the monitor will stop the job and print the following message on the user's termi­
nal:

?ILL DEVICE DATA MODE FOR DEVICE devicename AT USER addr

If a user changes the data mode (bits 32-35), he will also have to change the byte size for the byte pointer in the in­
put buffer header (if any) and the byte size and item count in the output buffer header (if any). The output item
count should be changed by using current count and dividing/multiplying by the appropriate conversion factor
(rather than assuming the length of the buffer). If the data mode change requires a different buffer size, but the size
is not changed, incorrect I/O will probably result. The mode specified in an INIT call determines the buffer size, even
though the buffer ring has not yet been created.

843

Files

8.20 TERMINATE A FILE
The CLOSE monitor call (op code 070) terminates file transmission. Its calling sequence is

CLOSE channel,option
return

where: channel is the channel number on which the specified file is to be closed.
option is usually zero, but individual options may be selected independently to control the effect
of the CLOSE. The possible options are:

Option Meaning

0 The output side of the specified channel is closed (bit 35 = 0). In un buffered data modes,
the effect is to execute a device-dependent function. In buffered data modes, operations
are performed.

1. All data in the buffers that has not been transmitted to the device is written.
2. Device dependent functions are performed.
3. The ring use bit (bit 0 of the first word in the buffer header) is set to a 1 indicating

that the buffer ring is available.
4. The buffer byte count (the third word in the buffer header) is set to O.
5. Control returns to the user program when transmission is complete.

The input side of the specified channel is also closed (bit 34 = 0). The end-of-file flag is
always cleared. Further action depends on the data mode in unbuffered data modes, the
effect is to execute a device dependent function. In buffered data modes, if a ring buffer
exists, the following operations are performed:

1. Wait until the device is inactive.
2. The use bit of each buffer is cleared indicating that the buffer is empty.
3. The ring use bit of the buffer header is set to 1 indicating that the buffer ring is

available.
4. The buffer byte count is set to O.
5. Control returns to the user program.

On output CLOSE, the unwritten blocks at the end of the disk file are automatically de-
allocated (bit 33 = 0). On input CLOSE, the access date of a disk file is updated (bit 32 =
0).

1 The closing of the output side of the specified channel is inhibited. Other actions of
CLOSE are unaffected. Bit 35 = 1, CL.OUT.

2 The closing of the input side of the specified channel is inhibited; other actions of
CLOSE are unaffected. Bit 34 = 1, CL.IN.

41 The unwritten blocks atthe end of a disk file are not deallocated. This capability is
provided for users who specifically allocate disk space and wish to retain it. Bit 33 = 1,
CD.DLL.

---- -------------------

lUse of this option is meaningful only with disk files, and it is ignored with non-disk files.

"844

)

{-:-

"
.,

)

')

)

)

)

CHAPTER 9

I/O PROGRAMMING FOR DECTAPE

This chapter explains the unique features of I/O programming using a DECtape unit. DECtape devices accept the
calls described in Chapter 7, unless indicated otherwise. Table 9-1 summarizes the characteristics of a DECtape unit.
Buffer sizes are given in octal and include 3 bookkeeping words. The physical characteristics of a device may be
obtained by issuing the DEVCHR call (refer to paragraph 7.8.2).

Physical Controller
Device Name Number

DECtape DTAO,DTAI, TDlO
... ,DTA7 551 (PDP-6)
DTBO,DTBI,
... ,DTB8

9.1 DECTAPE
The device mnemonics for DECtape devices are:

DTAO
DTAI
DTA2
DTA3

DTA7

Table 9-1
DECtape Devices

Unit
Number

TU55
555 (PDP-6)

Special Data Modes Buffer
Monitor for Sizes

Calls DECtape (Octal)

MTAPE, Ascii 202
UGETF, Ascii Line
USETO, Image
USETl, Binary
UTPCLR Image Binary

Dump Record
Dump

The buffer size is 202 octal words: 177 octal user data and 200 octal transferred. On systems with dual DECtape
controllers, the drives on the second controller have the mnemonics DTBO, ... ,DTB7 where the B indicates the
second controller.

9.2 DATA MODES
Two hundred words are written. The first word is the link plus word count. The following 177 octal words are
data supplied to and from the user program.

9.2.1 Buffered Data Modes
Data is written on DECtape exactly as it appears in the buffer and it consists of 36-bit words. No processing or
checksumming of any kind is performed by the service routine. The self-checking of the DEC tape system is suffi­
cient assurance that the data is correct. Refer to paragraph 9.1.2 for further information concerning the blocking
of information.

9-1

I/O Programming for DECtape

9.2.2 Unbuffered Data Modes
Data is read or written from anywhere in the user's core area without regard to the standard buffering scheme.
Control for read or write operations must be via a command list in core memory. The command list format is
described in paragraph 7.3.1. On the KIlO/KLlO, if the IOWD list is modified as the result ofI/O performed (Le.,
an INPUT reads into the 10WD list) and the word count of any of the IOWDs read into the list is greater than the
following value:

(maximum word count specified in anginal list - 2) / 512+2

the monitor will stop the job and print the following message on the user's terminal:

?ADDRESS CHECK AT USER addr

File-structured dump mode data is automatically blocked into standard-length DEC tape blocks by the DEC tape
service routine. Each block read or written contains link word plus 1 to 177 octal data words. Unless the number
of data words is an exact multiple of the data portion of a DEC tape block (177 octal), the remainder of the last
block written after each OUTPUT call is wasted. The INPUT call must specify the same number of words that the
corresponding OUTPUT call specified to skip over the wasted fractions of blocks.

9.3 DECTAPE FORMAT
A standard reel of DECtape consists of 1102 octal pre-recorded blocks each capable of storing 200 octal 36-bit
words of data. Block numbers that label the blocks for addressing purposes are recorded between blocks. These
block numbers run from 0 to 1101 octal. Blocks 0,1, and 2 are normally not used during timesharing and are
reserved for a bootstrap loader. Block 10010 is the directory block, which contains the names of all files on the
tape and information relating to each file. Blocks 1-143 octal and 145-)'01 octal are usable for data.

If, in the process of DECtape I/O, the I/O service routine is requested to use a block number larger than 1101 octal
or smaller than 0, the monitor will set the IO.BKT bit in the file status word (refer to paragraph 7.6.1).

9.3.1 DECtape Directory Format
The directory block (block 144 octal) of a DEC tape contains direbory information for all files on that tape; a
maximum of 22 files can be stored on anyone DECtape (refer to Figure 9-1).

Words 0 through 8310 of the directory block contain slots for blocks 1 through 577 on a DECtape. Each slot
occupies five bits (seven slots per word) and represents a given block on the DECtape. Each slot contains the number
of the file (1-26 octal) occupying the given block. This allows for 581 slots (83 words x 7 slots per word). The
four extra slots represent non-existent blocks 1102 octal through 1105 octal.

Bit 35 of words 0-6510 of the directory block contains the high order three bits of the 15-bit creation date of each
file on the DECtape. (Note that the low order 12 bits of the creation date of each file are contained in words 105
through 12610, This split format allows for compatibility among monitors and media as old as 1964. The high
order 3 bits of the 15-bit creation data for file 1 are contained in bit 35 of words 0, 22, and 44. Word 44 contains
the first (Le., most significant) bit;, word 22 contains the second and word 0 contains the third. The high order
digits for file 2 are contained in bit 35 of words 1,23, and 45 with the digits in the same order as described for
file 1. The high order digits for the remaining files are organized in the same fashion.

Words 8310 through word 10410 of the directory bloc~ contain the file names of the 22 files that reside on the
DECtape. Word 83 contains the file name for file 1, word 84 contains the, file name for file 2; file names are stored
in SIXBIT.

Words 10510 through 12610 contain the file name extensions and the low order part of the creation date of the
22 files that reside on the DECtape, in the same relative order as their file names. The bits for each word are
described in Table 9-2.

9-2

)

/.

)

)

)

)

)

"

"

)

)

~-r:,

;>

)

Bit

0-17

18 - 23

24 - 35

I/O Programming for DECtape

BLOCK 2 3 4 5 6 7

o

83 WORDS)
65

66

82

22 WOROSl
83

84

105

106

22 WORDSi

126

127
10

NOTES:

*1*1 1 1 1 1 1

I I I I I I I
L 1 1 1 1 1 1

I I I+I+I+I+J
FILENAME 1

FILENAME 2

EXTENSION 1 LOW DATE 1

EXTENSION 2 LOW DATE 2

TAPE LABEL

-
--
-

BIT 35 CONTAINS
HIGH ORDER DIGITS
OF CREATION DATES

BIT 35 UNUSED

* Reserved for system, contains 36 as does block 1448 for the
directory,

+ Represents blocks 1102 through 1105, which are not availClble
contains 378 ,

Figure 9-1. DECtape Directory Format

Table 9-2
Format of Words 105 -126 in the

DECtape Directory Block

Meaning

The file name extension in SIXBIT.

Zero.

10-0572

The low-order 12 bits of the creation date. (Note that the high
order digits are encoded in bit 35 of words 0 through 65 10,)
The creation date is computed using the following formula:

((((year-1964)xI2)+(month-l)x31 +(day-l)))=date
-- ----- ----

Word 12710 of the directory block is the tape label.

9-3

I

_J

I/O Programming for DECtape

The message

?BAD DIRECTORY FOR DEVICE DTAn:EXEC CALLED FROM USER LOC addr

is typed when one of the following conditions is detected:

1. A parity error occurred while reading the directory block.
2. No slots are assigned to the file number of the file.
3. The tape block, which may be the first block of the file (i.e., the first block for the file encountered

while searching backwards from the directory block), cannot be read.

User programs should never manipulate DECtape directories explicitly since the LOOKUP and ENTER calls (refer
to paragraphs 7.5.1.1 and 7.5.1.2) automatically record all of the necessary entries in the directory for the user.
These calls have all of the capabilities needed to process the name and the creation date of a file. However, a small
number of special purpose programs do process directories by explicit action, rather than using the LOOKUP and
ENTER calls. For such programs, the following examples illustrate methods for

1. assembling the I5-bit creation date, and
2. storing the I5-bit creation date. The number of the file (1 to 22) is in register PI and the directory

block begins at the location DIRECT.

The example below shows the special assembly for the creation date.

DPB Tl,[POINT I2,DIRECT+-DlO4(PI),35] ;SAVE LOW PART
MOVEI T2,I ;SET UP TO MARK LOW BIT
ANDCAM T2 ,DIRECT -1 (P I) ;CLEAR DIRECTORY BIT
TRNE Tl,IB23 ;IF BIT IN DATE SET,
IORM T2,DIRECT-I(PI) ;SET DIRECTORY BIT
ANDCAM T2,DIRECT+ -D2I (P 1)
TRNE Tl,IB22 ;REPEAT FOR EACH BIT IN
IORM T2,DIRECT+-D2I(Pl) ;HIGH PART OF DATE
ANDCAM T2,DIRECT+-D43(Pl)
TRNE Tl,IB2I
IORM T2 ,DIRECT+ -D43(p 1)

The example below shows special purpose storage of the creation date.

LDB
MOVEI
TDNE
TRO
TDNE
TRO
TDNE
TRO

Tl, [POINT I2,DIRECT+-Dl 04(P1),35]
T2,1
T2,DIRECT-I(PI)
Tl,IB23
T2,DIRECTFD21(PI)
Tl,IB22
T2 ,DIRECT+ -D43(p 1)
Tl,IB2I

9.3.2 DECtape File Format

;GET LOW PART
;SET UP TO TEST LOW BIT
;IF SET IN DIRECTORY
;THEN SET BIT IN DATE
;REPEAT FOR EACH BIT IN
;HIGH PART OF DATE

A file consists of any number of DECtape blocks. Figure 9-2 represents the format of a file on a DECtape.

Each block contains the following information:

Word 0 Left Half: The link, which is the block number of the next block in the file. If the link
is zero, this block is the last block in the file.

9-4

)

)

)

)

..

"'

)

I/O Programming for DECtape

Right Half: Bits 18 through 27 contain the block number of the first block in the file.

Words 1 - 177 octal

Bits 28 through 35 contain a count of the number of words in this block that
are used (maximum is 177 octal).

The data packed exactly as the user placed it in this buffer, or in dump mode
files, the next 177 words of memory.

> · 1 H I ~ III n IIII ~ III· .. · ... ?
I

END DIRECTORY BEGIN

10-0573

Figure 9-2. Format of a File on a DEC tape

) Figure 9-3 illustrates the format of a DECtape block.

link 1st block word
number count

data

) Figure 9-3. Format of a DECtape Block

}

)

9.3.3 Block Allocation
Normally, blocks are allocated by starting with the first free block nearest the directory and going backwards to the
front of the tape (block 0). When the end of the tape is reached, the direction of the scan is reversed. Blocks are
not written contiguously; rather, they are separated by a spacing factor. This allows the drive to stop and restart to
read the next block of the file without having to back up the tape. The spacing factor is normally four, but for
dump mode and UGETF followed by an ENTER, the spacing factor is two.

9.4 I/O PROGRAMMING
DECtape is a directory device; therefore, file selection must be performed by the user before data can be transmitted
to or from the file. File selection is accomplished via the LOOKUP, ENTER, or FILOP. calls. Refer to paragraph
7.5.2 for a description ofFILOP.

9.4.1 The Lookup Operator
On DECtape the calling sequence for LOOKUP is

LOOKUP channel,addr
error return

normal return

where: channel specifies the software I/O channel associated with the device on which the file resides.
addr points to a four-word argument block with the format illustrated in Figure 9-4.

A detailed description of the argument block is given in Table 9-3.

9-5

Word 0

Word 1

Word 2

Word 3

o

Word Bits

0 0-35

1 0-17

1 18-20

1 21-25

1 26-35

2 0-35

3 0-35

I/O Programming for DECtape

file

ext hi I 0

0 # blk I
-n addr-1

17 18

Figure 9-4. LOOKUP/ENTER/RENAME Argument Block

On Call

Use

A

A

I

I

I

I

I

Table 9-3
LOOKUP Parameters

Contents Word

The file name in SIXBIT. 0

The file name extension 1
in SIXBIT.

1

1

1

2

2

2

3

3

On Return

Bits Use

0-35 V

0-17 V

18-20 V

21-25 V

26-35 V

0-17 V

18-23 V

24-35 V

0-17 V

18-35 V

A::: argument for user program, V = value returned from monitor, I = ignored.

I blk #

lo-date

35

Contents

The file name in SIXBIT.

The file name extension
in SIXBIT.

The high order 3 bits of
the creation date.

Zero.

The first block number.

Zero.

Zero.

The low order 12 bits of
the creation date.

The negative word length
of the zero-compressed .
file.

The core address of the
first word of the file
minus 1.

----_ ... --------

LOOKUP sets up an input file on the specified channel. The contents of the argument block are matched
against the filenames and file names extensions in the DECtape directory. (Words 1 and 2) if no match is found,
the error return is taken, and an error code is returned in the RH of word 1, refer to Appendix E. If a match
is found, the 4-word argument is filled in by the monitor, and the normal return is taken.

On a normal return, the first block of the file is as follows:

1. The first 83 words of the DECtape are searched backwards, beginning with the slot immediately before
the directory block, until the slot containing the desired file number is found.

9-6

)

~),

)

)

)

.)

.}

~,

) 2.

I/O Programming for DECtape

The block associated with this slot is read in and bits 18-27 of the first word of the block are
checked (i.e., the bits containing the block number of the first block of the file). If the bits are
equal to the block number of this block, then this block is the first block; if not, then the block with
that block number is read as the first block of the file.

9.4.2 The ENTER Operator
The ENTER operator sets up an output file on the specified channel, its calling sequence is

ENTER channel, addr
error return

normal return

where: channel specifies the software I/O channel associated with the device containing the desired file.

addr points to a four-word argument block (with two a words) shown in Figure 104 (word a and 1).

Table 94 describes the ENTER parameters needed for the call and those returned from the monitor on a normal
) return from the call.

On Call

Word Bits Use

a 0-35 A

Contents

Table 94
ENTER Parameters

Word

The file name in SIXBIT. a

On Return

Bits Use Contents

0-35 V The file name in SIXBIT.

) 1 0-17 A The file name extension 1 0-17 V The file name extension in
in SIXBIT. SIXBIT.

.}

)

1 18-35 I 1 18-20 V The high or4er 3 bits of
the creation date.

1 21-35 I

2 0-35 I 2 0-35 I

A = argument from user program, V = values returned from monitor, I = ignored.

The DECtape directory is searched for a file name and a file name extension matching the argument supplied in
word a and word 1 (LH) of the argument block. If no match is found, and there is room in the directory, the moni­
tor records the information in the first three words of the DEC tape directory. If a match is found, the new entry
replaces the old entry, the old file is reclaimed immediately, and the monitor records the file information. This
process is called superseding and differs from the process on the disk, in that because of the small size of DECtapes,
the space is reclaimed before the file is written rather than after.

9.4.3 The RENAME Operator
The RENAME operator alters the file name or the file name extension of an existing file, or deletes the file directory
from the DECtape associated with the specified channel. The calling sequence for RENAME is

RENAME channel, addr
error return

normal return

Refer to Figure 94 for a description of the argument block; refer to Table 9-5 for a detailed description of the
) RENAME-parameters.

9-7

Parameter Use

word 0 A

word 1 A

word 2 A

word 3 I

I/O Programming for DECtape

Table 9-5
RENAME Parameters

On Call

Contents farameter

SIXBIT IFILEI or 0 E

LH = SIXBIT IEXT I E+I
RH = high order 3 bits
of I5-bit creation date
(bits 18-20).

RH = low order 12 E+2
bits of I5-bit creation
date or 0 (0 implies
current date).

E+3

A = argument from user program, V = value from monitor, I = ignored.

On Return

Use Contents

V SIXBIT IFILEI

V LH = SIXBIT IEXT I
RH = high order 3 bits
of I5-bit creation date
(bits 18-20).

V RH = low order 12
bits of I5-bit creation
date (bits 24-35).

I

Unlike on a disk RENAME, a DECtape RENAME works on the last file LOOKUPed or ENTERed for the device,
not the last file for the specified channel. The calling sequence required to successfully RENAME a file on DECtape
is as follows:

LOOKUP channel, addr
CLOSE channel,
RENAME channel, addr 1

or

ENTER channel, addr
CLOSE channel,
RENAME channel, addr 1

9.4.4 INPUT, OUTPUT, CLOSE, RELEASE
When performing input operations, the DECtape service routine reads the links in each block to determine what
block to read next and when to raise the EOF flag.

When an OUTPUT is given, the DECtape service routine examines the left half of the third word in the output buffer
(the word containing the word count in its right half). If this word contains -1, it is replaced with a 0 before being
written out, and the file is terminated. If this half word is greater than 0, it is not changed and the service routine

. uses it as the block number for the next OUTPUT. If this half word is 0, the DECtape service routine assigns the
block number of the next block for the next OUTPUT.

For both INPUT and OUTPUT, block 100 decimal (the directory block) is treated as an exceptional case. If the
user program issues

USETI channel, -D 100

to read block 100 decimal, it is treated as a I~block file.

The CLOSE operator places a -1 in the left half of the third word in the last output buffer, thus terminating the
file.

9-8

)

d

)

)

)

.. J

)

)

~

~,

)

)

)

~

I/O Programming for DECtape

The RELEASE operator writes the copy of the directory, which is normally kept in core onto block 100 decimal,
but only if any changes have been made. Certain console commands, such as KJOB or CORE 0, perform an
implicit RELEASE of all devices and, thus, write out a changed directory even though the user's program failed to
give a RELEASE.

9.5 SPECIAL MONITOR CALLS
Several monitor calls are provided for manipulating DECtape. These calls allow the user to manipulate block num­
bers and to handle directories.

9.5.1 USETI Channel, Addr
USETI sets the DECTAPE ON CHANNEL TO INPUT BLOCK ADDR NEXT. SINCE THE MONITOR READS AS
MANY BUFFERS AS IT CAN ON INPUT, it is difficult to determine which buffer the monitor is processing when
the USETI is given. Therefore, the INPUT following the USETI may not obtain the buffer containing the block
specified. However, if a single buffer ring is used, the desired block is retrieved since the device must stop after each
INPUT. Alternatively, if bit 30 (IO.SYN) of the file status word is set via an INIT, OPEN, or SETSTS UUO, the
device stops after each bufferfu1 of data on an INPUT so that the USETI will apply to the buffer supplied by the
next INPUT.

9.5.2 USETO Channel, Addr
USETO sets the DECtape on channel to output block addr next.

9.5.3 UGETF Channel, Addr
UGETF places the number of the next free block of the file in addr.

If UGETF is not preceded by an ENTER, the monitor modifies its algorithm in the following manner:

1. The first block is written nearest the front of the tape instead of nearest the directory.
2. The spacing factor is changed to 2 instead of 4 so that very large programs can fit almost entirely in a

forward direction.

If no LOOKUP or ENTER has been done, UGETF returns a -1. If a LOOKUP has been done, UGETF gives the same
results as if an ENTER has been done. UGETF returns a block number; it neither marks the directory nor sets a
particular block to be written, and is a no-op for anything except DTA.

9.5.4 UTPCLR AC, (CALLI 13)
UTPCLR clears the directory of the DECtape on the device channel specified in the AC field. A cleared directory
has zeroes in the first 83 words except in the slots related to blocks 1,2, and 100 (10) and nonexistent blocks 1102
through 1105 octal. Only the directory block is affected by UTPCLR. This prograrnrned operator is a no-operation
if the device on the channel is not a DECtape.

9.5.5 MTAPE Channel, 1 And MTAPE Channel, 11 MTAPE
CHANNEL, 1 (MTREW.) rewinds the DECtape and moves it into the end zone at the front of the tape. MTAPE
channel, 11 (MTVNL.) rewinds and unloads the tape, pulling the tape completely onto the left-hand reel, and clears
the directory-in-core bit. These commands affect only the physical position of the tape, not the logical position.
When either is used, the user's job can be swapped out while the DECtape is rewinding; however, the job cannot be
swapped out if an INPUT or OUTPUT is done while the tape is rewinding.

9.5.6 Devsts Monitor Call After Each Interrupt,
The DECtape service routine stores the results of a CONI in the DEVSTS word of the device data block. The
DEVSTS call is used to return the contents of the DEVSTS word to thnlser (refer to paragraph 7.8.1).

9.6 FILE STATUS
The file status of the DECtape is shown on the next page.

9-9

I/O Programming for DECtape

Standard Bits

18 21 24 27 30 33 35

SET BY USER 1[[[[[[[[[[[[[[[[11[[[[[[[[[[[[[[[[[1

SET BY MO N I TOR 1I.LI.LIII.LU1[[[[[[[[[[UJ.W.UIW[[[[[[[I[[[=[[[[[[[[[[[IWL-[[[1 ----L-.......L.-...&......-..-J

Bit 18 = IO.IMP

Bit 19 = 10.DER

Bit 20 = 10 .DTE

Bit 21 = 10 .BKT

Bit 22 = IO.EOF

Bit 23 = 10.ACT

Device Dependent Bits

Bit 28 = 10 .SSD

Bit 29 = 10 .NSD

UNUSED

SET BY USER

10-0576

An attempt was made to read block 0 in nonstandard dump mode.

Data was missed.

Parity error.

.Block number is too large or tape is full on OUTPUT.

EOF mark encountered on input. No special character appears in buffer.

Device is active.

18 21 24 27 30 33 35

1111111111111111111111111

10- 0571

18 21 24 27 28 29 30 33 35

[]I
10-0578

DECtape is in semi-standard I/O mode. The setting of this bit is
recognized only if bit 29 (nonstandard I/O mode) is on. Semi­
standard mode is similar to nonstandard mode except.

1. Block numbers are checked for legality, and
2. The tape is started in the same direction as it was previously

going.
3. Dead reckoning is done.

DECtape is in a nonstandard I/O mode format as opposed to standard­
I/O mode. No file-structured operations are performed on the tape.
Blocks are read or written sequentially; no links are generated (output) or
recognized (input). The first block to be read or written must be set by a
USETI or USETO. In nonstandard I/O mode, up to 200 octal words per
block are read or written as user data (as opposed to the standard mode of
1 link plus word count followed by 177 octal words). No dead reckoning
is used on a search for a block number as the tape may be composed of
blocks shorter than 200 words. The ENTER, LOOKUP, and UPTCLR
calls are treated as no-ops. Block 0 of the tape cannot be read or written
in dump mode if bit 29 is on, because the data must be read in a forward
direction and block 0 normally cannot be read forward.

9-10

)

~:.

)

)

)

)

"

)

)

•

'"

I/O Programming for DECtape

9.7 IMPORTANT CONSIDERATIONS
The DECtape service routine reads the directory from a tape the first time it is required to perform a LOOKUP,
ENTER, or UGETF; the directory image remains in core until a new ASSIGN command is executed from the
console. To inform the DECtape service routine that a new tape has been mounted on an assigned unit, the user
uses an ASSIGN command. The directory from the old tape can be transferred to the new tape, thus destroying the
information on that tape unless the user reassigns the DECtape transport every time he mounts a new reel.

When positioning to a desired block on DECtape, the technique of dead reckoning is used. This means that the
DECtape service routine starts the DECtape spinning and computes the time it should take to reach the desired
block. Meanwhile, the service routine performs a service for another user, if any, and then returns just before the
computed time has elapsed. If the desired block has not been reached, this process is repeated until it is successfu1.
This technique is used to keep the controller free for other uses while the DECtape is spinning.

When an attempt is made to write on a write-locked tape or to access a drive that has no tape mounted, the message

DEVICE DTAn OPERATOR zz ACTION REQUESTED

is given to the user. When the situation has been rectified, -SCONT may be typed to proceed. However, if this
message is output because of an attempt to write on a write-locked tape and any operation that causes a RESET to
be performed (e.g., a GET or RUN command) is then executed, a RELEASE will be done on the DECtape. This
RELEASE causes any attempt to write the directory to output the same message. To avoid the second output of
the message, the user should ASSIGN the DECtape again thus causing the DECtape service routine not to write the
directory on the RELEASE.

Although DECtape is a file-structured block device, there is a limit to the number of files that may be opened simul­
taneously on a single DECtape. A given DEC tape may be OPENed or INITed on two software channels (maximum)
at the same time, once for INPUT and once for OUTPUT. An attempt to INIT on two channels for INPUT or two
channels for OUTPUT generates no error indication, and only the most recent INIT is effective .

9-11

(

(

(

(

,(

')

'"q

)

)

)

CHAPTER 10

I/O PROGRAMMING FOR MAGNETIC TAPE

Magnetic tape format for the DECsystem-l0 is industry compatible. The tapes are unlabeled, 7- or 9-track; 200,556,
800, or 1600 bpi. The device mnemonic is MTAx (MTAO, MTA1, MTBO, etc.), and the buffer size is 2038 words
(including 3 bookkeeping words). (Refer to the DECsystem-10 System Reference Manual for further information on
-lO magnetic tape systems.)

The user may change the density and/or block size of a magnetic tape by using the SET DENSITY and SET BLOCK­
SIZE commands. (Refer to the DECsystem-10 Operating System Commands Manual).

As far as the user is concerned, the tape contains only records and tape marks signaling the end of the record or the
end of the file. A file consists of an integral number of physical records, separate from each other by inter-record
gaps (an area on tape where no data is written). There mayor may not be more than one logical record in each
physical record. Write and read operations on files are performed sequentially. Tape marks are used in the following
manner:

1. A tape mark follows every file.
2. Two tape marks follow a file if that file is the last or only"file on the tape. (A double tape mark is

also known as the logical end-of-tape.)
3. No tape mark precedes the first file on a tape.

When an output file is closed the I/O service routine automatically writes two tape marks and backspaces over one
of them. If another file is opened, the second tape mark is written over leaving one tape mark between files. At
the end of the used portion of the tape, a double tape mark appears (defmed as the logical end of the tape).

Normally, all data is written with odd parity at 800 bpi (1600 bpi for TU70/TU43 magnetic tape systems); the
default format can be changed by the system administrator at MONGEN-time. A maximum of 2008 words per
record is read or written if the monitor has set up the buffer ring. If the user specifies a buffer size (via SET BLOCK­
SIZE), a maximum of 4094 words may be realized. If the user builds his own buffers, the 4094 limit may be
bypassed.

The word count is not written on the tape. If an I/O error occurs, reading ahead ceases on input and output is
terminated.

Below are some statistics concerning DECsystem-l0 magnetic tape units:

Physical Name:

Controller Name:

Unit Name:

Programmed
Operators:

MTAO,MTA1,
MTBO,MTB1,
MTCO,MTC1,
MTDO,MTDl,

TMlOA/B,TXOI
TClOC

MTA7
MTB7
MTB7
MID7

TUl 0/20/30/40/41/43/70/71

INPUT
IN

OUTPUT
OUT

MTAPE
TAPOP.

10-1

MTCHR.
MTAlD.

Data Modes:

Buffer Size:

10.1 DATA MODES

I/O Programming for Magnetic Tape

ASCII
ASCII Line

2038 *

Image
Image Binary

Binary
Dump Record
Dump

Table I-I lists the data modes available to magnetic tape users.

,

Mode Code

ASCII 0

ASCII
LINE

IMAGE 10

IMAGE 13
BINARY

BINARY 14

DUMP 16
RECORDS
(DR)

DUMP 17
(D)

Table 10-1
Magnetic Tape Data Modes

Meaning

Data is written on the magtape exactly as it appears in the buffer. No proc-
essing of any kind is performed by the service routine. Parity checking by the
magnetic tape system is sufficient assurance that the data is correct.

Same as ASCII.

This mode is the same as ASCII, but the data consists of 36-bit words.

Same as IMAGE.

Same as IMAGE.

Data is in the form of standard, fixed-length records (128 words is the stan-
dard unless changed by the installation when generating its monitor or
specified differently by the user with the SET BLOCKSIZE commands).
Records read into or written from the user's core area are unbuffered. Con-
trol for read or write operations must be via a command list (described in
paragraph 7.3.1) in core memory. For input operations, a new record is read
for each word in the command list (except GOTO words); if the record
terminates before the command word is satisfied, the service routine reads the
next record. If the command word runs out before the record terminates, the
remainder of the record is ignored. For each output command word, exactly
enough standard-length records are followed by one short record to write-all
of the words on the tape. If an I/O error occurs or the EOT is reached, no
additional commands are retrieved from a dump mode command list, and I/O
is terminated. When the file mark is read, the user receives the standard
end-of-file return (the error return from the IN call) and the IO.EOF bit is set
in the file status word. (This bit can be retrieved with GETSTS monitor call,
refer to paragraph 7.6.1). The EOF character is read into the user's buffer.
The next INPUT or IN call will read the next record on tape. Must not use
READ backward.

Variable-length records are read into or written from anywhere in the user's
core area without regard to the buffering schemes. Control for read or write
operations must be via a command list (described in paragraph 7.3.1) in core
memory. For input operations a new record is read for each word in the
command list (except for GOTO words); if the record terminates before the
command word is satisfied, the service routine skips to the next command
word. If the command word runs out before the record terminates, the
remainder of the record is ignored. For each output command word, one
record is written. Handling of EOF is the same as for DUMP RECORD (DR)
as described above.

*The buffer size may be changed by using the SET BLOCKSIZE command.

10-2

')

;i

)

)

)

)

-;J

I/O Programming for Magnetic Tape

10.2 SPECIAL MONITOR CALLS FOR MAGNETIC TAPE
There are several monitor calls that are available for magnetic tape users to perform certain functions. They are

) discussed in the following paragraphs.

)

)

)

10.2.1 The MTAPE Monitor Call
The MTAPE monitor call provides functions such as rewind, backspace a record, etc. Its calling sequence is

MT APE channel, function return

where: channel is the number of the software I/O channel on which the tape unit is initialized.
function is one of the function codes listed in Table 10-2.

Table 10-2
MTAPE Functions

Function
Code Mnemonic Meaning

0 M1WAT. A no-op which waits for spacing and I/O operations to finish.

1 MTREW. Rewinds the magnetic tape to the load point.

3 MTEOF. Writes a tape mark on the magnetic tape.

6 MTSKR. Skips one record on the magnetic tape.

7 MTBSR. Backspaces one record on the magnetic tape.

10 MTEOT. Spaces to the logical end of the tape. Terminates two consecutive
tape marks.

11 MTUNL. Rewinds and unloads the tape. (Refer to paragraph 10.2.11).

13 MTBLK. Writes 3 inches of blank tape.

16 MTSKF. Skips one file, causing a series of skip record operations.

17 MTBSF. Backspaces files, causing a series of backspace record operations.

100 MTDEC. Initializes for DIGIT AL-Compatible 9-channel tape.!

101 MTIND. Initializes for industry-compatible, 9-channel tape.2

200 MTLTH. Read next record at low threshold (TMlO Only).

lDiGITAL-Compatible mode writes (or reads) 36 bits in five frames of a 9-track magnetic tape. The tape can be any density or
parity and is not industry-compatible. This mode is in effect until a RELEASE channel, or a MTIND. channel is executed.

2Industry-compatiblemode writes (or reads) 32 bits in four frames of a 9-track tape and ignores the low-order four bits of a word.
It must be 800 bpi density and odd parity.

MTAPE waits for the magnetic tape to complete the action in progress; bits 18-25 of the status word are then
cleared, the indicated function is initiated (including the no-op) and control is immediately returned to the user
program.

It is important to remember that the I/O service routine can be reading several blocks ahead of the user's program
when performing buffered I/O. MT APE affects only the physical position of the tape and does not change the data
that has already been read into the buffers. Therefore, an INPUT or OUTPUT following an MTAPE call may not
retrieve the buffer containing the block requested. However, a single buffer ring retrieves the expected block, since
the device must stop after each INPUT/OUTPUT call. Alternatively, if bit 30 (IO.SYN) of the file status word is
set via the INIT call or the SETSTS call, the device will stop after each buffer is filled on an INPUT or OUTPUT.
The MTAPE will then apply to the buffer supplied on the next INPUT/OUTPUT:

10-3

i

I

I/O Programming for Magnetic Tape

Issuing a backspace me command to a magnetic tape unit will move the tape in the reverse direction until the tape has

1. passed a tape mark, or
2. reached the beginning of the tape.

The end of the backspace me operation positions the tape heads either immediately in front of a tape mark or at the
beginning of the tape. In most cases, it is desirable to skip forward over this me mark up to the beginning of the me.
In this case, giving a skip me command would skip the entire first me on the tape, stopping at the beginning of the
second me rather than leaving the tape positioned at the beginning of the first me. Therefore, a correct sequence for
"backspace me" would be:

MT, ;BACKSPACE FILE
;W AIT FOR COMPLETION
;BEGINNING OF TAPE?

MTBSF.
MTWAT.
STATO
MTSKF.

MT,
MT,4000
MT, ;NO, SKIP OVER FILE MARK

Since it is necessary to wait after the MTBSF, (Le., backspace me) instruction to ensure that the move is completed
before testing to see whether or not this is the beginning of the tape, the instruction WAIT MT, cannot be used for
this purpose; it waits only for the completion of I/O transfer operations and backspace me is a spacing operation not
an I/O operation.

The device service routine must wait until the magnetic tape control is free before processing the MTWAT., which
tells the tape control to do nothing. The service routine achieves the waiting period necessary for the completion
of the previous operation and the proper positioning of the tape.

10.2.1.1 Function 11, Rewind and Unload - MT APE Channel, 11 (MTUNL.) initializes all automatic error report­
ing. Therefore, reel-specific errors can be summarized regardless of the method used to change reels. An entry into
the system error log me (refer to the SYSERR Specification) will be written as follows:

drive number (e.g., MTxn)
SIXBIT / reelid /
number of characters read since last MTUNL.
number of characters written since the last MTUNL.
number of soft-read errors since the last MTUNL.
number of hard-read errors since the last MTUNL.
number of soft-write errors since the last MTUNL.
number of hard-write errors since the last MTUNL.

These numbers will be output on both the operator's terminal and the user's terminal in the following format:

[MTxn:reelid READ (c/h/s) = albic WRITE (c/h/s) = d/e/f]

where: x is an alphabetic representing the tape controller,
n is a number representing the drive number.
reelid is the reel identification.
a is the number of characters read.
b is the number of hard-read errors.
ci~Jhe number of soft-read errors.
d is'the number of characters written.
e is the number of hard-write errors.
fis the number of soft-write errors.

When a, b, and care 0, the information pertaining to READ will not be printed.

When d, e, and fare 0, the information pertaIning to WRITE will not be printed.

104

~)

./

~ "

I· r

.)

)

)

)

'r

)

)

;,'

')

)

)

)

I/O Programming for Magnetic Tape

To prevent this message from being printed, the user can type the following command:

.SET WATCH NO MTA

10.2.2 The MTCHR, Monitor Call (CALLI 112)
MTCHR. enables the user to obtain a set of data from which the current state of a specified magnetic tape drive can
be determined. The calling sequence for MTCHR. is

MOVE ac, [XWD n, add,.]
MOVE ac, [SIXBIT/devicej]
MOVI ac, channel
MTCHR,ac,

error return
normal return

where: n is the number of words in the optional argument block.
addr contains a left-justified SIXBIT physical/logical device name.
device is a physical/logical device name.
channel is the software I/O channel on which the device has been initialized.

On a normal return, the monitor will return values in the first n locations of the argument block as described in
Table 10-3. On a normal return, the monitor will store the information listed in Table 104 in the AC.

Word Mnemonic

1 .MTRID

2 . MTFIL

3 MTREC

4 . MTCRD

5 . MTCWR

6 . MTSRE

7 . MTHRE

10 .MTSWE

11 . MTHWE

12 .MTTME

13 . MTTDE

14 . MTTVN

15 . MTRTY

16 .MTCCR

17 .MTPBE

2D . MTFES

21 . MTTRY

Table 10-3
MTCHR. Returned Values

Meaning

SIXBIT/reelid/

The number of mes from the beginning of the tape .

The number of records from last end-of-me.

The number of characters read since last reload .

The number of characters written since last reload .

The number of soft-read errors since last reload .

The number of hard-read errors since last reload .

The number of soft-write errors since last reload.

The number of hard-write errors since last reload .

The number of total media errors since last unload.

The number of device errors since system load .

The number of unloads since system load .

The number of retries as a result of last error .

Character count of last record read or written.·

The right half contains the record number; and the left half contains the
position before the last error in the me.

The final error state (refer to the SYSERRspecification) .

The number of retries to resolve the last error, bit 1=1 hard error .

10-5

I
l

I

I/O Programming for Magnetic Tape

The error return is taken if

1. the specified device is not a magnetic tape unit,
2. the specified device is not present, or
3. the MTCHR. monitor call has not been implemented.

If the specified device is not a magnetic tape unit or is not present, a -1 is returned in the AC. If the call has not been
implemented, the contents of the AC are unchanged.

In determining the value of the density identifier to be returned to bits 33-35 of the AC (see Table 104), the moni­
tor will examine the file status bit initialized by the INIT call and will return any INIT -specified density identifier.
If density was not specified by an INIT, the monitor will then determine if the user has specified density using the
SET DENSITY command, and it will return any user-supplied density identifier in the AC. If the SET DENSITY
command has not been issued, the monitor will return the system default identifier in the AC. If no density is
specified by an INIT, the GETSTS call will return a 0 in bits 33-35 of the AC. If GETSTS is used, the system default
density identifier is not returned.

Table 10-4
Values Returned to the AC After MTCHR.

Bit(s) Mnemonic Meaning

0-17 MT.AWC The actual word count for the last record read or written.

18-26 MT.CRC The last cyclic redundancy character (CRC), if a 9-track NRZI tape is being
used; otherwise, O. (TU70s) return O.

27-29 MT.NCR The number of characters read from the tape into the last addressed location
during the last read operation.

30 Zero.

31 MT.7TK The unit is a 7-track unit.

32 MT.WLK The transport is write-locked.

33-35 MT.DEN The density identifier:

code mnemonic meaning

1 .MTDN2 200 bits per inch (bpi)
2 .MTDN5 556 bpi
3 .MTDN8 800 bpi
4 .MTDI6 1600 bpi

10.2.3 The TAPOP. Monitor Call (CALLI 154)
The TAPOP. monitor call allows a user program to control, examine, and modify information concerning any tape
unit connected to the system. Many of T APOP.'s functions are duplicates or extensions to the MT APE and MTCHR.
monitor calls. TAPOP.'s calling sequence is

MOVE ac, [XWD n, addr]
TAPOP.ac,

error return
normal return

addr: function
SIXBIT/device/

10-6

)

"I

)

)

)

.1,

)

)

;.

where:

"
'"

)

)

)

'"

>r

)

channel
udx
argumentO

argumentn

I/O Programming for Magnetic Tape

n is the number of words in the argument block.
addr points to the first word of the argument block.
function is one or more of the function codes listed in Table 10-5.
device, channel, and udx are alternative arguments specifying which device is to be used.
argument is different depending on the function code specified, refer to Table 10-5.

Function
Code Mnemonic

1 . TFWAT

2 .TFREW

3 .TFUNL

4 . TFFSB

5 .TFFSF

6 .TFSLE

7 .TFBSB

10 . TFBSF

11 .TFWTM

12 . TFWLG

13 . TFDSE

14 .TFWLE

151 .TFLBG

161 .TFLRL

171 .TFLSU

201 .TFLDD

21 .TFFEV

22 .TFURQ

1000 . TFTRY

1001
2001 .TFDEN

Table 10-5
TAPOP. Function Codes

Meaning

Wait for I/O to stop .

Rewind the tape to the load point.

Rewind and unload the tape.

Skip forward 1 block .

Skip forward 1 me.

Skip to the logical end of the tape.

Skip backward 1 block .

Skip backward 1 me.

Write a tape mark .

Write three inches of blank tape.

Data security erase (blank the entire tape) TX01 only .

Write the logical end of the tape.

Get the tape label device data block.

Release the label device data block. ,

Swap units.

Destroy the tape label data base.

Force the end of volume processing.

User request for label processing .

Return in the AC the number of retries on the last error.

Obtain (or set) the density indicator, either:

code mnemonic meaning

0 .TFDOO unit default bpi
1 .TFD20 200 bpi
2 .TFD55 556 bpi

Iperformed by tape label manager, privileged for use by label processor.
----- -------

10-7

---_ ... -

Function
Code Mnemonic

1002 .TFKTP

1003
2003 . TFRDB

1004
2004 .TFLTH

1005
2005 . TFPAR

1006
2006 . TFBSZ

1007
2007 .TFMOD

1010
2010 .TFTRK

1011 .TFWLK

1012 .TFCNT

1013
2013 .TFRID

1014 .TRCRC

1015 .TFSTS

I/O Programming for Magnetic Tape

Table 10-5 (Cont.)
TAPOP. Function Codes

Meaning

code mnemonic meaning

3 .TFD80 800 bpi
4 .TFDI6 1600 bpi (TU70/43 only)
5-17 Reserved.

The controller type, either:

code mnemonic meaning

0 .TFKTA TMlOA(TUlO/20/30/40/41)
1 .TFKTB TMI0B(TUlO/20/30/40/41)
2 .TFKTC TCI0C(TU43)
3 .TFKTX TXOl(TU70/71)

Read backward (TX01 only). Refer to paragraph 10.2.3.2 .

Read next record at low threshold (TMlO only).

Set or obtain status of the even parity bit (7 -track only) .

Set or obtain the block size .

Set or obtain the data mode, either:

code mnemonic meaning

0 .TFMDD DEC-compatible core dump
(7 -track and 9-track).

1 . TFM9T Core· dump format (9-track) .
2 .TFM8B Industry-compatible, 8-bit mode

(4 bytes/word).
3 . TFM6B 6-bit mode (9-track, TU70 only) .
4 .TFM7B 7·bit mode (TU70 only).
5 . TFM7T 7 -track core dump (SIXBIT) .

Refer to paragraph 10.2.3.1.

Set or obtain the track status bit (1=7-track, O=9-track). It is a
privileged function to set this bit.

The write-lock bit (set =1, off = 0).

The character count of the last record (the actual record length).

Set or obtain the reel I.D. (bits 0-35). It is a privileged function
to set this word.

The last Cyclic Redundancy Character (CRC}{9-track NRZI only).

The unit status word:

10-8

)

7>._

:}

)

)

)

<'

,J'

. .\

)

)

Function

"
Code Mnemonic

"

1016 .TFSTA

)

1017 .TFIEP

1020 .TFFEP

1021 .TFIES

) 1022 . TFFES

1023 . TFFED

1024 .TFLBL

'-

1025 .TFPLT
-

1026 .TFLTC

110 Programming for Magnetic Tape

Table 10-5 (Cont.)
TAPOP. Function Codes

Meaning

bit mnemonic meaning

18 TF.UNS Unit is not to be scheduled.
19 TF.BOT Beginning-of-tape mark.
20 TF.WLK Unit is write-locked.
21 TF.REW Unit is rewinding.
22-32 Reserved.
33 TF.STA Unit is started.
34 TF.sEL Unit is selected.
35 TF.OFL Unit is off-line.

The unit statistics to arguments 0 through 12:

code mnemonic meaning

0 . TSFIL Number of files since BOT .
1 . TSREC Number of records since EOF .

2 . TSTCR Number of characters read .

3 . TSTCW Number of characters written .

4 . TSSRE Number of soft-read errors .

5 . TSHRE Number of hard-read errors .

6 . TSSWE Number of soft-write errors .
7 . TSHWE Number of hard-write errors .
10 .TSESU Total errors since unload

(MOUNT).
11 .TSTDE Total device errors since

system startup.
12 . TSUNL Total number of unloads .

Initial error pointer.

Final error pointer.

Initial error status.

Final error status .

Final error disposition .

The type of label processing.

code mnemonic meaning

0 . TFBLP Bypass labeled processi"ng .
1 . TFLAL ANSI labels .
2 .TFLAU ANSI labels with user labels.
3 .TFLIL IBM labels.
4 .TFLIU IBM labels with user labels .
5 . TFLTM Leading tape mark.
6 . TFLNS Non-standard labels .
7 .TFLNL No labels.

The same as function code 1024 (.TFLBL) except that .TFPLT
is privileged function to set 0 (.TFBLP;)

Label termination code.

10-9

I/O Programming for Magnetic Tape

Table 10-5 (Cont.)
T APOP. Function Codes

Function
Code Mnemonic Meaning

code mnemonic meaning

1 .TFTCP Continue processing.
2 .TFTRE Return EOF.
3 . TFTLT Label type error .
4 .TFTHL Header label error.
5 .TFTTL Trailer label error.
6 .TFTVL Volume label error.
7 .TFTDV Device error.
10 .TFTDE Data error.
11 .TFTWL Write-lock error.

On an error return, one of the error codes listed in Table 10-6 will be returned in the AC.

Table 10-6
T APOP. Error Codes

Error
Code Mnemonic Error Condition

-1 TPACS% Address check storing answer.

0 TPIFC% An illegal function code was specified.

1 TPPRV% Function code specified requires special privileges.

2 TPNMT% Device is not a magnetic tape unit.

3 TPVOR% Value specified is not in the legal range.

4 TPACR% Address check while reading arguments.

5 TPCBS% Specified parameter cannot be set.

6 TPNIA% The tape unit has not been INITed or ASSIGNed.

The function codes are defined within the following ranges:

0000-0777
1000-1777
2000-2777
3000-3777

perform a specific action
read a parameter
set a parameter
reserved for DEC customers

'\

)

;--",

"

)

)

)

.J

The READ functions (codes 1000-1777) and the SET functions (codes 2000-2777) are parallel; i.e., if function 1002
reads a particular parameter, function 2002 sets the same parameter. The values for the READ functions are
returned in the AC; arguments to the SET functions are supplied by the user program in addr+2. One bit quantities
are not range-checke4; instead, bit 35 of addr+2 is stored. Those functions in Table 10-5 that have codes in both the)
1000-1777 and the 2000-2777 ranges have parallel SET and READ functions.

10-10

I/O Programming for Magnetic Tape

) 10.2.3.1 Function .TFMOD (Data Modes) - The legal data modes are described below.

o (.TFMDD) - DEC·compatibility core dump format for 7·track and 9·track (default).

0 5 6 11 12 18 23 30 35
7·track

I I I I I I I (6·bit bytes)

0 7 8 15 16 23 24 31 35

9·track I I I I I I

1 (.TFM9T) - Core dump for 9·track (see 9·track code 0).
2 (.TFM8B) - Byte Mode (9·track only) Industry·compatible.

0 7 8 15 16 23 24 31 35

I I I I I I

) 4 8·bit bytes/word, bits 32·35 are zero on a read from TU70.

3 (.TFM6B) - SIXBIT Mode (9·track, TU70 only).

0 5 6 11 12 17 18 29 30 35

I I I I II I
)

4 (.TFM7B) - 7·bit mode (TU70 only) IndustrY'compatible mode.

0 6 7 13 14 20 21 27 28 34 35

I I I I I I I

4 7 ·bit characters
" 1 8·bit character folded (bit 35)

5 (.TFM7T) - 7·track core dump mode.

o 5 6 11 12 17 18 24 30 35

)

10·11

I/O Programming for Magnetic Tape

10.2.4 The MTAID. Monitor Call (CALLI 126)1
The MTAID. monitor call is used by OMOUNT to associated a SIXBIT tape reel identifier with a specific magnetic
tape drive. The calling sequence for MTAID. is

{
MOVE ac, [SIXBIT/deVice/]}
MOVEI ac, channel
MOVEI ac, udx
MOVE ac+J, [SIXBIT/reelidf]
MTAID.ac,

error return
normal return

where: device is the physical/logical name of the device.
channel is the software I/O channel number associated with device.
udx is the universal device index associated with the device.
reelid is the tape reel identifier.

The error return is taken if the caller does not have the appropriate privileges, if the device specified does not exist
or is not a magtape device, or if the call has not been implemented. A -1 is returned in the AC if the error was a
privilege or device-type error, otherwise the AC is unchanged.

On a normal return, the reel identification (reelid) will be stored in the monitor, and it will be included in media
error reports.

REELID may be cleared by using the MTAPE function MTAPE II (MTUNL.) UNLOAD. All reel-specific error
counts will be cleared by MTAID. in order that all accumulated data for the specific reel will be accurate, which
is important when the previous user has forgotten to issue the UNLOAD command.

10.3 FILE STATUS
The file status of the magnetic tape is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER I I I I IIIIIIIIIIIIIIIII~IIIIIIIIIIIIIIIIII
18 21 24

SET BY MONITOR 111111111111111111111111111111111111

Bit 18 - 10.IMP

Bit 19 - IO.DER
Bit 20 - 10.DTE
Bit 21 - IO.BKT
Bit 22 - IO .EOF
Bit 23 - 10.ACT

1 This is a privileged monitor call.

10-0556

Unit was write-locked when output was attempted, or illegal operation was
specified to the magnetic-tape control.
Data was missed, tape is bad, or transport is hung.
Parity error.
Record read from tape exceeds buffer size.
Tape mark encountered.
Device active.

10-12

)

)

)

)

..

)

)

'"

)

I/O Programming for Magnetic Tape

Device Dependent Bits

18 21 24 26 27 30 33 35

SET BY USER I I 1I11111111111111111111~
10-OS57

Bit 26 - IO.PAR I/O parity; 0 for odd parity, 1 for even parity. Odd parity is preferred. Even
parity should be used only when creating a tape to be read in binary coded
decimal (BCD) on another computer.

Bit 27-28 - 10.DEN I/O density, OO=System standard. Defined at MONGEN-time and can be
changed with the SET DENSITY command.

01=200 bpi
10=556 bpi
11=800 bpi

If any density other than 200/556/800 bpi need be specified, use the appro­
priate TAPOP. (.TFDEN). A code of 00 will select the system standard,
which may be other than 200/556/800 bpi.

Bit 29 - 10.NRC I/O no read check. Suppress automatic error correction if bit 29 is 1.

18 21 24 25 27 30 33 35

SET BY MONITOR I ~III~IIIII I

Bit 24 - IO.BOT
Bit 25 - IO .EOT

10-0558

I/O beginning of tape. Unit is at beginning of tape mark.
I/O tape end. Physical end of tape mark encountered.

NOTE

Ifbits 18, 19,20, and 21 contain one, an error was
detected by the tape labeling process and a TAPOP.
can be used to determine the actual error (.TFLTC).

10-13

(

(

(

(

)

)

CHAPTER 11

I/O PROGRAMMING WITH TERMINALS

11.1 INTRODUCTION
Asynchronous communications equipment and terminals cover a broad range of applications within the DEC­
system-lO. Asynchronous equipment is used for interactive program development, for operator control of the
system, for program production and control, and for running data entry, program preparation, interactive problem­
solving, student instruction, and information storage and retrieval. Asynchronous communications terminal
equipment is of two types: hard copy, such as the LA30 and LA36 DECwriters, and CRT terminals such as the
VTOS and VTSO DECscopes.

Local terminals within 1500 feet of the computer site can be connected or dedicated direct electrical connections.
Terminals located beyond this distance are designated as remote terminals. Remote terminals are connected via
dial-up telephone lines to the central computer site.

Table 11-1 lists some of the characteristics of Digital-supported terminals.

Controller Unit
Name Number Number

TIYO DC72-L LA36
TTY1 DClO-A LA30

DClO-B LT33A

DClO-C LT33B
TTY777 DC10-D LT3SA

DC76 LT37AC
VT06
VTSO
VTOS
GT40

11.2 TERMINAL MONITOR CALLS

11.2.1 The TTCALL Monitor Call (Op Code 051)

Table 11-1
Terminals

Monitor Calls

INPUT
IN
OUTPUT

OUT
TTCALL
TRMNO.
GETLIN.
TRMOP.

Data Modes Buffer Size

ASCII 238
ASCII Line
Image

PIM

TTCALL is used for terminal operations. TTCALL operations are performed for a physical terminal (not a TTY
with a logical name), and most operations reference the terminal controlling the job that executed the TTCALL.
(There are exceptions, such as in using GETLCH). TTCALL's calling sequence is

TTCALL Code, Addr

where: Code is one of the function codes listed in Table 11-2.

Addr points to an argument, if one is desired.

11-1

I/O Programming With Terminals

Table 11-2
TTCALL Functions)

Function
Code Mnemonic! Meaning

0 INCHRW Input a character into the low-order seven bits of addr. If 'l;

the user has not yet typed a character, the program will wait
until one is typed.

OUTCHR Output the character stored in addr to the user's terminal.
Only the low-order seven bits are used, but the remaining
bits do not have to contain zeroes.

2 INCHRS 2 Input a character into the low-order seven bits of addr. If
the user has not yet typed a character, the skip return is
taken. INCHRS will not wait until the user types a character,
as will INCHRW.

3 OUTSTR Output a string of ASCIZ characters to the user's terminal.

4 INCHWL2 INCHWL is the same as INCHRW, except that INCHWL
determines whether or not to wait on the basis of lines
rather than characters. INCHRW causes a swap to occur for
each character rather than each line. Therefore, INCHWL
returns the next line if a break character is typed. If a break

) character has not been typed, INCHWL waits. Repeated
uses of INCHWL return each of the successive characters
of the line. Note that a CTRL/C in the input buffer satisfies
the condition of a pending line. When the input is finished,
the CTRL/C is interpreted and the job is stopped.

5 INCHSL
2

Input a line to addr. If the line has not yet been typed, a skip
is made.

6 GETLCH Get the line characteristics of the specified line. The user
) supplies a line number in the right half of addr. If the line

number is greater than those defined in the system, a zero
answer is returned. The monitor will return, in the left half
of addr, the line characteristics associated with the specified
line number. The possible line characteristics are listed in
Table 11-3.

7 SETLCH Set the "line characteristics for a specified line. The user sup- .)

plies a line number in the right half of addr, and the line charac-
teristics to be set in the right half of addr. Bits may be changed
only when issued for the job's controlling TTY. Table 11-3
lists the possible line characters, note that only bits 13, 14,
15, and 16 can be modified.

)

11-2

)

1

Function
Code

10

11

12

13

14

15

• 1
Mnemomc

RESCAN

CLRBFI

CLRBFO

SKPINC(2)

SKPINL(2)

IONEOU

I/O Programming With Terminals

Table 11-2 (Cont.)
TTCALL Functions

Meaning

The input buffer is scanned from the point where the last
command began. If bit 35 of addr contains 1, the error return
is taken if there is a command in the input buffer. If the in­
put buffer is empty, the skip return is taken. If RESCAN is
issued after the first input, it may no longer be in the buffer.
The address of addr is checked, but it is not used. RES CAN
is intended for use only by the COMPIL program.

Clear the input buffer in the same manner as though the user
had typed CTRL/Us. CLRBFI can be used when the user
program detects an error.

Clear the output buffer in the same manner as though the user
had typed a CTRL/O. This TTCALL is used infrequently,
since most users would like to see all output to the terminal
up to the point of an error.

Skip if the user has typed at least one character. SKPINC
does not skip if the user has not yet typed any characters;
however, it never inputs a character. SKPINC is useful for
a compute-bound program that wants to occasionally check
for input and, if any, go off to another routine to perform
the input.

Skip if the user has typed at least one line.

Output the low-order eight bits of addr as an image charac­
ter.

The TTCALL mnemonics are defined in a separate MACRO assembler table, which is scanned if an undefined
Op Code is found. If the symbol is found in the TTCALL table, it will be defined as if it had appeared in an
appropriate OPDEF statement.

2 This function clears the effect of the last -0.

11.2.1.1 TTCALL Examples - Read One Character: The INCHRW TTCALL will input a character into the low­
order seven bits of the specified location, addr. If no character has been typed, the program will wait until a
character is typed.

INCHRW, CHAR
JRSTDONE

Type One Character: The OUTCHR TTCALL outputs the character stored in addr to the user's terminal. The
low-order seven bits of addr are used; the remaining bits, though, do not have to contain zeroes.

OUTCHR OUTADR
JUST DONE

11-3

I/O Programming With Terminals

Type a String: The OUTSTR TTCALL outputs a string of characters in ASCIZ format to the terminal;

OUTSTR TXT
JRSTDONE

TYPE THIS OUT would be printed at the terminal if the following was stored in location TXT:

TXT: ASCIZ/TYPE THIS OUT/

Bit Mnemonic

0 GT.lTY

1 GL.CTY

2 GL.DSP

3 GL.DSL

5 GL.HDP

6 GL.REM

7 GL.RBS

11 GL.LlN

13 GL.LCM

14 GL.TAB

15 GL.LCP

16 GL.PTM

Table 11-3
Terminal Line Characteristics

Meaning

The line is a pseudo-TTY.

The line is a CTY.

The line is a display console.

The line is a dataset data line.

The line is a half-duplex line.

The line is a remote TTY.

The line is a remote Batch TTY.

A line has been typed-in by the user.

Lower case input mode is ON.

The terminal has TAB capabilities.

The terminal input is not echoed because the device is local-
copy only.

The CTRL/Q (paper-tape) switch is on.
-- ~-----.- -

11.2.2 The GETLIN Monitor Call (CALLI 34)
The GETLIN monitor call will return the SIXBIT physical name of the terminal to which calling job is attached.
Its calling sequence is

GETLIN ac,

The physical name of the terminal is returned left-justified in the AC. If the calling job is currently detached, the
left half of the AC will contain zeroes. The right half of the AC contains the right half of the physical name of the
terminal to which the calling job was most recently attached. A job can determine whether or not it is attached to
a terminal by examining the left half of the AC.

11-4

-)

/>

)

)

)

',I

"

)

')

)

)

)

I/O Programming With Terminals

11.2.3 The TRMNO. Monitor Call (CALLI 115)
The TRMNO. monitor call is used to obtain the number of the terminal currently controlling a specified job. Its
calling sequence is

MOVE ac, job-number

TRMNO, ac
error return

normal return

where: job-number is the number of the job for which its controlling terminal's number is desired.

On a normal return, the right half of the AC contains the universal I/O index for the terminal (in the format
.UXxxx). The range of values of 2000008 to 2007778. The symbol .UXTRM (2000008) is the offset for the ter­
minal indices.

On an error return, the AC is unchanged if the monitor call has not been implemented. If the AC contains a zero,
one of several error conditions occurred. The possible error conditions are

1. The job is currently detached (Le., there is no controlling terminal).
2. The job number specified is unassigned (Le., there is no such job), or
3. The job number specified is illegal (Le., out of range).

The particular condition which caused the error may be obtained by using the JOBSTS monitor call. An example
of this follows.

MOVEI ac, job-number
TRMNO,ac,

JRST .42
JRST OK
JUMPN ac, ;CALL NOT IMPLEMENTED
MOVNI ac, job-number
JOBSTS ac,

JRST ILLNUM
JUMPL ac, DETJOB
JRST NOJOB

11.2.4 The TRMOP. Monitor Call (CALLI 116)
The TRMOP. monitor call allows the user to control, examine, and modify information regarding any terminal
connected to the system. Many TRMOP. functions are extensions to the TTCALL input and output functions
(refer to Paragraph 11.2.1). TRMOP.'s calling sequence is

addr:
addr+l:

MOVE ac, [XWD n, addr]
TRMOP,ac,

error return
normal return

function code
udx

where: n is the length of the argument block, which must be at least 2 words.

addr is the address of the argument block.

function code is the desired TRMOP. function; all function codes are listed in Table 11-4.

udx isthe universal device index of the terminal (.UXTRM + line number).

11-5

Code Mnemonic

1 . TOSIP

2 . TOSOP

3 .TOCIB

4 .TOCOB

5 .TOOUC

6 .TOOIC

7 .TOOUS

10 . TOINC

11 . TOIlC

12 . TODSE

13 .TODSC

14 . TODSF

15 .TORSC

16 .TOELE

17 .TOEAB

1000 .TOOlP

1001 .TOCOM

1002 .TOXON
2002

1003 .TOLCT
2003

1004 .TOSLV
2004

I/O Programming With Terminals

Table 114
TRMOP. Function Codes

Effect

Skip if the terminal's input buffer is not empty .

Skip if the terminal's output buffer is not empty .

Clear the terminal's input buffer.

Clear the terminal's output buffer.

Output the normal mode character in addr+2 to the terminal.

Output the image mode character (8 bits) in addr+2 to the
terminal.

Output the ASCIZ string in addr+2 to the terminal.

Input the the normal mode character from the terminal to the AC .

Input the image mode character from the terminal to the AC .

Enable the modem for outgoing calls .

Enable and place outgoing call on a modem with a dialer. A phone
number of up to 17 digits is stored in 4-bit bytes in addr+2 and
addr+3. The phone number is terminated by a 17 byte. If the
caller must wait for a second dial tone (e.g., after dialing 9),
a 16 byte results in a 15 second wait.

Disconnect a call (i.e., hang up modem) .

Set the terminal element to the element number stored in addr+2.

Perform a rescan.

Enable automatic baud direction.

Output is in progress if bit 35 = 1.

Terminal is in monitor mode if bit 35 = 1.

Set or obtain the status of the paper-tape bit (if bit 35 = 1, the
terminal is in paper-tape mode).

Set or obtain the lower-case capabilities of the terminal (If bit 35 = 1,
the terminal has no lower case capabilities.)

Set or obtain the slave characteristic of this terminal (if bit 35 = 1,
the terminal is slaved).

11-6

)

I

)

)

)

)

Code Mnemonic

1005 .TOTAB
2005

1006 .TOFRM
2006

-'r

1007 .TOLCP
2007

1010 .TONFC

)
2010

1011 .TOHPS

1012 .TOWID.
2012

1013 . TOSND
2013

) 1014 .TOHLF
2014 1

1015 .TORMT
2015 1

1016 1 .TOmS
2016

1017 . TOFLC
2017

)

1020 .TOTAP
2020

'r 1021 .TOPAG
2021

1022

1023 .TOPSZ
2023

1024 .TOPCT
2024

'------- --------------------------

I/O Programming With Terminals

Table 114 (Cont.)
TRMOP. Function Codes

Effect

Set or obtain the TAB capabilities of the terminal (if bit 35 = 1,
the terminal performs TABs).

Set or obtain the value of the FORM switch (if bit 35 = 1, the
terminal performs formfeeds; if bit 35 = 0, the terminal performs
linefeeds).

Set or obtain the value of the local copy switch (if bit 35 contains
0, characters will not be echoed).

Set or obtain the value of the CR/LF switch (if bit 35 = I,
carriage returns/linefeeds will not be performed).

Read the value of the horizontal position of the carriage (a value
from 0 to 377 is returned in the AC).

Set or obtain the carriage width (this value may be set from 16
to 200).

Set or obtain the TTY GAG switch (if bit 35 = 1, NOGAG) .

Set or obtain the half-duplex characteristics of this terminal
(if bit 35 = 1, the terminal is in half-duplex mode).

Set or obtain the remote status of this terminal (if bit 35 = 1,
the terminal is remote).

Set or obtain the display characteristic of this terminal (if bit
35 = 1, the terminal is a display device).

Set or obtain the filler class code associated with this terminal .
(The filler class code may be set from 0 to 3).

Set or obtain the status of the paper-tape (if bit 35 = 1, paper-tape
has been enabled).

Set or clear the paged display mode (if bit 35 = 1, paged display
mode is cleared). Paged display mode can also be set and cleared
by the SET TTY PAGE command).

Reserved to Digital.

Set or obtain the number of lines to a page in the range 0 to
63. The size of a page may also be changed by the SET TTY PAGE
command.

Set or obtain the value of the page counter in the range 0 to 63.

11-7

Code Mnemonic

1025 .TOBLK

1026 .TOALT
2026

1027 . TOAPL
2027

1030 .TORSP
2030

1031 .TOTSP
2031

1032 .TODBK
2032

1033 .T0274
2033

1034 .TOTDY

1035 .TOACR
2035

1036 .TORTC
2036

1037 . TOPBS

1 This is a privileged function.

I/O Programming With Terminals

Table 11-4 (Cont.)
TRMOP. Function Codes

Effect

Set or clear the capability to suppress blank lines on output (if bit
35 = 1, normal output is performed, if bit 35 = 0, multiple linefeeds
are suppressed and vertical tabs are changed to linefeeds).

Set or clear the capability of converting ALTmodes on input (if bit
35 = 0, 175 and 176 are converted to 033; if bit 35 = 1, no con-
version is performed) .

Set or clear APL mode (if bit 35 = 1, APL mode is in effect).

Set or obtain the received speed; refer to Table 11-5.

Set or obtain the transmit speed; refer to Table 11-5.

Set or clear debreak capabilities (if bit 35 = 1, debresk is enabled).

Set or clear 2741 terminal characteristics (if bit 35 = 1, the terminal
is a 2741). Refer to Appendix K for more information on 2741s.

Obtain the status of the TIDY word.

Set or clear the automatic carriage return facility. Ifbit 35 = 1, the
first space after the specified column is automatically converted to
a carriage return.

Obtain or set the status of CTRL/R and CTRL/T compatibility
mode.

PIM mode break set (4 9-bit bytes) .

On an error return, the' AC will either contain an error code or will be unchanged if the call has not been imple­
mented. The possible error codes are listed in Table 11-6. Some TRMOP. functions are provileged functions or
they require that the user have the specified terminal ASSIGNed. Generally, any function is legal for the calling
job's terminal. In addition, any READ or SKIP function is legal for any'terminal if the calling job

1. has the privilege bit JP.SPM set.
2. is running with the JACCT bit set, or
3. is logged in with the project/programmer number 1,2.

11-8

j

,<

':c

)

)

)

)

,
)

"

""

)

)

)

)

I/O Programming With Terminals

A SET or output function is legal for any terminal if the job

1. has the privilege bit JP.POK set,
2. is running with the JACCT bit set, or
3. is logged in with the project/programmer number 1,2.

The function codes are defined in the following manner:

function codes 0000·0777
function codes 1000·1777
function codes 2000·2777
function codes 3000·3777

perform a specific action; ~efer to Table 11·4
read a parameter; refer to Table 11·4
set a parameter; refer to Table 114

. are reserved for DEC customers

The READ (1000·1777) and SET (2000·2777) functions are parallel; i.e., iffunction 1002 reads a particular
parameters, then function 20002 sets the same parameter. Values for the READ functions are returned in the AC;
arguments to the SET functions are passed in addr+2. One·bit quantities are not range·checked; instead, bit 35 of
addr+2 is stored. If a Innn and 2nnn code appear in the first column of Table 11·4 within braces, the Read function
has a corresponding SET function.

Code Speed

1 50

2 75

3 110

4 134.5

Code Name

0
1 TOPRC%
2 TORGB%
3 TOADB%
4 TOIMP%
6 TODIL%

11.3 DATA MODES

Code

5

6

7

10

Table 11·5
Transmit/Receiving Speeds

Speed Code

150 11

200 12

300 13

600 14

Table 11·6
TRMOP. Error Codes

Meaning

The call has not been implemented.

Speed

1200

1800

2400

4800

User is not privileged to perform this function.
Argument is out of range.
Argument list length or address is illegal.
Dataset activity to a non·dataset terminal.

Code

15

16

17

Subfunction failed (e.g., call not properly completed from dialer).

Speed

9600

External A

External B

ASCII (American Standard Code for Information Interchange) is a standard character set encoded in 7 bits (8 bits
including a parity bit). The ASCII set consists of 128 characters, 33 of which are non·printing control characters.
The following table describes how the characters are handled.

11·9

000 NULL

001 A

002 B

003 C

004 D

005 E (WRU)

006 F

007 G (Bell)

I/O Programming With Terminals

Ignored on input; suppressed on output.

No special action.

No special action.

Not passed to program. The user's terminal is switched to monitor mode the
next time input is requested by the program. Two successive Cs cause the ter­
minal to be immediately switched to monitor mode. Performs a U and a O.
For user program control of C, refer to PAragraph 3.1.3 .2.

Not echoed; therefore, typing in a control-D (EOT) does not cause a full-duplex
data phone to hang up.

No special action.

No special action.

Echoes as Bell and is a break character.

010 H (Backspace) Echoes as backspace.

011

012

013

014

015

016

017

020

021

022

023

I (TAB)

J (Linefeed)

Echoes as a TAB or an equivalent number of spaces. Refer to the SET TTY TAB
command.

Echoes as a linefeed and is a break character.

K (Vertical Tab) Echoes as a vertical tab or four linefeeds. Refer to the SET TTY FORM
command.

L(Form)

M

N

o

P

Q (XON)

R

S (XOFF)

Echoes as a FORMFEED or eight linefeeds. Refer to the SET TTY FORM
command.

Passed to program is terminal is in a paper-tape input mode; otherwise, supplied
a linefeed echo, is passed to program as a CR and LF, and is a break character
due to the LF.

No special action.

Not passed to program. Complements output suppression bit allowing users to
turn output on or off. INPUT, INIT, and OPEN clear the output suppression
bit. This bit is also cleared by any other INPUT-class operation, such as DDTIN
and TTCALLS 0, 2,4, and 5, by input test TTCALLS 13 and 14, and by re­
turning to monitor command level via C or EXIT operations. Echoed as 0
followed by carriage return/linefeed.

No special action.

Starts paper-tape mode if .TTY TAPE command has been given.

Retype the line currently being input, including the effect of any edits to the
line.

Ends paper-tape mode.

11-10

)

)

)

)

;'

)

)

"'

""
,

'J

)

)

·1

024 T

025 U

026 V

027 W

030 X

031 Y

032 Z

033 [(ESC)

034

035

036

037

040-137

140-174

175 and 176

177

I/O Programming With Terminals

Gives job status and timing information.

.Deletes input line back to last wakeup character. Echoed as U followed by a
carriage return/linefeed; is a break character. Passed to program if special editor
mode is true.

No special action.

No special action.

No special action.

No special action.

Acts as EOF of TTY input. Echoes as Z followed by carriage return/linefeed. Is a
break character.

The standard ASCII escape. Echoed as $; is a break character.

No special action.

No special action.

No special action.

No special action.

Printing characters, no special action.

Lower case ASCII; translated to upper case, unless lower case mode is on.
Echoes as upper case if translated to upper case.

Old versions of altmode; converted to the standard escape (033) unless in
special editor mode (INIT or TRMOP.UUO) or no altmode conversion is
specified (TRMOP.UUO or SET TTY NO ALT command).

RUBOUT or DELETE:
1. Completely ignored if in paper-tape mode (XON).
2. Break character, passed to program if either DDT mode or special editor

mode is true.
3. Otherwise (ordinary case) causes a character to be deleted for each

rubout typed. All the characters deleted are echoed between a single pair
of backslashes. If no characters remain to be deleted, echoes as a carriage
return/linefeed.

On output, all characters are typed just as they appear in the output buffer with the exception of TAB, VT, and
FORM, which are processed the same as on type-in. Programs should avoid sending D, because it may hang up
certain data sets.

Image mode (octal code 10) is legal for TTY input and output except for pseudo-TTY's (refer to Paragraph 5.9).
Image mode is especially conVenient fot users of display devices, light pens, etc.~ siilceany sequeIiceofinput
characters is allowed. The user must use the ASSIGN command before the INIT command can be used in image
mode. (The user's own TTY is always assigned by logging in.) An attempt to do input to an unassigned terminal

11-11

I/O Programming With Terminals

results in an error return. Since any sequence of characters must be allowed, Control-C and Control-Z will not
cause their usual functiorts. If the user program accepts all characters, and does not release the terminal from
image mode, no user input will release the user from this state. The terminal would effectively become dead to the
system. Because of this situatiort, an image input state is defined. The image input state begins when the program
starts waiting as a result of an INPUT UUO irt image mode. It ends when the program executes any non-image
mode termirtal output operation. Ifno output is desired, a TTCALL UUO can be executed to output a null charac­
ter. If no input characters are received for 10 seconds the EOF is forced. After another 10 seconds, the image input
state is terminated by the monitor and a Control-C is simulated. If the user should be in this situation, he should
stop typing until the Control-C appears.

Packed Image Mode (octal code 2) is legal for TTY input and output (.PIM is not a legal mode for pseudo-TTYs).
PlM is designed for high efficiertcy character throughput between programs and external devices. This is accom­
plished by minimizing the monitor's character manipulation and testing.

Irt Packed Image Mode, characters are maintained as 8-bit quantities (Le., 7 data bits and 1 parity bit), which are
stored in buffers at the rate of 4 characters per word. The user program may set a "break" consisting of one to
four break characters for each line INITed in Packed Image Mode. The break set is defmed via the TRMOP. monitor
call.

When the monitor receives a character from a Packed Image Mode line with a pending IN or INPUT, the character
is compared to each field in the break set. If rto match occurs, the character is put in the buffer and the interrupt
is dismissed. In the case where a match does occur, the character is put into the buffer, the buffer is then terminated
and the controlling program is awakened. To avoid the possibility of a terminal setting stuck in PIM mode, and to
allow for the case where the user wishes to be awakened on each character, the user program specifies an empty
(0,,0) break set. In general operation, ALL characters, including control characters are passed by PIM with no
monitor intervention (e.g., fill, CR/LF, etc.) with the following exceptions: if PAGE mode is set, the characters
XON and XOFF react in the normal PAGE mode sense.

11.4 FILE STATUS
The me status of the terminal is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER I . I· I·. I. 1111111111111111111111111111111111111

23

SET BY MONITOR 1111111. 1 .1111111

10-0566

Bit 18 = 10.IMP TTY is not assigned to a job (for image mode input processing).

Bit 23 = 10.ACT Device is active

18 22 24 26

UNUSED I·. . 11111111111111111111111

10- 0567

11-12

-)

';;

"

",

)

)

)

I,.

)

I/O Programming With Terminals

) Device Dependent Bits

)

)

)
!

18 21 24 27 30 33 35

SET BY USER I 111111111111111111

10 -0568

Bit 27 - IO.TEC This bit causes 001 through 037,175, and 176 (octal) to echo the character exactly
as received by the monitor. THERE IS NO SPECIAL ECHO (E'G" $ OR X).

Bit 28 - IO.SUP Suppresses echoing on the terminal.

Bit 29 - IO.SEM Special editor mode. Pass all characters except lower case and C. Lower case is
controlled by the SET TTY LC command and corresponding TRMOP. function.

1819 21 24 28 30 33 35

SET BY M 0 N I TOR L-IJIjI I 1IIIWWJ.WIIIIIIIIIII.llL-ii I -L...-"'---'----'-----'

10-0569

Bit 19 - IO.DER Ignore interrupts for three-fourths of a second.

Bit 20 - IO.DTE Echo failure has occurred on output.

Bit 21 - IO.BKT Character was lost on typein.

11.5 PAPER-TAPE INPUT FROM THE TERMINAL (FULL-DUPLEX SOFTWARE)
Paper·tape input is possible from a terminal equipped with a paper·tape reader that is controlled by the XON (Q)
and XOFF (S) characters. When commanded by the XON character, the terminal service reads paper tapes, starting
and stopping the paper tape as needed, and continuing until the XOFF character is read or typed in. While in this
mode of operation, any RUBOUTS will be discarded and no free line feeds will be inserted after carriage return.
Also, TABS and FORMFEEDS will not be simulated on a Model 33 to ensure output of the reader control character­
characters. To use paper·tape processing, the terminal with a paper·tape reader must be connected by a fullduplex
connection and only ASCII paper tapes should be used.

The correct operating sequence for reading a paper tape in this way is as follows:

/., , .. , 'Y' '1" 'Y' v 'Y' A I'" I".') 0")"1 1 I ~

I':,' "'I'" 'I' I"') , .. . '~-"
* X'I ,,;"1" • 1::"1' I I::' 'Y"Y' y •) "")\ +- .~

"'C~THIS I~:; ·lAlHAT IB ON TIAF:'E~
~ic)F~E OF THE:: ~:;AME::.)
I A<"'Y' I 'I'NI'") ... 1" ,:) 1 , .. " :: •-"

''''2 * I'~ ~:) ~'\ C~
11,6 PAPER-TAPE OUTPUT AT THE TERMINAL (FULL·DUPLEX SOFTWARE)

Paper·tape output is possible on any terminal·mounted paper·tape punch, which is controlled by'the TAPE, AUX
ON (R) AND AUX OFF (T) characters, The punch is connectedin parallel with the keyboard printer and, there·
fore, when the punch is on, all characters on the keyboard are punched on tape.

11-13

I/O Programming With Terminals

LT33B or LT33H terminals can have the reader and punch turned off and on under program control. When
commanded by the AUX ON character, the TTY service punches papltapes until the AUX OFF character is read
or typed in. The AUX OFF character is the last character punched on tape.

When writing programs to output to the terminal paper-tape punch, the user should punch several inches of blank
tape before the AUX OFF character is transmitted. This last character may then be torn off and discarded.

11.7 PSEUDO-TTYS (PTYs)
The device mnemonic is PTYO,PTY1 , ... ,PTYn. (The number of pseudo-TTYs is specified when the monitor is
generated for a specific installation.) The buffer size is 238 (208 data) words.

11.7.1 Concepts
Each job in the DECsystem-10 is usually initiated by a user at a physical terminal. Except in the case of a DETACH
operation, the job remains under the control of the user's terminal until it is terminated by either the KJOB
command or the LOGOUT monitor call. For each physical terminal there is a block of core in the monitor, con­
taining information about the physical terminal and including two buffers as the link between the physical ter­
minal and the job. It is through these buffers that the terminal sends input to the job, and the job returns output
to the terminal.

Sometimes it is desirable to allow a job in the DECsystem-10 to be initiated by a program instead of by a user.
Since a program cannot use a physical terminal in the way a user can, some means must be provided in the monitor
for the program to send input to and accept output from the job it is controlling. The monitor provides this capa­
bility via the pseudo-TTY (PTY). The PTY is a simulated terminal and is not defmed by hardware. Like hardware­
defined terminals, each PTY has a block of core associated with it. This block of core is used by the PTY in the
same manner as a hardware-defmed terminal uses its block of core. Figure 11-1 shows the parallel between a
hardware-defmed terminal and a software-defmed PTY.

USER

CONTROLLING
PROGRAM

r----,
I PHYSICAL

TERMINAL

I
r---.J

DEVICE PTY

DEVICE TTY.
OR '

DEVICE TTYn I
MONITOR

DEVICE TTY, I
OR

I DEVICE TTYm

L ________ -.l

Figure 11-1 Pseudo-TTY

CONTROLLED
JOB

CONTROLLED
JOB

10-0545

The controlling program, most commonly the batch processor, uses the PTY in the same way a user uses a physical
device. It initiates the PTY, inputs characters to and waits for output from the PTY, and closes the PTY using the
appropriate programmed operators. The job controlled by the program performs I/O to the PTY as though the PTY
were a physical terminal.

11-14

)

)

)

)

)

')

.""

)

)

)

I/O Programming With Terminals

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it is not possible
for the controlling program to simply rely on waiting for activity in the controlled job. A controlling program
may also wish to drive more than one controlled job, and be able to respond to any of these jobs; therefore, the
controlling program cannot wait for any particular PTY. For these two reasons, the PTY differs from other devices
in that it is never in an I/O wait state. Timing is accomplished by the HIBER monitor call and the status bits of
the PTY.

11.7.2 The HIBER Monitor Call
The HIBER call allows the controlling program to temporarily suspend its operation until either there is activity
in the controlled job or the specified amount of sleep time runs out, whichever occurs first. If bit 12 in the AC is
set in the HIBER call, any PTY activity since the last HIBER causes the controlling program to be awakened. If
no PTY activity occurs before the limit of sleep time iS,reached, the controlling program is activated, and it checks
the controlled job's run time or other criteria to determine whether the job should be interrupted. If the job should
be interrupted, the controlling program may output two control-C characters to stop the job. (A timesharing user
stops a running job in the same way). If the job should not be interrupted, the controlling program should repeat
the HIBER.

If bit 12 in AC is not set, unnecessary delays might result if activity occurred on a PTY while the controlling job
was sleeping. To avoid these delays, a check is made when a PTY status bit changes to determine if the controlling
program is in a sleep. If it is, the sleep time is cleared so the controlling program can service the PTY.

11. 7.3 File Status
The me status of the pseudo-TTY is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER 1 111111111111111111111111111111111111

21 23

SET BY MON ITOR L--I ----IIIIIIL...IIIII 11_11111 ----'----'--...L--...I

10-0570

Bit 21 - IO.BKT

Bit 23 - IO.ACT Device is active

Device Dependent Bits

18 21 24 27 30 33 35

SET BY MONITOR 1 1111111111111111111

Bit 24 - 10.PTY

Bit 25 - 10.PTO

Bit 26 - IO.PTM

10-0571

Job is in a TTY input wait. The controlling job should perform an OUTPUT
to the PrY.

The TTY buffer has output to be read by an INPUT from the PrY.

Any characters typed into the TTY buffer (by OUTPUT to the PrY) are read
by the monitor command decoder instead of by the controlled job (Le.,
the controlled job is in monitor code

11-15

I/O Programming With Terminals

11.7.4 Special Monitor Calls

11.7.4.1 OUTPUT, OUTPUT - The first OUTPUT operation after an INIT or OPEN causes the special actions
of the RELEASE UUO (refer to Paragraph 5.9.4.3 and then the following normal output operations.

1. Characters from the controlling program's buffer ring are placed in the input buffer of the TTY
linked to the PTY.

2. The IO.PTI bit is cleared.

3. The IO.PTM ibit is set or cleared as determined by the state of the TTY.

The following are exceptions to the normal output actions;

1. NULLS (ASCII 000) are discarded.

2. If more OUTPUTs are performed than are accepted by the controlled job and if the limit on this excess
is exceeded, the IO.BKT bit is set and the remainder of the controlling program's buffer is discarded.

3. Lower case characters sent to the controlling job are translated to upper case if the appropriate
bit in the TTY is set.

11.7.4.2 IN, INPUT - Characters are read from the output buffer of the TTY and are placed in the buffer ring
of the controlling program. If there are no characters to read, an empty buffer is returned. INPUT does not cause a
WAIT.

All the available characters are passed to the controlling program. If there are more characters to read than can fit
in the buffer of the controlling program, the IO.PTO bit remains set and another INPUT should be done. If the
output buffer of the TTY is exhausted by INPUT the IO.PTO bit is cleared.

11.7.4.3 RELEASE Monitor Call - RELEASE causes the following special actions:

1. Any characters in the output buffer of TTY are discarded.

2. If the controlled job is still attached to TTY, it is detached.

3. The PTY is disassociated from the software channel.

NOTE
Haphazard use of the PTY and subsequent RELEASE operations
may leave detached jobs tying up core and other system resources.

11.7.4.4 JOBSTS Monitor Call - JOBSTS provides status information about device TTY and/or the controlled
job in order to allow complete and accurate checking of a controlled job. The calling sequence is

MOVEI ac channel
JOBSTS ac,
e"or return
normal refJ,lrn

;or MOVNI AC, Job number
;or CALLI AC, 61

AC contains a number n specifying the job and/or the TTY to be checked. If n is from a to 17, the specified TTY
and job are those currently INITed on the user's channel n. If n is negative, the job to be checked is job number
(-n).

11-16

\
)

0>

,.

)

)

)

.i

)

)

"

)

)

)

I/O Programming With Terminals

The error return is given if one of the following is true:

1. the call has not been implemented. If this is the case, check the I/O status word.
2. n is out of range.
3. there is no PTY INITed on channel n.

Otherwise, the normal return is given and AC contains the following status information.

Name Bit

JB.UJA Bit 0 = 1

JB.UU Bit 1 = 1

JB.VML Bit 2 = 1

JB.UOA Bit 3 = 1

JB.UDI Bit 4 = 1

JB.UJC Bit 5 = 1

JB.UJN Bits 18-35

Table 11.7
JOB Status Bits

Explanation

Job number is assigned.

Job is logged in.

TTY is at monitor level.

TTY output is available.

TTY is at user level and in ipput wait, or TTY is at
monitor level and can accept a command, In other
words, there is no command awaiting decoding or
being delyed, thll job is not funning, snd the job is
not stopped waiting for operator device action.

JACCT is set. In particular, tc tc will not work.

Job number being checked or 0 if no job number is
assigned.

11.7.4.S CTUOB Monitor Call - CTUOB is used to determine the job number of the program Gob) that is
controlling the specified job, if any. Its calling sequence is:

MOVE ac, job number
CTUOBac,
error return
normal return

;-1 means user's job
;or CALLI AC, 56

On a normal return, AC contains the job number of the program Gob) that is controlling the controlled job. If
AC = 1, the specified job is not being controlled via a PTY.

An error return is given if the call has not be implemented or the job number is too large.

11-17

.

(

(

(

(

)

)

CHAPTER 12

I/O PROGRAMMING WITH UNIT RECORD DEVICES

This chapter explains unique features of each of the following standard non-directory I/O devices.

the card punch
the card reader
the display unit
the line printer
the paper tape punch
the paper tape reader
the plotter

refer to 12.1
refer to 12.2
refer to 12.3
refer to 12.4
refer to 12.5
refer to 12.6
refer to 12.7

Each device accepts the monitor calls described in Chapter 7, unless otherwise indicated. Table 12-1 summarizes the
characteristics of these devices. Buffer sizes are given in octal and include three bookkeeping words. The user pro­
gram may obtain the physical characteristics associated with any device by using the DEVCHR monitor call.

Table 12-1
Summary of Some Non-Directory Devices

Device Physical Controller Unit Monitor Data Buffer
Name Name Number Number Calls Modes Sizes 1

Card Punch CDP - CPlOA OUTPUT A,AL,I, 35
OUT !B,B

Card Reader CDR - CRlO-D INPUT A,AL,I, 36
CFRI CRlO-E IN !B,B,SI

CRlO-F
Console TTY CTY - LA36 INPUT A,AL,I 23

LA30 IN
LT33A/B OUTPUT
LT37AC OUT
LT35A
VT06/05/50
GT40

Display DIS - VR30 INPUT ID Dump Only
VPlO OUTPUT
340B
30

Line Printer LPT LPlO-F LSPlOLA OUTPUT A,AL,I 37
LPT! LPlO-H LSPlO-LB
LPT2 LPIO-FA

LPlO-FB
LPIO-FC
LPIO-FD
LPlO-HA
LPlO-HB
LPlO-HC
LPlO-HD

Paper-Tape PTP - PC09 OUTPUT A,AL,I 43
Punch OUT !B,B
Paper-Tape PTR - PC04 INPUT A,AL,I 43
Reader IN_ !B,B _ - -

Plotter PLT XYlO XYlO-A OUTPUT A,AL,I 46
PLT! XYlO-B OUT !B,B

IBuffer sizes are subject to change and should be obtained via the DEVSIZ monitor call.

12-1

I/O Programming With Unit Record Devices

12.1 THE CARD PUNCH (CDP)
The header card is the first card of an ASCII file and identifies the card code used (refer to Appendix C). This card
is not punched for data modes other than ASCII. The header card has the same punches in all columns. This punch
depends on the card code used; for example, in 026, the header card has 12-24-8 punched in columns 1 through 80.

The end-of-file (EOF) card is the last card of each output me. This card is punched for all data modes; it has a
12-11-0-1-6-7 -8-9 punch in columns 1 through 80.

12.1.1 Data Modes and Buffer Zones
The buffer sizes for the card punch are data·mode dependent.

ASCII
code 0
Buffer Size:238

(80 7-bit ASCII characters)

ASCII Line
Code 1
Buffer Size:238

(80 7 -bit ASCII characters)

IMAGE
Code 10
Buffer Size: 368

(80 12-bit bytes)
IMAGE BINARY
Code 13
Buffer Size:368

BINARY
Code 14
Buffer Size:358

12.1.2 Monitor Calls

ASCII characters are converted to card codes and punched (up to 80
characters per card). Tabs are simulated by punching from 1 to 8 blank
columns; form-feeds and carriage returns are ignored. Line feeds
cause a card to be punched. All other non-translatable ASCII characters
cause a question mark to be punched.

Card can be split between buffers. Attempting to punch more than 80
columris/card causes the error bit (IO.BKT) to set in the file status
word. The CLOSE Call will punch the last partial card and punch an
EOF card.

Cards are normally punched with DEC026 card codes. If bit 29(1008)
of the status word is on (from an INIT, OPEN, or SETSTS), cards will
be punched with DEC029 codes (refer to Appendix C). The first card
of any file (the header card) indicates the card code used (12-0-24-6-8
punched in column 1 for ANSI card codes; 12-24·8 punched in column
1 for DEC026 card codes).

Same as ASCII mode.

Each buffer contains 27 10 words, each of which contain three 12-bit
bytes. Each byte corresponds to one card column. Since there is room
for 81 columns in the buffer (3 x 27) and there are only 80 columns on
a card, the last word contains 2 bytes of data; the third byte is thrown
away. If the byte size is set by the user program to be 12-bit bytes (the
monitor normally set up 36-bit bytes), the program must skip the last
byte in the buffer. Image binary causes exactly one card to be punched
for each buffer output. A program should not force an output every
80 columns since, if the program is in spooled mode, it will waste a
large amount of disk space. The CLOSE will punch the last partial card
and punch an EOF card.

Column 1 contains the word count in rows 12 through 3. A 7-9
punch is in column 1. Column 2 contains a checksum as described for
the paper-tape reader (refer to paragraph 11.7.1.5); columns 3 through
80 contain up to 26 data words, 3 columns per word. Binary causes
exactly one card to be punched for each output. The CLOSE call
punches the last partial card and then punches an EOF card.

Following a CLOSE, an EOF card is pUIlched, Columns 2 through 80 of the header card and the EOF card contains
the same punches that appear in column 1 for each file identification. These punches are ignored by the car,d
reader service routine.

12-2

-~)

)

)

)

)

)

)

)

)

.'

)

I/O Programming With Unit Record Devices

After each interrupt, the card punch stores the result of a CONI in the DEVSTS word of the device data block. The
DEVSTS call is used to return the contents of the DEVSTS word to the user.

12.1.3 File Status
The me status of the card punch is as follows.

Standard Bits

SET BY USER

SET BY MONITOR

Bit 19 - IO.DER
Bit 21 - IO.BKT
Bit 23 - IO.ACT

18 21 24 27 30 33 35

1111111111111111111111111111111111111

19 21 23

I 11111111111111 I111111

Punch error
Reached end·of·card with data remaining in buffer
Device is active

18 20 22 24 27

UNUSED 1111111111111 11111111111111111111111111111111111111

Device Dependent Bits

SET BY USER

Bit 29 - IO.D29

29

I

If 1, punch DEC029 card codes in ASCII mode
If 0, punch DEC026 codes

12·3

I/O Programming With Unit Record Devices

12.2 THE CARD READER (CDR)
For ASCII input, a header card can be the first card of the file and identifies the card code used (026 or ANSI
standard). The header card is used only when changing from (or back to) installation standard on ASCII input. The
header card must not be present with any other data modes; if present, the header card is treated as an incorrect
format or read as data. Refer to Appendix C for the card codes.

An EOF card (end-of-file) has a I 2-11-()' 1-6-7-8-9 punched in columns 1 through 80. Columns 2 through 80 are
ignored. The EOF card has the same effect as the EOFkey on the card reader. This key must be depressed or the
end-of-file card must be present at the end of each input file for all data modes.

To be compatible with PDP-II operating systems, the DECsystem-l0 card reader service accepts several other header
card codes and EOF cards.

Only column 1 is looked at; columns 2 through 80 are ignored.

ANSI

Punched by DECsystem-lO

12-()'2-4-6-8

12.2.1 Data Modes

Also Accepted

12-11-8-9

12.2.1.1 ASCII, Octal Code 0 - All 80 columns of each card are read and translated to 7-bit ASCII code. Blank
columns are translated to spaces. At the end of each card a carriage return/line feed is appended. As many complete
cards as can fit are placed in the input buffer, but cards are not split between the buffers. Using the standard-sized
buffer, only one card is placed in each buffer.

Cards are normally translated as ANSI card codes. If an 026 header card is encountered, any following cards are
translated as 026 codes (refer to Appendix C) until the 026 conversion mode is turned off. The 026 is turned off by
a RELEASE command or by an ANSI header card. Columns 2 through 80 of both of these cards are ignored.

12.2.1.2 ASCII Line, Octal Code 1 - This mode is the same as ASCII mode.

12.2.1.3 Image, Octal Code 10- All 12 punches in an 80 columns are packed into the buffer as 12-bit bytes. The
first byte is in column 1. The last word of the buffer contains columns 79 and 80 as the left and middle bytes,
respectively. The EOF button is processed as in ASCII mode. Cards are not split between two buffers.

12.2.1.4 Image Binary, Octal Code-13 - This mode is the same as Image.

12.2.1.5 Binary, Octal Code 14 - Card column 1 must contain a 7-9 punch to verify that the card is in binary
format. Column 1 also contains the word count in rows 12 through 3. The absence of the 7-9 punch results in
setting the IO.IMP (bit 18 of the status word) flag in the card reader status word. Card column 2 must contain a
12-bit checksum as described for the paper-tape binary format. Columns 3 through 80 contain binary data, 3 columns
per word for up to 26 words. Cards are not split between two buffers. The EOF button is processed the same as in
ASCII mode.

12.2.1.6 Super-Image, Octal Code 1102 - Super-image mode may be initialized by setting bit 29 of the card reader's
lOS word. This mode causes the 36 bits read from the I/O bus to the BLKI'd directly to the user's buffer. For this
mode, the default size of the input buffer is 8110 words (8010 data words).

12.2.2 Monitor Calls
The card reader, after each interrupt, stores the result of a CONI in the DEVSTS word in the device data block. The
DEVSTS call is used to return the contents of the DEVSTS word to the user.

124

)

.,

)

)

)

)

)

:>

)

)

)

,

)

I/O Programming With Unit Record Devices

12.2.3 File Status
The file status of the card reader is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER
11111111111111111111111111111111111

18 21 24

~~TMONITOR 1111111111111111111111111111111

Bit 18 = IO.IMP

Bit 19 = IO.DER
Bit 20 = IO.DTE

Bit 22 = IO.EOF
Bit 23 = IO.ACT

UNUSED

Device-Dependent Bits

10·0548

7-9 punch absent in column 1 of a presumed binary card. The card reader is
stopped.
Photocell error, card motion error, data missed. The card reader is stopped.
Computed checksum is not equal to checksum read on binary card. The card
reader is stopped.
EOF card read or EOF button pressed.
Device is active.

18 21 24 27 30 33

1/1111 11111111111111111111111111111111111

35

10-0549

18 21 24 27 29 30 33 35

SET BY USER I I I I IIIII1 I I
'0-0549

Bit 29 = IO.SIM Super-image mode.

12-5

I/O Programming With Unit Record Devices

12.3 DISPLAY WITH LIGHT PEN
The device nmemonic is DIS; there is no buffer because the display uses device-dependent dump mode only.

12.3.1 Data Modes
For IMAGE DUMP, Octal Code 15, an arbitrary length in the user area may be displayed on the scope. The
command list format is as described in Chapter 7 with the addition for the Type 30, VR30 and VPlO display, that,
if RH = 0, and LH = 0, then LH specifies the intensity for the following data (4 to 13).

12.3.2 Background
During timesharing on a heavily-loaded system, the monitor service routine for the Type 30, VR30, and VPI0
guarantees a flicker-free picture on the display if the job is locked in core. To maintain this picture, the picture data
must be available for the display at least every two jiffies. If the system is lightly loaded, it is not necessary to keep.
the job in core. When the job is swapped, a minimum amount of flicker may occur, but the job has high priority to
the swapped-in again.

12.3.3 Display Monitor Calls
The I/O Monitor calls for both displays operate as follows:

INIT channel, 15
SIXBIT/device/

o
error return

normal return
CLOSE channel,

or
RELEASE channel,

;MODE 15 ONLY
;DEVICE NAME
;NO BUFFERS USED
;DISPLAY NOT AVAILABLE

;STOPS DISPLAY AND

;RELEASES DEVICE AS
;DESCRIBED IN CHAPTER 7

12.3.3.1 INPUT channel, addr - If a light pen hit has been detected since the last INPUT, addr is set to the loca­
tion of last light pen hit. If no light pen hit has been detected since last INPUT command, then addr is set to -I.

12.3.3.2 OUTPUT channel, addr - addr specifies the first location of a table of pointers. This table is composed of
pointers with the follOWing format:

o 17 18 35

LH RH

For the Type 30, VR30 and VPI0 Display:

IfLH =0 and RH =0,
If LH = 0 and RH = 0,

IfLH = 0 and RH =0,

IfLH = 0 and RH = 0,

o

then this is the end of the command list.
then LH is the desired intensity for the following data or commands. The
intensity ranges from 4 to 13, where 4 is the dimmest and 13 is the brightest.
then RH is the address of the next pointer. Successive pointers are interpreted
beginning at RH.
then -LH words beginning at address RH+l are output as data to the display. The
format of the data word is the following:

Y-COORD

7 8 17 18 25 26 35

I I U. X-COORD .-

12-6

)

.,

)

)

)

)

"

')

.;.

)

)

)

i

.)

For the Type 340B Display:

IfRH=O
If LH = 0 and RH = 0,

IfLH =0 and RH =0,

I/O Programming With Unit Record Devices

then this is the end of the command list.
then RH is the address of the next pointer. Successive pointers are interpreted
beginning at RH.
then ·LH words beginning at address RH+l are output as data to the display. The
format of the data word is described in the Precision Incremental CRT Display
Type 340 Maintenance Manual.

An example of a valid pointer list for the VR·30 display is:

OUTPUT D,LlST ;OUTPUT DATA
;POINTED TO BY LIST

LIST; XWD 5,0 ;INTENSITY 5 (DIM)
IOWD 1,A ;PLOT A
IOWD 5,SUBPl ;PLOT SUBPICTURE 1
XWD 13,0 ;INTENSITY 13 (BRIGHT)
IOWD 1,C ;PLOT C
IOWD 2,SUBP2 ;PLOT SUBPICTURE 2
XWD O,LlSTl ;TRANSFER TO LIST 1

LlSTl: XWD 10,0 ;INTENSITY 10 (NORMAL)
IOWD 1,B ;PLOT B
IOWD I,D ;PLOTD
XWD 0,0 ;END OF COMMAND LIST
OUTPUT D,LlST ;OUTPUT DATA

;POINTED TO BY LIST
A: XWD 6,6 ;Y=6, X=6
B: XWD 70,105 ;Y=70, X=105
C: XWD 105,70 ;Y.105, X=70
D: XWD 1000,200 ;Y=IOOO, X=200

SUBPI: BLOCK 5 ;SUBPICTURE 1
SUBP2: BLOCK 2 ;SUBPICTURE 2

An example of a valid pointer list for the Type 340B Display is:

OUTPUT D, LIST ;OUTPUT DATA POINTER
;TO BY POINTER IN LIST

LIST: IOWD 1,A ;SET STARTING POINT TO (6,6)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD I,C ;SET STARTING POINT TO

(70,105)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD 1,B ;SET STARTING POINT TO

(105,70)
IOWD 2,SUBP2 ;DRAW A TRIANGLE
IOWD O,LlSTl ;TRANSFER TO LlSTl

LlSTl: IOWD I,D ;SET STARTING POINT TO
;(100,.200)

IOWD 5,SUBP1 ;DRAW A CIRCLE
- - -- - -- --- ------- lown ;SETSTARTINGPOINT TO (6,6r l;A--

IOWD 2,SUBP2 ;DRAW A TRIANGLE
XWD 0,0 ;STOP

12·7

I/O Programming With Unit Record Devices

A: X=6 Y=6
B: X=105 Y=70
C: X=70 Y=105
D: X=1000 Y=-200

SUBP1; BLOCK 5 ;DRAW A CIRCLE
SUBP2: BLOCK 2 ;DRAW A TRIANGLE

The example shows the flexibility ofthis format. The user can display a subpicture by setting up a pointer. He
can also display the same sub picture in many different places by setting up pointers to the subpicture, each preceded
by a pointer to commands for the display to reset its coordinates.

12.3.4 File Status
The file status of the display is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER
11111111111111111111111111111111111

23

SET BY MONITOR I
10-0552

Bit 23 = IO.ACT Device is active

18 21 24 27 30 33 35

UNUSED 111111111111111111111111111111 I11111111111111111111111111111111111

10-0553

Device-Dependent Bits - None

12-8

-)

,t

01

)

)

)

"

)

)

"

')

"

)

)

I/O Programming With Unit Record Devices

12.4 LINE PRINTER
The device mnemonic is LPT;the buffer size is 378 (368 data) words.

12.4.1 Data Modes

12.4.1.1 ASCII. Octal Code 0 - ASCII characters are transmitted to the line printer exactly as they appear in the
buffer. Refer to the DECsystem-lO System Reference Manual for a list of the vertical spacing characters.

12.4.1.2 ASCII Line, Octal Code 1 - This mode is exactly the same as ASCII and is included for programming
convenience. All format control must be performed by the user's program; this includes placing a LINE-FEED at
the end of each line (note that a carriage return is not necessary).

12.4.1.3 Image, Octal Code 10 - This mode is the same as ASCII mode.

12.4.2 Monitor Calls
The first output programmed operator of a file 'and the CLOSE at the end of a file cause an extra form-feed to be
printed to keep files separated if 10.SFF is not set.

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device data block. The
DEVSTS monitor call is used to return the contents of the DEVSTS word to the user.

12.4.3 File Status
The file status of the line printer is shown below.

Standard Bits

18 21 24 27 29 30 33 35

SET 8Y USER 1 1 1 1 IIIIIII~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Bit 29 = IO .SFF Suppress FORM FEEDS on an OPEN or CLOSE.

23

SET BY MaN ITOR I
10-0554

Bit 23 = 10.ACT Device is active.

UNUSED I1111111111111111111111111111 I1111111111111111111111111111 1
10-0555

Device-Dependent Bits - None

12-9

I/O Programming With Unit Record Devices

12.5 THE PAPER-TAPE PUNCH
The device mnemonic is PTP; the buffer size is 438 (408 data) words.

12.5.1 Data Modes

12.5.1.1 ASCII, Octal Code 0 - The eighth hole is punched when necessary in order to make even parity. Tape­
feed without the eights hole (000) is inserted after form-feed. A rubout is inserted after each vertical or horizontal
tab. Null characters (000) appearing in the buffer are not punched.

12.5.1.2 ASCII Line, Octal Code 1 - The mode is the same as ASCII mode. Format control must be performed
by the user's program.

12.5.1.3 Image, Octal Code 10 - Eight-bit characters are punched exactly as they appear in the buffer with no
additional processing.

12.5.1.4 Image Binary, Octal Code 13 - Binary words taken from the output buffer are split into six 6-bit bytes
and punched with the eighth hole punched in each line. There is no format control or checksumming performed
by the I/O routine. Data punched in this mode is read back by the paper-tape reader in the IE mode.

12.5.1.5 Binary, Octal Code 14 - Each bufferful of data is punched as one checksummed binary block as
described for the paper-tape reader. Several blank lines are punched after each bufferful for visual clarity.

12.5.2 Monitor Calls
The first output programmed operator of a file causes ,approximately two fanfolds of blank tape to be punched as
leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No EOF character is punched
automatically.

After each interrupt, the paper-tape punch stores the results of a CONI in the DEVSTS word of the device data
block. The DEVSTS monitor call is used to return the contents of the DEVSTS word to the user.

12.5.3 File Status
The file status for the paper-tape punch is shown below.

Standard Bits

18 21 24 27 30 33 35

, SET BY USER I
1 1 I 111111111111111111111111111111111111

23

SET BY MONITOR 1
I 111111

10-0559

Bit 23 - IO.ACT Device is active.

UN USE 011111111111111111111111111111 111111111111111111111111111111111111

10-0560

Device Dependent Bits = None.

12-10

1

)

)

)

)

"

i

c,

)

)

)

)

I/O Programming With Unit Record Devices

12.6 THE PAPER-TAPE READER
The device mnemonic is PTR; the buffer size is 438 (408 data) words.

12.6.1 Data Modes (Input Only)

NOTE
To initialize the paper-tape reader, the input tape must be
threaded through the reading mechanism and the FEED
button must be depressed momentarily.

12.6.1.1 ASCII, Octal Code 0 - Blank tape (000), RUBOUT (377), and null characters (200) are ignored. All
other characters are truncated to seven bits and appear in the buffer. The physical end of the paper tape serves as an
EOF, but does not cause a character to appear in the buffer.

12.6.1.2 ASCII Line, Octal Code 1 - Character processing is the same as for ASCII mode. The buffer is terminated
by LINE FEED, FORM, or VT.

12.6.1.3 Image, Octal Code 10 - There is no character processing. The buffer is packed with 8-bit characters
exactly as read from the input tape. Physical end-of-tape is the EOF indication but does not cause a character to
appear in the buffer.

12.6.1.4 Image Binary, Octal Code 13 - Characters not having the eighth hole punched are ignored. Characters
are truncated to six bits and packed six to the word without further processing. This mode is useful for reading
binary tapes having arbitrary blocking format.

12.6.1.5 Binary, Octal Code 14 - Checksummed binary data is read in the following format. The right half of the
first word of each physical block contains the number of data words that follow and the left half contains half a
folded checksum. The checksum is formed by adding the data words using 2's complement arithmetic, then split­
ting the sum into three 12-bit bytes and adding these using 1 's complement arithmetic to form a 12-bit checksum.
The data eror status flag is set in the status word if the checksum miscompares. Because the checksum and word
count appear in the input buffer, the maximum block length is 40. The byte pointer, however, is initialized so as
not to pick up the word count and checksum word.

Again, physical end oftape is the EOF indication, but does not result in putting a character in the buffer.

12.6.2 Monitor Calls
After each interrupt, the paper-tape reader stores the results of a CONI in the DEVSTS word of the device data
block. The DEVSTS call is used to return the contents of the DEVSTS word to the user. .

12.6.3 File Status
The file status of the paper-tape reader is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER I I· I 1111111111111111111111111111111111111

18 20 22 23

SET BY MONITOR IIIWII..IIIIII .lWlLIIIIIII..IIWJII,IIIIIIIIWL-111 ----L....----L...--'----I

IO-O~61

12-11

Bit 18 - IO.lMP
Bit 20 - IO.DTE
Bit 22 - IO.EOF
Bit 23 - IO.ACT

I/O Programming With Unit Record Devices

Binary block is incomplete.
Bad checksum in binary mode.
Physical end-of-tape is encountered. No character is stored in the buffer.
Device is active.

1819 21

UNUSED 111111111111111 1111111111111111111111111111111111111

10-0562

Device Dependent Bits - None.

12-12

J

"
-j

)

)

)

)

~

)

I/O Programming With Unit Record-Devices

12.7 PLOTTER
The device mnemonic isPLT; the buffer size is 438 (408 data) words. The plotter takes 6-bit characters with the
bits of each character decoded as follows:

-x +x +Y -y I
PEN PEN DRUM DRUM CARRIAGE CARRIAGE

RAISE LOWER UP DOWN LEFT RIGHT

10-0563

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the incremental
plotter, refer to the DECsystem-IO System Reference Manual.)

12.7.1 Data Modes

12.7.1.1 ASCII, Octal Code 0 - Five 7-bit characters per word are transmitted to the plotter exactly as they
appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each character is ignored.

) 12.7.1.2 ASCII Line, Octal Code 1 - This mode is identical to ASCII mode.
I

)

12.7.1.3 Image, Octal Code 10 - Six 6-bit characters per word are transmitted to the plotter exactly as they appear
in the buffer.

12.7.1.4 Image Binary, Octal Code 13 - This mode is identical to Image mode.

12.7.1.5 Binary, Octal Code 14 - This mode is identical"to Image mode.

12.7.2 Monitor Calls
The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is sent to the
plotter. The CLOSE operator causes the plotter pen to be lifter after all user data is sent to the plotter. These two
pen-up commands are the only modifications the monitor makes to the user output file.

Mter each interrupt, the plotter stores the results of a CONI in the DEVSTS word of the device data block.
DEVSTS is used to return the contents of the DEVSTS word to the user.

12.7.3 File Status
The file status of the plotter is shown below.

) Standard Bits
J

18 21

SET BY USER I 1111111111111111111

23

I
10-0564

Bit 23 - IO.ACT Device is active.

UNUSED 11

IO~-056~5~

) Device Dependent Bits - None.

12-13

(

(

(

(

')

)

CHAPTER 13

THE MULTIPLEX CHANNEL FEATURE

The MPX channel is a software I/O channel on which anINIT/OPEN has been performed for device MPX:; INIT
defines to the monitor a\ multiplexed channel. Without the MPX channel feature, a program is restricted to ref­
erencing sixteen (one for each software I/O channel) simultaneously active devices. An MPX channel connects a
large number of devices to one software I/O channel, allowing a program to support a large number of devices simul­
taneously on one channel. Any job can create an MPX channel, and each job may create as many MPX channels as
required within the normal constraints on the maximum number of channels per job.

To each INITedMPX channel the user connect devices that he wishes to control via the MPX channel. He may con­
nect as many devices (in any order and in an arbitrary mix of device types) to a single MPX channel as long as each
device connected has the predefmed characteristic of being controllable via an MPX channel. (The DEVTYP moni­
tor call may be used to determine whether or not a device can be controlled by an MPX channel.) From a user's
point of view, I/O is performed into and out of buffers similar to the buffer ring described in paragraph 7.3.3.1.
The buffer ring concept is slightly extended allowing all devices connected to one MPX channel to share the same
buffer ring.

The IN and OUT operators are utilized in about the same way as required for devices other than MPX devices. How­
ever, the format of buffers and buffer ring headers is modified to provide a unique device I. D. (a universal device
index), designating the source/destination of the data in each buffer.

13.1 BUFFER RING EXTENSION
For each MPX channel, one input and one output buffer ring can be defined via INIT/OPEN and INBUF /OUTBUF
as described in paragraphs 7.1 and 7.3.2. However, the buffer ring header block is 4-words in length for each device
rather than 3 words. INIT/OPEN defines the four-word headers for input and output. INBUF and OUTBUF are
then used by the user to create an arbitrary number of buffers for each ring with the buffer header in each buffer
appropriately initialized. Figure 13-1 illustrates a 4-word buffer ring header block.

o 1 17 18 35

WORD 0 Xl I CURRENT BUFFER

BUFFER POINTER

BYTE COUNTER

UNIVERSAL DEVICE INDEX
-_._-- - _._--- ----

Figure 13-1. MPX Buffer Ring Header Block

The input ring contains buffers chained together in an endless fashion with pointers in each buffer ring header block
to the next buffer in the ring. As in the conventional input buffer ring, input data is stored in consecutive buffers
in the ring, and data is retrieved in the same order for the user via the IN operator. The MPX channel stores addi­
tional information pertaining to the data in each buffer's4~W6rd header area: The fourth wotd of the ring header
is loaded with a value identifying the specific device which stored the data: the universal device index.

13-1

The Multiplex Channel Feature

The user must store a value identifying the device for which the data is destined. This value is stored in the fourth
word of the buffer ring header before the OUT operator is issued to output the data. With the exception of the
fourth word in the buffer ring header block, the MPX channel user can perform I/O operations in a way that is
virtually identical to the buffered I/O described in paragraph 7.3.2.

MPX utilizes buffer rings for input; for output the format is slightly modified to form one or more device chains and
a free chain.

13 .1.1 Device Chains
Device chains are created when an OUT operator causes a buffer of data to be output on a particular device. A con­
trol block in the monitor address space maintains pointers to the beginning of the device chain for each device. The
chains are linked via the normal buffer link pointer (the right half of the second word of each buffer) and are ter­
minated by a zero pointer value. Using the chain for output allows the monitor to treat each device connected to an
MPX channel separately.

After the device service routine empties the buffer it is placed on a free chain available for reuse. The free chain
begins with a pointer in the right half of the first word of the ring header. Buffers are linked via the normal pointer
in each buffer header area, and the chain is again terminated with a pointer value of zero.

As OUT operators are issued, buffers are removed from the free chain and added to a device chain. The ring header
is updated to the next buffer in the free chain for return to the user from the OUT. Buffers on a device chain are
returned to the free chain by the monitor when output has been accomplished. A facility exists to allow the user to
force an output buffer off a device chain and back to the free chain, when the user wishes to abort the output.

13.2 DATA MODES
All I/O performed on the MPX channel is in buffer I/O mode; thilt is, I/O is performed to and from buffer rings only.

)

~

)

All buffered I/O modes are legal for MPX as long as they are legal for all of the devices connected to MPX at execu- .)
tion time (refer to paragraph 7.3).

13.3 DEVICE IDENTIFICATION
Devices that can be controlled by an MPX channel are identified by the user in one of two ways. Devices are identi­
fied by name (logical or physical) or by their universal device index (UDX). An UDX is associated with a device via
the CNECT. or IONDX. monitor call.

13.4 MPX MONITOR CALLS

13.4.1 The CNECT. Monitor Call (CALLI 130)
The CNECT. monitor call connects and disconnects individual devices from a particular MPX channel. CNECT. can
only be used for devices which can be controlled by an MPX channel, such as terminals, line printers, etc. Its calling
sequence is

MOVEI ac,addr
CNECT. ac,

error return
normal return

addr: XWD operation, channel
SIXBIT / devicename/ ;orUDX

where: addr points to the two-word argument block.
operation is one of the operation codes listed in Table 13-1.
channel is an INITed MPX channel number.

- -- - ----- - ---- ---- --- -- ----- - -

devicename is the SIXBIT physical, logical or generic name of the device to be connected or disconnected.
UDX is the universal device index for the device to be connected or disconnected.

13-2

)

J.

)

)

~

"f

)

)

)

~

)

Code

1

2

3

The Multiplex Channel Feature

Table 13-1
CNECT. Operation Codes

Mnemonic Meaning

.CNCCN Connect the device to an MPX channel.

.CNCDC Equivalent to a CLOSE and disconnect.

. CNCDR Equivalent to a RESEt and disconnect .

A device must be connected to an MPX channel before input or output can occur for that device on that MPX
channel. One CNECT. call must be issued for each device to be controlled by an MPX channel, and the CNECT.
call should be issued after the channel has been INlTed and after any desired INBUF or OUTBUF monitor calls
have been issued. On a normal return, if a generic name was specified in the argument block, its UDX will be
returned in the AC.

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table 13-2.

Code Name

CNCNM%

2 CNCUD%

3 CNCCM%

4 CNCNF%

5 CNCNC%

6 CNCNO%

7 CNCII%

11 CNCDU%

10 CNCUF%

12 CNCSD%

Table 13-2
CNECT. Error Codes

Meaning

Channel is not OPEN on device MPX:

Device does not exist in the system.

Device cannot be connected to device MPX.

The monitor ran out of core to build the control blocks.

Device is not connected and the requested operation is conditional
or unconditional disconnect.

Channel is in some way illegal or not open.

An invalid I/O index was specified (UDX).

Device is already assigned, INlTed, or connected by this or some
other job.

Operation code is invalid (less than lor greater than 3).

Device is a spooled device.

13.4.2 The ERLST. Monitor Call (CALLI 132)
The ERLST. monitor call may be used to find out if any devices have encountered a device error, how many devices
have encountered errors, and what these device errors are. The user may optionally specify that ERLST. only return
the above data for those devices which have not been previously reported during an earlier ERLST. monitor call. Its
calling sequence is

MOVEI ac, addr
ERLST. ac,
o error return
normal return

addr: words" channel
number of devices
UDX1" GETSTS-word

13-3

where:

The Multiplex Channel Feature

addr points to the first word of the device error block.

words is the number of words contained within this block.

channel is the MPX channel associated with the devices which have encountered error conditions.

number of devices is the number of devices associated with the channel which have encountered device
error conditions.

UDX} is the universal device index associated with the first device reported on in this block.

GETSTS-word is the status bits associated with the device identified in the left half of this word.

The monitor performs this device error reporting by returning data in the device error block. The user must first
have declared space for this block by using the BLOCK pseudo-op. The ERLST. monitor call will fill this block with
data until all of the space allocated has been filled. If ERLST. does need more space, a flag will be set on return to
indicate to the user that the device error list is incomplete because of lack of space.

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table 13-3.

Code

1

2

Table 13-3
ERLST. Error Codes

Mnemonic

ERLBC%

ERLNM'!r

Meaning

Bad channel; not in the range 0-17(8).

Channel specified is not an MPX channel.

13.4.3 The SENSE. Monitor Call (CALLI 133)
The SENSE. monitor call will return the status bit settings associated with a device connected to a MPX channel.
Its calling sequence is

MOVE ac, [XWD length,addr 1
SENSE. ac,

error return
normal re turn

addr: UDX" channel
SIXBIT / devicename /
block, , addr2

addr2: SIXBIT/name/

where:

0, , GETSTS bits
DEVSTSword

length is the length of the argument block pointed to byaddr 1.

addr} points to an argument block.

addr}: contains the device identification, which can be either the Universal Device Index, the channel
number associated with the device, or the SIXBIT name of the device.

block is the length of the status block which will be filled in by the monitor. The size of this block is
determined by:

((addr+ n) /2) *3 = words in block

addr2 points to the first word of the status block.

134

')
/

)

)

)

)

The Multiplex Channel Feature

The monitor will return the status bits associated with each specified device. These status bits will be returned in the
status block, beginning with addr2.

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table l3-4.

Code Mnemonic

1 SNSBD%

Table 13-4
SENSE. Error Codes

Meaning

A bad device has been specified.

13.4.4 The CLRST. Monitor Call (CALLI 134)
The CLRST. monitor call allows the user to clear the status bits which were returned to the monitor as a result of
the SENSE. monitor call. By clearing the status bits associated with a device, that device may be continued after
a device error condition has occurred. The calling sequence for CLRST. is

MOVE ac, [XWD n, addr]
CLRST, ac,

error return
normal return

addr: SIXBIT / device /
channel
udx

addr+ 1: 0 "setsts value

where: n is the length of the argument block pOinted to by addr.
addr points to an argument block containing one or more two-word entries.
device is the logical/physical name of a device.
channel is the software I/O channel number associated with the device.
udx is the universal device index associated with an MPX device.
setsts value specifies those bits which are to be cleared.

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table 13-5.

Code Mnemonic

1 CLRID%

2 CLRNO%

Table 13-5
CLRST. Error Codes

Meaning

An illegal device has been specified.

The device specified belongs to another job.

13.4.5 The IONDX. Monitor Call (CALLI 127)
The IONDX. monitor call return the Universal Device Index associated with an MPX device. Its calling sequence is

MOVE ac, [SIXBIT/device/]
MOVEI ac, channel
IONDX. ac,

error return
normalreturn

where: device is the logical/physical name of the device for which its UDX is desired.
channel is the software I/O channel number associated with the device.

13-5

The Multiplex Channel Feature

The error return is taken on the following conditions:

l.
2.
3.

When the call has not been implemented,
When the device specified does not exist, and
Whe~ SIXBITjMPXj is specified as the device name.

13-6

_J

)

')
/

)

.,

)

)

".

)

)

. ,

.,'

)

CHAPTER 14

REAL-TIME PROGRAMMING

14.1 THE RTTRP MONITOR CALL (CALLI 57)
The real-time trapping monitor call (RTTRP)can be set by a timesharing user

1. to dynamically connect real-time devices to the priority interrupt system,
2. to respond to these devices at interrupt level,
3. to remove the devices from the interrupt system,
4. and to remove the devices from the interrupt system,
5. to change the priority interrupt level on which the devices are associated.

The RTTRP monitor call can be called from UUO level or from interrupt level. This is a privileged moriitor call
that requires the calling job to have real-time privileges (granted by LOGIN) and the job be locked in core
(accomplished via the LOCK monitor call). These real-time privileges are assigned by the system administrator
and are obtained by the monitor from ACCT.SYS. The privilege bits required for using the RTTRP monitor call are

JP.LCK (bit 14) which allows the job to be locked in core, and
JP.RTT (bit 13) which allows the RTTRP monitor call to be executed.

NOTE
Improper use of features of the RTTRP monitor call can
cause the system to fail in a number of ways. Since
design goals of this monitor call were to give the user as
much flexibility as possible, some system integrity had to
be sacrificed. The most common errors are protected
against since user programs run in user mode with all
ACs saved. It is recommended that no debugging of
real-time programs be done when system integrity is
important. However, once these programs are debugged,
they can run simultaneously with batch and timesharing
programs.

Real-time jobs control devices one of two ways:

1. block mode, or
2. single mode.

In block mode, an entire block of data is read before the user's interrupt program is run. In single mode, the user's
interrupt program is run every time the device interrupts .

Furthermore, there are two types of block modes: fast block mode and normal block mode. These differ in
response time only. The response time provided to read a block of data in fast block mode (assuming that nothing
else is running on the system) is 6.5 microseconds per word, and in normal block mode it is 14.6 microseconds per
word. (The CPU time to complete each data transfer.)

In ali modes, the response time measured from the receipt of the real-time device interrupt to the start off the user
control program is 100 microseconds.

14-1

Real-Time Programming

The RTTRP monitor call allows a real-time job to either put a BLKI or BLKO instruction directly on a priority
interrupt level (block mode) or add a device to the front of the monitor priority interrupt channel CONSO skip
chain (single mode). Since the BLKI and BLKO instructions are executed in exec mode, a KI-lO/KL-lO system
requires that the job be mapped in exec virtual memory, in addition to being locked (via the LOCK monitor call).

When an interrupt occurs from the real-time device in single mode or at the end of a block of data in block mode,
the monitor will save the current state of the machine, set the new user virtual memory and APR clock flags, and
trap to the user's interrupt routine. The user services his device and returns control to the monitor to restore the
previous state of the machine and to dismiss the interrupt.

In fast block mode, the monitor places the BLKI or BLKO instruction directly in the priority interrupt trap
location, followed by a JSR to the context switcher. This action requires that the priority interrupt channel be
dedicated to the real-time job during any transfers. In normal block mode, the monitor places the BLKI or BLKO
instruction in the CONSO skip chain.

Any number of real-time devices using either single mode or normal mode can be placed on any available priority
interrupt channel. The average extra overhead for each real-time device on the same channel is 5.5 microseconds
per interrupt.

The calling sequence for the RTTRP monitor call is

MOVE! ac,block
RTTRP ac,

error return
normal return

where: block points to the RTTRP data block, which is different depending on whether single mode or block
mode is used.

On an error return, an error code is returned in the AC. The possible error codes are listed in Table 14-1. The
error return will not be taken until RTTRP scans the entire data block to frod as many errors as possible.

On a normal return, the job is given user lOT privileges. These privileges allow the user to execute all restricted
instructions including the necessary I/O instructions to control his device. The lOT privileges must be used with
caution because improper use of the I/O instructions could halt the system (i.e., HALT on the KA10; CONO APR,
0; DATAO APR, 0; CONO PI, 0 on the KAlO, KIlO, and K:r,.-lO; and CONO PAG, 0 or DATA PAG, 0 on the
KIlO and KLlO). Note that a user can obtain just the user lOT privileges by issuing the RTTRP monitor call with
PICHL equal to O.

In single mode, the data block appears as follows:

RTBLK: XWD PICHL,TRP ADR
APRTRP
DEV,BITS

;PI CHANNEL (1-6) AND TRAP ADDRESS.
;APR TRAP ADDRESS.

where:

EXP
CONSO
o

;CONSO CHAIN INSTRUCTION.
;NO BLKI/BLKO INSTRUCTION.

trpadr is the location trapped to by the real-time interrupt (JRST TRP ADDR). Before the trap
occurs, all ACs are saved by the monitor and can be overridden without concern for their contents.
piehl is the priority interrupt level on which the device is to be placed. Levels 1 through 6 are legal
depending on the system configuration. If pichl is 0, all occurrences of the device whose device code
is specified in theCONSO instruction are removed from all levels. When a deviceisplaced on a
priority interrupt level, normally all other occurrences of the device on any priority interrupt level are
removed. If the user desired the same device on more than one priority interrupt level simultaneously.

14-2

\
/

)

)

)

)

"
d-

)

)

."

.>

)

Code

Bit 24=1

Bit 25=1

Bit 26=1

Bit 27=1

Bit 28=1

Bit 29=1

Bit 30=1

Bit 31=1

Bit 32=1

Bit 33=1

Bit 34=1

Bit 35=1

Real-Time Programming

Table 14-1
RTTRP Monitor Call Error Codes

Value Mnemonic Meaning

4000 RTJNP% Job is not privileged.

2000 RTNCO% This call is not runnable on CPUO.

1000 RTDIU% Specified device is already in use by another job.

400 RTIAU% An illegal AC was used during the RTTRP monitor
call at interrupt level.

200 RTJNL% Job was not locked in core when RTTRP call was
executed.

100 RTSLE% System limit for real-time devices has been exceeded.

40 RTILF% illegal format for CONSO, BLKO, or BLla instructions.

20 RTPWI% The block address or pointer word was specified in an
incorrect format.

10 RTEAB% The specified error address is out of bounds.

4 RTTAB% Specified trap address is-out of bounds.

2 RTPNB% Specified PI channel is not currently available for
BLKIs/BLKOs.

1 RTPNA% PI channel not available.

(Le., a data level and an error level), he can issue the RTTRP call with pichl negative. This indicates to
the system that any other occurrence of this device (on any priority level) is not to be removed. Note
that this addition to a priority interrupt level counts' as a real-time device, occupying one of the
possible real-time device slots.
aprtrp is the trap location for all APR traps. When an APR trap occurs, the monitor simulates a JSR
APRTRP. The user gains control from an APR trap on the same priority level that his real-time
device is on. The monitor always traps to the user program on illegal memory references, non-existent
memory references, and push-down list overflows. This allows the user to properly turn off his real­
time device if needed. The monitor also traps on the conditions specified in the APRENB monitor
call (refer to Chapter 5). No APR errors that cause an interrupt are detected if the interrupt routine
is on a priority interrupt level higher than or equal to the APR interrupt level.
dev is the real-time device code.
bits is the bit mask of all interrupt bits of the real-time device and must not contain any other bits. If
the user desires control of this bit mask from his user area, he may specify one level of indirection in
the CONSO instruction (no indexing is allowed) Le., CONSO dev, @mask (where mask is the location
in the user area of the bit mask). The mask must not have any bits set in the indirect or index fields
on the instruction.

The data block for fast block mode is as follows:

RTBLK: XWD PIXHL,TRADR
EXP APRTRP
BLKO DEV,BLKADR
o

;PI AND TRAP ADDRESS WHEN BLKO DONE.
;APR TRAP ADDRESS.
;BLKI OR BLKO INSTRUCTION
;BLKADR POINTS TO THE IOWD OF BLOCK TO BE SENT.

14-3

where:

Real-Time Programming

piehl, trpadr, and aprtp are the same as above.
blkadr is the address in the user's area of the BLKI/BLKO pointer word. Before returning to the user,
the monitor adds the proper relocation factor to the right half of the pointer word. Data can only be
read into the low segment above the protected job area, Le., above location 114.

Since the pointer word is in the user's area, the user can set up a new pointer word when the word count goes to 0
at interrupt level. This allows fast switching between buffers. When the user desires to set up his own pointer
word, the right half of the word must be set as an exec virtual instead of a user virtual address. The jobs relocation
value is returned from both the LOCK monitor call and the first RTTRP monitor call executed for setting the
BLKI/BLKO instruction.

If this pointer word does not contain a legal address, a portion of the system might be. overwritten. A check should
be made to determine if the negative word count in the left half of the pointer word is too large. If the word
count extends beyond the user's own area, the device may cause a non-existent memory interrupt, or may overwrite
a timehsaring job. If all of th~ above precautions are taken, this method of setting up the pointer word is much
faster and more flexible than issuing the RTTRP monitor call at interrupt level.

The data block for normal block mode is as follows:

RTBLK: XWD PICHL,TRPADR
EXP APRTRP

;CHANNEL AND TRAP ADDRESS.
;APR TRAP ADDRESS

CONSO DEV,BITS
BLKI DEV,BLKADR

;CONTROL BIT MASK FROM USER AREA
;BLKI INSTRUCTION.

On a multiprocessor system, the real-time trap monitor call applies only to the processor specified by the job's CPU
specification (refer to the SET CPU command description in DECsystem-lO OPERATING SYSTEM COMMANDS,
or the SETUUO monitor call description in Chapter 4). If the specification indicates more than one processor,
the specification is changed to indicate CPUO. Note that the priority interrupt channel (pichl) and processor traps
(aprtrp) are only for the indicated CPU.

14.1.1 Interrupt Level Use OfRTTRP
The format of the RTTRP monitor call at interrupt level is similar to the format at user level except for two
restrictions:

1. AC 16 and AC 17 cannot be used in the monitor call (Le., CALLI 16,57 is illegal at interrupt level).
2. All ACs are overwritten when the monitor call is executed at interrupt level. Therefore, the user must

save any desired ACs before issuing the RTTRP monitor call. This restriction is used to save time at
interrupt level.

14.1.2 Restrictions

NOTE
If an interrupt level routine executes a RTTRP monitor
call that affects the device currently being serviced, no
additional calls of any kind (including RTTRP and WAKE
monitor calls) can be executed during the rearninder of
the interrupt. At this point, any subsequent call
dismisses the interrupt.

Devices may be chained onto any priority interrupt channel that is not used for BLKI/BLKO instructions by the
system or by other real-time users using fast block mode. This includes the APR channel. Normally, priority

-- --interrupt levels-l and 2 are reserved by the system for magnetic tape and DECtapes. Priority interrupt level 7 is
always reserved for the system. Each device must be chained onto a priority interrupt level before the user program
issues the CONO device, PIA to set the device onto the interrupt level. Failure to observe this rule or failure to set
the device on the same priority interrupt level that was specified in the RTTRP monitor call could hang the system.

14-4

--)

~

)

)

)

)

Jv

Real-Time Programming

) If CaNSO bit mask is set up and one of the corresponding flags in a device is on, but the device has not been
physically put on its proper priority level, a trap may occur to the user's interrupt service routine. This occurs
because there is a CaNSO skip chain for each priority level, and if another device interrupts whose CaNSO
instruction is further down the chain than that of the real-time device, the CaNSO associated with the real-time
device is executed.

)

)

)

If one of the hardware device flags is set and the corresponding bit in the CaNSO bit mask is set, the CaNSO skips
and a trap occurs to the user's program even though the real-time device was not causing the interrupt on that
channel. To avoid this situation that user can keep the CaNSO bit mask in his user area. This procedure all<\ws the
user to chain a device onto the interrupt level, keeping the CaNSO bit mask zero until the device is actually pht on
the proper priority interrupt level with CaNSO instruction. This situation never arises if the device flags are '
turned off until the CaNSO device, PIA can be executed.

The user should guard against putting programs on high priority interrupt levels which execute for long periods
of time. These programs could cause real-time programs at lower levels to lose data.

The user program must not change any locations in the protected job data area (locations 20-114, refer to
Chapter 3), because the user is running at interrupt level and full context Switching is not performed.

If the user is using the BLKI/BLKO feature, he must restore the BLKI/BLKO pointer word before dismissing any
end-of-flck interrupts. This is accomplished with another RTTRP monitor call or by directly modifying the
absolute pointer word supplied by the first RTTRP monitor call. Failure to reset the pointer word could cause the
device to overwrite all of memory.

14.1.3 Removing Devices from a Priority Interrupt Channel
When pichl equals 0 in the data block, all occurrences of the device specified in the CaNSO instruction are
removed from the interrupt system. If the user removes a device from a priority interrupt chain, he must also
remove the device from the priority interrupt level (CONO dev, 0).

A RESET, EXIT, or RUN monitor call from the timesharing levels removes all devices from the interrupt levels.
These calls cause a CONO dev, 0 to be executed before the device is removed. Monitor commands that issue
implicit RESETs also remove real-time devices (e.g., R, RUN, GET, CORE 0, SAVE, SSAVE, OSAVE, OSSAVE,
NSAVE, and NSSA VE).

14.1.4 Dismissing the Interrupt
The user program always dismisses the interrupt in order to allow the monitor to properly restore the state of the
machine. The interrupt may be dismissed with any monitor call other than the RTTRP or WAKE monitor call,
or on the KAlO, any instruction that traps to absolute location 60. The standard method of dismissing the
interrupt is with a UJEWN instruction (op code 100). This instruction gives the fastest possible dismissal.

14.2 THE TRPSET MONITOR CALL (CALLI 25)
The TRPSET feature may be used to guarantee some of the fast response requirements of real-time users. In order
to achieve fast response to interrupts, this feature temporarily suspends the running of other jobs during its use.
This limits the class of problems to be solved to cases where the user wants to transfer data in short bursts at pre­
dermed times. Therefore, because data transfers are short, the time during which timesharing is stopped is also
short, and the pause probably will not be noticed by the timesharing users.

The TRPSET monitor call allows the user program to gain control of the interrupt location. If the user does not
have the TRPSET privileges (JP.TRP, bit 15), the error return will be taken, and the user program will remain in
user mode. Timesharing is turned back on. If the user has the TRPSET privileges, the central processor is placed
in user I/O mode;

14-5

Real-Time Programming

If the AC contains zero, timesharing is turned on if it was turned off. If the left half of the AC is within the range
40 to 57 of the central processor, all other jobs are stopped from being scheduled and the specified PI location
(40-57) is patched to trap directly to the user. In this case, the monitor moves the contents of the relative location
specified in the right half of the AC, converts the user virtual address to the equivalent exec virtual address, and
stores the address in the specified executive PI location. On a KI-lO based system, this requires the user segment
access during the interrupt to be locked and mappt:d contiguously in the exec virtual memory (refer to the LOCK
monitor call). If the segment does not meet these requirements the error return is taken.

On a multiprocessor system, the TRPSET monitor call applies to the processor specified by the job's CPU
specification (refer to the SET CPU command or the SETUUO monitor call). If the specification indicates only
CPU 1 , the error return is taken if the job is not locked in core. When the specification indicates more than one
processor, the specification is changed to indicate CPUO (the master processor).

The user can set up a priority interrupt trap into his relocated core area. On a normal return, the AC contains the
previous contents of the address specified by the left half of the AC, so that the user program may restore the
original contents of the PI location when the user is through using this monitor call. If the left half of the AC is
not within the range 40 to 57, the error return is taken just as if the user did have the proper privileges.

The calling sequence for the TRPSET monitor call is

MOVE ac, [XWD n,addr]
TRPSET ac,

error return
normal return

addr: JSR TRAP

TRAP: o

;INSTRUCTION TO BE STORED IN EXEC PI LOCATION AFTER
;RELOCATION ADDRED TO IT.

;HERE ON INTERRUPT FROM EXEC.

The monitor assumes that address contains either a JSR U or BLKI U, where U is a user virtual address.
Consequently, the monitor adds a relocation to the contents of location U to make it an absolute IOWD (Le., an
exec virtual address). Therefore, a user should reset the contents of U before every TRPSET call. A RESET
monitor call returns the user to normal user mode. To maintain compatibility between KA10-based systems and
KI10-/KLlO-based systems, the interrupt routine should be executed in exec mode. However, for convenience,
the routine can be executed in user mode in order to avoid relocation to exec virtual memory. This is possible on
KAlO-based systems if care is taken when dismissing the interrupt. On KIlO-/KL-lO-based systems, if there is a
possibility that the interrupt may occur during the job's background processing, the interrupt routine must be
executed in exec mode (and therefore must be locked and exec-mapped with the LOCK monitor call). In
particular, if the job is executing a monitor call at background level, the user of UJEN at interrupt level may cause
an error. On KIlO-based systems and KLlO-based systems, it is recommended that the TRPSET interrupt routines
always be coded to run in exec mode (refer to the RTTRP monitor call for programming techniques).

On KAlO-based systems, the interrupt routine can be coded to run in user mode if the following procedure is
observed. If the interrupt occurs while some other part of the user's program is running, the user may dismiss
from the interrupt routine with a JEN XITINT. However, if the machine is in exec mode, a JEN instruction

. issued in user mode does not work because of memory relocation. This problem is solved by a call to UJEN
(op code 100). This monitor call causes the monitor to dismiss the interrupt from exec mode. In this case, the
address field of the UJEN instruction is the user location when the return PC is stored (Le., UJEN XITINT).

14-6

_J

.~

)

)

)

)

)

)

)

)

'.'

Real-Time Programming

14.2.1 UJEN (Op Code 100)
This op code dismisses a user I/O mode interrupt of one is in progress. If the interrupt is from user mode, a JRST
12 instruction dismisses the interrupt. If the interrupt came from executive mode, however, this operator is used
to dismiss the interrupt. The monitor restores all accumulators, and executes JEN @U where user location U
contains the program counter as stored by a JSR instruction when the interrupt occurred.

14.2.2 The HPQ Monitor CaU (CALLI 71)
The HPQ monitor call is used by privileged users to place their jobs in a high priority scheduler run queue. These
queues are always scanned by the scheduler before the normal run queues, and any runnable job in one of these
queues is executed before aU other jobs in the system.

In addition, these jobs are given preferential access to sharable resources (e.g., shared device controllers). Therefore,
real-time associated jobs can receive fast response from the timesharing scheduler.

Jobs in high-priority queues are not examined for swap-out until all other queues have been scanned. If a job in a
high-priority queue must be swapped, the lowest priority job is transferred first, and the highest priority job last.
If the highest priority job is swapped, then that job is the first to be swapped in for immediate execution.
Therefore, in addition to being scanned before all other queues for job execution, the high-priority queues are
examined after all other queues for swap-out and before all queues for swap-in.

The HPQ monitor call requires as an argument the high-priority queue number of the queue to be entered. The
lowest high-priority queue is 1, and th(; highest-priority queue is equivalent to the number of queues that the
system is built for. The calling sequence for HPQ is

MOVE ac,hpq#
HPQ ac,

error return
normal return

If the user does not have HPQ privileges, the error return is taken and a -1 is returned in the AC. The privilege
bits 6 through 9 in the privilege word (.GTPRV). These four bits specify a number from 0 to 17 octal, which is
the highest priority queue attainable by a user.

On a normal return, the job is in the desired high-priority queue. A RESET or EXIT monitor call returns the job
to the high-priority queue specified in the last SET HPQ command. A queue number of 0 as an argument places
the job back to the timesharing level.

14-7

(

(

(

(

c-

)

--r

)

)

)

,.

)

CHAPTER 15

INTER-PROCESS COMMUNICATION FACILITY

The Inter-Process Communication Facility (IPCF) makes it,possible for jobs to communicate with one another and
with system processes. This communication takes place by sending and receiving packets of information. Each
sender and receiver has a Process LD. (PID) assigned to it for communication identification.

When a process sends a packet to another process, the packet goes into the receiver's input queue, and it remains
there until the receiver checks his input queue and retrieves the packet. If the receiver is enabled via the Software
Interrupt System (refer to Chapter 5, Section 5.1), an interrupt will occur when a packet is received in the job's
input queue.

There is a send packet quota and receive packet quota per job which can be set by each installation per user. The
default send packet quota is two per job; the default receive packet quota is five per job. These quotas pertain to
outstanding sends and receives only. For example (assuming the default limit of two), ifajob sends two packets,
no more packets can be sent by that job until one or both of its previously sent packets have first been retrieved by
the intended receiver. If the receiver has five (assuming the default limit) packets in its receive queue that it has not
yet retrieved, it cannot receive any more packets until it has retrieved at least one of the five waiting packets.

There are two system processes utilized by IPCF: [SYSTEM] INFO and [SYSTEM] IPCC. SYSTEM[INFO] acts as
the information center for IPCF and performs several functions related to PIDs and names. [SYSTEM] IPCC is the
IPCF controller, and it performs many packet controlling functions. Ajob can send a packet to both of these system
processes.

15.1 PACKETS
A packet is divided into two blocks:

• the packet descriptor block, which is four to six words long, and
• the packet data block, which is the message portion of the packet.

The general format of a packet is represented in Figure 15-1.

Each of the words in the figure is described within the following paragraphs.

15.1.1 Flags
The flags that can be set within the packet descriptor block are divided into two categories. Those that may be set
in the left half of word 0 (.IPCFL) are instructions to the monitor concerning the packet communication. Those
that may be set in the right half of word 0 describe the data message. The bits in the right half of the flag word are
those returned within the associative variable, and those returned in the status word when a software interrupt
occurs (refer to Chapter 5, Table 5-4, entry -24). The possible flags that can be set in the flag word are listed in
Table 15-1.

15.1.2 PIDs
A PID must be obtained for any job that wants to send or receive a packet. PIDs can be obtained by

1. making a request for a PID to [SYSTEM] INFO, or
2. making a request f(n aPIDto [SYSTEM] IPCC (only if the requester has iheIPCF privilege).
3. using its job number for a PID.

15-1

Inter-Process Communication Facility

o 17 18 35

WORD 0 FLAGS .IPCFL

WORD 1 SENDER'S PID .IPCFS

WORD 2 RECEIVER'S PID .IPCFR

WORD 3 LENGTH I ADDR .IPCFP

WORD 4 PPN OF SENDER JPCFU

WORDS CAPABILITIES OF SENDER .IPCFC

ADDR: DATA BLOCK WORD 1

•
•
•

DATA BLOCK WORD N

Figure 15-1. Representation of an IPCF Packet

Normally, ajob will request its PID from [SYSTEM] INFO, obtaining a name associated with the new PID.

In summary, ajob should send a packet to [SYSTEM] INFO (whose PID is 0) requesting that a PID be assigned to
that job.

The job must also include, in the PID assignment request, a name that will be associated with the newly assigned
PID. The PID will then be associated with both the job number and the symbolic name.

The association between a PID and ajob number and name is released either 1) on a RESET, 2) when the job logs
off the system, or 3) when a release is requested from [SYSTEM] INFO (depending on the type of request).
[SYSTEM] INFO will not allow the assignment of a name which is already associated with another PID. (Unless
the owner of the name makes the request.)

A PID can have only one name associated with it, but ajob may have several PIDs (and therefore, several names)
associated with it. After a PID has been used, it will never be used again until monitor is reloaded. This action pro­
tects against messages being sent to the wrongjob by accident.

The symbolic name is limited to 29 characters, and it can contain any characters as long as the name is terminated
by a zero word_ In order to initiate communication betweenjobs, there should be a mutual understanding between
the jobS as to the symbolic name(s) to be used. This mutual agreement frees the communication procedure from

15-2

\
)

)

)

)

)

Bit Mnemonic
.,

0 IP.CFB

1 IP.CFS

~ 2 IP.CFR

3 IP.OFO

4 IP.CFT

) 5-17

18 IP.CFP

19 IP.CFV

)

20-23

24-29 IP.CFE

30-32 IP_CFC

)

33-35 IP.CFM

)

Inter-Process Communication Facility

Table 15-1
Packet Flags

Meaning

Do not wait for message if the queue is zero.

Use the indirect sender's PID_ (PID is found at the address specified
in the word 1, .IPCFS).

Use the indirect receiver's PID. (PID is found at the address specified
in word 2, .IPCFR).

Allow one send request above the send quota. (The default send
quota is two.)

Truncate the message, if it is larger than the reserved space.

Reserved.

The packet is privileged. (This bit can be set only if the sending/
receiving job is a privileged job.) If a privileged sender sets this bit,
IPCFR. and IPCFQ. will return this.

bit = 1 in any reply. If this bit was not set, the bit will contain 0 when
the packet is placed in the receiver's queue. If this job is not privileged
and this bit is set, an error code will be returned.

The packet is a page of data (512 decimal words). Both the sender
and the receiver must have virtual memory capaoilities. A page must
have been reserved (by using the PAGE. monitor call) before a page
can be passed using IPCF.

Reserved.

The error code is returned in these bits, if an error is encountered on
a receive or a send. The possible error codes are listed in Table 15-3.

The system and sender code; this code can be set only by a privileged
job.

Code Mnemonic Meaning

1 _IPCCC Sent by [SYSTEMfiPcc.

2 .IPCCF Sent by system-wide [SYSTEM] INFO .

3 .IPCCP Sent by receiver's local [SYSTEM] INFO.

Return the packet to the sender.

Code Mnemonic Meaning

1 .IPCFN Packet in the job's input queue is one that
was sent to another PID but returned to
the sender due to the receiver's PID being
dropped before the packet was received.

This bit cannot be set by an unprivileged job; the monitor will fill it
in fbtexarhirtatibnby ahtinpfivilegelrjoo-. .

---_ .. _------ --

15-3

J

fnter-Process\Communication Facility

any dependencies on system chiuacteristics (such as job numbers) that might change betweenjob executions.
Four examples of symbolic names used in an IPCF communication are listed below.

[SYSTEM] PHOTOCOMP
FILEPROCESSOR[10,1521]
PHOTOCOMP [SYSTEM]
TESTPROGRAM ['ANY' '1151]

The symbolic name may be specified in one of the following forms:

project number" programmer number
string" programmer number
string" string
project number"string

If a project-programmer number is used, it must be the proj ect-programmer number under which the j ob is cur·
rently running. Ajob may specify [SYSTEM] as part of its symbolic name, only if the job is privileged (Le., the
JACCT bit has been set, or the job is running under project·programmer number 1,2). When specifying the name
associated with any PID or job number, you must be sure that the name is specified exactly as it appears, character
for character.

Before ajob can send a packet to another job, the sender must know either the intended receiver's name or its PID.
If only the receiver's name is known, the sender must ask [SYSTEM] INFO for the PID associated with that name -
since all communication takes place on a PID·basis only.

The monitor keeps a table of all PIDs currently in use (GETTAB Table Number 76). [SYSTEM] INFO keeps a list
of all PIDs and their associated names currently assigned to each job.

15.1.3 Length of the Packet Data Block
The length of the packet data block is specified in word 3 (.IPCFP). The value specified will be one of two types,
depending on the type of message contained in the packet data block. The message can be either a short form mes­
sage or a long form message.

The short form message can be one to n words in length, where n is defined by the individual system installation
(the default is ten words). The maximum length of the message can be obtained by examining .GTIPC (GETTAB
Table Number 77, item number 0). The length specified in .IPCFP must be the actual word length of the message
to be sent.

The long form message indicates that the length of the packet data block is one page (512 decimal words). When
using the long form message, the left half of word 3 in the packet descriptor block must contain 10008. Note that
in order to send or receive a long form message, the sending and receiving jobs must be running on a system with the
virtual memory option, also bit 19 (IP.CFV) of the flag word in the packet descriptor block must be set, or an error
code will be returned. If large amounts of data are to be set, the message portion of the packet may be used as a
pointer to a file containing the data.

15.1.4 . Address of the Packet Data Block
Word 0 of the packet data block is pOinted to by the right half of word 3 (.IPCFP) in the packet descriptor block.
The value specified within the right half of lPCFP is either an address or a page number, depending on the type of
message contained in the packet data block. If the message is a short form message, the address of word 0 of the
message should be specified; if the message is a long form message, the page number of the message should be
specified.

15-4

_J

"

)

)

)

)

-J

."

.,

)

)

)

Inter-Process Communication Facility

15.1.5 Sender's Project-Programmer Number
Word 4 (.IPCFU) is an optional portion of the packet descriptor block. If .IPCFU is present within the block on a
receive, the monitor will fill in the sender's project-programmer number .. IPCFU is ignored on a send request.

15.1.6 Capabilities of Sender
Word 5 (.IPCFC) is an optional portion ofthe packet descriptor block. If .IPCFC is present within the block on a
receive, the monitor will fill in the capabilities of the packet sender_ This word is ignored on a send request. The
possible capabilities of a sender are listed in Table 15-2.

Table 15-2
IPCF Capabilities of a Sender

Bit Mnemonic Meaning

._-- -

0 IP.JAC The sender has the JACCT bit turned on.

1 IP.JLG The sender is logged-in.

2 IP.SXO The sender is an execute-only job.

3 IP.POK The sender has POKE privileges.

4 IP.IPC The sender is an IPCF privileged job.

15.1.7 Packet Data Block
The packet data block contains the message portion of the packet. This portion can be in one of two forms: short
form or long form. The short form message can be one to n words in length, where n is defined by the individual
system installation (the default is ten). When ajob sends a message to either [SYSTEM] IPCC or [SYSTEM] INFO,
it always uses the short form. The long form message is one page in length (51210 words). When transmitting a long
form message, both the sending and receiving jobs must be running on a system with the virtual memory option.
Also, bit 19 (IP.CFV) of the flag word in the packet descriptor block must be set, or an error code will be returned.

15.2 SENDING A PACKET
To send a packet, the sending job must set up the packet descriptor block. When the IPCFS. monitor call is exe­
cuted by the job, the message is sent to the intended receiver. When sending a packet with the sender's PID equal to
0, it indicates that the sender is the originator of the request. If sending a request to [SYSTEM] INFO and the
second word of the packet data block contains another job's PID.

For example, to send a message to [SYSTEM] INFO requesting a PID, the following could be written:

MOVE Tl,[4,,[0
o
o
3"NAME]]

IPCFS. T1,

JRST ERROR

NAME: O".IPCII
o

;length"noflags
;sender did not specify its PID
;default PID for [SYSTEM] INFO
;length"addr

;packet will be sent

;addr: code "function name
;no duplicate copy to be sent

ASCIZ/CORPWORD/ ;specified name to be associated
.- ;withPID-

15-5

Inter-Process Communication Facility

15.3 RECEIVING A PACKET
To receive a packet, the receiving job must set up a packet descriptor block. When the IPCFR. monitor call is
executed by the receiving job, a packet will be retrieved from the input queue, if there is one_ If there are no
packets in the queue, the job will block until one arrives, unless IP.CIB was set in the flag word. The receive queue
is emptied on a first-in, first-out basis. An example to receive a packet is

SETTI: MOVE T2,[6,,[0 ;set up descriptor block
;monitor fills in sender's PID
;monitor fills in receiver's PID
;length"addr

IPCFR. T2,

o
o
4,,DATA
o
0]]

JRST ERROR2

;monitor fIlls in sender's ppn
;capabilities of sender
;packet is retrieved from input queue

DATA: BLOCK4 ;packet data block

15.4 rSYSTEM]INFO
The [SYSTEM] INFO facility acts as the central information utility for IPCF and performs several functions con­
nected with names and PIDs. [SYSTEM] INFO will assign a PID, find a name associated with a PID, assign a name,
or drop all PIDs associated with names. The IPCFS. monitor call is used to send packets to [SYSTEM] INFO with
the message portion of the packet containing the request. The request must be in the general format shown in
Figure 15-2.

o 17 18 35

WORD 0 (.IPCIO) CODE FUNCTION

WORD 1 (.IPCIl) PID

WORD 2 (.IPCI2) FUNCTION ARGUMENT

where:

Figure 15-2. Request to [SYSTEM] INFO

code is a user-declared quantity associating the answer with the appropriate request. If the user does
not expect an answer, it is not necessary to specify a code; for consistency, the code field should contain
zero if no answer is expected.

function is one of eight operations that a user may request [SYSTEM] INFO to perform. These func­
tions are described in Table 15-3.

PID is the PID or job number of the job that is to receive a duplicate of the response from [SYSTEM]­
INFO. Ifword 1 contains zero, the response is sent only to the originator of the request.

function argument is different depending on the function specified. Function arguments are described
in Table 15-3 pertinent to each function.

All responses from [SYSTEM] INFO will be in the form of a packet, which is sent to the function requester. The
message portions of the respoIlses packets wIll be in the general format shown in Figure 15-3. - .

15-6

'.)

)

)

)

e

)

)

)

)

\

)

Function
Code Mnemonic

1 .IPCIW

2 .IPCIG

3 .IPCII

4 .IPCIJ

5 .IPCID

6 .IPCIR

7 .IPCIL

15 .IPCIS

- - ------_._-

15.5 [SYSTEM] ICPP

Inter-Process Communication Facility

Table 15-3
[SYSTEM] INFO Functions

Request Format Meaning

code".IPCIW INFO will find the PID associated with
PID for copy the name specified in the request.
name

code".IPCIG INFO will find the name associated with
PID for copy the PID specified in the request.
PID

code".IPC1~~ INFO will assign the name specified in
PID for~copy the function argument to the job
name in ASCIZ number making the request. (This

name will be disassociated from the
job number when the job performs a
RESET call.)

code ".IPCIJ INFO will assign the name specified in
PIDfor copy the function argument to the job
name in ASCIZ number making the request. (This

name will be disassociated from the
job number when the job logs off the
system.)

code".IPCID INFO will disassociate the specified PID
PID for copy from its job number. This function can
PID to be only be requested by the owner of the
dropped specified PID, unless the requester is

an IPCF privileged user.

code".IPCIR INFO will disassociate all PIDs that
PID for copy were created by function 3 and are
job number associated with the specified j ob num-

ber. This function can be requested
only by the owner of the specified job,
unless the requester is an IPCF priv-
ileged user.

code".IPCLQ INFO will disassociate all PIDs that
PID for copy were created by function 4 and are
job number associated with the specified job num-

ber. This function can only be
requested by the owner of the specified
job, unless the requester is an IPCF
privileged user.

Function 15 is used only by
[SYSTEM] IPCC on the execution of
the LOGOUT or RESET monitor call.

I

ThelPCFcontroller ([SYSTEM] IPCC) supports a number of functions,including enabling (disabling) jobs to receive
packets, assigning a PID to [SYSTEM] INFO and destroying a PID. The IPCFS. monitor call is used to send a packet
to [SYSTEM] IPCC with the message portion of the packet containing the request. The request must be in the
general format shown in Figure 15-4.

15-7

WORD 0 (.IPCIO)

WORD 1 (.IPCIl)

WORD 2 (.IPCI2)

o

Inter-Process Communication Facility

17 18 35

CODE FUNCTION

RESPONSE

RESPONSE
--------_._--- ---- ------ -----_ .. ---

WORD 0 (.IPCSO)

WORD 1 (JPeSl)

WORD 2 (.IPCS2)

WORD 3 (.IPCS3)

o

Figure 15-3. [SYSTEM] INFO Response Format

17 18 35

CODE I FUNCTION

FUNCTION ARGUMENT

FUNCTION ARGUMENT

FUNCTION ARGUMENT

Figure 15-4. Request to [SYSTEM] IPCC

where: code is a user-declared quantity that will associate the answer with the appropriate request.

function is one of the functions that a user may request [SYSTEM] IPCC to perform. The functions
are listed in Table 15-4.

function argument is different depending on the function requested. Function arguments are described
in Table 15-4 along with the functions.

All responses from [SYSTEM] IPCC will be in the form of a packet, which is sent to the function requester. The
message portion of the response packet will be in the generalformat shown in Figure 15-5.

Function
Code Mnemonic

1 .IPCSE

2 .IPCSD

3 .IPCSI

- -----

Table 15-4
[SYSTEM] IPCC Functions

Request Format Meaning

code".IPCSE IPCC will allow the specified j ob number to receive
job number packets. If the requester is not the owner of the job

specified, it must have IPCF privileges.

code".IPCSD IPCC will disable the specified job's ability to receive
job number packets. If the requestingjob is not the owner of the

specified job number, it must have IPCF privileges.

code" .IPCSI IPCC will return the PID associated with
PID or job number [SYSTEM] INFO. The value returned will be for the

-- ------- -- - - -local -[SYSTEM]INFO (if tliere iS6iieforsecoiidly,
the global [SYSTEM] INFO. (GETTAB Table Number
77, item number 1 contains the PID for the system-
wide [SYSTEM] INFO.)

15-8

-)

)

)

)

I

)

Function
Code Mnemonic

4 .IPCSF

5 .IPCSZ

6 JPCSC

)

7 .IPCSQ

10 .IPCSO

11 .IPCSJ

12 JPCSP

13 .IPCSR

14 .IPCSW

15 .IPCSS

Inter-Process Communication Facility

Table 15-4 (Cont.)
[SYSTEM] IPCC Functions

Request Format Meaning

code".IPCSF IPCC will create a PID for [SYSTEM] INFO. The
m requestingjob must have IPCF privileges to request
n this function. The n should be equal to 0 to create a

global [SYSTEM] INFO, and not equal to 0 to create
a local [SYSTEM] INFO. Local [SYSTEM] INFOs
are valid only if another local or a global does not exist.
m is the PID which is to become SYSTEM [INFO] , 0
will delete [INFO].

n=O indicates global [INFO]
n=j make local [INFO] for job number j.

Local [INFO] can be made only by local or global
INFO, if either exists (sending PID=local on global).
If no [INFO] then any privileged job can create it.
Global INFO can be changed or destroyed only if
sender PID is [INFO] .

code".IPCSZ IPCC will destroy a PID. The requesting j ob must have
PID to be destroyed the IPCF privilege to request this function.

code".IPCSC IPCC will create a PID for the specified job number.
type"job number The requesting job must have IPCF privileges to request

this function. Type can be 0 or 1; 1 indicates that the
PID is valid until RESET; 1 indicates that the PID is
valid until LOGOUT.

code".IPCSQ IPCC will set a send and receive quota for the specified
PID or job number job number. The requestingjob must have the IPCF

privilege to request this function. The send quota will
be returned in bits 18-26 of the response word; the
receive quota in bits 27-35.

cod~".IPCSO IPCC will change the job number associated with the
PID specified PID. The requesting job must have the IPCF
new job number privilege to request this function.

code".IPCSJ IPCC will return the job number associated with the
PID specified PID. The job number is returned in .IPCS2.

code" .IPCSP IPCC will return all of the PIDs associated with the
job number specified job number. Starting with .IPCS 1, IPCC will

return the PIDs. The number of PIDs returned depends
on the length of the block.

code".IPCSR IPCC will respond with the send and receive quotas
job number PID associated with specified job number or PID. The

send quota will be returned irl bits 18-26 of .IPCSI;
the receive quota will be returned in bits 27-35 of
.IPCSl.

code".IPCSW-
-

Wake ajobsleeping from .IPCSS.
job number

code".IPCSS If equal to l,job is resetting. If equal to -1,job is
job number logging out.

15-9

Function
Code Mnemonic

16-23

24 .IPCWP

25 .IPCRP

26 .IPCSU

27 .IPCSL

Inter-Process Communication Facility

Table 15-4 (Cont.)
[SYSTEM] IPCC Functions

Request Format Meaning

Reserved to Digital.

code ".IPCWP IPCC will write the SYSTEM PID table.

code ".IPCRP IPCC will read the SYSTEM PID table . -_ .. _------.

code".IPCSU IPCC sends a message to [SYSTEM] QUASAR.
- -, ---

code".IPCSL Logout message sent to [SYSTEM] QUASAR .
job

o 17 18 35

WORD 0 (.!PCSO) CODE FUNCTION

WORD 1 (.IPCS1) RESPONSE

Figure 15-5. Response from [SYSTEM] !PCC

15.6 STATUS OF AN INPUT QUEUE
The IPCFQ. monitor call will return information regarding the status of a job's IPCF input queue. Its calling
sequence is

MOVE ac,[length"addrj
IPCFQ. ac,

error return
normal return

where: length is the length in words of the packet descriptor block (in the range 4 to 6).

addr is the first address of the block to store the packet descriptor block (i.e., IPCFQ. returns the
same block as,IPCFR. minus the packet data block.

On an error return, an error code will be returned in the AC indicating that the query failed; the error codes are
listed in Table 15-5. On a normal return, the status of the input queue is returned in addr.

The IPCFQ. monitor call will check the status of the next packet in the receiver's queue. It is wise to query IPCF
(with IPCFQ.) before a job tries to receive its first packet, in order to determine whether or not the first packet
contains a long form message. (The job could also check bit 19 of word 0 in the packet descriptor block.) If the
message in the queue is a long form message, the receiver must set bit 19 in word 0 of the receiving packet descriptor
block.

After the job receives its first packet, it is not necessary to use IPCFQ., as IPCFR. will return an associated variable
describing the next packet (if there is one) in the input queue. The associated variable (which is also the word

----returned when a software interrupt occurs) is-representedjnEigure-15~6.

15·10

~

.,

)

)

)

)

~

)

'I
!

'7

a

Inter-Process.Communication Facility

LENGTH OF THE
MESSAGE

17 18

RHOFTHE FLAG
WORD

Figure 15-6. An Associated Variable

15.7 RETRIEVE AN IPCF PACKET

35

The IPCFR. monitor call retrieves an IPCF packet from the job's receive queue. Its calling sequence is

MOVE ac,[length" addr]
IPCFR. ac,

error return
normal return

where: length is the length in words of the packet descriptor block (in the range 4 to 6).
addr is the address of the packet descriptor block.

On an error return, the error code will be returned in the AC; the error codes are listed in Table 15-5. On a normal
return, the packet is retrieved.

Before a job retrieves a packet, the job must

1. know whether or not the packet data block will contain a long form message, and
2. set up a packet descriptor block.

The packet descriptor block is shown in Figure 15-1. Bit 19 of Word a (IP.CFV) must be set if the expected packet
data block contains a page of data. The length to be specified in bits 0-17 of Word 3 (.IPCFP) can be n or 10008, If
the packet data block is ashort form message, set the length to n; if the packet data block is a long form message,
set the length to 1000. The length specified for n (short form message) may be greater than the length of the message
so that the maximum limit may always be specified. If the specified length is less than the actual message length,
the monitor call will take the error return unless the IP.CFT but was set in the flag word. If IP.CFT (bit 4) is set the
message will be received correctly, but it will be truncated.

On a normal return from the IPCFR. monitor call, the AC contains the associated variable relating to the next packet
in the receive queue (refer to Figure 15-6). If the AC is 0, there is no packet in the queue. The packet data block
will be filled in as follows:

Word 0 ~ the left half remains the same, the right half contains the flags
Word 1 ~ the sender's PID is filled in by the monitor
Word 2 ~ the receiver's PID is filled in by the monitor
Word 3 ~ remains the same
Word 4 ~ filled in by the monitor
Word 5 ~ filled in by the monitor

15.8 SEND AN IPCF PACKET
The IPCFS. monitor call is used to send an IPCF packet. Its calling sequence is

MOVE ac,[length" addr]
IPCFS. ac,

error return
normal return

15-11

where:

Inter-ProcessCommunication Facility

length is the length in words of the packet descriptor block (in the range 4 to 6).
addr is the address of the packet descriptor block.

On an error return, an error code will be returned in the AC; all error codes are listed in Table 15-5. On a normal
return, the packet is sent to the intended receiver. Refer to section 15.1 and its subsections for information regard­
ing the packet descriptor block.

Error Code Mnemonic

1 IPCAC%

2 IPCNL%

3 IPCNP%

4 IPCIU%

5 IPCTL%

6 IPCDU%

7 IPCDD%

10 IPCRS%

11 IPCRR%

12 IPCRY%

13 IPCUP%

14 IPCIS%

15 IPCPI%

16 IPCUF%

17 IPCBJ%

20 IPCPF%

21 IPCPR%

22 IPCIE%

23 IPCBI%

24 IPCUI%

25-67

70 IPCFU%

71 IPCCF%

72 IPCFF%

73 IPCQP%

74 IPCBP%

75 IPCDN%

76 IPCNN%

- - n --- - - IPGBN%

~-.--

Table 15-5
IPCF Error Codes

Meaning

An address check was encountered.

The block is not long enough.

There is no packet in the receive queue.

Reserved.

The data is too long for the user's buffer.

Destination unknown (the receiver's PID is unrecognized).

The destination has been disabled.

The sender's quota has been exceeded.

The receiver's quota has been exceeded.

There is no room in system storage.

Sender specified invalid page number, or receiver specified an existent page.

Sender's PID is invalid as specified.

Cannot perform function, because privileges are insufficient.

Unknown function was specified.

Bad job number has been specified.

PID table is full; new PIDs cannot be assigned at this time.

Bit 19 was set in the flag word, but first packet was not a page or vice versa.

Paging I/O error.

A bad index has been specified for system PID table.

Undefined ID in system PID table.

Reserved.

[SYSTEM] INFO has an unknown, internal error.

[SYSTEM] IPCC request from [SYSTEM] INFO failed.

[SYSTEM] INFO failed to complete a request to assign a PID or a name.

The PID quota has been exceeded.

Unknown PID has been specified; if [SYSTEM] INFO should crash and
restart, all existing PIDs will be lost.

A duplicate name has been specified.

An unknown name has been specified.

-The name specified has illegal characters. (Square brackets perhaps were
not used properly.)

15-12

~)

,f

.J'

)

)

)

)

~

~

)

)

)

'",

J

Inter-Process Communication Facility

15.9 IPCF EXAMPLE

,EXAMPLE INITIALIZATION OF AY IPCF USER
,CALLED WITH A BLOCK OF SIX WORDS FROM NAME

CONTAINING AN ASCIZ STRING TO BE
SIGNED UUT BY THIS PROCESS
IF ERHOR, NON-SKIP WITH Tl=ERHOH CODE
SKIP RETURN IF SUCCESSFUL

IPCINI: PUSHJ
MOVEI
MOVEM
SE:TZM
MOVE

IPCFS,
POPJ

P, ,SAVE4##
T 1, , IPC 1I
Tl"NAME-2
NAME-l
T1'[4,,[0

Tl,
Pi

:PRESERVE Pl-4
:SIGN OUT UNTIL RESET
:SAVE AS FUNCTIUN
:CLEAR WHO WANTS ANSWER

:NO FLAGS
o :SEND FROM ME
o :SEND TO [SYSTEM)INFO
"D8"NAME-2]] :POINT TO ARGUMENT

:SEND REQUEST
:ERROR, GIVE UP WITH CODE IN T1

:NOW BLOCK AND WAIT FOR AN ANSWER
:NOTE, THAT JUNK MUST BE DISCARDED

INILP2: MOVE
MOVEI
MOVE
IPCFR,

POPJ
MOVE
LDS
CAIE
CAIN
CAIE
JRST
LOB
JUMPN
MOVE
MUVEM
JRST

Tl,[4"P1] :POINT TO ARGUMENT BLOCK
Pl,O :CLEAR fLAGS
P4,t-D8"DBLK] :POINT TO DATA
Ti, ,RECEIVE
P, :GIVE UP IF FAIL RETURNING ERROR IN T1
Tl,DBLK :GET FUNCTION CODE
T2,[POINT 3,Pl,32] :GET SENDER'S CODE
T2"IPCCF :SEE IF FROM-SYSTEM [SYSTEM]INFO
Ti"IPCCP JOR IF FROM LOCAL (SYSTEM]INFO
Tl"IPCII :YES--SEE IF INFO NAME MATCH
INILP2 :NO--TRY AGAIN
Tl,(POINT 6,Pl,~9J ;GET MESSAGE ERROR CODE
Tl"POPJ## 1ERROR IF SET, RETURN TO CALL£R IN T1
Tl,DBLK+l :GET PIO ASSIGNED
Tl,PIOUS ,SAVE FOR TRANSACTIONS
,POPJ1## :GIVE OK RETURN

:ROUTINE TO IDENTIFX A RECEIVER
:CALLED WITH NAME OF RECEIVER IN SIX WORDS

FROM NAME IN ASCIZ
NON-SKIPS IF ERROR WITH CODE IN T1

.GT,O IS IPCSER ERROR CODE . ,
:SKIP RE::TURN5
IDRCVR: PUSHJ

···-I-DRlJ P :.2:

MOVEI
MOVEM
SETZM
MOVE

IPCFS.
PUPJ,

MOVE::
MOVEI
MOVE
IPCf'R,

POPJ

-1 IF RECEIVER UNKNOWN
WITH PID IN PIDHIM

P"SAVE4#. :PRESERVE Pl-4
Tl"IPCrW :ASK WHO IS -
Tl,NAME-2 :SAVE AS FUNCTION
NAME-l :CLEAR WHO WANTS ANSWER
Tl,[4"lO :LENGTH, NO FLAGS

T1,

T 1, [4" PU
Pl,O

o :SEND FROM US
o :SEND TO [SYSTEM]INFO
-D8, , NAME-2] J : POINT TO ARGUMENT

,SEND REQUEST
:CAN'T SEND MESSAGE

rPOINT'l'OARGUMENl' BLSCI\- -­
:CLr.:AR HAGS

P4, l-08, ,OBLKJ
T1,

:POINT '1'0 DATA
:RECEIVE

P, :GIVE U~ IF FAIL WITH ERROR IN T1

15-13

MOVE
LDB
CAIE
CAIN
CAIE
JRS'l'
LOB
JUMPN
SKIPN
GVERRS
MOVEM
JRST

Inter-Process Communication Facility

TI,DBLK ~GET FUNCtION CODE
Tl, [POINT 3,Pl,32J :GET SENDER'S CODE
T2"IPCCF :SEE IF FROM SYSTEM [SYSTEMJINfO
T2"IPCCP lOR IF fROM LUCAL [SYSTEMJINFU
T1"IPCIW :SEE IF INFO NAME MATCH
IDRLP2 :NO--TR~ AGAIN
Tl,[POINT 6,PI,29J :ISULATE ~RROR CODE
T1"POPJ## :IF SET, ERROR--RETURN IN T1
T1,DBLK+l ~GET PIO ASSIGNED
-1 :IF NOT SET, ERROR
Tl,PIDHIM :SAVE FOR TRANSACTIONS
.POPJ1## :GIVE OK RETURN

:ROUTINE TO SEND A MESSAGE OF 8 WURDS IN MSG
:IT"IS SENT TO THE PID IN PIDHIM
:NON-SKIP ON ERROR WITH CODE IN T1
,SKIP IF OK

SNDMSG: MOVE

I PCFS,
POPJ

JRS!

Tl,[4"llP.CFR :INOIRECR RECEIVER
:SEND FROM US

:SEND TO HIM
~POINT TO DATA

T1,
P,
,POPJ1##

o
PIDHIM
-08 / MSB]]

:SEND
:ERROR--RETURN WITH CODE IN T1

:GOOO

:ROUTINE TO BLOCK UNTIL A MESSAGE IS RECEIVED
:IT CAN HANDLE UP TO 8 WORDS, STORED IN MSG
:NON-SKIP RETURNS IF ERROR WITH ERROR IN Tl
:SKIPS WITH Tl=LENGfH AND WITH SENDER IN PIDHIM

RCVMSG: PUSHJ
MOVE
MOVEl
MOVE
IPCFR,

PUPJ
MOVEM
HLRZ
JRS'l'

P"SAVE4##
Tl,[4"PIJ
Pl,O

:PRESERVE Pl-4
:POINT TO ARGUMENT BLOCK
~CLEA~ F'LAGS

P4, (-08, ,MSGl
Tl,

:POINT TO DATA AREA
~ BLOCK WAITING

P,
P2,PIDHIM
Tl,P4
.POPJl##

~ERROR, GIV~ UP WITH ERROR CODE IN Tl
: STORE S~:NDE;R

:GET ACtUAL LEN~TH
:GOOD RETURN

:ROUTINE fO ISSUE A FATAL IPC~ E;RROR MESSAGE AND START OVER
:ENTERED WITH ERROR CODE IN Tl

IPCERR: MOVEM
TLNE
MOVEI
CAIL
CAlLE
JRST
SUBr
JRS'l'

IPCER1: CAlLE
JRST

IPCER2: OUTSTR
JRST

T2,Tl :GET POSITIVE FuRMAT
T2,-1 :SEE; IF STUFF IN LEFT HALF
Tl,O :YES--CALL MUST NOT BE IMPLEM~NTED
Tl,INFERR :SEE IF INFU ERROR
Tl,77 :(RANGE INF£RR to 77)
IPCERl :~O--TRY NORMAL IPCf ERRORS
Tl,INfERR-MAXERR-l :YES--REMOVE TABLE OFFSET
IPCER2 :AND ISSUE MESSAGE
Tl,MAXERR :SEE IF ERROR WE UNDERSTAND
UNKERR :NO--GO HANDLE SEPARATELY
@ERRTBL(Tl) :OUTPUT TEXT
FINERR :FINISH UP

UNKERR: OUTSTR [ASCIZ \1 UNKNOWN IPC ERROR CODE \J
PUSHJ p"rOCTW## :ISSUE iN OCTAL

FINERR: OUTSTR [ASCIZ \
\J

EXIT

15-14

~

,.,

)

)

)

)

Inter-Process Communication Facility

~ JTABLE UF ERROR MESSAGES

'.>

..
:l

)

)

)

)

>

DEFINE M($MES),<
[ASCIZ \1 $MES\J

M UNKNOWN RECEIVER
ERRTBL: M IPCF NOT IMPLEMENTED

M ADDRESS CHECK
M BLOCK NOT LONG ENOUGH
M NO PACKET IN QUEUE
M PAGE IN USE
M DATA TOO LONG FOR BUFFER
M DESTINATION UNKNOWN
M DESTINATION DISABLED
M S~NDING QUOTA EXCEEDED
M RECEl VING QUO'l'A EXCEEDED
M SYSTEM STORAGE EXCEEDED
M UNKNOWN PAGE (SEND), EXISTING PAGE (RECEIVE)
M INVALID S~NDER
M INSUFFICIENT PRIVILEGES
M UNKNOWN fUNCTION
M BAD JOB NUMBER
M PID TABLE FULL
M PAGE REQUESTED WITH NON-PAGE PACKET NEXT
M PAGING 110 ERROR

MAXERR==,<ERRTBL-l :HIGHEST KNOWN ERROR CODE
M INFU HAD INtERNAL ERRUR
M INFO RAN INTO AN IPCf REJECTION
M INFO fAUED TO COMPLETE AN ASSI(;N
M INFO RAN OUT OF PID~S

M INFO COULD NOI LD~NTIFY THE PID
M INFO fOUND A DUPLICATE NAME
M INFO KNEW Of NO SUCH NAME
M INFO DETERMINED THAT NAME HAS ILLEGAL CHARACTERS

INFERR==100-<,-<ERRTBL+MAXERRtl» ;FIRST INFO ~RROR

JLITERALS

XLIST
LIST
RELOC

JINPURE STORAGE

OF'FSET: BLOCK
ORGFF: BLOCK

ZCOR:!.
PDLST: BLOCK

BLOCK 2
NAME: BLOCK
ENAME==,-l
FLSR: BLOCK

PIDUS: BLOCK
PIDHIMJ BLOCK

1
1

,CCL START COllE
~ORIGINAL .JBtF".JBR~L

JSTART OF AREA TO CLEAR
LNSPDL+2 :PUSH-DOWN LIST

6

1

1
1

JTRANSMISSIUN NAM~

71=SEND, 2=RECEIV~

JPID OF US
:PID OF OTH~R GUY

DBLK: BLOCK 8
MSG: BLOCK 8
EM-SG==, -1
EZCOR==,"'l

END IPCFEX

15-15

(

-j'"

(

(

(

-J

~>

)

16.1 OVERVIEW OF ENQUEUE/DEQUEUE

CHAPTER 16
ENQUEUE/DEQUEUE FACILITY

Many times users are placed in situations where they must share files with other users. Each user wants to be
guaranteed that while he is reading a me, no other users are reading the same data and while he is writing a file, no
other users are writing, or reading the same portion of the file.

By using the Enqueue/Dequeue facility, cooperating users can insure that resources are shared correctly and that
one user's modifications do not interfere with another user's. Examples of resources that can be controlled by this
facility are mes, operations on files (e.g., READ, WRITE), records, devices, and memory pages. This facility can be
used for dynamic resource allocation, computer networks, and internal monitor queuing. However, control of
simultaneous updating of files by multiple users is its most common application.

The Enqueue/Dequeue facility insures data integrity among jobs only when the jobs cooperate in their use of both
the facility and the physical resource. Use of the facility does not prevent non-cooperating jobs from accessing a
resource without first enqueuing it. Nor does the facility provide protection from jobs using it in any manner.
In order to enqueue a file (resource) the enqueuing user must have access to the concerned file (resource).

Jobs obtain access to a specific resource by placing a request in a queue associated with that resource. A resource
is an entity within a system for whose use there is competition among jobs. The actual definition of the term

) resource (files, devices, records, fields, etc.) is defmed by the job using it, not by the system.

)

.,

)

A request for a resource is generated by the ENQ. monitor call. Each request enters a queue associated with the
specified resource. A queue is merely an ordering of requests for a given resource.

When a request for a resource is granted, a lock is formed between the requesting job and the resource. While the
lock is in effect, the requester is the owner of the resource. All other jobs which have requested access to the
owned resource wait in the queue until the owner relinquishes ownership of the resource. There can, however, be
more than one owner of a resource at one time; this is called shared ownership.

The owner of a resource relinquishes ownership via the DEQ. monitor call. DEQ. also can be used to remove a
request for ownership from the queue of waiting requests.

The cycle of enqueuing and de queuing requests for resources continues until all requests have been granted. After
they have been granted, the Enqueue/Dequeue facility deletes the queue associated with that resource. When a
new request is generated for that resource, Enqueue/Dequeue will create another queue.

16.1.1 Shared Ownership and Exclusive Ownership
Ownership of a resource can be requested as being shared or exclusive. Shared ownership occurs when two or
more jobs request ownership of the same resource, each specifying that it will share ownership with one or more
jobs. When the requests are granted, a lock is formed between the requesting jobs and the specified resource. If one
job relinquishes ownership of the resource, the remaining jobs retain shared ownership of the resource until each of
them relinquishes ownership also. Figure 16-1 illustrates shared ownership. Other requests for shared access are
added to the lock as the requests are received.

Requests are ~nqueued in the-order the requests are received, and requests for de queuing are -gi"ailtedin the order _.
they are received. When all owners of a resource have relinqUished ownership, the resource is free for another job(s)
to gain ownership of it.

16-1

Enqueue/Dequeue Facility

RESOURCE

REQUEST 1

REQUEST 2

REQUEST 3

REQUEST 4

Figure 16-1. Shared Ownership

Exclusive ownership occurs when one job requests that it exclusively gain ownership of the specified resource.
When the resource is exclusively owned, all jobs requesting ownership of the device must wait until the owner has
relinquished ownership of the resource.

Each specified resource has one queue associated with it. Therefore, requests for shared and exclusive ownership
of the same resource are placed in the same queue~' Requests are placed in the queue in the order in which they are
received.

In Figure 16-2, request 1, 2, and 3 are sharing ownership of the resource. When these 3 jobs have relinquished
ownership of the resource, the next request in the queue will be granted. Since the next request in the queue is
for exclusive ownership, a lock will be formed between request 4 and the resource as shown in Figure 16-3.

When this exclusive ownership lock is dissolved, request 5 can be granted. Since request 5 is for shared ownership,
all other requests for shared ownership following it up to the next request for exclusive ownership can be granted
at the same time. But request 5 is immediately followed by an exclusive ownership request, therefore request 5 will
not share the resource with another job at this time. If, however, request 6 should be removed from the waiting
queue while request 5 is the owner of the resource, requests 7 and 8 will be granted shared ownership of the
resource with request 5.

16.1.2 Pooled Resources
A pooled resource occurs when multiple copies exist of a resource. Each resource in the pool can have one exclu­
sive owner at a time. Resources in a pool cannot have shared ownership. Figure 16-4 illustrates a pooled resource.

16-2

')

)

)

)

--J

.~

·1

)

)

)

:)

)

Enqueue/Dequeue Facility

THE WAITING
QUEUE

Figure 16·2. Shared and Exclusive Ownership Requests

REQUESTS
SHARED

REQUEST 6
EXCLUSNE

REQUEST 7
SHARED

REQUEST 8
SHARED

Figure 16·3. Exclusive Ownership

16·3

THE WAITING
QUEUE

Enqueue/Dequeue Facility

A POOL OF RESOURCES

I'
,..

\

RESOURCE RESOURCE RESOURCE RESOURCE
COPY COPY COPY COpy

M X Y Z

LOCK LOCK LOCK LOCK

REQUEST 1 REQUEST 2 REQUEST 3 REQUEST 4

REQUESTS

THE
'VAITING 1
QUEUE I REQUEST 6

REQUEST 7

•
•
•

Figure 16-4. Pooled Resources

One job may issue a request asking for ownership of more than one resource in the pool. In other words, the
owner can exclusively own one or more resources in a set of pooled resources. To illustrate this, look at
Figure 16-4. Requests 1, 2, and 3 could belong to the same job. Then, that job is the exclusive owner of 3 of the
4 resources in the pool. There is no limit to the number of resources within a pool. The first job to specify a
pooled resource specifies the number of resources within that pool.

At no time will Enqueue/Dequeue grant a request for ownership for more devices than there are in the pool or than
there are unowned in the pool.

16.1.3 Snarer's Grollp . ..--------

-)

"

)

)

)

"

A sharer's group is a subset of the user jobs that desire ownership of a given resource. A sharer's group prohibits)
ownership of that resource by any job outside of that particular group. Whenever a member of a sharer's group has .

16-4

Enqueue/Dequeue Facility

_~) been granted ownership of a resource, no other jobs except other jobs belonging to that sharer's group are
allowed joint ownership of that resource.

)

)

)

Jobs specify the sharing of resources in this manner by specifying a sharer group number. The use of sharer groups
restricts the access of a resource to a set of jobs smaller than the set of shared ownership (which by default is
sharer's group 0) but larger than the set of exclusive ownerships.

16.2 ENQUEUE/DEQUEUE MONITOR CALLS
There are three Enqueue/Dequeue monitor calls. The ENQ. monitor call generates an ownership request for a
specified resource. The DEQ. monitor call dequeues a request from the waiting queue or dissolves the lock between
an owner Gob) and the resource. The ENQC. monitor call returns the status of the resource owner(s) and the
waiting queue associated with the specified resource.

16.2.1 The ENQ. Monitor Call (CALLI 151)
The ENQ. monitor call places a request in the queue associated with a specified resource. Its calling sequence is

MOVE ac, [XWD function, lac]
ENQ. ac,

error return
normal return

where: function is one of the function codes listed in Table 16-1.

lac points to an argument block, which consists of a 2-word header followed by 1 or more 3-word
request blocks. An argument block is represented in Figure 16-5.

o

.ENQLL

.ENWRI

.ENQFL X r

.ENQBP

.ENQPS

.ENQFL Xl

.ENQBP

.ENQPS

17 18

OF LOCKS LENGTH

RESERVED REQUEST-I.D.

RESERVED I LEVEL # I LEVEL #

BYTE POINTER TO STRING OR USER CODE

SIZE OF POOL # REQUESTED

•
•
•

RESERVED I LEVEL # I CHAN #

BYTE POINTER TO STRING OR USER CODE

SIZE OF POOL I # REQUESTED

Figure 16-5. ENQ. Argument Block

16-5

35

ARGUMENT
HEADER BLOCK

REQUEST 1
ENTRY

REQUEST 2
ENTRY

where:

Enqueue/Dequeue Facility

of locks (EQ.LNL) is the number of 3-word request entries in this argument block.

length (EQ.LLB) is the length in words of this argument block.

request-J.D. is an 18-bit quantity identifying an ENG. request. This quantity uniquely identifies
each request, enabling the user job to identify which request caused a software interrupt, if one
occurred.

x is flags which may be set for this request entry. The flags that may be set are

Bit Mnemonic Meaning

o EQ.FSR This request is for shared access.

1 EQ.FBL The system will bypass level numbers when processing this request.

level number (EQ.FLV) is a 9-bit quantity assigned to each resource class to which the job desires
access. The monitor uses this value as a mechanism to reduce the probability of a resource deadlock.
The actual association between a physical resource and its level number is known only by the user job.

channel number (EQ.FCC) is the number of the disk channel on which the file is being accessed. The
user job must already have issued the appropriate LOOKUP/ENTER/FILOP. monitor call to initialize
the file.

Several users may specify the same channel number, yet each may be accessing different meso
(Likewise, different channel numbers specified among a group of users could indicate the same file.)

user code can be set to one of the following instead of specifying a channel number.

Code Mnemonic

-1

-2 .EQFGL

-3 .EQFPL

Meaning

Reserved.

The lock is a global lock. Jobs that are not accessing a file are able
to operate without setting up a dummy file. If two users specify -2
and the same quantity in .ENQBP (refer to Figure 16-2), the locks are
treated as identical locks.

The lock is a global lock and available only to the monitor. This code
allows the monitor to define a set oflocks with protection from other jobs.

byte pointer or user code is either the address of an ASCIZ string or a 33-bit user code. The string
address can either be a standard byte pointer or in the form 1, ,addr (where addr is the address of a
left-justified ASCIZ string). This quantity is the second part of the resource name (channel number,
-2, or -3 are the alternate first portions of the resource name). The monitor makes no association
between the resource and the resource name. The names are merely identifiers whose meaning is
agreed upon in advance by all concerned parties. The ASCIZ string denotes a resource to all users,
and the user code can represent a block number, record number, etc.

total size of pool (EQ.PPS) is the total number of resources in this pool. If EQ.PPS is zero, the
resource is not a pooled resource. If EQ.PPS is nonzero, bit 0 in Word 0 of the request entry must
be 0 (indicating an exclusive ownership request).

requested (EQ.PPR) is the number of resources in the pool that the calling job requests ownerShip
of. This value must be less than or equal to EQ.PPS.

16-6

-=)

"

)

)

)

.!

.}t.

)

\
)

)

)
I

Enqueue/Dequeue Facility

Table 16-1
ENQ. Function Codes

Code Mnemonic Meaning

0 .ENQBL The request(s) for ownership are placed in the waiting queue. The job
blocks until all requests for ownership have been granted. After all
requests are granted (Le., the locks have been formed), the normal return
is taken and 0 is returned in the AC. If, when the call was issued, bit 1
of WORD 0 of the request entry contained 1 (i.e., bypass level numbers),
the AC could contain a non-zero value instead of O. A non-zero value
indicates that a level number sequencing error occurred, but it was
ignored. If the call was in an incorrect format, the error return is taken
and an error code is returned in the AC.

.ENQAA If all requests for ownership specified in this argument block cannot be
granted immediately, no requests are entered in waiting queues, the error
return is taken and an error code is returned in the AC. If all requests
can be granted immediately (Le., all resources are currently unowned 1),
all desired locks are formed, the normal return is taken, and the AC is
unchanged.

2 .ENQSI Request for a Software Interrupt. If all requests for ownership can be
granted immediately, this function code is identical to function 2. If all
requests cannot be granted immediately, the error return is taken and
error code 1 (ENQRU%) is returned in the AC. The interrupt when all
resources available condition is enabled within the software interrupt sys-
tem. The calling job continues processing until all resources become
available, at which time the job receives a software interrupt. (Note that
the job must first have properly set up the software interrupt system.
When an interrupt is received, the Enqueue/Dequeue request-I.D. is
returned in the status word of the interrupt control block.

3 .ENQMA The calling jobs want to modify the access specification of a previously
given ownership request. The access specification can be changed from
exclusive access to shared access, but an error code will result when trying
to modify the access specification from shared to exclusive. If the modifi-
cation specified is identical to the existing access specification, no action
is performed and the normal return is taken. If the caller has no request
in the specified queue, the error return is taken. If one call consists of
more than one access modification request and the error return is taken,
the caller must issue the ENQC. monitor call to determine which (if any)
modification request was granted. The error code returned in the AC
reflects the last error which occurred as a result of this ENQ. call.

lor if the resource is owned by a shared job, and the calling request is for shared ownership and no one is ahead of caller in the queue.

16.2.2 The DEQ. Monitor Call (CALLI 152)
The DEQ. monitor call removes one or more requests from the waiting queue for a specified resource and/or it
dissolves a lock between a job and the specified resource. Its calling sequence is

MOVE ac, {[XWD junction, lac] }
- [XWD junction, requesHd.]

DEQ. ac,
error return

normal return

16-7

Enqueue/Dequeue Facility

where: [unction is one of the function codes listed in Table 16-2.

Code

°

1

2

lac points to an argument block, which is represented in Figure 16-5. (DEQ.'s argument block is
identical to the one used by ENQ.)

Mnemonic

.DEQDR

.DEQDA

.DEQID

Table 16-2
DEQ. Function Codes

Meaning

Dequeue the request(s) specified. On a normal return, the request
will be removed from the specified waiting queue or the lock will be
dissolved between the job and the specified resource. The error return
is taken if the call was in an incorrect format or if the caller had no
pending requests and was not an owner of the specified resource. The
AC will contain an error code when the error return is taken.

All requests from this caller are removed from waiting queues and all
locks associated with this caller and a resource are dissolved. The
error return is taken if the call was in an incorrect format or if the
caller has no pending requests and is not the owner of a resource.
When the error return is taken, the AC will contain an error code. The
job should perform this function before EXITing; otherwise, a CLOSE
will fail but the nature of the failure will be difficult to determine.
This function is automatically performed on a RESET or a LOGOUT.

This function utilizes the alternate contents of the AC (Le.,
function, ,request-i.d.). All requests or locks associated with the
specified request-Ld. are removed from the waiting queue or dis-
solved. This function should be used when requests are being
enqueued and de queued in the same block. When the request-Ld.
is identical to the channel number specified in the ENQ. request,
the caller can dequeue all requests/locks on a given file at once,
without individually specifying the locks. The error return is taken
if the ca11 was in an incorrect format or if the caller has no pending
requests and is not the owner of a resource. When the error return
is taken, an error code is returned in the AC.

DEQ. calls that specify multiple requests are treated as multiple DEQ. calls specifying a single request. This is not
true for the ENQ. monitor call. For example,

MOVE
DEQ.

ACl, [XWD O,DEQBLK]
ACI

HALT
JRST

DEQBLK. 2" D8
0,,23
0, ,2

SUBR

POINT 7, [ASCIZ/TEST /]
..... DI0" 1
0, ,4
POINT 7, [ASCIZjTESFRt] .
..... DlO" 1

16-8

-')

"

)

)

)

.'

)

Enqueue/Dequeue Facility

~ is identical to

.f

-'"}'

)

)

MOVE
DEQ.

HALT
JRST

AC I, [XWD O,DEQBLK]
ACI,

DEQ

DEQBLK: 1" "D8
0,,23
0,,2

DEQ:

DEQ2:

POINT 7, [ASCIZ/TEST/]
"DIO"I

MOVE
DEQ.

HALT

ACI, [XWD 0,DEQ2]
ACI,

JRST SUBR

1" "DS
0,,20
0, ,4
POINT 7, [ASCIZ/TESER/]

" DlO, ,I

If an error is found in one request of a multiple request DEQ. call, the error return will be taken and an error code
will be returned in the AC. However, Enqueue/Dequeue will continue processing until all dequeue requests have
been performed. Therefore, all valid requests will have been dequeued whether or not an error resulted from
another request in the same call. If errors are found in several requests, the error code in the AC reflects the last
error found.

If the request/lock being dequeued/dissolved is associated with a pooled resource, an error will result if the caller
attempts to dequeue more resources than were originally owned by the caller. However, the caller can dequeue a
subset of those resources owned by him in a pool, still retaining ownership of those not dequeued.

The possible error codes resulting from the DEQ. monitor call are listed in Table 16-4 at the end of this chapter.

16.2.3 The ENQC. Monitor Call (CALLI 153)
The ENQC. monitor call is used to obtain information about the current state of the queues and to enable
privileged programs to manipulate access rights to these queues. This capability may be useful to programs that
need to determine such things as who is the owner of a resource.

The ENQC. monitor call has two formats. The fIrst is identical to the ENQ. and DEQ. monitor calls and is used to
obtain information about the state of a given resource. The second format is slightly different and is used to
perform various utility functions on the queue structure. These calling sequences are described in the following
sections.

16.2.3.1 Status Information - The calling sequence is

MOVEI ac+ l , status-block
MOVE ac, [junction" lac]
ENQC. ac,

error reJJ,lW _________ __ _
normal return

16-9

loc: # of locks, , length
0, , request-i.d.
flags, , channel #
string-pointer

Enqueue/Dequeue Facility

of resources in pool, , # requested

status-block: BLOCK 3*n

where: function code is 0 meaning that the status of the specified device is to be returned.

The error return is taken if any error is found in the calling sequence.

On a normal return, the user's status block will have been modified so that each resource in his parameter block
will be represented by a 3-word entry in the status block. The first word of each entry describes the current
state of the resource, the second word is a time-stamp that indicates how long someone has been waiting for that
resource, and the third word is the Request LD. for that resource.

The first word in each entry has the format described in Table 16-3.

Bit

0

2

3

9-17

18-35

Table 16-3
Current State of Resource

Meaning

Lock is invalid.

Calling user is owner.

Calling user is in a queue.

Owner is exclusive owner.
If this bit is not on, there
is no way of determining
number of shares.

Level number of resource.

Job number of owner
and/or error code.

If hit 0 is set in the status word, an error was found in the corresponding lock speCification. In such a case, bits
18-35 of this word will contain the pertinent error code.

Bits 18-35 will contain the job number of the owner of the lock (unless bit 0 has been set). If the lock is shared,
the job number will indicate only one of the sharers. However, if the current job is one of the owners, this field
will always contain his job number. Note that due to internal implementation algorithms, it is possible that there
be no owner of a lock (even though several users may have requested ownership of that lock). In this case a -1 will
be returned in bits 18-35.

The second word of each entry in the status block is a 36-bit value representing the last time at which someone
was granted access to the resource. This value is the universal date-time standard, which can be obtained from

16-10

-)

or

)

)

)

)

~

)

)

"i-

<~

)

Enqueue/Dequeue Facility

GETT AB Table Number 11, item number 53. If there is currently no owner of the resource, this word will
contain zero.

This second word is useful if some type of "watch-dog" timer would be implemented. Such a timer could
periodically query the status of any queue in which thru-put was of maximum importance. If it became obvious
that the time-stamp of the queue had not changed for a long time, the timer process could signal the operator
that someone had held the resource for longer than the allowable time interval. The operator would then have to
take whatever action was deemed appropriate.

The third word of each entry contains a Request-I.D. in its right half (the left half is reserved for future use). If the
user issuing the ENQC. monitor call is in the queue for this resource, this value will be the request I.D. for his
request (even if a lock has not yet been formed). If this user is not in the queue for the resource, this field will
contain the Request-I.D. of the owner of the resource. .

The primary use of the Request-I.D. is to allow the use of Enqueue/Dequeue for limited communication of small
amounts of data.

16.2.3.2 Modifying the Queue Structure - The calling sequence is

MOVE ac, [function, , lac]
ENQC. ac,

error return
normal return

lac: new quota, ,job # ;for function
;codes 1 and 2

lac: length of block ;for function
Block n-1 ;code 3

where: function may be 1,2, or 3. Refer to Table 16-4.

Table 16-4
ENQC. Function Codes

Code Meaning

1 Return user's quotas in the AC.

2 Set user's quotas. The ENQ. quota of the specified user will be
modified to the value in the left half of lac. In order to perform
this function, the caller must have POKE. privileges. If he does
not have these privileges, the request is rejected and an error code
is returned. If the request is successful, a normal return is taken
and a zero will be returned in the AC.

3 Dump the data-base. The entire data-base will be placed in the
user's area, beginning with lac + 1. The contents of lac should be
the length of the to-be-returned block. If this block is not large
enough to hold the entire data-base, as much as possible will be
returned. The end of the data-base dump is indicated by a word of
ones. If the length specified is not a positive value, the error return

-------------- ---------- -- -- ---- ----- -----
..... \V!1l.l>!l tal<!ln,.Th!s is a Ilrivileg!l~ Ju.ncti()n; tl1ecallingus~rrn:u~t

have SPY privileges. All attempts to return the data-base by un-
privileged callers, result in an error return and an error code being
returned in the AC.

16-11

Enqueue/Dequeue Facility

The format of a lock-block dump is shown in Figure 16-6. The format of a queue-block dump is shown in
Figure 16-7.

FLAGS LEVEL # LOCKLD.

IN POOL # REMAINING

TIME-STAMP

ASCIZ STRING

Figure 16.6. Lock-Block Dump

FLAGS JOB #

GROUP #
REQUESTED REQUEST -LD.

Figure 16-7. Queue-Block Dump

The flags (found in both types of dumps) are described in Table 16-5.

Bit

0

1

2

3

4

Table 16-5
ENQC. Flags

Meaning

This is a lock-block.

This is the lock owner.

This lock has text.

Exclusive access.

This job is blocked.

In the lock-block dump, the lock-LD. corresponds to the value specified by the user in the channel number field
of his argument block. However, since the channel numbers of several users will probably not be identical for
a given file, a more suitable identifier is necessary. Therefore, if the lock is not file-related, the lock-LD. will con­

------------tain-theexacLnumberoLthechannelnumber-field.-lLtheJock-isaf11e-lock,-this-value-will-be-an-18-bit-r-andom--­
number that uniquely determines the file to which the lock refers. This quantity has absolutely no meaning to
the user and is used by Enqueue/Dequeue solely for internal file identification.

16-12

~)

.,

)

)

)

)

~

,.

)

,>

)

Enqueue/Dequeue Facility

The left half of word 1 indicates how many resources are in the pool. The right half of the same word indicates
how many of those resources are still available.

The contents of word 3 (ASCIZ string or user code) can be determined from flag bit 2. If this bit is set, then word 3
contains a text string that is left-justified and continues until a null is encountered. If the null byte is not the
right-most byte in the last word, then the contents of any bytes in that word to the right of the null byte are
unpredictable.

In the dump of a queue entry, the right half of word 0 contains the job number of the user who issued the request
for this lock. Flag bits 1,3, and 4 determine whether this user is the owner, what his access is, and whether he
is blocked in waiting for the resource.

If the current lock represents a pooled resource, the left half of word 1 of the queue-block dump will specify the
number of resources requested by this user. If the resource is not pooled, this value will be the user's group
number. The right half of this word is the user's request I.D. which corresponds to the specified resource.

Code Mnemonic

ENQRU%

2 ENQBP%

3 ENQBO%

4 ENQBB%

5 ENQST%

6 ENQBF%

7 ENQBL%

10 ENQIC%

11 ENQBC%

12 ENQPI%

13 ENQNC%

14 ENQFN%

15 ENQIN%

·16·· ENQNO%--

Table 16-6
Enqueue/Dequeue Error Codes

Meaning

One or more of the resources this job requested ownership of is
available. This error code is returned in the AC if function code 2
is specified, after which a software interrupt will be generated
when all resources are available.

An illegal number of resources within a pool of resources has been
specified. For example, this error would occur when ajob requested
ownership of seven resources from a pool containing only five
resources.

An illegal job number was specified. This error code is returned from
the ENQC. monitor call.

An incorrect or invalid byte size was specified in a text string. Byte
size cannot be larger than 36 decimal.

The specified string is too long. The string can be no longer than

An illegal function code was specified.

An illegal argument block length was specified. The minimum block
length is 5.

<;

The number oflocks requested has been incorrectly specified.

An illegal channel number has been specified.

The function code specified requires that the caller be running
under [1,2] or have JACCT privileges.

There is no available core.

A channel number has been specified, but no file has been opened
on that channel.

An indirect or indexed byte pointer has been specified, but it is not
allowed.

-The caler has·norequests in awaiting-queue-andjor the-caler is not
the owner of a resource.

16-13

Code Mnemonic

17 ENQLS%

20 ENQCC%

21 ENQQE%

22 ENQPD%

23 ENQDR%

24 ENQNE%

2S ENQLD%

26 ENQED%

Enqueue/Dequque Facility

Table 16·6 (Cont.)
Enqueue/Dequeue Error Codes

Meaning

A level number sequencing error has occurred. Level n1..unbers must
be specified in increasing order; the level number specified in this
call was lower than the level number previously number specified.

The access specification alteration requested cannot be performed.
Access specifications can be changed from exclusive ownership to
shared, but it cannot be changed from shared ownership to
exclusive ownership.

The Enqueue/Dequeue quota has been exceeded. This quota is set
by the system administrator.

The number of resources specified in this request as being in the pool
is not equal to the actual number of resources in the pool. The
actual number of resources in a pool is determined by the first job
specifying this pooled resource. Those jobs wishing to use the same
pooled resource after the pool has been defined must specify the
same total number of resources in the pool.

A duplicate of this request has already been received.

A request was made to dequeue a request which was never enqueued.

The level number specified in the request does not match the level
number in the lock.

This function requires Enqueue/Dequeue privileges.
- --- --- ----------- ----------------

16·14

--)

.?

'1

)

)

)

./

"

)

~

,.

"'1

>'

)

)

)

-~ }

)

17.1" OVERVIEW OF METERING

CHAPTER 17

METERING

The meter facility of the DECsystem.10 permits users interested in performance measurement to implement meas·
urement software cleanly and efficiently and with a minimum of interference with the rest of the system. The
meter facility provides the interface necessary for measurement modules to be added to the monitor as needed, in a
manner consistent with the monitor's overall structure. Ordinary user mode programs can access the data provided
by these modules, and process it'in any way that the user chooses.

The meter facility encompasses three types of modules:

meter points
meter point routines
meter channel routines

Meter point routines and meter channel routines are included in a monitor module called METCON. There are sev·
eral varieties of each, but there is only one routine of each variety. They provide data processing and communica·
tions type functions for performance data. The objects called meter points are very small sections of code that act
as sources of data when enabled, and there c!ln be an arbitrary number of them scattered throughout the monitor.
Each.time the flow of control reaches an enabled meter point, the point supplies one word of data. The meter facil·
ity is designed to allow convenient addition of meter points whenever they might be needed. In fact, this is the
overfill purpose of the meter facility - to allow easy addition of meter points to the monitor and to provide the over·
head and support functions that they require.

We have said that meter points act as sources of data. Meter point routines provide commonly needed data process·
ing functions for the data supplied by a meter point. Some examples are addition of a point identification and
addition of a time stamp field. Meter channel routines have the task of delivering the data to the user in some useful
form. There are presently two types of meter channels - the trace channel and the display channel. The trace chan·
nel deposits each word into a buffer within a 1Jser program. The program can then process the data as the user
chooses. The display channel keeps a running average of data values in a specified fixed location. The contents of
that location can then be displayed in the console lights or recorded by a hardware monitor. The structure of the
meter facility routines, as set up to the monitor one single meter point, is illustrated in Figure 17·1.

Meter Point
Routine

+
Sets up the
data word

Meter Point
Routine

+
Adds the ID,

time, etc.

Figure 17·1. Metering
------- - ----- -- ---------

Meter Channel
Routine

~

Delivers the
word to user

The linkages between meter point, meter point routine, and meter channel are set up dynamically as requested by a
user program's executing the METER monitor call. The meter point routines and meter channel routines are

17·1

Metering

sharable, in the sense that the same routines can be used for different meter points by several user programs at the
same time. A meter point, however, can be used by only one user job at any given time. It is possible for a single
user program to use any number of different meter points on either the same or different meter point routines and
meter channel routines.

As an example of how a program might use the meter facility, the program would first LOCK itself in core. It would
then initialize the trace channel by executing the METER monitor call, the appropriate arguments. Included among
the arguments would be the address of a buffer area within the program. Next the program would enable a specific
set of points, giving the meter point routine and channel to be used with each. The program would then HIBERnate,
and wait for data to be supplied in the buffer. When a specified amount of data has been supplied, the program will
be awakened. It can then examine each word of data, using pOinters and counters supplied by the meter facility,
and it can process the data in any way the programmer chooses. Each time the program exhausts the data in the buf­
fer, it will HIBERnate in order to wait for more data. When the program is finished, it will release the meter points
and channel, unlock its core, and EXIT.

17.2 POINT ROUTINES
There are four different meter point routines that the user can choose from according to his needs. The 'value'
routine, .MPRV, simply passes the data supplied by the meter point onto the channel. The 'time interval' routine,
.MPRT, replaces the value supplied by the meter point with the time interval (in microsecond units) since that point
was last executed. Note that neither of these routines supplies any identification of the point. Hence they gener­
ally cannot be used if the program initializes several points on the same trace channel.

The 'value plus ID' routine, .MPRVI, replaces bits I through 5 of the value supplied by the meter point with the
point ID assigned to the point by the user when he initialized it. The 'time plus ID' routine, .MPRTI, replaces bits 1
through:) with the point ID, and bits 6 through 35 with the time of day (in microsecond units). In each of the
routines that supply the point ID, bit 0 of the data word will always be turned on.

17.3 USING THE TRACE CHANNEL
The following is what happens when a program uses the trace channel. The program must be LOCKed in core and it
must stay locked as long as it wants to use the trace channel. The program then initializes the trace channel via the
METER monitor call, supplying the addresses of the following items:

1.
2.
3.

4.

5.

A buffer, whose length must be a power of 2.
A word to hold the buffer index.
A word containing a negative count equal to the same fraction of the buffer length. The job will be
awakened after this number of words have been put into the buffer.
A flag word. Only one bit is used for the flag word. This bit indicates that the job does want to be
awakened when the specified number of words have been added to the buffer.
A channel ID word. (This is normally 0 if a program initializes only one meter channel.)

Next the job must initialize the meter points which it wants to read. The program supplies a block of arguments for
each meter point that the program wants to initialize. These blocks include the following information:

1. The name of the point. (The number assigned to the point when it was added to the monitor.)
2. The user's point ID. A 5-bit tag by which data from each point can be identified to distinguish it from

data supplied by other points on the same channel. (The only reason this is used rather than the name
is to save bits in the data word. The name would require 10 bits, while the user ID requires 5 bits.)

3. A point parameter (if one is required) by the point being initialized.
4. The point routine to be used data from this meter point.
5. The channel ID given to the channel to be used for data from this point. (This value is normally zero.)

Using this information, the point initialization routine links together the data structures required for meter point
processing and enables the points.

17-2

')

)

)

)

~

"

<l

)

,,.

Metering

Each time that the monitor's flow of control reaches one of the enabled points, a word of data is produced. The
meter point sets up the word and dispatches to the point routine (whose address was obtained from the monitor's
Meter Point Table at the same time that the test was made to determine if the point was enabled). The point routine
performs its specified functions and passes the word on to the channel routine. The channel routine increments the
buffer index (held in the user's core), truncates it to a size determined by the buffer length, and deposits the word
into the designated location within the buffer.

The counter (also in the user'~ core) is incremented, and if it goes from negative to zero, a call is made to the WAKE
routine. Control is then returned to the instruction following the meter point. Note that the meter code makes no
check for data overrun in the buffer. It automatically cycles back to the beginning of the buffer each time it reaches
the end as a result of truncating the buffer pointer. Checking for overrun is left up to the individual program. It is
literally a count of how many words have been put into the buffer since the channel was initialized. By comparing
the current value to the last value used, the program can determine how many words have not been processed. If this
number is greater than the buffer length, an overrun has occurred.

The program initializes the count to a negative value that is some fraction of the buffer length. (Two thirds is a
recommended value.) It then does a HIBERnate monitor call. When the count goes from negative to positive, the
meter channel routine does a WAKE for the program. At some later time the program will get to run, and it will
start processing the data point from the buffer. The program always remembers the last index value that it has used.
It checks for overrun by looking at the difference between the current value of the index and the last value that it
used. Note that more items can be added to the buffer even while the program is running. The program should then
never 'remember' the current index value. Also, it is wise to check for overrun before processing each word. It is
possible for overrun to occur while the program is running, even though everything was fine when the program was
awakened. When the program has processed all data in the buffer, as indicated by its old index value being equal
to the current index value, it resets the count word and does another HIBERnate.

If the program uses several meter points, it must assign IDs to each point in order to tell which is which in the buffer.
Normally, it would contain a common routine to get the next word from the buffer. That routine would use the
point ID as a pointer into a dispatch table, and call a specific routine for each point's data.

17.4 ADDING A METER POINT
A major purpose of giving the meter facility such as elaborate and general structure is to make it convenient to add
and delete meter points as the need arises. To add a new meter point, the programmer must supply three very simple
pieces of code:

1. An entry in the Meter Point Table, MPTAB.
2. An entry in the dummy Meter Point Table in COMMON. (Necessary only if the monitor is to be

assembled at times without METCON. This table prevents undefined globals at the meter points when
METCON is omitted, by providing table entries that are permanently turned off.)

3. The meter point.

The Meter Point Table entries are set up by adding a macro to the list of macros used to generate the table. The
meter point 'name' is the only argument. Note that 'names' 1 through 499 are reserved for use in standard DEC soft­
ware, and names 500 through 1023 are reserved for customer use. The names need not be assigned in order and need
not be continuous. They should be thought of as simply as names, not as numbers.

The meter point must set up the word that it is to supply in accumulator T 1. The meter point should test if it has
been enabled and, at the same time, pick up the address of the Meter Point Data Block in accumulator T2, with a
SKlPL or SKlPGE. A negative value of the MPTAB entry indicates that the point is enabled. The point always
references its MPTAB entry by its individual label MPx, where x is the meter point name. The code for the Queue
Transfer meter point is given below as an example that shows the general form that meter points should take. In the

--------- -c-a:se of this particular-poiriCthepoinTpaiametei~ {ouIldlnfhe-word-MPDP ARoT the- Mifer-Pofri f Data-BlocK, is
a job number. If a positive parameter value is supplied, only queue transfers for that job number will be reported.
If the point parameter is negative, all queue transfers will be reported. On other points, that point parameter might
have an entirely different meaning, or it might not be used at all.

17-3

Metering

Queue Transfer Meter Point
Job Number is in Accumulator J
Destination Queue Number is in Accumulator R

17.5 THE METER MONITOR CALL (CALLI 111)
The METER monitor call provides a mechanism for system performance metering by allowing privileged users to
dynamically select and collect performance statistics from the monitor. The multifunction call controls are aspects
of the metering facility in order that the user can collect, present, or reduce data for performance analysis or can
tune individual jobs or the entire system. In order to use the METER monitor cali, JP.MET (bit 3) must be set in the
privilege word .GTPRV. The general calling sequence for METER is

where

MOVE ac, [XWD n, addr]
METER. ac,

error return
normal return

n is the number of arguments in the argument list.
addr points to the first word of the argument list.

If n is 0, the default number of arguments used depends on the particular function specified. Arguments in the argu­
ment list can be

arguments for the monitor,
values returned from the monitor, or
combinations of the two.

.~

'"

)

The first word of the argument block is the code for a particular function. The detailed descriptions of the various)
functions of the METER Monitor call are described within the METER. specification in the DEC system-l 0 Software '
Notebooks, but they are summarized in Table 17-1.

Function
Code

0

1

2

3

4

5

Table 17-1
METER. Function Codes

Mnemonic

.MEFCI

.MEFCS

.MEFCR

.MEFPI

.MEFPS

.MEFPR

Description

Initialize the meter channel

Obtain the meter channel status

Release the meter channel

Initialize meter points

Obtain meter point status

Release meter points
-------~

On an error return, an error code will be returned in the AC. The possible error codes are listed in Table 17-2.

17-4

I

)

..

1
/

Error
Code Mnemonic

1 MEILF%

2 MENPV%

3 MEIMA%

4 MEPDL%

5 MEIAL%

6 MEIAV%

7 MENFC%

10 MEICT%

11 MEIPT%

12 MENXP%

13 MENXC%

14 MEPNA%

)
/

C>

Metering

Table 17-2
METER. Error Codes

Meaning

Illegal function code has been specified.

Caller is not a privileged user.

An illegal memory address has been
specified.

A push-down list overflow has occurred.

An illegal argument list has been specified.

An illegal argument value has been
specified.

There is not enough free core.

An illegal channel type has been specified.

An illegal point type has been specified.

A non-existent point name has been
specified.

A non-existent channel has been specified.

The point type specified is not available.

17-5

(

<'

(

(

(

"

)

CHAPTER 18

GETTABS

The monitor maintains many tables that contain various system and job related information. The tables are divided
into two categories: those relating to jobs and high segments, and those relating to system statistics. The calling
sequence for obtaining the contents of these tables is

MOVE ac, [XWD index, table-number]
GETTABac,

error return
normal return

where: index is either a job number, the number of a specific item number within the table, a high segment
number, a channel number, or a class code pertaining to the scheduler. When index is greater than the
highest job number in the system, the first high segment is indicated. When index equals -1, the
current job is indicated. When index equals -2, the current job's high segment is indicated.

table-number is the number of the GETTAB table containing the desired information. All GETTAB
tables are summarized in Table 18-1. Tables 18-2 through 18-27 list the entries of most GET TAB tables.

The entries in the GETTAB tables are global symbols defined in COMMON. The actual values of the core addresses
of these locations are subject to change, but they can be found in the LlNK-10 storage map for the monitor. A
complete description of these globals can be found in the COMMON listing. The GETT ABS are listed in
UUOSYM.MAC for easy reference (refer to Appendix J).

Each customer installation may define its own GETTAB tables to the monitor. When doing so, a negative table
number should be used so no confusion will arise between customer-generated tables and Digital-generated tables.

The error return is taken if there is no high segment when one is expected. The error return is also taken if an invalid
job number, index number, or table number is specified.

On a normal return, the AC contains the contents of the specified table entry. If the specified table is not defined in
the current running monitor, the AC will contain zero.

NOTE
Many GETTAB tables contain information in their
undescribed bits. This information is likely to change
and should be ignored. Although the field may currently
be zero, there is no reason to believe that it will always
be zero.

If a table is defined but does not exist in a given configuration, GETTAB will take the normal return with 0 being
returned in the AC.

GETTAB subtables, via the GET TAB monitor call, make monitor-selected data available to user programs. These
suota151es allow iflstallationsto determine whether or not they want to use more monitor table space without invali­
dating any user programs. These subtables are included in all system configurations except the DECsystem-l040.

18-1

GETTABS

However, they may be excluded by changing the appropriate conditional assembly switches at Monitor Generation
Time (via MaNGEN). It is anticipated that only installations that rieed the necessary core space for uses other than
the subtables will decide to exclude the subtables.

To reference a subtable, the user program first must issue a GETTAB monitor call to obtain the pointer to the sub­
table. Then the program issues a second GET TAB monitor call to get the desired item in the subtable. If the pointer
is zero, the desired subtable is not included in the system.

The following example illustrates the method for obtaining the accumulated response times for CPUn for all users
that waited for their jobs to initially run after TTY input was given.

%CCRSP==XWD 13,55

%CVRAI==3

.GTCOV ==56
MOVEI
LSH

Table
No.

00

01

02

03

04

as
06

07

10

11

12

13

MOVE

ADD
GETTAB

JRST

Table
Name

.GTSTS1

.GTADR1

.GTPPN

.GTPRG

.GTTIM

.GTKCT

_GTPRV

.GTSWP1

.GTTTy l

.GTCNF

. GTNSW

. GTSDT

;WORD and table number for response
;subtable
;subtable index for accumulated TTY
;INPUT monitor call response.
;GETTAB table for CPUO variables
;CPU number (0, 1, ... , 5) Tl,N

Tl,N ;constants table GETTAB index moves
;up by twos.

T2, [%CCRSP] ;relative GETTAB pointer
;word for response sub table
;for CPUO.

T2,Tl
T2,

;form GET TAB argument for CPU n.
;get relative pointer to response
;subtable.

NONE ;not there (monitor is before 5.05)

Indexed
By

Job/Segment

Job/Segment

Job/Segment

Job/Segment

Job Number

Job Number

Job Number

Job Number

Job Number

Item Number

Item Number

Item Number

Table 18-1
GETT AB Tables

Job status.

Contents

Job reloaction and protection.

Project and programmer number.

User program name.

Total run time used, in unit of jiffies.

Kilo-core ticks for a job.

Privilege bits for ajob.

Swapping parameters for ajob.

Terminal-to-job translation.

Configuration table.

Non-swapping data .

Swapping data .

IBits in these tables are explicitly not documented in later tables. These bits vary from version to version and are
provided olllyJor certain§ystemprograms, slJ<;has SYSTATand.DAEMON. UseLprograms should_noLreference.these
locations if they are to be monitor version independent.

18-2

)

)

)

"

)
;

)

..

p .. '

)

)

)

)

Table
No.

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

Table
Name

.GTSGNl

.GTODP

.GTLDV

.GTRCT

.GTWCT

.GTDBS

.GTTDB

. GTSLF

.GTDEV

.GTWSN l

. GTLOC

.GTCORl

. GTCOM

.GTNM1

.GTNM2

.GTCNO

.GTTMp l

.GTWCHl

.GTSPL

.GTRTDl

.GTLlM

.GTQQQl

.GTQJBl

.GTCM2l

.GTCRS

.GTISCl

.GTOSC l

.GTSSCl

GETTABS

Table 18-1 (Cont.)
GETTAB Tables

Indexed
By

Job Number

Item Number

Item Number

Job Number

Job Number

Job Number

Job Number

GETTAB Tbl No .

Segment Number

Item Number

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Item Number

Contents

High segment table.

ONCE·Only disk parameters.

5·series. monitor disk parameters.

Disk blocks read by job.

Disk blocks written by job.

Disk block seconds used by job.

Time oflast allocate and size.

GETTAB addresses.

Device or file structure name of sharable high segment.

Two·character SIX BIT name for job queues.

Remote Station Number .

Physical core allocation. There is one bit for each K
of core in this word, if the system \loes not include
the LOCK monitor call. There are two bits per K of
core in this word, if the system does include the LOCK
monitor call. A non-zero entry indicates that core is
in use. (KA10 only)

Monitor command names in SIXBIT .

User name in SIXBIT (fir.st half).

User name in SIXBIT (second half).

Charge number for the job.

TMPCOR pOinters for job.

WATCH bits for the job.

Spooling control bits for the job.

Real·time status word for thejob.

Time limit for job arid Batch status for job.

Timesharing scheduler's queue headers.

Timesharing scheduler's queue table.

SET command names in SIXBIT.

Status of hardware after a crash; status of devices.

Swapper's input scan list of queues.

Swapper's output scan list of queues.

Scheduler's scan list of queues.

lBits in these tables are explicitly not documented in later tables. These bits vary from version to version and are
provided only for certain system programs, such as SYSTAT and DAEMON. User programs should not reference these
locaticnlsif -they are to be monitor version independent: -

18·3

Table
No.

50

51

52

53

54

55

56

57

60

67

70

71

72

73

74

75

76

77

100

101

102

Table
Name

.GTRSP

.GTSYS

.GTWHY

.GTTRQ

;GTSPS1

.GTCOC

.GTCOV

. GTCIC

.GTCIV

.GTC5C

.GTC5V

. GTFET

.GTEDN

.GTSCN

.GTSNA

.GTCMT

.GTPID

.GTIPC

.GTUPM1

.GTCMW

.GTCVL

Indexed
By

Job Number

Item Number

Job Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Item Number

Job/Segment

Item Number

Job Number

GEITABS

Table 18-1 (Cont.)
GETTAB Tables

Contents

Response counter table. An entry contains the time
(in jiffies) when the user started to wait for his job to
run. This time is cleared when the job is first given to
the processor for run time by the scheduler.

System variables (independent of CPU).

Operator WHY RELOAD comments in ASCIZ.

Total elapsed time a job was in a run queue whether
or not job was running.

Job status word for second processor.

CPUO control data block constants.

CPUO control data block variables .

CPUI c0Jltrol data block constants.

CPUI control data block variables.

CPU5 control data block constants.

CPU5 control data block variables .

Feature test switches used in building the monitor.

ERSATZ device-names and their corresponding
project-programmernumbers. The search lists for
devices can be A)btained yia the PATH. monitor call.

Scanner response data.

last send-all message.

SET TTY command names in SIXBIT.

PID of [SYSTEM] INFO (Inter-Process Communica­
tion Facility).

IPCF miscellaneous data.

Physical page number of the user page map page. The
high order nine bits indicate the virtual page number
where the high ·segment starts in the program's
address space.

SET WATCH command names in SIXBIT.

Current virtual page limit in the left half, and current
physical page limit in the right half of the word.

IBits in these tables are explicitly not documented in later tables. These bits vary from version to version and are
provided only for certain system programs, such as SYSTAT and DAEMON. User programs should not reference these

--------------.- --locationsif-they-are-to-be-monitorversion-independent;-------------------------------------

18-4

)

~

)

)

)
J

"

cl

"'

)

)

Table Table
No. Name

103 .GTMVL

104 . GTIPA

105 .GTIpp l

106 .GTIPI I

107 . GTIPQ

110 .GTDVLI

111 .GTABS I

112

113 . GTVMI

114 .GTVRT

115 .GTSST

116 . GTDCF I

117 .GTST21

120 .GTJTC I

121 .GTtQP

122 .GTCQJ

123 . GTCRT

124 .GTSQHI

125 .GTSQI

126 .GTSID

127 . GTENQ

130 .GTJLT

131 . GTEBT I

132 .GTEBRI

133 .GTMBTI

134 .GTMBRI

Indexed
By

Job Number

Job Number

Job Number

Job Number

Job Number

Job Number

Item Number

GETTABS

Table 18-1 (Cont.)
GETT AB Tables

Contents

Maximum virtual page limit in the left half, maximum
physical page limit in the right half of the word .

IPCF statistics.

IPCF pointers and counts.

PID for the job's SYSTEM INFO.

IPCF flags and quotas .

Pointer to job's logical name table.

Address break word.

Reserved .

General virtual memory data.

Paging rate for job.

Scheduler statistics .

Channel Number Desired channel use fraction.

Job Number Second job status word.

Job Number Job type and scheduler class.

Class Scheduler class quota in percent.

Class Scheduler class quota in jiffies.

Class Scheduler class run time since the quotas were set .

Sub-queue headers.

Job Number Sub-queue word for each job.

Item Number Special PID table.

Job Number ENQ/DEQ statistics .

Job Number The time the job was logged in (in Universal Date/Time
Format) .

Jiffies of KLl 0 EBOX Time.

Jiffy remainder MOD RTUPS of 131.

Jiffies of KLl 0 MBOX Time.

Jiffy remainder MOD RTUPS of 133.

IBits in these tables are explicitly not documented in later tables. These bits vary from version to version and are
provided only for certain system programs, such as SYSTAT and DAEMON. User programs should not reference these
locations if they are to be monitor version independent.

18-5

Bit Mnemonic

o = 1 JB.IPC

1-2 = n· JB.DPR

3 = 1 JB.MET

4 = 1 JB.POK

5 = 1. JB.CCC

6-9 = n JB.HPQ

10 = 1 JB.NSP

11 = 1 JB.ENQ

12

13 = 1 JB.RTT

14 = 1 JB.LCK

15 = 1 JB.TRP

16 = 1 JB.SPA

17 = 1 JP.SPM

Item No. Mnemonic

o o/oCNFGO'

%CNFGl

2

3

4

5

6

7

10

11

12

%CNFG2

%CNFG3

o/oCNFG4)

%CNDTO}
o/oCNTDI

o/oCNTAP

%CNTIM

o/oCNDAT

o/oCNSIZ

o/oCNOPR

GETTABS

Table 18-2
Privilege Table

(.GTPRV, GETTAB Table Number 6)

Meaning

Job is allowed to perform IPCF pdvileged functions.

Highest disk priority for the job.

Job is allowed to execute the METER monitor call.

Job is allowed to execute the POKE monitor call. .

Job is allowed to change its CPU specification via a com-
mand or a monitor call.

Highest high-priority queue available to this job.

Job is allowed to unspool devices.

Job is allowed to perform ENQ/DEQ privileged functions.

Reserved.

Job is allowed to execute the RTTRP monitor call.

Job is allowed tQ execute the LOCK monitor call.

Job is allowed to execute the TRPSET monitor call.

Job is allowed to PEEK and SPY on allof core.

Job is allowed to PEEK and SPY on the monitor.

Table 18-3
Configuration Table

(.GTCNF, GETTAB Table Number 11)

Meaning

Name of system in ASCIZ.

Date of system in ASCIZ.

Name of system device in SIXBIT.

Time of day in jiffies~

Today's date (in IS-bit binary format)

Highest location in the monitor in low segment plus one. (System mem­
ory size).

Name of OPR TTY in SIXBIT. 13

14 %CNDEV I Left Half: Start of the device data block (DDB) chain.

._. ____________ . __________ . __________ . __ RighLHalf: __ Unused. .____

15 o/oCNSJN Left Half: Number of high segments.

Right Half: Number of current jobs (including the null job).

18-6

'J

'\

)

)

)

)

)

Item No. Mnemonic

16 o/oCNTWR

17 o/oCNSTS

20 o/oCNSER

21 o/oCNNSM

22 %CNPTY

23 %CNFRE

24 %CNLOC

) 25 o/oCNSTB

26 %CNOPL

27 %CNTTF

30 %CNTTC

31 %CNTTN

32 %CNLNS

) 33 o/oCNLNP

34 o/oCNVER

35 %CNDSC

----------- ---

36

37

GETTABS

Table 18-3 (Cont.)
Configuration Table

(.GTCNF, GETTAB Table Number 11)

Meaning

If non-zero, system has two-register hardware and software.

Left Half: Location describing feature test switches for this system.

Right Half: Current state of switches.

Refer to Table 10-5 for a description of the bit settings for the possible
system states.

APR serial number.

The number of NANO-seconds per memory cycle for the memory sys-
tem. If this GETTAB fails, the number of nano-seconds per memory
cycle is -D1 000; this value is used by SYSTAT to compute the shuffling
time.

Left Half: The number of the first PTY (which is one greater than
the number of the CTY).

Right Half: The number of PTYs in the system configuration.

Pointer to the bit map of core blocks.

Left Half: Zero.

Right Half: Address in the monitor for free four-word core block
areas.

Link to the station block chain (STB) for remote BATCH.

Address of the line data block (LDB) of the operator's terminal.

Pointer to TTY free chunks.

Left Half: Number of TTY chunks.

Right Half: Address of first TTY chunk.

Number of free TTY chunks.

Pointer to the current TTY as seen by the command decoder.

Left Half: Total number of TTY lines.

Right Half: Beginning of the line table.

Version number of the monitor; this value is stored in location 137 of
the monitor as a save file when the monitor is not running.

The bit definitions of this word entry are:

Bit 0-17 are reserved for the customer.
Bits 18-23 equal the monitor level.
Bits 24-29 equal the monitor release number.
Bits 30-35 are used for internal monitor development.

If this GETTAB fails, the monitor currently running is a version previous
to 5.03.

Left Half: Length of the data set control table.

Right Half: Beginning-address of the data set cGntrol table.

Obsolete.

Obsolete.
---- ------

18-7

Item No.

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65 .

Mnemonic

o/cCNSGT

o/cCNPOK

o/cCNPUC

o/cCNWHY

o/cCNTIC

o/cCNPDB

o/cCNRTC

%CNCHN

%CNLMX

o/cCNBMX

o/cCNBMN

o/cCNDTM

o/cCNLNM

o/cCNBNM

%CNYER

O/cCNMON

o/cCNDAY

o/cCNHOR

%CNMIN

o/cCNSEC

o/cCNGMT

o/cCNDBG

GETTABS

Table 18-3 (Cont.)
Configuration Table

(.GTCNF, GETTAB Table Number 11)

Meaning

Last dormant segment which was deleted to free a segment number.

Address of the last location changed in the monitor via the POKE
monitor call.

Left Half: The job number of the job which most recently success­
fully executed the POKE monitor call.

Right Half: The number of successful POKEs which have been
executed.

The reason for the last reload, stored as a SIXBIT unabbreviated opera­
tor answer. For more information, refer to the ONCE Specification
within the DECsystem-lO Software Notebooks.

The number of clock ticks per second. This refers to the time-of-day
clock; the number is obtained by conducting an experiment of monitor
load time. A different clock cim be used for incremental run time
accounting (refer to Item number 46, %CNRTC).

The pointer to the process data block (PDB) pointer tables,

The run time clock rate (in jiffies per second). This value is the rate of
the clock used to measure the run time of a job and system statistics
(null, lost, and overhead times). This rate is the precision of measure­
ment, not the units of measurement.

Left Half: The address of the first channel (DFlO) data block.

RightHalf: Unused.

The maximum number of jobs which may be logged in at the same time
(LOGMAX).

The maximum number of BATCH jobs which may be logged in at the
same time (BATMAX).

The minimum number of jobs reserved to BATCH (BATMIN).

The host computer time in universal date/time format.

The number of jobs currently logged (LOGNUM).

The number of BATCH jobs currently logged in (BATNUM).

The year (tOCYER).

The current month (LOCMON).

The current day of the month (LOCDA Y).

The local hour in 24-hour format (LOCHOR).

Minutes (LOCMIN).

Seconds (LOCSEC).

Time from Greenwich Mean Time in internal format.

The debugging status word, its bit definitions are:

Bit 0=1
Bit 1 =1
Bit 2=1

ST%DBG
ST%RDC
ST%RJE

18-8

- --- - - -----

System debugging currently.
Reload the system on the debug stop code.
Reload the system when a job stop code occurs.

)

"

·1

)

)

)

-,

)

Item No. Mnemonic

66 o/oCNFRU

67 %CNTCM

70 %CNCVM

71 %CNDVM

72 o/oCNDFC

73 %CNRTD

74 o/oCNHPQ

75 o/oCNLDB

76 %CNMVO

77

100 o/oCNMER

)
101 %CNETl

102 %CNLSD

103 o/oCNLLD

104 %CNLDD

105 %CNEXM

106 o/oCNST2

)

---------- ---

GETTABS

Table 18-3 (Cont.)
Configuration Table

(.GTCNF, GETTAB Table Number 11)

Meaning

Bit 3=1 ST%NAR No automatic reloads are permitted.
Bit 4=1 ST%CP1 If CPU1 stops (the second processor), stop

CPUO.

Number of free core blocks currently in use by the monitor.

Number of nine-bit bytes in TTY chunks.

Customer version number.

Digital version number.

Number of DF10 data channels.

Number of real-time devices.

Number of high-priority queues.

TTY device data block word pointing to the line data block.

MaxirilUm vector offset for PISYS (currently zero).

Reserved.

Left Half: Pointer to first magtape DDB.

Right Half: Offset forMTA error reporting word. REELIDin UDB.

User address of EXEC's AC Tl (for DAEMON).

Length of the short device data block.

The length of the long device data block.

The length of the disk device data block.

Address in JOBDAT of the most recently executed E(xamine) or
D(epa sit) command.

Software configuration indicators, the bit defintions are:

Bit 18=1 ST%NDN Network device names are used of the form
gggnnu.

Bit 19=1 ST%XPI Exclude priority interrupt time from run time.

Bit 20=1 ST%ERT EBOX/MBOX runtime (KLlO only).

Bit 21=1 ST%EXE SAVE and SSA VE commands write .EXE files.

Bit 22=1 ST%NJN System uses 9-bitjob numbers.

Bit 23=1 Extended error reporting.

Bit 24=1 ST%TAP TAPSER included in system.

Bit 25=1 ST%MBE Mass buss error reporting.

Bit 26=1 ST%GAL GALAXY-lO support included.

Bit 27=1 ST%ENQ ENQ/DEQ included in system.

Bit 28=1 ST%SHC . Scheduler has classes.

Bit 29=1---8T%NSE Non-superseding ENTER. -

Bit 30=1 ST%MSG MPX channel feature is included in system.

18-9

I

Item No. Mnemonic

107 %CNPIM

110 o/oCNPIL

111 o/oCNPIA

112 %CNMNT

113 o/oCNOCR

114 %CNOCP

115 o/oCNPGS

116 %CNMMX

117 %CNNSC

120 o/oCNUTF

121 o/oCNHSO

122 o/oCNHSL

123 %CNNWC

GETTABS

Table 18-3 (Cont.)
Configuration Table

(.GTCNF, GETTAB Table Number 11)

Meaning

Bit 31=1 ST%PSI Software Interrupt System is included in the
system.

Bit 32=1 ST%IPC IPCF is included in the system.

Bit 33=1 ST%VMS The virtual memory option is included in the
system.

Bit 34=1 ST%MER MTA error reporting is included in the system.

Bit 36=1 ST%SSP Swapping takes place on a page basis.

Minimum condition in PISYS.

Length of internal pits.

Address of JBTPIA.

Monitor type.

Left Half: First card reader device data block.

Right Half: Offset to card count.

Left Half: First card reader device data block.

Right Half: Offset to card count.

Unit of core allocation.

MinimumJegal cormax.

Number of scheduler classes.

Exponential user time factor.

Start of monitor high segment.

Length of the monitor's high segment.

The number of words of core.

18-10

')

-"

.< ~,

1

)

)

)

"

)

')

Bit Mnemonic

0=1 ST%DSK

1 =1 ST%SWP

2 =1 ST%LOG -,
3 =1 ST%FTT

;,. 4 =1 ST%PRV

5 =1 ST%TWR

6=1 ST%CYC

7-9 ST%TDS

) =0
=1
=2

10 =1 ST%IND

11 =1 ST%IMG

12 =1 ST%DUL

13 =1 ST%MRB

)
14 =1 ST%HPT

15 =1 ST%EMO

16 =1 ST%RTC

17 =1 ST%MBF

18-26

27 =1 ST%NOP

28 =1 ST%MSP

29 =1 ST%ASS

) 30-31

32 =1 ST%NRT

33 =1 ST%BON

34 =1 ST%NRL

35 =1 ST%NLG

"

)

GETTABS

Table 18-4
System State Bit Settings

(Item Number 17 in GETT AB Table Number 11)

Meaning

The system is a disk system.

The system is a swapping system.

The system is a LOGIN system.

The system has full duplex TTY software.

The system contains privileged features.

Software is dual segment (reentrant).

System clock is set to 50 hz.

Type of disk system, either:

4-series disk system
5 -series disk system
a spooled disk

Project-programmer numbers are independent on the disk.

Image mode is supported by terminals (8-bit senser).

System is a dual-processor system.

Multiple ribs are supported.

High precision time accounting will be performed.

~

Monitor overhead will be excluded from time accounting measurements.

System has a real-time clock. (DKlO)

System supports forots.

Reserved.

No operator is present at the central site.

Devices may be unspooled by an unprivileged user.

System is assigning/initializing on restricted devices.

Reserved.

There are not remote TTYs.

Only batch jobs may login.

No remote logins will be accepted.

No LOGINS will be accepted from the CTY or OPR.

18-11

Item No. Mnemonic

0

1-7

10 %NSCMX

11 %NSCLS

12 %NSCTL

13 %NSSHW

14 %NSHLF

15 %NSUPT

16 %NSSHF

17 %NSSTU

20 %NSHJB

21 %NSCLW

22 %NSLST

23 %NSMMS

24 %NSTPE

25 %NSSPE

26 %NSMPC

27 %NSMPA

30 %NSMPW

31 %NSMPp

32 %NSEPO

33 %NSEPR

34 %NSNXM

35 %NSKTM

36 %NSCMN

--- --37----- -%NSABe------

40 %NSABA

GETTABS

Table 18-5
Non-swapping Data Table

(.GTNSW, GETTAB Table Number 12)

Contents

Obsolete.

Unspecified data.

Size (in words) of the largest legal user job which is valve equal to the
low segment plus the high segment (CORMAX).

Byte pointer to the last free block of core.

The total amount of free core plus dormant core plus idle core left
(virtual core).

The number of the job stopped by the shuffler.

The absolute address of the job above the lowest hole; this value will be
zero if there is no job.

The time the system has been up (in jiffies).

The total number of words shuffled by the system.

The number of the job using SYS: if not a disk.

The highest job number currently assigned.

The total number of words cleared by the system.

The total number of clock ticks when the null job ran and other jobs
wanted to but could not because 1) job was swapped out or on its way
in or out, 2) the monitor was waiting for I/O to stop so that it could
shuffle or swap, or 3) the job was being swapped out because of core
expansion.

The size of physical memory in words.

The total number of user parity errors since the system was loaded.

The total number of spurious memory parity errors.

The total number of multiple memory parity errors.

The absolute location of the last user mode memory parity error.

The contents of the last user mode memory parity error.

The user PC of the last user mode memory parity error.

The total number of push-down list overflows at the monitor call level
in executive mode which were not recovered from.

The number of push-down list overflows at monitor call level which were
recovered by assigning an extended list.

Highest legal value of CORMAX. (CORMAX is the size of the largest
legal job.)

Count-down time for the set KSYS monitor call.

The amount of core guaranteed to be available after jobs have been
locked in core (CORMIN).

---The-count-of-the-number-ofcrdtlress-breaks-harrdled-sirrce-the-syst em --
was loaded.

The contents of the data switches on the last address break.

18-12

)

_J

~

)

)

)

)

Item No. Mnemonic

41 %NSLJR

42 %NSACR

43 %NSNCR

44 %NSSCR

)
Item No. Mnemonic

0 %SWBGH

1 %SWFIN

2 %SWFRC

3 %SWFIT

4 %SWVRT

5 %SWERC

6 %SWPIN

)

GETTABS

Table 18-5 (Cont.)
Non-swapping Data Table

(.GTNSW, GETTAB Table Number 12)

Contents

The number of the last job that ran, if this job number is different from
the current job number.

The accumulated CPU response time. This is the total number of
jiffies that all users waited for their jobs to initially run after either a
command was issued which ran a job (or program) or timinal input was
given that removed the job from a TTY input wait state.

The number of CPU responses for all user waiting for jobs to run.
Dividing the value of item number 42 (%NSACR) by the value of item
number 43 (%NSNCR) gives the average response time since system
startup.

The accumulated squares of the CPU response time obtained from item
number 42 (%NSACR).

Table 18-6
Swapping Data Table

(.GTSDT, GETTAB Table Number 13)

Contents

The number of lk core blocks which form the biggest hole in core.

A minus number indicating the job number of the job being swapped
out.

-or-

A positive number indicating the job number of the job being swapped
in.

The number of the job which is being forced to swap out.

The number of the job which is waiting to be fit into core.

The amount of virtual core left in the system (in lk blocks). This value
is initially set to the number of k of swapping space.

Left Half: The number of swap read or write errors.

Right Half: Bits 18-21 are the error bits which are the same as the
status bits returned from a GETSTS on the disk.

Bits 22-35 contain the number of k marked as bad.

The value of item number 6 is -I if the job has been swapped·in
monitors which swap process data blocks and FTPDBS = 1; PDBS
only).

18-13

I

~,

Item No. Mnemonic

0 %ODSWP

1 %ODK4S·

2 o/oODPRT

3 %ODPRA

GETTABS

Table 18-7
ONCE-ONLY Disk Parameters

(.GTODP, GETTAB Table Number 15)

Contents

Contains zero in 5 - and 6-series monitors.

The number of lk djsk words set aside for swapping on all units in the
active swapping list.

The in-core protect time l multiplied by the size of the job (in lK core
blocks).

The in-core protect time added to the above result after multiplication.
,

lIn-core protect time = %ODPRT *<jobsize> + %ODPRA

;~

Itom T:nomonio
o %LDMFD

1 %LDSYS

2 %LDFFA

3 %LDHLP

4 %LDQUE

5 %LDSPB

6 %LDSTR

7 %LDUNI

10 %LDSWP

11 %LDCRN

12 %LDSTP

13 %LDUFP

Table 18-8
LEVEL-D Parameters

(.GTLVD, GETTAB Table Number 16)

Contents

The project-programmer number for UFDS only [1,1] .

-

The project-programmer number for device SYS: [1,4]. (In 4-series
monitors [1,1] .

The project-programmer number for FAILSAFE [1,2].

The project-programmer number of SYSTAT and HELP [2,5].

The project-programmer number for spooling programs [3,3] .

Left Half: The address of the first PPB.

Right Half: The address of the next PPB to be scanned.

Left Half: The address of the first file structure data block.

Right Half: The relative address of the next file structure data blocks,
i.e., the address within the data block which points to the
actual,address of the next data block.

Left Half: The address of the data block for the first unit in the
system.

Right Half: The relative address of the data block for the next unit in
the system.

Left Half: The address of the first unit for swapping in the system.

Right Half: The relative address of the next unit for swapping in the
system.

The number of 8-word core blocks for disk systems which were
allocated at ONCE-ONLY time.

The standard file protection code (057), which can be changed by
individual installations. In 4-series monitors the standard protection
code is 055. ~

The standard UFD protection code (775), which can be changed by
individual installations. In 4-series monitors, the standard UFD protec­
tion code is 055.

18-14

")

-j

)

)

)

)

')

Item No. Mnemonic
"

14 %LDMBN

15 %LDQUS

16 %LDCRP
.~

17 %LDSFD

20 %LDSPP

)
21 %LDSYP

22 %LDSSP

23 %LDMNU

24 %LDMXT

)
25 %LDNEW

26 %LDOLD

27 %LDUMD

30 %LDNDB

31 %LDMSL

32 %LDALG

33 %LDBU
)

34 %LDFOR

35 %LDMAC

36 %LDUNV

37 %LDPUB

40 %LDTED

41 %LDREL

42 %LDRNO

43 %LDSNO

__ 44 %LDDOC
45 %LDFAI

46 %LDMUS)

GETTABS

Table 18-8 (Cont.)
LEVEL-D Parameters

(.GTLVD, GETTAB Table Number 16)

Contents

The number of monitor buffers allocated at ONCE-ONLY time. In
4-series monitors, the number of monitor ,buffers is one.

The SIXBIT name of the file structure containing the UFD for spooling
and OMOUNT queues [3,3]. In 4-series monitors, this is DSK:.

The UFD used for storage of system crashes [10,1] .

The maximum number of nested SFDs that the monitor allows to be
created at one time.

The protection code for spooled output files (stored in bits 0-7).

The standard protection code for files on SYS: (155) for those files
with an extension of .SYS.

The standard protection code for files on SYS: with an extension of
.SYS (157).

The maximum negative argument that can be supplied for USETI, which
reads extended RIBS.

The maximum number of blocks transferred with one I/O operation
(i.e., one 10WD). Normally this value is 100000, but it can be changed
at MONGEN to be smaller so that a job doing high priority disk I/O
will be locked out for a shorter period of time (since it can be locked
out for as long as the channel is busy).

The project-programmer number for experimental SYS:, [1,5].

The project-programmer number for the library of superseded programs,
[1,3] .

The project-programmer number for user mode diagnostics, [6,6].

The default number of disk buffers in a buffer ring.

The maximum units in the active swapping list.

The project-programmer number for the ALGOL library, [5,4] .

The project-programmer number for the BUSS-lO library, [5,5].

The project-programmer number for the FORTRAN library, [5,6] .

The project-programmer number for the MACRO source library, [5,7] .

The project-programmer number for the universal library , [5,17] .

The project-programmer number for the public user software library,
[1,6] .

The project-programmer number for the text editor library, [5,10] .

The project-programmer number for the REL file library, [5,11] .

The project-programmer number for the RUNOFF library, [5,12] .

The project-programmer number for the SNOBOL library, [5,13] .

. . 1ht:]:JrQjYj;:t~RI9gnlJnm~LnlllJ1h~tiQL the. .DO.CiileJibrat}',[s' ,141..

The project-programmer number for the FAIL library, [5,15].

The project-programmer number for the music library, [5,16].
--_._-

18-15

.-

Item No.

47

50

51

52

53

54

55

56

57

Bit(s)

0-8

9-11

14-17

18-35

Mnemonic

%LDDEC

%LDSWP

%LDBAS

%LDCOB

%LDMXI

%LDNEL

%LDDMP

%LDPOP

%LDTDT

GETTABS

Table 18-8 (Cont.)
LEVEL-D Parameters

(.GTLVD, GETTAB Table Number 16)

Contents

The project-programmer number for standard DEC software, [10,7] .

The pointer to the active swap list.

The project-programmer number for the BASIC library, [5,1] .

The project-programmer number for the COBOL library, [5,2].

The project-programmer number for the PDP-11 library, [5,3].

The project-programmer number for the NELIAC library, [5,20].

The project-programmer number for DUMP, [5,21].

The project-programmer number for POP2, [5,22] .

The project-programmer number for the TEST library, [5,23].

Table 18-9
GETTAB Immediate Word Entries

(.GTSLF, GFTTAB Table Number 23)

Meaning

The maximum item number in the table, if the table is indexed by item
number.

A code which identifies the type of table.

code meaning

0 non included in this configuration (e.g., .GTVM in a
non-vm system)

index by item number

2 index by job number (maximum is given in the right
half of %CNSJN)

3 index by job number or segment number (maximum
is given in the left and right halves of o/oCNSJN)

4 index by job number (data in PDB)

A monitor AC number.

The executive mode address of the table if the code (bits 9 -11) is 1, 2, or 3,
offset to PDB if code (in bits 9-11) is 4.

18-16

-j

-,

~
)

)

)

,

)

Bit

0·17

24·26

27

28·30

31

32

33

34

35

Bits

0-9

10

11
)

12-35
'-..--

GETTABS

Table 18·10
Spooling Control Table

(.GTSPL, GETTAB Table Number 36)

Mnemonic Meaning

Input spooling file name (three characters).

JS.PRI Disk priority.

JS.DFR Deferred spooling (meaningful only in
GALAXY·lO systems, refer to the SET
SPOOL command).

Unused.

JS.PCR Card reader spooling.

JS.PCP Card punch spooling.

JS.PPT Paper·tape punch spooling.

JS.PPL Plotter spooling.

JS.PLP Line printer spooling.

Table 18·11
Time and Batch Status Table

(.GTLIM, GETTAB Table Number 40)

Mnemonic Meaning

JB.LCR The core limit for the job.

JB.LBT The job isa batchjob.

JB.LSY The job was run from SYS:.

JB.LTM The time limit to go in jiffies.
- -

18-17

;

I

Item No.

0

1

2

3n

Item No. Mnemonic

0 %SYERR

%SYCCO

2 %SYDEL

3 %SYSPC

4 %SYNDS

5 %SYNJS

6 %SYNCP

7 %SYSJN

10 %SYSTN

11 %SYSPN

12 %SYSUU

13 %SYSUP

GETTABS

Table 18-12
Hardware Status After A Crash

(.GTCRS, GETTAB Table Number 44)

Mnemonic Contents

CR.SAP The APR CONI.

CR.SPI The PI CONI.

CR.SSW The APR DATAl switches.

Reserved to Digital.

Table 18-13
System Wide Data Table

(.GTSYS, GETTAB Table Number 51)

Meaning

The system wide hardware error count.

Obsolete.

The count of unlogged hardware errors (error reporting dis-
abled).

Left Half: A three letter name for the last STOPCD.

Right Half: The address plus one of the last STOPCD.

The number of DEBUG STOPCDS.

The number of job related STOPCDS.

The number of commands processed.

The job number related to the last STOPCD.

The TTY name related to the last STOPCD.

The program name related to the last STOPCD.

The monitor call related to the last STOPCD.

The user pc related to the last STOPCD.
-_._--_ .. _--- --- _ .. _- ---_ .. ---

18-18

')

'\

)

)

)

"

)

)

'\

)

)

)

-/

Item No.

o

1

2

3

4

5

6

7

10

11

12

13

GETTABS

, Table 18-14
CPUO Control Data Block Constants Table l

(.GTCOC, GETTAB Table Number 55)

Mnemonic

%CCPTR

o/oCCSER

%CCOKP

O/oCCTOS

o/oCCLOG

O/oCCPHY

%CCTYP

o/oCCMPT

%CCRTC

%CCRTD

%CCPAR

o/oCCRSP

Left Half:

Meaning

Pointer to the next control data block. If
this is the last CDB, the value of item
number 0 is zero.

Right Half: Unused.

The APR serial number.

The number of jiffies equal to the amount of time this CPU
has been stopped. If this value is less than or equal to zero,
the CPU is running o.k. If this value is greater than zero,
this CPU has stopped running correctly.

The trap offset for KAlO interrupt locations (this value will
be either 0 or 100).

The logical CPU name in SIXBIT (e.g., CPUN).

The physical CPU name in SIXBIT (e.g., CPAN, CPIN,
CP6N).

The type of processor (1 H is for customers; RH is for
Digital).

Value Mnemonic Meaning

1 .CC166 PDP-6
2 .CCKAX KA10 processor
3 .CCKIX KIlO processor
4 .CCKLX KLl 0 processor

The relative GETT AB pointer to the memory parity bad
address subtable.

bits 0-8

bits 18-35

are the maximum relative entry in the
subtable.
are the relative address of the first word in
the subtable.

The device data block for the real-time clock (DKlO). If
the value of this word is zero, there is no real-time clock.

The device data block for the real-time clock if there is to be
high precision run time accounting. If the value of this
word is zero, there is to be no high precision run time
accounting on this CPU.

The relative GETTAB pointer to the memory parity sub­
table. The bit definitions for this word entry are the same
as for item number 7 (o/oCCMPT).

The relative GETTAB pointer to the response subtable. The
bit definitions for this word are the same as for item
numbers 7 and 12.

----------------- I-I~~====~==~==='==---=-=--------==-:--=-::---------------;

)
lThe items within the table correspond to the items in the constants table for each processor (e.g., entries for
CPUl CDB constants are found in GETTAB table .GTCIC, table 57).

18-19

Item

5

12

14

15

16

17

20

21

27

30

31

32-34

35

36

37

40

41

.----.42---

Mnemonic

o/£VUPT

o/£VLST

o/£VTPE

o/£VSPE

%CVMPC

o/£VMPA

o/£VMPW

%CVMPP

o/£VABC

o/£VABA

%CVUR

o/£VSTS

o/£VRUN

o/£VNUL

o/£VEDI

o/£VJOB

GETTABS

Table 18-15
CPUQ Control Data Block Variable Table
(.GTCQV, GETTAB Table Number 56)

Meaning

Uptime in jiffies for this CPU,

Last time in jiffies for this CPU.

Total memory parity error words detected during all CPU sweeps on
this CPU while the processor was in exec or user mode. If the system
halts, this location has already·been updated.

The total number of spurious memory parity errors detected on this
CPU (Le., errors which did not reoccur when ,the CPU swept through
core). This can occur on a read-pause-write which rewrites memory
or on a channel-detected parity error not found on the sweep (refer
to item number 11 in table number 19-17).

Multiple memory parity errors for this CPU. That is, the number of
times the operator pushed continue after a serious memory parity
halt. The left half of the word contains 1 if a serious error on this
bad parity (must halt). The left halt is cleared on a continue or
STARTUP.

Memory parity address for this CPU. That is, the first bad physical
memory address found when the monitor swept through core after
the processor or channel detected the first parity error.

Memory parity word for this CPU. That is, the contents of the first
bad word found by the monitor when it swept through core after
the processor channel detected the first bad parity error.

Memory parity PC for this CPU. It is the PC of the last memory
parity (not counting the sweep through core).

Address break count on this CPU.

Address break address on this CPU.

The last job run on this CPU including the null job.

Obsolete. Refer to item numbers 20-23 in table number 19-16.

Stop timesharing on this CPU. This item number contains the
number of the job that last performed the TRPSET monitor call.

Operator-controlled scheduling for this CPU (OPSER:SET RUN
command).

bit 0 (CV%RUN) == 1 indicates that jobs are not to be run
on this CPU.

Null time (in jiffies) for this CPU.

LH == exec PC so that offending instruction can be corrected.

RH == number of exec "do not care" interrupts (i.e., user enabled
apr interrupts which monitor causes (AOV, FOV).

Current number of the job running on this CPU (0 is the null job).

- -%CYOII'f ---- ---Overhead time-{i-n.jif'fies}foI-thls-GPlJ ... +his-value-ineludes -eloek-- - ..
queue processing, short command processing, swapping and schedul-
ing decisions, and software context switching. This value does not

18-20

)

.j-

.,

)

)

)

)

Item

43

44

45

46

47

Item No.

o

2

3

4

5

6

7

10

Mnemonic

%CVEVM

%CVEVU

%CVLLC

%CVTUC

%CVTJC

Mnemonic

o/£VRSO

o/£VRNO

o/£VRHO

%CVRLO

o/£VRSI

o/£VRNI

o/£VRHI

%CVRLI

%CVRSR

GETTABS

Table 18-15 (Cont.)
CPUO Control Data Block Variable Table
(.GTCOV, GETTAB Table Number 56)

Meaning

include monitor call execution or I/O interrupt times, since these
times are not considered overhead.

KIlO/KLlO only. The maximum amount of exec virtual address
space to be used for mapping user segments on a LOCK monitor call.

KLlO/KIl0 only. The current amount of exec virtual address space
being used for mapping user segments on a LOCK monitor call.

On a dual-processor system, the count of the number of times a CPU
has looped in the CPU interlock while waiting for it to be relinquished
by the second CPU.

The total number of monitor calls executed on this CPU from exec
and user mode.

The total number of job context switching switches from one job to a
a different job, including the null job, on this CPU.

Table 18-16
Response Subtable

Use

Accumulated TTY output for monitor call responses. This is the total
number of jiffies users have spent waiting for their jobs to do a TTY
output (on CPUO) after either a command was issued which ran a job
or terminal input was given that removed the job from a TTY input
wait state.

The number of TTY output monitor call responses for this CPU.

The high-order sum of the squares of TTY output for monitor call
responses. This value is used for computing the standard deviation.

The low-order part of the sum of the squares of TTY output for
monitor call responses.

The accumulated TTY input monitor call responses for this CPU. This
is the total number of jiffies users have spent waiting for their jobs
to do a TTY input monitor call (on CPUO) after either a command was
issued that ran a job or terminal input was given that removed the job
from a TTY input wait state.

The number of TTY input monitor call responses for this CPU.

The high-order sum of the squares of TTY input monitor call responses.
This value is used for computing the standard deviation.

The low-order part of the sum of the squares of TTY input monitor
call responses.

The accumulated CPU quantum requeue responses. This is the total
- number of jiffies users have spent waiting for-their jobs to exceed the
CPU quantum on this CPU after either a command was issued that run
a job or terminal input was received that removed the job from a TTY
input wait state.

18-21

Item No. Mnemonic

11 %CVRNR

12 o/oCVRHR

13 %CVRLR

14 %CVRSX

15 %CVRNX

16 %CVRHX

17 o/oCVRLX

20 o/oCVRSC

21 %CVRNC

22 %CVRHC

23 o/oCVRLC

Item No. Mnemonic

00 o/oCVPLA

1 %CVPMR

2 %CVPTS

3 %CVPSC

4 %CVPUE

5 o/oCVPAA

6 %CVPAC

7 %CVPOA

----------- 10 ---- %CVPOG--

11 %CVPCS

GETTABS

Table 18-16 (Cont.)
Response Sub table

Use

The number of CPU quantum requeue responses for this CPU.

The high-Order sum of the squares of CPU quantum requeue response.
Used for computing standard deviation.

The low-order part of the sum of the squares of CPU quantum requeue
response.

The accumulated response terminated by the first occurrence of one of
the above three events (TTY output, TTY input, or CPU quantum
requeue).

The number of such responses in %CVRSX.

The high-Order sum of the squares of responses in %CVRSX. This is
used for computing the standard deviation.

The low-Order part of the sum of squares of responses in %CVRSX.

The accumulated response on this CPU. The total number of jiffies that
users spent waiting for their jobs to run after either a command was
issued which ran a job or terminal input was supplied that removed the
job from a TTY input wait state.

The number of CPU responses for all users waiting for their jobs to run.
Dividing this value into the value of %CVRSC gives the average response
time since the system was started.

The high-Order part of the sum of the squares of CPU responses on this
CPU.

The low-order part of the sum of the squares of CPU responses of this
CPU.

Table 18-17
Parity Sub table

Use

Highest bad memory parity address on last sweep of memory. Used to
tell operator the range of bad addresses.

Relative address (not virtual address) in the high or low segment of
the last memory parity error.

Number of parity errors on the last sweep of core. Set to 0 at begin-
ning of the sweep.

Number of parity sweeps by the monitor.

Number of user-enabled parity errors.

The and of bad addresses on the last memory parity sweep.

The and of bad contents on the last memory parity sweep.

The or of bad addresses on the last memory parity sweep.

The-oI-of bad contents on the last-memory parity sweep.

Number of spurious parity errors. (The APR sweep found no bad parity
but the channel had requested the sweep rather than the processor).
This indicates a channel memory port problem.

I

I

18-22

)

)

)

)

)

Item No. Mnemonic

"
o %FTUUO

•. i

)

%FTRTS

)

2 %FTCOM

)

3 .. %fTAC~ ..

Bit

22
23
24
25
26
27
28
29
30
31
32
33
34
35

GETTABS

Table 18-18
Feature Table

(.GTFET, GETTAB Table Number 71)

Meaning

Enqueue/DEQUEUE is implemented (F%EGDG).
Galaxy-lO features are implemented (F%GALA).
PSISER is implemented (F%PI).
IPCF is implemented (F%IPCF).
CTRL/C intercept (F%CCIN).
JBTSTS and CTLJOB monitor calls are implemented (F%PTYU).
PEEK monitor call is implemented (F%PEEK).
POKE. monitor call is implemented (F%POKE).
Job continue (F%JCON).
Spooling is supported (F%SPL).
Job privileges are supported (F%PRV).
DAEMON is supported (F%DAEM).
GETTAB exists (F%GETT).
System has 2-register relocation (F%2REL).

Real time and scheduler features

25
26
27
28
29
30
31
32
33
34
35

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

6.02 (and later) scheduler is implemented (F%NSCH).
System has virtual memory (F%VM).
Swapper is implemented (F%SWAP).
Shuffler is implemented (F%SHFL).
DKlO service is implemented (F%RTC).
The LOCK monitor call is implemented (F%LOCK).
The TRPSET monitor call is implemented (Fo/oSLEE).
Real-time traps are implemented (F%RTTR).
The sleep monitor call is implemented (F%SLEE).
The HIBER and WAKE monitor calls are supported (F%HIBW).
High priority queues are supported (F%HPQ).

SAVE and SSA VE commands will create .EXE files (F%EXE).
Memory can be set off-line (F%MOFF).
Memory can be set on-line (F%MONL).
COMPIL commands are implemented (F%CCL).
COMPIL-class command are implemented (F%CCLX).
Queue is implemented (F%GCOM).
SETUUO and SET command are implemented (F%SET).
VERSION command is implemented (F%VERS).
Batch control file commands are implemented (F%BCOM).
SET DAYTIME and SET DATE commands are implemented

(F%SEDA).
WATCH command has been implemented (F%WATC).
FINISH and CLOSE commands have been implemented (F%FINI).
REASSIGN command has been implemented (F%REAS).
E and D commands have been implemented (F%EXAM).
SEND has been implemented (F%TALK).
ATTACH has been implemented (F%ATTA).

. __ Acc()l1ntiIlgjIlfoJIIl.a.1ioll

31
32 I

Time and core limits (F%TLIM).
Charge number (F%CNO).

18-23

Item No. Mnemonic

4 %FTERR

5 %FTDEB

6 %FTSTR

7 %FTDSK

-------- ---- ----------------

GETTABS

Table 18-18 (Cont.)
Feature Table

(.GTFET, GETTAB Table Number 71)

Bit Meaning

33 User name (F%UNAM).
34 Kilo-core ticks accumulation (F%KCT).
35 Run-time computation (F%TIME).

Error Control and internal options

22 NXM error recovery codes (F%MNXM).
23 System is a KLlO (F%KLlO).
24 System is a KA10 (F%KAlO).
25 22 bit channel, DFlOC (F%22BI).
26 Swapping process data block (F%PDBS).
27 KIlO features at startup time (F%KIlO; always since 5.06).
28 METER. monitor call is supported (F%METR).
29 Execute-only files (F%EXON).

Debugging features.

27 System has a two segment monitor (F%2SEG).
28 Response time measurement (F%RSP).
29 Why reload code (F%WHY).
30 Patch space left in table (F%PATT).
31 Back-tracking information left in common (F%TRAC).
32 Monitor halts on error (F%HALT).
33 Redundancy checking for internal errors (F%CHK).
34 Monitor is write-protected (F%MONP).
35 Monitor check summing (Fo/oCHEC).

File structure parameters.

19 System has high availability features (F%DHIA).
20 System has multiple access update feature (F%DSIM).
21 NUL device (F%NUL).
22 LIB/SYS/NEW (F%LIB).
23 Disk priority transfers (F%DPRI).
24 Append to last block (F%APLB).
25 Append implies read (F%AIR).
26 Generic device search (F%GRSC).
27 Rename cross directories (F%DRDR).
28 SEEK monitor call is supported (F%DSEK).
29 Super useti/useto are supported (F%DSUP).
30 Disk quotas (F%DQTA).
31 Multiple file structures (F%STR).
32 5-series monitor calls (F%5UUO).
33 Physical-only i/o (F%PHYO).
34 Sub-file directories (F%SFD).
35 STRUUO functions (F%MOUN).

Internal disk parameters

19 Debug search list code (F%SLCK).
---20--- --TWd-parnccessolocKs -CF%2A.TB)~- ------- --

21 DEBUG CB interlock (F%CBDB).
22 LOGIN system (F%LOGI).

18-24

')

)

)

)

"-

)

\
)

Item No. Mnemonic

10 %FTSCN

)

11 %FTPER

)

Bit

23
24
25
26
27
28
29
30
31
32
33
34
35

GETTABS

Table 18-18 (Cont.)
Feature Table

(.GTFET, GETT AB Table Number 71)

Meaning

Disk system (F%DISK).
Race-condition prevention in filfnd (F%FREE).
Swap read error recovery (F%SWPE).
Bad block marking (F%DBBK).
UFD compressor (F%DUFC).
Disk error simulation (F%DETS).
Extended ribs supported (F%DMRB).
Smaller allocation for disk core blocks (F%DSMC).
Allocation optimization (F%DALC).
Disk usage statistics (F%DSTT).
Hung disk recovery (F%DHNG).
Disk off-line recovery (F%DBAD).
Latency optimization (F%DOPT).

Scanner options.

22 2741 on a DClO is supported (F%DCXH).
23 Unusual vertical positioning is allowed (F%TVP).
24 TYPESET-10 features in DC76 (F%TYPE).
25 2741-like terminals supported (F%2741).
26 DC76 (F%CAFE).
27 TTY BLANK command is supported (F%TBLK).
28 Page and display knowledge (F%TPAG).
29 Automatic dialer supported (F%DTAL).
30 Special line control (F%SCLC).
31 Hardware scanner (DClOor DC8 (F%SCNR).
32 Modem control (F%MODM).
33 Single scanner (F%630H).
34 U.K. modem supported (F%GP02).
35 Real half-duplex terminals (F%HDPX).

I/O parameters

23 System supports DAS 78.
24 System supports DA28-C networks.
25 MSGSER implemented mpx device (F%MSGS).
26 High-speed logical device search (F%HSLN).j
27 CDP trouble intercept (F%CPTR).
28 CDR trouble intercept (F%CRTR).
29 CTYL supported (F%CTYL).
30 Remote station supported (F%REM).
31 LPT error recovery (F%LPTR).
32 Device errors to operator (F%OPRE).
33 CDR super-image mode (F%CDRS).
34 MTA density and buffer size (F%MTSE).
35 TMPCOR area (F%TMP).

18-25

Item No.

a
1

2

3

4

Item No.

a

2

Item No.

a

2

3

4

5

6

7

10

11

Bit(s)

--~----- --------r----- L8-35___ ~~-

1-17

GETTABS

Table 18-19
Scanner Table

(.GTSCN, GETTAB Table Number 73)

Mnemonic

o/oSCNRI

%SCNXI

o/oSCNEI

o/oSCNMB

o/oSCNAL
---- -~

Use

Number of RCV interrupts.

Number of XMT interrupts.

Number of echo interrupts.
(subset of %SCNXI).

Maximum buffer size.

Number of active lines.

Table 18-20
SEND-ALL Text

(.GTSND, GETTAB Table Number 74)

Mnemonic Use

%SCNAE Byte pointer to the end byte in the message.

o/oSCNAS Byte pointer to the first byte in the message.

o/oSCBAN First word of data in the message.

Table 18-21
IPCF Miscellaneous Data

(.GTIPC, GETTAB Table Number 77)

Mnemonic Use

%IPCML Maximum packet length.

%IPCSI PID of system-wide [SYSTEM] INFO.

%IPCDQ Default quota.

%IPCTS Total number of packets sent.

%IPCTO Total number of packets outstanding.

%IPCCP PID of [SYSTEM] IPCC.

%IPCPM PID mask.

%IPCMP Length of PID table.

%IPCNP Number of PID's now defined.

%IPCTP Total number of PID's defined since reload.

Table 18-22
IPCF Statistics Per Job

(.GTIPA, GETTAB Table Number 104)

Mnemonic

-IP.CGC­

IP.CQD

18-26

Use

---Count of-receiv€ssinc€-l,OGIN.­

Count of sends since LOGIN.

-j

,

)

)

)

>~

:.,

)

')

Bit(s)

0

1

.>
18-26

27-35

) Item No.

0

1

2

3

4

5

) 6

7

10

11

12

l3

) 14

15

16

)

GETTABS

Table 18-23
IPCF Flags and Quotas

(.GTIPQ, GETTAB Table Number 107)

Mnemonic Use

IP.CQX Quotas disabled.

IP.CQQ Quota has been set.

IP.CQS Send quota.

IP.CQR Receive quota.

Table 18-24
General Virtual Memory Data

(.GTVM, GETTAB Table Number 113)

Mnemonic Use

%VMSWP Swap count.

%VMSCN Scan count.

%VMSIP Count of swaps in progress.

%VMSLE Count of swap list entries.

%VMTTL Total virtual memory in use.

%VMCMX Maximum value of %VMTTL allowed.

%VMRMX Paging rate max for system.

%VMCON Constant used in swap rate computation.

%VMQJB Job to requeue to PQV (-1 if all).

%VMRMJ Paging rate maximum per job.

%VMTLF Time oflast fault.

%VMSPF System page fault counts:

lh=not in working set.
rh=in working set.

%VMSWI Address ofSWPlST.

%VMSW2 Address of SW21 ST .

%VMSW3 Address of SW31 ST.

18-27

I
I

!

I
,

,
I

Item No.

0

1

2

3

4

5

6

7

10

11

12

13

Item No.

0

1

2

3

4

GETTABS

Table 18-25
Scheduler Statistics

(.GTSST, GETTAB Table Number 115)

Mnemonic

o/o8SOSO

o/o8SORJ

%SSNUL

%SSLOS

%SSRQC

%SSICM

%SSMSI·

o/oSSAJS

O/o8STQT

o/oSSEAF

%SSEAT

o/oSSRSS

Use

The number of the job which was rUn out
of order in order to allow that job to give
up a resource for swap out.

The number of jobs which were run out
of order in order to have them give up a
resource required to run another job.

The amount of swapper null time.

The amount of swapper lost time.

The total number of requeues.

The interval of time required to compute
minimum core utilization.

The medium term scheduling interval.

The average job size.

The total quota time.

The exponential averaging factor.

Exponentially averaged user time.

The total user run time since the last
SCHED. monitor call.

Table 18-26
Special PID Table

(.GTSID, GETTAB Table Number 126)

Mnemonic Use

%SIIPC PID for [SYSTEM] IPCC.

o/oSIINF PID for [SYSTEM] INFO.

%SIQSR PID for [SYSTEM] QUASAR.

o/oSIMDA PID for the mountable device allocator.

o/o8ITLP PID for the magtape labeling process.

18-28

)

'1

.J

)

I
)

)

~

)

)

Item No.

--\ 0

2
";;.

3

4

5

)

-"

GETTABS

Table 18-27
ENG./DEQ. Statistics

(.GTENQ, GETTAB Table Number 127)

Mnemonic Use

%EQMSS The maximum string size.

%EQNAQ The number of active queues.

%EQESR The total number of ENQ.S since reload.

%EQDSR The total number of DEQ.S since reload.

%EQAPR Active pooled resources.

%EQDEQ The default ENQ. quota.

-- -----------_._._-

18-29

(

(

(

(

"

')

., RP02

Disk Drive Capacity 5.12 million words

Transfer Rate 15 }J.s/word

) Access Time:

Track-to-track 12 msec

Average 35 msec

Maximum 60 msec

Organization:

128 words/sector

10 sectors/track

20 tracks/cylinder

200 cylinders/pack)
Number of Heads 20

Number of Record-
ing Surfaces 20

Number of Disks 11

Number of Drives/
Controller 8

Number of Drives/
System 32)

Maximum Storage/ 0.98 billion
System characters

---- ---L-__ ---------

j

..
r,

APPENDIX A

COMPARISON OF DISK DEVICES

Table A-I
Disk Devices

RP03

10.24 million words

15 }J.s/word

7.5 msec

29 msec

55 msec

128 words/sector

10 sectors/track

20 tracks/ cylinder

400 cylinders/pack

20

20

11

8

32

1.96 billion
characters

A-I

RP04 RHS04

20.48 million words 256K words

5.6 }J.s/word 4.0 }J.s/word

7 msec 0

28 msec 8.5 msec

50 msec 8.5 msec

128 words/sector 128 words/sector

20 sectors/track 64 sectors/track

19 tracks/cylinder 64 tracks/drive

411 cylinders/pack

19 64

19 1

12 1

8 8

32 16

3.92 billion 12 million
characters characters

(

(

(

(

)

,-.;

Tape Speed

Transfer Rate at:

) 220 bpi

556 bpi

800 bpi

1600 bpi

) Recording Technique

Nominal Inter-
Record Gap:

9-track

7-track

Rewind Time
(2400 ft)

)

)

.~

)

TUlOA-E

45 ips

9 K chari
sec

25 K chari
sec

36 K chari
sec

-

NRZI

0.6 inches

-

APPENDIX B

COMPARISON OF MAGNETIC TAPE SYSTEMS

Table B-1
Magnetic Tape Systems

TUI0A-F TU40

45 ips 150 ips

9 K chari 30 K chari
sec sec

25 K chari 83.4 K chari
sec sec

36 K chari 120 K chari
sec sec

- -

NRZI NRZI

- 0.6 inches

0.75 inches -

TU41 TU70 TU71

150 ips 200 ips 200 ips

30 K chari - 40 K chari
sec sec

83.4 K chari - 111.2 K chari
sec sec

120 K chari 160K chari 160 K chari
sec sec sec

- 320 K chari -

sec

NRZI PE/NRZI . NRZI

- 0.6 inches -

0.75 inches - 0.75 inches

195 seconds 195 seconds 66 seconds 66 seconds 45 seconds 45 seconds

B-1

(

(

(

(

')

J

.J;

ASCII Octal
Character Code

NULL 00

) CTRL-A 01

CTRL-B 02

CTRL-C 03

CTRCD 04

CTRL-E 05

CTRL-F 06

CTRL-G 07

CTRL-H 10

TAB 11
)

LF 12

VT 13

FF 14

CR 15

CTRL-N 16

CTRL-O 17
) CTRL-P 20

CTRL-Q 21

CTRL-R 22

CTRL-S 23

CTRL-T 24

CTRL-U 25

CTRL-V 26

CTRL-W 27

CTRL-X 30
.\ CTRL-Y 31

CTRL-Z 32
-- ----- ------------- --- - --------------

ESCAPE 33

) CTRL-\ 34

APPENDIX C

CARD AND TAPE CODES

Table C-l
ASCII Card Codes

Card ASCII
Punches Character

12-0-9-8-1 @

12-9-1 A

12-9-2 B

12-9-3 C

9-7 D

0-9-8-5 E

0-9-8-6 F

0-9-8-7 G

11-9-6 H

12-9-5 I

0-9-5 J

12-9-8-3 K

12-9-8-4 L

12-9-8-5 M

12-9-8-6 N

12-9-8-7 0

12-11-9-8-1 P

11-9-1 Q

11-9-2 R

11-9-3 S

9-8-4 T

9-8-5 U

9-2 V

0-9-6 W

11-9-8 X

11-9-8-1 Y

9-8-7 Z
---------- --------- ------ ------ --------- -- --

0-9-7]

11-9-8-4 \

Octal
Code

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134
-- -- ----

C-1

Card
Punches

8-4

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0-9
------- -- ------ --- ------------

12-8-2

0-8-2

Card and Tape Codes

Table C-1)
ASCII Card Codes (Cont.)

ASCII Octal Card ASCII Octal Card
Character Code Punches Character Code Punches

CTRL-] 35 11-9-8-5] 135 11-8-2

CTRL-- 36 11-9-8-6 - 136 11-8-7

CTRL-_ 37 11-9-8-7 - 137 0-8-5

SPACE 40 \- 140 8-1 ,
! 41 12-8-7 a 141 12-0-1

" 42 8-7 b 142 12-0-2

43 8-3 c 143 12-0-3

$ 44 11-8-3 d 144 12-0-4

% 45 0-8-4 e 145 12-0-5
)

& 46 12 f 146 12-0-6
,

47 8-5 g 147 12-0-7

(50 12-8-5 h 150 12-0-8

) 51 . 11-8-5 i 151 12-0-9

* 52 11-8-4 j 152 12-11-1

+ 53 12-8-6 k 153 12-11-2
,

54 0-8-3 1 154 12-11-3)
- 55 11 m 155 12-11-4

56 12-8-3 n 156 .12-11-5

/ 57 0-1 0 157 12-11-6

0 60 0 p 160 12-11-7

1 61 1 q 161 12-11-8

2 62 2 r 162 12-11-9

3 63 3 s 163 11-0-2)
4 64 4 t 164 11-0-3

5 65 5 u 165 11-0-4

6 66 6 v 166 11-0-5

7 67 7 w 167 11-0-6

8 70 8 x 170 11-0-7

9 71 9 y 171 11-0-8

72 8-2 z 172 11-0-9

, 73 11-8-6 [173 12-0

< 74 12-8-4 I 174 12-11 ."
::: 75 8-6 } 175 11-0

-------;>- --------- - -76--- --0-8-6-- --- --------{-- --------- --176-- c._.__ -11-0-1---

? 77 0-8-7 DEL 177 12-9-7)

C-2

ASCII

040
041
042
043
044
045
046
047

050
051

052
053
054
055
056
057

060
061
062
063
064
065
066
067

070
071
on
073

Card and Tape Codes

NOTE
The ASCII character ESCAPE (octal 33) is also CTRL- [on
a terminal.

The ASCII characters and (octal 175 and 176) are treated
by the monitor as ALT-MODE and are often considered
the same as ESCAPE.

Table C-2
ASCII Codes and BCD Equivalents

Character Character

Symbol BCD ASCII Symbol

blank 20 074 <
! 52 075 =
" 17 076 >
32 077 ?
$ 53
% 77

100 @

& 35
101 A

, 14
102 B

103 C
(34 104 D
) 74 105 E

* 54
106 F

60
107 G

+
,

33 110 H

- 40 III I

73 112 J

/ 21 113 K

0 12
114 L

1 01
liS M

2 02
116 N

3 03
117 0

4 04 120 p

5 05 121 Q

6 06 122 R
7 07 123 S

8 10
124 T

9 II
125 U

15
126 V

127 W
, 56

C-3

BCD

76
13
16
n

57
61
62
63
64
65
66
67

70
71
41
42
43
44
45
46

47
50
51
22

23
24
25
26

(

(

(

(

(

)

"

·Ie

)

)

)

"

)

APPENDIX D

COMPARISON OF TERMINALS

Each DECsystem-l 0 is capable of supporting 511 interactive terminals. A wide variety of EIA and 20 rnA Current
Loop compatible terminals is supported by the DEC system. The principle characteristics of some of these terminals
is shown in Table D-l.

Hard Copy

Speed

Form width

Form types

Character set

Character generation

Options

CRT

Speed

Character/Line

Lines/Screen

Character Set

Character Generation

Table D-I
Terminals

LA30

110-300 baud

80 columns

9 7/8 inches wide

1 part only

1 28-character keyboard

64-character output

Upper case only

5x7 dot matrix.

None

VT05

110-2400 baud

72

20

l28-character keyboard

64-character output

Upper case only

5x7 dot matrix

D·l

LA36

110-300 baud

132 columns

3 to 147/8 inches wide

Up to 6 part

1 28-character keyboard

96-character output

Upper & lower case

7x7 dot matrix

Work Surface

Paper stacking tray

VT50

75-9600 baud

80

12

64-character keyboard

64-character output

Upper case only

5x7 dot matrix

(

.<

(

(

(,

)

)

)

)

"'

)

APPENDIX E

ERROR CODES

The error codes in Table E-l are returned in AC on RUN and GETSEG monitor calls, in the right half of location
E + 1 on 4-word argument blocks of LOOKUP, ENTER, and RENAME monitor calls, and in the right half of
location E + 3 on extended LOOKUP, ENTER, and RENAME monitor calls.

Symbol

ERFNF%

ERIPP%

ERPRT%

ERFBM%

ERAEF%

ERISU%

ERTRN%

ERNSF%

ERNEC%

ERDNA%

ERNSD%

ERILU%

ERNRM%

Code

o

1

2

3

4

5

6

7

10

11

12

13

14

ERWLK% 15

ERNET% 16

ERPOA% 17

ERBNF% 20

ERCSD% 21
1 __________________ -- --------- _______ 1 ____ _

ERDNE% 22

ERSNF% 23

Table E-l
Error Codes

Explanation

File not found, illegal filename (0,*), filenames do not match (UPDATE),
or RENAME after a LOOKUP failed.

UFD does not exist on specified file structures. (Incorrect project­
programmer number.)

Protection failure or directory full on DTA.

File being modified (ENTER, RENAME).

Already existing filename (RENAME), different filename (ENTER after
LOOKUP) or supersede (on a non-superseding ENTER).

Illegal sequence of monitor calls (RENAME with neither LOOKUP nor
ENTER, or LOOKUP after ENTER).

1. Transmission, device, or data error (RUN, GETSEG only).

2. Hardware-detected device or data error detected while reading the
UFD RIB or UFD data block.

3. Software-detected data inconsistency error detected while reading
the UFD RIB or file RIB.

Not a saved file (RUN, GETSEG only).

Not enough core (RUN, GETSEG only).

Device not available (RUN, GETSEG only).

No such device (RUN, GETSEG only).

Illegal monitor call (GETSEG only). No 2-register relocation capability.

No room on this file structure or quota exceeded (overdrawn quota not
considered).

Write-lock error. Cannot write on file structure.

Not enough table space in free core of monitor.

Partial allocation only.

Block not free on allocated position.

Cannot supersede an existing directory (ENTER).

Cannot delete a non-empty directory (RENAME).

Sub-directory not found (some SFD in the specified path was not found).

E-l

Symbol Code

ERSLE% 24

ERLVL% 25

ERNCE% 26

ERSNS% 27

ERFCU% 30

ERLOH% 31

ERNLI% 32

Error Codes

Table E"l (Cont.)
Error Codes

Explanation

Search list empty (LOOKUP or ENTER was performed on generic device
DSK and the search list is empty).

Cannot create a SFD nested deeper than the maximum allowed level of
nesting.

No file structure in the job's search list has both the no-create bit and
the write-lock bit equal to zero and has the UFD or SFD specified by
the default or explicit path (ENTER on generic device DSK only).

GETSEG from a locked low segment to a high segment which is not a
dormant, active, or idle segment. (Segment not on the swapping space.)

The file cannot be updated.

The low segment overlaps the high segment (GETSEG).

The user is not logged in (RUN).

----------------- --------- ----------

E-2

-j

)

)

)

~

I
I

)

c,

,\

)

)

)

)

1040

Relative Performance 1

Avg. Number of Users 5·15

No.ofCPUs 1

Memory Size in Kwords
(min.·max) (K·1 024) 64·256

No. ofInstructions: 366

Instruction Look·ahead No

Virtual Memory No

Memory Interleaving 2 or 4
way

Index Registers 15

Accumulators 16

Instruction Times
(microseconds)

Fixed Point Add 2.8

Fixed Point Multiply 9.8

Jump 1.5

Single Precision
FloatingPoint Add 9.8

Double Precision
Floating Point Add 59.4

I/O Bus Band width
(words/ second) 200K

Memory Bus Band width
(words/ second) 4000K

APPENDIX F

DECSYSTEM-IO AT-A-GLANCE

Table F·1
DECsystem·10

1050 1055*

1.5 2.8

10-40 20·70

1 2

64·256 128·256

366 366

No No

No No

2 or 4 2 or 4
way way

15 15 each
CPU

16 16 each
CPU

2.8 2.8

9.8 9.8

1.5 1.5

9.8 9.8

59.4 59.4

200K 200K

4000K 4000K

1060

2.5

20·60

1

128·4096

378

Yes

Yes

2 or 4
way

4x 15

4x 16

1.5

4.1

1.1

3.6

7.6

370K

4000K

1070 1077* 1080

3.5 6.5 5.0

30·80 40·100 40·100

1 2 1

128-4096 128-4096 128·4096

378 378 386

Yes Yes Yes

Yes Yes Yes

2or4 2 or 4 20r4
way way way

4x 15 4 xIS 8 xIS
each
CPU

4x 16 4x 16 8 x 16
each
CPU

I

I

1.5 1.5 0.7

4.1 4.1 2.4

1.1 1.1 0.5

3.6 3:6 1.9

7.6 7.6 5.0

370K 370K 370K

4000K 4000K 4000K

*Dual-processor systems execute two instructions simultaneously.
--------------- - --- ---- --------- ---- ------------------ ---------------- --- ------------------------------ --- -------- - - -- --

- ------~

F·1

(

(

(

(

r.

(

)

.,

Word Size

Minimum Memory Size

Maximum Memory Size

KAlO

KIlO

KLI0

Module Sizes

16K words

32K words

)
64K words

Read Access Time

Typical

Maximum

Cycle Time

Interleaving

)

«

)

Table G-l
Core Memories

MDIO

36 bits plus parity

64K

256K

256K

-

No·

Yes

Yes

800ns

880 ns

1.8 tls

2 or 4 way

External Only

G-l

MElO

36 bits plus parity

16K

256K

256K

-

Yes

No

No

550 ns

610ns

1.0 tlS

2 or 4 way

External Only

APPENDIX G

MEMORIES

MFIO

36 bits plus parity

32K

256K

1024K

1024K

No

Yes

Yes

550 ns

610 ns

950 ns

2 or4 way

External Only

(

(

(

(

)

"

. \

)

)

)

'"

)

APPENDIX H

FILE RETRIEVAL POINTERS

Sequential and random file access are handled more efficiently by the monitor if all the information describing the
file can be kept in core at once. To understand this effect, it is necessary to know how the monitor accesses files .

With each named file, UFD, and MFD, the monitor writes a special block containing necessary information needed to
retrieve the data blocks that constitute the file. This block is called a retrieval information block, or RIB.

Retrieval pointers in the RIB describe contiguous blocks of file storage space called groups. Each pointer occupies
one word and has one of three forms: .

I. A group pointer
2. An EOF pointer
3. A change of unit pointer.

H.t A GROUP POINTER
A group pointer has three fields:

1. A cluster count
2. A folded checksum
3. A cluster address within a unit. The width of each field may be specified at ONCE-only time; therefore,

the same code can handle a wider variety of sizes of devices.

The cluster count determines the number of consecutive clusters that can be described by one pointer. The folded
checksum is computed for the first word of the first block of the group. Its main purpose is to catch hardware or
software errors when the wrong block is read. The folded checksum is not a check on the hardware parity circuitry.
The size of the-duster address field depends on the largest unit size in the file structure and on the cluster size. A
cluster address is converted to a logical block address by multiplying the number of blocks per cluster.

H.1.t Folded Checksum Algorithm
This algorithm takes the low order n-bit byte, repeatedly adds it to the upper part of the word, and then shifts. The
code is:

Tl,T
T ,LOW ORDER N BITS OF Tl

LOOP: ADD
LDB
LSH
JUMPN
DONE

Tl,-N ,RIGHT SHIFT BY N BITS
Tl,LOOP

,ANSWERINT

This scheme eliminates the usual overflow problem assosicated with folded checksums and terminates as soon as
there are no more bits to add.

H.2 END-OF-FILE POINTER
The EOF is indicated by a zero word.

H-I

File Retrieval Pointers

H.3 CHANGE OF UNIT POINTER
A file structure may comprise more than one unit; therefore, the retrieval information block must indicate which unit
the logical block is on. Because a file can start on one device and move to another, a method of indicating a change
from one unit to another in the middle of the file is necessary. To show this movement, a zero count m~ld indicates
that the right half of the word specifies a change in unit. A zero count field contains a unit number with respect to
the file structure. The first retrieval pointer, with respect to the RIB, always specifies a unit number. Bit 18 is 1 to
guarantee that the word is non·zero; otherwise, it might be confused with an EOF pointer.

H.4 DEVICE DATA BLOCK

')

The monitor keeps a copy of up to six retrieval pointers in core at once. Therefore, if a file is allocated in six or less '-'
contiguous blocks (Le.; described in six or less pointers), all of the retrieval information can be keptin core and no
additional accesses to the RIB are necessary.

H.5 ACCESS BLOCK
For each active file, the monitor keeps eight words of storage called an access block. These access blocks remain
dormant in monitor core after a me is closed and are reclaimed only when the core space is needed. Therefore, if
a 4-word LOOKUP is done after a me has been active, access to the UFD and RIB blocks will not require I/O.

H-2

)

')

)

-7

)

)

~.

Num-
ber
sup- Maxi
ported mum

)
by number
stan- of lines Maxi-
dard per mum
soft- DECsys- through-
ware tem-lO put

DClO 1 128 3000
Data Line chars/sec
Scanner

) DSlO 2 2 9600
Single-line bits/sec
Synchro-.
nous
Interface

DCn 32 16 each 9600
Remote station bits/sec
Station plus

opera-

) tor's
console

DC75 1 64 I60K
Synchro- bits/sec
no us
Communi-
cations
Multiplexer

1· System

DC76 1 512 6000
Asynchro- chars/sec
nous
Communi-

-> cations
Multiplexer

--System---------------- ------- ----

)

Table 1-1
Communication Systems

Trans-

APPENDIX I

DATA COMMUNICATIONS

Attach-
ment to

rnis- Line types DECsys-
sion Data Local Modem tern-tO
speeds modes control via Comments

up to full duplex; yes yes I/O bus DC 1 U will also support
2400 full duplex Telegraph (long dis-
baud with local tance lines); 8-bit

copy; half character
duplex

up to full duplex yes yes I/O bus 7 -, 8-bit character
9600
bps

up to full duplex; yes no DSlO Handles 300-card/min-
2400 full duplex or ute reader and up to
baud with local DC75 245-line/minute printer;

copy PDP-8/E processor;
8-bi t character

up to full duplex yes no I/O bus Up to four PDP-II
9600 and processors; will also
bps memory support up to three

bus DC76-D asynchronous
multiplexers

up to full duplex; yes yes I/O bus Programmable charac-
9600 full duplex and ter of 7 or 8 bits; auto
baud with local memory

I

baud rate detection; up
copy bus to four PDP-II pro- I

cessors; will also sup- I

port up to three DC75-
---------- ------------------ -------- -------- - - ------- ---- --D-synchroneusmulti- --

plexers

I-I

(

(

(

(

3VW" J\L\SO nn
r XIUNJlddV

I-I

(

(

(

(

(

UUOSYM.MAC

SUBTTL UUO PARAMETERS IOAL

~XCRFF

IfDEF %,.C,erFE % •• C,< ,eREF
T4PE »

IFNOFF % •• C,<
UNIVERSAL UUOSYM .- UUO SYMBOLS FOR USER PROGRAMS
.DIRECTIVE ,NOBIH
SEARCH MAC TEN

%%~ACT==:%%MACT ~SHOW VERSION
>

,***ropyrlght (e) 1971,1972,1973,1974,1975

Digital Equipment Corp" Maynard, Mass.***
'THI~ IS T~E DEFINITION FILE OF ALL PUBLISHED MONITOR
1UIIO PARAMETERS WHICH DO NOT REQUI~E T~E JACCT PRIVILEGE. IT
:EXCL0DES VAPIOUS PARA~ETERS WHICH CAN BE ~SPYED" IF THE USER
fHAS Spy PRIVILEGE STNCE THOSE LOCATIONS CHANG! WITH MONITOR
: DF VELOPME wr. T~ll:: sr.~ S Y[1I\80{)S ARE M.!L Df!~F.IN ED TN TJ;E
, ;>1 n N T 'l' 0 R C tI ~,. I. S 1'1 P. N n A 11 ,

,TWIS DEPlVES FROM THE OLD C.MAC FILE. IT IS ONLY A UNIVERSAL

:VE~AIQN JNF0RMATI0~

UDO~HO==O

UUOVEH==11
UUOMIN==O
uuo~nt==225

• CRF.;F
SALL

: I) A S T t·~ 0 D I F' I f. R
f r~AJOR VEPSION
r M I}I!OR VERS I ON
,ED IT ldi:VFt,

J-2

)

("'

0'

)

)

)

'"

)

)

~

"1

)

)

)

.I.

)

, ,

7 ,

• ,

1 •
2.
3,
4.
5.
6.
7 •

UUOSYM.MAC

!3UE!TL TABLE OF CONTENTS

TABLE OF CONTENTS FOR UUOSYM

5E:CT ION
TARLE OF CONTENTS,.,., ••••••• , •• ,.~ •••••••••••••••••••
PEVIS10N HISTORY •••• ~ •• "" •••••••••• " •••• , •••••• , •••
rA~"ING CONVE'NTIO~i5",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
UPDATE AND CRECKOUT INSTRUCTIONS, ••••••••••••••••• , •• ,
ALL JOBDAI SyMBOLS •••••• " ••••••••••••• , ••••• "., •••••
GTMSG. MACFO~ •••••••• , ••••••••••••• , •••••• , •• , ••••••••
OI?I)EF'S

7.1 BASIC UUOS, •• , ••••• , ••••••• ,.,t •••••• ' •••• '8.'
7,2 MTA!?! FUNCTIONS ••••••• , ••• " •••• , •••••••••••••
7,3 TrCALL FUNCTIONS., •••• , •••••• , ••••• ,.,., ••••• ,
7,4 CALL! FU~CTIONS •• ,., ••• , •••••••••• ~ •• "." ••••

8, GETTIS C~NSTITUENTS •••••••••• , ••••• , ••••••• , ••••• ,., ••
9. MISC. NON-I/O

10,
'1.
12.
13.
t 4: ,
15 •
16.
17.

9,1 TMPCOR •••• , •••••••••••••••• , ••• , ••• , ••••••• ,.,
9.2 I,OCK. , ••••• I,' •••••••• ~ ••••• , ••••• ,' •• , ••• ~ •• , •

9.3 RTTRP ... , ••• II!.""'" ., II.'.' ••.•••••• to ••••• 'I" Ii

9 • 4 ~10R S T S , •• , II , , II , •••••• e , , , , ••••• , , , .' •

'IllS HI.BER.!i •• ~., ••• " •••• ,., •• "." ••••••• " ••••• ,
9 ,6 APRENB, ••• , , , •••••• , , •• , ••• , •• , , , , • , • 41 ••••

9.7 SAVE/GET LOCATIONS." ••••••••• , •••••• , ••• , •• "
9.8 SE:TUUO, •••••••••••••••••••••• " •••••••••••• , ••
9 • t:I SC HE'D, , , ••• II , ••••• , , , , ••••••••• , ••••

9. lOA TT AC H , ~ ••••• " • , , •• , ••• _ • , .. , •••• , • , •••••••• ., ••
U N t V E R S A 1, D E V 1. eEl N D EX. , • , • • • • • • • • • , • • • • , • , • , • • , , • • • • •
.JBINT INTERCEPT BLOCK, •••• , ••••• , •••••••• ,~ •• , •••••• ,
PSI SOFTWARE INTERRUPT SySTEM,., •••••••••••• , ••••••• ,.
IPCF [N!€RPROCESS CO~iM!JNrCA.'rrON FACILITY, •• , ••• ,." ••• ,
PAGE AND VM VIRTUAL MEMOFY FACILITt •• , ••• , •••••• ,.,.,
D A E:lv10 i\l CAl ... L S " , , ••• , , • , •• , •••••••••••••••• , , , , ,
ME l'gp U LID •• , •• , ••• ~ , " , •• , • , , •• , , I , , •• , • ~ •• , •• , •• " •• , , ,

ENGU~UF A~D DEQUEUE SyMBOLS_I"." •• , ••••••• " •• ".,.,

J-3

PAGE
2
4
6
7
8
9

10
11
11
12
15

33
33
33
34
34
34
35
36
37
40
41
42
43
46
49
51
53
55

f ,
• J

.f

t

J

,

UUOSYM.MAC

18, MISC. I/O
19.1 DEVCH~ ••••• , ••• ,.,., ••• ,., •• ", •••••• , ••• ,.... 61
18.2 DEVTYp" ••• , •••• ~ •• , •• , •••••••• " •••••••• ,.,., 62
1 e • 3 M TC HR ••• '.' • , • , ••••• , • , , , , •••• , ••• t , •••••••••• ,6 .3
18.4 TAPOP •••••••••••••• , •• ~." ••• , •••• "." •••• , •• 64
18.5 WHER!, ••••• ,.,., ••• ,.,."., •• ,., •••••• , •••• ~.. 68
1 El • 6 C A.!~ 1 1. , , • , " •• , , ••• , • , •• , , ••••••••. , ••• , , , •• , , , , , 6 8
18.' GETLCH AND TRMOP.,.,.!." ••• ".,.,., ••• t., •• ~. 69
18.8 GETST! AND 5ETSTS,." •••• , ••• ~.~.,.,.""' ••• , 71
lQ,9 OPEN AND CLOSE." •••• ,." •••••• ,.", ••• "..... 72
18',10 FILO? ••• ", •••••••••••• , •••• ,.,.,., ••• , •• " •• 73
19,tl BUFr~R HEADER rORMATS ••••• ~, ••••••• "., •• , ••• , 74
1 8 • t 2 MVHDP" • , • , , , ••••••••• , ~ •••• '.' , , ••• , •••••••• , • , 74
1 8 • 1 3 eN EC T • , SEN 5 E ., C rA~ ST. , ••••• ,-. " " •••• , • "" ••• , ~ • 75
18.t4 t)I'~VLNM., ;. .• ',l! •• "., ••• ,.,., ••.. ~,.,., ••• " •• , 76
lR,15 DEVS!Z.,.,.,., ••••••• "', •• ~ ••••• " •••• ,., •••• 76
1 B, 10 M'fA 10 ~ " ••• " • ~ •• , ••••• " • ,. ~ •• , •••• ,' " ••• ,.,.. 76

19. IHSK UUOS
19,1 nSKCHR." •• ,." •••••••• " ••••• ", •••• " •• , •• III." •• 77
1 9. ~ CHKACC ••••• , , , , • , ,' •••• " •• , ••• , •••• , •• , , , •• , , • , 78
19.3 DISK,. '" • , ••••.••••• , ••• , ••• 'I, ,', , ••• , , ,', , ••• , •• 79
19. 4 ~T08STR. , • , '.' .,. , •• , , •• " • , •••••• , , • ~ ~ , ••••• ,. , 80
19.5 GUaSTR ••••• , ••• ~ ••••• , , • , , • , • ~ •••• , •••••••• , , • 80
19.6 5USET, • , • , , •• , • , •••••• ~ •••••••• , ••••• , ••••••• , eo
19.7 PATH. , • I •••• , , ••••••••••••• I ••••• , ••• , ••• , • • • • 81
19 ,13 S T P U ua • , • , " I ••• , • , ••••• , ~ ••• " • '" tI •• II • , '" , •• , • , • • 8 2

20, LOOKUP/!NT~B/RtNAME •• , ••••• ,._., ••• , ••• , •••• " •• ,'.,.. 84

J4

')

~

)

)

)

)

I

~

)

)

UUOSYM.MAC

SUB TTL REVISION HISTOPY

'\3(~7' MAY, 1972

,70 CORRECT MOVX TO INCLUDE <>
,71 AOD MACRO STOPE TO GENEPATE BLT
,72 MAKE USEA8LE AS A UNIVERSAL FILE
,73 CORRECT MOVX, TXYY.TO HANDLE RELOCATABLE MASKS
,74 HAVE MOVX GENERAT~ HPLOI, HRROI
,75 HAVE TXY GENERATE ORCMI, AND!, EOVI
,76 ADD CAXYY, APDX, ETC,
,77 ADD PJRSTF
,100 UPDATE TO 50434 (5051 BY ADDING ADDITlONAL
, SYMROLS, CHANGE %LDSXS TO 'LDN!W, F%ABLB TO F%APLB
1101 ~NHANCE ACDX, ETC" TO ~OTICE SMALL NEGATIVES
,102 AOO PATH AREA
,103 ADD METER. BITS AND PIECES
rl04 ADD ALL OLD CALLI MNEMONICS FOR DDT.SAV
:105 ADD SUBTITLES ANP INDEX
:106 UPDATE RESPONSE SUBTASLE
1107 tORRECT BUGS IN UNIVERSAL SETUP
,110 ADD OPOEF FOR PORTAL ..
:\4(110) JULY, 1972

1111 CHANGE GL,NEC TO GL,LCP (SPR 10-7553)
r112 CHANGE SY.FRR ~ND SYICCD TO %5YERR AND %SYCCO.
,113 CORRECT BUG IN STORE MACRO TO ALLOW MORE GF~EPAL US~

,114 ADD 5,06 ~!r~NITtONS
,115 CO~PLETE ,RBSTS BITS,
,%5(115) NOV ?2

,116 SUPPORT DATE?5 8Y CHANGING RR,ACD AND ADDI~G R8.CRX
:117 CLEAN UP PAGE 1 LISTING
:t20 aDD .STDfL
:121 ADD LKNEM\
,122 (10-9627) ALLOW FLAG=O IN TX?? MACROS
r123 (10-9725) CHANGE CAXNE TO CAXN
:124 ADD OPEN BLOCK
,125 ADD ~ACROS MASK. RGHBT. LrTBT, FILIN. ALIGN. rXND. TXN!. JUMPI, JUMPN,
:116 ADD MACRO BTSWP.
'127 ADD INFO-RFDEF.
,130 ADD SN%LOK, CORRECT ,8FSTS
r131 (10-11609) FIX STORE MACRO fOR RELoe. 0
,%6(131) DEC 73

J-5

UUOSYMMAC

:112 UPDATE TO 50644 (6.01/5.07) MCa 4072
1133 CORRECT BUG IN %FT??? DEFINITIONS ')
,134 IF UNIVERSAL, MAKE ~JB41, ETC" BE EXTERNAL
;135 ADD ALL 6,01 JOBDAT SYMBOLS
'136 ADD .SGDOT
,137 ADD GIMSG.
1140 UPCATE TO 50645
'1 4 1 UPDATE TO 50646
:142 UPDATE TO 50650
'143 CORRECT MISSING .CREF IN TX? MACROS
:144 upnATE Tn 50657
:145 PESEPVE 0 SYMBOLS TO QPRM,UNVr %DIGITS AND U,.??? TU EtUNV
7146 UPDATE TO 50660 .-,;:1

:147 ADD LOCK UUOS!TS, DEVLNM+DEVSIZ+DISK. ERRORS
:150 UPDATE Tn 50662
:151 P~SERVE SYMBOLS OF THE FORM ????? TO OTHER FILES
:lS2 RrSERV~ FS.M??, fX.???, TS.???, AND .FX??1 TO SCNMAC.UNV
J153 ADD ST,W??, AND "ALL" BITS SETS: JW.WAL, ST,WAL, JS.PAL, RB,ERR
'154 ADD .SG41

)
:155 ~DD BOXES FOR FUNNY FORMATS: RE-OBDER CL,??? FOR CONSISTENCY
1156 CORRECT DEFINITIONS OF .BrSIS, .BFBOR, AND ,BFCNT
,157 OBSOLETE IO.Fes. AnD IO.LEM
1160 ~DO .1NfIN AND ,MINfI
,161 UPDATE TO 50664
J162 UPDATE TO 50666
t163 DEFINE INSVL.
,%7(t63) ~!;AY 74

,201 SPLIT INTO M~CTEN,~AC AND UUnSYM.~lC
)

,202 AOD REMATNING 5.07/6.01 SYMBOLS
:203 ADD WOPDS IN .FSDEF PFIVILEGED FUNCTION or STRUUQ
,204 UPDATE TO 5.07A/6.01A
:205 CHANGE WAY UUOS ARE DEFINED
:206 CQRAFCT BUG I~ REFERENCE TO VRSN.
;%!O(206) ~ARCH 1975

,207 FIX UP SUbTTL STATEMENTS SO TOC OUTPUT CAN BE USED FOR
, TABLE OF CONtENTS,)
:210 DELETE SYMBOLS FOR CHANNEL DATA BLOCK SINCE CDS IS ONLY
J AVAIL. VIA Spy uue
,211-225 ADD 6,02 SYMBOLS TO Mea 5478

'1'

~

i

)

J-6

)

OJ

"

)

)

\
)

" ,.

,PATTERN

.GGSSS
GG.S5S

.r UiJUUU,

t %GGSSS
, GG%SSS
, GGEEF%

UUOSYMMAC

SUB TTL NAMING CONVENTIONS

USAGE

NUMBER OF G€NERAL CATEGORY GG, SPECIFIC USE sSS
BYTE or GENERAL CATEGORY GG, SPECIFIC USESSS
UUO OR FUNCTION OF MACRO

GETTAB INDEX (WORD"TABLE)
BYT~ IN A SPECIFIC GETTA8
ERPOR CODE OF CATEGORY GG, SPECIFIC ERROR EEE

,8PECIAL CASFS

F%AAAA RH=BYTE OF FEATURE TEST NAMED FTAAAA
IN LH=FEATURE DEFINED
IN RH=FEATURg TUPNFD ON

LH=LH OF GETTA! IN .GTFET CONTAINING INFO

'RESEPV~D rOR OTH~P TH~N C.MAC, C,UNV··

fALL SYMBOLS CONTAING $ ARE RESERVED TO THE USER
(CUSTOMER, HIS USER, OR SPECIFIC PROGRAMS)

J ????? RESERVED TO OTHERPAFAMETEP FILES

,ALL
• , ,
: ALl,
f

: AllL
J

SYMBOLS OF THE FORMS: GlBCDE, ,GABeD, %QABCD
(I.E, WITH FIRST ALPHABETIC "Q") APE RESERv~n TO
QPRM.MAC, QPRM,UNV rOR THE QMANGF PARAMETER AREA, ETC.

I

SYMBOLS OF THE FORMS: %N~NNN, U,.NNN, E.~AAA
ARE RESERVED TO E.MAC, E,UNV FOR tHE ERROR H~NDLER

SYMBOLS OF THE FORMS: FS,M??, FX,???, rs.???, AND ,FX???
ARE RESERVFO TO 5CNMAC,MAC, 5CNMAC.UNV fOR SCAN AND WILD

J-7

, 1 •
, 2 •
: 3.
: 4.

,5.
,6.
~
,7 ..
:
, 8.
: 9 •
,10 •
: 11 ,

UUOSYM.MAC

SURTTL UPDATE AND CHECKOUT INSTRUCTIONS

COMPARE CREFS OF F% IN C VB. FT IN OATMAN
VEPIFY NO $ INCREF IN C AND THAT O~LY LEGAL PATTERNS ~XIST
UPDATE CALLI TABLE FROM UUOCON
UPDATE GETTAB LIST OF TABLES (,GTABe) FROM UDOCON. DEFINE

~NTRIES/BYTES IN NEW TABLES
fIND NEW ENTRIES IN OLD TABLES (ESP, .GTCNF, .GTLVD, .GTSYS,

,GTCf'lC, .GTCOV)
fIND NEW B'iTES IN OLD WORDS (ESP, .GTPRV, %CNDBG, .GTWCH,

%C]\JST2)
fIND N~~ ERRORS AND fUNCTIONS FOR UUOS (ESP, DEV!!?, OPEN/CLOSE,

PATH., LOCKUP)
FIND NEW OAEMO~ fUNcrIONS, ERROPS, FORMATS,
VERIFY NO DUPLICATES BY SCANNING CREF FOR ONLY· SINGLE REFERENCES
VEB tFY ,'rHIH Al,L USER ~1IJBDA. T SYM80LS APPEA R
VERIFY THAT SYMROLS RFSERVED TO OTHEF FILES DO NOT APPEAF:

??1??
G?????, %G1???, ,O??1?

: %NNNNN, U •• NNN, ~.,1??
FS.~??, FX,???, T$~???, ,FX???

J-8

)

.;

)

)

)

;'

",

)

)

-,

)

)

)

"f

'"
d

SLlBTTL

EX'l'e;FN
EXTERN
EXTERN
EXTt:RN
EXTERN

UUOSYM.MAC

ALL JOBOAT SYMBOLS

,JBAP~,.Je8LT,.JBCHN"JBCN!,.J8COR
,JRDA"JBDDT,.JBERR,.JBFF,.JBH41,.JBHCR,.JBHDA,.JBHGA
.JBHGH"JBHNM,.J8HRL,.JBHRN,.JRHSA"JBHSM,.JBHVR"JBINT,.JBOPC
.JBOVL"JBPFH,.JBPFI,.J8PEL,.JBSA"JBSYM"J81PC"JBUSY,.JBUUO
,JB4t,.JBCST,.JBOPS,.J8REN,.JBVEB

J-9

UUOSYM.MAC

SUBTTL GTMSG. MACRO

,MACRO TO G~T ERROR MESSAGE CODE AND CL~AN IT UP

rCALL: GTMSG. AC
1 WHERE Ie WILL END ~p WITH IT IN BYTE JW,WMS
, DEFAULT IS IMESSAGE:CPREFIX,FIRST)
, IF /~ESSAG~;CONT!NUATION, THE~ IHESSAG~:FIRST

DEr !I'll';

IS ASSUMED

GTW<SG.
.xeREf
HHPOI
,CREP"
GETTA8
.XCRn'

ttl()VEI
T X.tJf~
,{,X 0
TXME
TXO
.CREf

(AC) , <

AC,.GTWCH

Ae,

,:SUPPRESS REDUNDANT eREF
"IT'S IN THE WATCH TABLE

,;GET FROM MONITOR

AC,O . ,:DEFAULT TO 0
AC,JW,WMS :JIF O.
AC"JWWPO_<ALIGN. (JW,WMS» I: DEFAULT TO PREFIX, FIRST
AC,JW,WeN :,IF IMESSAGE:CONTINUATION
AC,JW.WFL J: DEF~ULT TO IMESSAGE:FIRST

1-10

)

7,

)

)

)

"

~~~ 

) 



UUOSYM.MAC 

) 
,OPDEf THE UUOS SO THEY APPEAR IN THE OPCODE LISTING 

OPOEF HALT [JRST 4, J 
,{DBS IS OBSOLETE (CALL) 

OPDEf IN I! [4189] 
~ :42-4688 ARE RESERVEO TO CUSTOMERS 

OPDEF CALLI [47BP) , (PUPGED LATER) 
() Pt1 &:~' OP~N [SOB9] 
QPDE.:F' TrCALIJ (5188] , (PURGED LATER) 

,52-54B8 ARE RESERVED TO DEC 
OPDI!.:F RENAME rS5BB] 
OffDEF IN (5688 J 
IJPDF,F' OUT r5788] 
OF1)F.:F SETSTS (60B8J 
OPI)EF STATO (6189) 
Of'DEF GE'fSTS (6288) 

\ OPD£F' STATZ (6388] 
) OPDEF' INBUF' (6489) 

OPI)EF OUTBUF (0588) 
OPDt:F INPUT [6688) 
OPl')EF OuTPUT [67B8] 
QPDE;F' CLOSE (7088l 
OPPEl"" REtEllS (71 B8 J 
OPN~F' wrAPE (7?88] 1 (PURGED T.,ATER) 
OPI)EF UGETf r7 3B8] 
OPDEf USEr! (7488) 

) OPDF;F U,sF.'T(1 (7589] 
OPDf.;F' LOOXUP t7688] 
i)PDEf ENTER [77B9J 
OPO£F U,JEN (10088] 

) 

" 

J-ll 



UUOSYM.MAC 

SUB TTL OPDEFS •• MTAPE FUNCTIONS ') 
OPDEf ~1T\.lJAT. (MTAPE 0] 'W~rT FOR POSITIONING 
fJPOEF MIRE1.) • (MTAPE 1J : R~:\HND 
Of'I)EF MTF;OF, (MTAPE 3) ,WRITE END OF FILE 
'JPDEF MTSKR, (MIAPE 61 ,SKIP. RECORD 
OPDt;F l'>1'l'BSR. (MTAJ?E 7) ,BACKSPACE RECORD 

.7 

nt>Oi!:F ~HEOT • [MTAPE 10] ~SKIPTO END OF TAPE 
OPDEF MTUN[J. (f--iTAPE 11) ,REwIND AND UNLOAD 
OPDEF l'>1TF3LK. (NTJ'.PE 13J ~BLANK TAPE: 
(JPDt:F ~~TSKF • rWr;'~PE 16J ,SKIP FILE 
Of!"l8F ~HBSF • (l'1TAPE 17) J BACKSPACE: f IL~~ 
OPPEl" MTDe:;C. (t'lTAPE 100J ,DEC 9-CHANNEL 
OPD.€P' MIIND, rMTAPE 101J :lNOUSTRY STANDARD 9~CHANNEL 
OPDEF r~TrJTH , (WfAPE 200) : LOIAj THRESHCJULD 

SUEHTL OPD~FS -- TTCALL fUNCTIONS ) 

OPPEF !N(,HR~i [TTCALL 0,) :INPUT CHAR AND WAIT 
OPP~;F DUTCHR [tTCAl.,I, 1,1 ,OUTPUT ChAP. 
OPDEF INCI1HS (TTCALL 2,J ,INPUT CHAR AND SKIP 
(JPDEF nUTSTfl [TTCALL 3,) :OUfPUT STRING 
OPDi':F ! NCl-H'lLJ (TTeALY) 4, J ,INPUT CHAR WAIT, LINE 
OPN:r INCHSL [TTCALIJ 5,) :INPUT CHAR SKIP, LINE 
('1PDEF Gii:TLCH [TTCALL 6, J 1GET LINE CHARS 
OPDEF SF:TLCf.1 (TTCALl) 7,] sSE! LINE' CHARS ) OPDEF RFSC A.~i (Irc ALL 10,) JRESET INPUT LINE 
OPiJE.;f CI:RbFJ [TTCALl) 11,) ret/EAR INPUT BUf~FER 

OPDEF CIJR6FO (TTeAL!) 12,] ,CLEAR OUTPUT BUFFEB 
r:JPDEF Si"P!MC rlTCALJ.; 13,] :5KI? IF CHAR IN INPUT 
OPDEF SKPJNL [TTCAIJXJ 14,) ,SKIP IF LIN~ IN INPUT 
I"lPDEF J (i~rf:nD nrc ALJ.J 15,J ,fjTTTPUT HIAGF: CHAR 

) 

) 

J-12 



) 

) 

UUOSYM.MAC 

SUBT!L OFDEFS ..... CALLI FUtKTIONS 

orDEF 
OPDEF 
OPDEf 
OFDEF 
OrDEf 
OPDEF 
Opn~f 

OPDEF 
OPDEF 
opnEr 
OPD~f 

OPOEF 
OPDEF 
OPDEF 
OPDEF 
OPOEF 
OPDEr 
OPDEF 
8PDEF 
OPDEF 
OPD~F 

OPDEF 
OPDEf 
ornEf 
OPD€F 
ornEF 
OPDEF 
OPDEF 
OPD~F 
OPDEf 
OPD~F 

CPDEF 
OP~Er 

OPDEF 
OPDEF 
DPD~V 

OrDEr 
OPDEf 
OPDEF 
OPDEF 
OPD~F 
orDSF 

LIGHTS 
HE:SET 
DDrIN 
SE;TDDT 
DDTC1UT 
N;VCHP 
DDTGT 
GE'l'CHR 
DD'rHIJ 
~\)A IT 
CORE: 
F,XIT 
f-<1(JN HT. 
!JTPCLP 
DA, Tf: 
LOGIM 
APREl'JP, 
t,OGOlJT 
S\>J!TCH 
'RE~ASSI 

TH'if:R 
t.f;S'T'P1E; 
GETPPpj 
TFPS~T 
'T'RP.1P'1\j 
RU~;TrM 

PdOB 
SLn:p 
SFTPOV 
PE;!" f( 

GETLI~i 

PUN 
SE'TUvJP 
REMjl P 
GETSEG 
GETTAB 
Spy 
SETI'lAi': 
T~:PC(1F 

I"'SKCHP 
SYSSTR 
~1ORSTF 

(CM .. T..Jl -1 J 
(CALLI OJ 
(C AT. L 1 1 J 
[CALlI;! 2) 
(CALT.!! 3J 
(CALLI 4) 
rC.ALT..JI 5) 
rep,!"!;l 6 J 
(C~LLI 7 J 
rc A,L.L.I 10J 
(CAI,I.I 11) 
(CALI)I 12] 
r.CAtJLI 1,12) 
rCAJJLI 13) 
(CAl)!,! 14J 
(CA.JJLI 15J 
(CA.;:'LI 16j 
rCAJ-ILI17J 
rCA T..J TJ I 2 0 J 
[C~Lr.ll 21.1 
( C Ai, 1.1 I 2 2 J 
(C A tI, I :2 3 J 
rc ALL r 24 J 
(CALLI 251 
[CALI!! 26) 
rCALT-I! 27J 
(CALLI 30] 
rC~,LIJI 313 
(CALI,,! 32J 
(CALLI 33) 
[CAl.'!.,! 34J 
[CALLI 35) 
( C ~. L. 1-1 1 3 6 J 
rCAl,T.,! 37J 
(C M-IT-I I 40) 
rC~Lr.!l 41) 
(CA1.IT.!1 42] 
rCALLI 4:3J 
(CAI,I_I 44) 
r C Ai,T...! 4S J 
[CAI!I;l 463 
((;A17.!147) 

;DTSPLAY IN LIGHTS 
: PF.SET PHOGRA.M 
:ODT MODE CONSOL~ INPUT 
:SFT .JBOOT 
;DDT MODE CONSOtE OUTPUT 
,GET DEVICE CHARACTERISTICS 
, on STOHTC AL) 
:SAVF AS 4 
:(HISTfJRICAL) 
:~AIT FOR DEVICE INACTIVE 
rAI,IJOCi\TE CaRli 
: STOP ,JOB 
PWN I TOR REll.JR~i 

:CLEAF OECTAPE DIRECTORY 
:GFT DAn: 
:LOG!N 
:fNABt"E TRAPS 
: LDGOUT OR r:X I T 
:BEAD CONSOLE SWITCHES 
:RFASStGN DEVICES 
:RFAD TI~E OF nAY IN TICKS 
JREAD TIME OF DAY IN MSEC, 
:8f:TUHN PPN OF THIS .)013 
JENABLE I/O MODE 
: C1Lt,EGAt·) 
:RETURN MSEC TIME THIS JOB 
:RETUR~ JOB NUMBER 
:StE~P 

: (HISTOHICAL1) 
:RFAD ASSOL. CORE ADDRESS 
:GFT NA~E OF TERMINAt 
,BUN PROGRAH 
:DJDDLE USER VRITE PROTECT 
:REMAP LOW TO HIGH BEG 
:GFT NEW HIGH BEG 
;RfAD MONITOR TARLE 
:sPy ON M()NIT08 
:CHANGE NAME OF PROGRAM 
: P.('CFSS TMPCOR 
:RETURN DISK CHARACTERISTICS 
: .RFTURN ."I,I, Sit, 
: BE TTJ RN ,TOR S ITJ 

J-13 



r 
I 

OPDEF 
o PI) U' 
OPDEF' 
OPDEF 
OPDC:F 
OPDEF 
OPDEF' 
OPDEF 
OPDf!;F' 
OPDf:,F 
rwrEF 
r"lPOCF 
OPDEf 
o i-'f'1 £l'" 
OPPEf 
nPP[F' 
OPGi::F 
!lPDEF 
OPN:~' 

OFDb;F' 
(1 PD t~F 
OPCU'" 
r'lPDEF 
(1POEF 
Of'PE;F 
r:PD~;f 

[1PD~;f 

r.~ Pfit,:F 
nf'D/::r 
("!f'lIl:"F' 
OPN,F 
(l PC r'F> 

(1PfiEF' 
rlPD£F' 
OPDEF 
DPOEF 
OP[:r.:F 
Opnt~F 

DFDE:r 
OPl)EF 

STHUUO rCAl"ltl 50) 
SYSPHy (CAIIL1 51) 
FRECHi'! (CALLI 523 
DE;VTYP rCALLI 53] 
DEVSTS (CAt,LI 54J 
T"lE~ V P P N (CALIIl 55) 
SEEK rClHJLI 56J 
RTTFP [CALf ... I 57] 
LOCK rCMJy.r 60J 
,JCF<·STS (CALlll 61) 
{,llCAn: rC.lH~r~I 62 J 
111HERF rCALLI 63) 
DE;Vt·: A !.~ (CALLI 64) 
CTLJOB [ C AT .. I! I 6 5 J 
(iOBS'T"R ((At,Ll66J 
.l\CTIVAT (CALLI 67j 
OEACTI (CAtII;! 70) 
HPQ (C A UJ 1 71) 
HIB~~F (CA!..!;! 721 
(<jAKE:, (CALL! 73) 
CHGPPo\i (CAiILI 74J 
SETU!10 r C ~lJ IJ I 7 5 J 
DEVGEi~ (CA.L,LI 76J 
f1THLlSR ((A1 .. 1II 77] 
CHKAC(' ( C .~JJ II I 1 0 I) 1 
nEVSIZ rc.lILl,! lOU 
DAE~'nN (Cf..Lr~I 102] 
,TOBPEK (CALI,t 103J 
ATTACH rCrd..ilil 104) 
nl\ F F T~; (C!lLi..!I )05] 
FReunD (CM,,,IT..,d, 1061 
DEVl"Nf'l' (e]\J,)I)I 1.07) 
PATH. ~C!\LT.JI 110) 
M[n:R. rCALLI 111] 
MTCHR, (CAI"I.;l112J 
~n3StT • (('11,1.11,;1 113) 
POKF. [Ct-.LL,1114J 
T R 1;1 r, O. rCJI,IJI,l 115) 
THMDP. (C.l\LJ.lll16 J 
PESD", (cr\ljY-iIl17J 

UUOSYM.MAC 

: n r DDIJE SIFS 
:RETURN ALL DISK UNITS 
1(fUTlJHE) 
,PFTURN DEVICE PROPERTIES 
:RETURN LAST CONI 
:RETURN PPN OF ERSATZ DEVICE 
1SfF:K DISK 
1CONNECT RT DEVICE 
: LGCl<. ! N CCRE 
,REf URN J08 STATUS 
,C~ANGE LOGICAL STATION 
:RETUPN PHYSICAL STATION 
:RETURN PHYSICAL NAMF 
:RSTURN CONTROLLING JOB 
:RFTUFN NEXT JOB S/L 
:(FUTURE) 
: (fUrORE) 
: SF'T HP(~ PUN 
: SU~EP ON E;VF:NT 
:wJI.KF. SOMB: JOB 
:Cl-lANGE PPN 
:GENSRAL SET SYS PA~AMS 
: (VUTUPE) 
:CHEC¥ fOR ANOTHER USER 
:VALIDATE FIL~ ACCESS 
:GET bUFFER SIZ~S 
f Rr;omST DAt;M(JN FUNCTION 
:8FAD/WPITF ANotHER JOB 
~ A T T A ( H TTY I ,J(j 8 
:DAEMUN INDICATES DONE 
,FOBrE COMMAND ON JOB 
,SfT LOGl'Cld! i'j~jYjE 

;DEAL WITH DIRECTORY PATHS 
JP~RfORMANCE METEBING 
:G~r MAG TAPE CHARACTERISTICS 
:SfTUUO fOR AR~ITRARY JOB 
,C'HANGS ~~ONI'l'OR 

:JDS'S TERMINAL NUMBER 
:n::fHAJNAL npf:o:RATIQM 
: BESET CHANflf<:L, 

J-14 

) 

) 

~ 

) 



UUOSYM.MAC 

) OPDEF' rNIJOK. (CALLI 120] :UNLOCK A taCKED JOB 
OPDEF DISK. rCA!Jl,! 1'lJ ,MtSC~ DISK FUNCTIONS 
OPt"EF OVRST. [CALLI 122J :RYSTPICT DEVICE TO OP~R 
OPDt:F DVUHS. (CALIJI 123] :UNRESTRICT DEVICE 
(lPDEV XTTSK. [CAt,Ll 124J :DA28C FtJNC":TIONS 
OPDEF CAIJlt, (CALLI 125) rDL10 MULTI-FUNCTION 
OPDEF MTAID, [CALt,l 126) ,SET i"AG TAPE 10 
OPDEF IONDX. [CALf.)I 127J :RFTURN UNIVERSAL DEVICE INDEX 
OPDEF" CNEe! • (CALLI 130) :cnNNECT 1'0 ~'1PX 
OP[lEf' flWf4DR. (CALIJ! 131] ,MOVE BUFfER HEADER 
(1PDEF ERI,S! • (C~rJLI 1321 :EFROR LIST 
OPN:r SF~NSF • ( C j\j; I. 1 1 3 3 J ,SFNSE 
C'PT:'IE.f CLRsr. reAL!.,! 134] :CI,!U~,R STATUS 
oPT)tF PIINT, ( C AT-I T. I 1 3 5 ) 'INITIALT~E SOFT. PI SYS 
(1PDEf<' PISYS. (CALLI 136] ~MAl\jIPUIJA~E SOFT. PI SYS 
OPDt:F nrBRK. (CAJ.lL1137J :DlSMlSS ~OYT. PI INTER, 
OPDEf prs~v. [CALLI 140) :SAVE SOfT. PI SYS 
r.lpI)EP' FIRST, rCA,LLI 1411 :RESTDRE SOFT, PI SYS 
rpl)Ef IPCf R • (CALLI 1'42) :IPCf READ 
OPDEF IPCF'S, (CAiJLI 143) : r PCF SEN!) 
OPPE:r JPCF'G. (C.6LLl 1441 : H'Cf QUF.RY 
Oprle;f': PAGE.'. rcaLJ.JI 145) J P A. G Ul G U TJ (J 

OP,)!;;!' SUS~:T • (C~LLI 146) :S{1PER USETI/O 
npliEf C01vlPT. [C,b..LLI 147J :CALL COMPATABILITY PACKAGE 
OPDE'f" SCHEJ'). r C A)../ r ... I 1 5 0 J ,SCHEDULING twa 
Ol?Dt.;F gr-,Q. r C l'JoJ T.J 1 1 5 1 J : U1Q1Jr~UE 

) (1P I) t;f" DEG. (CALlll 152J , DF:i~Ur:U£ 
OPDEr;' E~I OC • (CAJ.lLl 153J ,ENQ/DEQ CONTROL 
(1 PDf:~F TAPOP, (CAf .. !,1 154J ~MlG TAPf 0P~RATIONS 
Of;'f)EF F II.dJP. rCALll! 1551 ,Frr..lFo: opn:/cr~OSE: 

,OPl)t;F CAIJ78. ( C Po L r, I 1 5 6 J :DAS-79 DIAGNOSTICS 
:OPt)~F NODt:. reAL!,l 157) , R~;SERVF~D 

r;p]")E.;F ERRPT. [cr,LT.I 160] :fOR DAEMON FRROR REPORTING 
IOPN;F ,A L fJOC , [CALLI 11;lJ :ALLOCATE A nEVIC~ 
OPN;r- PERF' • (CALLI 162) 1~Ll0 PE~fORMANCE ANALYSIS 

) 

J-lS 



UUOSYM.MAC 

SUB TTL GETTAB CONSTITUENTS 

,GTSTS==O ,JOB STATUS 
,GTAPR::1 rJOB RELOCATION AMP PROTECTION 
,GTPPN==2 :PROJ-PROG NUMBER 
• GTPRG== 3 : fROGB /'\H NP,ME 
.GTTIM==4 :TOTAL RUN TIME TN lICKS 
,GTKCT==5 :KILO-CORE TICKS 
.GTPRV==6 ,PRIV WOFD 

JP.IPC==180 :IPCF PRIVILEGED FUNCTIONS 
JP.DPk==1B2 ,HIGHEST DISK PRIORITY 
JP.M~T==JB3 :METER UUO 
JP,POK==1B4 :POKE MONITOR 
"lP.CCC==t85 :OU.\NGE CPU SPECIFICA.TION 
~jP.HP(~==17B9 :~H PPIORITY QUr;t1t: 
JP.NSP==tBI0 :U~SPOnL DEVICES 
JP,~~Q==lBl1 :E~Q./DEQ. PRIVa 
JP.RTf==lB13 :RTtRP UUO 
JP,LCK==tB14 :LOCK UUO 
JP.TRP==lB15 :TPAPSET UUO 
JP,SPA==1816 :Spy ON ALL CORE 
JP.SPM==tB\7 ,Spy ON MONITOR 

,GTSWP==7 ,SWAPPING POINTERS 
.GTTTY==10 :TT¥ lAHLE 
.GTCNF::11 rCONFIGURATION 

%CNFGO==O,,11 :NAME OF SYSTEM 
~ eN f c: 1 := 1 , , 1 1 , , 
It;CNFG2=::?',,11 : ,. 
~CNfG3==3,,11 ,., 
~ C :,\1 f G 4 = :::: 4 , , 1 1 :. • 
% C NOT 0:::: 5 , , 11 , Dr. TE 0 F S Y S Tf~ M 
'CNUT1::::::::6,,11 t ,. 
%CNrAP::::~7,,11 :NAME OF SYSTE~ DEVICE 
%C NfIM:::::l0,,11 ,TIME OF DAY 
%CNDAT==11,,\1 ,PATE IN BINARY 
%CNSIZ==12"tl ,SYSTEM MEMORY SIZE 
%('~iOPF=::::13" 11 IN''!-1F: OF' opp TTY 
%CNDfV==14,,11 :LH:: DcB CHAIN 
%Ci;S,JN==15,,'1 'L1-i= .. S~:GN, RH=JOB~; ~.UMBE;F~S 
%CNTwR==16,,11 :NON-ZERO IS DUAL SEGMENTS 

J"16 

) 

" 

) 

) 

). 

'! 

) 



,,-

) 

) 

) 

) 

\ 
;' 

UUOSYM.MAC 

'C~STS==17,,11 ,SYSTEM StATES 
ST%DSK==lB0 ,DISK SYSTEM 
ST%5WP==181 ,SWAPPTNG SY~TEM 
ST%LOG==lB2 ,LOGIN 
ST%FTT==1B3 JfULL DUPLEX TTY SOYTWARE 
ST%PQ V== 1 84 : l?R 1 V I LI::r.E,S 
ST%TWR==185 ,UUAL SEGMENT SOFTWAR~ 
ST%CYC==tR6 ,50 HER1Z CLOCK 
51%TD5==789 :~YPF nf DJS~ SYSTFM 
ST%INC==lBl0 :IND. PP~S ON n15K 
ST%IMG==tB11 'IMA~E MODS TTYS 
ST%DlJL==181.2 :DUAL, PROCFSSCP SYSTEN 
5T%MRB==1813 :MULTIPLf FIBS SUPPORTED 
ST%PPT==lB14 fHrG~ PRECISION TIME ACCOUNTING 
ST%E~O==1B15 :EXCLUDE OV~RHEAn FROM TIME ACCOUNTI~G 
ST%RTC==1816 :HFAL Tl~E CLOCK 
ST%~BF==lB17 :~ADE FOP FORDTS 
SI%Nnp==1B27 :NO nPERATrA IN ATTENDANCE 
ST%NSP==lB28 ,UNsponL DEVICES 
ST%ASS==lB29 7ASSIGN/I~IT DFVICFS 
ST%NRT==lB32 rNO RE~OTE ITY'S 
ST%BON==1B33 :BATCH ONLY 
ST%NRL==1B34 ,NO REMOTE Ln~INS 
S1%NLG==lB35 ,NO LOGIN5 ~XCEPT CTY/OPR 

%CNSFR==20,,11 ,APR SERIAL NUMHER 
%CNNSM==21,,11 :NANO.SECS PER MEMORY CYCLE 
%CNPTY==22,,11 :LH=NUMBER fIRST INV, TTY, RH=NUMBER PIYS 
%CNFRE~=23,,11 ,POINTER fOR BIT MAP Of CORE BLOCKS 
%CNLGC==24,,11 :LOCATION OF L~~ CORE CORE BLOCKS 
%CNSTS==25,,11 ~POINTER TO STATIO~ BLOCK CHA1N 
%CNQPL==26,,11 ~OPR LOB ADDRESS 
%CNTTf==27,,11 :POINTER TOTTY FP~S CHUNKS 
%CNTTC==30"tl :LH=NUMBER OF TTY CHU~KS, HH:ADOR Of fIRST 
%C~TT~==31,,11 :NUMBER or fR~F CHUNKS 
%CNLNS==32,,\1 :POI~TER TO CURPE~T ca~MA~D TTY 
% eN i ... ~' P =;: 3 3 , I 1 t : PI) 1 N n~ R 'T 0 TTY U N F: r~ B L~: 
%C~/FR==34"tl :~ONITOR V8H5I0N 
%CNCSC==35,,11 :POINTEB to ~A~A Ssl CDNT?OL TABLE 
%CNDLS==16,,11 1LAST PEcrEVE INT~ F~OM DC10 (PR! 5.07) 
%C;\fCC1==37"tl :LA.ST RECIEVS lin. fROM 6g0I(PRE~ 5,07) 
%C~SGr==40,,11 ,LAST DORrl~ BEG THROWN AWAY 
%CNPO~==41,,11 :ADORESS OF LAST PO~FD LOCATION 
% eN P fJ C ;::: 4::2 , , 1 1 : L H;; ~1 0 B, RH = (' uu ;\1 T 0 F PO K E S 
~CN\-iHY==43" 1. I, :RFASON FOR TjAST PEI,OA1) 
%C~TIC==44"tl ~~UMAER Of TICKS FER SECOND 
.c~pn6==45,,11 :POINTER TO PDB POINTER TABLE& 
~ ct·,: R T C = = 4 6 , , 1 1 : K F: SOL U T ! 0]1) fJ F B 11 ~i T H1 EeL C C K (TJ N j T S / SEC) 
%O:OHi='=47,,'1 : LH=~'TR TO CHPINEt, D. B. J, IS'l, PH=UNTlSFD 

1-17 



UUOSYM.MAC 

%CNLMX==50,,11 ;LOGMAX (MAX JOBS TO BE LOGGED IN) 
%C NBMX==51,,11 ,SATMAX (MAX BATCH JOBS) 
%CNBMN==52,,11 :BATMIN (MIN JOBS R~SERVED fOR BATCH) 
%CNDTM==53"tl ,INTERNAL FORMAT PATE"TIME 
'CNLNM==~4,,11 :NUMBEP Of JOBS LOGGED IN 
~:Ct!BNI¥1==55" 11 r NUNBF;R Of' BATCH JrJBS LOGGED IN 
%CNYER==56,,11 :LOCAL YEAR 
%CNMO~==57,,11 ,LOCAL MONTH 
'C~DIY==60,,11 :LOCAL DAY OF MONTH 
%C NHOP==61,,11 ,LOCAL HOUR 
'C~MI~==62"tl :LOCAL MINUTES 
%CNSFC==63"tl ,LOCAL SECONDS 
%CNGMT==64,,11 ,TIME FROM GMT IN INTERNAL FORMAT 
%CNDRG==65,,11 :DEBUGGING STATUS ~OPD 

St%DBG==lBa ,SYSTE~ DE8UGGING 
ST%~DC==1Bl ,RELOAD ON DEBUf srOPCD 
ST%RJE==lB2 :RELOAD ON JOB STupcn 
ST%NAP==lB3 rNO AUTO REL0AOS 
ST%CP1==1E4 ,IF SErOND CPU STOPS, STOP CPUO 

tCNfRU==66,,11 ,MONITOR FREE COP~ USED 
%C N!CM==67,,11 ,MAX TTY CHUN~S 
%CNCVN==70,,11 ,CUSTUMEP VERSION (136) 
'CNDV~==71,,11 :DEC VERSION (137) 
%C~DFC==72,,11 :NUMBER OF OF10 DATA CHANS 
tC~RTD==73,,11 :NUMBER Of HT DEVICES 
tCNHPQ==74,,11 fNU~BER OF HPQ'S 
%CNLoe==75,,11 rTTY DDB WORD POINTING TO LOB 
%CNMVO==76,,11 :MJX VECTOR OFFSET fOR PISYS. 
%CNMIP==17,,11 :M~X PRIOFITY FOP PISYS, 
%CN~ER==lOO,,11 :ADOR Of MTAO"OFFSET OF MTA ERR FPTWORD 
%CNE.Tl==101,,11 :USER AOI')RF:SS OF EXEC'S AC T1 
%CNL5D==102,,11 :LENGTH OF SHOPT DDB 
%C N LL0==103"lt ,LENGTH OF LONG DDB 
%CNLDD==104,,11 ,LENGTH OF DISK DD8 
%CNEXM==105,,11 rADDRESS IN JOBDAT OF LAST E/e COMMAND 

J-18 

') 

) 

) 

) 

1 

) 



) 

) 

) 

) 

" 

) 

UUOSYMMAC 

%CNST2==106,,11 :MORE CONFIGU~ATION FEATURE INDICATORS 
ST%NDN==lB18 'NETWORK OF VICE NAMES (GGGNNU) 
ST%XPI~=lB19 ,EXCLUDE PI TIE FROM RUNTIME 
ST%ERT==tB20 1EBOX/~BOX RUNTIME (KLIQ ONLY) 
ST%EXE==t821 :SAVE A~D S5AVE WRITE ,EX! FILES 
ST%NJN==lB22 ,SYSTEM vers 9 SIT JOB NUMBERS 
ST%EER==lB23 ,EXTFNDED FRROR REPORTING 
Sl%IAF==tB24 :TAPSER INCLUDED 
ST%MBE==\B25 rMASS PUS ERROR REPORTS 
ST%GAL==182b :GALAXY-I0 SUPPORT INCLUDED 
ST%ENQ==lB27 :ENQ./DEQ, IS INCLUDED 
ST%SHC==lB28 :SCHEDULtF HAS CI,ASSES 
ST%NSE==1~29 :NON-SUPERSE~ING ENTER 
ST%MSG==lE30 :MSG5ER INCLUDED 
5T%PSI==lB31 :PSrSER INCLUDED 
ST%IPC==lB32 :IPCF INCLUDFD 
SI%VMS==tB33 ,VMSER INCL~DED 
ST%MFR==1634 ~MTA ERROH REPONTI~G 
ST%SSP==lB35 ,SWAP SPACE 1M PAG~S 

%CNPIM==107,,11 :MINIMUM CONDITION IN PISYS 
%CNPIL==110,.11 :LENGTH OF INTERNAL PIT~5 
%CNPIA==11',,11 rADDRESS OF JBTPIA 
%CNMNT==\12"lt ~MONITOR TYPE 

CN%MNX==180 ,STRANGE MONITOR 
C~'M~T==77B23 :DEC~KNU~N TYPE 

,1=TOPS 2=115 3=TENEX 
CN%MNS==77B29 :DEC SUB TYPP 
CN'~NC==77 :CUSTOMER 5UBSUB TYPE 

J-19 



UUOSYM.MAC 

%CNOCR==113,,11 ,FIFSr COP DDB"OFFSET TO CARD COUNT 
%CNOCP==114,,11 fDITTO FOR COP 
%CNPGS==115,,11 :UNIT OF COR~ ALLOCATION 
%C NMMX==116,,11 :MINIMUM LEGAL CORMAX 
%CN~SC==1!7,,11 ,NUMBER OF SCHEDULFR CLASSES 
%CNUTF==120,,11 ,EXPONENTIAL USER TIME FACTOR 
%C NHSO==121,,11 :START OF MONITORS HTSEG 
%C~HSL==122,,11 :LENGTH OF MONITORS HISEG 
%C NNWC==t23,,11 :NUMBER OF WORDS OF CORE 

,GTNSW==12 :NON·SWAPPING DATA TABLE 
%NSCMX==10,,12 ,SYSTEM COR~AX (LARGEST USER JOB+l} 
%NSCLS==tl,,12 ,HYTE POTNTER TO LAST FREE CORE AREA 
%NSCTL==12,,12 :VIRTUAL COPE TALLY 
%NS5HW==13,,12 ,JGa NUMBER STOPPED BY SHUFFLER 
%NSHLf==14,,12 :AODRESS OF LOWEST HOLE IN SYSTEM 
%NSUPT==15,,12 ,UPTIME (TICKS) 
%NSSHf==16,,12 ,WOPOS SHUFfLED BY SYSTEM 
%NSSTU==17,,12 :5YSTEM TAP~ USER 
~;·~SH...rB==20 I 112 : HtGHEST JOB NHMBER IN USE 
%~SCLW==21,,12 :WONDS CLE~REC BY SYSTEM 
%NSJ,ST:::=22, , 12 : (-lOST TIME 
%NSMMS==23,,12 ,~EMORY SIZE 
% i\i Sf P f.; = = 24 " 1 2 : TO 'f ~ L f·n: (.1 ro:: 0 R Y P A.R I T Y ERR (l R S 
%NS5P~==25,,12 ,SPURIOUS MEMORY PARITY ERRORS 
51;i\JSMr:"lC==26,,12 ,MULTIPLE l"1EMORY PARITY ERRORS 
%NSMPA==27,,12 :LAST MEMORY PARITY ADORESS 
~NSMf~=;30,,12 :LAST MEMORY PARITY WORD 
%0SMPP==31,,12 :LAST MEMORY PARITY PC 
%~S~PO==32,,'2 :~UMaER OF EXEC POL OVERfLOWS NOT RECOVERED 
%NSEPP~=33,,12 ,NUMBER OF EXEr POL OVERFLn~S RECOVERED 
%,JSf'1X IJ;==34" 12 ,MAX VALUE:: OF CORMAX 
%NSKTM==35,,12 :KSYS TIMER 
%NSC~0==36,,12 ,CORMIN 
~NSABC=;37,,12 :CnUNT OF ADDRESS BREAKS 
%NSABA==40,,12 ~ADDRESS OF ADDRESS BREAKS 
%NSLJR==41,,12 :LAST JOR PUN 
%NAACR==42,,12 1ACCUMULATED CPU PfSPONSF 
S/;ilSNCR==43,,12 'NUI'1Bi:'~P Of" CPU R~:SP(iNSES 
'NSSCR==4 4 ,,12 :ACCUMULATED SOU_BE OF CPU RFSPONSE 

,*** NO MORE GROWT~--SfE ,GlCOV 

J-20 

) 

" 

) 

) 

) 

.1 

) 



) 

) 

) 
/ 

,. 

) 

UUOSYM.MAC 

,GTSDT::13 ~SWAPPING DATA TABLE 
%SWBGH==O,,13 ~BIG HOLE 
%SWfIN==1,,13 :FINISH 
%SWFRC==2,,13 :FORCE 
%SWFYT:-],,13 
%5WV?T:=4,,13 
%SWEPC==5,,13 
%SWPIN==6,,1] 

,FIT 
:VIRTAL 
,SWAP ERROR COUNT 
:-, IF SWAP TN AND FTPDBS=l 

.GTSGt·)::.:.;:14 ~SPG~,jn;'T f,tT1IilBERS 
5N%SHR==lB1 ,SHAPARLE SEGMENT 
SN%LOK==lB5 :HIGH SEGMENT IS LOCKED 

.GTODP==15 :ONCE ONLY DISK PAPA~ETERS 
%ODSWP==C,,15 ,HIGW~ST SWAPPING IN 4~SFRIES 

%ODK4S==1,,15 :K fOR SWAPPING 
%ODPRI==2,,15 :IN CORE PROTECT TIME MULTIPLIER 
'ODPPA==3,,15 ,IN CORE PROTECT TI~P OFFSET 

.GTLVD==tb ,LEVEL-O PARAMFTEPB 
% L [i :'1 F D :: ;:: 0 , , 1 6 
%L,DSYS::=t,,16 
%LCF"t'.:::?,,16 
%Ll)tiLP:::: 3, , 16 
%LDCJUE=:4, ,16 
%I.,OSFf::;:;;5, , 16 
%LDSTH==6,,16 
l.}I"DLJ\! I ::7, , 1 F, 

%LDS\I)P=:::tO,,16 
%LDCfHJ:::;;;11"t6 
%LOSTP::::::12,,16 
%LDUH,l:::=13,,1.6 
% L f' ;'1 D i'J ::: :: 1 4 , , 1 6 
%.LJ)QUS:= 15, , t b 
%L,DCPP:=lb,,~.6 

%J.!O,sVC'=:: 17, ,16 
%IIDSPf':;=2(J, , 1 P 
%LD3YP:.:::21,,16 
%Lf"'SSP=:::22.,t6 
% L 0 {vi IT U ::; :: ? 3 , I 1 b 
%LN'1)'T:::::24,,16 
%L\'1\iE'\',:::::25" 16 
%LOOLD::::::?6"t6 
%L!HlilD:::=27,,16 
% L I).~ Db::: :;; 3 0 , , 1 6 
%IJ r'HSL::::::3t,,16 
!?5 f.l DA L.G:::::32" l6 
%LDbLl::::::33,,16 
%td:-.'Fr)H::::3q,,16 
% LJ [) i'l A C :::::: 3 '; , I t 6 
%LDCWV::::~6" 16 
%IJDPUb:::;37,,16 

: r·! F' tJ P P N [1 I t 1 
:SYS PPN (1,4) 
:FDLL FILE ACCESS PPN [1,2) 
:UNLOGGED Ih PPN [2,S] 
: (~U E A P E.~ A P P tl (3, 3 J 
fFIRST PPB"NEXT PPB TO SCA~ 
:FIHST STR DATA BLQCK"OFfSET TO NEXT 
:FIRST UNIT DATA BLUCK.,OFFSEI TO NEXT 
,fIRST SWAP UNIT"OfFSET TO NEXT 
IMUMRER OF COPE BLOC~S 
rSTA~DAPD FILE PROTECTION 
,ST4NDARD UFD PkCl~CTlnN 

rNUMBER OF MONITOR BUFfERS 
:C~lJE: STRUCTURE Nl>ME 
:CPASH PPN (10,1J 
:pDX DEPTH OF BrDS Tn WRITF 
=SPonL~D fILE PROTECTION 
:STANDARO 5YS: PROTECTION 
=STANDAPn S~S:.SYS PROT£CTIO~ 

~rlAX. NEGATIVf, USE'Tf \l-iHICH PP:ADS E:XTEl\JDED RI8S 
JMAX, BLOCKS 10 Tk~NSfER 
: E X PEP n~ E N TAt. S Y S p P f\J [1, 5 ) 
,OLD S¥S PPN (t,31 
:USER MODE DIAGNOSTICS PPN [6,6] 
'DEFAULT DISK BUFFf~S IN PING 
:M~X UNITS IN A,S,1. 
~ALGOL LIBRAPy PPN [~,4J 

:BLISS LIBRAR¥ pp~ [S,5J 
H' (I R r RA f~ LIB PAP Y P P f, ( IS , fl ) 
:i'iACRQ LIBRAP'.( PPi\i (SOURCE: p·:OT UNIVEI~SALS) (S,7J 
~ tp.] I V F,~ P SAL L IB f-1 A R Y P P N [ 5 , 1 7 J 
:PUBLIC USER SOfTwARE LIRRAPY PPN [1,6] 

J-21 



UUOSYM.MAC 

:CONT1NUE ,GTLVD 
%LDTF:D==40,,16 
%LDREL==4.1,,16 
% 11 D F N 0 = = 4. 2 , , 1 6 
% L () S~! fJ = = 4 3 , , t 6 
%LPDOC==44,,16 
%LDf,q ==45, ,1.6 
%LDi>llJS==46" t6 
%LDOF'C=:::47,,16 
% 1J {) S L p::: =5 0 , , t 6 
%LOfIAS==51, " 6 
%LDCDI;,-==52, , 16 
%LDMXI:::=53"t6 
%.t..DN;;'::L==54,,16 
%1.. 0 0 r'li? = = 5 5 I , 1 6 
%1:'DPC1P==56, ,16 
%LOTST'==57"t6 
%LDLSO==60,,16 

%LDt<lBR==61, , 16 

%LOBBP==6:t.,,16 

:TFXT EDITOR LIBRARY PPN (5,10J 
:RELfILE LIBRAHY PPN (5,111 
rRUNOFF 1,lBRARY PPN (5,121 
:SNOBOL LIBRARY PPK [5,131 
:one FtLE LIBRARY PPN [5,14] 
, fAll, IJ I BRA R Y P P N r 5 , 1 5 J 
:MUSIC LIBRARY PPN [5,16] 
:STANDARD DE~ SOFTwARE [10,71 
:pntNTER TO ACTIVE SWAP LIST 
,BASIC LIB PPN (5,\) 
:COBOL LIB PPN [5,2J 
:POP .. 11 IllB P?1\l (5,)) 
:NSLtAC LIB PPN (5,20J 
yOUtH' PPN [5,21) 
fPOP2 LIB PPN (5,2'1 
:TES1' LIB PPN (5,23J 
:LOG sorT OV~RRUNS (CALL DAE~ON) IF OVERRUN 
: IS RFCOVgR~D ON 1 RETRY AND 'LDLSO .NE, 0 
:MASS-BUSS R8G, lH=OFFSET tNTO KDB OF # OF 
1 REG 1 S T F. R, R H = (J n' S E: TIN T 0 lJ n 8 0 F R t.: G S • 
:LH=POINTER TO BYTE POINTER Tn # LEFT IN BAT 
,RH=OFFSET (TN UDal OF CHAN TERM rAIL eN! 

1-22 

') 

) 

) 

) 

., 

) 



UUOSYM.MAC 

') .GTRCI=~17 :DISK BLOCKS READ 
.GTWCT==20 :OISK BLOCKS WRITTFN 
.GTDRS==11 ,DISK BLOCK SECONDS 
.GTT08==22 :TIME OF L~ST ALLOCATE ANb SIZE 
.GTSLF==23 :GETTAB IMMEDIATE (SELF) 
.GTDEV==24 10EVICE OR STRUCTURE (SEGMENTS ONLY) 
.GTWSN==25 :NAMES OF WAIT STATES 
.GTL0C==26 :REMOTE STATION NUMBER 
.GTC~R==27 rcn~E TABLK 
,GTC0M==30 :MONITOR cnMMAND NAMES 
,GTN M1==31 ,USER NAME 
,GTN M2==32 : ., 
,GTC N O==33 ,CHARGE NUMBER 
.GTTMP==34 :TMPeOR POINTERS 
.GTWCH==35 ,WATCh BITS 

JW.WOY==lBl 1DAYTIME AT START 
JW,w RN==1B2 ,RUN TIME 
JW.WWI==lB3 :WAIT TIME ) 
JW.WDR==tB4 ,DISK READS 
JW.WO~==lB5 :DISK WRITES 
JW.~VR==lB6 :VERSIONS 
Jw,W~T==167 :MTA STATISTICS 
JW.WAL==376d8 ,WATCH ALL 
J~.W~S==7bl1 ,/MESSAGE LEVEL 

.JWwPR==l ,PREFIX 

.JWWOL==? :ONt LINE 
,JWWPU==3 ,PRIFIX,fIRST 
,JWWLG==6 :LONG, NO PREFIX ) 
.JwwPL==7 fPR~fIX A~n LONG 

JW,WCN==lB9 t/~ESS~GF:CONTJNUATInN 
JW.WPL==IBl0 :/MESSAGE:FIPST 
Jw.~PR==lBll ~/~ESSAGE:PREFIX 

) 

-- ---- -- - -------- -- ------------------- -- ---

) 

J-23 



UUOSYM.MAC 

.GTSPL;=36 .,SPCOLING CONTROL 
JS.PRl==7e2~ ,DISK PRIORITY 

-j 
JS,DFR==lB27 :DEFERED SPOOLING (MfS-r STYLE) 
JS.PCP==lB31 19POOL COP 
JS.PCP==1832 :spaOL COP 
JS,PPT==1833 ,SPOOL PTP 
JS,PPL==1834 rSPOOL PLT 
JS,PL~==lB35 ,SPOOL LPT 
JS.PAL==37 ,SPOOL ALL 

.GTBTD==37· :REAL TI~E STATUS 
,GTLTM==40 1rIM! AND BATCH STATUS 

Jb.LCR==777S9 :CORE LIMIT 
JB~LBr==lBl0 :BATCH JOB 
JB,L$¥==lBl1 :GOTTEN FROM SIS: 
J8,LTM==77777777 ,TTM! [,IMIT TO GO TN JIFFIES 

.GTQOQ==41 ,SCHEDULING OUEU! HEADERS 
,GTQJb==42 ,JOB QUEUE LINK 
.GTC M2==43 :MnNITOR SET COMMAND NAMES ) 
.GTCRS==44 ,HARDWARE STATUS FROM CRASH 

CR.SAP==O,,44 :APR CONI 
CR.SPl==1,,44 r?I CONI 
CR,SS~==",44 ,APR DATAl (SWITCBES) 

) 

) 

~ 

". 

) 

J-24 



) 

y 

) 

) 

) 

.,. 

'.I 

) 

UUOSYM.MAC 

.GTISC==4S ,SWAP IN SCAN TABLES 

.GTOSC==46 ,SWAP OUT SCAN 
,GTSSC==47 ,SCHEDULER SCAN 
,GTRSP==50 ,PESPO~SE COUNTEP TABLE 
.GTSYS==51 ,SYSTEM WIOE DATA 

,SYEPR==O,,51 ,SYSTEM WIDE HARDWARE ERPOR COUNT 
,SYCCO==t"S1 ,NUMBER OF TIMES COMCNT WAS OFF 
%SYDEL==2"S1 ,DISABLED HAROWARE ERROR COUNT 
%SYSPC==3,,51 ,LH=3 LETTER CODE or LAST STOPCD,RH=AODRESS+l OF LAST STOPCD 
'SYNDS==4"S1 ,NUMBER OF DEBUG SToPcns . 
~SYNJS==5,,51 ,NUMBER OF JOB STOPCDS (INCLUDING DEBUG 

, STOPCD'S IF A JOR IS STOPPED) 
%SYNC~==6,,51 ,NUMBER OF COMMANDS PROCESSED 
\SYSJN==7,,51 rLAST STOPCO··JOB NUMBER 
~SYSTN==10,,51 ,LAST STOPCO--TTY NAME 
%SYSPN==11,,51 ,LAST stoPCO··PROGRAM NAME 
%SYSUU==12"Sl ,LAST STOPCO·.UUO 
%SYSUP==13,,51 ,LAST STOPCO~·USER PC 
%SYSPP==14,,51 ,LAST STOPCO·-USER PPN 

.GTWHY==S2 ,OPERATOR WHY COMMENTS IN ASCIZ 
,GTTRG==53 ,TOTAL TIME IN RUN QUEU~S WHETHER OR NOT RUNNING 
,GrSPS==54 ,SECOND PROCESSOR STATUS 

SP.SCO==IB29 rSET CPU COMMAND (0$ TO.USE) 
SP,CRO==1835 ,SET CPU DUO (~K TO USE) 

,OTHERS BY SHIFTING LEFT 1 BIT/PROCESSOR 
.GTCOC==5S rCPUO CDS CONSTANTS 
.GTCOV==56 ,CPUO CDe VARIABLES 
,GTC1C==57 ,CPUl COB CONSTANTS 
,GTC1V==60 rCPUt CDS VARIABLES 
,GTC2C==61 ,CPU2 COB CONSTANTS 
.GTC2V==62 ,CPU2 CDS VARIABIJES 
,GTC3C==63 :CPU3 tD~ CONSTANTS 
,GTC3V==64 ,CPU3 COS VARIABLES 
.GTC4C==65 ,CPU4 CD~ CONSTANTS 
.GTC4V==66 rCPU4 CD~ VARIABLES 
,GTC5C==67 ,CPUS CD~ CO,STANTS 
,GTC5V==10 lCPUS coe VARIABLES 

%CCPTR==0,,5S ,LH=POINTERTO NEXT COB 
,ceSER==1"S5 ,APR SERIAL NUMBER 
\ceo~p==2,,55 ,CPU OK IF LE 0, JIFFIES DEAD IF GT 0 
%CeTOS==3,,55 :TRAP OFF5ET FOR KA10 INTERRUPT LOCATIONS 
'CCLOG==4,,55 ,LOGICAL NAME (CPUN) 
%CCPHY==5,,55. ,PHYSICAL NAME (CPXN) 
\CCTYP==~,,55 ,TYPE OF PROCESSOR (LH-OEC, PH-CUST) 

.CC166==1 rPDP-6 
,CCKAX==2 ,KA-to 
.CCKIX==3 ,KI-l0 
,CCKLX==4 ,KL-l0 

,ceMPT==7,,55 ,REL. GETTAB POINTER TO BAD AODRESS TABLE 
%CCRTC==10,,5S ,REAL TIME CLOCK (OKlO) OOB 

J-25 



%CCH1'D==11,,55 
%CCPAP==12,,55 
%CCRSP==13,,55 
%CCDKX==14,,55 
%CCF:eS==15, ,55 
%CCM~S==16,,55 
%CVLlPT=:5,,56 
~C'VLSI==12,,56 
%CVTPE:==14,,56 
%(VSPE::==15,,56 
%CVI4PC==16,,56 
%CVl'iPA==17,,56 
%CVMPv;==20,,56 
%CVlI,lPP==21,,56 

. , HCJLF.:S 
%CVAP-C==27,,56 
%CVARA==30,,56 
%CVL~JP'==31, ,56 

UUOSYM.MAC 

,REAL TIME CLOCK DDB IF HI PRtC. TIME ACCT. 
,REL. GETTAB POl~l~R TO PARITY SUMMARY 
lREL. GETTAB POINTER TO RESPONS~ SUMMARY 
,NUMBER OF DKIO'S ON THIS CPU 
:NUM8ER or EBOX TICKS PER SECOND ON KL10 
,NUMBER or MBOX TIC~S PER SECOND ON KL10 
,UPTIME 
,L(l51 TIME 
:TOTAL MEMORY PARITY [RRORA 
:SPUPIOUS ~EMORY PARTTY ERRORS 
,HttI;T! PLE MEMORY PAP I TV ERRORS 
:MEMORY PARITY ADDRESS 
,MEMORi PARITY WORD 
,MEMORY PARITY PC 

ABOVE HERE BECAUSf OF .GTNSW COMPATABILITY 
,ADDRESS BREAK COONT 
:ADDRESS BREAK ADDRESS 
1 LAST ~10E\ RUN 
: (OBSOl,ETE:) 

%CV5TS==35,,56 fSTOP TIME·SHARING THIS CPU 
%C V RTl :'. == 36, ,56 ,OPERATOR C ON TROLL fD SC HFD lit INC 

CV%f11Hi==lBO :DON'! R1lN JOBS 
%cvnUl,==37,,56 ,NULL TII"'E 
'CVEOI==40,~56 fLH=PC,RH=COUNT OF EXEC nON'! CAR~ INTERRUPTS. 
%CVJOB==41,,56 1CURR~Nr Joe 
%CVOHT==42,,56 rOVERHEAD Tl~E IN JIFFIES (EXC. DUOS) 
%CVEV~==43,,56 :MAX gVM fOR LOCK lIUO MAPPING 
%CVEVU==44,,56 :USED EVM fOR LOCK VUD MAPPING 
%CVIJl,C==45,,56 : LOCK LOOP CC'UNT 
tCVTUC==46,,56 ,TOTAL UUO COUNT 
%CVTJC==47,,56 :TOTAL JOB CONTEXT SWITCH COUNT 
%CVTN~==50,,56 :TOTAL NXM EFROPS 
%CV~NE==51,,56 :TOTAL NON-REPRODUCIBLE NXM ERRORS 
%CVN·JA==52, ,56 ,NU~l~ER OF JOBS AffECTED BY THIS NXM 
%CVMNA==53,,~6 :FIPST ME~ORY ADDPFSS WITH NXM 
%CVETJ==~4,,5b JEPOX TICKS PER JIFFY (COMPUTED) 
%CV~TJ==54"S6 1~BOX rICKS PER JIFfY (COMPUTED BY ONCE) 

J-26 

') 

) 

) 

) 

~ 

.~ 

) 



) 

) 

) 

) 

';' 

%CVBSO=;;;Q 
%CVRNO==l 
%CVRHO==2 
%CVRLO==3 
%CVR-Sl==4 
%CVRNI==5 
~CVR~I==6 
%CVRL.T==7 
%CVR8R==~ 0 
%CVRfliR==11 
%CVRHR==12 
%C VRI,R==13 
%CVRSX=.::14 
%CVRNX==1~ 
%CVBHX==16 
%CVkLX==17 
%CVPSC==20 
%CVRSC=:::21 
%CVRHC==i.2 
%CVRl,C==23 
%CVPLJ;.==O 
%CVPMP=::1 
%CVPTS==2 
%CVPSC==3 
%CVPUt==4 
%CVPAA==5 
%CVPAC==6 
%CV!?nA==7 
%CVPOC==10 
%CVPCS==ll 

UUOSYMMAC 

:(R~L.) SUM TTY OUT UUO R~SPONSE 
:(R~L,) NUMBER TTY OUT DUO RESPONSE 
: (PEl".) H r -SUM SQ TlY our HUO RESPONSE 
:(REL~) LO-SUM so TTY OUT UUO RESPONSE 
,(REL,) SUM TTY INP uue RESPONSE 
J(REL.) ~DMBER TTY IN? UUO RESPONSE 
JeREL.) HI-SUM so TTY INP DUO RE5PONS~ 
reREL.) LO-SUM SQ TTY INP DUO RESPONSE 
;(REL.) SU~ QUANTUM REO RESPONSE 
: (P ETH) N U M B E R (). tr AN Hl 1\1 BE Q RES P 0 NSF. 
r(PEL,) HI-SUM SO QUANTUM R~Q RESPONSE 
r(REL.) LO·SUM SQ QUANTUM REO RESPONSE 
:(REL,) SUM ONE OF ABOVE RFSPONSE 
r(REL.) NU~SER ONE OF ABOV~ R~SpnNSE 
:(BEL,) HI-SUM SO ONE OF ABOVE RESPONSE 
:(REL.) LO-SUM SO Q~E Of ABOVE RESPONSE 
,(HEL,) SUM CPU RESPONSE 
,(REL,) NUMBER CPU ~ESPONSE 

reREL.' HI-SUM so CPU RESPONSE 
,cr~EL,) LO-SUM SO cpt) RE:SPonSE 
,(REL,) HIGHEST ADDRESS Of PAPITY ERROR 
:(REL.) ADDRESS TN SEGMENT or PARITY ERRQR 
~(REL.) NUMBER Of PARITIES THIS SWE~P 
J(REL.) NUMBEP OF PARITY SWEEPS 
:('REt.,) N\JI\'BER OF PSER ENABLED PARtTY ERRORS 
rePEL.) A~O Of BAD AnDRESS THIS SWEEP 
,(REL.'ANO OF BAD CONTENTS THIS SW~EP 
:(REL.) lOR OF BAD ADDPESS THIS SWE~P 
: (pT!~r,,) lOP OF BAD COi'Ht~NTS THIS S\A}EF:P 
,(PEL.) NUMBER OF SPURIOUS CHANNEL ERRORS 

J-27 



UUOSYMMAC 

,GTfET==71 ,fEATURE TEST SET1INGS 
U'TUUQ==O, ,7.1 ,UUOS 

F%EQDG==O.,lB22 :ENG./DEQ. 
F%GALA==O"lB23 ,GALAXY-l0 fEATURES 
F%PI==000,,1824 ,SOFT. PI SYS 
F%IPCf==O"lB25 :IPCF 
F%CCIN==O"lA26 :CONTROL~r INTERCEPT 
F%PTYU==O"lB27 JJOBSTS AND CNTLJ08 uues 
F%PEEK==O"lB28 ,PEEK UUO 
F%POKE==O,,1829 :POKE. UUO 
F%JCON==O"lB30 :JOB CONT!NUR 
f%SPL==OO,,1831 :SPOOLING 
F%PRV==OO"lB32 ,JOB PRIVS 
F%nAEM==O"lB33 :DAEMON FUNCTlbN$, ~TC, 
F%GETT==O"lB34 :GET~AR uun 
F%2REL==O"lR35 :2-REGIST~R RELOCATION 

%fTRTS==1,,71 ,REAL TIME AND SCHEDULER 
F%NSCH==1"lB25 ,NE~ SCH~DULER 
F%VM==OOl,,1826 ,VIRTUAL MEMORY 
F%SWAP==t"lB27 ,SWAPPER (n~FtNED IN S) 
F%SHFL==t"lB28 ,SHUFFLER 
F%RTC==Ol"lB29 ,OKLO SERVICE 
F'%T,(j("K==1,,1830 ,LOCI< UUO 
f~TBPS==t"lB31 ,TPPSET UUO 
f'%PTTR==t"lB32 :RTTRAP {JUO 
f%SLEE:=1,,1831 :SLE~P UUO 
F%BIB~==1"lB34 ,HISER/WAKE UUOS 
P%HPQ==Ol"lB35 :HIGH PRIORITY RUN QUEUES 

%fTCOM==2,,71 JCO~MANDS 

F%EXE==02,,1820 :.EXE FORMAT FILES SUPPOFT~D 
F\MOFf==2,.tB21 1SET MFMORY OfP LINE 
F%MONL==2,~lR22 fS!! MEMORY ON LINP 
f% C C tJ = = 0 :2 p 1 B 2 3 : C n j\» P 1 Leo f.E,LA N 1) 5 ( DE FIN E 0 INS, 
F%CCLX==2"lB24 ,COMPIL-CLASS 
F%QCOM==2"lB25 :QU~UE AND fRIE~DS 
F%S£T==02,,1826 ,SEl DUO/CUMMAND 
f%VERS==2,,1827 ,V€BSION 
f%BCOM==2"lB29 :BATCH CONTNOL FILE 
f%S~DA==2"lB29 :5ET DAYTIME ANO SFT DATE 
F%WATC==7"lB30 'W~TCH 
F% f IrlI :: = 2 , , 1 B 31 I fIN! oS H A;~ DeL 0 5 F 
F%PEAS==?"lB32 :PEASSICN UUO/COMMAND 
F%VXAM==2"lB33 ,E ANO D 
r%TALK==2"lB34 :5END 
r%ATTA==2,,~B3S 1ATIACB COMMAND/UUO 

IFTACC==3,,71 :AccnUNTING INfO 
F%TLIM==],,1831 ,rIME/COPE LIMITS, ETC, 
r%CNO==03"lB32 :CHA~G€ NUMBFR 
r%UNAM==3"lBJ3 .,USEF NAME 
~%¥CT==03"lB34 ,KILO-CORE-TICKS 
F%TIME==1"lB35 ,RUN rIME 

J-28 

~) 

) 

) 

) 

) 



) 

) 

) 

) 

''> 

~ 

.J 

) 

UUOSYM.MAC 

,fTERR==4,,71 ,ERROR CONTROL AND OPTIONS 
F%MNXM==4,,1822 fNXM ERROR RECOVERY CUDE 
F%KLI0==4"lB23 :T~IS IS A KL10 
F%KA10==4"lB24 :TBIS IS A KAI0 
F%22Bl==4"lB25 ,22 BIT CHANNEL (DFIOC) 
F%PDBS==4"lB26 ,SWAPPING poe 
F%K110==4"lR27 rTHIS IS A ~II0 
F%M~TA==4"lB28.MEIEB_ DUO 
F%EXON==4"lR29 :EXECUTE ONLY FILES (AJ,WAYS 1 SINer 5.06) 
F%KII==04,,1830 :KI-l0 INSTF CHECK ON KAIO 
F\POOT==4,,1831rBOOTS BOOTSTRAP 
F%2SWP==4,,1332 :MVLT. SWAPPING DEVICES 
F%FL==004,,1~33 sDIEMQN ERROR LOGGING 
f%MS==004,~1834 :~ULTl·PROCESSORS 
F%MfMP==4,,1835 :MEMGRY PARITY RECOVERY CODE 

%FTDEB==5,,71 ,CEBtJGGING FEATURES 
F%2SEG==5"lB27 :2 S~GM~NT MONITOR 
F%RSP==05,,1828 :R€SPONSE TI~E 
F%WHY;=05"lR29 ;~Hr R~LGAD 
F%PATT==~"lS30 ,PATCh SPACE IN TABLES 
F%TRAC==5"lB31 :BACK TRACKING FEATUPES 
F%HALT==5"lB32 ,HALTS IN MONITOR 
F%RCHK==S"lB33 :INTERNAL PEDLNDANCY CHECKS 
F%MONP==5,,1334 ,MONITOR WRITE PROTECTED 
F%C~EC==~"lR35 ,MONITOP CHECKSUMMED 

IFT$TR==6,,71 ,FILE STRUCTURE PARAMS 
F%DHIA==6"lP19 ,HIGH AVlIL, fEATURES 
F%DSIM==h),lB20 ,MULTI. ACCESS UPDATE 
F%NUL==Ob"lB21 :NUL 
F%LIB==O~"ln22 ,LIB/SYS/OLe/NEW ~TC, 
F%DPRI==6"lB23 ,DISK PRICRITY tRANSFERS 
F%APGB==6"lB24 :APPEND TO LAST BLOCK 
F%~IR==O~"lB25 ,APPEND IMPLIES PEAO 
F%GSRC:=6"tB26 :GENERIC DEVICE 5BARCH 
F%DRDR==6,,1827 :RgN~~E ACROSS DIR~CTORIES 
F%DSEK==6"lB29 :S[EK uue 
F%DSUP==6"lR29 ,SUPER USETI/U 
F%DQTA==~,,1830 :ClSY QUOTAS 
f%SIR==06"lB31 ,MULTIPLE STRUCTURES 
F%5UUO==6"lB32 :MISC, 5~SE?I~S UUDS 
F'P~YO==~"lB33 ,PHYSICAL r~LY 
F%SFO==06"lR34 'SU~ FILE DIRECTORIES 
F%MnU~==6"lR35 :STPuun FUNCTIONS 

J-29 



UUOSYM.MAC 

%fTOSK~=7,,7t lINTERNAL DISK PARAM5 
F%ppn4:=7"lB18 ,INCLUDE RP04 SUPPORT 
r%SLCK==7"lB19 :DEBUG SFARCP LIST CODE 
r%2ATS==7"lB20 :2 PABT AC~ESS BLOCKS 
F%CBDB=:::7,,1821 :DEBUG CB INTERLOCK 
F%LOGI==7,,1822 :LOGIN (DEFINED IN 5) 
F%DISK==7"lB23 ,DISK SYSTE~ (CEFI~ED IN 5) 
f%fFRr:;==7" 1 B24 ,PREVENT PACES 1N FIT/FMC 
F%St'JPE==i, , .t 1325 ,SWA P RFt;AD ERWJR REC OVF:RY 
F%neB~==~"lB26 ,SlD-stOCK MARrING 
F%1)UF'C==7" lsi'1 --:tJ~FD, C'OMPR'E:SSQR 
F%DETS==7, ,1 B ia .IDl SF< 'ERROR. S I MUtATUR 
f%1)i'ltl8~=7 ':,'B2<f ,-MULTI RIBS 
f%~SMC~=7"lR3nf$MALLFH ALLOC. OF DISK CORE BLOCKS 
f%rlALC==7~,1~lt :AL~OCATION nPTIMISATIONS 
~; % DST T =:::-7 " 1'8'3::>' ,D I 5!( USA G f~ S TAT t S TIC S 
F%O~NG==~,~lB33 ,HUNG DISK RECOVERY 
V%OaAD==7,~lB34 ,DISK OFf·LIN~ RECOVERY 
T%DOPT:=~"lB35 JLATENCY OPTIMIZATION 

'~TSC~==lD;~71 :SCANNER OPTIONS 
Y%DCXH==10"lB22,OCI0-H (2741 ON DC10) SUPPORTED 
F%TVP==010"tB23:FANCY V~RTICAL POSITrONI~G 
F%T¥PE==1(),,1.B24'TYH~SFT-l0 n:ATtTPf:S IN DC76 
F%2741==10"lB25:SUP PORT 2741-LLKE TER~INALS 
F%CAFE==tO,11826:DC76 
F%TBLK==10"lB27:1TY BLANK CO~VANO 
F%TPAG==]O,,1B2S:PAGE AND nISPLAY KNOWLEDGE 
F%DIAL==10"tB29,AUTO DIALFR 
F%SCLC==\O,,1830:SPECIAL LINE CONTROL 
P%SCNR==10"lB31:HAROWARF SCANER 
F%MODM==10"tB32,MODFM CQ~TBOL 
F%~30H==10"lB33,SINGLE SCA~NER 630 
F%GP02==10"tB34:U.K. MODEM SUPPORT 
F%HDPX==tO",B35,TRULY HALF bUPLEX TERMINALS 

%fTPF?==11,,71 rl/O PARAMS 
F%RDBA==11"lBt9~READ BACMWARDS ON lU70 
f%TLAB==11"lB20;TAPE LABEL SUPPORT 
F%TAPO==11"tB21:TAPnp, UUO 
F%TASK==11,,1822:1ASK TO TASK NtTWQRK SUPPORT 
F%DA57==11"tB23:DAS78 (REMOTE 360/370/2780) SUPPORT 
F%XTC==011"lB24:DA2S-C NETwnpK SUPFORT 
F%MS~S==tl.,1B25:MSGSER (~PX DEVICE) 
F%HSLN=='1.,lB26JHIGH-SPEEn LOGICAL DEVICE SEARCH 
F%CPTR==tl"tB27:COP TROUbLE INTEHCEPT 
F'CRTR==11"tR28:CDR TROUBLE INTFRClPl 
F%CTY1==11, ,·U329:5UPPtlRT CTYl 
F%PE~==O'1,,1830,REMOTE STATtON SOFTWABE 
F%LPTR==11"tB31:LFT DEVICR ERROR RECOVERY 
f%OPRE==Jl,,1832~DEvrCE ERRS TO OPER 
F%CORS==11"lB33,COR SUPER I¥AGE MODE 

_____ f=-%MI~1:= lLtl1 B34, t!.TA_Li8N S IJY IBkOCf COI>1MA~Q'§ ____________ _ 
F%TMP=:011"lB35JTMPCOF ARSA 

I-3~ 

') 

~1 

) 

) 

) 

-.' 

~ 

.) 

) 



) 

) 

) 

~ 

) 

UUOSYM.MAC 

.GT~ON=='2 ,[RSATZ DEVICE NAMES 

.GISeN:=73 ,SCA~NER DATA 
,SCNRI==O,,73 :NVMBER OF RCV I~TFRRUPTS 
~SCNXl==1,,73 :NUMBER OF XMT INTERRUPTS 
%SCNEI==2,,73 :NUMBER OF ECHO INTERRUPTS (IN XI) 
,SCNMB==3,,73 :MAX BUFFER SIZE 
%SCNIL==4,,73 :NUMRER OF ACTIVE LINES 
%SCNPS==5,,73 :SIZE OF BUF'n:F FOP PIM ~10DE 
%SCNRA==6,,73 :ADDRESS OF PECINT 
%SCNXA==7,,73 :AODRESS OF XMTINT 
%SCNTA:=10,,73 :ADDRESS OF TYPE 

,GTSNA==74 :LAST SEND ALL IN 9-AIT 
%SCNAE==O,,74 ;BYTE POINTER TO END BYTE IN MESSAGE 
%SC~AS==1,,74 JBYTE POINTER TO FtRS1-1 BYTE IN MESSAGE 
%SCNAM==2,,74 rFIRsr WOBD OF DATA IN MESSAGE 

.GTCMT==75 :SEt TTY COMMAND NAMES 

.GTPTD==76 :PROCESS cnMMUNICATIO~ IC (IPCF) 

.GTIPC==77 ,IPCF MISC. OATA 
% I PC~-1L==O, d 7 :i'lA X, PACKET LF.:NGTH 
%IPCS1==1,,77 :PIO OF SYST€M·WID~ [SYSTEM1INFO 
%IPCIH~:=2, ,77 :DSFAUI,T QUOTA 
%lPCTS==3,,77 flOTAL PACK~TS SENT 
%IPCTO==4,,77 fl0TAL PACKETS OUTSTANDING 
'lPcrp==5,,77 ,PIC OF rSYST£MjIPCC 
%lPCFM==6,,77 :PTC MASK 
%lPC~P==7,,77 :LENGTH OF PIO TAbLE 
%IPCNP==10,,77 :NUMBER Of PID-S NO~ DEFJNED 
%lPCTP==tl,,77 :1011L PID'S DEFI~EC SINCE BELOAD 

.GTUPM==IJO :USgR PAGE ~AP PAGE 

.GTC~~==101:SET wATCH COMMAND NAMES 

.GTCVL==102 :CURFENT VIRT LIMIT"CURRE~I PHi LIMIT 

.GTMVL==103 JMlXTMUM VIRT ~IMIT"MaXIMUM PHY LIMIT 

.GTIPA==104 ,IPCr STATtSTICS PEP JOB 
IP,CGO==-l"O rCOUNT OF SENDS SINCE LOGlr 
IP.CQC~~O,,·l ,COUNT OF RE~Elvt5 SINC~ LOGIN 

.GTIPP==105 rlPCF POINTEPS AND COUNTS 
r?CQP~=777B26rOUTSTANDING SENDS 
II?C!10-=:777 :GUTSTANDING flF:Cf,IVES 

,GrI~r==106 ,PIO FOR THIS JOB'S rSYSTEMJIGFO 
.GTIPQ:~107 ,IPCF FLAGS AND QUOTAS PEP JOR 

IP.CQX==lBO :DISAbLED 
I?CQQ:=lBt ,QUOTA SET 
I?CGS==777B26 :SE~D QUOTA 
tP,COR==777 :RFCEIVE QUOTA 

.GTDVL==tl0 ~POINIFR TO THIS JOB'S LOGICAL NAME TA8LF 

.GTARS==111 IADDP~SS BPEAK WORD (DATAC PTR,) 

.G~C~P==112 :RESERVED FOR COMPA1AbILITY PftCK~GES 
%CMP vl:=0,,112 ,SIMULATED MONITOP TYPE (%C~M~T) 

%CMPCV==1"t12 ,CUSTOMER VERSION 0F CQMPA!. (136) 
%C MPOV==2,,112 rDfC VERSION OF CDMPAT, (137) 

J-31 



UUOSYM.MAC 

.GTV~==113 ,GENERAL VI~TUAL MEMORY DATA) 
%VMSWP==O,,113 JS~AP COUNT 
%VMSCN==1,,113 ,SCANCOUNT 
%VMSIP==2,,113 rSWAPS IN PROGRESS 
%VMSLE==3,,113 ;SWAP LIST ENTRIFS 
%V MITL==4,,113 :TOTAL VM IN USE 
%VMC~X==5,,113 ,MAX VALUE OF %VMTTL ALLOWED] 
%VMP~X==6,,113 :PAGING RATE ~AX FOR SYSTEM 
%VMCON==7,,113 ,CONSTANT USED I~ S~AP RATE CO~PUTATION 
%{¥QJB==10,,113 ~JOe TO REQUt TOPQV (-I IF ALL) 
%VMP~J==11,,113 :PAGING RATE MAX PEP JOB 
%V~TtF==12,,113 11IME OF LAST FAULT 
%VMSPf==13,,113 :SYSTEM PAGE FAYLT COUNTS: NOT IN WS"IN WS 
%VMSW1==14,,113 rAODRESS OF SWPLST 
%VMSW2==15,,113 :ADDRESS OF SW2lSr 
%~MSW3==16,~113 :AOORESS OF SW3LST 

.G~VR!:~114 :PER ~OB ~A~ING R~TE ) 
,G1SST--115 :SCHECULER STATlS1ICS 

%55050==0,,115 1NUMBER OF JOES PUN OUT or ORDER TO ALLOW 
f THEM TO GIV~ UP RESOURCE rOR SWAP nUT. 

%SSOPJ==1,,115 ;NUMBER Of JOBS PUN nUT Of ORDER TO ALLOW 
, THEM 10 GIVE UP RESOURCE REQUIRED TO RUN A JOB 

%SSNUL==2,,115 ,SWAPPER NULL TIME 
%55L05==3,,115 ,SWAPPR.R LOST Tr~~ 
%SSRGC==4,,115 :TOTAL NUMBER Of PE~UEUES 
%SSlCM~=5,,11~ :INTERVAL TO COMPUTE MCU 
%~SI',SI:::6" 115 ,f"P"OIUH ;TERivI SChEotl1.ITNG lNn;PVAl. ) 
%SSAJ5--7,,115 :AVERAGE JOR SIZE 
%S510T==10,,115 :TOTAL QUOTA TIME 
%5SEAF:=11,,115:EXPONENTIAL AVERAGING fACTOR 
%5SFAT==12,,115 ,EXPONENTIALY AVERAGED USER TIME 
%SSPSS==13,,115 fTOTAL USER RUNTIME SINCE SCHED, UUO 

, SET CLAbS PARAM~TERS 
.GTDCf==lJ6 ,CESIFED CHAN. USE fRAcrION (INDEX BY CHAN) 
.GTST2==117 :SfCO~D JOB STATUS WORD 
,GTJTC==120 ,Joe TYPE AND SCHEDULER CLASS 
.GTCQP==121 ,CLASS QUOTA IN P~RCENT (INDEX BY CLASS) ) 
,GTCQJ==122 ,CLASS QUOTA IN JIFfIES (INDEX BY CLASS) 
;GTCPT==123 ,CLASS RUNTIME SINCE QUOTAS SET (INDEX BY CLASS) 
.CTS0H==124 ,SUB QUEUE HEADERS 
• GTSQ==125 H,;tlB QUe'lIE: lNORD FOR EACH ,Joe 

.I.e. 

) 

J-32 



) 

) 

) 

" 

) 

UUOSYM.MAC 

,GT5IU==126 ~SPECIAL PIC TABLE 
%SIIPC==O,,126 ,(SYSTEM1!PCC 
%SIlNf==1,,126 ,[SYSTEM1INFO 
%SIQSf{==2, ,126 , [SYSTEM1QUASAR 
%SIMDA==3,,126 ~MO~NTAHLg DEVICE ALLOCATOR 
%SITLP==4,,126 :MAGTAPE LA8ELI~G PROCESS 

,GT~NQ==127 ,gNQ,/CEQ, STATISTICS 
%EQMSS==O,,127 ;MAXIMUM STRING SIZE 
%EQNAG==1,,127 rNUMBE~ OF ACTrVE QUEUES 
U: Qt;SR== 2·, , 1 '27 , T01' AI.. EN Q, S P1C E HI': rAlA!) 
%EGOSR==3,,127 'TOT~L CEQ, SINCE RELOAD 
%EOAPR==4,,127 ,ACTIVE POOLED BESOUPC~S 
~t;QCEC~==5" 127 :DEfAUT/f EllQ. ouon, 

.GTJLT==130 :JOB LOGIN TIME T~ UNrVERS~L F~RMAT 

.GT~eT=='31 ,JIfFIES OF KL10 EhUX TI~E 

.GTEBR==132 ,JIfFY REMAINDER ~OD RTUPS OF 131 

.c;n1RT==133 :JIf"F'IES OF KL10 ,\iBOX TIME 
,GT~BR==134 rJIFfY REMAINDER MOD RTUPS OF 133 

J-33 



UUOSYM.MAC 

5U81TL MISC. NON-riC •• TMPCOR 

,lCRFS==O 
.TCRRf==l 
.TCRDf==2 
,TCPWf==3 
.TCPPD==4 
.TC~DD==5 

SUWI'TL. 

Li';.H'lP==1b1.5 
T.J K • J-Hl 8: :: 1 6 1 6 
LK.HLS==,tH7 
LK ;V"P::=1 H33 
L K t L h! t: ::;:.: t B 3 Ij. 
LK.f,JJ.JS:::.::1b35 

~CDUNT OF FREE SPACE 
:READ FILE 
: DELETE F IIJE' 
,~~~RITF~ fILE: 
'f~F.Ar~ DIRECTORY 
:DELETE DIRECTORY 

MISC. NON-liD •• LOCK 

:HI-SFG nON'! LOCK PHYSICALLY CONTIGUOUS 
'HI~SEG DON'T MAP IN ~XBC VM 
~HI·SEG LOCK SEGMENT 
: LO·Sfr~G Cf)N'1 fICCK' PWiSICALLY CONTtGTJOUS 
:LO-StG DON'T MAP IN EXEC VM 
:LO-SEG LOCK SEGMENT 

.L¥?P~==O ,PHYSICAl PAGE hUMBER 

~r.,(1CY UUO ER?OPS 

L!<NIS%==O 
T1KNLP{:::::::1 
LKNCA9,;::':::::' 
Li\f\'CV%==3 
tJ K f.! E: l;., % ::: = 4 
J .... K tJ r A %:::::::; 5 
LKNPU%==6 

,NOT IMPtE~ENTEDIN THfS SYSTEM 
:No LOCKING PRIVS 
tNOT ENOUGH CURE 10 CONTJ~U~ CVRRENl JOSS 
,NOT ENOUGH CORE TO GUARANTEE CORMIN 
,~nT ENOUGH EXEC VIRT ME~ 
JILLEGAL SDB-FUNCTION ARGU~EKT 
:PAGE UNAVAILABLE 

SU8TTL MISC, NO~-I/O "- PTTRP 
,R1IfiF lJ110 EPFOR CGCE:S 

P 1\J N P %::.: 18 2 4 
R p 1 C () %=:: 1 b t 5 
RTDIlJ%:::182o 
RTIAU%:::::.:'1:I27 
RTJt'\L%.::= t b 28 
FTSLE%:::::lB29 
PTTCf"%==lB30 
R T P \'\i PI, ::: :: 113 3 1 
PTfAF%==1B32 
RTrAP%=::1.833 
RIPN8t==lB34 
RTF'!~p,%::::1B35 

,JOB DOES~'T HAVE PRTV5 
,NOT RUNNABLE ON CFUO 
'DEVICE IN USE BY ANOTHEP JOB 
:ILLEGAL AC usrD DURING PTTFP AT INTERRUPT 
:JOB NOT LCCK~n (OP NOT PBIVIL£GED) 
:SYSTEM LlrlT fXC~EDFD FOB RT DEVlrES 
: ILLEGAL) FC1t<.f'!1AT OF' I 10 INSTRtJCTHH~ 

: PO 1 N IE t<. ",J) f<D II. t, EGA L 
1ERROR ADDP~SS OUT or BOU~DS 
:TRAP ADDRESS BAD 
:PI CHANNtL NOT CURRENTLY AVAILAALE rOR BLKI/O 
,fT CHA~~~t NOT AVAILAPLf 

J-34 

') 

) 

) 

) 

'" 

) 



) 

) 

) 

-' 

UUOSYMMAC 

~UBTTL MISC. NON-liD •• JOSSIS 

J B " U 1.1 A = = 1 B 0 
J8_U1..,1==181 
I..~B .. UML=='B2 
JEi .. UOA==183 
J8 .. Ur,1==lb 4 
J8,UJC==185 
JB.UJN==777777 

,JOB NUMBER ASSIGNfD 
,JOB IS LOGGED IN 
JTTY IS AT MONITOR LEVEL 
,OUTPUT IS AVAILABLE 
:TTY IS DEMANDING INPUT 
:JACCT IS SET 
:Jns NUMBER 

SUB TTL MISC~ NON-I/O -~ HIBER 

~B.Swp==lBn 

HB.IPC==tB10 
HB.RIO==tBl1 
~B,RPT=='Bj2 
HB.~TL=='B13 
HB,BTC=='B14 
HB.RWJ==lB15 
~8.RWP==1B16 
HB.RWi;=18 1 7 

SFOHCE IMMEDIATE SWAP OUT 
:IPCF 
:1/0 
:PTY ACTIVITY 
:1T\ LINE ACTIVITY 
:TTi CHARACTER ACTIVITY 
:THIS JOB 
:THIS PROGRAMM~R 

. :THIS PROJECT 

SUBTTL MISC. NON-II" .~ APRE~B 

~P.REN==lD18 
AP.POV==lBj9 
AP.ABK==1B21 
AP~ILM==1&22 
AP.NXr==lb23 
AP,PAR==lB24 
AP.CLK==1B26 
AP.fnV==tB29 
AP.A0V==IB32 

,REPETITIVE ENABLE 
:PUSH DOWN OVERFLOW 
:(FUTURE1AODRESS BREAK 
i 1 J I L B GAL r-I E M 0 H Y 
:NON-tXISTENT MEMORY 
: PAP r T t E R P 0 R 'F LAG 
:CLOCf( 
,FLOAtING OVERFLO~ 
'ARITH~~TIC OVERFLOW 

J-35 



UUOSYM.MAC 

SURTTL MISC~ NON-I/O M_ SAVE/GET tOCATIONS ) 

.SGNAM==O ,FILE NAME fROM RUN UUO 

.SGPPN==7 JOIB!CTORY FROM RUN UUO 

.SGOEV:=11 ,DEVICE FHOM RUN UUO 

.SGLOW==t7 :EXTENSION OF LOw SIG FROM RUN UUO 

.SG41==122 :LOCATION IN SAVE FIT,E CONTAINING COpy or ,JB41 

.SGDDI==114 :LOCATIO~ IN SAV[ FILE CONTA1NING COpy or .JBDP! 

JBLOCK IYPFS 
.SVEND=:1777 
,SVOIP==1776 

IN ,EXf FILE DIRECTORY 
:END OF DIRE~TORY 
,DIRFCTORY BLOCK 

:,EXE FILE DIREcroP¥ ~NTR!ES 
.Svf~f==n ,fILE PAGE AND FLAGS 

SV\hTS==lBO ,PAGE IS PART OF HISEG 
SV%SHR==tBl ,P~GF IS SHARABLE 
SV%WRT==lB2 ,PAGE IS WRITAB~E 
SV%CON==lB3 fPAGE IS ca~CEALED 
SV%SYM==lB4 :PAGE IS PAPT or SYMBOL TABLE 
5V%FPN==1777 :FILF PAGE NUMBER 

,SVPPC==l 1FRUCESS PAG! AND REPEAT COUNT 
SVtREP::777S8 ,REPEAT caU~T 
SV%PPN==777 ,PROCESS PAGE NU~BER 

1-36 

) 

) 

) 

" 

) 



UUOSYM.MAC 

) SUBTTL MISC. NON-I/O •• SEfUUO 

,STCMX==O ,COR~ MAX 
,STCMN==1 :CORE ~lN 
.STDIY==2 :DAYTl~E 
,STSCH==3 :SChED WORD (SAME AS %CNSTS) 
.STC0R==4 ,CDP SPOOL NAME 
,STSPL==5 :SPOOLING BITS (SAME AS ,GTSPL,) 
.srV;'TC==6 H~ATCH BITS 

ST,WDY==lB19 :~ATCH DAYTIME AT START 
ST.WRN==lB20 :WATCH BUN TIME 
ST.~wT==lB21 :WATCH WAIT TIME 
5T.~DP=='B22 ,wATCH DISK READS 
ST~WDW==lE23 :wATCH DISK WRIIY! 
ST. \;; V R:::: 1 824 : \to'; A 'rC H V F.: R S ION S 
ST.WMT==1S25 :WATCH MTA STATISTICS 

) 
ST.WAL==376B26 :WAfCH ALL 

,STOAT:=7 :DATE 
.STCPR==10 :OP~ DEVICE 
.STK5i=~11 ,KSYS TIM~R 
,STCLM==12 :CORE LI~lT 
• ST'l t.I'''i==l 3 ,T I!vlf: T..I H~ J T 
.STCPU==14 :CPU SPEClrlCATIO~ 
.STCRN==15 :CPU HIll\iA!HLTTY 

SP.CR5==le30 :CPU5 
SP,CR4==lK31 :CPU4 
SP.CP3:=lB32 ,CPU3 
SP,CP2~=lB33 ~CPU2 ) 
SP,CP1==lB34 ,CPU1 
,SP,CRO==lSl5 :CPUO(SAME 81T DEfINED ~ARLIER) 

,&TLMX==l~ :LCGMAX 
~~TB~X==17 ,bATMAX 
.~TB~N=='O :BATMIN 
.5TDFL==21 :DA~FUL 

.DFPSE==O . ,PAUSE 
,OrERN:=1 :€RHOR 

• t) T 11<1 V i'; I: :: 2 :2 , !Ii A X 'Ii 1v1 

.STMVR=='3 ,MAX VM RATE 
) 

.STUVM=:2~ :USFR VM MAXIMA rVIRT"PHY) 

.STCVM:=25 ,USEP CURRENT VM MAXIMA (VIRT"PHY) 
sr.VSG==lB18 :SET IF PHYSLTMIT 1~ GUIDfLINE 

,STTVM==2b ;US~w VIRT TIME INTERRUPTS 
.STA8~==27 JAnDR~SS aREAK (HDWP FOHMAT1 183 BREAKS VUO REFERENCES) 
.STPG~==30 :S~T PROGRAM TO PUN 
.STOfR==31 :58T C~FERFD SPOOLING 

.J 

) 

J-37 



UUOSYM.MAC 

SUBTTL ~ISC. NON-I/O _. SCHED. 

1iAC CONTAINS N"AODR WHERE ADDR CONTAINS: 
" !=;=====~======:==========:============:===:============1 
: : FUNCTION 1 BLoCK 1 

1--·---···.·----·--··-----·.·--·-·--······---·.---··.·--1 
f f flJ\JCTrON :2 BLOCK 2 

.~_. __ . ____ .. _._._.N __ .. ~ .•... __ ..... ____ ~._ .. _._~._ •. -I 
: : / 
: : I 
; ; I 

I 
/ 
/ 

- •• --.----------.--.-----•• -.-~.-.-- •• -.---.--.- •••••• -1 
•• . . fIJNC1IOiJ N aI/oct< N 

!=================================================~=====1 

:F'1Jr~(,TTOl\j CCiOES: 
,SC?S!==ouoooo :R~AD SCHEDULING INT~RVAL 
,5(55[:=400000 :SET SCHEDULING INTERVAL 

,st-QeI< CONTAINS: 
.SCdSl=:O ~SCHEDULING INTEPVAL 

.SGRMI==OOOOOl :READ MCU INTERVAL 
,SCSMr==4QOOnl :SET MCU INTERVAL 

, 81, C) C K CON TAt N S : 
.SCBMI==O 1MCU INTE8VAL 

.SCRCQ==oon002 :READ CLASS QUOTAS AND FLAGS 

.SCSCQ==400002 :581 CLASS QUOTAS AND FLAGS 
,.RLOCK CONTAINS: 
,: 1===========================:=========1 

SlZi!~ OF i3LOCK l······ __ ·· __ ······ ______ ···_ftftW ____ ._! 
• • , , fHTS+CI;ASS QUOTA 

-·-~--.. ·-··---·--·----~····--~·-··~·I · . , , I 
I 
j 

/ 
I 
/ 

• • , , ••• ---.-.- •• --- ••••••• ~-.---.- ••••• --! 
: : 6ITS+CLASS QUOTA 
~: 1=========;===============:===========1 
.5C6C1==0 :WOBD COUNT 
.scaCQ==1 !CLASS QUOTA 

:******DEFINE FLAGS HERt****** 

rCONTl~UED ON NEXT PAGf 

J-38 

-j 

) 

) 

) 

) 



) 

) 

) 

) 

) 

UUOSYM.MAC 

.SCRTs::oon003 ,FEAn TIME SLICE 
,5C5TS==400003 rSET TIME SLICE 

,;BLOCK CONTAINS: 
,.5C8CT==0 ,WORD COUNT 
.SCBP1==1 ,TIME SLICE FOR PQl 
.SCBP2==2 tTIME SLICE rOR PQ? 

.SCRUF==000004 ~READ DESIRED CHAN USE FRACTION 

.SCSUf:=400004 ,SET DESIRED CHAN USE FRACTION 
:;BLOCK CONTAINS: , : 1=====================================! 
J : t~ORD COllNT 
• • , , -··-----··----··-····~·------·-··-~·-1 • • , . CHAN # DCUF 
• • , , ··-··--····~-----···-·-··~-·-·------·l 
! : 
: : 
• • , . 

I 
I 
I 

I 
I 
I , ; ..-.-~ .. -.-~.-----... ~.------~-.-~-"-! 

• • · , CHAN 1* DClJP' 
• • · , 1============================:========1 
~ ,5(6CT:;:::=0 :hORD COUNT 
• SCHlW== 1 ,CHAN"USE FRACTION IN % 

,SCRJC==000005 ,R8An JOB'S CLASS 
.SC5,TC==4()(l005 ,SF! JOf"S CLASS 

~:BLOCK CONTAINS! 
1: !=====~===============================! 
:: WORD COUNT ____ •• ___ w •• ___ • ___ •• _. __ ~ .. ____ • __ ••• ! 

1 : 1:10B # Cl,;ASS _. _______ • ___ • __ ~ ____ .~ __ .W_.R .• _ .•• _! 

U I 
~ : I 
: : I 

/ 
I 
I --.... ~~.---~-..... --.-~--... ~.----.-! 

.JOB # C i,ll,S S 
• • · . !:===:===============:==============~=! 
J • SCBC'I'==O 
.SC8JC==1 

:cnNTINUED UN NEXT PAGE 

:WORD COUNT 
:JOB"CLASS 

J-39 



UUOSYM.MAC 

.SCPMC==000006· :BEAO Meu CONSTANT 
,SCSMC==400006 :SET Meu CONSTANT 

,SlJOCK COMTA INS 
.SC8MC==O ,MCU CONSTANT 

.SCR~V==000007 JREAD CLASS USAGE 
t:BLOCK CONTAINS: 
• • , I 1=====================================1 

WORD COUNT , : 
f 1 .-... -P .. ~-~-.-.. -.. -.--.-..... w-····l 
• • · , CLASS 0 RUNTIME 
, f ··-···~·····-·-···-··~····-·"···"-··-1 

CLASS 1 RUNTIME , 
• t : 

n 
1 ; 

····································-1 
H 
• • · , 

I 
I 
I 

I 
I 
I 

n ··~··~··-···~·-·······-··· .. ···"-·····1 
n CLASS TIl PU;~trIiViE 

,: 1=====================================1 
:SCBCT==O 
.SCBCU==1 

,WORD COUNT 
,CLASS 0 USED 

.srRE~==000010 :REAO EXPONENTIAL FACTOR 
~S~SFF==400010 :SET EXPONENTIAL FACTOR 

,8LOCK CONTAI~S: 
.SCB~F==O ,~XPONENTAIL fACTOR 

.SCR~M==000011 ,R!AO Meu MULTIPLIER 
~5CSMM==400011 15[1 Meu MULTIPLIER 

,SLOCK CONTAINS: 
.SCBMM==O :MCU MULTIPLIEP 

rSCHED. VUO 
SC!~AC%==l 

I5CHUP'%==2 
SCT·; UJ%== 3 
SCHi\!P%==4 
SC H ~lC %==5 
S C 1-lli a % = = f' 
SCHNC%==7 
:':,CI'H:B%==10 
:;;c!;~·r%==tl 

ERROR conES 
:ADDR~~S C~~CK 
:UN~NOWN FUNCTION 
,UNSNOWN JOB 
,NOT PPIVILEGED 
:UN~NOWN CLASS 
'UN~NOWN QUEUE 
:NO~·~XI5TANT ChANNEL 
fEXPONENTIAL rlCTOP BAD 
:ATTEMPI TO SET PBor WHEN 

---------------------------------------------------------

J40 

MeUIN! NON-ZERO 

'y 

) 

) 

) 

) 



. Iv-f 

.. ,/ 

3<10W ~3Sn Nt :3:)lt rld' 
:aOOW ~OltNOw NI 3JW~~t 

:Jyw·w.J.sonn 

t8t==wnl,',LIJ 
o 9 , = = \~jHI • 1 'it 

( 

( 

( 



UUOSYMMAC 

SUBITL UNIVERSAL DEVICE INDEX ) 
.UX(;HN==O :l/OCHA"lNEL NUf"BER 

:001000-077777 ARE PHYSICAL DEVICES 
lJX,TYP==77826 JDEVICE TYPE (SAMt: AS OEVTYP) 
UX.UN!:=777 rUNIT WITHIN TYPE 

.UXTRM==,Onooo :lERMINALS 

.UXPRC==300000 fPPQCESS 

~ • .1 

) 

) 

) 

) 

J-42 



UUOSYM.MAC 

\ 
) 

SUR TTL .JeINT INTERCEPT BLOCK 

• • ,~ , 1==:====:===============================================1 · . · , BLOCK LE;NGTH NE\~ PC 
• • , , "-----~--.--.--.--".--- •• -----.- ••• -------------.-.--- -1 

'" 1 ~ nLD PC AND F!,AGS 
~ J l-M-----.----.-.. ---.---.---.-~---~---~.-.. ----~.-.--- --1 
• • , , CLASS OF INTERRUPT CHANr..:El, NUMBf~R 

• • , , !================================~======================1 
" .ERNPC==O ~LH=LrNGTH, RH=NEW PC FOR INTEPRUPT 

• U:'Cl,S== 1 " C L.A, SSES OF ERROR r ~ TEF<CF.:PT ING 
ER.MSG==lBO :SUPPHESS ERROR MESSAGE 
F~.EIJ==1B29 :ERROR IN JOB 
fR.TLX==1810 ,iIME LIMIT EXC~€DED 
FP.QFX==1811 :QUOTA EXHAUSTED 

) E:R.FUL==1I53;? ,rILE STRLJCl'UBF FlJIJL 
F~,OFL==1B33 :DISK UNIT OFF-LI~E 
F.R. ICC =::::: t £:\ 34 : CON T FOlI,-C I NU:RC f~PT 
fB,IDV==lB35 ,"PR~B~EM ON DEVJCE" ERRORS 

~~POPC==' fOLD PC 
.€RCCL==3 lR~=CHINNtL, LH~CLASS OF INTERRUPT 

) 

) 

., 

J-43 



UUOSYM.MAC 

SUB TTL PSI sOFTWA~E INT~PRUP1 SYSTEM ') 
:lNTERAUPT VECTOR 
: SETS OF 4-WORD ~LOCKS 

" !===========================~===========================1 
" NEW PC AND FLAGS 

-~-.-.---- •••••••• - ••••••••••••••••• -.-••••• ---••••••• ·1 
r; OLD PC ANO.FLAGS 

: •• -- •• ---.---------- ••••••• -- •••••••••• --- ••••••••••• --1 
!OlR!A!O!~111 IIO REASON 

-.--.-- •• ---- •• - •• ----••• --•• - ••••••• - •• ----.-.--~ ••• - -1 
~:! 

:: INTERRUPT STATUS 
.!======.========================::======================1 

.PSVNP==O :NE~ PC AND FLAGS 
~PSVOP==1 ~[lLD PC AND F'LAGS 
• PS VfIJ=:=?' ,i"TJAGS ) 

PS,VPO==tBt :TURN PERMANENTLY orf, NO RESTORE 
PS.VTO==1A2 ~TURN OFF, RESTORE ON OEB~K. 
PS.VAl==163 ,ALLOW ADDITIONAL I~TERPUPT 
PS.VDS==1B4 :DISCAFO SUCCESSIVE INTERRUPTS WHIL~ INtERRUPTED 
PS,VP~==1b5 ,PRINT STANDARD ~iSSAGE 
PS.VfP==1S6 :INTEBRUP1S IN PR~GRgSS FOR THIS BLOCK 

PS,RIO==lB19 
PS,HGD==tb20 
~S.REF==lB21 
~S.RJ~==1b2~ 
p~.ROE==lb23 

(USFf) BY PSISEP) 

:REASON··INPur DONE· 
'REASON ..... QlJTPlJT DOfJfi; 
,REASON--END FILE 
:REASON--INPUT 8P?OR 
JREASON·-OUTPUT E~ROP 

PS.RDO==lB24 ,REASON··OEVICF nFF-LINE 
p~.pnF=='e?5 :F~ASON--DEVICF FULL 
PS,ROE==lS26 'R~ASUN··QUOTA ~XCEEDEO 
PS.kWT==lB27 :H~ASON~-IO WAIT 

.PSVlS:=3 :lNI2RRUPT STATUS (AUX~ WORD) 
1/0 DEVICES RETUR~ UDX"GFTSTS 

J44 

) 

) 

,'> 

) 



''''"-

.. 

~ 

UUOSYM.MAC 

) :NON~DEVJCE CONDITIONS 

) 

) 

) 

) 

• peTU!;=:;-l 
.PCABT==-2 
.PCSTP== .. 3 
,PCUUO==-4 
• FC IUI)==-5 
.f'CIMH=:;-p 
_PCACt<== .. 7 
.PCARl==-10 
• prf'DJ.I=:; .. 11 
~PCTT3::::"12 
,PCNXt-'1=::"13 
.PC'Af.'C=;-14 
.PCLlEd==-15 
• PC X F~ ~1 :: :: - 1 A 
.peKS)!::::;-17 
.PCOSC=:;-"O 
.PCDAT=::-21 
.PCl·'Jfd(=:: ... 2? 
~PCAFlK=::"'23 
.PCIPC::,::;"24 
_P('RMC==.-25 
.PCQUE::::-26 

fTIME LIMIT EXCEEDED (NON-BATCH ONLY) 
.,ABORT t-A): RETURNS 180=11F TI ~AIT, (FUTURE' 
;STIJP C"'C), RETtJPNS 190=1 IF' T.! WAIT 
:ANY ~UUO, RETURNS uua 
,ILLEGAL uu~, RETURNS UUO 
:ILLEGAL MEMORY p~rERENC~ 
:AODRESS CHECK: RETURNS n~VICE NAME 
:ARITHMETIC EXCEPTION 
~ POL UVi::PF'L01~ 
:TRAP TYPE 3 (FUTURE) 
1NON-EXISTENT MEMORY 
;APR CLOCK: PErUPNS MSTIME 
!U5ER INDUCED ERRGR IN JOB 
1~XTERNAL ERROP IN JOB 
:KSYS ~AR~ING: RETURNS ~INS TO K5YS 
n)ATA"'S~TC:HANGE, RETURNS NEt'll STATUS 
,OETACH/ATTACH1 FETURNS -lOR TTY UOX 
r \,At.F,; UUO, BF:TtJRNS JOO NOM8ER Of ',vA!<ER 
'AD.DHESS BREAK 
:lPCf RECEIVE; RETURNS L~~GTH"FLAGS 
~REMDIE COMPUTEB CQND!Tln~ 
'ENQ/DEQ RF5DUPC! AVA[LABL~ 

J45 



UUOSYM.MAC 

,INTERRUPT ENABLE REGUEST BLOCK 
1 SETS OF 3-WORD BLUCKS 

• p S F~C ~j =:: 0 
• i?St:OR==t 
.PSfPR==? 

rCONDITJON OR DEVICE 
,OFFS~T"REASON SIrS 
:FRIOFITY"RESERVED 

:P15YS, FUNCTION BITS 

fS.fC1P==181 
FS.~-O~=;:182 

r S , F' C P = ;: 1 B .3 
PS.fC~==lB4 
PS.f PC==tB5 
PS.fAC==18f. 

lTURN OFF 
:TURN ON 
:CLEAR ALL PENDING INTEkHUPfS 
'CL~AR SELECTED INTERRUPT 
;R~MOVE CONDITION OF DEVICE 
:AOD CONDITION OR DEVICE 

:PISAV./PIRST. FLAGS 

,PSSFC==O JFLAGS"COUNT 
PS.SON==lBO ,SYSTEM IS ON 

.P5SIV==t ,AnpRESS OF INT€RRUPT VECTOR 

.PSSBL=~2 :START or 3-WORD BLOCKS 

:PTSYS. FkHORS 

PSTM,A%==O 
PS~!f S%== 1 
PSUi(F%==2 
PSOGf%=~3 

PSliKC%==4 
PS!)~lO%==5 

PSPRV'%==6 
PSJVO%==7 
PSUKR%==l\j 
PSPIL%==ll 
PSN~W%==t2 

PSP;\lD%==13 
PShRr%==14 

H.lrSAV. f:BRORS 

,100 MANY ARGUM~NTS 

:NO FUNCTfON SUPPLIED 
,UNKNOWN FUNCTION REQU~SI~D 
:ON AND nrp IN SA~E F~~CTIQ0 

: Ut'!KNO~;N cnND IT I (')N FF01JESTED 
:DEvICE NOT OPEN 
;PPIVILEGE FAILURE 
:lNV~LTD VECTOR OfFSET 
:UNK~OWN RfASON FNABLEO 
,PPIOkITY TOO LARGE 
:NON-ZF:HO PESEPVF,;D wOF1D 
;PIINI. NOT DON~ 

:AOD AND REMOVF IN SAME fUNCTION 

P5RTS%==O :8LOCK TOO SMALL 

~) 

..., 

) 

) 

) 

:PIR51, ERPOF1S ~ 

PSNRS\==O ,NOT RESTORING WHAT WAS SAVED 

) 

J46 



UUOSYM.MAC 

) SUB TTL IPCF INTERPROCESS COMMUNICATION FACILITY 

IPAC~ET FORMAT 
, I 1=========================================================================1 , : lBB!IS1Rl01Tl lPIV! I ERROR lSENDR1RETRNl 

" ,.----....• --.--... ---.. -...... -----.----~.-.. -.-..... ····················1 
q SENDER'S PIO ! 

" 1··--··-··-··~··-···--·--·····-·-.--···--~·······-·· ••••.•... · •. · •• · •..•. -1 
r: RECEIVER'S PID 

" 1---····-··-----············.············--········.·.····.·.··.··.··.-----1 
" WORD LENGTH OF DATA START OF DATA (WORD/PAGE) 

~ n !.-•••• -----••• - ••• -.--••• ----•• -~ ••• ---.-•••• -.-......•••••••••••••••••••• ! 
I : SENDER'S PPN (SUPPLIED BY MONITOR) 
r: 1-··.·······························----··············· •• ·.··-•• • •• -••.••• 1 , : lJ lL lX!P1Il 
n 1~===:===========;===============:===================:====================1 

.IPCFL==O ,FLAGS 
IP.CF8==180 :DON'T SLOCK READ 
tP.CFS==tBl ,INDIRECT SE~DER'S PIO 

) IP.CFR==lB2 ,I~DIRECT RECiIVER'S PIO 
IP.crO:=lB3 ,OVERDRAW SEND 
IP.CFT==lB4 ,TRUNCATE READ 
IP,CFP==lB18 ,SENDER IS PRIVILEGED aND IS INVOKING THEM 
TP.CFV==lB19 ,VM PAGE TRANSFER MODE 
IP,CrE==77829 ,ERROR FIELD (~OT PRIV.) 
TP,CFC==7B32 :SYSTEM SENDER CODE (PRIV.) 

.IPCCC==l ,SENT BY [SYSTEM]IPCC 

.IPCCF==2 ,SFNT sr SYSTEM-WIDE [SYSTEM]INFO 

.IPCCP==3 ,SENT BY RECEIVER'S [SYSTEMlINrO 
IP,CFM==7 ,SPECIAL MESS~GE RETURN FIELD (PRIV.) 

.IPCFN==l' ,MESSAGE WAS NOT DELIVERED 
.IPCrS==1 ,SENDER'S PIO 
.IPCFR==2 ,RECEIVER'S PID ) 
.IFCFP:=3 ,LENGTH"START OF DATA IN PACKET 
.IPCFU==4 ,SENDER'S PPN (SUPPLIED BY MONITOR) 
.IPCFC==5 ,SENDER'S CAPABILITIES WORn. (SUPPLIED BY MONITOR) 

IP.JAC==1BO ,SENDER HAS JACCT SET 
IP.JLG==IBl ,SENDER IS LOGGED-IN 
TP.SXO==1B2 ,SENOER IS EXECUTE ONLY 
IP.pnK==lB3 ,SENDER HAS JS.POK PRIV 
TP.IPC==184 :SFNDER ~AS IPCF PRIVS 

) 

) 

J47 



UUOSYMMAC 

:IPCC AND INFO ERROR CODES 

rprJ\C%~=1. 

r PCNJ.I%==2 
IPCNP%==3 
IPC'IT1%==4 
JPCTL%==5 
JPCDU%==6 
IPCnr)%=:7 
TI?(;BS%==10 
IPCFR%==11 
T Pr' py%== 12 
TPCU'P%==lJ 
H1CX5%==14 
!PCP!%.==,15 
!PCOPo=::1.6 
rpC'BJ%==17 
Il?CPf%==20 
r PCVP%::=21 
rpC'lE%==?2 
Ty("f,T%==23 
TPCUI%==i4 
JP(,F'tJ%==70 
J.PC:Cf%::=71 
JP('F'F"%==72 
JPC'(1P%==i3 
IPCf."-P%==i4 
TPCD~,I%==75 

TPn,'N%==76 
If:'CPN%=="77 

,ADDRt:;SS CHECK 
rNO! LONG ENOUGH 
,Nn PACKET IN RECEIVE QUEUE 
;(l1NUSBD' 
,D~TA TOO LONG FOR USER'S BUrrER 
:D~STINATION UNKNOWN (RECEIVER'S PTO) 
,DFSTI~ATION DISABLED 
,NO ROOM IN SENDER'S QUOTA 
:NO RO~M I~ RECEIVER'S QUOTA 
,~o ROOM IN SYSTEM STORAGE 
,UNKNOWN PAGE ON SEND: DUPLICATE PAGE ON RECEIVg (VM) 
,INVALID SEND PIn 
,9RIV INSDrFICIENT 
:UNKNOWN fU~CTION 
:BAD JOB NUMBER 
: pro TA5t)E FULlJ 
~PAGg REQUESTED, NORMAL NEXT 
:PlQfNG liD ERROR 
;BAD INDEX SPECIFIED FOR SYSTEM PIC TABLE 
rUNDEtlNED 10 IN SYSTEM PIO TABLE 
J(SYSTEM1INFO HAS AN UN~NQWN, INTtRNAL ERROR 
,[SYSIEM)IPCC REQU!ST rROM [SYSTEM1INfO FAILED 
: (S~STEM1INFO FAILED Tn CO~PLETE A4 ASSIGN 
:PID QUOTA EXCEEDED 
,SAD (UNKNOWN) PIC 
~DlJPr-,ICATE' NAME' 
r fIIO SUCH NA.r.1E 
, N A. r'i F ,I A S r L LEG 1.\ TJ C H A RAe T F.: R S 

J-48 

) 

) 

) 

) 

) 



,I, 

UUOSYM.MAC 

) ,MESSAGES TO ANO FROM [SYSTEMJIPCC 

) 

) 

) 

) 

.IPCSO==O 'LH=CALL~R'S IDENTIFIER, PH=FUNCTION 
.IPCSE==l ,ENABLE (ME OR (1)=PIO) 
,lPCSO==2 ,DISABLE (ME OR (l).PtO) 
,IPCSI:=3 ,TELL PIO OF [SYSTEMJINFO FOR (ME OR (1)=PIO), (2) GETS PIO 
,lPCSF==4 ,MAKE [SYSTEMJINFO or (1) (2)=FOP WHOM (O.SYSTE~) 
.IPC5Z==S ,ZAP pro IN (1) 
,IPCSC==6 ,CPEATE PIO FOR JOB IN (1), (2) GETS PIO 
,I PCSQ==7 ,SET QUOTA (2) FOR (1)=PIO 
,IPC50==10 ,CHANGE OWNER Of (l).PIO, (2)=NEW JOB NUMBER 
,lPCSJ==11 ,GIVE JOB OF PIO IN (1), (2) GETS JOB NO 
,IPCSP==12 :GIVE PID LIST FO~ JOB (1) STARTING AT (2) 
.lPC5R==13 rREAD QUOTA or JOB (1), INTO (2) 
.IPCSW==14 ,~AKg JOB (1) SLfEPING rRO~ ,IPCSS 
,IPC5S==15 ;(ANSWER ONLY) IF tH(ll=O, JOB RH(l) IS PESETTING 

, If LH(1).-1, JOB RH(l) IS LOGGING OUT 
.IPCWP==24 ,WRITE SYSTEM PID TABLE 
.IPCPP==25 ,READ SYSTEM PID TABtE 
.IPCSU==26 ,SPOOLED FIL~ CLOSED (SENT TO [SYSTEMJQUASAR) 
.IPCSL==27 rLOGOUT MESS)Gf S~ND TO [SYSTEM1QUASAP 

.IPCS1==1 ,fIPST ARGUMENT 

.IPCS2==2 ,SECOND ARGUMENT 
IIPC~3==3 ,THIRD ARGUMrNT 

,SPECIAL SYSTEM 
,IPCPS==() 
IIPC?l==1 
.IPC1;lQ==2 
,lPCPM==3 
.IPCPT==4 

PID TYPES (READ/WRITE .GTSlD VIA .IPCPP AND .IPCWP) 
, [SYSTEM]IPCC 
,[SySTEM]INFO 
t(5YSTEM]QUASAP 
,MOUNTABLE DEVICE ALLOCATOP 
,TAPE LABEL PROCr-SS 

,MESSAGES TO ANO fROM [SYSTEM]INFO 

,IPClo==n ,LH=CALLER'S IDENTIFIER, R~=rUNCTION 
.IPCIW==l ,WHAT IS PID, ASCI7 IN (2+) 
.IPCIG==2 ,GFT NAME OF (2l=PI0 
.IPCII==3 ,ASSIGN NAME UNTIL PFSE! (FORMAT=.IPCIW) 
.IPCIJ==4 tASSIGN NAME UNTIL LOGOUT (FORMAT=.IPCYW) 
.IPCID==5 rDROP SPECIFIC PIO (2) 
.IPCIR==6 ,URQP NAMES SET BY .IFCII, (()=JOB NUMBER 
.IPCI~==7 ,nROP NAMES SET RI .IPCIJ, (2)=JCB NUMBER 
.lPCIS==15 ,RESET JOB PH(1) IF LH(1)=O, OR LOGOUT IF LH=-l 

.1PCll==1 ,FIRST ARGUMENT (ALWAYS 0 O~ pro TO GET DUPLICATE OF ANSWEP) 

.IPcr2==2 ,SECOND APGUMENT 

J49 



UUOSYM.MAC 

SUBTTt PAGE AND VM VIRTUAL ME~ORY FACILITY 

:PAG~. UUO FUNCTIONS 

.PAGIO==O ,PAGE INIOUT (OUT If IBO~l IN LIST) 
PA.GSL==181 ,PAGE TO SLOW SwAPPING SPACE 

.PA~CD==l '?AG~ CR~ATE/DESTRO¥ 
PA,GCD==lBt :CPEATE PAGE ON DISK 

~PA~EM==2 fPAGE EXCHANGE/MOVE 
.PAGAA==l :CLEAR/SET ACCESS ALLOWED 
.PAnw5==4 ,GET WORKING SET 
.PAG~A==5 :GET ACC~SS ALLOWED 
.PAG~A==6 ,CHECK ACCESS LEGAL 

PA.GNS==1BO :DOES NOT EXIST 
P~.GWP==lBt :WRITABLE 
PA.GRO==lB2 :READABLE 
PA.GAA==lB3 ,ACC~SS ALLOWED 
PA.GAZ==lB4 :ALLOCATED BUT ZERn 
PA,GCP==18!:l ,CAN-! BE PAGEl) 001' 
PA.GPO==lB6 :IS PAGED OUT 

.PAGeH:=7 :CRgATE A BISEG (GENERAL RgMAP) 

:P'G~~ UUO ERRORS 

PAGU~%==O 

PtGIA%==l 
PA~lP%==1 
PAGC~%=~3 
PAGMf'~==4 

PAC~T'==5 
PAGCI%==6 
PAGS~%==; 
PAGI8%==10 
PA~~S%==ll 

PAGLE%==12 
PACIL%==t3 
PAG~X'==14 

:UNIMPL£ME~TED FUNCTION 
,ILLEGAL ARGUMENT 
~ILLEG~L PAGE NUMBER 
,PAGF CAN'T EXIST BUT DOES 
'P~GE MUST EXIST Bur DOESN'T 
rPAGE MUST bE IN CORE BUT ISN'T 
:PAGE CAN'T ~E IN CORE BUT IS 
:PAGE IS IN A SHARABLE Hl-S£G 
:PAGI~G I/O ERROR 
:NO SWAPPING SPACE AVAILABLE 
:CORE LIMIT EXCEEDED 
:lLLEGAL IF LOCKED 
:CAN NOT CPEATF ILLOCTfD BUT ZERO PAG~ 
: WITHVIBTUAL LIMYT EOUAL TO ZERO. 

I-50 

-) 

.:.,. 

.', 

) 

) 

) 

~ 

) 



UUOSYM.MAC 

) 
:.Ji-3~fH FEGION 

.PfHNP==O :NEW PC AND FLAGS 
• PFf:rp== 1 r (ltD PC AND FLAGS 
.PFHFC==2 :fAULT ~CRD 

PF.HCB==lBC ,~ORKING SET CHANGFD BEHIND BACK 
PF.HP~==777bl1 1PAGE. NU~BER 
Pf.HfC==O,,-l ,FAULT COCE 

,PFHNA==1 ,PAGE NOT ACCESSABLE 
.PFHN1==2 ,P~GE NOT IN COFE 

" .PFHUU==3 :PAGE FftULT IN UUO ARGS 
,PFHTI==4 ,VIBTUAL lIMEN 
,PFHZl==5 1ALLOCATED SUT ZfRO FROM USER 
.PFHZU==6 :ALLnCATFD BUT Z~RO DURING UUO 

.PFHVr==3 :VTPTUAL TIME 

.PFHPR==4 ,PAGING RATE 
, 5 • 1 () R E: S F: RV E~ D 

) 

) 

.'. 

J-51 



UUOSYM.MAC 

SUB TTL DAEMON CALLS 

'DAEMON UUO FUNCTIONS 

.DCQRE==l 

.CLOCK==2 

.r~CT:=3 

.OMGU€:=4 
,bM~RR==5 
,DMCTL~=~ 

:DUMP COPE 
f~N1ER A CLOCK REQUEST 
fMAK~ A FACT rILE ENTRY' 
,(UNrMPLE~fNTED) 
fERROR LOGGING 
,(UNIMPLEMENTED) 

:DIEMON VUO ERRO~S 

fHq LF' % = = 1 
OMnCl·q;:=? 
D;'J\~4NA%==3 

I?MSNH%==4 
1')1v'i (' :N F' % = :: 5 
D~lNPV\==6 
Dl'l'F'FB%==7 
nMPTu~==10 

fILL~G~L FUNCTION 
JAfJDPESS CHECK 
: il'l'RONG NlJMBER Of' ARGUMENTS 
,IMPOSSIBLE UUO FAILURE (SHOULD NEVER HAPPEN) 
:CAN'T WHITE FILE 
:NO PIoiIVILECES 
:FACT F'ORto'lAT ,BAD 
,INVALID PATH SPECIFICATION 

:DeORE DUMP CATE~ORrES 

,e A\JIj~3=: 1 
,CACNF'==? 
.C 4l)f)f~=:3 
.CACOR==4 
,e: Ayg'r==s 
.e A~1,AX==S 

1JOB 'rABL~S (S~E BELOW) 
:~ONF'IGU~ATIONTABLES (,GTCNV) 
,J08'S DCd5 
,USER'S CORl IMAGE (COMPRES5ED' 
~fEr GETTAe 
:HIGHEST LEGAL CaTEGORY NUMB!~ 

J-52 

~) 

~ i 

) 

) 

) 

~ 

) 



UUOSYM.MAC 

) 'DeQRE JOB TABLE ~NTRI8S 

f. 

) 

) 

) 

) 

,DJVER==O 
.DJDAT==l 
.DJMST==2 
.DJJSN~=3 
.OJL1~==4 
,DJSTS==5 
.DJHTS==~ 
.DJPPN==7 
.OJHPN==10 
.OJPRG==11 
.DJHRG==t2 
,DJTJM==13 
.DJKC!==14 
,DJPRv==j5 
,OJSWP==16 
.OJHwr==17 
.DJRCT==20 
,OJwCT==21 
.PJTn5==2~ 
,DJDEV==23 
.DJN Mi==24 
.DJN M2==25 
.OJCNO==26 
.OJTMP==27 
.DJwCH==lO 
.DJSPL==31 
.DJRTO==32 
.DJLIM==33 
,DJSPS==34 
.DJR5P==35 
,DJTPQ==36 
.DJUPM==37 
~DJHP~==40 
.DJCVL==41 
.DJMVL==42 
.CJIPA==43 
.DJIPC==44 
,OJIP1==45 
.nJIPQ==46 
.OJOV1==47 
.OJ~8S==~O 
.OJVPT==51 
.DJHRI==52 
.OJMAX==52 

,O~EMON VERSION (137) 
,OATE crRnM DATE UUO) 
JTIME IN MILLISEC_ (FROM MSTI.ME UUO) 
:J~B"SEGMFNT NUMBERS 
~???"LINE NUMBER (TTY) 
: • G T S ! S (.J 0 B ) 
"GTSTS(HISEG) 
J,GTPPN(JOB) 
:.GTPPN(HI~EG) 
f • G T P R G ( J rJ B ) 
:.GTPRG(HISEG) 
~.GT'T'IM(JO~) 
: • r. T K C T ( J 0 £1 ) 
, • (~TPRV (,,1UR) 
; ,GrSwP(\..TOB) 
, Ii (; T 5 ~j P ( !-l1 S E G ) 
J .G1.'RCT(,1OB) 
, • (; nJ C l' ( JOB ) 
, ",GITD?! (IJ08) 
, ,CnrnV(HlSEG) 
, ,(; T ~1I"l t (,.1 0 H ) 
, ,GTNM2 (,JOB) 
, .GTCiIlO(JOB., 
J .r.;TTMP(,J08) 
',GT\A/CH r,JO~) 
t.GTSPLeJOB) 
, ,G'fPTI) (.J08) 
~ • (;rIl, 1M ( \.108 ) 
f • (;rsps (,JOA) 
, .GTRSP(,rc1") 
t ,GTTRQ (.JOR) 
, • CiTUPM (~lOB) 
,.GrUP~(H!SEG) 
, ,OTCvt,(JOB) 
: • G l' M. VI; C tJ CJ B ) 
J ,GTIPA(~Tn8) 
, .GrIPe (,lOR) 
~ ,(;rIPl (,JOA) 
, ,G'rI PO (.JOA) 
: .Gl'DV.L(JOfl.) 
: .• G T Po. 8 S ( ~l 0 f:I ) 
:.GTVRT(JClB) 
, ,GTVH1'(H!.SEG) 
,HIGHEST LEGAL JOR TABLE 

J-53 



UUOSYM.MAC 

SUBTTL METER UUO 

;METER. FUNCTIONS 

.MEfCl==O 
,MEFeS==1 
,M~FCR==2 
.MFFPI==3 
.MFFPS==4 
.MFFPR==5 

, i'l F T E p., e: R R 0 R S 

MEILF,==l 
M[NPV%==2 
MEIMA%==3 
MEPDL%==4 
MEIAL%==~ 
METAV%==6 
MENfC%==7 
MEICT\==10 
~ETPT~=~11 

MCNXP%==12 
MENXC%==13 
MgPNA%==t4 

,INITIALIZE METER CHlNN~L 
1READ METER CHANNEL STATUS 
,RELfASE MFTER CHANNEL 
,INITIALIZ~ ~ETER PUINT 
:READ METE? POINT STATUS 
,RELEASE METER POINT 

:ILLEGAL fUNCTION 
:NOT PRIVILEGED USER 
,ILLEGAL ~EMORY ADDRESS 
:POL OV[PFLOW 
,ILLEGAL ARG LIST 
~tLLFGAL ARG VALUE 
:NOT ENOUGH FREE CO~E 
rILLEGAL CHANNEL lYP~ 
:ILLEGAL POINT ROUTINE TYPE 
:NON-EXISTENT POI~T NAME 
:NnN-~XIRIENT CHANNEL 
,POINT NOT AVAILAbLE 

,STANDARD ChANNEL ARGU~ENI BLOCK LOCATIONS 

.MCfUN==O 
,MCCID==t 
.MCTYP==2 

;\)HO fUNCTION CODE.: 
~(JSF:R CHANNEL tD 
:CHANNEL TYPE 
.MCrY~:=o 
,MeTYO=:1 
.MCIYT==2 

,NULL CHANNEL 
,DISPLAY CHANNEL 
,TRACE CHANNEL 

,MCSiS::3 1CHAN~EL STATUS 
MC,STS==17777812 ~STATUS MASK 
MC.USA=:181 ;USER SEGMENT 

~MCJn6==4 ,CHANNEL JOB NUMBE~ 

fOT5PLAY CHANNEL AFGS 

ADDR.ESSED 

,MCTCN==5 
.MCPTR==6 

'AV~RAGING TIME CONSTANT 
,DEPOSIT BYTE POINTER 

J-54 

') 

) 

) 

) 

) 



) 

) 

) 

) 

,.. 
~·T 

) 

UUOSYM.MAC 

:TRACE CHANNEL ARGS 

,MCFLG==5 ,US~R ADDRESS OF FLAG AND STATUS WORD 
MC.WAK==lBO :ENABLED FOR WAKEUP 

t~CBUF=:6 ,USER ADDPESS OF TRACE BUFFER 
,1\1C.l.OX==7 :USER .E\CORESS cp. 8lJF'Ff;F INN:X 
,M~cNr==10 :USER ADDRESS OF WAKEUP COUNTER 
,MCBFL==11 :BUfFER LENGTH 

,A RGU~]ENT BLOCK F'OR ME;TER. PO INT fUNCTIONS 

II t"lPnrN=:;O 
.MPAPP==l 
•. 1101 P N U ;,~ = = 2 
,MPADk==3 
,iYlPERF==4 

,uue fUNCTION COD[ 
:NUM ARGS PER POINT IN LIST 
:NU~BER OF POINTS IN LIST 
:ADOR~SS OF POINT LIST 
:ADDRESS OF ERROR POINT 

:APG DISPLACEMENTS PER POINT IN POINT LISt 

.MPNA~==O :POINT NAME 
,MPPID==l :USER POINT 10 
.MPPAF==2 :POINT PAPAMETER 
,MPJOB==3 rJoe NUMBER 
.MPSTS==4 ,pnINT STATUS 

~P.STS==j7777B12 :POINT STATUS MASK 
Mf,ENB==1BO ,POINT IS ENABLED 
MP.USA==t81 :UStR SEGMENT ADDRESSED 

,MPPRT==5 ,POINT ROUTINE TYPE 
~MPRN==OO ,NULL ROUTINE 
.MPHV==Ol :INTRINSIC VALUE 
.MPRT==02 rTIME INTERVAL 
.MPHVI==3 :INTRINSIC VALUEtPOINT IC 
,MPRTl==4 :TtME+POJ~T 10 

.MPPHP==6 :POINT ROUTINE PARAMETER 

.MPCID==7 :US!R CHANNEL ID 

I-55 



UUOSYM.MAC 

SUBTTL ENQUEUE AND DEQUEUE SYMBOLS 

,;GENERAL PORMA! FOR ~NQ./DEQ./ENQC. 

,;I===================~===================================1 
, , 1 It OF' J.JUCKS LENGTH OF THIS BLOCK 

!- •• --•• -.-- •••• -.-•• --.-.~ •••••• -- ••••• - ••• ~.~.-.--"- •• , 
r;. PESE~VtD HEQVES! 10 
::!=======================~======================~========1 
,:!Sl~! RESERVED L l,EV.f<:L f CHAN #/-.\/"2/-3 ! ___ • __ ._8 ....... W __ ••• __ • __ ._._. _____ ._. __ ••• ~ •• __ •• _ • • wl 

· . , · , . BYTE PQINT~R TO STRING OR USE~ CODE 
! •• -.-.--.-.- ••• ~~- •• - ............ -- •• ~-~ ... - •••• - •• -- •••• ··1 
1 # 0F RES, I~ POOL # WANTED OR GROUP # 

:1·.·~··-.·~---···~"-·-·-··-.-·-~·-·.····-··-·----·---~~~1 
: I I 

1:1 3 WORDS FOR EACH LOCK I 
f : / / 

e~_ •• _._. __ ._.~ •• _ •• _.~._ •• _._ •• -- ••••• _ •• _" •• - •• ".M- • • l 
:: !S!Bl Rl:'_Sf:~V~O !Jl4,;VF:L # CHAN #/"1/"2/ .. 3 

!~-.~ •••• ----- ••• --~----- ••••••••• - ••••••• -~~~.-~---~~·~1 
pnrNTER TO STRING OR 5b2+U5FP CODE ! •• ___ ._. ___ ~W __ .~ ______ W •.. _ .•• _____ W_ .• _ •• _ •• __ N._.~ .-1 

• nF P~S IN POOL # WANTtn OR GROUP # 
It: 1=:====:=======:======================================::1 
• gN(JT.,L==O 1 NUdBF~R ClEo' LOCKS AND LF.NGTH 

EQ.G~G:=777777R17 1NUMBER Of LOCKS 
EQ.LtB==777777B35 ,LENGTH Of BLOCK 

• E:Nc.iPX==l rREQUE:.S'l l .. Ci • 

,FOP Ef •. CH T,OCK: 
• ErJ(~ft,==0 : ft!l~GS, 1,~~Vr;rJ' CHAN 

EG.fSR==lHO :SHARED REQU~ST 
'G.reL==lbl 1BYPASS LEVEL CHECKING 
~U.FLV==777~17 :GEVEL # 
!Q.f~C==777777 :CHAN. NUMBER OR CODE 

.BOrJB::=?77777 JeOD! FOR THIS JOB ONLY 

.~QFG~=='77776 ,GLOBAL LOCK 

.EQFPL==777775. ,PRIV. GLOBAL LOCK 
,E~QBP==1 rBYIE POINTER OR USEH CODE 

EG,8UC==S62 ,SET IF 33 BIT USER CODE IS USED 
,~NQPS:=2 ,POOL srz~ 

EG,PPS==777777B17 
FQ,PPP~=777777U35 

:IOIAL SIZE OF POUL 
t N 11i1 BE R Re:; QUE S rED 'F HOM P. I'.) 0 L 

J~S6 

) 

) 

) 

) 

) 



') 

.~ 

) 

) 

) 

.~ 

": 

) 

'!~Q. fUMCTlON 
.ENQBL==n 
.~NGAh==l 
.£NQSI==2 
.ENOMA::) 

1 D ~~ Q. Ft.l N C ! 1 0 I~ 
.,PEQDR==O 
• Df~(m A== 1 
,DEQXtJ==2 

JENQC. FtJ(~C't:rOIl.J 

,ENOCS==O 
,ENQCG==1 
,t~NQr.C==?, 

.DJQ~()==3 

COOES 
,ENG, 
;ENG, 
,ENG, 
fENG, 

CQDF.S 

UUOSYM.MAC 

BLOCK TILL AVAILABLE 
ALLOCATE ONLY IF AVAILABLE 
SOFTWARE INTERRUPT ~H~N AVAIL, 
MODIfY ACCESS 

:DEQ. RESOURCE 
~DEY. ALL 
rDEQ. BY R8GUEST 1.0, 

CODES 
~REl'lJRN STATUS 
:GET USER'S QUOTA 
fCHANGE USRRS QUOTA 
,tt)lntP TrW DATA BASE 

J-57 



UUOSYM.MAC 

r:FORMAT OF ENOC. STATUS BLOCKS (fUNCTION 1) 
t,l=========================================================================1 
"II 10 IQIXI 1 LEVEL # l JOB' OF OWNER OR ERROR # 1 
"l···--·------·--·.··--··.·--··.··.·--····M •••• -- •••• -···~·--·--·---·······-1 
nl TI~E·STA~P OF LoCK 

';1-----------·-----··--·-·-·-~·--·--·-··----···-·-·-- ....... _-_ ............ ! :rl RESERVED TO DEC ~EQUEST 10 or CALLERIOWNER :'1 •••• _______ • _____ •••• ___ •• ___ • __ ••• __ •••••••• __ ••••••• ___ •• WN •••••••••••• ! 

J J I 
:,1 
,,1 

TWO WORDS rOR EAC~ LOCK IN ~NQC. REQUEST 

.ENQCf==O ,FLAG WORD 
EQ,CFI==lBO ,LOCK IS INVALID 
FQ,CFO==lBl ,THIS USER IS THE OWNER 
YQ.CFQ==lR2 ,THIS US~R IS IN THE QUEUE 
~a.CFX==lB3 ,tHE OWNER HAS EXCLUSIVE ACCESS 
Ea.CFL==777B17 ,LEVEL NUMBER 
FQ,CFJ==777777 ,JOB _ OF OWNER (OP ERROR CODE) 

.ENaCt=:, ,TIME-STAMP CTIME LOCK WAS GRANTED TO OWNER 
, IN UNIVERSAL FORMAT) 

.ENQCI==2 :REQUEST 1D Of OWNER/CALLEP 

1-58 

I 
I 
I 

) 

) 

) 

) 

) 



) 

) 

') 

UUOSYM.MAC 

11FORMAT FOR ENQC, DUMP 
1=======================================================1 

: J 1 NUMBER OF WORDS IN THIS BLOCK 
,1=======================================================1 

J 1 I · . , · , . 
• • I ! 1 • , . , , , . LOCK-BLOCK fOR LOCK # 1 
,:! __ ~o_~~ ____ ~ _______ • _______ ._ ••••• _______ ~ ____ • ___ • ----1 
:1! OUEU~ ALOCK FOR fIRST ~NTRY OF LOCK 1 

1 f 

HI 
, : I 
: : I 

____ ~ft"_~ ____ w ___ • __ • _____ ._. __ • __ ~_ •• ___ ~_. ________ • _ _ ! 

QUEU~ BLOCK fOR SECOND ENTRY or LOCK 1 
.. ---~----~----.- •• -~----------.-.- •• -.-~ •• -~---~---- •• -1 

lWU ~ORD OUEUE-BLOCK FOR EACH WAIT[R FOR LUCK 1 
/ 
I 
/ 

~=================================;======:============ ==1 · . , , t !;" 

• • I , , '" 
LOCK BLOCK fOR LOCK #2 

! __ • ___ • ____ a ___ ~ ____ ~"_ •• _- ____ ._ •• _~_.~ •• ______ ~_~._~.1 

OUEUE"'BI~f1CK fOR FIRST WAITER FOP LOCK #2 ! 

• ______ ._. __ ."U~ ______ ~ ___ • _____ • __ ••• __ ~~ _____ • __ ~_ •• _! 

1 • QUEUE~BLnCK FOR SECOND WAITER fO~ LOCK #2 
J'! •• --.---~----~~~---.-~------.-.--.~---~--.-.-~-.-.P ----I 

: f I 
: : I 
, : I 
: , / 
: : I 
... : I 

LOCK-BI.OCKS AfifI) GUEl1l;; 8LOCI':S FOP THE ENTIRE 
ENO,/DEC, DlTA BASE 

1-59 

I 
/ 
I 
I 
I 
I 



UUOSYM.MAC 

"FOPMAT OF EACH LOCK-BLOCK 
,.1=========================================== =============================1 
,,1 1~ 01Tl0101 !LEVEL # LOCK 1.0, 1 
'Jl-.-·-··-·····--~·~.·~ •• ·~ •• ~······----·· •• -·--···.·-·~·····-•• ··········~.l ,,! # IN POOL OR 0 # REMAINING OR 0 1 
"1--····.·.---·------·.·.·.·.·····.···.·.·········.····-···········-·~······1 
,:1 TIME-STAMP ! 
'Jl~·~·-··~-·-··~"-·--~····--··-·····-···-··--··-·-·························1 
n! ASCIZ STRING (MAy BE S~VERAL WOROS) OR USER CODE 
,,1============:==========================================~=================1 

J,FORMAT OF EACH QUEUE-BLOCK 
'Jl==============================================~======================-:z=1 
:f! OILO!OIX!81 J JOB # I 
'Jl·.-···-··-.·.·· •• ~.·-·-.·.·.-·····-~-·-··.-·······-~·-·······-•• ··-······1 
,,! GROUP. OR • REQUESTED! REQUEST I,D. I 
,,1=============~=========·=======:==========================================1 

, FLIICS IN fIRST 
EQ.Dte=;;160 
EQ.DLO==lBl· 
EQ.DLT==182 
EQ.OXll=:;:183 
r.Q.DJ\~==le4 

WORD OF EACH BLOCK TYPE: 
,THIS IS A ~OCK BLOCK 
,THIS IS THE LOCK OWNER (QUEUE-BLOCK ONLY) 
,THIS LOCK HAS TEXT CLOCK-SLOCK ONLY) 
~EXCLUSIVE ACCESS (QUEUE-SLOCK ONLY) 
,THIS JO~ IS BLOCKED WAITING FOR LOCK (QUEUE-SLOCK ONLY) 

,FORMAT OF LOCK-SLOCK 
.gQDFL==O ,FLAGS AND LEVEL 

FQ.OFL==777817 ,LEV!L # 
~Q.DFI==777777 fLOCK I.n • 

• EQDPR==l ,POOLED REQUEST COUNTS 
EQ.OPS==777777B17 ,SIZE OF POOL 
~Q.DPL==777171B35 :NUMBER L~FT 

.EQOTS=:;:2 ,TIME-STAMP 

.gOOSU==3 ,STRING OR ustR CODE 

,FnRMAT or A QUEUEwBLOCK 
.EQPFJ=:;:O ,FLAGS A~D JOB • 

EQ,DJN:;:=777~35 ,JOB NUMBER 
.EQDGI:;:=l ,GROUP # AND REQUEST I,D, 

EQ.DGR==777777a17 ,GPOUP O~ # REQUESTED 
EQ.DPI==777777B35 ,REQUEST 1.0. 

J-60 

) 

" ) 

) 

) 

) 



UUOSYMMAC 

)ENQ ~ IDEO, IE,NQC" ERROR CODE:S 

ENOHU%==l 
EN08P%==2 
ENG8~]%==3 

- ENQBR%==4 
ENQST%==5 
ENQaf'%==6 
ENQ8L%==7 

• ENOIC%==10 
ENOBC%==11 
ENOPJ%==12 
ENQNC%==1,3 
ENQFN%==14 
ENQP!%==' 5 
ENQNO%==16 
~).NQr..,s%==17 
)\jQCC%==20 

ENQGF.:%=='1 
E:N QPO%==2 2 
ENQDR%==23 
ENQNF%==24 
ENQLD%==25 
ENQEO%==26 

) 

) 

~ 

) 

,SOME RESOUkCE(S) REQUEST WERE UNAVAILABLE 
,ILLEGAL l OF RESOURCES REQUESTED [POOLEP R~SOURCES) 
:BAD JOB NUMBER 
:BAD BYTE SIZE IN TEXT STRING 
1STRING TOO LONG 
,BAD fUNCTION CODE 
,ILLEGAL ARGUMENT BLOCK LENGTH 
rILLEGAL NUMBER Of LOCKS SPECIfIED 
:BAD CHANNEL NUM8ER 
rOPERATOR/JACCT PRIVILEGE REQUIRED 
:NO CORE AVAILABLE 
,FILE NOT OPEN ON SPECIfIED CHANNEt, OR DEVICE NOT A DISK 
7INOJRECT OR INDEXED SYTE POINTER NUT ALLOWED 
,NO RESOURCES WERE OWNED 
,LEVEL SEQU~~CING ~RPOR (LEVFL # TOO LOW) 
,CAN'T CHANG~ ACCESS 
,aUOTA EXCEED~D 
s# or PESOURCES IN POOL NOT SAME AS t~ LOCK 
;DUPLICATE REQUEST FOR RESOURCE (LOCK AL~EADY REQUESTED) 
,NOT [NQ'ED ON THIS LOCK 
:LEV~L • IN REQUEST DOES NOT MATCH LOCK . 
~ENG/DEQ PRIVILEGES REQUIRED 

J-61 



UUOSYM.MAC 

SUBTTL MISC, 1/0 .- DEVCHR , ') 
DV .DRl==1f.~O ,OTA WITH DIPECTORY IN CORE 
DV.DSI<==lBl, ,DEVICE IS A fILE STRUCTURE 
DV ,CDR== 1.B 2 :IF DVOUT=l DEVICE IS A COP 

: IF DVIN=l DBVICE IS A CDR 
OV.LPT==lB3 :DEVICE IS A LINE PRINTER 
DV~l'rrA==lB4 :DEVrCE IS A TTY CONTROLING A JOB 
DV.1TU==U35 ,TT¥ DDS IS IN USE 
DV.'TTB==lB6 :FREE BIT LEFT FROM SCNSFF 
DV,DIS==lB7 ,DEVICE IS A DISPLAY 
DV. V~G==te8 :DEVICE HAS A LONG DISPATCH TABLE 
nV.PTF'==189 ;DEVIC~ IS A PAPER TAPE PUNCH 
DV,PTf<;o:=1810 : D € V I C b: I SAP APE: f< TAP g R f: A f),F.; P. 
DV.OTA==1811 :OEV!C~ IS A D~C TAPE 
nV.AVL=;:1B12 JD!VICF IS AVAILABLE TO THIS JOB 
nV.J'v1TA=:-:1813 :DEVICE IS A MAG TAPE ) 
nil "l'i'Y==llH!i: :DEvtCE IS A TTY 
DV .orR==1!H~ :DFVICE ~AS A DIRECTORY 
nV.IN==lR16 :DFVICF CAN ~o INPUT 
D V • OUT=;::; 1131 7 ~DEVTCE rAN 00 OUTPUT 
OV.ASC=:;;1B18 :DEVICE ASSIGNED BY ASSIGN COMMAND 
DV.ASP=::1B19 :D~VIC~ ASSIGNED BY IN!! OF OPEN UDO 
nV,M.17:=182Q :DEVICE CAN PO MODE 17 
DV.~~16=::tB21 ,OEVICE CAN DO MODE 16 
OV.Ivi15==U322 rDFVTCE CAN DO MODE 15 
DV,lv114==1.d23 rDEvrCB CAN DO MODE 14 ) 
DV.M13==tB'24 1DEVICE CAN no MODE 13 
nV.M12==,b25 :Df':VrCf CAN ,no MODf: 12 
DV,Ml1=::lb26 :DEVICE CAN nu MOCE 11 
DV lI !V\10==lB27 :DEVICE CAN no MODE 10 
I)V.1'A7==182A ,DEVICE CAN CO MODE 7 
OV,M6==lB2Q ,DEVICE CAN DO MOOE 6 
OV. M5==lB30 ,OEvtCE CAN no MODE 5 
DV,t-i4==lBH :DfVICE CAN DO MODE 4 
DV.i'A'3==lP·32 :DEVICE CAN DO MODE 3 

) DV,M'==1R.33 :DEvrCE CAN 00 MODE 2-
DV,Ml:::1834 ,DEVIC~ CAN DO MODE 1 

. DV "ivl0==lB35 :D~VICE CAN no MOD~ n 

) 

J-62 



') 

" 

') 

) 

) 

.. 

) 

UUOSYM.MAC 

SU8TTL MISC. 110 -- DEVTYP 

fFIB-51 THE TYPE 
.TYOSr.=.::O 
.TYOTA==! 
.TVMTA=.:2 
.TVIIi=.:3 
,TVPTR==4 
,TVP'fP=:S 
,fYD T. S==6 
.TYLPl=:'7 
,TYCDR==10 
.TYCDP==11 
.TYPTY==t2 
,1'ypvr== 13 
,TYEXl'==l4 
,TVMPX==t5 
~ 'rVPAR==-16 
.TYPCP==17 
,TYPAP=;;?O 
.TYLPC==21 
,TYPCP==~2 

CODES 
,DEVICE IS A DISK 
,OEVICE IS A DEC TAPE 
:DFVICE ts A MAG TAPE 
:DEVICE IS A TTY 
JOEVICE IS A PTR 
,D~VrCE IS A PTP 
,DEVICE IS A DISPLAY 
:DEVTCE IS A LINE PRINTEP 
,OF-VICE IS A CARD READER 
:DEVICE IS A CARD PUNCH 
,OPVICE IS A PTY 
,DEVICE IS A PLOTTER 
,[XTERNAL TASK (DA28C) 
:MULTrpLF:~OR 
:PA611R m DC44 
:PCll(R) N DC44 
:PA6t1P 0 DC44 
:Y.lPC-l1 O! DC44 
:PC-l1(P) ON De44 

,NOW THE CHARACTERIST1CS 
TY,MAN==lBO ,LOOKUP/ENTER IS REQUIRED 
Tr.MDA==lSQ ,OEVICE IS CONTHOLL~D BY ~OUNTABLE DEVICE 

: ALLOCATOR 
TY.EPF==lBl0 :EXTENOED HARDWARE FEATURES: 

:Ir LPT THEN HAS LOWER CASE 
TY,MPX~=lBtl rDKVtCE CAN BE USED VIA MPX: 
T¥.AVL:=lB12 JP~VICE ts FR8E 
T¥.SPL==lBtl :OfVICE IS SPOOLED 
TY.INT==1614 'D~VICE IS INT~RACTIVE 
TY.VAR==lBtS :O~V!CE HAS VAPIABLE BUfFEP SIZE 
TY.IN==1816" rDEVICF CAN 00 INPUt 
TY,OUT==lb11 rDEVICE CAN 00 OUTPUT 
TY.JOB==771B26 ,JOB NUMSER OWNING DEVICE 
T¥.RlS::1B29 JFESTRICTED OEVICE 
TY.DEV==77B3S ,DEVICE TYPE 

J-63 



UUOSYM.MAC 

SUBTTL ~lSC, I/O -. MTCHR, 

MT.AWC==777777B17 :ACTUAL WORD COUNT 
~T,CRC=;:777B26 feRC LAST READ 
MT.NCR==7B29 :NI)MBEB CHARACTERS READ IN LAST WORD 
MT.7TR==1B31 17 TRACK 
MT,WLK==1B32 :~RITE LOCKEO 
MI.CgN==7B35 :DENSITY 

.MTDN2==1 1200 

.~TDN5=:::2 :556 
,~TDN8==3 :HOO 
.MTDtb==4 11600 

.tv1TRJD=:;l 
,Mn~ RD==2 
I wrt~ \,1 T :; ;: '3 
,MTSRE==4 
.t'l'l"dRF=:::'; 
.MTS;";;:..==~ 

• I~; T h (,>1 E ;: = 7 
• ;<1"rp"i:,== 1 () 
8finTD~,'==.! 1 
8 1': TTt,};,i =::: 12 
• M T N ~. e = :::, 3 
.;,1TN Pf== 14 
.,vl'rICC==1" 
• iv\ T J ( 5,= ::: 1 6 
.;'i1TFTC==17 
,r~TFCG==2(:1 

t i-'lTIPY==21 

:P!EL 10 
:wORDS READ (CHARS IN 6.02) 
:~nRns WRITTEN (CHARS TN 6.02) 
,SOfT READ ERRORS 
rHAPD READ ERRORS 
;SOfT WRITS SNRORS 
,HARD WRIT~ ERRORS 
:TOTAL M~DIA ~RRORS 
,InTAL DEVICE ERRORS 
rTOTAL UNLOAOS 
fNUMAER OF FtLES FPOM eDT 
:NUMBER Of RECORDS FROM EUf 
:INITIAL ERBOR CONI MIC 
JI~ITrAL ERROH CONI MIS 
,FINAL ERROR CONT MTC 
:fINAL ERROR CONI MIS 
:~E1RrE5 Tr PESULVF LAST ERROR 

J-64 

) 

) 

) 

) 



') 

<t" 

) 

) 

) 

) 

UUOSYM.MAC 

SUB TTL MISC, 110 -- TAPO?, 

::TAPOP, UUU TAKES N"BLOCK IN AC WHERE BLOCK CONTAINS: 

" 1===============:=:=====================================1 
n FUNCTION CODE 

" -- ••• ~~-- •• --~ •••• -.---.--~--.--------~-- ••• ----••••• - -1 
: , DEVICE NAME, CHAN, OR UOX 
: , ••••• ---.---.---- ••• --------.- ••• ----~-- •• --.-----.- •• -1 , : ARGUMENT 0 
J 1 !-.---~--.~-.--.--.-.... --.. ~.-.-.... ---... -.. --.-.~ .. --I 
n ARGUMENT 1 
• • , , •••• -.---- •••••• ~.--- •••••• --••••••• -.--.- •••• ~ •• - •••• -1 , : , : 
• • , , 

I 
I 
I 

I 
I 
I 

• • , , •• -.- ••• -.-.-.-----.---- ••••••••• ~- •• ---~-- ••••• --- ••• -1 
• • , , AFGUMENT N"2 
J = 1=======================================================J 

rTAPOP, FUNCTIONS: 
,TFWAT==t :WAIT FOR 1/0 TO STOP 
.TFBFW==2 :REWIND TO LOAD POINT 
,TFUNL==3 :RE~INn AND UNLOAD 
,TFfSB==4 :5KIP FORWARD 1 BLOCK 
.1'F'fSf==5 ,SI<IP f'OP~IARD ,1 FILE 
.l'FSL€==6 :Sl<'IP TO IJOGICAL END OF TAPE 
.TrBS8==7 ,SKIP BAC~WARD 1 BLOCK 
,TF8SP==10 :SKIP BAC~WAP8 1 FILE 
,TfwTM==11 ,~RITE TAPE MARK 
,TfWLG==12 ,WRfTE 3n OF BLANK tAPE 
,TFUSE==13 :CAIA SECURITY ERASE (BLANK" WHOLE TAPE) TU70 
.Tf~L~=~14 :~RITE LOGICAL END OF TAPE (WTM, ~TM, eSB) 
.TfLPG==15 :LABEL GET (FOR TAPE LABEL MGR,) 
.ffLRL==16 :LABEL PEL~ASE (FOR TAPE LAeFL MGR,) 
.TFL5U==17 :S:AjAP UUrIS (fOR TAPE; LABE~t, MGR.) 
,1'FI,DD== 2 (I ! DEs'rROY td~H~V DDS (FOF TA PI': r,ABEL W;B,) 
.TFf~V~=21 1fORC£ END OF VOLUME PROCESSING 
.1'FU?iJ::=2:2 : USEH FH;::Q0EST 

J-65 



UUOSYM,MAC 

:READ PAPAMeTEPS. FESULT TO At, 
.TFTRY==1000 JPETRIES ON LAST ERROB ) 
.TFDEN==10nl :P~NSITY 

.rFDOO==O rUNlT DEFAULT 
,TF020==t ~200 BPI 
,fFD55==2 ,556 BPI 
• H' D 8 0 :: = 3 : B 0 0 BPI 
,IF016==4 ,1hOry BPI 
.rFJ52::=5 :62S0 BPI 

.TFKTP=::1001 :CONTROLLER T~P~ 
.TFKTA=::O :TMI0A 
,TfKTb:=J :TM10e 
.T~KTC==2 :lCI0C 
tIF~TX==3 :TXOI 

,TFRDB=:1003 fRF~O BACK~ARPS (!U70 ONLY) 
.TFLTH=~t004 :LowrHPFSHOLD FE AD (TM10 ONLY) 
,TfPAR==l005 '~VEN PARITY (7IRK ONLY) 
.fFBSZ==t006 :BLOC~ SIZ~ ) 
,TFMOD==1001 :MQDE 

,rF~DD==O ~nFC COMPA!, CORE DU~P 
,TFrlI0==1 JINUUSTRY COMPAI. CORE DUMP 
.IF::'i8B-==2 :s ... ,,!r 1"10DE (4 8YTF:S/l'iORD) 
.rf~6B::=3 ~6-BIT MODE (9-TRACK TU70 ONL~) 
.n';\i17B==4. :"i-BTr MODE (1070 ONLY) 
~ 1'1=' '17 T:: = 5 : 7 '" T PAC K COR E D U 1>1 P (S J X BIT) 

.TFTPK==IOI0 f7 ... TRACK aIr 

.TFWL~==1011 ~wRIT£ LOCK (l=YES, O=NO) 

.TrCNT==1012 rCHAR. COUNT OF LASI RECORD ) 
,TFRID==1013 ,PRELID 
.TFCPC==1014 fLAB! eRe (9-IRACK NRZI ONLY) 
.TfsrS=::,01.5 :UNIT S'V~TOS 

TF,( ... JNS==HH8 ,UNIT IS NOT 10 BE SCHr;.::DULE~O 
Tf.80T==1819 ,SOT 
Tf~W~K==lB20 ,WRIT~ LOCK 
TF.RfW==lB21 :UNIT IS REWINDING 
TF.STA==1833 :UNrT IS STARTED 
TF.SEL=:1834 :UNIT IS SELECTED 
Tf.QFL==lB35 ,UNIT IS OfF-LINE 

) 

------------------------

) 

J-66 



) 

) 

) 

) 

'\I' 

., 

) 
J 

UUOSYM.MAC 

.TrSTA==1016 ,UNIT STATISTICS TO ARGS 0 TO 12 
.TSFIL==O :NUMER OF FILES SINCE BOT (fIL~ #J 
.T5REC==1 :NUMBgp or RfCORDS SINCE EOY (BECORD #) 
.TSTCR==2 ,TOTAL CHARS~ READ 
.lSTCW==3 :TOTAL CHABS, WBITTEN 
,rSSR~==4 :SOfT READ ERRORS 
.TSHRE==5 JHARO READ ERRORS 
,tSS~g==6 1SGFT WROTE ERRORS 
.lS~W~==7 ,HARD WRllE FRACRS 
,TSESU==10 :T~TAL ERRORS SINCE U~LOAD (MOUNT) 
.TSTDE==11 :rOT~L DEVIC~ fRPOPS SINCE SYSTEM STARTUP 
.TSUNL==12 :TOTAL UNLOADS 

.TFIEP==1017 ;INITIAL ERROR POINTER 

.TFffP==1020 ,fINAL ERROR POINTER 
~rFI~R=='021 1)MITIAL ERROR STATUS 
_TffER:=1022 J~lNAL tRRrR STATUS 
.TFfFC==1023 rNUMBEP Of RETRIES 
• TfLBL;= 1024 : TYPE: CW I,ARFL PFoc,e;ss INC; 

.TfL8P==O :EYPAS5 LABEL PROCESSING 

.TFLAL==l :ANSI LABELS 
,TFLAU==2 :ANS! LABELS WIT~ PSER LABELS 
.IFL!L:;3 :l~M LABELS 
,TFLTU==4 :IR~ LABELS WITH U5BR LABtLS 
.TFGTM==5 'LEADING TAPE MARK 
• Tf'J..INS=:Ft ~ l'imp'STANDARD .[.ABfI,S 
• TflJNL==7 ~ rIO IJABEIIS 

• T F P I./f =;; t () ? 5 ~ S At,~ E AS. T Ft, B I I EX C' /;:; P T P P 1 V S 1:: T. U Sf: D TO 
: S t; T • 'l' F' I! B PAN D • T F' Ii N f, ~ 

.TVLTC==1026 :LABEL TERMINATION CODE 
.lP1CP==1 tCONTINUE PROCESSING 
,TFTPE:==2 ,RETURN EOr 
.TFTLT=::~ :LAB~L TYPE ERROR 
~rfTHL=::4 ~HFADER LABEL ERROR 
,TFTTL==5 ,TRAILER LABEL EPROR 
.TFTVL==6 ,VOLUME LABEL [PROP 
~TFrDV::=7 :DEVICE ERROR 
.TFTOE=:10 ,DATA ERROR 
,TFTWL==11 ,WPITE LOCK ERROR 

.TF'DMS=::!O?7 rDIAGNOSTIC MODE SET IF' 1 ('PJ70 ONLY) 

.TF'fSO==1030 n"ORCE SENSE OPl£RAT10NS IF' 1 (TlJ70 Ci'>ILY) 

.TFSET==100Q ,OFfSET FROM READ TO SET 

J-67 



,TAPO? F.RRaR 
TPACS%==-l 
l'PIFC%==!) 
TPI?RV%==l 
TPNMT%==2 
TPVOP%:::.; 
TPACR%==4 
TPC8S%==5 
TPNIA%==6 

UUOSYM.MAC 

CUDES 
,ADDRESS CHECK STORING ANSW€R 
,ILLEGAL FUNCTION CODE 
,NOt ~NOUGH PRIVS. 
,NOT A MAGTAPE 
,VALUE OUT OF RANGE 
,ADDRESS CHECK READING ABGUMENTS 
:PARAMETER CAN NOT aE SET 
,TAPE WbT INtTEO OR JSSIGNEO 

J-68 

) 

) 

) 

) 

) 



) 

) 

) 

) 

." 

) 

UUOSYM.MAC 

SUBTTL MISC. 110 •• WHERE 

R~.SUP==17e17 ,STATION UP STATUS 
.RMSUN==l :NCT IN CONTACT 
.RMSUD==2 ;DOWN 
,PMSUG==4 1LOADING 
, R ~j S lJ I. = = 1 0 ~ 1;(1 AD E:D 

RM.SDU==lB13 ,DIAL-UP 

SUBITL MISC. 1/0 •• CALI1 • 

• Cl1FC~=O 1FUNCTTON WOPD 
Cl,lNO==777777B17 rWHICH -11 
Cl_1Fe==?77?77 :WHICH FUNCTIUN 

.C1IAD==1 

.Cl1CN==2 

.Cll~N==l 

Cl1NP%==l 
C 11 UF%==2 
Cl1ND%=::3 
C111U%=::4 
C1.1~A%=::C; 
C1.t15%:::6 
Cl1NEt:=7 

.Cl1DP==O ,DEPOSIT FUNCTION 

.Cl1EX==1 ,EXAMINE FUNCTION 

.Cl1QU==2 :QUEUE A RE~UEST 
,C11NM==3 ,RE1URN NAME OF FRONT E~D PROG 
.CI1UP==4 ,REtURN 0 IF DOWN, 1 IF UP 
:AODR~SS or EXAMINE/DEPOSIT 
:CONTENTS TO DEPOSIT 
:START OF QUEUE ENTRY 

:NaT PRIVILEG~O 
,UNKNOWN FUNCTION 
1NOT DC76 
J~XAM/DEP IN USB 
'NO ANSWER Tn EXAM/DEP 
,QUEUE ENTRY TOO SHOP! 
;NOT ENOUGH APGS 

Ui9 



UUOSYM.MAC 

SUBTTL MISC. 110 .w GETLCH AND TRMOP. 

JG~:TI)CH BITS 

GL,IT¥~=lBO 
GL,CTY==1bl 
GG,DSP==lS2 
GL,DSL==lB3 
G~,HDP==lB5 
GL,REM==1S6 
GL.PSS==tB1 
GL.LIN==1811 
GL.LCM==lBt3 
GL,TA8==lB14 
GL.G~P==lB1S 
GG,PTM==1816 

: TRi'-10P. F..:PRORS 

TQPRC%==1 
TORGlH==2 
TOADB%==3 
TOIMP%==4 
TODIL%==5 

:INVISIBLE TTY (P!Y) 
,SYST~M CTY 
:DISPLAY CONSOLE 
,DATASET DATA LINE 
:HALF-DUPLEX 
:REMOTE TTY 
,REMOTE BATCH TTY 
:LINE HAS egEN TYPED 
fLOWER CASE MODE 
rTABS 
,LOCAL COpy 
:PAPER TAPE MQD~ 

,PROTECTION CHECK 
;RANGE BAD 
,ADDRESS BAD 
'l~POSSIB~E 
JfRPOR IN DIALLER 

J·70 

') 

) 

) 

) 

T 

) 



) 

) 

) 

,.. 

UUOSYM.MAC 

,IRMO?, FUNCTIONS 

.TOSTP==' 

.TOSOP==2 

.TOCIS==3 
,TOCOB==4 
,TOQUC==5 
,100IC==6 
,fOOUS==7 
.IOINC==10 
,10IIC==11 
,IODSE==12 
,TODSC==13 
,100Sf==14 
~IaRSC==15 
,~OEL£==16 
,InEAB=:17 

,SKIP If INPUT" PRESENT 
,SKIP IF OUTPUT PRESENT 
;CLEAB lNPUT BUFFER 
rCLEAR OUTPUT BUFFER 
,OUTPUT CHARACTER 
JOUTPUT IMAGE CHARACTER 
,OUTPUT STRING 
~INPUT CHARACTER 
rINPUT IMAGE CHARACTER 
:bATA SET ENABLE 
:DATA SET CALL 
;DAT~ SET OFF 
fBESCAN 
rSBT ELEMENT 
;ENABLE AUTO BAUD DETECt 

.Tnor~==100Q ,OlJTPUT IN PROGRESS 
,10COM==1001 :AT COMMAND LEVEL 
wTOXON==1002 1PAPER TAPE MODE 
,TOLCT==1003 ,LOWER CASE TRANSLATE TO UPPER 
,TCSLV==1004 ,SLAVE 
.TOTA8==1005 ,ACCEPTS TABS 
.TOFRM==1006 ,ACCFPTS FF ANn Lf 
,TOLCP==1007 tLOCAL COpy (NO ECHO) 
.tO~fC=;1010 :NO FREE CARRIAGE RETURN 
,rOHPS::I011 rHORIZONTAL POSITION 
.10~ID::1012 ;wIDTH 
.ICS~D==1013 ,SEND ALLOWED (NO GAG) 
.10HLF==1014 ,HALF ~UPLEX 
.TQR¥T==1015 'REMOT~ NON-DATA SET 
,T001S==1016 :DISPLAY CONSOLE 
.rC!n.C==lo'7 :f'TLLER CL./'!SS 
,TnTAP~=1020 :PAPEF TAPE ENABLED 
,Tnp)G=~1021 :PAGE COMMINn GIVEN 
.TnSTP==1022 ,OUTPUT STOPPED (Xorr OR PAGE LIMIT) 
.TOP5Z==1023" :PAGE SIZE (HEIGHT IN LINES) 
.IOPC1==1024 :LINE COUNT IN PAGE 
.Tn8Ll<:==102S ,SlIPPkESS BLANK LINES 
.TOAGT==1026 ,CONVERT ALTMODE (175,176) TO ESCAPE 
.TOAPL==1027 :APL MODE 
,TOHSP==1030 :HECISVE SPEED 
,TOTSP==1U31 ,TRANSMIT SPEED 
.TGD8K==1032 :HAS UPBR~AK 
.H'27l~:;=1033 :2741 
.TnTDY:;;1034 ,TIDY MODE 
.Tn~CR==1035 ,AUTO CRLF 
.rORTC==1036 1- P -r COMPATIBLE MODE (DISABLED) 
.T(JP8S==~()37 :P!M MODE; BREAK SI!~T "(4 9-81T BYTES) 

1 ____ ---',,'----T_O---'-SF.l'== 1000 J OFf' SE: T FROM GE~T TO SET 

) 

J·71 



Sl1f)'ITL 

to, ItI;P:;=1 a1 8 
IC),Dr,),(:.::::::t819 
JC.L)1:i£;-:=l H20 
TO.BKT:::tB21 
! O. f: P R:; :: 17 B 2 1 

rO.EOF::=t822 
TO,ACT::=!B23 
10,D29.;::;IB29 
r 0 • s r M:::: 1 B,(' 9 
TQ.i<iPD==1829 
IO.SSO==1f128 
J: 0 • N::; D =='1 B 2 9 
IO,SfF'=::lB<.9 
rO.BDT::::':lB24 
lO.ErlT==1B25 
10.P,Tl,R::::1B26 
rO,DEN==3B2i3 
ItJ.i~HC==1829 
Tf),P'!1.==lB24 
TrJ. PTO== P3 2 5 
TO.i?T1-\.::::1826 
lO.Tt::C:::=1827 
JO,SUP=::\8:?8 
l rJ.fCS::=12129 
to,!~~M==1 B?9 
Te) • S yrl = = 1 B 3.) 
TO.UVJC==lB31 
rO.t-H1i)=;;:17f33S 

, 110 r'1D(H:S 

.1QASC==O 

.10ASL==1 

.[OPTM==2 

.Inl MG=:::10 

.lOIB~~:::13 

,IOBJN==14 
.I01DP:;=15 
,IODPR==16 
,TnD~p==17 

UUOSYM,MAC 

MISC. 1/0 •• GETST! AND SETSTS 

,IMPROPER MODE •• SOFTWAFE D~TECTECT!D ERROR 
,O~:VICE, ERHOP 
,DATA F:RRrJR 
,SLOCK TOO LARGE 
rIIO ERROR BITS 
:END OF rIllE 
:DEVICE T5 ACTIVE 
,OEC029 ~ODE (COP ONLY) 
;SUPER-IMAGE MODE (CDR O~LY) 
;WRITE DISK PACK HEADERS (DSK ONL~' 
1SEMr·STA~DARD MODF (DTA ONLY) 
,NON-STANDARD MOD~ (OTA ONLY) 
:SUPPRESS FORM F~ED5 (LPT ONLY) 
rBEGI~NING OF TAPE (MAG TAPE ONLY) 
fEND OF TAPE (MAG TAPE ONLY) 
: PAR! TY 1. =EVEN O=ClDD 01AG TAP£'.: (H1LY) 
'DEN~rTi 0-5TD 1-200 2-556 3-800 (MAG TAPE ONLY) 
,R£AO WITH NO RERE_O CHECK (MAG TAPE O~LY) 
:5UBJOB IN TTY INPUT WAIT (PTY ONLY) 
,SUAJOB HAS TTY OUTPUT AVAILABLE (PTY ONLY' 
,SUBJOBTS IN MONITOR MODE (PTY ONLY) 
,TRUTH IN ECHOING MODE (TTY ONLY) 
~SUPPRES5 ECHOING (TTY ONLY) 
JFUL~ ~HARACTER SET (TTY ONLY) -- OBSOLETE SYMBOL 
,LINE EDITOR MODE (TTY ONLY) 
:SYNCfHJNI1US r"'ODE: I/O 
rUSE USER'S WORD COUNT 
,D.a.T.~ r~(JDE 

~AscrI 
,ASCII LINE 
,PAC~ED IMAGE MODE 
,IMAGE 
;IMA~E BINARY 
:BIN~PY 
:l~AG~ DUMP 
fDUMP RECORDS 
,DUMP 

J·72 

'j 

" 

) 

) 

) 

V' 

) 

) 



') 

) 

) 

) 

"<Y 

) 

UUOSYM.MAC 

S~BTTL MIse, 1/0 •• OPEN AND CLoSt 

~CLOSE BIIS 

CL.DAT==1829 
CL.R~T==lB10 

CL.tHi 8==lfJ31 

CL .ACS==1832 
C L • D t, L =::: 1 f33 3 

CL,IN==lB34 
CL.OU!==]B35 

: I) P E 11 8 IJO C K 

,0PM0D==O 
.OPDSV==l 
.OPBUf==2 

,DELETE ~CC€SS TABLE fPOM DISK DATA RASE 
:INHIUIT CREATING A NEW FILE (OR SUPERSEDING 
: ~N OlIO ONE.' ON OUTPUt CLOSE 
,1NHtBIT DEL~TING NAME BLOCK ON A 
, CLOSE WITH ONLY A LOO~UP DONE 
JINHIBtT UPDAtING ACCESS DATE 
:lNHIBII DEALLOCATtON OF ALLOCAtFD 
: BUT UNWRTTTEN BLOCKS 
:INHIBIT CLO~lNG INPUT 
: IN.HHHT CJ,OSING QUTPUT 

:fv10Df, ETC" 
~DEVICE ~A/;\E 
:BUFFER HEaDER ADDRESS~5 

10PEN AND PHYSICAL BITS 

UU,PHY==1819 

UU.l?i1S==1BO 

tJU.DSL==181 
UU.D€:R=;;;lb2 
UU.ATO:=11:'>3 
lIU.18C==184 
tJiJ .SOE==185 

Jar! 19.NE~ Btr 18 OF CALLI IMPLIES 
JPBYSTCAL DEVICE SEARCH 

,SIGN BIT IN OPEN BL~CK IMPLIES p~ystcA~ 
, DEVICE SEARCH 
,DISABLE ERRQR LOGGING 
,DISABLE ERROR RETRY 
~A~YNCHRONOUS 1/0 
~ENAnL! INHIBITING OF RUfFER CLEAR 
,STOP OUTPUT O~ EPROP. OISALLOW OUTPUT WITH ANY 
f ERROR AITS SEt, 

J·73 

-. 



UUOSYM.MAC 

SUBTTL MISC. liD ~. FILOP. 

,ARGUMENT BLOCK FOR FILOP. 
7' !====================================~====================================, n IUPI f'UNCTI0N CODE 
f; !.---.----.------.~ .. -.--.-.. ---.---.-.-.. -.-----.-.-.·-·--·~·--.-~-··-.·-1 
:; 110 MODE 
" ! •• ---------------.----.--••• --•••• -.- •• ~--.-- •• ----.-••••••••••••• - •••••• ! 
" DEVICE NAME Op VOX 
" I·---·-------·-···------···············~·-·-----·-.-·· _ ...... _--. __ ._ ..... , 
". OUTPUT BUFFER HEADER ! tNPUT eUFrEP HEADER " 1··--·-·-·-----·----···----·--·_·--·······-··· __ ·_-_·-.•.•.. _ .•..... _ .. _ .• , 
,,1 NUMBER OF OUTPUT BUFfERS ~UMBER OF INPUT BUFFERS 
:, 1-·--··· __ ·····-_·_--_···-----------··········_--_··_---.. -.. --.. -.-.-~ ... ! 
" PTR TU LOOKUP BLOCK 
" 1··------------------_·_--_··_·--·---·_····-----------.--.. ---_._._ .... _._£ , , LENGTH OF PATH BLOCK PTR fO PATH BLOCK 

!==;===:=======:=:===============:======~====:==================-=========1 

,uFfSt;TS IN 
,fOfi'lC==O 
.£,0105==1 
.fI'JDEV==2 
.rOBRH==1 
.fON8~·==4 
.fOLE8==5 
.fOPA'f==6 

ARGUMENT HLOCK 

,fLAGS IN .FOFNe 

,FUNCTION (AND FLAGS) 
'110 STATUS (OPEN MODE) 
:D~VICE 
,SUffER FING HEADER POINTERS 
,NUMBER OF BUFFER TO BUILD 
:PTR TO tOO~UP/ENTER BLOCK (SE~ ~RB??? SYMBOLS) 
,FTR TO PATH BLOCK (SEE .PT??? SYMBOLS1 

FU.PRV==1BO ,JOB IS JACCT OR [1,2] AND WANT TO USE PFIVS 

, fUNtTIO~ CODES 
.FORED=:' 
,r"OCRE=='2 
,fr.~JR1·==.1 

.FOSAU==4 
• Fr.lMA U==5 
.fOA?P==6 
.fOCLS==7 
.F'OURB==10 

,REAl) ONLY 
,CPEATE (NEW FILE ONLY) 
:wRITE (CREATE OR SUPERCF.DE) 
,SINGLE ACCESS UPDATE 
rMULTI·ACCESS UPDATE 
,APPEND 
,CLOSE (OPTIONAL FLAGS IN ,fOIOS, SEE CL,???) 
,UPOUE RIB 

J-74 

) 

) 

) 

) 

\7' 

) 

) 



) 

) 

" 

) -

UUOSYM.MAC 

SLBITL MISC. 110 -- BUFFER HEADE~ fORMATS 

:6UfFER H~ADER FORMATS 
rBUfFER RING HEADER 

• • 
• ! · . , ~ 

• • ~ , 
• • , . 
~ r 
• • I I 

~ ; 
• • , . 

l==========================:================~========= ==1 
t VR P! !ADDRESS Of CURRENT SUFFER 
-------------- .. ---------------------------------------1 

BYTE POINTER TO DATA 

l·------·-------Q-------~-~···-------·-·-----·-·~·-·-- --1 8YTE COUNTER f---_- _____________________________ --- ________________ --I 
~------~------------------------------------------------. (MPX: ONLY) UNIVERSAL INDEX OF THIS DEVICE 
!===============================================~=~~====1 

. BFJOF==O ;ADDRESS OF BUfFER PING 
BF.VBR==lBO ,VIkGIN BUFfER RING 
Rf~18C==lB' ,INHIBIT BUFFEP CLEAR 

tEFPTN==1 ~BYTE POINTER TO DATA 
,AreTR:=? :IT£~ BYTE COUNT 
.8FUDX==3 :UNIVERSAL DEVIC~ INDEX (MPX: ONLY) 

:lNDJVIDUAL BUFFER HEADER · . , , !==================================================~== ==1 · , .~ , ~'!TA:: STA.TUS · , , . ________________ • __ M _________ n ___ M ____________ • ___ ._. __ I 

• • 
• I 

! US! DATA SIZE NEXT BUFFER ADDRESS · . · , ~-~------------"-.-~-----------~.---------.--.--.-.~-- -1 · . , , ( MF X : ) UN TV. Or.: V. 1 N D E X \t0nRD COUNT 
• • , . ---_- _________________________________________________ -I 

-------------------------------------------------------. 
• • · , / I 
, . , . I I 
• • I t DATA 
~ f; , , I I · . , , / I 
1 : 1~;=================================================== ==1 

.8fSTS=~O :FILE ST~TUS WORD 
Bf wSTS==O,,-l ,fILE STATUS THIS BUFfER 

.BFHDR==l :BUfFER CONTROL THIS BUfFER 
Bf.lOU==lBO ,SUfFER IN USE 
8f.srZ==377777B17 JSIZE OF BUfFER 
Bf,NRA==777777 ~NFXT BUFFER AnORESS 

.eFC~T==2 :~nRD COUNT OF DAIA (SOMEW~AT DEVICE DEPENDENT) 

5U~TTL ¥lSC. 1/0 -- MVHDR. 

HVHGP%==1 ~CHANNEL NOT OPEN 

J-15 



UUOSYM.MAC 

SU~TTL MISC. 1/0 •• CNECT"SE~SE" CLRST, 

;CHECT. FUNCTIONS 

.CNceN=:! 

.cNceC=:2 
~CNCDR==3 

,CNgCl', ERRORS 

CNCNM%==t 
CNCUO%=.=2 
C~CCM%==3 
r~r.NF%==4. 
~NC~C%==5 
rNCNQ%=~6 

C~CrI%=~7 
CNCU"~=10 
C~COU%==11 
C~Cb~':=12 

J C ONNEC l' DEV ICE 
rCLCH! AND DISCONNECT 
,R~Sf,T AND DISCONN~CT 

:Nor MPX: CHANN~L 
,UNKNOWN DEVICE 
JCAN'! MULTIPLEX THIS DEVICE 
,NO FREE STORAGE 
;NOT CONNECTED 
:CHAN~EL NOT OP~N 
:INVALID UNIVERSAL DEVICE INDEX 
,UNKNOWN FUNCTION 
:DEVICE UNAVAILABLE 
rSPOOLED DEVICE 

:SFNSE. sue-SLOCK 

,SNSI)V==O 
.SNSST==l 
.SNsnS=:2 

'S~'i~SE, r.:H~UPS 

S[·;SHD%==l 

'~:PLST. ERRORS 

,DEVICE NAME IN SIXBtT 
,GETSTS 
'D~VSTS 

:BAO DH:VICE 

ERLBC%==l . :BAO CHANNEL 
FRLNM%==2 1NOT MPX: CHANNEL 

') 

) 

) 

~CI.d~S,!. BLOCK) 

.CU<SX::::::(') ,Uf)X 

.CLRST:::=l :SETSTS 

;Ct,RSl. ERRORS 

CLRID%==l 
CLRN1%==2 

,ILLEGAL DEVICE 
:NOT OWN DEVICE 

v 

)' 

) 

)·76 



?, 

) 

UUOSYM.MAC 

SUBTTL MISC. I/O -. OEVLNM 

OVLNX%==-l 
DVLIU%==-2 
OVLNA%==-] 

SU8TTL 

r;VSD~%==O 
DVSJ\lX%=="l 
DVSIM%==-2 

SUl3'fTL 

~TINX%==-l 
MIINA%==-2 

,NON-EXISTENT DEVICE 
JLOGICAL NAME IN USE 
,DEVICE NOT ASSIGNED ON OPEN 

MISC, 1/0 N_ DEVSIZ 

:DUMP MODt: 
:NON·EXISTENT DEVICE' 
'UJL~;GAL MODE 

MISC, 1/0 .... MTAID, 

:DEVICE OOESNOT EXIST OB NOT A MAG TAPE 
,DEVICE IS NOT AVAILABLE TO THIS JOa 

) :R'MOVEO (NEED fO Spy TO GET THIS INFO) 
,HARDWARE CHANNEL DATA BLOCK WORDS 

) 

) 

1 

s 

) 

:.CN8SY==O 
f MCNSYS==l 
, • C fn. U E; = = 1 
, .rNI.Ctl==2 
J .Cf\!"C\~==J 
J.CNCitoi2==4 
,.CNCW1==5 
"CNCWO==6 
1 ,CNt'li'i2==7 
~.CN!)W1==10 
,.CNClillO;:::;=ll 
: .. C~rt1PE:==12 
T .CIVI)PE==!3 
;.CNNXM==14 
f,CNCSR==15 
: ,CNl,Of,;=lS 
t .CNCSIJ==lf1 

;BUSY If POSITIVE 
:LH;:::;ADDRFSS OF NEXT BLOCK 
,RH=ADnR~SS OF UNIT WITH LAST FRFOR 
:INITIAL C.w, ON LAST E~ROR 
,fINAL C,W. ON LAST ERReR 
,COMMAND WORD-2 OF ERROR 
,"1 
:-0 
:DATA 110RD-2 
,DATA WORD"'l 
, OAT A t'10RD-O 
;NO. CHANNEL M~MnRY PARITY ERRORS 
:Nn. DAtA PAR!TY ERRORS 
rNO, CHANNEL NXM 
:LH=BITS TO REQUEST CPU SWEEP OF CORE 
fRH=~AST DDB ADOP 
JLE~GTH or DATA BLOCK 

J-77 



UUOSYM.MAC 

SUSTTL DISK UUOS •• DSKCHR ') 
,OSKCHR STATUS BITS 
II 1=======================================================================1 
" lRlblH!S!A!ZI lSTS!M1N1LI 1 TYP I DeN! C~T-TYP 1 CNN 1 UNT I UNN 1 
II !=======================================================================1 

~e.RHB==l~O rREAD ~OM~ BLOCK 
DC.OFL==lBl ,UNIT IS OFF-LINE 
nC.H~p==182 ,HARDWARg WRITE PROTECT 
DC.SWP==lB3 ,SOFTWAR! WRITE PROTECT 
DC.SAF==184 ,SINGLE ACCESS FILE STRUCTURE 
DC.ZMT==185 ,ZERO MOUNT COUNT 
OC.STS==3B8 ,UNIT STATUS 

.DCSTP==O 'PACK IS MOUNTED 

.OCSTN==2 ,NO PACK IS MOUNTED 

.peSTD==3 ,UNIT IS DOWN 
DC,MSB==t89 ,MULTIPLE SAT BLOC'S 
DC.NNA==lBl0 ,NO NEW ACCESSES 
DC.AWL==tBl1 '~RITE LOCKED FOR ALL JOBS 
DC.IYP==7B17 ,TYPE OF ARGUMENT 

,PCTDS==O IGENERIC OSK ) 
.DCTA8==1 ,SUBSET DUE TO ABeREVIArIO~S 
.DCTFS==2 ,FILE STRUCTURE NA~E 
.DCTUF==3 ,UNIT WITHIN FIS 
,DCTCf-I==4 ,CONTROLLER CLASS NAME 
.DCTCC==S ,CONTROLLER CLASS 
,DCTPU==6 ,PHYSICAL UN!T 

DC,DCN==7B20 rDATA CHANNEL NUMBER 
DC.CN!==77B26 rCONTROLL~R TYPE 

.DCCFH==l ,RC.tO 

.DCCDP==2 r~p.tO 
DC.C~N=:7B29 ,CONTROLLER NUMBER 
DC.U~T==7832 ,UNIT TYPE 

.DCUFO==O :RO-10 
) 

.DCUFM==l ,PM-10B 
,DCUD2==1 :RP02 
,DCU03==2 ,RPOl 

DC.UNN==7Bl5 ,PHYSICAL UNIT ~UMBER 

) 

" 

,. 

) 

J·78 



) 

-;> 

) 

) 

"" 

'e 

) 

UUOSYM.MAC 

:DSKCHR LOC~TIONS 

,DCNAM==O ,ARGUMENT NAME 
,CCUFT==1 :LOGGED IN BLOCKS REMAINING 

DC,NPA==180 1NO PREVIOUS ACCESS 
.DC~·(T==2 ,PHYSICAL FeFS BLOCKS REMAINING 
.DCU~T==3 ,PHYSICAL UNIT BLOCKS REMAINING 
.DCSNM==4 ,STRUCTURE NAME 
.DCUCH==5 ,CHARACTERISTIC SIZES 

DC,UCC==777BB :BLOCKS/CLUSTER 
Dc.uci==777B17 1BLOCKS/TRACK 
DC.UCY==777777 ,BLOCKS/CYLINDER 

.OCUSZ==6 rUN!T SIZE IN 8LOCKS 
,DCS~T==7 t~TRUCTURE MOUNT COUNT 
.DC~PS==10 ,WORDS/SAT 
.DCS PU==11 :SATS/UNIT 
.CCK4S==12 :~ FOR SWAPPING 
.DCSAJ==13 JSTNGLE ACCESS JOB 
.DCULN==14 :UNIT LOGICAL NAME 
.DCUPN==15 ,UNIT PHYSICAL NAME 
.OCUI0==16 JUNlT 10 
,OCUFS:=17 ,UNIf FIRST BLOCK FOR SWAPPING 
.DCSUM==20 ,SLOCKS PER UNIT INCL. MAINT CYLS, 
,OCC~L:*21 :CURRENT CYLINER 
,OCBUC==22 :ALOCKS PER UNTT IN PDP~11 COMPAT, MODE 
.DCLPQ==23 :LENGTH OF POSITION WAIT QUEUE 
,l)CLTG==24 ,x.iENGTH OF TRANSFER viA!! QUEUE 

5U8T1L 

• ,l\CCPR==O 
.~CR~N==l 
.ACWPI==2 
• A,C UPO:= 3 
,ACAPP:=4 
,lI,C RED==5 
,ACEXO==6 
~Jl.CCRE==7 
,ACSClC==10 

0151< utJos "' .. C'HKAcc 

1CBANGE PROTECT10N 
f HEN A,ME 
: WHITE 
,UPOATE 
JAPPEN!) 
IREAD 
:EXECUTE 
:CREAl'E 
;SEARCH DIRECTORY 

J-79 



UUOSYM.MAC 

SUBTTL OISK UUOS •• DISK, 

,DUPRI==O 
,DVS€~=:1 

.DUSTM==2 
~DVUNL=:3 
.OUOLS==4 
.DUOLN==5 
.PUO~L==6 

:1)1S1<" t::RFORS 

:SET PRIORITY 
rSET PDP-II C22-SECTOR) MODE ON BP04 
:S~T PDP~10 (20-SECTOR' MODE ON RP04 
,UNLOAD RPQ4 
JCHAN,/CONTROLLER HILL BE OFr LINE SOON 
:CHAN./CO~TRnLLER IS OFF LINE NUW 
:CHAM.ICONTROLLER IS BACK ON LINE 

DUILF%==·l ,ILLEGAL FUNCTIUN 
{) U 1. LP%==..,2 J ltII .. EGA L k>R I OR I 'fy 
'***~NEED ~OP~ ERRORCCDES******* 

J-80 

) 

" 

) 

) 

) 

',11-

) 



') 

) 

) 

) 

"" 

-}".-; 

) 

UUOSYM.MAC 

SUBTTL DISK UUOS •• JOBStR 

,DFJNM=;O ,STR NlME 
.DfJO~:=l :DIRECTORY 
,DfJSt:=2 ,STATUS 

OF.SWL==lBO 
Df.SNC==lBl 

1W~ITE LOCKED 
J NO CRl!~An: 

SUBTTL OISK UUOS _. GOBS!R 

" DFG,1N==O 
.DFG'??:=l 
,Df(;;\ll'1==2 
.OF'G1)R:=) 
,DF'GS 'I'==4 

,GOaSTR ERRORS 

DFGI"==3 
DfGPP%=:6 
DFGNP%==10 
Df~L~%==12 

SUBT1'L 

, JOB N UME~ER 
7JOB P,PN 
, SrR N AM~~ 
rD!HECTDRY 
:STATUS (SAME AS ,DFJST) 

:ILLEGAL 8TH 
:INCORRECT PPN 
:NOT PRIV~ 
JINCORRECT LENGTH 

DISK DUOS -- SUSET, 

SU.S rJT==1d1 JOIJTPU'f 
SU,SMN==182 fM~INT~NANCE CYLINDER 
SU.SCH==17B12 :CHANN~L 
SU.SBL==37,,777777 :BLOCK NUMBER 

:SUSF:'T. ERRQq5 

SUSNP%=="'l 1 NOT PR tV l!JEGED 

J-81 



UUOSYM.MAC 

SU8TTL DISK UUOS -- PATH, 

.PTrCN==O ,JOB #"FUNCTION OR ARGUMENT CHANNEL OR DEVICE 
.PTfRD==-l ,READ DEFAULT 
.PTfSD==-2 :SET DEFAULt PATH 
,PTFSL==-l ,S~T LIB. NEW, ayS 
,PTFRL==-4 ,R!AD LIB, NEW, SYS 

_PTSTR==O :ANSWER HAS STR NAME 
,PTswT==l ,S~ITCHESAND FLAGS 

PT.SLT==7B29 fTY?E OF SEARCH LIST 
.PTSLJ==l ,JOB 
,PTSLA==2 ,ALL 
,PISLS==3 ,SYS 

PT,lPP==lH30 :lMPLIEO PPN (FORCED) 
PT,LIB==lB]l :/LI8 
PT,SYS==lB32 ,ISIS 
pr,NE~=~lB33 :INEW 
PT.SCN==3B35 :SCAN SWITCH 

.PTSCN==l :NO (OFr, 

.PTSC~==2 rYFS (ON) 
PX,SNW==lB34 :INEW ON .PTFSL/.PTFRL 
PT,5SY==lB35 f/SYS ON ,PTrSL/.PTfRL 

.PTP?N==2 rPPN (UFO) OF PATH 

.PTMAX==11 :LAST POSS1SLE 0 AFTER LAST src +1 
:(TE, LENGTH OF PATh BLOCK) 

J-82 

') 

) 

) 

) 

" 

~ 

) 



') 

'), 

) 

) 

,j 

:3 

) 

UUOSYM.MAC 

SUB TTL DISK UUOS •• STRUUO 

,FS5RC==O ,UPDATE THIS SEARCH LIST (SEE ,DfJXX5 
.FSDSL==l :UPDATF SYSTEM/JOB SEARCH LIST 

.f5DJN==1 JJOS# (0=515) 
,fSDPP==2 :PPN 
.fSDFL==3 ,FLAGS 

DF.SRM==lB35 ;R~M0VE FROM S/~ COMPLETELY 
.FSDEf==2 JPEfINE NSW F/S 

,fS;\JST==l ,POINTER TO STR Pl~RA~1S 
,YSNU~==2 :FIRST POINTER TO UNIT PARAMS 

:STR PARAM BLOCK 
.F'SSNM==O 
,FSSNU==l 
.fSSHL=:::2 
• ~'SSSZ=:::3 
,FS5RQ==4 
.fSSRf==5 
,FSSTL=:::6 
,raSOD==? 
.FSSMP==10 
wFSSML==11 
,fSSllN::::12 
.fSSTR=:::13 
.fSSBU==14 
.fSSRC=:::15 
.fSSSU==16 
,F,'SSIG==17 
.fSSCC:::=20 
.fSSCK:::=21 
,fSSCP,==22 

~UN1T DATA BLUCK 

,NAME OF STRUCTURE 
; N U M B ER 0 ~' UN I ,. S 
:HIGHEST LOGICAL BLOCK 
,SIZE OF STR 
:RESFRVED QUClTA 
,flF.SERVEn FRFE: 
:TALLY OF rCFS fREE 
,SLOCKS 'O~ OVERDRAW 
:MFD r'H~S'f RETPIEV,~L POINTEH 
:-1 IF .FSSMP IS Q~LY POINTER 
,NFD UN!T 
f NUMBER Of RET~IFS 0"1 F;RROR 
,LARGEST BLOCK ON UNIT 
,BLOCKS PER SUPEP-CLUSTER 
,SUPER-CLUSTERS PER UNIT 
; CIGNU:RFW) 
J8YTE POINTER 
H3YTF POINTER 
,BYTE POINTER 

TO CtUSTER COUNT 
TO CHECKSUM 
TO CLUSTER AnDRESS 

.YSUNM==O :UNIT NAME 

.fSUrO==l 'PACK to 

.fSULN::::2 ,LOGICAL NAME 

.FSULU=:::] ,NUMBER WITHIN STR 

.fSUDS==4 :STATU5 RITS 
fS.UWL==IBO :SOfTWARE WRITE-LOCK 
FS.USA==lS' :SINGLE ~CCESS 

.FSUGP==5 ,NUMBER BLOCKS 10 ALLOCAT~ 

.fSUfL==6 ,FR~E BLOCK TALLY 
,FSU8C:::=7 : bLOC'KS P~:R CLUSTER 
,fSUCS=:::\O 1CLUSTERS PER SAT 
.fSUWS=:::11 ,WORDS PER SAT 
.FSUSC=:::12 :SATS IN CORE 
.fSUSU==13 JSATS PER UNIT 
.fSUSP::::14 ~POINTEF TO SPT TABLE 

J·83 



UUOSYM.MAC 

'(CO~T.) OF STRUUU YUNCTIUNS 

.fSHOF==3 fC~ANG€ F/S STATUS 
.~~S.R,j~J==1. JI"lOB NUMBER 
,FSRPP==2 ,JOB P,PN 
.rSRNM==3 ~STR NAME 
.fSRST==4 ,NEW STATUS 

FS.RNL==1BO :WRITE LOCK ALL USERS 
FS.HSA==lDl JSINGLE ACCESS 

.fSLOK==4 :LOCK FIB 
,FSREM==5 :R~MOVE FIS 
,F'SULK==F, ,Tl':S't'/SE'f urn INTE:RLOCK 
.FRUCL==7 :CLtAR UFO INTERLOCK 
.FR~TS~:10 :SIMULATE ERROP 

,fSEUN==l ,UNIT 
.fS~GT~=2 :HUMBER Of TRANSFEBS BEfORE ERROR 
.fSr~f)B==3 :NUMBE~ OF DATAl'S T("'I rWIN 
.ft;r~~O==4 ,OR TO DATA! 
~fSEDA==5 :A~DCAM TO DATA! 
.fSECB==~ ,NUMBER OF CONI'S TO RUIN 
.fSECO==7 rOR TO CONI 
.fSECA==10 :ANOCAM TO CONI 

.F!:HPild==11 pH1DtfY. NOCRF:A,,,E; AND ~JRl'rt::: LOCK 
.fS?1FS==1 :FILF: SI'RtJC'l'tJRF.: 
.FSMFL==2 rfLAGS 

, S'r,RULJO ~.:R.I<ClRS 

FSILF%==O 
~'SSNj;"%==t 

F'sSSA%=='? 
~'S 1: L~%==3 
FS T ~1 F:% == 4 
f'S U ~j A % = = 5 
F 5 P~)i;l %=:(, 
FS1-1CN%==7 
F'ST-jPV%==lO 
FS~'SA*==11 
F.' S It.L%=; j :2 
F'SlJ!'!C%==13 
FSNF'S%==1.4 
F'SNCS%==15 
FSIJNF'%==16 
F'SPS!J%==1,7 

FS,MWL==lBO ,WRITE LOCK 
F5.MNC==lBl :NO CFEAT~ 

,UJLEGAL f'lJNC TION CODE: 
1 STPt-JOT fOlJND 
,STR IS SLNGLE ACCESS 
: ItiLF:GAL" .r:N'1'RY l'~ LX 61' 
: TOO ~1ANY' ~:N't'RlI£S IN B/L 
,UNIT NnT AVAILARLE 
~PPN DOES Nor MATCH 
: MOUNT COUN,' ,GRf;ATER THAN CNP: 
:fIJOT PRIVlt.~Gf;D I)SFR 
1STRUCTUP~ A~READY EXISTS 
1l.I.,LEGAL ARGUMF;Wr LIST LENG'l'H 
: Ui~AHIJE TO COMPLF:T€ IlULl 
:SYSTEM FULL Of STRS 
dpSlIfFICIFNT F'RU; CORE.: f'C.H? DA'I'A. fHJOCKS 
: Ud~E;GAL ·UNIT 
,8TH REPEATED IN 5/L 

J-84 

-) 

J 

'j 

) 

) 

) 

'.~ 

'), 

) 



') 

): 

) 

) 

'd 

3 

) 

UUOSYM.MAC 

SUB TTL LOOKUP/ENTE~/RE~AME 

:DEfINE RI~ LOCATIONS (IE, INDEX IN EXTENDED LOOKUP/ENTEP BLOCK) 

.PBCNT==O :COU~T OF ARGS FOLLOWING 
BB.NSE==lB18 :(ENTER ONLY) NUN-AUPEPSFDING ENTER 

.RBPPN==t :OIPECTORY NAM~ eN POINTER 

.RR~AM==2 ,FtLENAME 

.REEXT==3 ,EXTENSION, ACCESS CATE, ERRCF CODE 
R8.CRX==7B20 'F.XTENSIO~ OF ~8.CRO 
PB,ACO=='7777 ,ACCESS DAlE 

.~8PFV==4 ,PRIVILEGE, MODE, CREATION TIME AND CATE 
RB.PRV==77788 ,PRIVILEGE 
RB,MOD==17B12 rMODE 
RR.CR1==3777823 ,tPEATION TIME 
RB.CRD==777753S 1CPEATtON DATE 

.RBSIZ==5 :LENGTH 

.RBVEP==6 1~FR510N 
,RBSPL==7 ~S~OOLED FILE NAME 
.RBtsr==10 ,ESTIMATED LENGTH 
,RBAle==11 ,ALLOCAIION 
.BRPOS==12 :POSITION TO ALLOCATE 
,REFT1==!] JD~C ~ON·PPIV. FUTURE ARG 
,RBNCA==14 ,NON-PPIV, CUSTOMEP ARG 
,RRMTA==15 ,TAP! LABEL 
,RBDEV==16 ,LOGICAL UNIT NAME 
,~PSTS==17 ,FILE STATUS AITS 

PP.LOG==l~O fLOGGED IN 
FP,UCE==lB9 ,CHECKSUM ERROR 
RP.UWE==lBl0 rWRITE ERROR 
PP.URE==lbl1 ,READ EFROR 
R?UFP==7Bll ,ALL UFO ERRORS 
RP.DTR==lB18 ,DIRECTORY 
PP,NDL==lB19 ,NO DELETES 
RP.~FS==lB21 :DON'T FAILSAFE 
RP,ARC==lH22 :ALWAYS BAD CHECKSUM 
PP.ARV==lB24 :ALWAYS BACK UP 
PP,NOC==lB25 :NON-QUOTA CHECKED FILE 
RP,CMP==lB?b ,UFO COMPRESSING 
RP.tCE=~lB27 ,CHECKSUM ERROR 
RP,r~E==la2A ,WRITE ERROR 
RP.fRE==lB29 ,READ ERROR 
RPiBrA==lB32 :BAD BY FAILSA RESTORE 
P~.CRH==tB33 rCLOSED AFT~R CRASH 
RP.SCA==1B35 ,~AD BY DAMAGE ASSESSMENT 
RP.ERR:=715 ,ALL FILE ERRORS 

J·85 



• RBE·L8==2 0 
• R8£U!~==21 
.RR~TF==22 
.RRQTO=='23 
,R8(JTR==24 
,RBUSD==?S 
.R8AH1'==26 
.RRNXl'==27 
,RRPFlO==31J 
,R6PCf\==31 
,RRU!i'O==32 
.RAfLH==33 
.RBXPA==31 
• RBT Jr.1:=:3 5 

UUOSYM.MAC 

,ERROR LOGICAL SLOCK 
J~FlROR UNIT AND LENGTH' 
,reFS LOGGED-IN QUOTA 
:LOGGED-OUT QUOTA 
rRf;SERVED QUCJTA 
:bLOCK IN USE 
rAUTHOR 
,COi'IJT1NUED STR 
:PREDECESSOR STB. 
;PRIV. CUSTOMER ARG 
,POtNTER BACK TO UFO 
,RELATIVE BLOCK IN FILE COVERED BY THIS RIB 
JP01MT~R TO NEXT RIB IN CHAIN 
:CREArION DATEt,TIME IN INTERNAL SYSTEM FORMAT 

J-86 

) 

) 

) 

) 

'J 

) 



.:j' 

UUOSYMMAC 

) ,LOuKUP/ENTER/RENAME/G8TSEG/RUN ERROR CODES 

) 

) 

) 

.. 

) 

) 

ERfNF'%==O 
EBTPP%==1 
ERPRT%==2 
Ei=l.F'MM'1.;~=3 

FRA~:F'1;==4 

FRlSU%==5 
FRTRN%==6 
FRNS!i'9,,==7 
F~R~-JE;C%==l 0 
ERDf'JA%===11 
ERN !5D%::::= 1 2 
E:;U1JT.1%==13 
~~HNH~A%==14 

El·n·, LK%== 15 
E'FHH::T%::::16 
ERPOA%::::::17 
E H B 141' % :: = 2 l) 
ERCSI11;==?l 
ERDNE!i.::::=22 
F::RS!W",,==23 
FRS!J~;%== 2 '1 
F:FlJ,VTA==?5 
F'RNCE%==26 
ERSfiS~==27 
FHrCU%::=~() 

E R Tl (1 H % = :: 3 1 
FRNIJI%==l2 

:FtLE NOT FOUND 
:INCORRECT PPN 
:PROTECTION FAILURE 
:fILE AEING MODIFIED 
,ALREADY EXISTI~G FILE NAME 
:ILLEGAL SEQUENCE OF UUOS 
:TRANSMIS5ION ERPOR 
,NOT A SAVE fILE 
:NOfENOUGH CORE 
,CEVJCE NOT AVAILABLE 
,NO SUCH DEVICE 
:ILLEGAL UUO 
:NO ROOM 
:WPITE-LOCKED 
,NOT ENOUGH TABLE SfAC~ 

,PATIAL ALLOCATION 
:bLOCK NOT FREE 
~CAN'r SUPERSEn~ A DIRECTORY 
:CAw'T DELETE NON-EMPTY OIRECTORY 
:SF'D NOT FOUND 
rSEARCH LIST EMPTY 
;SPD NEST L~V!L.TOO CEEP 
,NO-C~EATE fOR ALL SIL 
,SEGMENT NOT ON SWAP SPACE 
~CAN'1 UPDATE FILE 
:LOW SEG OVERLAPS HI SEG (GETSEG) 
:NOT LOGGED IN (RUN) 

rfILF PROrECTiQU cnOES 

,PTCPR==n 
.PTREN==l 
.PTWPI==2 
.PTUPD==3 
.PTAPP==4 
.PTRED==S 
.PTEXO==~ 
.PTMON==7 

:CHANGE PROTECTION 
rHENAMF.: 
1 ~JR r TF.; 
,UPDATE 
:APPEND 
~REAO 
rt;XECUTE 
:N() .. ACCESS 

;DJRECTORY PROTECTIUN CODES 

pr.~OK==4 
PT.CRE==2 
PT,SRC==t 

,AliLOW LOtH:UPS 
f ALLm! CREAH:':S 
~SF.ARCH DIRECTORY 

J-87 



UUOSYM.MAC 

SlH3TTL 

"XC REf 

%%UUOS::<VRSN. (UUO)~ 
PURGE UUOWHO,UlJOVER,UUOMIN,UUOECT,%tMACT,CALLI,MTAPE,TTCALL 

IfDf:f ~qC,< %%C==%%1Jt.1OS 

IFt,< ASUFPPESS> 
IFNOEf %w.C,cPURGE VPSN, 

> 

END> :END U~lVEPSAL OF UUOSYM 

IfDSF %.C,<lFLE %.C+2,< 

seREF 
LlST 

IF?,<PURGE %,C,%.,C> 
END» ;BIND OFF TO GET CLEAN LISTING 

J·88 

) 

'.;> 

) 

) 

) 

.,. 

~l 

) 



) 
INDEX 

2741 characteristics, 11-8 Header, 7-10, 13-1 
Numbers, 9-2 

AC, Size, 
display contents in lights, 4-11 change for magtape, 10-1 

Access protection, disk, 8-1, 8-5 
directory, 8-7 magnetic tape, 10-1, 10-8 
file, 8-5 BATCON,4:-7 

Accounting file, 4-12 BATMAX,4-7 
Accumulated, Baud rate, 11-16 

error count, 3-1 Break characters, 11-9 

} 
run time, 4-9 Buffer, 

Activate dormat me, 43 Data mode, 7-3 
Address, Header block, 

break condition, 4-8 structure, 7-10, 13-1 
highest legal, 3-2 specifying, 7-3 
space for program, 2-1 extension to, 13-1 

Allocation tables, 8-5 Input, 
ALT Mode, 11-8 clear, 11-3, 11-6 
APL Mode, 11-9 MPX,13-2 
Append to file, 8-10 scan, 11-3 

) APR, terminal, 11-6 
clock,4-lO general, Chapter 7 
traps, 4-2 Output, 7-9, 11-3, 11-6 

ASCII Ring, 7-10, 13-2 
character codes, 11-9 Size, 
Line Mode, 10-2 DECtape, 9-1 
Mode, 7-7,10-2 Disk,7-6 

ASCIZ string, Magentic tape, 10-1, 10-2 
output a, 11-2, 11-6 PTYs, 11-14 

ASSIGN command, 7-2 Terminals, 11-1 

) Associating 
a UDX to a device, 13-2 CCONT command, 4-1 
Device to channel, 13-2 CDP spooling, 4-6 

Automatic baud detection, 11-6 CDR spooling, 4-6 
Awaken job, 4-4 Chains, device, 13-1 

Change, 
Background job, 4-3 mag tape block size, 10-1 
Backspace, mag tape density, 10-1 

a file, 10-3, 10-4 Channel, 
a record, 10-3 connect devices to, 13-1, 13-2 

Batch,4-7 MPX, Chapter 13 
J Binary Mode, 7-7 Character, 

Block, codes, 
Allocation of, 9-5 ASCII,11-9 
Directory, 9-2 Break,11-9 

-----

Format on DECtape, 9-5 Mag tape, 10-1 
) 
I 

Index-l 



Terminating, 11-9 
input a, 11-2 
output a, 11-2 

Characteristics 
line, 11-2 
mag tape, 10-1 

Clear, 
PC flags, 4-2 
REELID, 10-12 
terminal buffers, 11-3, 11-6 
write-prctect hit, 2-1 

Clock, 
APR,4-10 
DKI0, 4-10 
enter request in queue, 4-12 
internal,4-1O 

CLOSE monitor call, 9-8 
Closing 

magnetic tape file, 10-1 
DECtape file, 9-8 
files, 8-10 

CLRST. monitor call, 13-2 
Cluster, 

af files, 8-2 
sizes, 8-5 

CNECT. monitor call, 13-2, 13-3 
Commands, 

ASSIGN,7-2 
CCONT,4-1 
CONT,4-1 
CSTART,4-1 
MOUNT,7-2 
PRESERVE, 8-2 
PROTECT,8-7 
REENTER, 4-1 
RUN,4-1 
START,4-1 

Configuration information, 4-11 
Connect device to MPX channel, 13-1, 13-2 
CONT command, 4-1 
Continue, 

device after error, 13-5 
program 

after HALT, 4-1 
automatically, 4-2 

SFD,8-2 
UFD,8-2 

Control, 
----Flags,5~1;-5~9 

Job,4-1 
Software Interrupt System, 5-9 

INDEX (Cont.) 

Index-2 

Controller, 
DECtape, 9-1 
Mag tape, 10-1, 10-8 
Physical class names, 7-5 
Terminal, 11-1 

Convert ALT modes, 11-8 
Core, 

guaranteed amount of, 4-5 
highest relative location, 3-1 
image file, 2-1 
maximum amount of, 2-1 

CPPC, 2-5 
CPPL,2-5 
CPU, 

contents of switches, 4-11 
runnability, 4-6 
specification, 4-6 

Create a file, 8-10 
CSTART command, 4-1 
CTUOB monitor call, 11-17 
CTRLjC, 4-1 
CVPC, 2-5 
CVPL,2-5 

DAEMON monitor call, 4-12 
Data, 

Block,8-5 
Modes, 
DECtape, 9-1 

Disk,7-6 
Dump, 7-7, 10-2 
General information on, 7-6 
Mag tape, 10-2 
MPX devices, 13-2 
Terminals, 11-1 

Switches, 4-11 
Transmission, 8-14 

DATE monitor call, 4-11 
Date, 

algorithm for, 4-10 
set, 4-5 

Daytime, 
algorithm for, 4-10 
set, 4-5 

DDT,3-2 
Debreak conditions, 11-8 
DECtape, 

Block allocation, 9-5 
Block-format,9-5--­
Block numbers, 9-2 
Buffered data modes, 9-1 

) 

) 

) 

) 

-:1 

" 

) 



') 

." 

) 

) 

~ 

'J' 

Buffer size, 9-1 
CLOSE call, 9-8 
Controller number, 9-1 
Data modes for, 9-1 
Dead reckoning, 9-11 
DEVSTS call, 9-9 
Directory, 9-2, 9-3 
ENTER,9-7 
File, 

Format, 9-4, 9-5 
Status, 9-9 

I/O, Chapter 9 
INPUT,9-8 
LOOKUP, 9-5, 9-6 
Mnemonics, 9-1 
MTAPE.,9-9 
Number 

of Blocks, 9-2 
of files, 9-2 

OUTPUT,9-8 
Physical name, 9-1 
positioning, 9-11 
RELEASE,9-8, 
RENAME,9-8 
Unbuffered modes, 9-2 
Unit number, 9-1 
UGETF,9-9 
USETI, 9-8, 9-9 
USETO, 9-9 
UTPCLR,9-9 

Default directory path, 8-3 
Deferred spooling, 4-8 
Delete, 

a file, 8-9 
empty SFD, 8-10 
empty UFD, 8-10 

Density, 10-1 
Device, 

Associate 
to channel, 7-2 
to MPX channel, 13-1, 13-2 
with UDX, 13-2 

Chains, 13-1 
Connect to MPX channel, 13-1, 13-2 
Continue after error, 13-5 
Disconnect from MPX channel, 13-2 
Errors, 13-3 
Generic names, 7-2, 7-4 

+-------ldentification,--13~2 

Initialization, 7-2 
Mag tape, 10-1 ) 

INDEX (Cont.) 

Index-3 

Names, 7-4 
Physical names, 7-2, 7-4 
Reassignment, 7-13 
Selection, 7-2 
Specification, 7-1 
Termination, 7-3 

Digital compatible mode, 10-3 
Directory, 

Access protection, 8-7 
Block,9-2 
Devices, 7-2 
File, 8-1 
Format, 9-2, 9-3 
Multiple file, 7-2 
Path,8-3 

Disk, 
Block size, 8-1, 8-5 
Data modes, 7-7 
Unit names, 7-6 

DKlO clock, 4-10 
Dormant job, 4-3 
Double tape mark, 10-1 
DPA,7-6 
DSKFULL,4-7 
Dump data mode, 7-7,10-2 
Dump record data mode, 10-2 

EBOX, 4-10 
Enable modem, 11-6 
ENTER monitor call, 

Argument Block, 8-18 
General description, 8-10, 8-11 
Extended argument block, 8-10 
Error recovery for, 8-14 
DECtape, 9-7 
Parameters for, 9-7 
On existent file, 8-14 

Enqueue/Dequeue, Chapter 16 
ERLST. monitor call, 13-3, 13-4 
Error 

Continue device after, 13-5 
Count, 3-1 
Codes, 

CLRST., 13-5 
CNECT., 13-3 
ERLST., 13-5 
IPCF,15-12 
PISAV., 5-11 
FIRS'f-;-;-5-H---------------­
PISYS., 5-10 
TAPOP., 10-10 



TRMOP, 11-9 
Device, 13-5 
File entrY,4-12 
Intercepting, 5-2, 5-3, 5-4 
Logging, 7-3 
Mag tape status, 10-9 
Recovery, 8-19 
Retry, 7-3 

EXE files, 4-1 
Execution, 

start, 4-1 
stop, 4-1 
suspend,4-2 

Extended argument block, 8-10 
Extension to file name, 8-8 
EXIT monitor call, 4-2 

FACT file entry, 4-12 
FHA,7-6 
File, 

access privileges, 8-5 
backspace a, 10-3, 104 
close on mag tape, 10-1 
cluster, 8-2 
create, 8-10 
definition, 8-1 
delete, 8-9 
directories, 8-1 to 84 
format, 

on DECtape, 9-2 
on disk, 8-5 

generation, 8-1 
length of, 8-1 
names, 8-8 
number of on DECtape, 9-2 
owner, 8-6 

INDEX (Cont.) 

FORM Switch, 11-7 
FSA,7-6 

Generation files, 8-1 
Generic device names, 7-2, 74 
GETLIN Monitor Call, 11-4 
GETPPN Monitor Call, 4-9 
GETSEG Monitor Call, 4-1 
GPPL,2-5 
GVPL,2-5 

Half-duplex terminals, 11-15 
HALT Instruction, 4-1 
Header block, 7-10,13-1 
HIBER monitor call, 4-3, 4-4, 11-15 
Highest 

relative case location, 3-1 
Legal address, 3-2 

Host computer time, 4-10 

I/O 
interrupt conditions, 5-6, 5-7 
General information, Chapter 7 
Non-blocking, 7-4 
With DECtape, Chapter 9 
With Disk, Chapter 7 
With Mag tape, Chapter 1q 
With Terminals, Chapter 11 

Image Mode, 
Disk,7-7 
Character, 11-6 
Mag tape, 10-2 
Binary, 7-7,10-2 
Dump, 7-7 

INBUF Operator, 13-1 
Industry compatible mode, 10-3 

status, Initialization, 
PTY,11-15 device, 7-2 
Terminal, 11-12 job,7-1 

structure, software interrupt system, 5-5 
addressing a, 7-2 IN monitor call, 8-19, 11-16 
names, 7-2, 7-4, 8-3 INIT monitor call, 7-3 
modifying, 84 Input, 
referring to, 7-2 a character, 11-2 

Filler class codes, 11-7 a file, 8-10 
Foreground jobs, 4-3 a line, 11-3 
Format, buffers, 11-3 

DECtape, 9-2, 9-5 INPUT Operator, 9-8, 8-19,11-6,11-16 
---Di:Hl&ter-y-,9-2-,9-J-------------------Inter-nal-c1Qcks,-4~lO-------------------- -----

Disk files, 8-5 Interrupt, 
Mag tape, 10-1 allow additional, 5-9 

Index4 

) 

:.,. 

-j 

) 

) 

) 

.. 

.) 

) 



) 

c. 

'';'J 

) 

) 

) 

_1 

-::1 

conditions, 5-6 
control block, 5-7 
definition of, 5-5 
disable all, 5-9 
dismiss additional, 5-9 
granting an, 5-6 
1/0,5-6, 5-7 
in progress bit, 5-9 
non-I/O, 5-6 

Inter-record gap, 10-1 
10NDX. monitor call, 13-5 
IOWD,7-6 
IPCF, 

Address of Packet data block, 154 
Association between PID and job no., 15-2 
Awake on receival, 44 
Capabilities of sender, 15-5 
Default quotas, 15-1 
Error codes, 15-12 
Flags, 15-1 
Indirect sender/receiver PID, 15-3 
IPCFQ. monitor call, 15-10 
IPCFR. monitor call, 15-11 
IPCFS. monitor call, 15-11 
Length of packet data block, 15-4 
Long form message, 154 
Name associated with PID, 15-2 
Packet, 

Data Block, 15-1, 15-5 
Descriptor block, 15-1 
Flags, 15-3 
page, 15-3 
privileged, 15-3 

PID 
definition, 15-1 
of SYSTEM [INFO], 15-1 
requesting a, 154 
same asjob number, 15-1 

Receive packet quota, 15-1 
Receiving a packet, 15-6, 15-11 
Send packet quota, 15-1 
Sender's project-programmer number, 15-5 
Sending a packet, 15-5, 15-11 
Short form message, 15-4 
Status of queues, 15-10 
SYSTEM [INFO], 15-1, 15-6, 15-7 
SYSTEM [IPCC], 15-1, 15-7, 15-8 

INDEX (Cont.) 

Job, 
Activate a dormant, 4-3 
Amount of core for, 4-5 
Awake when I/O complete, 44 
Background, 4-3 
Control, 4-1 
Initialization, 7-1 
Information, 44 
Largest size of, 4-5 
Maximum number of, 4-7 
Name of, 4-5 
Number, 11-17 
Obtain, 

Number of, 4-9 
PPN of, 4-9 

Search list, 8-4 
Set parameters for, 4-5 
Status bits, 11-17 
Stop, 4-3 
Suspend,4-2 
Swap, 44 
Time limit for, 4-6 

JOBSTS monitor call, 11-16 

KSYS word, 4-6 

Label processing, 10-9 
Length, 

logical disk block, 8-1 
of files, 8-1 

LIGHTS monitor call, 4-11 
Line, 

Characteristics, 11-2 
Numbers, 11-4 

Loading, 
Core image file, 2-1 
Relocatable binaries, 2-1 
User programs, 2-1 

LOCATE monitor call, 4-8 
Logical, 

Device names, 7-2 
Disk unit, 8-1 
End of tape, 10-1 
Node, 4-8 
Unit names, 7-5 

LOGOUT Monitor Call, 4-2 
LOOKUP Monitor Call, 8-10, 9-5 
Lower case terminals, 11-6 

-l--_____ -----"".J'-"B=OPC, 4-2 .LO~_files,_2-L __ 
Job Data Area, Chapter 3 LPT spooling, 4-6 

) JOBDAT, Chapter 3 

Index-5 



J!; 

Magnetic tape, 
Block size, 10-1,10-8 
Buffer size, 10-1, 10-2 
Change 

Block size, 10-1 
Density, 10-1 

Characteristics, 10-1 
Closing a, 10-1 
Controller names, 10-1 
Data modes, 10-1, 10-2 
Double tape mark, 10-1 
Error status, 10-9 
File status, 10-12 
Format of, 10-1 
Logical end of, 10-1 
Parity for, 10-1 
Unit name, 10-1 
Unit status word, 10-8 

Master file directory, 8-1 
MBOX, 4-10 
Modes, 

ALT,11-8 
APL,II-9 
ASCII, 7-7,10-2 
ASCII Line, 10-2 
Binary, 7-7 
DECtape, 9-1 
Disk,7-6 
Magnetic tape, 10-2 
MPX devices, 13-2 
Terminals, 11-1 

MOUNT Command, 7-2 
MPPL,2-5 
MPX channel, 

Connect device to, 13-2 
Data modes, 13-2 
Disconnect from, 13-2 
Status bits, 13-4 

MSTIME monitor call, 4-11 
MTAID. monitor call, 10-12 
MTAPE. monitor call, 10-3 
MTCHR. monitor call, 10-4 
Multiple file directory, 7-2 

Name, 
Abbreviation, 7-5, 7-6 
Controller, 7-5,10-1,11-1 
DECtape, 9-1 
Device, 7-4 

-ll--------=Extension, 8-8 

File, 8-8 
File structure, 7-5, 8-4 

INDEX (Cont.) 

Logical, 7-2, 7-4, 7-5 
Physical, 7-2, 74 
Set program, 44 

Node, 4-8 
Non-directory devices, 7-2 
Non-blocking I/O, 7-4 
Non-I/O Interrupts, 5-6, 5-8 
Normal mode operation, 11-6 

OPEN monitor call, 7-3,7-4 
OTHUSR monitor call, 4-10 
OUT Operator, 13-1 
OUTBUF Operator, 13-1 
Output, 

ASCIZ string, 11-2, 11-6 
Buffer, 11-3, 11-6 
Character, 11-2 

OUTPUT monitor call, 9-8,11-16 
OUT monitor call, 11-6 

Packed image mode, 11-12 
Page, 

Definition, 2-3 
Display mode, 11-7 
Counter value, 11-7 
Fault rate, 4-7 
Fault handler, 3-3 

Passive search list, 84 
PC, 3-1,4-2 
Physical, 

DECtape names, 9-1 
Device names, 7-2 
Disk units, 8-1 
Page limits, 2-5,4-8 
Record separation, 10-1 
Unit names, 7-5 

PID, 
association with j ob number, 15-2 
definition, 15-1 
indirect sender/receiver, 15-3 
name associated with, 15-2 
of [SYSTEM] INFO, 15-1 
requesting a, 15-1 
same asjob number, 15-1 

PJOB monitor call, 4-9 
PIINI. monitor call, 5-5 
PISYS. monitor call, 5-5, 5-9 
PIRST. monitor call, 5-12 
PIM,11-12 

-) 

:~ 

.J 

) 

) 

) 

.' 

---PLT,4-5-------------------------------

PRESERVE Command, 8-2 ) 
Project-programmer number, 4-9,8-2,8-9 

Index-6 



') 

) 

,.'] 

) 

) 

) 

~ 

.. :y 

) 

Program, 
Address space, 2-1 
Continue, 4-1,4-2 
Counter, 3-3 
Loading, 2-1 
Set to run, 4-8 
Start, 4-1 
Stop, 4-1 
Suspend, 11-15 
Version number, 3-4 

PROTECT Command, 8-7 
Protection, 

Against WAKEP, 4-3 
Codes, 8-5 to 8-7 
Memory, 2-1 

Pseudo-TTYs,11-14 
PIP spooling, 4-5 
PTY, 11-14, 11-15 

R command, 4-1 
.RB symbols, 8-13 
Read, 

At low threshold, 10-3, 10-8 
Backwards, 10-8 

Real-time jobs, 4-3 
Receive speeds, 11-8, 11-9 
Record, 

Backspace, 10-3 
Skip, 10-3 

REEL I.D., 10-6, 10-8, 10-12 
REENTER Command, 4-1 
Remote status, 11-7 
Release, 

a device, 7-13 
a terminal, 11-16 
for DECtape, 9-8 
Monitor call, 7-13 

RENAME monitor call, 8-8, 9-8 
RESET monitor call, 7-1 
Retrieval information block, 8-5 
Restricted devices, 7-2 
RPA,7-6 
Rewind, 

magnetic tape, 10-3, 10-7 
RIB, 8-5 
RUN command, 4-1 
RUN monitor call, 4-1 
RUN, 

set program to, 4-8 
time statistics, 4-9 

RUNTIME monitor call, 4-9 

INDEX (Cont.) 

Index-7 

SAT Blocks, 8-5 
.SAV files, 2-1 
Scan input buffer 

terminal, 11-3 
Search list for job, 84 
Select, 

a file, 8-10 
SENSE. monitor call, 134, 13-5 
Set, 

bloct<: size, 10-1 
date, 4-6 
density, 10-1, 10-6, 10-7, 10-8 
job information, 44 
Job parameters, 4-5 
program name, 44 
program to run, 4-8 
system parameters, 4-5 

SETNAM monitor call, 44 
SETUUO monitor call, 4-5 
SFD, 

Delete, 8-10 
Description, 8-2 

Sharable high segment, 24 
.SHR files, 2-4 
Single file directory devices, 7-2 
Size, 

Block, 8-1, 8-5, 10-1, 10-8 
Buffer, 7-1,9-1,10-1,11-1,12-1 
cluster, 8-5 
largest size of job, 4-5 

Skip, 
a file, 10-3 
a record, 10-3 
backwards, 10-7 
forwards, 10-7 

SLEEP monitor call, 4-2 
Spooling, 

Bits, 4-6 
set deferred, 4-8 

Slave characteristics, 11-6 
Software interrupt system, 

Allow additional interrupts, 5-9 
argument block flags, 5-10 
control flags, 5-7,5-9 
Control the, 5-9 
DEBRK. monitor call, 5-6, 5-12 
definition of interrupt, 5-5 
Disable all interrupts, 5-9 
Dismiss additional interrupts, 5-9, 5-12 
IrxampleOT,5-=U--------·------ ----.-----.--

I/O interrupts, 5-6, 5-7 



INDEX (Cont.) ') 
initialization, 5-5, 5-8 [SYSTEM] lPeC, 
Interrupt conditions, 5-6 Description of, 15-7 
Interrupt control block, 5-7 Functions, 15-8 
Interrupt in progress bit, 5-9 general discussion, 15-1 

" ., 

interrupt vector block, 5-9 System, 
non-I/O interrupts, 5-6, 5-8 accounting file, 4-12 
new pc error log file, 104 
old pc, 5-7 set parameters for, 4-5 
PIINI. monitor call, 5-5, 5-8 virtual memory limit, 4-7 
PISYS. monitor call, 5-9, 5-10, 5-11 
PIRST. monitor call, 5-12 TAB capabilities, 11-7 
Save the Interrupt Blocks, 5-11 Tables, 
Turn system on, 5-5 storage allocation, 8-5 

START command, 4-1 Tape mark, 
Start description of on magnetic tape, 10-1 ) program execution, 4-1 write a, 10-3 
STATES words (RH), 4-5 TAPOP. monitor call, 
Status, calling sequence, 10-6 

bits (OPEN), 7-4 error codes, 10-10 
for APR clock, 3-3 function, 10-6 to 10-10 
for parity bit, 10-8 TC10, 10-8 
magnetic tape device, 10-5 Terminal, 
MPX device, 13-4, 13-5 Buffer size, 11-1 
Terminal,11-16 clear buffers for, 11-6 

Stop, Controller names, 11-1 ) a program, 4-2 data modes, 11-9 
ajob,4-2 element for, 11-6 
ajob until event occurs, 4-3 Input buffers, 11-6 
temporarily, 4-2 line characteristics, 11-4 

Storage allocation tables (SAT), 8-5 name of operator's, 4-6 
Structure, operations, 11-1 

of disk files, 8-1 SIXBIT physical name for, 11-14 
Organization of, 8-2 Termination 

Sub-file directory, 8-1 , 8-2 Device, 7-3 

) Suspend TIDY word, 11-7 
execution of a job, 4-2 Timing information, 4-10 

Swap, Time, 
job out immediately, 4-4 limit for job, 4-6 
magnetic tape units, 10-7 of day, 4-11 

SWAP.SYS, 8-5 run statistics, 4-8 
SWITCH monitor call, 4-11 TIMER monitor call, 4-11 J 
Switches TM10, 10-8 

contents of data, 4-11 Track status bit, 10-8 
Symbol table, Transmit speed, 11-8, 11-9 

length of, 3-2 Traps, .. pointer to Set to zero, 4-2 
Synchronize on I/O error, 7-4 TRMNO. monitor call, 11-5 
[SYSTEM] INFO, TRMOP. monitor call, 

description of, 15-6 error codes, 11-9 
Functions, 15-7 calling sequence, 11-5 
general discussion, 15-1 TTCALL monitor call, 11-1 ) 
PID of, 15-1 TTY GAG, 11-7 ~ 

Index-8 



) INDEX (Cont.) 

Two segment jobs, 2-1 User program, 
TX01,10-8 Address space of, 2-1 

loading a, 2-1 
UFD, start address of, 3-3 

delete, 8-10 User tape servicing, 
description, 8-2 APRENB monitor call, 5-1 

Unbuffered I/O, 7-6 APRENB flags, 5-2 
,~ UDX, USETI/USETO, 

general information concerning, 13-1 For DECtape, 9-8 
return the, 13-5 UGETF monitor call, 9-9 

Unit names, UTPCLR monitor call, 9-9 
DECtape, 9-1 UU.PHS, 7-2 
disk,7-6 Vestigial job data area, Chapter 3 
logical, 7-5 Virtual time traps, 4-8 \ mag tape, 10-1 ) Virtual memory, 2-4 to 2-6 
physical, 7-5 

page fault rate, 4-7 
terminals, 11-1 

system limit, 4-7 
Undefined symbol table, 3c2 
Universal date-time standard, 4-1 WAKE monitor call, 4-3 
Universal device index, Watch statistics, 4-6 

general information concerning, 13-1 Wakeup bit, 4-3, 4-4 
return the, 13-5 Write, 

Unload blank tape, 10-3 

) 
magnetic tape, 10-3, 10-4 dump me, 4-12 

Unrestricted devices, 7-2 lock bit, 10-8 
Use bit, 7-9 on the disk, 8-10 
User file directory (UFD), 8-1 protect the high segment, 2-1 

entries in, 8-2 tape mark, 10-3, 10-7 

) 

-, 

j 

) 

Index-9 



( 

( 

( 

( 



) 

r-) 

READER'S COMMENTS DECsystem-lO Monitor Calls 

DEC-IO-OMCMA-B-D 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 

written, etc.? Is it easy to use? 

What features are most useful? --------------------------------------------------------

What faults do you find with the manual? 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? Why? ______________________________ __ 

Would you please indicate any factual errors you have found. 

Please describe your position. 

Name Organization 

Street ______________________________________ Department 

City State ____ ~ _____ _ Zip or Country 



-------------------------------------------------------------Fold lIere------------------------------------------------------------

------------------------------------------------ Do Not Tear - Fold Here and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

~D~DDmD 
Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 I J 

MAYNARD, MASS. 

,) 

-) 

') 

J 

) 

) 

) 

) 



~) 

:l 

) 

) 

) 

. 1 

>. J 

) 

READER'S COMMENTS DECsystem-lO Monitor Calls 

DEC-IO-OMCMA-B-D 

Your comments and suggestions wilfhelp us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 

written, etc.? Is it easy to use? 

What features are most useful? ---------------------------------

What faults do you find with the manual? 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? Why? ____________________________ ___ 

Would you please indicate any factual errors you have found . 

Please describe your position. 

Name Organization 

Street _______________________________________ Department 

City == _____ _ State ____________ _ Zip or Country 



-------------------------------------------------------------Fold I1ere--------------------------------------------_---------------

.----------------------------------------------- Do Not Tear - Fold I1ere and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

~D~DDmD 
Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 

:) 

'} 

) 

) 

) 

"' 

.'.1 

) 



( 

( 

, , r 

u . 



( 

( 

( 
\ 

( 

p 

( 


