decsystemio

assembly
language
handbook

third edition

system reference link-10
macro ddt
monitor calls utilities

handbook series







dlilgliltiall

decsystenio

assembly
language
handbook

third edition

Additional copies of this handbook may be ordered from:
Software Distribution Center, DEC, Maynard, Mass. 01754. Order Code: DEC-10-NRZC-D

handbook series



The material in this handbook, including but not limited to instruction
times and operating speeds, is for information purposes and is subject
to change without notice.

Copyright © 1967, 1968, 1969, 1970, 1971, 1972, 1973 by
Digital Equipment Corporation

Actual distribution of the software described in this specification will
be subject to terms and conditions to be announced at some future date
by Digital Equipment Corporation.

DEC assumes no responsibility for the use or reliability of its software on
equipment which is not supplied by DEC.

The software described in this manual is furnished to purchaser under a
license for use on a single computer system and can be copied (with in-
clusion of DEC's copyright notice) only for use in such system, except
as may otherwise be provided in writing by DEC.

The following are trademarks of
Digital Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB



system reference |

macro |

monitor calis I







FOREWORD

This handbook is a collection of documents and sections of documents taken
from the DECsystem-10 SOFTWARE NOTEBOOKS (DEC-10-SYZB-D). It is
intended to be used by experienced programmers interested in writing and oper-
ating assembly-language programs on the DECsystem-10. The material in this
handbook is aimed at providing the information needed for user-mode program-
ming.

Most documents in this handbook are reprinted without change from the DEC-
system-10 Software Notebooks. However, the first document in the handbook,
the System Reference Manual, is an excerpt from the System Reference Manual in
the Notebook set. This excerpt contains only the user-mode programming infor-
mation needed by most assembly language programmers, and does not cover the
documentation related to the various peripheral devices. If additional information
is required, the reader is referred to the complete System Reference Manual in the
Software Notebooks. All DECsystem-10 installations have two copies of the note-
book set for reference.

The documents contained in this handbook reflect the following hardware and
versions of the software:

System Reference Manual — KA 10 and K110 processors
MACRO - Version 47

Monitor Calls — 5.06 release

DDT - Version 34

LINK-10 - Version 1

CREF - Version 47

FILCOM - Version 20

FUDGE2 - Version 15

GLOB - Version SA

The Assembly Language Handbook is one in the set of DECsystem-10 hand-
books. The other handbooks comprising this series are:

(1) the COBOL Language Handbook.

(2) the Mathematical Languages Handbook, which covers FORTRAN,
BASIC and ALGOL.

(3) the DECsystem-10 Users Handbook, which includes an introductory
section, the operating system commands, TECO, and PIP.



In addition to the above-mentioned handbooks, the following documentation is
also available:

(1) the COBOL Users Guide, which is aimed at COBOL users who wish
to become familiar with COBOL on the DECsystem-10.

(2) the System Reference Card, which includes the word formats, instruc-
tions, and conversion tables for the DECsystem-10.

(3) the Operating System Commands Reference Card, which describes the
commands, along with their formats, that are a part of the operating
system.

(4) the Monitor Calls Reference Card, which covers the programmed oper-
ators (UUOs), and their formats, that can be used with the monitor.

(5) the BASIC Language Reference Card, which includes the statements,
intrinsic functions, and edit and control commands of the DECsystem-
10 BASIC Language.

The handbooks, Users Guide, and reference cards may be ordered from:
Software Distribution Center
Digital Equipment Corporation
146 Main Street v
Maynard, Massachusetts 01754



DECsystem-10

System Reference Manual

ORDER NO. DEC-10-HGAD-D FROM PROGRAM LIBRARY, MAYNARD, MASSACHUSETTS PRICE $5.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO SOFTWARE QUALITY CONTROL, MAYNARD, MASSACHUSETTS

DIGITAL EQUIPMENT CORPORATION e MAYNARD, MASSACHUSETTS



SYSTEM REFERENCE -2-

Instruction times, operating speeds and the like are _ December 1971
included here for reference only; they are not to be
taken as specifications.

Copyright © 1968, 1969, 1971
by Digital Equipment Corporation

First edition, May 1968
Three printings

Second edition, December 1971

This edition has been expanded to provide system reference information for
a DECsystem—-10 with KA10 or KI10 central processors. The KI10 material
has been incorporated into the text throughout.

Manufactured in the United States of America



Contents

1.2

1.3

1.4

2.1
2.2

2.3
24

2.5

2.6

2.7
2.8
2.9
2.10
2.11

INTRODUCTION

Number System
Floating point arithmetic

Instruction Format
Effective address calculation

Memory
KI10 memory allocation
KA 10 memory allocation

Programming Conventions

CENTRAL PROCESSOR
Half Word Data Transmission

Full Word Data Transmission
Move instructions
Pushdown list

Byte Manipulation
Logic
Shift and rotate

Fixed Point Arithmetic
Arithmetic shifting

Floating Point Arithmetic
Scaling
Number conversion
Single precision with rounding
Single precision without rounding
Double precision operations
Arithmetic Testing
Logical Testing and Modification
Program Control
Unimplemented Operati‘ons

Programming Examples
Double precision floating point

11
12

14
15

16
18
18

19

23
24

31
32
34

37

39
46

48
52

53
55
56

58

60
64

67
73
80
91

93
95

SYSTEM REFERENCE




SYSTEM REFERENCE -4-

v

2.12 Input-Output 96
Readin mode 101
Console-program communications 102
2.13 Priority Interrupt 103
2.14 Trapping and Processor Conditions 111
Overflow trapping 111
KI10 processor conditions 112
KA10 processor conditions ’ : 115
2.15 KI10 Modes 117
Paging 118
Page failure 122
Monitor programming 124
Executive XCT 127
2.16 KA10 Modes 129
User programming 131
Monitor programming . 131
2.17 Real Time Clock DK 10 132
2.18 KA 10 Operation 135
Indicators- 136
Operating keys 138
Operating switches 140
2.19 K110 Operation (Not available at this time)
APPENDICES _
A Instruction and Device Mnemonics 147
Numeric listing 149
Alphabetic listing 152
Device mnemonics 156
Algebraic representation 157 -
B In-out Codes 167
Teletype code 168
Card codes 172
C Timing 175
KA 10 timing 176
KI10 timing (Not available at this time)
D KA 10 Algorithins 179
Fixed point algorithms 180
Floating point algorithms 185
E Processor Compatibility (Not available at this time)
F Indicator Panels (Available in the System Reference Manual
published as a part of the DECsystem-10
Software Notebooks.)

G Bit Assignments 191



1

Introduction

The DECsystem—10 is a general purpose, stored program computing system
that includes at least one PDP—10 central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch, teletypewriter,
card reader and punch, line printer, DECtape, magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory, some_of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much more limited program capabil-
ity and serve to connect large, fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem—10 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a subsystem in toto is con-
nected to a PDP-10 in-out bus and is treated by the PDP-10 as a peripheral
device. Unless otherwise specified, the words “‘processor” and “‘central pro-
cessor’” refer to the large-scale PDP-10 central processor, and “‘in-out bus”
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the DF10 data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present there are two types of PDP-10 central processors, the KA10
and the KI10. The latter is faster and more powerful, having a somewhat
larger instruction repertoire including double precision floating point. Both
processors handle words of thirty-six bits, which are stored in a memory
whose maximum capacity depends upon the addressing capability of the
processor. Internally both processors use 18-bit addresses and can thus
reference 262,144 word locations in memory. This is the total addressing
capability of the KA10, but in the KI10 it is only the virtual address space
available to a single program. Paging hardware supplies four additional
address bits to map pages in the program virtual address space into pages
anywhere in a physical memory that is sixteen times as large. Thus for
a number of different programs, the processor actually has access to a

1-1

SYSTEM REFERENCE

Confusion could result only
in a chapter dealing with a
small-computer  subsystem.
Here the small processor is
usually referred to by its
name (PDP-8, PDP-11) and
the words “computer” and
“memory” refer to the small
computer. To differentiate,
the PDP-10 is referred to by
its name or as the “DEC-
system—10 central processor”,
and the large scale memory
connected to the PDP-10
memory bus is referred to as
“DECsystem—10 main mem-
ory”.




SYSTEM REFERENCE

1-2

-6-

INTRODUCTION

physical memory with a capacity of 4,194,304 words. Storage in memory
is usually in the form of 37-bit words, the extra bit producing odd parity
for the word. The bits of a word are numbered 0-35, left to right (most
significant to least significant), as are the bits in the registers that handle
the words. The processor can handle half words, wherein the left half
comprises bits 0—17, the right half, bits 18-35. There is also hardware
for byte manipulation — a byte is any contiguous set of bits within a word.
KA10 registers that hold addresses have eighteen bits, numbered 18-35
according to the position of an address in a word. KI10 internal address
registers have eighteen bits, but a register that must supply a complete
address to physical memory has twenty-two bits (numbered 14-35). Words
are used either as computer instructions in the program, as addresses, or as
operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is incre-
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer are the sense
switches and the 36-bit data switch register DS on the processor console:
through these switches the program can read information supplied by the
operator. The processor also contains flags that detect various types of
errors, including several types of overflow in arithmetic and pushdown opera-
tions, and provide other information of interest to the programmer.

The processor has other registers but the programmer is not usually con-
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can
examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc-
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.
This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. In the KI10, AR and the adder each have a 28-bit left
extension for handling double precision floating point numbers.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations



-7/- SYSTEM REFERENCE

13
CORE MEMORY CORE MEMORY CORE MEMORY
y 4
A \ —_———
: MEMORY BUS CENTRAL
1 4 PROCESSOR
FAST
> MEMORY
16.X 36
. A
S VT N > > IR
4i 18 18
1 ARITHMETIC
LOGIC Ml e
, ‘ (AR, BR, MQ)
4 AS PO ™ - , 03 36
IN-OUT BUS ‘
\ I -
Y 1 ] .
PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT READER PUNCH TELETYPE

DECSYSTEM-10 SIMPLIFIED

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,



SYSTEM REFERENCE

The KI10 actually has four
fast memory blocks, but only
one of these is available to a
program at any given time.

The KI10 allows unrestricted
in-out with a limited number
of devices for special real
time applications.

-8-

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overflow or a parity error to signal the program.

Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily. A program that runs in executive mode — the Monitor — is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to



operation in executive mode (specifically kernel mode in the KI110).

The KA10 has the two modes discussed above, user and executive. It also
has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected, ie the user cannot
alter its contents.

The KI10 has paging hardware for the mapping of pages from the limited
virtual address space into pages anywhere in physical memory. A page map
for each program specifies not only the correspondence from virtual address
to physical address, but also whether an individual page is accessible or not,
alterable or not, and public or concealed. Both user and executive modes are
subdivided according to whether the program is running in a public area or a
concealed area. Within user mode these are the public and concealed modes;
within executive mode, the supervisor and kernel modes. A program in
concealed mode can reference all of accessible user memory, but the p_ubiic
program cannot reference the concealed area except to transfer control into
it at certain legitimate eritry points.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and the program
can even address some of memory directly (ie unpaged); in the paged address
space, individual pages may be restricted as inaccessible or write-protected,
but it is the kernel mode program that establishes these restrictions. In
supetvisor mode the Monitor handles the general management of the system
and those functions that affect only one user at a time. This mode has
essentially the same instruction and memory restrictions as user mode,
although the supervisor mode program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor program
with information the latter cannot alter (even though the information is not
write-protected from the kernel program). In either mode the Monitor
automatically uses fast memory block O (the hardware requires this). The
kernel ptogram is responsible for assigning fast memory blocks to the various
user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block 1 is assigned to all other users.

The illustration on the next page shows a typical layout of the virtual
address space for the various modes. The space is 256K, made up of 512
pages numbered 0-777 octal. Any program can address locations 0—17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
write-protected. The public program carnot access any locations in the
concealed areas except to fetch instructions from prescribed entry
points. The concealed mode user program has access to both public and
concealed areas, but it cannot alter any write-protected location whether
public or concealed, and fetching an instruction from the public area
automatically returns the processor to public mode.

The supervisor mode program is confined within the paged area of the
address space, pages 340 and above. Part of the public area in this space may

SYSTEM REFERENCE

1-5

The concealed area would or-
dinarily be used for proprie-
tary programs that the user
can- call but cannot read or
alter.




SYSTEM REFERENCE

1-6

PUBLIC

USER MODE

-10-

INTRODUCTION

CONCEALED

FAST MEMORY

FAST MEMORY

400

7

WRITE-PROTECTED

PUBLIC PUBLIC
WRITEABLE WRITEABLE
/ CONCEALED
WRITEABLE
7
400 //
PUBLIC PUBLIC

WRITE-PROTECTED

CONCEALED
ENTRY POINTS

.

CONCEALED
WRITE-PROTECTED

m

SHADED AREAS ARE INACCESSIBLE

o

340

400

m

EXECUTIVE MODE

SUPERVISOR

FAST MEMORY

PUBLIC
CONCEALED

PUBLIC
WRITEABLE

PUBLIC
WRITE- PROTECTED

CONCEALED

o

340

77

TYPICAL VIRTUAL ADDRESS SPACE CONFIGURATION

KERNAL

FAST MEMORY

UNPAGED

PUBLIC

CONCEALED

PUBLIC
WRITEABLE

PUBLIC
WRITE-PROTECTED

CONCEALED
WRITEABLE

CONCEALED
WRITE-PROTECTED




-11-

§1.1 NUMBER SYSTEM

be write-protected, but the program can read information in the concealed
areas — it cannot alter any location in a concealed area whether that area is
write-protected or not. Pages 340-377 constitute the per-process area, which
contains information specific to individual users and whose mapping
accompanies the user page map. In other words the physical memory
corresponding to these virtual pages can be changed simply by switching
from one user to another, rather than the Monitor changing its own page
map. The kernel mode program can access all of the unpaged area without
restriction and can reference all of the accessible paged area, both public and
concealed, with the usual restriction that it cannot alter a write-protected
area. As in the case of concealed user mode, fetching an instruction from a
public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of .a word can be taken as separate 18-bit
numbers. The PDP-10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit O (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2" —x, and its ones complement is (2" — 1) — x, or equivalently (2" —x) — 1.
Subtracting a number from 2”—1 (ie, from all 1s) is equivalent to perform-
ing the logical complement, je changing all Os to 1s and all 1s to Os. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153,, = +2314 =DOO0000000000000000000000000100110011

0 ‘ 35

~15340 = —2315 =111 111 111 111111 111 111 111 111 101 100 111]
(V] 35

Zero is represented by a word containing all Os. Complementing this
number produces all 1s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation, all
even numbers both positive and negative end in 0, all odd numbers in 1 (a

SYSTEM REFERENCE




SYSTEM REFERENCE

1-8

Multiplication produces a
double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null.

-12-

INTRODUCTION §1.1

number all Is represents —1). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 400000 000000g and its magnitude is one greater
than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the 1s. In twos
complement notation each negative number is one greater than the
complement of the positive number of the same magnitude, so one can read
a negative number by attaching significance to the rightmost 1 and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1s may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because
it still has a 1 that possesses significance; but if a portion including the
rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement.

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to corn-
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre-
sented by a single word is =235 to 23— 1 or —1 to 1 — 2735, Since multiplica-
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit O of the high
order word is the sign, and bit O of the low order word is 0. The range for
double length integers and proper fractions is thus —27° to 27° — I and —1 to
1-277,

Floating Point Arithmetic. The KI10 has hardware for processing single
and double precision floating point numbers; the KA10 can generally process
only single precision numbers, although the hardware does include features
that facilitate double precision arithmetic by software routines. The same
format is used for a single precision number and the high order word of a
double precision number. A floating point instruction interprets bit O as the
sign, but interprets the rest of the word as an 8-bit exponent and a 27-bit .
fraction. For a positive number the sign is 0, as before. But the contents of
bits 9-35 are now interpreted only as a binary fraction, and the contents of
bits 1-8 are interpreted as an integral exponent in excess 128 (200;)
code. Exponents from —128 to +127 are therefore represented by the
binary equivalents of 0 to 255 (0-377;). Floating point zero and negatives
are represented in exactly the same way as in fixed point: zero by a word
containing all Os, a negative by the twos complement. A negative number
has a 1 for its sign and the twos complement of the fraction, but since every
fraction must ordinarily contain a 1 unless the entire number is zero (see



-13-

§1.1 NUMBER SYSTEM

below), it has the ones complement of the exponent code in bits 1 -8. Since
the exponent is in excess 128 code, an actual exponent x is represented in a
positive number by x + 128, in a negative number by 127 —x. The
programmer, however, need not be concerned with these representations as
the hardware compensates automatically. Eg, for the instruction that scales
the exponent, the hardware interprets the integral scale factor in standard
twos complement form but produces the correct ones complement result for
the exponent.

+15310 = +2318 = +.4628X 28 =
LO]IO 001 000100 110 010 000 000 000 000 000 000
01 89 : 35
—15310 = —2318 = '—4628X 28 =

[1j01 110 111]011 001 110 000 000 000 000 000 000|
01 89 35

Except in special cases the floating point instructions assume that all
nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to %2 and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of % to 1—27?7. Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is % to 1
decreased by the value of the least significant bit. In all formats the
exponent range is —128 to +127.

The precaution about truncation given for fixed point multiplication
applies to most floating point operations as they produce extra leagth
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
single precision division the two words of the result are quotient und
remainder, but in the other operations they form a double length number
which is stored in two accumulators if the instruction is executed in “long”
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9-35 of each word. The sign and exponent are in bits O and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the rémaining part of the less significant word, bit 0 is 0, and bits
1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 2!'® +27'8 has this two-word representation in software

SYSTEM REFERENCE




SYSTEM REFERENCE

1-10

-14-

INTRODUCTION §1.2

double precision format:

lo[10 010 011100 000 000 000 000 000 000 000 000]

01 89 35

lojo1 111 000/000 000 000 100 000 000 000 000 000)

01 89 35

whereas its negative is

[1jo1 101 100[011 111 111 111 111 111 111 111 111]
01" 89 35

[oJo1 111 000[111 111 111 100 000 000 000 000 000]

01 89 35

The double precision floating point instructions use a more straight-
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit O is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

lo[10 010 011{100 000 000 000 000 000 000 000 000 |
01 89 35

MOO 000 000 010 000 0060 000 000 000 000 000 OO(ﬂ

01 35

and its negative is

|1|01 101 100/011 111 111 11H 111 111 111 111 ll]]
5

01 89 3

[o]t1 111 111 110000 000 000 000 000 000 000 000]

01 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The



-15-

§1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 1417 spec-
ify an index register for use in address modification, and the remaining
eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE :
INDEX REGISTER

ACCUMULATOR )
ADDRESS / ADDRESS
1
LINSTRUCTION CODE | \ I ! ! l MEMORY ADDRESS
0 89 121314 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are performed by the processor
as so-called “‘unimplemented operations”.

An input-output instruction is designated by three 1s in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions.

ADDRESS TYPE

INSTRUCTION INDEX REGISTER
CODE I ADDRESS
7 N T l
r7 I DEVICE CODE l l l ! MEMORY ADDRESS ]
0 23 910 121314 1718 35

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

b x| Y

1314 1718 35

indirect bit, bits 14—-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address E of the instruction depends on the values of /, X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If I is 0, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if 7 is 1,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the
effective address if I is 0, otherwise they are used for yet another level of
address retrieval. This process continues until some referenced location is
found with a 0 in bit 13; the 18-bit number calculated from the X and Y
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-

SYSTEM REFERENCE

Among the unimplemented
operations are some that are
specified as “unimplemented
user operations” or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu-
nication with the Monitor
(MUUOs). In general, unas-
signed codes act like MUUOs.

On the other hand, please note
that this calculation is carried




SYSTEM REFERENCE

1-12

out only for words indicated
in the text as having the for-
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim-
ply because it happens to con-
tain an address [see page G2] .

-1€-

INTRODUCTION §1.3

tion word is O and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in some kind of test instruction, conditions to b¢
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18—35 do not contain an ad-
dress when 7 is 0. But when [ is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which /
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper-
and even have an “immediate” mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from 7, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KI10 further increases the speed of memory
operation by overlapping memory cycles. Eg it can start one memory to
read a word before receiving a word previously requested from a different
memory.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write
it must first clear the location and then load it.



-17-

§1.3 MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten feet (three meters) of cable. Fast memory times are
for referencing as a memory location (18-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
usually considerably shorter. The size of the MD10 can be increased in units
of 32K up to 128K.

Read Write Modify

Access Access Cycle Completion Size
161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 .49 1.8 1.33 16K
164 Core Memory
MB10 Core Memory} .60%* .20% 1.65% .97 16K
MA10 Core Memory .61 .20 1.00 .57 16K
MDI10 Core Memory .83 .33 1.8 1.23 32-128K
ME10 Core Memory 61 .20 1.00 .65 16K
KA10 Fast Memory 21 .21 16
K110 Fast Memory ) 16

From the simple hardware addressing point of view, the entire memory is
a set of contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KA10 address is octal 777777,
decimal 262,143; the largest KII0 address is 17777777, decimal
4,194,303. (Addresses .are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with 18-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen for the
location. The times given above assume the addressed memory is idle when
access is requested. To avoid waiting for a previously requested memory
cycle to end, the program can make consecutive requests to different
memories by taking instructions from one memory and data from
another. All memories can be interleaved in pairs in such a way that
consecutive addresses actually alternate between the two memories in the
pair (thus increasing the probability that consecutive references are to
different memories). Appropriate switch settings at the memories
interchange the least significant address bits in the memory selection and
location parts, so that in any two memories numbered » and n + | where n is
even, all even addresses are locations in the first memory, all odd addresses
are locations in the second. Hence memories 0 and 1 can be interleaved as
can 6 and 7, but not 3 and 4 or 5 and 7. Some memories can be interleaved
in contiguous groups of four, where the number of the first memory in the

SYSTEM REFERENCE

1-13

*Add .1 in a multiproces-
sor system.




SYSTEM REFERENCE

The kernel mode program
can always address locations
0-337777 as these are un-
paged. Virtual pages 340 and
above are mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for itself for
each KI10 processor. In the
text, the phrase “the user
process table” refers to the
process table currently speci-
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex-
ecutive process table for the

processor under consideration.

The initial control word ad-
dress for the DF10 Data
Channel must be less than
1000.

-18-

§1.3

INTRODUCTION

group is divisible by four (eg memories 0—-3 or 14-17). In this case all
addresses ending in 0 or 4 reference the first memory in the group, all ending
in 1 or S reference the second, and so forth.

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KA10 the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KI10 the possible
program address space is the set of all 18-bit addresses just as in the KA10,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called “small user”, the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0—17 are never restricted or relocated).

KI10 Memory Allocation. The KI10 hardware defines the use of certain
memory locations, but almost all of these are relative to pages whose
physical location is specified by the Monitor. The only physical locations
uniquely defined by the hardware are those in fast memory, whose addresses
are the same for all programs: location 0 holds a pointer word during a
bootstrap readin, 0—17 can be addressed as accumulators, and 1-17 can be
addressed as index registers. The only addresses uniquely specified in the
user virtual space are for user local UUOs — locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware-oriented situations, are
to locations within a page specified by the Monitor for a particular user
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, billing
information, and job tables. The detailed configuration of the
hardware-defined parts of the process tables (user and executive) is given in
§2.15.

KA10 Memory Allocation. The use of certain memory locations is
defined by the KA10 hardware.

0 Holds a pointer word during a bootstrap readin

0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed



-19-

§ 1.4 PROGRAMMING CONVENTIONS

140-161  Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS
assembles as 213000 000000, and
MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc-
tion, produces the twos complement negative of the word in memory loca-
tion 2570.

NotE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi-
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 tc
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570
assembles as 213020 002570, and produces indirect addressing. Placing the

SYSTEM REFERENCE

1-15

All information given in this
manual about memory loca-
tions 40-61 for a KA10 ap-
pliesinstead to locations 140—
161 for programming a second
KA10 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.




SYSTEM REFERENCE

-20-

INTRODUCTION §1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence -

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0—17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location £ and
stores the result in both E and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available ifor all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302
which assembles as 700600 001302, or equivalently
CONO PIL, 1302

The programming examples in this manual use the following addressing
conventions:
¢ A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-
bolically as A.
¢ The period represents the current address, eg

ADD 5,42
is equivalent to
A: ADD 5,A+2

¢ Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]
and

ADD 12,A



-21- SYSTEM REFERENCE

§1.4 PROGRAMMING CONVENTIONS 1-17

A: 7256004

are equivalent.
Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.






_03-

2

Central Processor

This chapter describes all PDP-10 instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne-
monic to produce a complete instruction word.

For many of the non-10 instructions, a description applies not to a unique
instruction with a single code in bits 0—8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in-
struction is the source and which the destination of the data, in test instruc-
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0—8) for the various modes.

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the /, X and Y parts
of the instruction word. In an instruction that ordinarily references mem-
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in-
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, F or E,0 depending upon whether E is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A4 ; in the description,
“AC” refers to the accumulator addressed by A. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A+1, where the second address is 0 if 4 is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9—-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss —
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2-1

SYSTEM REFERENCE

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.



SYSTEM REFERENCE

2-2

_ol-

CENTRAL PROCESSOR §2.1

well to operation in executive mode. For completeness, the effects of restric-
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, §2.13
describes the priority interrupt, §2.14 discusses trapping, and § §2.15 and
2.16 describe the special effects and restrictions associated with the various
machine modes in the K110 and the KA10 respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum-
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc-
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being ‘“‘executed.” To
“execute’ an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc-
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap, etc.
It is assumed that control will shortly be returned to PC, at the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes PC.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in §2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter-
mined by which half of the source word is moved to which half of the des-
tination, and by which of four possible operations is performed on the other



-25- SYSTEM REFERENCE

§2.1 HALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL . Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination
Do nothing None

Zeros Z Places Os in all bits of the other half
Ones (0] Places 1s in all bits of the other half
Extend E Places the sign (the leftmost bit) of

the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num-
bers — the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter-
mines the source and destination of the half word moved.

Mode Suffix Source Destination
Basic E AC
Immediate I The word O, E AC
Memory M AC E
Self S E E, but full word result also

goes to AC if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left
so0 |m| 4 il x | Y |
[1] 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un-
affected; the original contents of the destination left half are lost.



SYSTEM REFERENCE

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.

HLLZI merely clears AC. If 4
is zero, HLLZS merely clears
the right half of location E,

HLLOI sets AC to all Os in
the left half, all 1s in the
right.

-26-

CENTRAL PROCESSOR §2.1
HLL - Half Left to Left 500
HLLI Half Left to Left Immediate 501
HLLM Half Left to Left Memory 502
HLLS Half Left to Left Self 503
HLLZ Half Word Left to Left, Zeros
| s10 [m[ 4 [i] x | Y
(1] 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513
HLLO Half Word Left to Left, Ones

| 520 [m] a Jil x | Y

V] 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones 520
HLLOI Half Left to Left, Ones, Immediate v 521
HLLOM Half Left to Left, Ones, Memory 522
HLLOS Half Left to Left, Ones, Self 523
HLLE Half Word Left to Left, Extend

| 530 [mM| a il x | Y

V] 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.



-27-

§2.1 HALF WORD DATA TRANSMISSION
HLLE Half Left to Left, Extend 530
HLLEI Half Left to Left, Extend, Immediate 531
HLLEM Half Left to Left, Extend, Memory 532
HLLES Half Left to Left, Extend, Self ' 533
HRL Half Word Right to Left

504 [m[ 4 |1 x | Y ]
o 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504
HRLI Half Right to Left Immediate 505
HRLM Half Right to Left Memory 506
HRLS Half Right to Left Self 507
HRLZ Half Word Right to Left, Zeros

| 514 M| 4 [ x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514
HRLZI Half Right to Left, Zeros, Immediate 515
HRLZM Half Right to Left, Zeros, Memory 516
HRLZS Half Right to Left, Zeros, Self 517
HRLO Half Word Right to Left, Ones

| 524 [m] 4 il x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

SYSTEM REFERENCE

2-5

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word E,O
into AC.



SYSTEM REFERENCE

2-6

If A4 is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

~28-

CENTRAL PROCESSOR §2.1

HRLO Half Right to Left, Ones 524

HRLO! Half Right to Left, Ones, Immediate . 525

HRLOM Half Right to Left, Ones, Memory 526

HRLOS Half Right to Left, Ones, Self 527
HRLE Half Word Right to Left, Extend

534 M| a Ji] x ] Y ]

0 : 67 89 121314 1718 . 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend 534
HRLEI Half Right to Left, Extend, Immediate 535
HRLEM Half Right to Left, Extend, Memory 536
HRLES Half Right to Left, Extend, Self 537
HRR Half Word Right to Right

| 540 M| 4 |1l x | Y ]
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR Half Right to Right 540 .
HRRI Half Right to Right Immediate - 541
HRRM Half Right to Right Memory . 542
HRRS Half Right to Right Self 543
HRRZ Half Word Right to Right, Zeros

[ 550 Jm] 4 [ x| v ]
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the



-29-

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
HRRZI Half Right to Right, Zeros, Immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553
HRRO Half Word Right to Right, Ones

| seo M| a4 [i] x | Y ]
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560
HRROI Half Right to Right, Ones, Immediate 561
HRROM Half Right to Right, Ones, Memory 562
HRROS Half Right to Right, Ones, Self 563
HRRE Half Word Right to Right, Extend

L s70 [m] 4 1] x | Y ]
1] 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost. '

HRRE Half Right to Right, Extend 570
HRREI Half Right to Right, Extend, Immediate 571
HRREM Half Right to Right, Extend, Memory 572
HRRES Half Right to Right, Extend, Self 573
HLR Half Word Left to Right

| s4a [m] a4 i x | Y ]
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

SYSTEM REFERENCE

HRRZI loads the word 0,F
into AC. If A4 is zero, HRRZS
merely clears the left half of
location E.



SYSTEM REFERENCE

2-8

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent.to HLLZI.

HLROI sets AC to all Is in
the left half, all Os in the

right.

-30-

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffeéted;
the original contents of the destination right half are lost.

HLR Half Left to Right ‘ 544
HLRI Half Left to Right Immediate ' : 545
HLRM Half Left to Right Memory \ 546
HLRS Half Left to Right Self 547
HLRZ Half Word Left to Right, Zeros

| 554 [m| a4 i x ] Y

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un-
affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
HLRZI Half Left to Right, Zeros, Immediate 555
HLRZM Half Left to Right, Zeros, Memory 556
HLRZS Half Left to Right, Zeros, Self 557
HLRO Half Word Left to Right, Ones

| sea [m|] a [ x | Y ]
0 67 89 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate 565
HLROM Half Left to Right, Ones, Memory . 566
HLROS Half Left to Right, Ones, Self 567
HLRE Half Word Left to Right, Extend

[ s74 [M[ 4 Ji] x | Y ]
0 67 89 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the



-31-

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to
bit O of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE Half Left to Right, Extend 574
HLREI Half Left to Right, Extend, Immediate 575
HLREM Half Left to Right, Extend, Memory 576
HLRES Half Left to Right, Extend, Self 577

ExampLes. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. FEg this pair of instructions loads the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI XR,M
HRRI  XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC

HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange
| 250 | 4 i x ] Y ]
0 89 121314 1718 . 35

Move the contents of location E to AC and move AC to location E.

SYSTEM REFERENCE

2-9

HLREI is equivalent to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)



SYSTEM REFERENCE

2-10

Besides the move instructions
for single words there are also

-32-

CENTRAL PROCESSOR §2.2

BLT Block Transfer
251 | 4 [l x | Y |
0 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is
thus £ — ACy + 1.

CautION

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, A and X must not address the
same register as this would produce a different effective address calcula-
tion upon resumption should an interrupt occur; and the program must
not attempt to load an accumulator addressed either by A4 or X unless it
is the final location being loaded. Furthermore, the program cannot
assume that AC is the same after the BLT as it was before.

ExampLes. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI 17,2000 ;Put 2000 000000 in AC 17
BLT 17,17

But to transfer the block in the opposite direction requires that one accumu-
lator first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEI 17,2000 ;Move the number 2000 to AC 17
BLT 17,2016

If at the time the accumulators were loaded the program had placed in loca-
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,



-33-

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode Suffix Source Destination
Basic E AC
Immediate I The word O, E AC
Memory M AC E
Self S E E, but also AC

if A is nonzero

MOVE Move
200 |M| 4 1] x | Y |
o 121314 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate 201
MOVEM Move to Memory 202
MOVES Move to Self 203
MOVS Move Swapped

204 M| 4 i x | Y
(1] 67 89 121314 1718 35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected the
original contents of the destination are lost.

MOVS Move Swapped 204
MOVS! Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207
MOVN Move Negative

210 [ M| ] x | Y ]
(1] 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —235 (400000 000000) set the

SYSTEM REFERENCE

2-11

four transmission instructions
that handle double length
operands (operands of two
adjacent words). These are
available, however, only in
the KI10; and since they are
principally for use in hardware
double precision floating point
operations, they are described
with the floating point instruc-
tions in §2.6

MOVEI loads the word 0,F
into AC and is thus equiva-
lent to HRRZI. If 4 is zero,
MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word E,0 into
AC. MOVSI is thus equivalent
to HRLZI.



SYSTEM REFERENCE

2-12

In the K110 a move executed
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, £ and
can set no flags.

In the KI10 a move executed
as an interrupt instruction can
set no flags.

The word 0,F is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEL

-3

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point =1 X 2127
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry 1. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap 1 flagin the
KI10.

MOVN Move Negative 210
MOVNI Move Negative Immediate 211
MOVNM Move Negative to Memory 212
MOVNS Move Negative to Self : 213
MOVM Move Magnitude

214 M| a4 1l x | Y B
0 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —23%
(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva-
lent floating point —1 X 2!?7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KI10.

MOVM Move Magnitude 214
MOVMI Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num-
ber 200 001400 is stored in location M, the instruction

MOVE ACM

loads 200 into AC left and 1400 into AC right. If the same word, or its nega-
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,



-35-

§2.2 FULL WORD DATA TRANSMISSION
and the program can keep a control count in the left half. There are also

two subroutine-calling instructions that utilize a pushdown list of jump ad-
dresses [ §2.9].

PUSH Push Down

261 | a4 ] x | Y
0 89 121314 1718 35

Add one to each half of AC, then move the contents of location E to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero, set the Pushdown Overflow flag in the KA1O, set the
Trap 2 flag in the KI10. The contents of E are unaffected, the original
contents of the location added to the list are lost.

Note: The KA10 increments the two halves of AC by adding 10000014
to the entire register. In the KI10 the two halves are handled independently.

PoP Pop Up

262 | 4 [1] x | Y

] 89 121314 1718 35

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach —1, set the Pushdown Overflow flag in the KA 10, set the Trap 2
flag in the KI10. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

Note: The KAIO decrements the two halves of AC by subtracting
1 0000014 from the entire register. In the KI10 the two halves are handled
independently.

In the KA10, incrementing and decrementing both halves of AC together
is effected by adding and subtracting 1 0000014. Hence a count of —2 in AC
left is increased to zero if 2!'® —1 is incremented in AC right, and conversely,
1 in AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re-
moved at any given time is the last item in the list. This is usually referred
to as “first in, last out” or ‘“last in, first out”. Suppose locationsa, b, ¢, ...
are set aside for a pushdown list. We can deposit data in q, b, ¢, d, then read

SYSTEM REFERENCE

2-13

In the KI10 a PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KI10 a POP executed
as an interrupt instruction
cannot set Trap 2.



SYSTEM REFERENCE

2-14

-36-

CENTRAL PROCESSOR , §2.2

d, then write in d and e, then read ¢, d, ¢, etc.

Note that by trapping or checking overflow and keeping a control count in
AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini-
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most NV items, the following suffices.

MOVSI P,—N
HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N — 1. Using Macro to full advantage one could
instead give

MOVE P,[IOWD N,BLIST]
where the pseudoinstruction
IOWD J,. K

is replaced by a word containing —J in the left half and K — 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the NV locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions —
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,P)

Of course this does not shorten the list — the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC,-1(P)
and so forth. Similarly

PUSH P,-3(P)



-37-

§2.3 BYTE MANIPULATION

adds the third to last item to the end of the list;
POP  P,-2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

7 T 5 T« ] v ]

11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if P is 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: 7, X and Y are used to cal-
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

W//s,p}rs% P BITS

0 35-P-S+1 35-P 35-P+1 35

where the shaded area is the byte.

To facilitate processing a series of bytes, several of the byte instructions
increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P — S, unless
there is insufficient space in the present location for another byte of the
specified size (P —S < 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 — S to point to the first byte at
the left in the new location.

CautiIon (kK410 ONLY)
Do not allow Y to reach maximum value. The whole pointer is incre-

SYSTEM REFERENCE

2-15

Note that FE is calculated
before the contents of P are
changed.

In a KA10 without byte ma-
nipulation hardware, all of the
instructions presented in this
section are trapped as un-
assigned codes [§2.10] .



SYSTEM REFERENCE

2-16

In the KI10, incrementing
maximum Y produces a zero
address without affecting X.

-38-

CENTRAL PROCESSOR §2.3

mented, so if Y is 28— 1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri-
ority interrupt should occur before the calculation is complete, the in-
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LDB Load Byte

135 | a4 [1I] x | Y

0 89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

DPB Deposit Byte
| 137 | 4 i x | Y
0 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

IBP Increment Byte Pointer
| 133 | a4 1l x ] Y ]
0 89 121314 1718 35

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte
[ i5e ] 4 [ x| v ]
V] 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre-
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.



-39-

§2.4 LOGIC

IDPB Increment Pointer and Deposit Byte

| 136 | 4 1] x | Y |
W] 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (445). Incrementing then replaces the 36 with 36 —S to point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]). e

Special Considerations. If S is greater than P and also greater than 36;
incrementing produces a new P equal to 100 —S rather than 36 —S. For
S > 36 the byte is at most the entire word; for P = 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P+ S5 > 36,
a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the
byte are deposited in position P.

24 LOGIC

For logical operations the PDP—-10 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane-
ously. Thus in the anp function of two words, each bit of the result is the
anp of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all 1s) the
modes differ only in.the destination of the result, so basic and-immediate

SYSTEM REFERENCE

2-17



SYSTEM REFERENCE

2-18

SETZ and SETZI are equiva-
lent (both merely clear AC).
MAcro also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent.

-40-

CENTRAL PROCESSOR §2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu-
lator addressed by A4, even when there is no AC operand.

, Source of non- Destination

Mode Suffix AC operand of result
Basic E AC
Immediate I The word 0, F AC
Memory M E E
Both B E ACand E
SETZ Set to Zeros

400 M| a4 |1l x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to all Os.

SETZ Set to Zeros . 400
SETZI Set to Zeros Immediate : 401
SETZM Set to Zeros Memory 402
SETZB Set to Zeros Both 403
SETO set to Ones

| 474 M| a4 |1 x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to all 1s.

SETO Set to Ones 474
SETOI Set to Ones Immediate 475
SETOM Set to Ones Memory 476
SETOB Set to Ones Both . 477
SETA Setto AC

424 M| 4 |1 x | Y ]
(V] 67 89 121314 1718 . 35

Make the contents of the destination specified by M equal to AC.



-41-
§2.4 LOGIC
SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427
SETCA Set to Complement of AC
| 450 |m| 4 |1 x | Y
(V] 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement
of AC.

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453
SETM Set to Memory

| 414 M| 4 1] x ] .Y

V] 67 89 121314 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417
SETCM Set to Complement of Memory

460 M| 4 |1l x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand.

SYSTEM REFERENCE

2-19

SETA and SETAI are no-ops.
SETAM and SETAB are both
equivalent to MOVEM (all
move AC to location E).

SETCA and SETCAI are
equivalent (both complement
AC).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0,F to AC
and is thus equivalent to
MOVEIL SETMM is a no-op
that references memory.



SYSTEM REFERENCE

2-20

SETCMI moves the comple-
ment of the word 0,E to AC.
SETCMM complements loca-
tion E.

-1y2-

CENTRAL PROCESSOR §2.4

SETCM Set to Complement of Memory 460

SETCMI Set to Complement of Memory Immediate 461

SETCMM Set to Complement of Memory Memory 462

SETCMB Set to Complement of Memory Both 463
AND And with AC

404 M| 4 |1l x | Y ]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and AC.

AND And 404
ANDI And Immediate 405
ANDM And to Memory 406
ANDB And to Both 407

ANDCA And with Complement of AC

| 410 [m] a4 1] x | Y ]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
ANDCAI And with Complement of AC Immediate 411
ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

420 |m] 4 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the aNp function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory 420
ANDCMI And Complement of Memory Immediate 421



~43-

§2.4 LOGIC
ANDCMM  And Complement of Memory to Memory 422
ANDCMB And Complement of Memory to Both 423

ANDCB And Complements of Both

[ 440 ]}ﬂ[ A 1] x | Y

121314 1718 35

Change the contents of the destination specified by M to the anp function of
the complements of both the specified operand and AC. The result is the
Nor function of the operands.

ANDCB And Complements of Both 440
ANDCBI And Complements of Both Immediate 441
ANDCBM And Complements of Both to Memory 442
ANDCBB And Complements of Both to Both 443
I0R Inclusive Or with AC

| 434 M| 4 |1l x | Y ]
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and AC.

I0R Inclusive Or 434
10RI Inclusive Or Immediate 435
I0RM Inclusive Or to Memory 436
I0RB Inclusive Or to Both 437
ORCA Inclusive Or with Complement of AC

454 M| a 1] x | Y ]
0 67 89 1213 14 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
ORCAI Or with Complement of AC Immediate 455
ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

SYSTEM REFERENCE

2-21

MACRO also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-
monics.



SYSTEM REFERENCE

2-22

-4~

CENTRAL PROCESSOR §2.4
ORCM Inclusive Or Complement of Memory with AC
| 464 |mM] a4 1] x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complement of the specified operand and AC.

ORCM Or Complement of Memory 464
ORCMI Or Complement of Memory Immediate 465
ORCMM Or Complement of Memory to Memory 466
ORCMB Or Complement of Memory to Both 467
ORCB Inclusive Or Complements of Both

470 M| 4 || x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complements of both the specified operand and AC. The
result is the NanD function of the operands.

ORCB Or Complements of Both 470
ORCBI Or Complements of Both Immediate 471
ORCBM Or Complements of Both to Memory 472
ORCBB Or Complements of Both to Both 473
XO0R Exclusive Or with AC

430 M| 4 1] x | Y ]
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the exclusive or
function of the specified operand and AC.

XOR Exclusive Or ‘ 430
XORI Exclusive Or Immediate 431
XORM Exclusive Or to Memory 432
XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the result.



~45-
§2.4 LOGIC

EQV Equivalence with AC

| 444 M| a |1 x | Y ]
o 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive or function of the specified operand and AC (the result has 1s
wherever the corresponding bits of the operands are the same).

EQV Equivalence 444
EQVI Equivalence Immediate 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
‘sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3—6 of the instruction word.

AC O 1 0 1

Mode Specified Operand 0 o0 1 1
SETZ 0O 0 o0 O
AND 0O 0 0 1
ANDCA 0O 0 1 0
SETM 0o 0 1 1
ANDCM 0O 1 0 O
SETA 0o 1 0 1
XOR o 1 1 o0
IOR o 1 1 1
ANDCB 1 0 0 O
EQV 1 0 0 1
SETCA 1 -0 1 O
ORCA 1 0 1 1
SETCM 1 1 0 O
ORCM 1 1 0 1
ORCB 1 1 1 0
SETO 1 1 1 1

SYSTEM REFERENCE

2-23



SYSTEM REFERENCE

-lyg-

2-24 CENTRAL PROCESSOR
Shift and Rotate
The remaining logical instructions-shift or rotate right or left the contents of
AC or the contents of two accumulators, 4 and A+1 (mod 20g), concat-
enated into a 72-bit register with 4 on the left. The illustration below
shows the movement of information these instructions produce in the accu-
LSH 0 A 0
0 35
LSHC 0 A A+1
0 35 0 35
ROT A
0 35
ROTC A A +1
0 35 0 35
ASH A A 0
0 1 35
A A+
ASHC 0 0
A A +1
1 35 35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS




Ny

§2.4 ‘ LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see §2.5.] In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive £ produces motion to the left, a negative £ to the right.
In the KA10, maximum movement is 255 places. The K110 eliminates re-
dundant ‘movement of the operand by shifting £ mod 72 places, for a
maximum of 71.

LSH Logical Shift

242 | 4 |1 x | Y

0 89 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined
| 246 | 4 1] x | Y
0 89 121314 1718 35

Concatenate accumulators 4 and A+1 with 4 on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If F is negative, shift right bringing Os
into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate

241 | a4 [1] x | Y

0 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit 0 is rotated into bit 35. If F is negative, rotate right; bit 35 is rotated
into bit 0.

SYSTEM REFERENCE

2-25



QYSTEM REFERENCE

2-26

Overflow is determined di-
rectly from the carries, not
from the carry flags, as their
states may reflect events in
. previous instructions.

In the KII0 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

-48-

CENTRAL PROCESSOR §2.5
ROTC Rotate Combined
| 245 | 4 i x | Y ]
0 89 1213 14 1718 35

Concatenate accumulators 4 and 4+1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit O is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP—-10 has instructions for arithmetic shift-
ing (which is essentially multiplication by a power of 2) as well as for per-
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators 4 and A+1 (mod 20g), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper-
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry O and Carry 1 actually detect carries out of bits O
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word
[§2.7]. In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In ot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>