

assembly
language
handbook

third edition

Additional copies of this handbook may be ordered from:

momaoma

Software Distribution Center, DEC, Maynard. Mass. 01754. Order Code: DEC-10-NRZC-D.

~~ ~~u~ handbook series

The material in this handbook, including but not limited to instruction
times and operating speeds, is for information purposes and is subject
to change without notice.

Copyr,ght © 1967, 1968, 1969, 1970, 1971, 1972, 1973 by
Digital Equipment Corporation

Actual distribution of the software described in this specification will
be subject to terms and conditions to be announced at some future date
by Digital Equipment Corporation.

DEC assumes no responsibility for the use or reliability of its software on
equipment which is not supplied by DEC.

The software described in this manual is furnished to purchaser under a
license for use on a single computer system and c~n be copied (with in·
clusion of DEC's copyright notice) only for use in· such system, except
as' may otherwise be provided in writing by DEC.

The following are trademarks of
Digital Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

system re~erence

macro

monitor calls

Iink-10

ddt

utilities

index

FOREWORD
This handbook is a collection of documents and sections of documents taken

from the DECsystem-lO SOFTWARE NOTEBOOKS (DEC-IO-SYZB-D). It is
intended to be used by experienced programmers interested in writing and oper­
ating assembly-language programs on the DECsystem-lO. The material in this
handbook is aimed at providing the information needed for user-mode program­
ming.

Most documents in this handbook are reprinted without change from the DEC­
system-lO Software Notebooks. However, the first document in the handbook,
the System Reference Manual, is an excerpt from the System Reference Manual in
the Notebook set. This excerpt contains only the user-mode programming infor­
mation needed by most assembly language programmers, and does not cover the
documentation related to the various peripheral devices. If additional information
is required, the reader is referred to the complete System Reference Manual in the
Software Notebooks. All DECsystem-10 installations have two copies of the note­
book set for reference.

The documents contained in this handbook reflect the following hardware and
versions of the software:

System Reference Manual- KA10 and KIlO processors
MACRO - Version 47
Monitor Calls - 5.06 release
DDT - Version 34
LINK-l 0 - Version 1
CREF - Version 47
FILCOM - Version 20
FUDGE2 - Version 15
GLOB - Version SA

The Assembly Language Handbook is one in the set of DECsystem-10 hand­
books. The otherhandbo,oks comprising this series are:

(1) the COBOL Language Handbook.

(2) the Mathematical Languages Handbook, which covers FORTRAN,
BASIC and ALGOL.

(3) the DECsystem-lO Users Handbook, which includes an introductory
section, the operating system commands, TECO, and PIP.

In addition to the above-mentioned handbooks, the following documentation is
also available:

(1) the COBOL Users Guide, which is aimed at COBOL users who wish
to become familiar with COBOL on the DECsystem-l0.

(2) the System Reference Card, which includes the word formats, instruc­
tions, and conversion tables for the DECsystem-lO.

(3) the Operating System Commands Reference Card, which describes the
commands, along with their formats, that are a part of the operating
system.

(4) the Monitor Calls Reference Card, which covers the programmed oper­
ators (UUOs), and their formats, that can be used with the monitor.

(5) the BASIC Language Reference Card, which includes the statements,
intrinsic functions, and .edit and control commands of the DECsystem-
10 BASIC Language.

The handbooks, Users Guide, and reference cards may be ordered from:
Software Distribution Center
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

-1-

DEC system -10

System Reference Manual

ORDER NO. DEC-JO-HGAD-D FROM PROGRAM LIBRARY, MAYNARD, MASSACHUSETTS PRICE $5.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO SOFTWARE QUALITY CONTROL, MAYNARD, MASSACHUSETTS

DIGITA~ EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETIS

SYSTEM REFERENCE -2-

Instruction times, operating speeds and the like are
included here for reference only; they are not to be
taken as specifications.

Copyright © 1968, 1969, 1971

by Digital Equipment Corporation

First edition, May 1968
Three prin tings

Second edition, December 1971

This edition has been expanded to provide system reference information for
a DECsystem-l0 with KAIO or KIlO central processors. The KIlO material
has been incorporated into the text throughout.

Manufactured in the United States of America

December 197 I

-3- SYSTEM REFERENCE

Contents

1. INTRODUCfION 5

l.l Number System 11
Floating point arithmetic 12

l.2 Instruction Format 14
Effective address calculation 15

1.3 Memory 16
KIlO memory allocation 18
KA 1 0 memory allocation 18

1.4 Programming Conventions 19

2. CENTRAL PROCESSOR 23

2.1 Half Word Data Transmission 24

2.2 Full Word Data Transmission 31
Move instructions 32
Pushdown list 34

2.3 Byte Manipulation 37

2.4 Logic 39
Shift and rotate 46

2.5 Fixed Point Arithmetic 48
Arithmetic shifting 52

2.6 Floating Point Arithmetic 53
Scaling 55
Number conversion 56
Single precision with rounding 58
Single precision without rounding 60
Double precision operations 64

2.7 Arithmetic Testing 67

2.8 Logical Testing and Modification 73

2.9 Program Control 80

2.10 Unimplemented Operations 91

2.11 Programming Examples 93
Double precision floating point 95

SYSTEM REFERENCE -4-
iv

2.12 Input-Output 96
Readin mode 101
Console-program communications 102

2.13 Priority Interrupt 103

2.14 Trapping and Processor Conditions 111
Overflow trapping 111
KIlO processor conditions 112
KA 1 0 processor conditions 115

2.15 KIlO Modes 117
Paging 118
Page failure 122
Monitor programming 124
Executive XCT 127

2.16 KAI0 Modes 129
User programming 131
Monitor programming l31

2.17 Real Time Clock DK 10 l32

2.18 KA 1 0 Operation 135
Indicators l36
Operating keys 138
Operating switches 140

2.19 KIl 0 Operation (Not available at this time)

APPENDICES

A Instruction and Device Mnemonics 147
Numeric listing 149
Alphabetic listing 152
Device mnemonics 156
Algebraic representation 157

B In-out Codes 167
Teletype code 168
Card codes 172

C Timing 175
KA10 timing 176
KIlO timing (Not available at this time)

D KA 1 0 Algorithins 179
Fixed point algorithms 180
Floating point algorithms 185

E Processor Compatibility (Not available at this time)

F Indicator Panels (A vailable in the System Reference Manual
published as a part of the DECsystem-IO
Software Notebooks.)

G Bit Assignments 191

-5-

1

Introduction

The DECsystem -10 is a general purpose, stored program computing system
that includes at least one PDP-1O central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch, teletypewriter,
card reader and punch, line printer, DECtape, magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory, some. of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much more limited program capabil­
ity and serve to connect large, fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem -1 0 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a SUbsystem in toto is con­
nected to a PDP-lOin-out bus and is treated by the PDP-l 0 as a peripheral
device. Untess otherwise specified, the words "processor" and "central pro­
cessor" refer to the large-scale PDP-l 0 cen tral processor, and "in-out bus"
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the DFIO data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present there are two types of PDP-1O central processors, the KAIO
and the KI I O. The latter is faster and more powerful, having a somewhat
larger instruction repertoire including double precision floating point. Both
processors handle words of thirty-six bits, which are stored in a memory
whose maximum capacity depends upon the addressing capability of the
processor. Internally both processors use 18-bit addresses and can thus
reference 262,144 word locations in memory. This'is the total addressing
capability of the KAIO, but in the KII 0 it is only the virtual address space
available to a single program. Paging hardware supplies four additional
address bits to map pages in the program virtual address space into pages
anywhere in a physical memory that is sixteen times as large. Thus for
a number of different programs, the processor actually has access to a

I-I

SYSTEM REFERENCE

Confusion could result only
in a chapter dealing with a
small-computer subsystem.
Here the small processor is
usually referred to by its
name (pDP-8, PDP-II) and
the words "computer" and
"memory" refer to the small
computer. To differentiate,
the PDP-IO is referred to by
its name or as the "DEC­
system-IO central processor",
and the large scale memory
connected to the PDP- 10
memory bus is referred to as
"DECsystem-IO main mem­
ory".

SYSTEM REFERENCE

1-2

-6-

INTRODUCTION

physical memory with a capacity of 4,194,304 words. Storage in memory
is usually in the form of 37-bit words, the extra bit producing odd parity
for the word. The bits of a word are numbered 0-35, left to right (most
significant to least significant), as are the bits in the registers that handle
the words. The processor can handle half words, wherein the left half
comprises bits 0-17, the right half, bits 18-35. There is also hardware
for byte manipulation - a byte is any contiguous set 9f bits within a word.
KAIO registers that hold addresses have eighteen bits, numbered 18-35
according to the position of an address in a word.. KI I 0 internal address
registers have eighteen bits, but a register that must supply a complete
address to physical memory has twenty-two bits (numbered 14-35). Words
are used either as computer instructions in the program, as addresses, or as
operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by Pc. At the beginning of each instruction PC is incre­
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer are the sense
switches and the 36-bit data switch register DS on the processor console:
through these switches the program can read information supplied by the
operator. The processor also contains flags that detect various types of
errors, including several types of overflow in arithmetic and pushdown opera­
tions, and provide other information of interest to the programmer.

The processor has other registers but the programmer is not usually con­
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can
examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc­
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.
This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. In the KI I 0, AR and the adder each have a 28-bit left
extension for handling double precision floating point numbers.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations

-7- SYSTEM REFERENCE

1-3

CORE MEMORY CORE MEMORY CORE MEMORY

MEMORY BUS

FAST
~ MEMORY,;

16.X 36

14l MA I H 181
ARITH METIC

H LOGIC

(AR, BR, Ma)

14i AS 181 I PC 18~ H
IN- OUT BUS t

t t
I PRIORITY I

INTERRUPT
I PAPER TAPE

READER
I PAPER TAPE

PUNCH I
DECSYSTEM-10 SIMPLIFIED

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,

CENTRAL
PROCESSOR

IR 181

MI 361

OS 361

t.

TELETYPE I

SYSTEM REFERENCE

1-4

The KIlO actually has four
fast memory blocks, but only
one of these is available to a
program at any given time.

The KIlO allows unrestricted
in-out with a limited number
of devices for special real
time applications.

-8-

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has- a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overflow or a parity error to signal the program.

Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily. A program that runs in executive mode - the Monitor - is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to

-9-

operation in executive mode (specifically kernel mode in the KIl 0).
The KAIO has the two modes discussed above, user and executive. It also

has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected, ie the user cannot
alter its contents.

The KI I 0 has paging hardware for the mapping of pages from the limited
virtual address space into pages anywhere in physical memory. A page map
for each program specifies not only the correspondence from virtual address
to physical address, but also whether an individual page is accessible or not,
alterable or not, and public or concealed. Both user and executive modes are
subdivided according to whether the program is running in a public area or a
concealed area. Within user mode these are the public and concealed modes;
within executive mode, the supervisor and kernel modes. A program in
concealed mode can reference all of accessible user memory, but the pubiic
program cannot reference the concealed area except to transfer control into
it at certain legitimate erttry points.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and the program
can even address some of memory directly (ie unpaged); in the paged address
space, individual pages may be restricted as inaccessible or write-protected,
but it is the kernel mode program that establishes these restrictions. In
supervisor mode the Monitor handles the general management of the system
and those functions that affect only one user at a time. This mode has
esseritially the same instruction and memory restrictions as user mode,
although the supervisor mode program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor program
with information the latter cannot alter (even though the information is not
write-protected from the kernel program). In either mode the Monitor
automatically uses fast memory block 0 (the hardware requires this). The
kernel ptogramis responsible for assigning fast memory blocks to the various
user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block I is assigned to all other users.

The illustratiori on the next page shows a typical layout of the virtual
address space for the various modes. The space is 256K, made up of 512
pages numbered 0-777 octal. Any program can address locations 0-17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
wri te-protected. The public program cart not access any locations in the
concealed areas except to fetch instructions from prescribed entry
points. The concealea mode user program has access to both public and
concealed areas, but it cannot alter any write-protected location whether
public or concealed, and fetching an instruction from the public area
automatically returns the processor to public mode.

The supervisor mode program is confined within the paged area of the
address space, pages 340 and above. Part of the public area in this space may

SYSTEM REFERENCE

1-5

The concealed area would or­
dinarily be used for proprie­
tary programs that the user
can· call but cannot read or
alter.

SYSTEM REFERENCE -10-

1-6 INTRODUCTION

USER MODE EXECUTIVE MODE
PUBLIC

o r--""FA"'ST'"""'M""EM""O-,;;:RY,----,

PU BLiC
WRITEABLE

SHADED AREAS ARE INACCESSIBLE

CONCEALED
o r--""'FA"'ST:-:M7::E""'MO""RY::-----,

PUBLIC
WRITEABLE

CONCEALED
WRITEABLE

PUBLIC
WRITE -PROTECTED

CONCEALED

WRITE -PROTECTED

SUPERVISOR
Or--==-==,----,

340
PUBLIC

CONCEALED

400 400

PUBLIC

WRITEABLE

PUBLIC
WRITE - PROTECTED

CONCEALED

TYPICAL VIRTUAL ADDRESS SpACE CONFIGURATION

KERNAL
FAST MEMORY

UNPAGED

PUBLIC

CONCEALED

PUBLIC

WRITEABLE

PUBLIC
WRITE-PROTECTED

CONCEALED
WRITEABLE

CONCEALED

WRITE-PROTECTED

-11-

§1.l NUMBER SYSTEM

be write-protected, but the program can read information in the concealed
areas - it cannot alter any location in a concealed area whether that area is
write-protected or not. Pages 340-377 constitute the per-process area, which
contains information specific to individual users and whose mapping
accompanies the user page map. In other words the physical memory
corresponding to these virtual pages can be changed simply by switching
from one user to another, rather than the Monitor changing its own page
map. The kernel mode program can access all of the unpaged area without
restriction and can reference all of the accessible paged area, both public and
concealed, with the usual restriction that it cannot alter a write-protected
area. As in the case of concealed user mode, fetching an instruction from a
public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num­
ber, or the left and right halves of.a word can be taken as separate IS-bit
numbers. The PDP-I 0 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-lOuse twos comple­
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit 0 (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2 n - x, and its ones complement is (2 n - I) - x, or equivalently (2 n - x) - I.
Subtracting a number from 2 n - I (ie, from all Is) is equivalent to perform­
ing the logical complement, ie changing all Os to I s and all I s to Os. There­
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds I to the result. In a negative number the sign bit is I, and
the remaining bits are the twos complement of the magnitude.

+153 10 = +231 8 =10000000000000000000000000000100110011
o 35

-153 10 -231 8 =11111111111111111111111111111011001111
o 35

Zero is represented by a word containing all Os. Complementing this
number produces all I s, and adding I to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation, all
even numbers both positive and negative end in 0, all odd numbers in I (a

SYSTEM REFERENCE

1-7

SYSTEM REFERENCE

1-8

Multiplication produces a
double length product, and
the programmer must remem­
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple­
ment form only if the low
order part is null.

-12-

INTRODUCTION § 1.1

number all I s represents -I). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 400000 0000008 and its magnitude is one greater
than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the Is. In twos
complement notation each negative number is one greater than the
complement of the positive number of the same magnitude, so one can read
a negative number by attaching significance to the rightmost I and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a I in only the sign position). In a negative integer, Is may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because
it still has a 1 that possesses significance; but if a portion including the
rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement.

The computer does not keep track of a binary point - the programmer
must adopt a point convention and shift the magnitude of the result to coli­
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre­
sented by a single word is -235 to 235 - 1 or -1 to 1 - 2-35 • Since multiplica­
tion and division make use of double length numbers, there are special
instructions for performing these operatioris with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit 0 of the high
order word is the sign, and bit 0 of the low order word is O. The range for
double length integers and proper fractions is thus -270 to 270 - I and -I to
1 - 2-70 •

Floating Point Arithmetic. The KIlO has hardware for processing single
and double precision floating point numbers; the KA 1 0 can generally process
only single precision numbers, although the hardware does include features
that facilitate double precision arithmetic by software routines. The same
format is used for a single precision number and the high order word of a
double precision number. A floating point instruction interprets bit 0 as the
sign, but interprets the rest of the word as an 8-bit exponent and a 27-bit
fraction. For a positive number the sign is 0, as before. But the contents of
bits 9-35 are now interpreted only as a binary fr!lction, and the contents of
bits 1-8 are interpreted as an integral exponent in excess 128 (2008)
code. Exponents from -128 to + 127 are therefore represented by the
binary equivalents of 0 to 255 (0-3778). Floating point zero and negatives
are represented in exactly the same way as in fixed point: zero by a word
containing all Os, a negative by the twos complement. A negative number
has a 1 for its sign and the twos complement of the fraction, but since every
fraction must ordinarily contain a 1 unless the entire number is zero (see

-13-

§ 1.1 NUMBER SYSTEM

below), it has the ones complement of the exponent code in bits 1-8. Since
the exponent is in excess 128 code, an actual exponent x is represented in a
positive number by x + 128, in a negative number by 127 - x. The
programmer, however, need not be concerned with these representations as
the hardware compensates automatically. Eg, for the instruction that scales
the exponent, the hardware interprets the integral scale factor in standard
twos complement form but produces the correct ones complement result for
the exponent.

+ 153 10 +231 8 = +.4628 X 28

10110 001 0001100 110 010 000 000 000 000 000 0001
o I 89 3S

-153 10 -231 8

I tIo 1 110 11110 1 I 00 1 11 a 000 000 000 000 000 000 I
o I 89 3S

Except in special cases the floating point instructions assume that all
nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to Y2 and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of Y2 to 1 - 2 -27. Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is Y2 to I
decreased by the value of the least significant bit. In all formats the
exponent range is -128 to + 127.

The precaution about truncation given for fixed point multiplication
applies to most floating point operations as they produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. II'
single precision division the two words of the result are quoti~nt :tnd
remainder, but in the other operations they form a double length numb..:r
which is stored in two accumulators if the instruction is executed in "long"
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9- 35 of each word. The sign and exponent are in bits a and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the remaining part of the less significant word, bit a is 0, and bits
1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 2 18 + 2- 18 has this two-word representation in software

SYSTEM REFERENCE

1-9

SYSTEM REFERENCE

1-10

-14-

INTRODUCTION § 1.2

double precision format:

10110 010 0111100 000 000 000 000 000 000 000 0001
o 1 89 35

1010 1 111 000 1000 000 000 100 000 000 000 000 000 I
o 1 89 35

whereas its negative is

1110110110010111111111111111111111111111
o 1 . 89 35

10101 111 0001111 111 111 100 000 000 000 000 0001
o 1 89 35

The double precision floating point instructions use a more straight­
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit a is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

10110 a 1 a 0111100 000 000 000 000 000 000 000 000 I
o I 89 35

10100 000 000 a 10 000 000 000 000 000 000 000 000 I
o 1 35

and its negative is

1110 I I a I I 00 10 1 1 1 I I I I I II 1 I 1 I I 1 I I I I I I I I I I I
o I 89 35

10111 III III 11 a 000 000 000 000 000 000 000 000 I
o I 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

-15-

§ 1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies,the type of addressing, bits 14-17 spec­
ify an index register for use in address modification, and the remaining
eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE

INSTRUCTION CODE MEMORY ADDRESS

o 89 121314 1718 3S

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are performed by the processor
as so-called "unimplemented operations".

An input-output instruction is designated by three I s in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions.

o 23

INSTRUCTION
CODE

DEVICE CODE

ADDRESS TyPE

MEMORY ADDRESS

9 10 12 13 14 1718 3S

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

Y
1314 1718 3S

indirect bit, bits 14-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address E of the instruction depends on the values of I, X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If I is 0, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if I is I,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the
effective address if I is 0, otherwise they are used for yet another level of
address retrievaL This process continues until some referenced location is
found with a 0 in bit 13; the 18-bit number calculated from the X and Y
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-

SYSTEM REFERENCE

1-11

Among the unimplemented
operations are some that are
specified as "unimplemented
user operations" or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu­
nication with the Monitor
(MUUOs). In general, unas­
signed codes act like MUUOs.

On the other hand, please note
that this calculation is carried

SYSTEM REFERENCE

1-12

out only for words indicated
in the text as having the for­
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim·
ply because it happens to con·
tain an address [see page G2J.

-16-

INTRODUCTION § 1.3

tion word is 0 and no memory reference is necessary, then Y is not an ad­
dress. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad­
dress when I is O. But when I is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which I
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper­
and even have an "immediate" mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
caiculation is carried out for every instruction regardless of the type of infor­
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KII 0 further increases the speed of memory
operation by overlapping memory cycles. Eg it can start one memory to
read a word before receiving a word previously requested from a different
memory.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write
it must first clear the location and then load it.

-17-

§ 1.3 MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten feet (three meters) of cable. Fast memory times are
for referencing as a memory location (I8-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
usually considerably shorter. The size of the MDI 0 can be increased in units
of 32K up to 128K.

Read Write Modify
Access Access Cycle Completion Size

161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 .49 1.8 1.33 16K

164 Core Memory }
MBIO Core Memory

.60* .20* 1.65* .97 16K

MAIO Core Memory .61 .20 1.00 . 57 16K
MDIO Core Memory .83 .33 1.8 1.23 32-128K

ME 10 Core Memory .61 .20 1.00 .65 16K

KA I 0 Fast Memory .21 .21 16
KI I 0 Fast Memory 16

From the simple hardware addressing point of view, the entire memory is
a set of contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KAIO address is octal 777777,
decimal 262,143; the largest KIlO address is 17777777, decimal
4,194,303. (Addresses are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with 18-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen fot the
location. The times given above assume the addressed memory is idle when
access is requested. To avoid waiting for a previously requested memory
cycle to end, the program can make consecutive requests to different
memories by taking instructions from one memory and data from
another. All memories can be interleaved in pairs in such a way that
consecutive addresses actually alternate between the two memories in the
pair (thus increasing the probability that consecutive references are to
different memories). Appropriate switch settings at the memories
interchange the least significant address bits in the memory selection and
location parts, so that in any two memories numbered nand n + I where n is
even, all even addresses are locations in the first memory, all odd addresses
are locations in the second. Hence memories 0 and I can be interleaved as
can 6 and 7, but not 3 and 4 or 5 and 7. Some memories can be interleaved
in contiguous groups of four, where the number of the first memory in the

SYSTEM REFERENCE

1-13

*Add .J in a multiproces·
sor system .

SYSTEM REFERENCE

1-14

The kernel mode program
can always address locations
0-337777 as these are un­
paged. Virtual pages 340 and
above are mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for itself for
each KI 10 processor. In the
text, the phrase "the user
process table" refers to the
process table currently speci­
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex·
ecutive process table for the
processor under consideration.

The initial control word ad­
dress for the DFIO Data
Channel must be less than
1000.

-18-

INTRODUCTION § 1.3

group is divisible by four (eg memories 0-3 or 14-17). In this case all
addresses ending in 0 or 4 reference the first memory in the group, all ending
in 1 or 5 reference the second, and so forth.

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KAlO the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KIl 0 the possible
program address space is the set of all 18-bit addresses just as in the KA 1 0,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called "small user", the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0-17 are never restricted or relocated).

KIl 0 Memory Allocation. The KIl 0 hardware defines the use of certain
memory locations, but almost all of these are relative to pages whose
physical location is specified by the Monitor. The only physical locations
uniquely defined by the hardware are those in fast memory, whose addresses
are the same for all programs: location 0 holds a pointer word during a
bootstrap readin, 0-17 can be addressed as accumulators, and 1-17 can be
addressed as index registers. The only addresses uniquely specified in the
user virtual space are for user local UUOs - locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware-oriented situations, are
to locations within a page specified by the Monitor for a particular user
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, .billing
information, and job tables. The detailed configuration of the
hardware-defined parts of the process tables (user and executive) is given in
§2.15.

KAIO Memory Allocation. The use of certain memory locations is
defined by the KAIO hardware.

o
0-17

1-17

40-41

42-57

60-61

Holds a pointer word during a bootstrap readin

Can be addressed as accumulators

Can be addressed as index registers

Trap for unimplemented user operations (UUOs)

Priority interrupt locations

Trap for remaining unimplemented operations: these include
the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc­
tions when the hardware for them is not installed

§ 1.4

140-161

-19 ..

PROGRAMMING CONVENTIONS

Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith­
metic, program control and in-out. The instructions in the in-out class con­
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The MACRO-IO assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc­
tion, produces the twos complement negative of the word in memory loca­
tion 2570.

NOTE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num­
bers appearing in program examples are octal unless otherwise indi­
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 tc
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the

SYSTEM REFERENCE

1-15

All information given in this
manual about memory loca­
tions 40-61 for a KAIO ap­
plies instead to locations 140-
161 for programming a second
KA 1 0 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

SYSTEM REFERENCE

1-16

-20-

INTRODUCTION § 1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(l2)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec­
tive address calculation.

An accumulator address (0-17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(l2)

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place I s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur­
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302

which assembles as 700600 001302, or equivalently

CONO PI, 1302

The programming examples in this manual use the following addressing
conventions:
• A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym­
bolically as A.
• The period represents the current address, eg

ADD 5,.+2

is equivalent to

A: ADD 5,A+2

• Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]

and

ADD 12,A

§ 1.4

-21- SYSTEM REFERENCE

PROGRAMMING CONVENTIONS

A: 7256004

are equivalent.
Anything written at the right of a semicolon is commentary that explains

the program but is not part of it.

1-17

-23-

2

Central Processor

This chapter describes all PDP-lO instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne­
monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique
instruction with a single code in bits 0-8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in­
struction is the source and which the destination of the data, in test instruc­
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0-8) for the various modes.

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the I, X and Y parts
of the instruction word. In an instruction that ordinarily references mem­
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in­
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, E or E, 0 depending upon whether E is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address i~ represented by A ; in the description,
"AC" refers to the accumulator addressed by A. "AC left" and "AC right"
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A + I, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss -
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2·1

SYSTEM REFERENCE

Letters representing modes
are suffixes, which produce
new mnemonics that are rec­
ognized as distinct symbols
by the assembler.

SYSTEM REFERENCE

2-2

-24-

CENTRAL PROCESSOR § 2.1

well to operation in executive mode. For completeness, the effects of restric­
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, § 2.13
describes the priority interrupt, § 2.14 discusses trapping, and § § 2.15 and
2.16 describe the special effects and restrictions associated with the various
machine modes in the KII a and the KA 10 respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum­
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc­
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being "executed." To
"execute" an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc­
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap, etc.
H is assumed that control will shortly be returned to PC, a t the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes Pc.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in § 2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter­
mined by which half of the source word is moved to which half of the des­
tination, and by which of four possible operations is performed on the other

-25-

§2.1 I:\ALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation

Do nothing
Zeros
Ones
Extend

Suffix

Z
o
E

Effect on Other Half of Destination

None
Places Os in all bits of the other half
Places I s in all bits of the other half
Places the sign (the leftmost bit) of
the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num­
bers - the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter­
mines the source and destination of the half word moved.

Mode Suffix Source Destination

Basic E AC
Immediate I The word O,E AC
Memory M AC E
Self S E E, but full word result also

goes to AC if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left

500 y
o 67 89 12 13 14 17 18 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un­
affected; the original contents of the destination left half are lost.

SYSTEM REFERENCE

2-3

SYSTEM REFERENCE

2-4

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.

HLLZI merely clears AC. If A
is zero, HLLZS merely clears
the right half of location E.

HLLOI sets AC to all Os in
the left half, all Is in the
right.

-26-

CENTRAL PROCESSOR § 2.1

Hll Half Left to Left 500
Hlll Half Left to Left Immediate 501
HllM Half Left to Left Memory 502
HllS Half Left to Left Self 503

HLlZ Half Word Left to Left, Zeros

510 y
o 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HllZ Half Left to Left, Zeros 510
HllZI Half Left to Left, Zeros, Immediate 511
HllZM Half Left to Left, Zeros, Memory 512
HllZS Half Left to Left, Zeros, Self 513

HLLO Half Word Left to Left, Ones

520 y
o 67 89 12 13 14 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1 s. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones 520
HLLOI Half Left to Left, Ones, Immediate 521
HLLOM Half Left to Left, Ones, Memory 522
HLLOS Half Left to Left, Ones, Self 523

HLlE Half Word Left to Left, Extend

530 y

o 67 89 12 13 14 17 18 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make an bits in the destination right half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

§2.1

HLLE
HLLEI
HLLEM
HLLES

-27-

HALF WORD DATA TRANSMISSION

Half Left to Left, Extend
Half Left to Left, Extend, Immediate
Half Left to Left, Extend, Memory
Half Left to Left, Extend, Self

HRL Half Word Right to Left

504 y

o 67 89 12 13 14 1718

530
531
532
533

3S

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf­
fected; the original contents of the destination left half are lost.

HRL
HRLI

HRLM
HRLS

Half Right to Left
Half Right to Left Immediate

Half Right to Left Memory

Half Right to Left Self

HRLZ Half Word Right to Le!t, Zeros

514
o 67 89 121314 1718

y

504
505
506
507

3S

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HRLZ
HRLZI
HRLZM
HRLZS

Half Right to Left, Zeros
Half Right to Left, Zeros, Immediate
Half Right to Left, Zeros, Memory
Half Right to Left, Zeros, Self

HRLO Half Word Rightto Left, Ones

524
o 67 89 12 13 14 17 18

y

514
515
516
517

3S

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1 s. The source
is unaffected, the original contents of the destination are lost.

SYSTEM REFERENCE

2-5

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word £,0
into AC.

SYSTEM REFERENCE

2-6

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

-28-

CENTRAL PROCESSOR § 2.1

HRLO Half Right to Left, Ones 524

HRLOI Half Right to Left, Ones, Immediate. 525

HRLOM Half Right to Left, Ones, Memory 526

HRLOS Half Right to Left, Ones, Self 527

HRLE Half Word Right to Left, Extend

534 y
o 67 89 12 13 14 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE
HRLEI
HRLEM
HRLES

Half Right to Left, Extend

Half Right to Left, Extend, Immediate
Half Right to Left, Extend, Memory
Half Right to Left, Extend, Self

HRR Half Word Right to Right

540
o 67 89 12 13 14 17 18

y

534
535
536
537

35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR
HRRI
HRRM
HRRS

Half Right to Right

Half Right to Right Immediate
Half Right to Right Memory
Half Right to Right Self

HRRZ Half Word Right to Right, Zeros

550
o 67 89 121314 1718

y

540
541
542
543

35

Move the right half of the source word specified by M to the right half of the

-29-

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the destination left half. The source is unaf­
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
HRRZI Half Right to Right, Zeros, Immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553

HRRO Half Word Right to Right, Ones

560 y

o 67 89 12 13 14 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all Is. The source is
unaffected, the original contents of the destination are lost.

-HRRO
HRROI
HRROM
HRROS

Half Right to Right, Ones
Half Right to Right, Ones, Immediate
Half Right to Right, Ones, Memory
Half Right to Right, Ones, Self

HRRE Half Word Rightto Right, Extend

570
o 67 89 121314 1718

y

560
561
562
563

3S

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE
HRREI
HRREM
HRRES

Half Right to Right, Extend
Half Right to Right, Extend, Immediate
Half Right to Right, Extend, Memory
Half Right to Right, Extend, Self

HLR Half Word Left to Right

544
o 67 89 121314 1718

y

570
571
572
573

35

Move the left half of the source word specified by M to the right half of the

SYSTEM REFERENCE

2-7

HRRZI loads the word O,E
into AC. If A is zero, HRRZS
merely clears the left half of
location E.

SYSTEM REFERENCE

2-8

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to all Is in
the left half, all as in the
right.

-30-

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR

HLRI

HLRM

HLRS

Half Left to Right

Half Left to Right Immediate

Half Left to Right Memory

Half Left to Right Self

HLRZ Half Word Left to Right, Zeros

554
o 67 89 121314 1718

y

544
545
546
547

35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un­
affected, the original contents of the destination are lost.

HLRZ

HLRZI

HlRZM

HLRZS

Half Left to Right, Zeros

Half Left to Right, Zeros, Immediate

Half Left to Right, Zeros, Memory

Half Left to Right, Zeros, Self

HLRO Half Word Left to Right, Ones

564
o 67 89 12 13 14 1718

y

554
555
556
557

35

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all I s. The source is
unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate 565
HLROM Half Left to Right, Ones, Memory 566
HLROS Half Left to Right, Ones, Self 567

HLRE Half Word Left to Right, Extend

574 y

o 67 89 12 13 14 17 18 35

Move the left half of the source word specified by M to the right half of the

-31-

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE
HLREI
HLREM

HLRES

Half Left to Right, Extend

Half Left to Right, Extend, Immediate
Half Left to Right, Extend, Memory
Half Left to Right, Extend, Self

574
575
576
577

EXAMPLES. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads the IS-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI
HRRI

XR,M
XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between I and 17.

Suppose that at some point we wish to use the two halves of XR inde­
pendently as operands (taken as IS-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC
HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange

250 y

o 89 121314 1718 35

Move the contents of location E to AC and move AC to location E.

SYSTEM REFERENCE

2-9

HLREI is equivalen t to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load­
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

SYSTEM REFERENCE

2-10

Besides the move instructions
for single words there are also

-32-

CENTRAL PROCESSOR §2.2

BL T Block Transfer

251 y
o 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is
thus E - ACR + I.

CAUTION

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, A and X must not address the
same register as this would produce a different effective address calcula­
tion upon resumption should an interrupt occur; and the program must
not attempt to load an accumulator addressed either by A or X unless it
is the final location being loaded. Furthermore, the program cannot
assume that AC is the same after the BL T as it was before.

E~AMPLES. This pair of instructions loads the accumulators from memory
locations 2000-20 17.

HRLZI
BLT

17,2000
17,17

;Put 2000 000000 in AC 17

But to transfer the block in the opposite direction requires that one accumu­
lator first be made available to the BLT:

MOVEM 17,2017
MOVEI 17,2000
BLT 17,2016

;Move AC 17 to 2017 in memory
;Move the number 2000 to AC 17

If at the time the accumulators were loaded the program had placed in loca­
tion 2017 the control word necessary for storing them bac~ in the same
block (2000), the three instructions above could be replaced by

EXCH
BLT

17,2017
17,2016

.Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

-33-

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode

Basic

Immediate

Memory

Self

MOVE Move

200
o 67 89

Suffix

M

S

12 13 14

Source

E

The word O,E

AC

E

1718

y

Destination

AC

AC

E

E, but also AC
if A is nonzero

35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE

MOVEI

MOVEM

MOVES

MOVS

204
o

Move

Move Immediate

Move to Memory

Move to Self

Move Swapped

67 89 12 13 14

y
1718

200
201

202
203

35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped 204
MOVSI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207

MOVN Move Negative

210 y

o 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point -235 (400000000000) set the

SYSTEM REFERENCE

2-11

four transmission instructions
that handle double length
operands (operands of two
adjacent words). These are
available, however, only in
the KII 0; and since they are
principally for use in hardware
double precision floating poin t
opera tions, they are described
with the floating point instruc­
tions in §2.6

MOVEI loads the word O,E
into AC and is thus equiva­
lent to HRRZI. If A is zero,
MOVES is a no-op; otherwise
it is eqUivalent to MOVE.

Swapping halves in immediate
mode loads the word E,O into
AC. MOVSI is thus equivalent
to HRLZI.

SYSTEM REFERENCE

2-12

In the KI 10 a move execu ted
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, E and
can set no flags.

In the KIlO a move executed
as an interrupt instruction can
set no flags.

The word O,E is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEI.

-34-

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point ~ 1 X 2127
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry 1. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap I flag in the
KIlO.

MOVN Move Negative 210

MOVNI Move Negative Immediate 211

MOVNM Move Negative to Memory 212

MOVNS Move Negative to Self 213

MOVM Move Magnitude

214 y
o 67 89 12 13 14 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point -235

(400000000000) set the Overflow and Carry 1 flags. (Negating the equiva­
lent floating point -1 X 2127 sets the flags, but this is not a normalized num­
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KII O.

MOVM Move Magnitude 214

MOVMI Move Magnitude Immediate 215

MOVMM Move Magnitude to Memory 216

MOVMS Move Magnitude to Self 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a: single move
instruction. This saves time but still requires two locations. Eg if the num­
ber 200 001400 is stored in location M, the instruction

MOVE AC,M

loads 200 into AC left and 1400 into AC right. If the ~ame word, or its nega­
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,

-35-

§2.2 FULL WORD DATA TRANSMISSION

and the program can keep a control count in the left half. There are also
two subroutine-calling instructions that utilize a pl,1shdown list of jump ad­
dresses [§ 2.9] .

PUSH Push Down

261 y
o 89 121314 1718 35

Add one to each half of AC, then move the contents of location E to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero, set the Pushdown Overflow flag in the KAIO, set the
Trap 2 flag in the KI I O. The contents of E are unaffected, the original
contents of the location added to the list are lost.

Note: The KA 10 increments the two halves of AC by adding 1000001 8
to the entire register. In the KII 0 the two halves are handled independently.

POP Pop Up

262 y
o 89 121314 1718 35

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach -I, set the Pushdown Overflow flag in the KA I 0, set the Trap 2
flag in the KI I O. The original con ten ts of E are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

Note: The KA 10 decrements the two halves of AC by subtracting
I 0000018 from the entire register. In the KII 0 the two halves are handled
independently.

In the KA I 0, incrementing and decrementing both halves of AC together
is effected by adding and su btracting I 000001 8, Hence a count of -2 in AC
left is increased to zero if 218 -I is incremented in AC right, and conversely,
I in AC left is decreased to -I if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re­
moved at any given time is the last item in the list. This is usually referred
to as "first in, last out" or "last in, first out". Suppose locations a, b, C, ...

are set aside for a pushdown list. We can deposit data in a, b, C, d, then read

SYSTEM REFERENCE

2-13

In the KI lOa PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KII 0 a POP executed
as an interrupt instruction
cannot set Trap 2.

SYSTEM REFERENCE

2-14

-36-

CENTRAL PROCESSOR §2.2

d, then write in d and e, then read e, d, C, etc.
Note that by trapping or checking ove'rflow and keeping a control count in

AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini­
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most N items, the following suffices.

MOVSI
HRRI

P,-N
P,BLIST-l

Of course the programmer must define BLIST elsewhere and set aside loca­
tions BLIST to BLIST + N - 1. Using MACRO to full advantage one could
instead give

MOVE P,[IOWD N,BLIST]

where the pseudoinstruction

IOWD J,K

is replaced by a word containing -J in the left half and K - 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-IO the pushdown list is kept in a random access core mem­
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions -
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list - the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC, -1 (P)

and so forth. Similarly

PUSH P,-3(P)

-37-

§2.3 BYTE MANIPULATION

adds the third to last item to the end of the list;

POP P,-2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

2.3 BYTE MANIPULA nON

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

P s y
o S6 11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if Pis 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: I, X and Yare used to cal­
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

P BITS

o 35-P-S+l 3S-P 3S-P+l 35

where the shaded area is the byte.
To facilitate processing a series of bytes, several of the byte instructions

increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P - S, unless
there is insufficient space in the present location for another byte of the
specified size (P - S < 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 - S to point to the first byte at
the left in the new location.

CAUTION (KAlO ONLY)

Do not allow Y to reach maximum value. The whole pointer is incre-

SYSTEM REFERENCE

2-15

Note that E is calculated
before the contents of Pare
changed.

In a KAIO without byte ma­
nipulation hardware, all of the
instructions presented in this
section are trapped as un­
assigned codes [§ 2.1 0] .

SYSTEM REFERENCE

2-16

In the KJIO, incrementing
maximum Y produces a zero
address without affecting X.

-38-

CENTRAL PROCESSOR §2.3

mented, SO if Y is 218 - 1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri­
ority interrupt should occur before the calculation is complete, the in­
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LDB Load Byte

~ __ 1_3_5 __ ~ __ A __ I~I~1 _X __ ~ ________ Y _______ ~
o 89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

DPB Deposit Byte

137 Y
o 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

IBP Increment Byte Pointer

133 Y
o 89 121314 1718 3S

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte

134
o 89 121314 1718 3S

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre­
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

-39-

§2.4 LOGIC

IOPB Increment Pointer and Deposit Byte

136 y

o 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done byinitializirig the pointer with a
P of 36 (448), Incrementing then replaces the 36 with 36 - S ~o point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]).

Special Considerations. If S is greater than P and also greater than 36;
incrementing produces a new P equal to 100 - S rather than 36 - S. For
S> 36 the byte is at most the entire word; for P ~ 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P + S > 36,
a byte of size 36 - P is loaded from position P, or the right 36 - P bits of the
byte are deposited in position P.

2.4 LOGIC

For logical operations the PDP-l a has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane­
ously. Thus in the AND function of two words, each bit of the result is the
AND of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has fourmodes that determine the Source of the
non-AC operand, if any,. and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all I s) the
modes differ only in the destination of the result, so basic and- immediate

SYSTEM REFERENCE

2-17

SYSTEM REFERENCE

2-18

SETZ and SETZI are equiva­
lent (both merely clear AC).
MACRO also recognizes
CLEAR, CLEARI, CLEARM
and CLEARS as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva­
lent.

-40-

CENTRAL PROCESSOR §2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu­
lator addressed by A, even when there is no AC operand.

Source of non-
Mode Suffix ACoperand

Basic E

Immediate I The word O,E

Memory M E

Both B E

SETZ Set to Zeros

400 y

o 67 89 121314 1718

Change the contents of the destination specified by M to all Os.

SETZ
snzi
SETZM
SETZB

Set to Zeros
Set to Zeros Immediate
Set to Zeros Memory
Set to Zeros Both

SETO Set to 0 nes

474
o 67 89 12 13 14

y
1718

Change the contents of the destination specified by M to all Is.

SETO
SETal
SETOM
SETOB

Set to Ones
Set to Ones Immediate
Set to Ones Memory
Set to Ones Both

SET A Setto AC

424
o 67 89 121314

y
1718

Make the contents of the destination specified by M equal to AC.

Destination
of result

AC
AC
E

AC andE

35

400
401
402
403

35

474
475
476
477

35

-41-

§2.4 LOGIC

SETA Set to AC 424
SETAl Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427

SETCA Set to Complement of AC

450 y

o 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement
of AC.

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453

SETM Set to Memory

414 y
o 67 89 121314 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417

SETCM Set to Complement of Memory

460 y
o 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand.

SYSTEM REFERENCE

2-19

SET A and SET AI are no-ops.
SET AM and SET AB are both
equivalent to MOVEM (all
move AC to location E).

SETCA and SETCAI are
equivalent (both complement
AC).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0, E to AC
and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

SYSTEM REFERENCE

2-20

SETCMI moves the com ple-
ment of the word O,E to AC.
SETCMM complements loca-
tionE.

-42-

CENTRAL PROCESSOR §2.4

SETCM Set to Complement of Memory 460
SETCMI Set to Complement of Memory Immediate 461
SETCMM Set to Complement of Memory Memory 462
SETCMB Set to Complement of Memory Both 463

AND And with AC

404 y
o 67 89 12 13 14 1718 35

Change the contents of the destination specified by M to the AND function
of the specified operand and AC.

AND
ANDI
ANDM
ANDB

ANDCA

410
o

And

And Immediate

And to Memory
And to Both

And with Complement of AC

67 89 1213 14 1718

y

404
405
406
407

35

Change the contents of the destination specified by M to the AND function
of the specified operand and the complement of AC.

ANDCA
ANDCAI
ANDCAM
ANDCAB

ANDCM

420
o

And with Complement of AC
And with Complement of AC Immediate
And with Complement of AC to Memory
And with Complement of AC to Both

And Complement of Memory with AC

67 89 12 13 14 1718

y

410
411
412
413

35

Change the contents of the destination specified by M to the AND function
of the complement of the specified operand and AC.

ANDCM
ANDCMI

And Complement of Memory

And Complement of Memory Immediate

420
421

§2.4

ANDCMM
ANDCMB

ANDCB

440
o

-43-

LOGIC

And Complement of Memory to Memory

And Complement of Memory to Both

And Complements of Both

67 89 121314 1718

y

422
423

35

Change the contents of the destination specified by M to the AND function of
the complements of both the specified operand and AC. The result is the
NOR function of the operands.

ANDCB
ANDCBI
ANDCBM
ANDCBB

And Complements of Both
And Complements of Both Immediate
And Complements of Both to Memory

And Complements of Both to Both

lOR Inclusive Or with AC

434
o 67 89 121314 1718

y

440
441
442
443

35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and AC.

lOR Inclusive Or 434
IORI Inclusive Or Immediate 435
IORM Inclusive Or to Memory 436
IORB Inclusive Or to Both 437

ORCA Inclusive Or with Complement of AC

454 y

o 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and the complement of AC.

ORCA
ORCAI
ORCAM
ORCAB

Or with Complement of AC

Or with Complement of AC Immediate
Or with Complement of AC to Memory

Or with Complement of AC to Both

454
455
456
457

SYSTEM REFERENCE

2-21

MACRO also recognizes OR,
OR!, ORM and ORB as equiv-
alent to the inclusive OR mne-
monies.

SYSTEM REFERENCE

2-22

-44-

CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC

464 y
o 67 89 121314 1718 3S

Change the contents of the destination specified by M to the inclusive OR

function of the complement of the specified operand and AC.

ORCM
ORCMI
ORCMM
ORCMB

Or Complement of Memory

Or Complement of Memory Immediate
Or Complement of Memory to Memory

Or Complement of Memory to Both

ORCB Inclusive Or Complements of Both

470
o 67 89 121314 1718

y

464
465
466
467

3S

Change the contents of the destination specified by M to the inclusive OR

function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB
ORCBI
ORCBM
ORCBB

Or Complements of Both
Or Complements of Both Immediate
Or Complements of Both to Memory
Or Complements of Both to Both

XOR Exclusive Or with AC

430
o 67 89 121314 1718

y

470
471
472

473

3S

Change the contents of the destination specified by M to the exclusive OR

function of the specified operand and AC.

XOR
XORI
XORM
XORB

Exclusive Or
Exclusive Or Immediate
Exclusive Or to Memory

Exclusive Or to Both

430
431
432
433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive OR of the remaining operand and the result.

-45-

§2.4 LOGIC

EQVEquivalenca with AC

444 y
o 67 89 1213 14 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive OR function of the specified operand and AC (the result has Is
wherever the corresponding bits of the operands are the same).

EQV Equivalence 444
EQVI Equivalence Immediate 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
. sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3 -6 of the instruction word.

AC 0 1 0

Mode Specified Operand 0 0

SETZ 0 0 0 0

AND 0 0 0

ANDCA 0 0 0

SETM 0 0 1 1

ANDCM 0 0 0

SETA 0 0

XOR 0 0

lOR 0 1 1

ANDCB 0 0 0

EQV 0 0

SETCA -0 0

ORCA 0

SETCM 0 0

ORCM 0 1

ORCB 0

SETa

SYSTEM REFERENCE

2-23

SYSTEM REFERENCE -46-

2-24

LSH

LSHC

ROT

ROTC

ASH

ASHC

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A + I (mod 208), concat­
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

~ A r----G
o~-----------------3-5

~~ _____ A __ ~~~~ _____ A+_1 _____ r----G
o 35 0 35

~O~--_A----~3~~O----A_+_1--~35~

~~ _____ A ______ ~r----G
o 35

o o

A A + 1

35

ACCU MULATOR BIT FLOW IN SHIFT AND ROTATE I NSTR UCTIONS

-47-

§2.4 LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see § 2.5.] In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right.
In the KA I 0, maximum movement is 255 places. The KI I 0 eliminates re­
dundant movement of the operand by shifting E mod 72 places, for a
maximum of 71.

LSH Logical Shift

242 y
o 89 121314 1718 3S

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined

246 y
o 89 121314 1718 3S

Concatenate accumulators A and A + I with A on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A + I); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If E is negative, shift right bringing Os
in!o bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate

241 y
o 89 121314 1718 3S

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit o.

SYSTEM REFERENCE

2-25

SYSTEM REFERENCE

2-26

Overflow is determined di­
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

In the KIlO an arithmetic
instruction execu ted as an
interrupt instruction can set
no flags.

-48-

CENTRAL PROCESSOR §2.5

ROTC Rotate Combined

245 y
o 89 121314 1718 35

Concatenate accumulators A and A + 1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit 0 is rotated into bit 71 (bit 35 of AC A + 1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit O.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-l 0 has instructions for arithmetic shift­
ing (which is essentially multiplication by a power of 2) as well as for per­
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§ 1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators A and A + 1 (mod 208), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper­
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry 0 and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic opetations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§ 2.2], and the
arithmetic test instructions that increment or decrement the test word
[§ 2.7]. In these instructions an incorrect result is indicated - and the Over­
flow flag set - if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica­
tion, too large a number to convert to fixed point [§2.6], and loss of signi­
ficant bits in left arithmetic shifting. In the KI I 0 any condition that sets
Overflow also sets the Trap 1 flag.

These flags can be read and controlled by certain program control instruc­
tions [§ §2.9, 2.10]. In the KAIO, Overflow is available as a processor

-49-

§2.S FIXED POINT ARITHMETIC

condition (via an in-out instruction) that can request a priority interrupt if
enabled, whereas KI I 0 overflow is handled by trapping through the setting
of Trap I [both subjects are discussed in § 2.14]. The conditions detected
can only set the arithmetic flags and the hardware does not clear them,
so the program must clear them before an instruction if they are to give
meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Mode

Basic
Immediate
Memory

Both

ADD

270
o

Add

67 89

Suffix

M

B

12 13 14

Source of non- Destination
ACoperand of result

E AC

The word O,E AC
E E

E AC andE

y
1718 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is ~ 235 set Overflow and Carry I; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235.

If the sum is < -235 set Overflow and Carry 0; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 235. Set both
carry flags if both summands are negative, or their signs differ and their mag­
nitudes are equal or the positive one is the greater in magnitude.

ADD
ADDI
ADDM
ADDB

Add
Add Immediate
Add to Memory

Add to Both

SUB Subtract

274
o 67 89 121314

y

1718

270
271

272

273

35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is ~ 235 set Overflow and Carry I;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235. If the difference is < -235 set Overflow and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to

SYSTEM REFERENCE

2-27

Besides indicating error types,
the carry flags facilitate per­
forming multiple precision
arithmetic.

SYSTEM REFERENCE

2-28

-50-

CENTRAL PROCESSOR §2.5

the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

SUB

SUBI

SUBM

SUBB

Subtract

Subtract Immediate
Subtract to Memory

Subtract to Both

MUl Multiply

224
o 67 89 12 13 14

y

1718

274

275
276

277

35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator A + 1. If both oper­
ands are -235 set Overflow; the double length result stored is _270.

MUL
MUll
MULM
MULB

Multiply
Multiply Immediate
Multiply to Memory
Multiply to Both

IMUl Integer Multiply

220
o 67 89 121314

y

1718

224
225

226

227

35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is;;' 235 or < -235 (ie if the high order word of the
double length product is not null); the high order word is lost.

IMUL
IMULI
IMULM

IMULB

Integer Multiply
Integer Multiply Immediate
Inieger Multiply to Memory
Integer Multiply to Both

DlV Divide

234
o 67 89 121314 1718

y

220
221
222
223

35

If the magnitude of the number in AC is greater than or equal to that of the

-51-

§2.5 FIXED POINT ARITHMETIC

operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula­
tors A and A + 1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator A + 1.

DIV
DIVI
DIVM

DIVB

Divide

Divide Immediate
Divide to Memory

Divide to Both

IDIV Integer Divide

230
o 67 89 121314

y

17 18

234
235
236
237

3S

If the operand specified by M is zero, set Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide AC by the specified operand,
calculating a quotient of 35 magnitude bits including leading zeros. Place
the unrounded quotient in the specified destination. If M specifies AC as the
destination, place the remainder, with the same sign as the dividend, in
accumulator A + 1.

IDIV Integer Divide 230

IDIVI Integer Divide Immediate 231
IDIVM Integer Divide to Memory 232
IDIVB Integer Divide to Both 233

EXAMPLE. The i;lteger multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register.

As an example suppose we wish to determine the parity of the 8-bit char­
acter abcdefgh, where the letters represent the bits of the character. Assum­
ing the character is right-justified in AC, we first duplicate it twice to the left
producing

abc def gha bed efg hab cde fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

SYSTEM REFERENCE

2-29

SYSTEM REFERENCE

2-30

-52-

CENTRAL PROCESSOR §2.S

retains only the least significant bit in each 3-bit set, so we can represent the
result by

cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
111111118 generates the following partial products:

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the par­
ity of the character, 0 if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence (with the character
right-justified in AC):

ONES:

IMULI
AND
IMUL

11111111

AC,200401
AC,ONES
AC,ONES

where the parity is indicated by AC bit 14. Of course, following the IMUL
would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num­
ber in AC or the double length number in accumulators A and A + 1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis­
cussed here is similar to logical shifting [see § 2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted -
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single

-53-

§2.5 FIXED POINT ARITHMETIC

shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. In the KA 10,
maximum movement is 255 places. The KII 0 eliminates redundant move­
ment of the operand by shifting E mod 72 places, for a maximum of 71.

ASH Arithmetic Shift

240 A III X y
o 89 121314 1718 3S

Shift AC arithmetically the number of places specified by E. Do not shift
bit O. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num­
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, 1 s if negative; data shifted out of bit 35 is lost.

ASHC Arithmetic Shift Combined

244 y

o 89 121314 1718 3S

Concatenate the magnitude portions of accumulators A and A + 1 with A on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num­
ber of places specified by E. Do not shift AC bit 0, but make bit 0 of AC
A + 1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi­
tive, shift left bringing Os into bit 71 (bit 35 of AC A + 1); bit 37 (bit 1 of AC
A + 1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a 0 in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1 s if nega­
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-I0 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)

SYSTEM REFERENCE

2-31

An arithmetic right shift trun­
cates a negative result differ­
ently from IDIV if Is are
shifted out. The result of the
shift is more negative by one
than the quotient of IDlY.

To obtain the same quo­
tient that IDIV would give
with a dividend in A divided
by N= 2K , use

SKIPGE
ADDI
ASH

A
A,N-I
A,-K

This takes 5-6 J.1s as opposed
to about 16 J.1s for IDIVI.

In a KAlO without floating
poin t hardware, all of the in­
structions presented in this
section are trapped as un­
assigned codes [§2.l0].

SYSTEM REFERENCE

2-32

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con­
taining only one bit of signi­
ficance.

-54-

CENTRAL PROCESSOR §2.6

and negating double length numbers (software format) as well as performing
addition, subtraction, multiplication and division of numbers in single pre­
cision floating point format. Moveover the KI I 0 has instructions for per­
forming the four standard arithmetic operations on floating point numbers
in hardware double precision format, for moving double precision numbers
(with the option of taking the negative) between a pair of accumulators and
a pair of memory locations, and for converting single precision numbers
from fixed format to floating and vice versa. Except for the conversion in­
structions and the simple moves, all instructions treated here interpret all
operands as floating point numbers in the formats given in § 1.1, and gener­
ate results in those formats. The reader is strongly advised to reread § 1.1 if
he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the pro­
gram can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length operands.
Instructions without rounding have a "long" mode, which supplies a two­
word result for greater precision; the other modes save time in one-word
operations where rounding is of no significance.

Actually the result is formed in a double length register in addition, sub­
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re­
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result ("result" shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi­
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no
normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

Among the floating point instructions available only in the KI I 0, those
that convert between number types operate only on single words. The in­
struction that converts to floating point assumes the operand is an integer
and alway~ normalizes and rounds the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the pro­
gram. The instructions for the four standard operations using double pre­
cision have no modes. In division the processor always calculates a two-word
quotient that is normalized if the original operands are normalized, but
rounding is not available. In addition, subtraction and multiplication, the
result is formed in a triple length register, wherein bits of significance in the
lowest order part supply information for limited normalization and then
for rounding, which is automatic.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or

-55-

§2.6 FLOATING POINT ARITHMETIC

too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Except where the result would be
in fixed point form, any of these circumstances sets Overflow and Floating
Overflow. If only these two are set, the exponent of the answer is too large;
if Floating Underflow is also set, the exponent is too small. No Divide being
set means the processor failed to perform a division, an event that can be
produced only by a zero divisor if all nonzero operands are normalized. Any
condition that sets Overflow in the KI I a also sets the Trap I flag. These flags
can be read and controlled by certain program control instructions [§ § 2.9,
2.1 OJ. In the KA I 0, Overflow and Floating Overflow are available as proces­
sor conditions (via an in-out instruction) that can request a priority interrupt
if enabled, whereas KI I a overflow is handled by trapping through the setting
of Trap I [both of these subjects are discussed in § 2.14J. The conditions
detected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before a floating point instruction if
they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding Yz X 22 and a X 269 gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a I in bit a and as in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
"fraction" with value -I. This unnormalized number can produce an incor­
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag­
nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative E decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range -256 to
+255.

SYSTEM REFERENCE

2-33

In the KIlO an arithmetic
instruction executed as an in­
terrupt instruction can set no
flags.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom­
panying exponent adjustment
thus multiply the number
both by 2 and by ~ simulta­
neously, leaving its value un­
changed.

Note that with normalized
operands, the processor uses
at most two bits of informa­
tion from the lowest order
part to normalize the result.
In multiplication this is
obvious, since squaring the
minimum fractional magni­
tude ~ gives a result of lI.!. In
an addition or subtraction of
numbers that differ greatly in
order of magnitude, the result
is determined almost com­
pletely by the operand of
greater order. A subtraction
involving two like-signed num­
bers with equal exponents re­
quires no shifting beforehand
so there is no information in
the lowest order part. Hence
an addition or subtraction
never requires shifting both
before the operation and in
the normalization; when there
is no prior shifting, the nor­
malization brings in Os.

SYSTEM REFERENCE

2-34

This instruction can be used
to float a fIxed number with
27 or fewer signifIcant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(233 8 = 155 10 = 128 + 27).

In the KAIO these instruc­
tions are trapped as unassigned
codes.

This overflow test checks for
a value ;;;. 235 assuming the
operand is normalized.

This is the standard Fortran
trunca tion ("fixation"). For
it, the processor drops the

-56-

CENTRAL PROCESSOR §2.6

FSC Floating Scale

132 y
o 89 121314· 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale. factor
given by E to the exponent part of AC (thus multiplying AC by 2E), normal­
ize the resulting word bringing as into bit positions vacated at the right, and
place the result back in AC.

NOTE

A negative E is represented in standard twos com­
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct on~.
If < -128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Number Conversion

Although FSC can be used to float a fixed point number, the KII a has three
single precision instructions specifically for converting between integers and
floating point numbers. In all cases the operand is taken from location E,
and the converted result is placed in AC.

FIX Fix

122 y
o 89 121314 1718 35

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing as
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (as for positive, 1 s for negative) into bit 1, and then
truncate to an integer. Place the result in AC.

Truncation produces the integer of largest magnitude less than or equal to
the magnitude of the original number. Eg a number> + I but < +2 becomes
+1; a number < -1 but> -2 becomes -1.

-57- SYSTEM REFERENCE

§2.6 FLOATING POINT ARITHMETIC

FIXR Fix and Round

126 y
o 89 121314 1718 35

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing as
into bit 35 and dropping null bits out of bit I. For negative N, shift right
bringing null bits (as for positive, 1 s for negative) into bit 1, and then round
the integral part. Place the result in AC.

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is ~ Y2 in a positive number but
> Y2 in a negative number. Eg + 1.4 (decimal) is rounded to + 1, whereas
+ 1.5 and + 1.6 become +2; but with negative numbers, -1.4 and -1.5
become -1, whereas -1.6 becomes -2.

Fl TR Float and Round

127 y
o 89 121314 1718 35

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in proper form) into bits 1-8 to move
the shifted binary point to the left of bit 9 (35 = 27 + 8), and normalize the
fraction bringing first the bits originally shifted out and then as into bit
positions vacated at the right. If fewer than eight bits (left shifts) are needed
to normalize, use the next bit to round the single length fraction. Place
the result in AC.

The rounding function is the same as that used by the standard floating
point arithmetic instructions [see below 1 .

Since the largest fixed point magnitude (without considering sign) is
235 - I, a floating point number with exponent greater than 35 (and
assumed normalized) cannot be converted to fixed point. There is no limit
in the opposite direction, but precision can be lost as floating point format
provides fewer significant bits. A fixed integer greater than 227 - 1 cannot
be represented exactly in floating point unless all its significant bits are
clustered within a group of twenty-seven.

2-35

fractional part in a positive
number, but adds one to the
integral part (as required by
twos complement format) if
any bits of significance are
shifted out in a negative
number.

This overflow test checks for
a value ;;. 235 assujTIing the
operand is normalized.

This is the Algol standard for
real to integer conversion. For
it the processor adds one to
the in tegral part if the frac­
tional part is ;;. \6 in a posi­
tive number or (as required
by twos complement format)
is .;;;;)6 in a negative number.

SYSTEM REFERENCE

2-36

In the hardware the rounding
operation is actually some­
what more complex than
stated here. If the result is
negative, the hardware com­
bines rounding with placing
the high order word in twos
complement form by decreas­
ing its magnitude if the low
order part is < ~LSB. More­
over an extra single-step re­
normalization occurs if the
rounded word is no longer
normalized.

-58-

CENTRAL PROCESSOR §2.6

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix ACoperand of result

Basic E AC

Immediate I The wordE,O AC

Memory M E E

Both B E AC andE

Note however that floating point immediate uses E,O as an operand, not
0, E. In other words the half word E is interpreted as a sign, an 8-bit expo­
nent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normaliza­
tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating OverflO'. ,; the result stored has an expo­
nent 256 less than the correct one. If < -128, set Overflow, Floating Over­
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR Floating Add and Round

144 y

o 67 89 121314 1718 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR
FADRI
FADRM
FADRB

Floating Add and Round
Floating Add and Round Immediate
Floating Add and Round to Memory
Floating Add and Round to Both

144
145
146
147

-59-

§2.6 FLOATING POINT ARITHMETIC

FSBR Floating Subtract and Round

154 y
o 67 89 12 13 14 1718 3S

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under,
flow as described above, and place the result in the specified destination.

FSBR
FSBRI
FSBRM
FSBRB

Floating Subtract and Round
Floating Subtract and Round Immediate
Floating Subtract and Round to Memory
Floating Subtract and Round to Both

FMPR Floating Multiply and Round

164
o 67 89 121314 1718

y

154
155
156
157

3S

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for,exponent overflow or underflow
as described above, and place the result in the specified destination.

FMPR
FMPRI
FMPRM
FMPRB

Floating Multiply and Round
Floating Multiply and Round Immediate
Floating Multiply and Round to Memory
Floating Multiply and Round to Both

FDVR Floating Divide and Round

174
o 67 89 121314 1718

y

164
165
166
167

3S

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Overflow, Floating Over­
flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec­
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise round the fraction using the extra bit calculated. If the original

SYSTEM REFERENCE

2-37

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

SYSTEM REFERENCE

2-38

Usually the double length
number is in two adjacent
accumulators, and E equals
A+1.

Note that this instruction
can be used to negate num­
bers in software double pre­
cision format only, for the
KIl 0 hardware double pre­
cision format, the program
must use the double moves.

-60-

CENTRAL PROCESSOR §2.6

operands were normalized, the single length quotient will already be
normalized; if it is not, normalize it bringing Os into bit positions vacated
at the right. Test for exponent overflow or underflow as described above,
and place the result in the specified destination.

FDVR
FDVRI
FDVRM

FDVRB

Floating Divide and Round

Floating Divide and Round Immediate

Floating Divide and Round to Memory

Floating Divide and Round to Both

Single Precision without Rounding

174
175
176
177

Instructions that do not round are faster for processing floating point
numbers with fractions containing fewer than 27 significant bits. On
the other hand the long mode provides double precision (software format)
or allows the programmer to use his own method of rounding. Besides
the four usual arithmetic operations with normalization,. there are two
nonnormalizing instructions that facilitate software double precision arith­
metic [§ 2.11 gives examples of double precision [loating point routines J.
These two instructions have no modes.

DFN Double Floating Negate

y
o 89 121314.1718 35

Negate the double length floating point number composed of the contents of
AC and location E with AC on the left. Do this by taking the twos comple­
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location E without altering the original contents
of bits 0-8 of that location.

UFA Unnormalized Floating Add

130 y
o 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear accumulator A + 1. Otherwise normalize the sum
only if the magnitude of its fractional part is;;;' 1, and place the high order
part of the result in AC A + 1. The original contents of AC and E are
unaffected.

§2.6

-61-

FLOATING POINT ARITHMETIC

NOTE

The result is placed in accumulator A +1. This is
the only arithmetic. instruction that stores the
result in a second accumulator, leaving the original
operands intact.

If the exponent of the sum following the one-step normalization is > 127,
set Overflow and Floating Overflow; the result stored has an exponent 256
less than the correct one.

The remaining single precision floating point instructions perform the four
standard arithmetic operations with normalization but without rounding.
All use AC and the contents of location E as operands and have four modes.

Mode

Basic
Long

Memory
Both

Suffix

L

M

B

Effect

High order word of result stored in AC.
In addition, subtraction and multiplica­
tion, the two-word result (in the double
length format described in § 1.1) is
stored in accumulators A and A + 1. In
division the dividend is the double length
word in A and A + 1; the single length
quotient is stored in AC, the remainder
in ACA+l.
High order word of result stored in E.
High order word of result stored in AC
and E.

In each of these instructions, the exponent that results from normaliza­
tion is tested for overflow or underflow. If the exponent is > 127, set Over­
flow and Floating Overflow; the result stored has an exponent 256 less'than
the correct one. If < -128, set Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one.

FAD Floating Add

140 y

o 67 89 12 13 14 1718 3S

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M, clearing both accu­
mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or

SYSTEM REFERENCE

2-39

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

SYSTEM REFERENCE

2-40

-62-

CENTRAL PROCESSOR §2.6

underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is > 154 (127 + 27) or < -10 I
(-128 + 27) or the low order half of the fraction is zero, clear AC A + 1.
Otherwise place a low order word fora double length result in A + 1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the sum in bits 1-8, and the low order part of the fraction in bits 9-35.

FAD
FADL
FADM
FADB

Floating Add
Floating Add Long .
Floating Add to Memory
Floating Add to Both

FSB Floating Subtract

ISO
o 67 89 12 13 14 1718

y

140
141
142
143

3S

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M, clear­
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo­
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

In long mode if the exponent of the difference is> 154 (127 + 27) or
< -101 (-128 + 27) or the low order half of the fraction is zero, clear AC
A + I. Otherwise place a low order word for a double length result in A + 1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits 1-8, and the low order part of the fraction in bits
9-35.

FSB
FSBL
FSBM
FSBB

Floating Subtract
Floating Subtract Long
Floating Subtract to Memory
Floating Subtract to Both

FMP Floating Multiply

o 67 89 121314 1718

y

150
151
152
153

3S

Floating multiply AC by the cQntents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length

-63-

§2.6 FLOATING POINT ARITHMETIC

product bringing Os into bit positions vacated at the right, test for e!!{ponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination.

In long mode if the exponent of the product is > 154 (127 + 27) or
< -101 (-128 + 27) or the low order half of the fraction is zero, clear AO
A + 1. Otherwise place a low order word for a double length result in A + 1
by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction
in bits 9-35.

FMP
FMPL
FMPM
FMPB

Floating Multiply
Floating Multiply Long
Floating Multiply to Memory
Floating Multiply to Both

FDV Floating Divide

170
o 67 89 12 13 14 1718

y

160
161
162
163

35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in location E, set Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original AC
or memory operand in any way.

If division can be performed, floating divide the AC operand by the
contents of location E. In long mode the AC operand (the dividend) is the
double length number in accumulators A and A + 1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction
is zero, clear the destination specified by M, clearing both accumulators in
long mode if the double length dividend was zero. A quotient with a non­
zero fraction will already be normalized it the original operands were nor­
malized; if it is not, normalize it bringing Os into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.
If the remainder exponent is > 127 or < -128 or the fraction is zero, clear
AC A + 1. Otherwise place the floating point remainder (exponent and frac­
tion) with the sign of the dividend in AC A + 1.

FDV Floating Divide 170
FDVL Floating Divide Long 171

FDVM Floating Divide to Memory 172
FDVB Floating Divide to Both 173

SYSTEM REFERENCE

2-41

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

In long mode a nonzero un­
normalized dividend whose
entire high order fraction is
zero produces a zero quo­
tient. In this case the second
AC receives rubbish:

SYSTEM· REFERENCE

2-42

In the KAl 0 these instructions
are trapped as unassigned
codes.

An arithmetic instruction exe­
cuted as an interrupt instruc­
tion can set no flags.

-64-

CENTRAL PROCESSOR §2.6

Double Precision Operations

Although double precision floating point arithmetic can be done by routines
using the single precision instructions and the software double length format,
the KI I 0 has instructions specifically for handling double length operands
in the hardware double precision format described in § 1.1. Four of the
instructions use two double length operands, perform the standard arith­
metic operations, and store double length results. The other four instructions
each move one double length operand between the accumulators and
memory, either unchanged or negated.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A + I (mod 208) just as they do for the double length operands used in some
shift, rotate and single precision arithmetic instructions. The memory
locations have addresses E and E+ I (mod 218), where the second address
is 0 if E is 777777.

For the two instructions that simply move a pair of words without
altering them, the format of those words is actually irrelevant. The other
six instructions process each word pair as a double length number in the
hardware floating point format. Hence they ignore bit 0 in the low order
word of every operand and clear that bit in the result.

The four non move instructions perform the standard arithmetic opera­
tions. All use two double length operands in the hardware double precision
format, one from the accumulators and one from memory. Addition
and subtraction always normalize the result; in multiplication and division
the result is guaranteed to be normalized only if the original operands
are normalized. In all cases the result, rounded except in division, is
placed in the accumulators. The rounding function is the same as that
used in single precision: if the part of the answer being dropped (the
low order part of the. fraction) is greater than or equal in magnitude to
one half th~ LSB of the double length part being retained, the magnitude
of the latter part is increased by one LSB (with appropriate adjustment for
a twos complement negative).

In each of these instructions, the exponent that results from normaliza­
tion and rounding (if done) is tested for overflow or underflow. If the
exponent is > 127, set Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < -128, set Overflow,
Floating Overflow and Floating Underflow; the result stored has an
exponent 256 greater than the correct one. Setting Overflow also sets
the Trap 1 flag.

DFAD Double Floating Add

I I 0 y

o 89 121314 1718 35

Floating add the operand of locations E and E+ I to the operand of
accumulators A and A + 1. If the high order 70 bits of the fraction in the

-65-

§2.6 FLOA TING POINT ARITHMETIC

sum are zero, clear A and A + I. Otherwise normalize the triple length sum
bringing Os in at the right, round the high order double length part, test for
exponent overflow or underflow as described above, and place the result
in ACs A and A + I.

DFSB Double Floating Subtract

I I I y
o 89 121314 1718 .35

Floating subtract the operand of locations E and E+ I from the operand of
accumulators A and A + I. If the high order 70 bits of the fraction in the
difference are zero, clear A and A + I. Otherwise normalize the triple
length difference bringing Os into bit positions vacated at the right, round
the high order double length part, test for exponent overflow or underflow
as described above, and place the result in ACs A and A + I.

DFMP Double Floating Multiply

I I 2 y

o 89 121314 1718 35

Floating multiply the operand of accumulators A and A + I by the operand
of locations E and E+ I. If the high order 70 bits of the fraction in
the product are zero, clear A and A + I. Otherwise, if there are any
bits of significance among the high order 35, do at most one normalization
shift if required; if the high order 35 bits are zero, shift the fraction
left 35 places (adjusting the exponent), and then do at most one normaliza­
tion shift if required. Round the high order double length part, test for
exponent overflow and underflow as described above, and place the result
in ACs A and A + I.

DFDV Double Floating Divide

I I 3 y

o 89 121314 1718 35

If the magnitude of the fraction in the operand of accumulators A and A + I
is greater than or equal to twice that of the fraction in the operand of
locations E and E + I, set Overflow, Floating Overflow, No Divide and
Trap I, and go immediately to the next instruction without affecting the
original AC or memory operands in any way.

If the division can be performed, floating divide the AC operand by the
memory operand, calculating a quotient fraction of 62 bits. If the fraction

SYSTEM REFERENCE

2-43

The 35-bit shift can be done
only if the original operands
are un normalized.

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

SYSTEM REFERENCE

2-44

A nonzero quotient is normal­
ized if the original operands
are normalized.

Do not use the instruction
DMOVEM AC,AC+1. At pre­
sent the processor places AC
in both AC+l and AC+2, but
this result is not guaranteed.

Note that these two instruc­
tions can be used to negate
numbers in hardware double
precision format only; for
software double precision, the
program must use DFN.

Note also that there is no
overflow test, as negating a
correctly formatted floating
point number cannot cause
overflow.

po not use the instruction
DMOVNM AC,AC+ 1. At pre-

-66-

CENTRAL PROCESSOR §2.6

is zero, clear A and A + 1. Otherwise test for exponent overflow or under­
flow as described above, and place the double length quotient part of the
result in ACs A and A + 1 (the remainder is lost).

DMOVE Double Move

120 y
o 89 121314 1718 3S

Move the contents of locations E and E + 1 respectively to accumulators A
and A + I. The memory locations are unaffected, the original contents
of the ACs are lost.

DMOVEM Double Move to Memory

124 y
o 89 121314 1718 3S

Move the contents of accumulators A and A + 1 respectively to locations E
and E+ 1. The ACs are unaffected, the original contents of the memory
locations are lost.

DMOVN Double Move Negative

121 y
o 89 121314 1718 35

Negate the double length floating point number taken from locations E and
E+ 1, and move it to accumulators A and A + I. The memory locations are
unaffected, the original contents of the ACs are lost.

DMOVNM Double Move Negative to Memory

125 A III X y

o 89 12 1314 17 18 35

Negate the double length floating point number taken from accumulators
A and A + 1, and move it to locations E and E+ 1. The ACs are unaffected,
the original contents of the memory locations are lost.

-67-

§2.7 ARITHMETIC TESTING

Although the configuration of the operands is irrelevant in DMOVE and
DMOVEM, none of the above instructions is available in the KAIO.
Therefore unless a program is actually doing floating point arithmetic in the
hardware double precision format, it is recommended that the double
moves not be used in KIlO programs so they will be compatible with
the KA 10. Simply to move a two-word operand unaltered requires two
one-word moves. To negate a two-word operand that is actually in the
hardware format requires a somewhat longer substitution; eg this sequence
is equivalent to DMOVN AC,E.

SETCM
MOVN
TDNN
ADD!

AC,E ;Take ones complement of high word
AC+ 1 ,E+ 1 ;Take twos complement of low word
AC+l,[377777777777] ;If low part of fraction is
AC,l ;zero, change high word to twos com-

;plement

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive

252 y

o 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is greater than or equal to zero (ie if bit 0 is 0, and hence a negative count
in the left half has reached zero or a positive count has not yet reached
217), take the next instruction from location E and continue sequential
operation from there.

Note: The KAIO increments the two halves of AC by adding 1000001 8

to the entire register. In the KII 0 the two halves are handled independently.

AOBJN Add One to Both Halves of AC and Jump if Negative

253 y
o 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is less than zero (ie if bit 0 is I, and hence a negative count in the left half
has not yet reached zero or a positive count has reached 217), take the next
instruction from location E and continue sequential operation from there.

SYSTEM REFERENCE

2-45

sent the processor places the
negative of AC (the comple­
ment, if AC+ 1 originally con­
tains zero) into AC+ 1, and
the negative of that into
AC+2, but this result is not
guaranteed.

SYSTEM REFERENCE

2-46

In the KIlO an arithmetic
instruction execu ted as an
interrupt instruction can set
no flags.

-68-

CENTRAL PROCESSOR §2.7

Note: The KA 10 increments the two halves of AC by adding 1 0000018
to the entire register. In the KII 0 the two halves are handled independently.

In the KAIO, incrementing both halves of AC together is effected by
adding 1 000001 8 , A count of - 2 in AC left is therefore increased to zero if
218 - 1 is incremented in AC right.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI
MOVEI
ADDM
AOBJN

XR,-N
AC,3
AC,TAB(XR)
XR,.-l

;Put -N in XR left (clear XR right)
;Put 3 in AC
;Add 3 to entry
; Update XR and go back unless all
;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode Suffix

Never
Less L
Equal E
Less or Equal LE
Always A
Greater or Equal GE
Not Equal N
Greater G

Instructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip - the action is always taken regard­
less of how the two quantities compare.

The last four of these instructions perform arithmetic operations, which
are checked for overflow. In the KII 0 any condition that sets Overflow
also sets the Trap 1 flag.

-69-

§2.7 ARITHMETIC TESTING

CAl Compare AC Immediate and Skip if Condition Satisfied

30 I M I A III X y

o 56 89 12 13 14 1718 35

Compare AC with E (ie with the word 0, E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAl Compare AC Immediate but Do Not Skip 300
CAlL Compare AC Immediate and Skip if AC Less than E 301
CAIE Compare AC Immediate and Skip if Equal 302
CAlLE Compare AC Immediate and Skip if AC Less than 303

or Equal to E

CAIA Compare AC Immediate but Always Skip 304
CAIGE Compare AC Immediate and Skip if AC Greater than 305

or Equal to E

CAIN Compare AC Immediate and Skip if Not Equal 306
CAIG Compare AC Immediate and Skip if AC Greater than E 307

CAM Compare AC with Memory and Skip if Condition Satisfied

3 1 I M I A III X y

o 56 89 12 13 14 1718 35

Compare AC with the contents of location E and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310 .

CAML Compare AC with Memory and Skip if AC Less 311
CAME Compare AC with Memory and Skip if Equal 312
CAMLE Compare AC with Memory and Skip if AC Less 313

or Equal
CAMA Compare AC with Memory but Always Skip 314
CAMGE Compare AC with Memory and Skip if AC Greater 315

or Equal
CAMN Compare AC with Memory and Skip if Not Equal 316
CAMG Compare AC with Memory and Skip if AC Greater 317

JUMP Jump if AC Condition Satisfied

32 I M I A III X y

o S6 89 12 13 14 1718 3S

Compare AC (fixed or floating) with zero, and if the condition specified by

SYSTEM REFERENCE

2-47

CAl is a no-op.

CAM is a no-op that refer-
ences memory .

SYSTEM REFERENCE

2-48

JUMP is a n<Hlp (instruction
code 320 has this mnemonic
for symmetry).

If A is zero, SKIP is a n<Hlp;
otherwise it is equivalent to
MOVE. (Instruction code 330
has mnemonic SKIP for sym­
metry.)

SKIP A is a convenient way to
load an accumulator and skip
over an instruction upon en­
tering a loop.

-70-

CENTRAL PROCESSOR §2.7

M is satisfied, take the next instruction from location E and continue
sequential operation from there.

JUMP Do Not Jump 320
JUMPL Jump if AC Less than Zero 321
JUMPE Jump if AC Equal to Zero 322
JUMPLE Jump if AC Less than or Equal to Zero 323
JUMPA Jump Always 324
JUMPGE Jump if AC Greater than or Equal to Zero 325
JUMPN Jump if AC Not Equal to Zero 326
JUMPG Jump if AC Greater than Zero 327

SKIP Skip if Memory Condition Satisfied

33 I M I A III X y
o 56 89 121314 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip 330
SKIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337

AOJ Add One to AC and Jump if Condition Satisfied

34 1M I A III X y
o 56 89 1213 14 1718 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained 235 - 1, set the Overflow and Carry 1 flags; if -1,
set Carry 0 and Carry 1.

AOJ

AOJL

AOJE

AOJLE

Add One to AC but Do Not Jump
Add One to AC and Jump if Less than Zero
Add One to AC and Jump if Equal to Zero
Add One to AC and Jump if Less than or Equal to Zero

340
341
342
343

-71-

§2.7 ARITHMETIC TESTING

AOJA Add One to AC and Jump Always 344
AOJGE Add One to AC and Jump if Greater than or Equal 345

to Zero
AOJN Add One to AC and Jump if Not Equal to Zero 346
AOJG Add One to AC and Jump if Greater than Zero 347

AOS Add One to Memory and Skip if Condition Satisfied

35 y

o 56 89 121314 1718 35

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 - 1, set the Overflow and Carry 1 flags; if -1, set Carry 0 and Carry 1.
If A is nonzero also place the result in AC.

AOS Add One to Memory but Do Not Skip 350
AOSL Add One to Memory and Skip if Less than Zero 351
AOSE Add One to Memory and Skip if Equal to Zero 352
AOSLE Add One to Memory and Skip if Less than or Equal 353

to Zero

AOSA Add One to Memory and Skip Always 354
AOSGE Add One to Memory and Skip if Greater than or 355

Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356
AOSG Add One to Memory and Skip if Greater than Zero 357

SOJ Subtract One from AC and Jump if Condition Satisfied

36 I M I A III X y
o 56 89 121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained -235, set the Overflow and Carry 0 flags; if any other
nonzero number, set Carry 0 and Carry 1.

SOJ
SOJL
SOJE
SOJLE

Subtract One from AC but Do Not Jump

Subtract One from AC and Jump if Less than Zero

Subtract One from AC and Jump if Equal to Zero

Subtract One from AC and Jump if Less than or
Equal to Zero

360
361
362
363

SYSTEM REFERENCE

2-49

SYSTEM REFERENCE

2-50

This procedure is invalid in
the KAIO if the programmer

-72-

CENTRAL PROCESSOR §2.7

SOJA Subtract One from AC and Jump Always 364
SOJGE Subtract One from AC and Jump if Greater than or 365

Equal to Zero

SOJN Subtract One from AC and Jump if Not Equal to Zero 366
SOJG Subtract One from AC and Jump if Greater than Zero 367

SOS Subtract One from Memory and Skip if Condition Satisfied

37 I M I A III X y

o 56 89 12 13 14 1718 35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
-235 , set the Overflow and Carry 0 flags; if'any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

SOS Subtract One from Memory but Do Not Skip 370
SOSL Subtract One from Memory and Skip if Less than Zero 371
SOSE Subtract One from Memory and Skip if Equal to Zero 372
SOSLE Subtract One from Memory and Skip if Less than or 373

Equal to Zero

SOSA Subtract One from Memory and Skip Always 374
SOSGE Subtract One from Memory and Skip if Greater 375

than or Equal to Zero

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero

SOSG Subtract One from Memory and Skip if Greater 377
than Zero

Some of these instructions are useful for determining the relative values of
fixed and floating point numbers; others are convenient for controlling
iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to -1. Either
processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location.

§2.8

AOSE LOCK
JRST .-1

SETOM LOCK

-73-

LOGICAL TESTING AND MODIFICATION

;Skip to interlocked code only if
;LOCK is zero after addition
;Interlocked code starts here

;Unlock

Since it takes several days to count to 236, it is alright to keep testing the
lock.

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to I s in the mask and they are
referred to as the "masked bits". The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC tight is masked by E (AC is masked
by the wordO, E)

Left L AC left is masked by E (AC is masked by
the word E,O)

Direct D AC is masked by the contents of loca-
tion E

Swapped S AC is masked by the contents of loca-
tion E with left and right halves inter-
changed

The third letter determines the way in which those bits selected by the mask
are modified.

Modification Letter Effect on AC

No N None
Zeros Z Places Os in all masked bit positions

Complement C Complements all masked bits

Ones 0 Places I s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec­
ifies the condition the masked bits must satisfy to produce a skip.

SYSTEM REFERENCE

2-5 I

is making use of the drum
split feature (which is not
used by any DEC equipment).

SYSTEM REFERENCE

2-52

These mode names are con­
sistent with those for arith­
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is O.

TRN is a no-op.

Mode

Never

Equal

Always

Not Equal

-74-

CENTRAL PROCESSOR

Suffix

E

A

N

Effect

Never skip

Skip if all masked bits equal 0

Always skip

§2.8

Skip if not all masked bits equal 0
(at least one bit is l)

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi­
tional skip - the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied

60 y

o 56 7 8 9 12 13 14 1718 35

If the bits in AC right corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600

TRNE Test Right, No Modification, and Skip if All 602
Masked Bits Equal 0

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Skip if Not 606
All Masked Bits Equal 0

TRZ Test Right, Zeros, and Skip if Condition Satisfied

62 y

o 56 7 8 9 1213 14 1718 35

If the bits in AC right corresponding to 1 sinE satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE

TRZA
TRZN

Test Right, Zeros, and Skip if All Masked Bits
Equaled 0
Test Right, Zeros, but Always Skip
Test Right, Zeros, and Skip if Not All Masked
Bits Equaled 0

622

624

626

-75-

§2.8 LOGICAL TESTING AND MODIFICATION

TRC Test Right, Complement, and Skip if Cl)ndition Satisfied

y

o 56 7 8 9 12 13 14 1718 35

If the bits in AC right corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640
TRCE Test Right, Complement, and Skip if All Masked 642

Bits Equaled 0
TRCA Test Right, Complement, but Always Skip 644
TRCN Test Right, Complement, and Skip if Not All 646

Masked Bits Equaled 0

TRO Test Right, Ones, and Skip if Condition Satisfied

66 y

o 56 7 89 121314 1718 35

If the bits in AC right corresponding to Is in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660
TROE Test Right, Ones, and Skip if All Masked Bits 662

Equaled 0
TROA Test Right, Ones, but Always Skip 664
TRON Test Right, Ones, and Skip if Not All Masked 666

Bits Equaled 0

TlN Test left, No Modification, and Skip if Condition Satisfied

1~ __ 60 __ ~IM~III __ A~II~I_x~ ________ Y _______ J
o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to 1 s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TlN
TLNE

TLNA
TLNN

Test Left, No Modification, but Do Not Skip
Test Left, No Modification, and Skip if All
Masked Bits Equal 0
Test Left, No Modification, but Always Skip
Test Left, No Modification, and Skip if Not
All Masked Bits Equal 0

601
603

605
607

SYSTEM REFERENCE

2-53

TLN is a no-op.

SYSTEM REFERENCE

2-54

-76-

CENTRAL PROCESSOR §2.8

nz Test Left, Zeros, and Skip if Condition Satisfied

y
o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621
TLZE Test Left, Zeros, and Skip if All Masked Bits 623

Equaled 0
nZA Test Left, Zeros, but Always Skip 625
TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled 0

nc Test Left, Complement, and Skip if Condition Satisfied

64 y
o 56 7 8 9 12 13 14 1718 35

If the bits in AC left corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641
TLCE Test Left, Complement, and Skip if All Masked 643

Bits Equaled 0
TLCA Test Left, Complement, but Always Skip 645
TLCN Test Left, Complement, and Skip if Not All 647

Masked Bits Equaled 0

no Test Left, Ones, and Skip if Condition Satisfied

66 y
o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to I s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661
TLOE Test Left, Ones, and Skip if All Masked Bits 663

Equaled 0
TLOA Test Left, Ones, but Always Skip 665
TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled 0

-77-

§2.8 LOGICAL TESTING AND MODIFICATION

TON .. Test Direct, No Modification, and Skip if Condition Satisfied

6 1 y

o S 6 7 8 9 12 13 14 1718 35

If the bits in AC corresponding to Is in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un­
affected.

TON
TONE

ToNA
ToNN

Test Direct, No Modification, but Do Not Skip
Test Direct, No Modification, and Skip if All
Masked Bits Equal 0
Test Direct, No Modification, but Always Skip
Test Direct, No Modification, and Skip if Not
All Masked Bits Equal 0

TDZ Test Direct, Zeros, and Skip if Condition Satisfied

63 y

o S 6 7 89 12 13 14 1718

610
612

614
616

3S

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to Os; the rest of AC is unaffected.

Tol Test Direct, Zeros, but Do Not Skip 630
TOlE Test Direct, Zeros, and Skip if All Masked Bits 632

Equaled 0
TolA Test Direct, Zeros, but Always Skip 634
TolN Test Direct, Zeros, and Skip if Not All Masked 636

Bits Equaled 0

TDC Test Direct, Complement, and Skip if Condition Satisfied

65 y

o S6 789 121314 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

ToC Test Direct, Complement, but Do Not Skip 650
ToCE Test Direct, Complement, and Skip if All Masked 652

Bits Equaled 0
TOCA Test Direct, Complement, but Always Skip 654
TOCN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled 0

SYSTEM REFERENCE

2-55

TDN is a no-op that refer­
ences memory.

SYSTEM REFERENCE

2-56

TSN is a no-op that refer­
ences memory.

-78-

CENTRAL PROCESSOR §2.8

TOO Test Direct, Ones, and Skip if Condition Satisfied

67 y

o 56 7 8 9 12 13 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1 s; the rest of AC is unaffected.

TOO
TOOE

TOOA
TOON

Test Direct, Ones, but Do Not Skip
Test Direct, Ones, and Skip if All Masked Bits
Equaled 0
Test Direct, Ones, but Always Skip
Test Direct, Ones, and Skip if Not All Masked
Bits Equaled 0 .

TSN Test Swapped, No Modification, and Skip if Condition Satisfied

6 1 y
o 56 7 89 121314 1718

670
672

674
676

35

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN
TSNE

TSNA
TSNN

Test Swapped, No Modification, but Do Not Skip
Test Swapped, No Modification, and Skip if All
Masked Bits Equal 0
Test Swapped, No Modification, but Always Skip
Test Swapped, No Modification, and Skip.if Not
All Masked Bits Equal 0

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied

63 y

o 56 7 89 121314 1718

611
613

615
617

3S

If the bits in AC corresponding to Is in the contents of location E with its
left and right halves swapped satisfy the condition specified by M,skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.·

TSZ Test Swapped, Zeros, but Do Not Skip 631
TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633

Equaled 0
TSZA Test Swapped, Zeros, but Always Skip 635
TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled 0

-79-

§2.8 LOGICAL TESTING AND MODIFICATION

TSC Test Swapped, Complement, and Skip if Condition Satisfied

65 y

o 56 7 I:! 9 1213 14 1718 35

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651
TSCE Test Swapped, Complement, and Skip if All 653

Masked Bits Equaled 0

TSCA Test Swapped, Complement, but Always Skip 655
TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

TSO Test Swapped, Ones, and Skip if Condition Satisfied

67 y
o 56 7 89 121314 1718 35

If the bits in AC corresponding to 1 s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1 s; the rest of
AC is unaffected.

TSO
TSOE

TSOA
TSON

Test Swapped, Ones, but Do Not Skip
Test Swapped, Ones, and Skip if All Masked Bits
Equaled 0
Test Swapped, Ones, but Always Skip
Test Swapped, Ones, and Skip if Not All Masked
Bits Equaled 0

671
673

675
677

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro­
cedure, since locations 1-17 are addressable .as index registers, is to use AC 0
as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by 1 s right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M TLO F,M

SYSTEM REFERENCE

2-57

SYSTEM REFERENCE

2-58

FLOATING
OVERFLOW

-80-

CENTRAL PROCESSOR §2.9

and tested and cleared by one of these:

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where X
is a binary number containing a single 1 in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu­
lator F are both on:

TRC
TRCE

F,X+Y
F,X+Y

;Complement flags X and Y
;Test both and restore original states
;Do this if not both on
;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAl, SETMM, CAl, CAM, JUMP, TRN,
tLN, TDN, TSN. Of these, SETA, SETAl, CAl, JUMP, TRN and TLN do
not use the calculated effective address to reference memory. Hence in these
instructions one can store any information in bits 18-35 without fear of
attempting to address a location outside a user block or in a memory that
does not exist.

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§ 2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there­
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator.

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The bits saved in the left half of

FLOATING
UNDERFLOW

~~~-~--~~~~~~--~I-~~~~~~~ 

o 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 



-81-

§2.9 PROGRAM CONTROL 

this PC word in KIlO user mode are as shown here. In the KA 10, bits 7 -10 
are not used. In KI I 0 executive mode, bit 6 receives the same flag although 
it has a different meaning, and bit 0 receives a different flag altogether [see 
below]. In either processor all unused bit positions are cleared. 

The following lists the left PC-word bit positions that receive information 
and explains the meaning of the flags at the time they are saved. Certain 
instructions can set up these flags to restore them to their original states 
following an interruption or to control specific situations. The explanations 
assume the flags reflect normal circumstances - not arbitrary rigging. In the 
following an X in a mnemonic indicates any letter (or none) that may appear 
in the given position to specify the mode, eg ADDX comprises ADD, 
ADDI, ADDM, ADDB. 

Bit 

o 
Meaning of a 1 in the Bit 

Overflow - any of the following has occurred: 

A single instruction has set one of the carry flags (bits 1 and 2) 
without setting the other. 

An ASH or ASHC has left shifted a lout of bit 1 in a positive 
number or a 0 out in a negative number. 

An MULX has multiplied -235 by itself ~product 270). 

An IMULX has multiplied two numbers with product ~ 235 or 
< -235 . 

An FIX or FIXR has fetched an operand with exponent> 35. 

Floating Overflow has been set (bit 3). 

No Divide has been set (bit 12). 

Carry 0 - if set without Carry 1 (bit 2) being set, causes Overflow to 
be set and indicates that one of the following has occurred: 

An ADDX has added two negative numbers with sum < _235. 

An SUBX has subtracted a positive number from a negative num­
ber with difference < _235 . 

An SOJX or SOSX has decremented _235. 

But if set with Carry 1, indicates that one of these non overflow 
events has occurred: 

In an ADDX both summands were negative, or their signs differed 
and their magnitudes were equal or the positive one was the 
greater in magnitude. 

In an SUBX the signs of the operands were the same and AC was 
the greater or the two were equal, or the signs of the operands 
differed and AC was negative. 

An AOJX or AOSX has incremented -1. 

An SOJX or SOSX has decremented a nonzero number other than 
_235. 

An MOVNX has negated zero. 

SYSTEM REFERENCE 

2-59 

Note that nothing is stored in 
bits 13-17, so when the PC 
word is addressed indirectly it 
can produce neither indexing 
nor further indirect address­
ing. 

In user mode, bit 0 reflects 
the state of Overflow. But 
when the flags are saved in 
KIlO executive mode, bit 0 
represents the Disable Bypass 
flag, which the Monitor uses 
to control certain aspects of 
the execution of an instruc­
tion by an executive XCT 
[see below and §2.IS]. Al­
though these are two separate 
flags that are read in different 
circumstances, when a PC 
word is used to restore or set 
up the flags, bit 0 conditions 
both of them. 

Remember [§ 2.5], overflow 
is determined directly from 
the carries, not from the 
flags. The carry flags give 
meaningful information only 
if no more than one instruc­
tion that can set them occurs 
between clearing and reading 
them. 



SYSTEM REFERENCE 

2-60 

Although this flag is set upon 
completion of the first part of 
every interruptable two-part 
instruction, it is seldom rele­
vant to the programmer as it 
is always cleared by the com­
pletion of the second part. 
The flag is seen only in an 
interruption, and its effect on 
the repeated first part is au to­
matic provided only that it is 
properly restored at the 
return. 

In the KAIO, User In-out is 
applicable only to user mode 
[§2.16]. In the KIlO this flag 
has the stated effect when the 
processor is in user mode, but 
is used in executive mode to 
control certain aspects of the 
execution of an instruction 
by an executive XCT [see 
below and § 2.15] . 

-82-

CENTRAL PROCESSOR §2.9 

2 Carry 1 - if set without Carry 0 (bit 1) being set, causes Overflow to 
be set and indicates that one of the following has occurred: 

An ADDX has added two positive numbers with sum;;;' 235. 

An SUBX has subtracted a negative number from a positive num­
ber with difference;;;' 235. 

An AOJX or AOSX has incremented 235 - 1. 

An MOVNX or MOVMX has negated _235. 

But if set with Carry 0, indicates that one of the nonoverflow events 
listed under Carry 0 has occurred. 

3 Floating Overflow - any of the following has set Overflow: 

4 

In a floating point instruction other than FLTR, DMOVN, 
DMOVNM or DFN, the exponent of the result was> 127. 

Floating Underflow (bit 11) has been set. 

No Divide (bit 12) has been set in an FDV X, FDVRX or DFDV. 

First Part Done - the processor is responding to a priority interrupt 
between the parts of a two-part instruction or to a page failure in the 
second part. A 1 in this bit indicates that the first part has been 
completed, and this fact should be taken into account when the 
processor restarts the instruction at the beginning upon the return to 
the interrupted program. Eg if an ILDB or IDPB is interrupted after 
the processing of the pointer but before the processing of the byte, 
the pointer now points not to the last byte, but rather to the byte 
that should be handled at the return [§ 2.13]. Thus when the pro­
cessor restarts the instruction, it must retrieve the pointer but not 
increment it. 

Besides indicating a priority interrupt in the middle of a byte 
instruction, the KIlO First Part Done indicates a page failure in the 
processing of a byte, in the transfer of the second (low order) word 
in a DMOVEM or DMOVMN, or in a non interrupt data 10 instruc­
tion that results from a block 10 instruction (following the processing 
of the pointer [§ 2.12] ). 

5 User - the processor is in user mode [§ § 2.15, 2.16] . 

6 

7 

8 

User In-out - even with the processor in user mode, there are no 
instruction restrictions (but memory restrictions still apply). 

Public (KII 0 only) - the last instruction performed was fetched 
from a public area of memory, ie the processor is in user mode public 
or executive mode supervisor. 

Address Failure Inhibit (KI I 0 only) - an address failure cannot occur 
during the next instruction [§ 2.15]. 

9 Trap 2 (KII 0 only) - if bit lOis not also set, arithmetic overflow 
has occurred. If traps are enabled, the setting of this flag immediately 
causes one [§ 2.14]. . At present, bits 9 and 10 cannot be set 
together by any hardware condition. 



-83-

§2.9 PROGRAM CONTROL 

10 Trap 1 (KII 0 only) - if bit 9 is not also set, pushdown overflow has 
occurred. If traps are enabled, the setting of this flag immediately 
causes one [§ 2.14] . At present, bits 9 and 10 cannot be set 
together by any hardware condition. 

II Floating Underflow - in a floating point instruction other than 
FLTR, DMOVN, DMOVNM or DFN, the exponent of the result 
was < -128 and Overflow and Floating Overflow have been set. 

12 No Divide - any of the following has set Overflow: 

In a DIV X the dividend was greater than or equal to the divisor. 

In an IDIV X the divisor was zero. 

In an FDVX, FDVRX or DFDV the divisor was zero, or the 
dividend fraction was greater than or equal to twice the divisor 
fraction in magnitude; in either case Floating Overflow has been set. 

XCT Execute 

y 
o 89 121314 1718 35 

Execute the contents of location E as an instruction. Any instruction may 
be executed, including another XCT. If an XCT executes a skip instruction, 
the skip is rel~tive to the location of the XCT (the ftrst XCT if there are 
several in a chain). If an XCT executes a jump, program flow is altered as 
specifted by the jump (no matter how many XCTs precede a jump instruc­
tion, when PC is saved it contains an address one greater than the location of 
the first XCT in the chain). 

JFFO Jump if Find First One 

243 y 

o 89 121314 1718 35 

If AC contains zero, clear AC A + I and go on to the next instruction in 
sequence. 

If AC is not zero, count the number of leading Os in it (Os to the left of 
the leftmost 1), and place the count in AC A + 1. Take the next instruction 
from location E and continue sequential operation from there. 

In either case AC is unaffected, the original contents of AC A + 1 are lost. 

JFCL Jump on Flag and Clear 

255 y 

o 89 121314 1718 35 

If any flag specified by F is set, clear it and take the next instruction from 

SYSTEM REFERENCE 

2-61 

If normalized operands are 
used, only a zero divisor can 
cause floating division to fail. 

A user XCT or any KAlO 
XCT acts as described here, 
and the A portion of the in­
struction is ignored. But in 
KIlO executive mode this in­
struction performs as stated 
only when A is zero. Nonzero 
A results in a so called "execu­
tive XCT", whose ramifica­
tions are far more widespread 
than indicated here ifor de­
tails refer to § 2.15]. 

Note that when AC is nega­
tive, the second 'accumulator 
is cleared, just as it would be 
if AC were zero. 

To left-normalize an in­
teger in AC: 

JFFO 
ASH 

AC,.+1 
AC,-I(AC+l) 



SYSTEM REFERENCE 

2-62 

1bis instruction can be used 
simply to clear the selected 
flags by having the jump ad­
dress point to the next con­
secutive location, as in 

JFCL 17,.+1 

which clears all four flags 
without disrupting the nor­
mal program sequence. A 
JFCL that selects no flag is 
the fastest no-op as it neither 
fetches nor stores an operand, 
and bits 18-35 of the instruc­
tion word can be used to 
store information. 

The A portion of this instruc­
tion is ignored. 

-84-

CENTRAL PROCESSOR §2.9 

location E, continuing sequential operation from there. Bits 9-12 are pro­
grammed as follows. 

Bit Flag Selected by a 1 

9 Overflow 
10 Carry 0 
11 Carry 1 
12 Floating Overflow 

To select one or a combination of these flags (which are among those des­
cribed above) the programmer can specify the equivalent of an AC address 
that places Is in the appropriate bits, but MACRO recognizes mnemonics for 
some of the 13-bit instruction codes (bits 0 -12). 

JFCL JFCL 0, No-op 25500 
JOV JFCL 10, Jump on Overflow 25540 
JCRYO JFCL 4, Jump on Carry 0 25520 
JCRYI JFCL 2, Jump on Carry 1 25510 
JCRY JFCL 6, Jump on Carry 0 or 1 25530 
JFOV JFCL 1, Jump on Floating Overflow 25504 

JSR Jump to Subroutine 

264 y 

o 89 121314 1718 35 

Place the current contents of the flags (as described above) in the left half of 
location E and the contents of PC in the right half (at this time PC contains 
an address one greater than the location of the JSR instruction). Take the 
next instruction from location E + 1 and continue sequential operation from 
there. The flags are unaffected except First Part Done, Address Failure 
Inhibit, and the trap flags, which are cleared. 

While the processor is in user mode, if this instruction is executed as an 
interrupt instruction or by a KA 1 0 MUUO, bit 5 of the PC word stored 
is 1 and the processor leaves user mode, clearing Public. (In the KIl 0 an 
interrupt that is not dismissed automatically returns control to kernel mode.) 

JSP Jump and Save PC 

265 y 

o 89 121314 1718 35 

Place the current contents of the flags (as described above) in AC left and 



-85-

§2.9 PROGRAM CONTROL 

the contents of PC in AC right (at this time PC contains an address one 
greater than the location of the JSP instruction). Take the next instruction 
from location E and continue sequential operation from there. The flags 
are unaffected except First Part Done, Address Failure Inhibit, and the trap 
flags, which are cleared. 

While the processor is in user mode, if this instruction is executed as an 
interrupt instruction or by a KAIO MUUO, bit 5 of the PC word stored 
is I and the processor leaves user mode, clearing Public. (In the KI lOan 
interrupt that is not dismissed automatically returns control to kernel mode.) 

JRST Jump and Restore 

254 y 

o 89 121314 1718 3S 

Perform the functions specified by F, then take the next instruction from 
location E and continue sequential operation from there. Bits 9-12 are 
programmed as follows. 

Bit Function Produced by a 1 

9 Restore the channel on which the highest priority interrupt is cur­
ren tly being held [ § 2.13] . 

10 

11 

Unless the User In-out flag is set, this function cannot be 
performed in a user program. Instead of restoring the channel, it 
acts just like an MUUO [§ 2.1 0] . 

Halt the processor. When it stops, the MA lights on the console dis­
play an address one greater than that of the location containing the 
instruction tl1at caused the halt, and PC displays the jump address 
(the location from which the next instruction will be taken if the 
operator causes the processor to resume operation without changing 
PC). 

Unless the User In-out flag is set, this function cannot be 
performed in a user program. Instead of halting the processor, it 
acts just like an MUUO [§2.10]. 

Restore the flags listed above from the left half of the word in the 
last location referenced in the effective address calculation. Hence 
to restore flags requires that the JRST instruction use indexing or 
indirect addressing. 

Restoration of all but the user and Public flags is directly according 
to the contents of the corresponding bits as given above: a flag is set 
by a I in the bit, cleared by a O. A I in bit 5 sets User but a 0 has no 
effect, so the Monitor can restart a user program by restoring' flags 
but the user cannot leave user mode by this method. A 0 in bit 6 
clears User In-out, but a I sets it only if the JRST is being performed 
by the Monitor, ie if User is clear. A I in bit 7 sets Public, but a 0 

SYSTEM REFERENCE 

2-63 

MA actually displays the 
address of the location that 
would have been executed 
next had the JRST been re­
placed by a no-op. So except 
for a JRST in a priority 
interrupt, MA points to the 
location one beyond that 
containing the instruction 
that caused the halt. This 
instruction is ordinarily the 
JRST or perhaps an XCT, but 
could even be a UUO. 

By manipulating the contents 
of the left half word use<i to 
restore the flags, the program­
mer can set them up in any 
desired way except that a 
user program cannot clear 
User or set User In-out, and 
no public program can clear 



SYSTEM REFERENCE 

2-64 

Public for itself. As an ex­
ample, setting First Part Done 
prevents incrementing in the 
next ILDB, IOPB or noninter­
rupt KIl 0 block IO instruc­
tion provided there is no inter­
vening JSR, JSP or PUSHJ. 
Note that if overflow traps are 
enabled, setting a trap flag 
immediately causes one. 

JEN completes an interrupt 
by restoring the channel and 
restoring the flags for the 
interrupted program. 

12 

-86-

CENTRAL PROCESSOR §2.9 

clears it only if the JRST is being performed in executive mode with 
a 1 in bit 5 (ie User is being set). These conditions imply that the 
processor is entering user mode: hence the user cannot enter con­
cealed mode by clearing Public; and although the supervisor can 
place the processor in user mode concealed, it cannot use this 
procedure to enter kernel mode. 

KA10. Enter User mode. The user program starts at relocated 
location E. 

KIl O. The instruction is simply a jump except when fetched from 
a nonpublic area, in which case it clears Public. In other words a 
location containing a JRST I, is a valid entry to a nonpublic area 
and the instruction places the processor in concealed or kernel mode. 

To produce one or a combination of these functions the programmer can 
specify the equivalent of an AC address that places I s in the appropriate bits, 
but MACRO recognizes mnemonics for the most important 13-bit instruction 
codes (bits 0-12). 

JRST 

HALT 

JRSTF 

PORTAL 

JEN 

JRST 

JRST 

JRST 

JRST 

JRST 

JRST 

0, 

10, 

4, 

2, 

1, 

12, 

Jump 25400 

Jump and Restore Interrupt 25440 
Channel 

Halt 25420 

Jump and Restore Flags 25410 

Allow Nonpublic Entry (KI I 0) 25404 
Jump to User Program (KAIO) 

Jump and Enable 25450 

In a JRSTF or JEN the flags are restored from bits 0-12 of the final word 
retrieved in the effective address calculation; hence any JRST with a 1 in bit 
11 must use indirect addressing or indexing, which takes extra time. If the 
PC word was stored in AC (as in a JSP), a common procedure is to use AC to 
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec­
tive Uump) address. If the PC word was stored in core (as in a JSR), one 
must address it indirectly (remember, bits 13-17 of the PC word are clear, 
so again its right half is the effective address). A JRSTF (AC) is con­
siderably faster than a JRSTF @PCWORD. 

CAUTION 

Giving a JRSTF or JEN without indexing or 
indirect ad~ressing restores the flags from the 
instruction code itself. 

While the KAIO is in user mode, if this instruction is executed as an 
interrupt instruction or by an MUUO, bit 5 of the PC word stored is 1 and 
the processor leaves user mode. 



-87-

§2.9 PROGRAM CONTROL 

JFCL is the only jump that can test any of the flags directly. In fact it is 
the only basic program control instruction that can do so - several of the 
flags can be tested as processor conditions by in-out instructions, but these 
are ordinarily illegal in user programs anyway. But JFCL can test only four 
of the flags, and it saves no information for a subsequent return from a sub­
routine. Hence it serves as a branch point for entry into either one of two 
main paths, which mayor may not have a later point in common. Eg, it may 
test the carry flags simply to take appropriate action in a double precision 
fixed point routine. 

JSR and JSP are regularly used to call subroutines. They are uncondi­
tional, but the execution of such an instruction can be the result of a 
decision made by any conditional skip or jump. In the case of the flags, a 
basic overflow test and subroutine call can be made as follows. 

JOV 
JRST 
JSR 

.+2 

.+2 
OVRFLO 

;Faster than skipping 
;Jump over this if Overflow clear 

If we wish to go to the DIVERR routine when No Divide is set, we must first 
read the flags into a test accumulator T and then use a test instruction. 

JSP 
TLNE 
JSR 

T,.+l 
T,40 
DIVERR 

;Store flags but continue in sequence 
;40 left selects bit 12 
;Skip this if No Divide clear 

A subroutine called by a JSR must have its entry point reserved for the PC 
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine 
cannot be shared with other programs. The JSP requires an accumulator, 
but it is faster and is convenient for argument passing. To return from a 
JSR-called subroutine one usually addresses the PC word indirectly, return­
ing to the location following the JSR. But there are two ways to get back 
from a JSP. We can address the PC word indirectly with a JRST @AC (or 
JRSTF @AC if the flags must be restored), but we can also get it by 
addressing AC as an index register: JRST (AC). By using the second return 
method we can place N words of data for the subroutine immediately after 
the call, and return to the location following the data by giving a 
JRST N(AC). 

Suppose we wish to call a print subroutine and supply the words from 
which the characters are to be taken. Our main program would contain the 
following: 

JSP T,PRINT ;Put PC word in accumulator T 
;Text inserted here by ASCIZ pseudo­
;instruction, which automatically 
;places a zero (null) character at the 
;end 
;Next instruction here 

SYSTEM REFERENCE 

2-65 

The fastest skip is CAIA in 
the KAlO, TRNAin the KIlO. 



SYSTEM REFERENCE 

·2-66 

-88-

CENTRAL PROCESSOR §2.9 

The subroutine can use T as a byte pointer which already addresses the first 
word of data. For the print routine, characters are loaded into another 
accumulator CH: 

PRINT: HRLI 
ILDB 
JUMPE 

JRST 

T,440700 
CH,T 
CH,I(T) 

PRINT+I 

JSA Jump and Save AC 

266 

;Initialize left half of pointer 
;Increment pointer and load byte 
;Upon reaching zero character return 
;to one beyond last data word 
;Print routine 

;Get next character 

y 

o 89 121314 1718 35 

Place AC in location E, the effective address E in AC left, and the contents 
of PC in AC right (at this time PC contains an address one greater than the 
location of the JSA instruction). Take the next instruction from location 
E + I and continue sequential operation from there. The original contents 
of E are lost. 

While the KA lOis in user mode, if this instruction is executed as an 
interrupt instruction or by an MUUO, bit 5 of the PC word stored is I and 
the processor leaves user mode. 

JRA Jump and Restore AC 

267 y 

o 89 121314 1718 35 

Place the contents of the location addressed by AC left into AC. Take the 
next instruction from location E and continue sequential operation from 
there. 

A JSA combines advantages of the JSR and JSP. JSA does modify 
memory, but it saves PC in an accumulator without losing its previous 
contents (at a cost of not saving the flags). It is thus convenient for multiple­
entry subroutines. In a-subroutine called by a JSR, the returning JRST must 
refer to the (single) entry point. Since a JRA can retrieve the original PC by 
addressing AC as an index register, it is independent of any entry point 



-89-

§2.9 PROGRAM CONTROL 

without tying up an accumulator to the extent a JSP would. 
The accumulator contents saved by a JSA are restored by a JRA paired 

with it despite intervening JSA-JRA pairs. Hence these instructions are 
especially useful for nesting subroutines, as shown by this example. 

SI : 

S2: 

S3: 

JSA 

o 

JSA 

JRA 

o 

JSA 

JRA 

o 

JRA 

17,S 1 

17,S2 

17,(17) 

17,S3 

17,(17) 

17,(17) 

;Main program 

;Call to first subroutine (A) 

;First subroutine starts here 

;Call to second subroutine (B) 

;Return to A + 1 in main program 

;Second subroutine starts here 

;Call to third subroutine (C) 

;Return to B + 1 in first subroutine 

;Third subroutine starts here 

;Return to C + 1 in second subroutine 

To call the next deeper subroutine at any level, a JSA places E and PC in the 
left and right of AC 17, saves the previous contents of AC 17 in E (the first 
subroutine location), and jumps to E + 1. To return to the next higher level, 
a JRA restores the previous contents of AC 17 from the location addressed 
by AC 17 left (the first subroutine location) and jumps tq the location 
addressed by AC 17 right (the location following the JSA in the higher sub­
routine). If N lines of data for the next subroutine follow a JSA, the return 
to the location following the data is made by giving a iRA 17, N( 17). 

PUSHJ Push Down and Jump 

260 y 
o 89 121314 1718 3S 

Add one to each half of AC and place the result back in AC. If the addition 
causes the count in AC left to reach zero, set the Pushdown Overflow flag 
in the KA 10, set the Trap 2 flag in the KII O. Then place the current 
contents of the flags (as described above) in the left half of the location now 
addressed by AC right and the contents of PC in the right half of that 
location (at this time PC contains an address one greater than the location of 
the PUSHJ instruction). Take the next instruction from location E and con­
tinue sequential operation from there. 

SYSTEM REFERENCE 

2-67 

In the KI 10 a PUSHJ execu ted 
as an interrupt instruction 
cannot set Trap 2. 



SYSTEM REFERENCE 

2-68 

The effective address E is 
ignored. In the KIlO a POP] 
executed as an interrupt in­
struction cannot set Trap 2. 

-90-

CENTRAL PROCESSOR §2.9 

The flags are unaffected except First Part Done, Address Failure Inhibit, 
and the trap flags, which are cleared. However, pushdown overflow overrides 
the Trap 2 clear, so if the list overflows, Trap 2 sets and the KII 0 traps 
instead of jumping. The original contents of the location added to the list 
are lost. 

Note: The KA I 0 increments the two halves of AC by adding I 0000018 
to the entire register. In the KII 0 the two halves are handled independently. 

While the processor is in user mode, if this instruction is executed as an 
interrupt instruction or by a KA 10 MUUO, bit 5 of the PC word stored is I 
and the processor leaves user mode, clearing Public. (In the KI lOan 
interrupt that is not dismissed automatically returns control to kernel mode.) 

POPJ Pop Up and Jump 

263 y 

o 89 121314 1718 3S 

Subtract one from each half of AC and place the result back in AC. If the 
subtraction causes the count in AC left to reach - I, set the Pushdown Over­
flow flag in the KAIO, set the Trap 2 flag in the KIlO. Take the next in­
struction from the location addressed by the right half of the location that 
was addressed by AC right prior to the decrementing, and continue 
sequential operation from there. 

Note: The KAIO decrements the two halves of AC by subtracting 
I 00000 Is from the entire register. In the KI 10 the two halves are handled 
independently. 

The address of the top item in the pushdown list is kept in the right half 
of the pointer in AC, and the program can keep a control count in the left 
half. In the KA I 0, incrementing and decrementing both halves of AC 
together is effected by adding and subtracting I 000001 8. Hence a count of 
-2 in AC left is increased to zero if 218 - I is incremented in AC right, and 
conversely, I in AC left is decreased to -1 if zero is decremented in AC right. 

Since the pushdown list is independent of the subroutine called, PUSHJ­
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by 
level is inherent in the structure of a pushdown list [§2.2J, so paired 
PUSHJ-POPJ instructions are excellent for nesting subroutines: there can be 
any number of subroutines at any level, each with more subroutines nested 
within it. Recursive subroutines are also possible. 

Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but 
the usual procedure is to keep both data and jump addresses in a single list so 
only one AC is required for the most complex pushdown operations. The 
programmer must keep track of whether a given entry in the list is data or 
a PC word; in other words, every item inserted by a PUSH should be 
removed by a POP, and every PUSHJ should be matched by a POPJ. If flag 



§2.10 

restoration is desired, the returning 

POPJ P, 

can be replaced by 

POP P,AC 
JRSTF (AC) 

-91-

UNIMPLEMENTED OPERATIONS 

which requires another accumulator. If the flags are not important, data 
may be stored in the left halves of the PC words in the stack, reducing the 
required pushdown depth. 

By trapping or checking overflow and keeping a control count in AC left, the 
programmer can set a limit to the size of the list by starting the count 
negative, or he can prevent the program from extracting more items than 
there are in the list by starting the count at zero, but he cannot do both at 
once. If only jump addresses are kept in the list, the first procedure limits 
the depth of nesting. A technique to catch extra POPJs is to put a PC word 
addressing an error routine at the bottom of the list. 

2.1 0 UNIMPLEMENTED OPERATIONS 

Codes not assigned as specific instructions act as unimplemented operations, 
wherein the word given as an instruction is trapped and must be interpreted 
by a routine included for this purpose by the programmer. Codes in the 
range 001-077 are unimplemented user operations, or UUOs. Half of these 
(001-037) are for the local use of the user or Monitor (LUUOs); the other 
half (040-077) are set aside for user communication with the Monitor 
(MUUOs) and are interpreted by it (although they may be used by the 
Monitor as well). Codes 100 and above that are not used for instructions 
are regarded as the "unassigned codes"; 000 is not regarded as a legal code 
at all. Instructions that violate the instruction restrictions act in the same 
manner as MUUOs. 

local Unimplemented User Operation 

001-037 A III X y 
o 89 121314 1718 35 

Store the instruction code, A and the effective address E in bits 0-8, 9-12 
and 18-35 respectively of location 40; clear bits 13-17. Execute the 
instruction contained in location 41. The original contents of location 40 
are lost. 

Every LUUO uses some pair of locations numbered 40 and 41, but which 
such pair depends upon the circumstances. An LUUO in a user program uses 
relocated locations 40 and 41 and is thus entirely a part of and under control 

SYSTEM REFERENCE 

2-69 

These are convenience mne­
monics that mean nothing to 
the assembler. UUOs are also 
sometimes called "program­
med operators". 

If a single memory serves as 
memory number 0 for two 
KA 10 processors, the second 



SYSTEM REFERENCE 

2-70 

(with the trap. offset) uses 
unrelocated 140-141 and 160-
161 respectively for each in­
stance in which 40-4 I and 
60-61 are given here. The 
offset does not apply to user 
LUUOs as it is assumed the 
Monitor would relocate these 
to different physical blocks. 

The unassigned codes are 
100-107,114-117,123 and 
247. 

Note that even in a dedicated 
system, the program must still 
define a user process table. 

Note that if overflow traps are 
enabled, setting a trap flag 
immediately causes one. 

-92-

CENTRAL PROCESSOR §2.IO 

of the user program. An LUUO in KA I 0 executive mode uses unrelocated 
locations. In KI I 0 executive mode an LUUO uses locations 40 and 41 in 
the executive process table. 

The actions of MUUOs and unassigned codes depend to a considerable 
degree on the processor. All use at least two consecutive locati9ns, where 
the first receives the information specified above for an LUUO (in the KII 0 
a third nonconsecutive location is also used). The unassigned codes are 
included so that the Monitor steps in when a user gives an incorrect code. 
The code 000 acts in exactly the same way as an MUUO but is not a standard 
communication code: it is included so that control returns to the Monitor 
should a user program wipe itself out. 

KII O. MUUOs and unassigned codes in user or executive mode act in 
exactly the same way. They store the information specified above for an 
LUUO in location 424 of the user process table, save the flags and PC (the 
current PC word) in location 425, set up the flags and PC according to a new 
PC word taken from a third location, and restart the processor in normal 
sequence at the location then addressed by Pc. In the PC word saved in 
location 425, bit 0 may represent either Overflow or Disable Bypass 
depending upon the mode the processor is in when the MUUO is given. If 
the MUUO is given directly by the program, the address in the right half of 
the PC word saved is one greater than the location of the MUUO; otherwise 
it depends upon the circumstances in which the MUUO is executed. The 
new PC word can be taken from among the eight locations in the user 
process table listed here depending upon the mode at the time the MUUO is 
given, and whether or not it is executed as the result of a trap (page failure 
or overflow). 

Mode Execution Location 

Kernel No trap 430 
Kernel Trap 431 
Supervisor No trap 432 
Supervisor Trap 433 
Concealed No trap 434 
Concealed Trap 435 
Public No trap 436 
Public Trap 437 

There are no restrictions on the manner in which the new PC word of an 
MUUO can set up the flags. It can switch the processor from any mode to 
any other. A I in bit 0 S3tS both Overflow and Disable Bypass; a 0 clears 
both. Hence bit 0 should be adjusted to produce the desired state in the flag 
that is relevant to the mode the processor is entering. 

KAlO. MUUOs and unassigned codes, regardless of mode, perform 
exactly the operations given above for an LUUO with the exception that 



-93-

§2.ll PROGRAMMING EXAMPLES 

MUUOs use unrelocated 40-41 and unassigned codes use unrelocated 60-61 
(140-141 and 160-161 for a second processor). The unassigned codes are 
100-127, 247 and 257. The codes 130-177, which are the floating point 
and byte manipulation instructions, are equivalent to the unassigned codes if 
unimplemented, ie if the hardware for them is not included. In this case 
all codes 100-177 trap to unrelocated 60-61. 

The important point is that an MUUO or unassigned code results in 
executing an instruction in an unrelocated location, ie an instruction under 
the control of the Monitor. This would most likely be a jump that leaves 
user mode, saves the PC word and enters a routine to interpref the MUUO 
configuration. In the instruction descriptions, any reference to events 
resulting from execution by an MUUO should be taken to include the 
unassigned and illegal codes as well. 

2.11 PROGRAMMING EXAMPLES 

Before continuing to input-output and related subjects, let us consider some 
simple programs that demonstrate the use of a variety of the instructions 
described thus far. 

The instruction repertoires of the KAlO, the KIl 0 and the 166 processor 
used in the PDP-6 are very similar, and most programs require no changes to 
run on any of them. Because of minor differences and the fact that some 
instructions are not available on the earlier machines, a program that is to be 
compatible with all three should have some way of dlstinguishing which 
machine it is running on. This simple test suffices. 

JFCL 
JRST 
JFCL 
MOVNI 
AOBJN· 
JUMPN 
JRST 

17,.+1 
.+1 
1,PDP6 
AC,l 
AC,.+l 
AC,KAlO 
KIlO 

; Clear flags 
;Change PC 
;PDP-6 has PC Change flag 
;Others do not, make AC allIs 
;Increment both halves 
;KAlO if AC= 1000000 
; KIl 0 if AC = 0 (no carry between 
; halves) 

Suppose we wish to count the number of Is in a word. We could of 
course check every bit in the word. But there is a quicker way if we remem­
ber that in any word and its twos complement the rightmost 1 is in the same 
position, both words are aliOs to the right of this 1, and no corresponding 
bits are the same to the left (the parts of both words at the left of the right­
most 1 are complements). Hence using the negative of a word as a mask for 
the word in a test instruction selects only the rightmost 1 for modification. 
The example uses three accumulators: the word being tested (which is lost) 
is in T, the count is kept in CNT, and the mask created in each step is stored 
in TEMP. 

MOVEI CNT,O 
MOVN TEMP,T 

;C1earCNT 
;Make mask to select rightmost 1 

SYSTEM REFERENCE 

2-71 

Note that in executive mode, 
LUUOs and MUUOs act 
identically. 



SYSTEM REFERENCE.· 

2-72 

-94-

CENTRAL PROCESSOR 

TDZE 
AOJA 

T,TEMP 
CNT,.-2 

;Clear rightmost I in T 
;Increase count and jump back 
;Skip to here if no I s left in T 

§2.11 

CNT is increased by one every time a I is deleted from T. After all I shave 
been removed, the TDZE skips.,' ' 

In the standard algorithm for converting a number N to its equivalent in 
base b, one performs the series of divisions 

Nib, - q1 + 'lib 

qdb q2 + '21b 

q21b q3 + '31b 

The number in baseb is then 'n" .'3'2'1' Eg the octal equivalent of 61 
decimal is 75: 

61/8 = 7 + 5/8 

7/8 = 0 + 7/8 

The following decimal print routine converts a 36-bit positive integer in 
accum~lator T to decimal a~dtypes it out .. The contents of T and T + I ar~ 
destroyed. The routine is called by 'a PUSHJ P, DECPNT where P is the 
pushdown pointer. 

DECPNT: IDIVI 
PUSH 
SKIPE 
PUSHJ 

DECPNI: POP 
ADD! 
JRST 

T,12 
P,T+I 
T 
P,DECPNT 

P,T 
T,60 
TTYOUT 

;128 = 1010 
;Save remainder 
;AlI digits formed? 
;No, compute next one, 

; Yes, take out in opposite o~der 
;Convert to ASCII (60,is code for 0) 
;Type out 

This routine repeats the division until it produces a zero quotient. Hence it 
suppresses leading zeros, but since it is executed at least once it outputs one 
"0" ,if the number is zero. 'The TTYOUT routine returns with a POPJ P, to 
DECPNI until all digits are typed, then to the calling program. 

, Space can be saved in the pushdown stack by storing the computed digits 
in the left halves of the locations that contain the jump addresses. This is 
accomplished in the decimal print routine by making'the following substi­
tutions.' . 

PUSH P,T+I ~ HRLM T+I,(P) 

POP P,T ~ HLRZ T,(P) 

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is 



§2.11 

replaced by 

LSHC 
LSH 
DIVI 

T,-tD35 
T+I,-I 
T,12 

-95-

PROGRAMMING EXAMPLES 

;Shift right 35 bits into T+ I 
; Vacate the T + I sign bit 
;Divide double length integer by ~O 

Many data processing situations involve searching for information in tables 
and lists of all kinds. Suppose we wish to find a particular item in a table 
beginning at location TAB and containing N items. Accumulator T contains 
the item. The right half of A is used to index through the table, while the 
left half keeps a control count to signal when a search is unsuccessful. 

MOVSI 
CAMN 
JRST 

. AOBJN 

A,-N 
T,TAB(A) 
FOUND 
A,.-2 

;Put -N, 0 in A 
;Skip if current item not the one 
;ltem found 
;Try next item until left count = 0 
;ltem not in list 

The location of the item (if found) is indicated by the number in ,the right 
half of A (its address is that quantity plus TAB). A slightly different pro­
cedure would be 

HRLZI 
CAME 
AOBJN 
JUMPL 

A,-N 
T, TAB (A) 
A,.-l 
A, FOUND 

; Skip if current hem is the one 

; Jump if left count < 0 
; Item not found 

Locations used for a list can be scattered throughout memory if data is 
kept in the left half of each location and the right half addresses the next 
location in the list. The final location is indicated by a zero right h~lf. The 
following routine finds the last half word item in the list. It is entered at 
FIND with the first location in the list addressed by the right half of 
accumulator T. At the end the final item is in T right. 

FIND: 
MOVE 
TRNE 
JRST 
HLRZS 

T,(T) 
T,777777 
.-2 
T 

;Move next item to T 
;Sk~p if AC right = 0 

;Move final item to right 

The following counts the length of the list in accumulator CNT. 

MOVEI 
JUMPE 
HRRZ 
AOJA 

CNT,O 
T,OUT 
T,(T) 
CNT,.-2 

;ClearCNT 
;Jump out ifT contains 0 
;Get next address 
;Count and go back 

Double Precision Float.ing Point. The. following are straightforward rou­
tines for handling double precision floating point arithmetic in software 
format [ § 2.6 describes the [loating point instructions] . 

DFAD: UFA A+I,M+I ;Sum of low parts to A+2 

SYSTEM REFERENCE 

2-73 

MACRO interprets a number 
following fD as decimal. 



SYSTEM REFERENCE 

2-74 

These routines are given to 
show the mechanics of double 
precision floating point oper­
ations. They produce correct 
results in all ordinary circum­
stances, but do not handle 
pathological cases. 

-96-

CENTRAL PROCESSOR §2.l2 

FADL A,M ;Sum of high parts to A, A+ 1 
UFA A+l,A+2 ;Add low part of high sum to A + 2 
FADL A,A+2 ;Add low sum to high sum 
POPJ P, 

DFSB: DFN A,A+l ;Negate double length operand 
PUSHJ P,DFAD ;Call double floating add 
DFN A,A+l ;-(M - AC) = AC - M 
POPJ P, 

DFMP: MOVEM A,A+2 ;Copy high AC operand in A+2 
FMPR A+2,M+l ;One cross product to A+2 
FMPR A+l,M ;Other to A+l 
UFA A+l,A+2 ;Add cross products into A+2 
FMPL A,M ;High product to A, A + 1 
UFA A+l,A+2 ;Add low part to cross'sum in A + 2 
FADL A,A+2 ;Add low sum to high part of product 
POPJ P, 

A double precision division is of the form 

A a + eX 2-27 

B b + dX 2-27 

Using the relationship 

Alb q + rX r 27/b 

where q and r are the quotient and remainder produced by FDVL, the 
following routine computes a double length quotient by the algorithm 

A 

B 

(r - qd) X 2-27 
~ q + -'------'---'------

b 

which gives a result correct to the next-to-last bit in the low order half. 

DFDV: FDVL 
MOVN 
FMPR 
UFA 
FDVR 
FADL 
POPJ 

A,M 
A+2,A 
A+2,M+l 
A+l,A+2 
A+2,M 
A,A+2 
P, 

;Get high part of quotient 
;Copy negative of quotient in A+2 
;Multiply by low part of divisor 
;Add remainder 
;Divide sum by high part of divisor 
;Add result to original quotient 

2.12 INPUT-OUTPUT. 

The input-output instructions govern all transfers of data to and from the 
peripheral equipment, and also perform many operations within the proc-



-97-

§2.12 INPUT-OUTPUT 

essor. An instruction in the in-out class is designated by III in bits 0-2, ie 
its left octal digit is 7. Bits 3-9 address the device that is to respond to the 
instruction. The format thus allows for 128 codes, two of which, 000 and 
004 respectively, address the processor and priority interrupt, and are used 
for the console as well. The KAla also uses the first two codes for the time 
share hardware, but the Kii a has a separate code, a 10, for this purpose. 
A chart in Appendix A lists all devices for which codes have been assigned, 
and gives their mnemonics and DEC option numbers. Electrical and logical 
specifications of the 10 bus are given in the interface manual. 

Bits 13-35 are the same as in all other instructions: they are the I, X, and 
Y parts, which are used to calculate an effective address, set of conditions, 
or mask to be used in the execution of the instruction. The remaining bits, 
10-12, select one of the following eight 10 instructions. 

NOTE 

All instructions described in the remainder of this manual are in-out 
instructions, which are affected by the time share instruction restric­
tions. In the KA I a no in-out instruction can be performed by a user 
mode program unless the User In-out flag is set. In the KI 10, in-out 
instructions using device codes 740 and above are not restricted. But 
an instruction using a device code under 740 cannot be performed by a 
user mode program unless User In-out is set and cannot be performed 
in supervisor mode at all (in-out is normally handled in kernel mode). 
Any in-out instruction that violates these restrictions does not perform 
the functions given for it in the instruction description. Instead it acts 
just like an MUUO [§ 2.1 OJ. 

These r~strictions will not be mentioned in the instruction descrip­
tions, as they apply to all instructions from this point on. 

CONO Conditions Out 

I 7 D Y 
o 23 910 12 13 14 1718 3S 

Set up device D with the effective initial conditions E. The number of con­
dition bits in E that are actually used depends on the device. 

CONI Conditions In 

I 7 I D Y 
o 23 910 121314 1718 3S 

Read the input conditions from device D and store them in location E. The 
number of condition bits stored depends on the device; the remaining bits 
in location E are cleared. 

SYSTEM REFERENCE 

2-75 

E will always be regarded as 
being bits 18-35, even though 
it is actually placed on both 
halves of the bus and many 
devices receive the informa­
tion from the left half. 



SYSTEM REFERENCE 

2-76 

-98-

CENTRAL PROCESSOR §2.l2 

DATAO Data Out 

I 7 I D y 

o 23 910121314 1718 35 

Send the contents of location E to the data buffer in device D, and perform 
whatever control operations are appropriate to the device, 

The amount of data actually accepted by the device depends on the size 
of its buffer, its mode of operation, etc, The original contents of location E 
are unaffected, 

DATAl Data In 

I 7 I D y 
o 23 910 .121314 1718 35 

Move the contents of the data buffer in device D to locatiori E, and perform 
whatever control operations are appropriate to the device, 

The number of data bits stored depends on the size of the device buffer, 
its mode of operation, etc, Bits in location E that do not receive data are 
cleared, 

CONSZ Conditions In and Skip if Zero 

I 7 I D y 

o 23 910121314 17 18 35 

Test the input conditions from device D against the effective mask E. If all 
condition bits selected by 1 s in E are as, skip the next instruction in 
sequence, 

If the device supplies more than 18 condition bits, only the right 18 are 
tested, 

CONSO Conditions In and Skip if One 

I 7 I D y 

o 23 910 121314 1718 35 

Test the input conditions from device D against the effective mask E. If any 
condition bit selected by a 1 in E is 1, skip the next instruction in sequence, 

If the device supplies more than 18 condition bits, only the right 18 are 
tested, 



-99-

§2.12 INPUT-OUTPUT 

BlKO Block Out 

7 D 10 III X y 

0 23 910 12 13 14 17 18 35 

BlKI Block In 

I 7 D 00 III X y 

0 23 910 12 13 14 17 18 35 

Add one to each half of a pointer in location E, and place the result back 
in E. Then perform a data 10 instruction in the same direction as the block 
10 instruction, using the right half of the incremented pointer as the 
effective address. If the given instruction is a BLKO, perform a DAT AO; 
if a BLKI, perform a DATAl. 

The remaining actions taken by this instruction depend on whether it is 
executed as a priority interrupt instruction [§ 2.13] . 
• Not as an Interrupt Instruction. If the addition has caused the count in 
the left half of the pointer to reach zero, go on to the next instruction in 
sequence. Otherwise skip the next instruction. 
• As an Interrupt Instruction. If the addition has caused the count in the 
left half of the pointer to reach zero, execute the instruction in the second 
interrupt location for the channel. Otherwise dismiss the interrupt and 
return to the interrupted program. 

Note: The KA 1 0 increments the two halves of the pointer by adding 
I 0000018 to the entire register. In the Kii 0 the two halves are handled 
independently. 

The above eight instructions differ from one another in their total effect, 
but they are not all different with respect to any given device. A BLKO acts 
on a device in exactly the same way as a DAT AO - the two differ only in 
counting and other operations carried out within the processor and memory. 
Similarly, no device can distinguish between a BLKI and a DATAl; and a 
device always supplies the same input conditions during a CONI, CONSZ or 
CONSO whether the program tests them or simply stores them. 

Hence the eight instructions may be categorized as of four types, repre­
sented by the first four instructions described above. Moreover, a.complete 
treatment of the programming of any device can be given in terms of these 
four instructions, two of which are for input and two for output. The four 
exhaust the types of information transfer that occur in the 10 system, at 
least three of which are applicable to any given device. Thus all instruction 
descriptions in the rest of this manual will be of the CONO, CONI, DATAO 
and DATAl instructions combined with the various device codes. The dis­
cussion of each device will present timing information pertinent to device 
operation, as internal device timing is dependent only upon the device and 
not upon processor instruction time (which is given in Appendix C). 

Every device requires initial conditions; these are sent by a CONO, which 

SYSTEM REFERENCE 

2-77 

A block IO instruction is 
effectively a whole in-out 
data handling subroutine. It 
keeps track of the block loca­
tion, transfers each data 
word, and determines when 
the block is finished. 

Initially the left half of the 
pointer contains the negative 
of the number of words in 
the block, the right half con­
tains an address one less than 
that of the' first word in the 
block. 

The word "input" used with­
out qualification always refers 
to the transfer of data from 
the peripheral equipment into 
the processor; "output" refers 
to the transfer in the opposite 
direction. 



SYSTEM REFERENCE 

2-78 

A DATAl that addresses an 
output-only device simply 
clears location E. DATAl PI, 
(code 70044) produces only 
this effect as the priority in­
terrupt has no data for input. 
On the other hand a DAT AO 
that addresses an input-only 
device is a no-op. 

When the device code is 
undefined or the addressed 
device is not in the system, 
a DATAO, CONO or CONSO 
is a no-op, a CONSZ is an 
absolute skip, a DATAl or 
CONI clears location E. 

Busy and Done both set is a 
meaningless situation. 

Occasionally a device with a 
second code may use a 
DATAl or DATAO to trans­
mit additional control or 
maintenance information. 

-100-

CENTRAL PROCESSOR §2.l2 

can supply up to eight~en bits of control information to the device control 
register. The program can determine the status of the device from up to 
thirty-six bits of input conditions that can be read by a CONI (but only the 
right eighteen can be tested by a CONSZ or CONSO). Some input bits 
simply reflect initial conditions sent by a previous CONO; others are set up 
by output conditions but are subject to subsequent adjustment by the 
device; and still others, such as status levels from a tape transport, have no 
direct connection with output conditions. 

Data is moved in and out in characters of various sizes or in full 36-bit 
words. Each transf~r between memory and a device data buffer requires a 
single DATAl or DATAO. Every device has a CONO and CONI, but it may 
have only one data instruction unless it is capable of both input and output. 
Eg, the paper tape reader has only a DATAl, the tape punch has only a 
DATAO, but the teletype has both. (A high speed device, such as a disk file, 
can be connected to a direct-access processor, which in turn is connected 
directly to memory by a separate memory bus and. handles data auto­
matically. This eliminates the need for the program to give a DA TAO or 
DATAl for each transfer.) 

A Typical 10 Device. Every device has a 7-bit device selection network, a 
priority interrupt assignment, and at least two flags, Busy and Done, or some 
equivalent. The selection network decodes bits 3-9 of the instruction so 
that only the addressed device responds to signals sent by the processor over 
the in-out bus. To use the device with the priority interrupt, the program 
must assign a channel to it. Then whenever an appropriate event occurs in 
the device, it requests an interrupt on the a~signed channel. 

The Busy and Done flags together denote the basic state of the device. 
When both are clear the device is idle. To place the device in operation, a 
CONO or DATAO sets Busy. If the device will be used for output, the pro­
gram must give a DA TAO that sends the first unit of data - a word or char­
acter depending on how the device handles information. When the device has 
processed a unit of data, it clears Busy and sets Done to indicate that it is 
ready to receive new data for output, or that it has data ready for input. 
In the former case the program would respond with a DA TAO to send more 
data; in the latter, with a DATAl to bring in the data that is ready. If an 
interrupt channel has been assigned to the device, the setting of Done signals 
the program by requesting an interrupt; otherwise the program must keep 
testing Done to determine when the device is ready. 

All devices function basically as described above even though the number 
of initial conditions varies considerably. Besides Busy and Done flags, the 
tape reader and punch have a Binary flag that determines the mode of 
operation of the device with respect to the data it processes - alphanumeric 
or binary. The teletype has no binary flag, but it has two Busy flags and two 
Done flags - one pair for input, another for output. A complicated device, 
such as magnetic tape, may require two device codes to handle the large 
number of conditions associated with it. Initial conditions for a tape system 
include a transport address and an actual command the tape control is to 
perform; input conditions include error flags and transport status levels. 

Most 10 devices involve motion of some sort, usually mechanical (in a 
display only the electron beam moves). With respect to mechanical motion 



-101-

§2.12 INPUT-OUTPUT 

there are two types of devices, those that stay in motion and those that do 
not. Magnetic tape is an example of the former type. Here the device 
executes a command (such as read, write, space forward) and the done flag 
indicates when the entire operation is finished. A separate data flag signals 
each time the device is ready for the program to give a DATAl or DATAO, 
but the tape keeps moving until an entire record or file has been processed. 

Paper tape, on the other hand, stops after each transfer, but the program 
need not give a new CONO every time. The reader logic is set up so that a 
DATAl not only reads the data, but also clears Done and sets Busy. Hence 
if the instruction. is given within a critical time, the tape moves continuously 
and only two CONOs are required for a whole series of transfers: one to start 
the tape, and one to stop it after the final DATAL 

Other devices operate in one or the other of these two ways but differ in 
various respects. The tape punch and teletype output are like the reader. 
Teletype input is initiated by the operator striking a key rather than by the 
program. The card reader reads an entire card on a single CONO, with a 
DATAl required-for each column. The DECtape stays in motion, and the 
program must give a CONO to stop it or it will go all the way to the end 
zone. 

Readin Mode 

This mode of processor operation provides a means of placing information 
in memory without relying on a program already in memory or loading one 
word at a time manually. Its principal use is to read in a short loader 
program which is then used for loading other information. A loader program 
should ordinarily be used rather than readin mode, as a loader can check the 
validity of the information read. 

Pressing the readin key on the console activates readin mode by starting 
the processor in a special hardware sequence that simulates a DATAl fol­
lowed by a series of BLKI instructions, all of which address the device whose 
code is selected· by the readin device switches at the left just above the 
console operator panel. Various devices can be used, and for each there are 
special rules that must be followed. But the readin mode characteristics of 
any particular device are treated in the discussion of the device. Here we 
are concerned only with the general characteristics. 

The information read IS a block of data (such as a loader program) pre­
ceded by a pointer for the BLKI instructions. The left half of the pointer 
contains the negative of the number of words in the block, the right half 
contains an address one less than that of the location that is to receive the 
first word. 

To read in, the operator must set up the device he is using, set its code 
into the readin device switches, and press thereadin key. This key function 
first duplicates the action of the console reset key, which clears both the 
processor and the in-out equipment; in particular it places the processor in 
executive mode, and in the KIlO selects kernel mode, selects physical page 0 
for the executive process table, and disables overflow traps. Following this 
the processor places the device in operation, brings the first word (the 
pointer) into location 0, and then reads the data block, placing the words in 

SYSTEM REFERENCE 

2-79 



SYSTEM REFERENCE 

2-80 

MACRO also recognizes the 
nmemonic RSW (Read 
Switches) as equivalent to 
DATAl APR,. 

-102-

CENTRAL PROCESSOR §2.12 

the locations specified by the pointer. Data can be placed anywhere in 
memory (including fast memory) except in location O. The operation affects 
none of memory except location 0 and the block area. For the KII 0 it is 
recommended that read in be confined to the unpaged area, as bringing data 
into locations above 337777 would require prior loading of the appropriate 
pointers into the executive page map in physical page O. 

Upon completing the block, the processor halts only if the single instruc­
tion switch is on. Otherwise it leaves readin mode and begins normal 
operation. This is done in the KIlO by jumping to the location addressed 
by the last word in the block, in the KA 10 by executing the last word 
as an instruction. 

Console-Program Communication 

Neither the processor nor the priority interrupt system require all four types 
of 10 instructions, so the program can make use of their device codes for 
communicating with the console. Both processors have two instructions that 
transfer data between console and program. But in the KI I 0, the program 
can actually operate some of the switches on the console. For this purpose 
it uses a data-out instruction with the device code for the paper tape reader 
(an input-only device). The KII 0 program can also inspect the states of a 
number of operating and sense switches, but the bits for these are included 
in the left half words of the standard input conditions for the interrupt 
arid processor [§ §2.13, 2.14). 

DATAl APR, Data In, Console 

70004 III X y 
o 121314 1718 35 

Read the contents of the console data switches into location E. 

DATAO PI, Data Out, Console 

70054 y 

o 121314 1718 35 

Unless the console MI program disable switch is on, display the contents of 
location E in the console memory indicators and turn on the triangular light 
beside the words PROGRAM DATA just above the indicators (turn off the 
light beside MEMORY DATA). 

Once the indicators have been loaded by the program, nD address condi­
tion selected from the console [§ § 2.18, 2.19) can load them until the 
operator turns on the MI program disable switch, executes a key function 
that references memory, or presses the reset key. 



-103-

§ 2.13 PRIORITY INTERRUPT 

DATAO PTR, Operating Data Out, Console 

7 I 0·54 III X I y 

o 121314 1718 3S 

Unless .the MI program disable switch is on, set up the console address and 
address~c(;mdition switches according to the contents of location E as shown 
(a I in a bit turns on the switch, a 0 turns it off). 

r------------------

ADDRESS SWITCHES I 
6 14 3S 

For complete information on the use of these switches, see § 2.19. 

2.13 PRIORITY INTERRUPT 

Most in-out devices mlist be serviced infrequently relative to the processor 
speed and only a small amount of processqr time is required to service them, 
but they must be serviced within a short time after they request it. Failure 
to service within the specified time (which varies amorig devices) can often 
result in loss of information arid certainly results in operating the device 
below its maximum speed. The priority interrupt is designed with these 
considerations in mind; ie the use. ·of interruptions in the currerit program 
sequence facilitates concurrent operation of the main program a,nd a number 
of peripheral devices. The hardware also allows conditions internal to the 
processor to signal the program by requesting an interrupt. 

Interrupt requests are handled through seven channels arranged in a 
priority chain, with assignment of devices to channels entirely at the discre­
tion of the programmer. To assign a device to a channel, the program sends 
the number of the channel to the device control register as part of the condi­
tions given by a CONO (usually bits 33-35). Channels are numbered 1-7, 
with 1 having the highest priority; a zero assignment disconnects the device 
from the interrupt channels altogether. Any number of devices can be 
connected to a single' channel, and some can be connected to two channels 
(eg a device may signal that data is ready on one channel, that an error has 
occurred on another). 

Interrupt Requests. When a device requires service it sends an interrupt 
request signal over the in-out bus to its assigned channel in the processor. If 
the channel is on, the processor accepts the request at the next memory 
access unless the processor is either starting an intertupt on any channel or 
holding an interrupt on the same channel. The request signal is a level, so 
it remains on the bus until turned off by the program (CONO, DATAO or 

SYSTEM REFERENCE 

2-81 

On the KlIO console, all 
switches are pushbutton­
flipflop combinations; the in­
struction of course controls 
th~ flipflops, not the buttons. 



SYSTEM REFERENCE 

2-82 

The request signal is generally 
derived from a flag that is set 
by various conditions in the 
device. Often associated with 
these flags are enabling flags, 
where the. setting of some 
device condition flag can re­
quest an interrupt on the 
assigned channel only if the 
associated enabling flag is also 
set. The enabling flags are in 
turn controlled by the condi­
tions supplied to the device by 
a CONO. Eg a device may 
have half a dozen flags to 
indicate various internalcondi­
tions that may require service 
by an interrupt; by setting up 
the associated enabling flags, 
the program can determine 
which conditions shall actual­
ly request interrupts in any 
given circumstances. 

Interrupt locations for a sec­
ond processor are 140 + 2N 
and 141 + 2N. 

Note that there are therefore 
two orders of priority asso­
ciated with a KIlO interrupt: 
first the channel, and then for 
all devices requesting inter­
rupts simultaneously on the 
same channel, proximity to 
the processor on the bus. 

-104-

CENTRAL PROCESSOR §2.13 

DATAl). Thus if a request is not accepted because of the conditions given 
above, it will be accepted when those conditions no longer hold. A single 
channel will shut out all others of lower priority if every time its service 
routine dismisses the interrupt, a device assigned to it is already waiting with 
another request. The program can usually trigger a request from a device but 
delay its acceptance by turning on the channel later. 

Starting an Interrupt. After a request is accepted the channel must wait 
for the interrupt to start. No interrupts can be started unless the priority 
interrupt system is active. Furthermore, the processor cannot start an 
interrupt if it is already holding an interrupt on a channel with priority 
higher than those on which requests have been accepted (in other words if 
the current program is a higher priority interrupt routine). If there is a 
higher priority channel waiting, the processor stops the current program to 
start an interrupt on the waiting channel that has highest priority. The inter­
rupt starts following the retrieval of an instruction, following the retrieval of 
an address word in an effective address calculation (including the second cal­
culation using the pointer in a byte instruction), or following a transfer in a 
BLT. The KII 0 can also interrupt the relatively long process of calculating 
the quotient in double floating division. When an interrupt starts, PC points 
to the interrupted instruction, so that a correct return can later be made to 
the interrupted program. 

For the KA I 0 two fixed memory locations are associated with each 
channel: unrelocated locations 40 + 2N and 41 + 2N,where N is the channel 
number. Channel I uses locations 42 and 43, channel 2 uses 44 and 45, and 
so on to channel 7 which uses 56 and 57. The KAIO starts an interrupt for 
channel N by executing the instruction in the first interrupt location for the 
channel, ie location 40 + 2N. Even though the processor may be in user 
mode when an interrupt occurs, the interrupt operations are performed in 
executive mode. 

The KI I 0 starts an interrupt by sending an interrupt-granted signal for the 
channel on which it has accepted a request. This signal goes out on the bus 
and is transmitted serially from one device to· the next. Upon receiving the 
grant, a device that is not requesting an interrupt on the specified channel 
sends the signal on to the next device. A device that is requesting an inter­
rupt on ,the specified channel terminates the signal path and sends' an 
interrupt function word back to the processor. The KIlO also has a pair of 
fixed locations associated with each channel, and these have the same 
numbers as in the KAlO but are locations' in the executive process table. 
These locations however need not be used. The interrupt function word sent 
by the device may specify a standard interrupt using the fixed locations, or 
an : equivalent interrupt using a pair of locations specified by the function 
word, or some other interrupt function entirely. The format of the function 
word and the operations the processor performs in response to the function 
selected by bits 3-5 of the word are as follows. 

FUNCTION 

\ I \ INCREMENT· INTERRUPT ADDRESS 

3 S6 1718 3S 



§2.13 

Bits 3-5 

o 

2 

3 

-105-

PRIORITY INTERRUPT 

Interrupt Function 

Processor waiting or no response. If the latter, perform a standard 
interrupt (see function 1). 

Standard interrupt - execute the instruction in location 40 + 2N 
of the executive process table. 

Dispatch - execute the instruction in the location specified by 
bits 18-35. 

Increment - add the contents of bits 6-17 to the content~ of the 
location specified by bits 18-35. The increment is a fixed point 
number in twos complement notation, bit 6 being the sign, and 
bit 17 corresponding to bit 35 of the memory word. 

4 DAT AO - do a DAT AO for this device using the contents of 
bits 18-35 as the effective address. 

5 DATAl - do a DATAl for this device using the contents of 
bits 18-35 as the effective address. 

6 

7 

Not used - reserved by DEC. 

Not used - reserved by DEC. 

Regardless of what mode the processor is in when an interrupt occurs, the 
interrupt operations are performed in kernel mode. 

An instruction executed in response to an interrupt request and not under 
control of PC is referred to elsewhere in this manual as being "executed as an 
interrupt instruction". Some instructions, when so executed, have different 
effects than they do when performed in other circumstances. And the dif­
ference is not due merely to being performed in an interrupt location or in 
response (by the program) to an interrupt. To be an interrupt instruction, 
an instruction must be executed in the first or second interrupt location for 
a channel, in direct response by the hardware (rather than by the program) 
to a request on that channel. § 2.12 describes the two ways a BLKO is 
performed. If a BLKO is contained in an interrupt routine called by a JSR, 
it is not "executed as an interrupt instruction" even in the unlikely event the 
routine is stored within the interrupt locations and the BLKO is executed by 
an XCT. The special effects produced by different types of interrupt 
instructions depend upon the processor. 

KIl 0 Interrupt Instructions. Besides instructions, the KIl 0 can perform 
other interrupt operations as described above. No interrupt operation can 
set Overflow or either of the trap flags; hence an overflow trap can never 
occur as a direct result of an interrupt. A page failure that occurs in an 
interrupt operation is never trapped; instead it sets the In-out Page Failure 
flag, which requests an interrupt on the channel assigned to the processor 
[ § 2.14]. These considerations of course do not apply to a service routine 
called by an interrupt instruction. The interrupt instructions executed in a 
standard or dispatch interrupt fall into three categories . 
• AOSX, SKIPX, SOSx, CONSX, BLKX If the skip condition specified by 
the instruction is satisfied, the processor dismisses the interrupt and returns 
immediately to the interrupted program (ie it returns control to the un-

SYSTEM REFERENCE 

2-83 

A device designed originally 
for use with the KA 10 will 
work when connected to the 
KIlO bus, where it always 
requests a standard interrupt 
by providing no response to 
the grant. This means that 
for simultaneous requests on 
a given channel, all Kll 0 de­
vices have priority over KA 1 0 
devices. 

At present, functions 6 and 7 
produce standard interrupts. 



SYSTEM REFERENCE 

2-84 

Satisfaction of the condition 
does not change PC, as this 
would skip the next instruc­
tion in the interrupted pro­
gram. In effect the instruction 
skips back to the interrupted 
program by skipping the'sec­
ond interrupt location. 

Note that the interpreta­
tion of a BLKI or BLKO as a 
skip instruction is consistent 
with the description given in 
§ 2.12, the condition being 
that the count is not zero. 

-106-

CENTRAL PROCESSOR §2.l3 

changed PC). If the skip condition is not satisfied, the processor executes 
the instruction contained in the second interrupt location. 

CAUTION 

In the second interrupt location, a skip instruction 
whose condition is not satisfied hangs up the pro­
cessor, which will keep repeating the instruction 
until the condition is satisfied. 

• JSR, JSP, PUSHJ, MUUO. The processor holds an interrupt on the 
channel, takes the next instruction from the location specified by the jump 
(as indicated by the newly changed PC), and enters either kernel mode or the 
mode specified by the new PC word of the MUUO. Hence the instruction is 
usually a jump to a service routine handled by the Monitor. 
• All Other Instructions. In general the processor simply executes the 
instruction, dismisses the interrupt, and then returns to the interrupted 
program. If the instruction is a jump (other than those mentioned above), 
the processor jumps to the newly specified location; but it dismisses the 
interrupt and returns to the mode it was already in when the interrupt 
occurred. Hence it effectively returns to the interrupted program but in a 
different place, and the original contents of PC are lost. 

Since the interrupt operations are performed in kernel mode regardless of 
the actual mode of the processor, an XCT is performed as an executive XCT 
[§ 2.15]. The ultimate effect of the XCT depends of course on the instruc­
tion executed - and its effect is as described here for the various categories. 

CAUTION 

Neither an LUUO nor a BL T will function in a 
reasonable manner as an interrupt instruction. 
Therefore do not use them. 

KA 10 Interrupt Instructions. In the KA 10 the interrupt instructions fall 
into two categories. 
• Non-IO Instructions. After executing a non-IO interrupt instruction, the 
processor holds an interrupt on the channel and returns control to Pc. 
Hence the instruction is usually a jump to a service routine. If the processor 
is in user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or 
JRST, the processor leaves user mode (the Monitor thus handles all interrupt 
routines [§2.16]). 

If the interrupt instruction is not a jump, the processor continues the 
interrupted program while holding an interrupt - in other words it now 
treats the interrupted program as an interrupt routine. Eg the instruction 
might just move a word to a particular location. Such procedures are 
usually reserved for maintenance routines or very sophisticated programs_ 
• Block or Data 10 Instructions. One or the other of two actions can result 
from executing one of these as an interrupt instruction. 

If the instruction in 40 + 2N is a BLKI or BLKO and the block is not 
finished (ie the count does not cause the left half of the pointer to reach 



-107-

§2.13 PRIORITY INTERRUPT 

zero), the processor dismisses the interrupt and returns to the interrupted 
program. The same action results if the instruction is a DATAl or DAT AO. 

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach 
zero, the processor executes the instruction in location 41 + 2N . . This 
cannot be an 10 instruction and the actions that result from its execution 
as an interrupt instruction are those given above for non-IO instructions. 

CAUTION 

The execution, as an interrupt instruction, of a 
CONO, CONI, CONSO or CONSZ in location 
40 + 2N or any 10 instruction in location 41 + 2N 
hangs up the processor. 

Dismissing an Interrupt. Unless the interrupt operation dismisses the 
interrupt automatically, the processor holds an interrupt until the program 
dismisses it, even if the interrupt routine is itself interrupted by a higher 
priority channel. Thus interrupts can be held on a number of channels 
simultaneously, but from the time an interrupt is started until it is dismissed, 
no interrupt can be started on that channel or any channel of lower priority 
(requests, however, can be accepted on lower priority channels). 

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to 
the interrupted program (the interrupt system must be active when the JEN 
is given). This instruction restores the channel on which the interrupt is 
being held, so it can again accept requests, and interrupts can be started on 
it and lower priority channels. JEN also restores the flags, whose states were 
saved in the left half of the PC word if the routine was called by a JSR, 
JSP, PUSHJ, or in the KIl 0, an MUUO. If flag restoration is not desired, 
a JRST 10, can be used instead. 

CAUTION 

An interrupt routine must dismiss the interrupt 
when it returns to the interrupted program, or its 
channel and all channels of lower priority will be 
disabled, and the processor will treat the new 
program as a continuation of the interrupt routine. 

Priority Interrupt Conditions. The program can control the priority in­
terrupt system by means of condition 10 instructions. The device code is 
004, mnemonic PI. 

CONO PI, Conditions Out, Priority Interrupt 

70.060 y 
o 121314 1718 3S 

Perform the functions specified by the effective conditions E as shown (a I 
in a bit produces the indicated function, a 0 has no effect). 

SYSTEM REFERENCE 

2-85 



SYSTEM REFERENCE 

2-86 

CLEAR CLEAR 
POWER PARITY 

FAILURE ERROR 
FLAG FLAG 

18 19 

DROP PROGRAM 
REQUESTS ON 
SELECTED 
CHANNELS 

DISABLE I ENABLE '\ 
PARITY ERROR 

INTERRUPT 

20 I 21 22 

Bits 18-21 are actmilly for 
processor conditions [§ 2.14]. 

CLEAR 
PI 

SYSTEM 

2 3 

Notes. 

20 

21 

22 

-108-

CENTRAL PROCESSOR 

INITIATE 
INTERRUPTS 

DEACTIVATE ACTIVATE 

,-,----

§2.13 

r I TURN I TURN 
ON OFF 

\ ~' 
I 

SELECT CHANNELS FOR BITS 22,24,25,26 
SELECTED CHANN ELS 1 I 2 I 3 I 4 I 5 I 6 I 7 

24 25 26 27 28 29 I 30 31 32 I 33 34 35 

Prevent the setting of the Parity Error flag from requesting an 
interrupt on the channel assigned to the processor. 

Enable the setting of the Parity Error flag to request an interrupt 
on the channel assigned to the processor. 

KIlO only: On channels selected by Is in bits 29-35, turn off any 
interrupt requests made previously by the program (via bit 24). . 

23 Oeactivate the priority interrupt system, turn off all channels, 
eliminate all interrupt requests that have already been accepted but 
are still waiting, and dismiss all interrupts that are currently being 
held. 

24 Request interrupts on channels selected by I s in bits 29-35, and 
force the processor to accept them even on channels that are off. 

KA 1 0: There is at most one interrupt on a given channel, and a 
request is lost if it is made by this means to a channel on which an 
interrupt is already being held. 

KIlO: The request remains indefinitely, so as soon as an interrupt 
is completed on a given channel another is started, until the request 
is turned off by a CONO that selects the same channel and has a 
1 in bit 22. 

25 Turn on the channels selected by Is in bits 29-35 so interrupt 
requests can be accepted on them. 

26 Turn off the channels selected by Is in bits 29-35, so interrupt 
requests cannot be accepted <:>n them unless made by a CONO PI, 
with a 1 in bit 24. 

27 Deactivate the priority interrupt system. The processor can then still 
accept requests, but it can neither start nor dismiss an interrupt. 

28 Activate the priority interrupt system so the processor can accept 
requests and can start, hold and dismiss interrupts. 

CONI PI, Conditions In, Priority Interrupt 

70064 y 

o 121314 1718 3S 

Read the status of the priority interrupt (as well as several bits of KA 1 0 
processor' conditions and nine KIlO console operating switches) into loca­
tion E as shown. 



-109- SYSTEM REFERENCE 

§2.l3 PRIORITY INTERRUPT 2-87 

INST DATA 
WRITE 

ADDRESS ADDRESS EXEC USER PAR NXM PROGRAM REQUESTS ON CHANNELS 
FETCH FETCH 

o 

POWER PARITY 
FAILURE ERROR 

18 19 

Notes. 

STOP 

3 

PARITY ERROR 
INTERRUPT 

E(BLED 

1 

20 21 

BREAK PAGING PAGING STOP STOP 

4 5 6 7 8 

INTERRUPT IN PROGRESS ON CHANNELS 

I 2 I 3 I 4 I 5 I 6 I 
22 23 I 24 25 26 I 

1 I 2 

9 10 11 I 12 

PI 
ACTIVE 

I 7 1 2 
27 28 2 9 I 30 

Channels that are on are indicated by Is in bits 29-35; Is in bits 21 ~27 
indicate channels on which interrupts are currently being held; Is in bits 
11-17 (which are available only in the KIlO) indicate channels that are 
receiving interrupt requests generated by a CONO PI, with a I in bit 24. 
A I in bit 28 means the priority interrupt system is active. 

The remaining conditions read by this instruction have nothing to do with 
the interrupt. Bits 0-8 are available only in the KIlO, where they reflect the 
settings of various console operating switches; for information on these 
switches refer to § 2.19. Bits 18-20 actually read KA I 0 processor status 
conditions [§2.14J as follows. 

18 Ac power has failed. The program should save PC, the flags and fast 
memory in core, and halt the processor. 

The setting of this flag requests an interrupt on the channel 
assigned to the processor. If the flag remains set for 5 ms, the 
processor is cleared. 

19 A word with even parity has been read from core memory. If bit 20 
is set, thy ~etting of the Parity Error flag requests an interrupt on the 
channel assigned to the processor, at which time PC points to the 
instruction being performed or to the one following it. 

Timing. The time a device must wait for an interrupt to start depends on 
the number of channels in use,. and how long the service routines are for 
devices on. higher priority channels. If only one device is using interrupts, 
it never waits longer than 10 Ilswith the KIlO. With the KAIO it need never 
wait longer than the time required for the processor to finish the instruction 
that is being performed when the request is made. The maximurp. time can 
be considered to be about 15 IlS for FDVL, but a' ridiculously long shift 
could take over 351ls. 

Special Considerations. On a return to an interrupted program, the proc­
essor always starts the interrupted instruction over from the beginning. This 
causes special problems in a BLT and in byte manipulation. 

I 3 I 4 I 5 I 6 I 7 
13 14 I 15 16 17 

CHANNELS ON 

I 3 I 4 I 5 J 6 J 7 

31 32 I 33 3 4 35 



SYSTEM REFERENCE 

2-88 

-110-

CENTRAL PROCESSOR §2.13 

An interrupt can start following any transfer in aBLT. When one does, 
the BLT puts the pointer (which has counted off the number of transfers 
already made) back in AC. Then when the instruction is restarted following 
the interrupt, it actually starts with the next transfer. This means that if 
interrupts are in use, the programmer cannot use the accumulator that holds 
the pointer as an index register in the same BL T, he' camlot have the BL T 
load AC except by the final transfer, and he cannot expect AC to be the 
same after the instruction as it was before. 

An interrupt can also start in the second effective address calCulation in a, 
two-part byte instruction. When this happens, First Part Oone is set. This' 
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt 
routine when the interrupt is. dismissed, it prevents a restarted ILOB or 
IDPB from incrementing the pointer a second time. This means that the 
interrupt routine must check the flag before using the same pointer, as it 
now points to the next byte. ,Giving an ILOB or IDPB would skip a byte. 
And if the routine restores the flag, the interrupted ILDB or IDPB would 
process the same byte the routine did. 

Programming Suggestions. The Monitor handles all interrupts for user 
programs. Even if the User In-out flag is set, a user program generally cannot 
reference the interrupt locations to set them up. Procedures for informing 
the Monitor of the interrupt requirements of a user program are discussed in 
the Monitor manual. 

For those who do program priority interrupt routines, there are several 
rules to remember. 
• No requests can be accepted, not even on higher priority channels, while 
a break is starting .. ,!herefore do not use lengthy effective address calCula-
tions in interrupt instruGtions. . 
• Most in-out devices are designed to drop an interrupt reque~f when the 
program responds, usually with a OAT AI or OAT AO. If an interrupt is 
handled neither by a BLKI or BLKO internipt instruction nor by a service 
routine, the programmer must make sure the device is configured to drop the 
request on receipt of whatever response the program does give. 
• The interrupt instruction that· calls the routine must save PC if there is to 
be a return to the interrupted program. Generally a JSR is used as it saves 
both PC and the flags, and it uses no accumulator. 
• The principal function of an interrupt routine is to respond to the situa­
tion that caused the interrupt. Eg computations that can be performed 
outside the routine should not be included within it. 
• If the routine uses a UUO it must first save the contents of the pair of 
locations that will be changed by it in case the interrupted program was in 
the process of handling a UUO of the same type .. For a KI I 0 'MUUO the 
routine must save locations 424 and 425 of the'user process table. In othe~ 
cases it is not the pair of consecutive locations that are rt!levant, as the 
second contains the instruction to handle the UUO. Thus for a kAIO UUO 
or a KI I 0 LUUO the routine must save location 40, unrelocated or in the 
executive process table respectively, and the location used by the DUO 
handler instruction to store the PC word. . ',. 
• The routine must dismiss the 'interrupt (with a JEN) when returning to the 
interrupted program. The flags and UUO ibcations should be restored. 



-111-

§2.14 TRAPPING 

2.14 TRAPPING AND PROCESSOR CONDITIONS 

In the performance of a program there are many events that cannot be fore­
seen and whose occurrence requires special action by the program. There are 
instructions that test for various conditions, but in say a long string of com­
putations it would be both cumbersome and· time consuming to test for 
overflow at every step. It is far better simply to allow an event such as 
overflow to break right into the normal program sequence. 

For situations of this nature, various internal conditions can interrupt the 
program. Both processors use condition 10 instructions to control the 
appropriate flags and to inspect other conditions of interest to the program. 
The KI I 0 also has a trapping mechanism that allows conditions due directly 
to the program, and which are often permitted to happen as a matter of 
course, to interrupt the program sequence without recourse to the priority 
interrupt system. Violation of instruction restrictions by a user or the super­
visor is handled b.¥ trapping as an MUUO; violation of memory restrictions 
is handled as a processor condition in the KA I 0 (as explained here) but is 
handled in the KI I 0 by trapping [§ 2.15]. 

Overflow Trapping (KIlO Only) 

Overflow produced by an interrupt instruction cannot be detected. In any 
other circumstances, an instruction in which an arithmetic overflow condi­
tion occurs sets Overflow and Trap I, and an instruction in which a 
pushdown overflow occurs sets Trap 2. If overflow traps have been enabled 
by the Mcnitor, then at the completion of an instruction in which either trap 
flag is set, rather than going on to the next instruction as specified by PC, 
the processor instead executes an instruction taken from a particular loca­
tion in the process table for the program (user or executive). The location 
as a function of the trap flags set is as follows. 

Trap Flags Se t 

Trap I only 

Trap 2 only 

Trap I and 2 

Trap Type 

Arithmetic overflow 
Pushdown overflow 
Not used by hardware 

Trap Number 

2 
3 

. Location 

421 

422 

423 

A trap instruction is executed in the same address space as the instruction 
that caused it. Overflow in a user instruction traps to a location in the user 
process table, and any addresses used in the instruction in that location are 
interpreted in the user address space. Thus a user program can handle its 
own traps, eg by requesting the Monitor to place a PUSH] to a user routine 
in the trap location. An MUUO must be used if the Monitor is to handle 
a user-caused trap. 

The trap instruction (the final instruction in an XCT and/or LUUO string) 
clears the trap flags, so the processor returns to the interrupted program 
unless the trap instruction changes Pc. Thus the trap instruction can be a 
no-op (which ignores the trap), a skip, a jump, or anything else. However, 

SYSTEM REFERENCE 

2-89 

Note that it is the overflow 
condition that sets Trap I -
not the state of the Overflow 
flag. Hence an overflow is 
trapped even if Overflow is 
already set. 

A trap can be produced arti­
ficially simply by setting up 
the trap flags with a JRSTF or 
MUUO. In this way the pro­
gram can also use trap number 
3, which at present cannot 
result from any hardware· 
detected condition (it is re­
served for future use by DEC). 



SYSTEM REFERENCE 

2-90 

An arithmetic instruction that 
overflows on every iteration 
produces an infinite loop if 
used as a trap instruction 
for arithmetic overflow. A 
pushdown instruction in a 
pushdown overflow trap can 
overflow only once. (The 
memory allocated to a push­
down stack should have at 
least one extra location to 
handle this case - two extras 
if the program and the trap 
both use the same pointer.) 

-112-

CENTRAL PROCESSOR §2.14 

should the trap instruction itself set a trap flag (not necessarily the same 
one), a second trap occurs. 

An interrupt can occur between an instruction that overflows and the trap 
instruction, but the latter will be performed correctly upon the return pro­
vided the interrupt is dismissed automatically or the interrupt routine 
restores the flags properly. If a single instruction causes both overflow and a 
page failure, the latter has preference; but th~ overflow trap will be taken 
care of after the offending instruction has been restarted and completed 
successfully. A trap instruction that causes a page failure does not clear the 
trap flags; hence after the page failure is taken care of, the trap instruction 
will correctly handle the trap when it is restarted. 

KIl 0 Processor Conditions 

In the KIlO, page failures and overflow are handled by trapping, but there 
are a number of other internal conditions that can signal the program by 
requesting an interrupt on a channel assigned to the processor. The program 
can actually assign two channels - one for error conditions and one 
specifically for the clock. Control over the Power Failure and Parity Error 
flags is exercised by a CONO that addresses the priority interrupt system 
[ § 2.13]. Inspection of other conditions and control over all are handled by 
condition 10 instructions that address the processor; the CONI also reads 
some console switches and maintenance functions. The processor also has 
a data-out instruction through which the program can perform margin 
checking of the system in both speed and voltage. 

One of the features controlled by the CO NO for the processor is the auto­
matic restart after power failure. This restart applies only when the levels on 
the power mains go below specification while the processor is running, and 
the power switch is on when power is restored - the machine never begins 
operation by itself when the operator turns the power switch on or off. 
Inadequate power, over temperature, etc are indicated by the Power Failure 
flag. The program must both enable the auto restart feature and respond to 
the setting of Power Failure in order for the processor to restart itself. If the 
program fails to clear Power Failure or enable the auto restart within 4 ms 
after failure is detected, there is no restart. But if the auto restart is enabled 
and Power Failure is clear, then when power levels are again adequate the 
processor will restart itself by executing the instruction in location 70 in 
kernel mode (provided the power switch is on). 

The processor device code is 000, mnemonic APR. 

CONO APR, Conditions Out, Arithmetic Processor 

70020 y 

o 121314 1718 35 

Assign the interrupt channels specified by bits 30-35 of the effective condi­
tions E and perform the functions specified by bits 18-29 as shown (a 1 in a 
bit produces the indicated function, a 0 has no effect). 



-113-

§2.14 PROCESSOR CONDITIONS 

CLEAR 
NONEXISTENT 
MEMORY 

I-

SYSTEM REFERENCE 

2-91 

CLEAR 01 SABLE I ENABLE DISABLE I ENABLE CLEAR PRIORITY INTERRUPT PRIORITY INTERRU PT RESET ALL DISABLE ' ENABLE CLOCK CLEAR IN-OUT 
TIMER IN-OUT TIMER TIMER AUTO RESTART 

I NTE~RU PT CLOCK PAGE ASSIGNMENT -ERROR ASSIGNMENT-CLOCK 
DEVICES I FAILURE 

18 19 20 21 22 23 24 25 26 27 28 29 30 

A 1 in bit 19 produces the 10 reset signal, which clears the control logic 
in all of the peripheral equipment (but affects neither the priority interrupt 
system nor the processor conditions). 

CONI APR, Conditions in, Arithmetic Processor 

70024 y 
o 121314 1718 3S 

Read the status of the processor (as well as various console switches and 
maintenance functions) into location E as shown. 

MAINTENANCE 

MEM 
FM 

MI CONSOLE 
CONSOLE 50 MANUAL POWER MARGIN 

OVERLAP 
MANUAL 

PROG DATA 
LOCK HERTZ MARGINS LOW LOW 

DISABLE DISABLE LOCK 1 

i-E 

o 2 4 5 6 7 8 9 I o II 12 

I 

I 

PARITY 
ERROR 
INTERRUPT 
ENABLED 

CLOCK 
INTERRUPT 
ENABLED 

NONEXISTENT 
MEMORY 

* * * 

I I 

31 32 33 34 35 

SENSE SWITCHES 

2 I 3 I 4 I 5 I 6 

13- 14 I 15 16 17 

TI ME PARITY I TIMER POWER AUTO 
f * 

IN-OUT *1 PRIORITY INTERRUPT PRIORITY INTERRUPT 
OUT ERROR ENABLED FAILURE RESTART CLOCK PAGE ASSIGNMENT-ERROR ASSIGNMENT -CLOCK 

ENABLED FAILURE 

I 8 I 9 2 o 21 22 23 24 25 26 27 28 29 30 

Notes. 

Interrupts are requested on the error channel (assigned by bits 30-32 of 
. the CONO) by the setting of Power Failure, In-out Page Failure, Nonexistent 
Memory, and if enabled, Parity Error. The setting of Clock Flag, if enabled, 
requests an interrupt on the clock channel (assigned by bits 33- 35 of the 
CONO). 

Bits 12-17 reflect the states of the console sense switches, which are 
spe'cifically for operator communication with the program. Bits 1-5 reflect 
the settings of various console operating switches; for information on these 
switches refer to § 2.19. Bits 7 -10 are maintenance functions for which the 
reader should refer to Chapter 10 of the maintenance manual. 

6 The system is operating on 50 Hz line power. This is important to 
the program, not only because some 10 devices run slower on 50 Hz, 
but because the program must compensate for the time difference 
when using the line frequency clock (bit 26). 

I 
31 

I I I 
32 33 34 35 

*These bits cause interrupts. 

The processor does not actu­
aily have a maintenance mode 
- the bit is simply the OR 

function of a number of con­
sole switches, anyone of 
which being on implies that 
the processor is being op­
erated for maintenance pur­
poses. 



SYSTEM REFERENCE 

2-92 

The timer provides a restart 
similar to tha t following power 
failure. Running the machine 
under margins may result in 
significant logical errors. If 
the timer is enabled, failure 
of the program to reset it 
about every second allows it 
to time out. 

PC bears no relation to the 
unanswered reference if the 
attempted access originated 
from a console key function. 

This instruction is for main­
tenance only. For further 
information refer to Chapter 
10 of the KIJ 0 Maintenance 
Manual. 

18 

19 

22 

-114-

CENTRAL PROCESSOR §2.14 

Bit 21 is 1 and the program has not reset the timer (CONO APR, 
bit 18) during the last 1.2 seconds (the period of the timer may vary 
from 1.2 to 1.5 seconds). The setting of this flag clears the processor 
and the peripheral equipment, and restarts the processor in kernel 
mode at location 70. 

A word with even parity has been read from core memory. If bit 20 
is 1, the setting of Parity Error requests an interrupt on the error 
channel, at which time PC points to the instruction being performed 
or to the one following it. 

Ac power has failed. The program should save PC, the flags, mode 
information and fast memory in core, and haIt the processor. 

The setting of this flag requests an interrupt on the error channel. 
After 4 ms the processor is cleared. But at that time, if Auto 
Restart Enabled is set and the program has cleared Power Failure 
(CONO PI,400000), then when adequate power levels are restored, 
the processor will go back into normal operation in kernel mode at 
location 70 (provided the power switch is on). 

26 This flag is set at the ac power line frequency and can thus be used 
for low resolution timing (the clock has high long term accuracy). If 
bit 25 is 1, the setting of the Clock flag requests an interrupt on the 
clock channel. 

28 A page failure has occurred in an interrupt instruction. The setting 
of this flag requests an interrupt on the error channel. 

29 

Note: A page failure in an interrupt instruction is regarded as a 
fatal error, and it causes an interrupt instead of a page failure trap. 
The kernel mode program is expected to set up the interrupt instruc­
tions so that a page failure simply cannot occur. 

The processor attempted to access a memory that did not respond 
within 100 p.s. The setting of this flag requests an interrupt on the 
error channel, at which time PC points either to the instruction 
containing the unanswered reference or to the one following it. 

DATAO APR, Maintenance Data Out, Arithmetic Processor 

70014 III X y 
o 121314 1718 3S 

Supply diagnostic information and perform diagnostic functions according 
to the contents of location E as shown. 

13 17 21 26 30 3S 



-115-

§2.14 PROCESSOR CONDITIONS 

KA 10 Processor Condi tions 

There are a number of internal conditions that can signal the program by 
requesting an interrupt on a channel assigned to the processor. Flags for 
power failure and parity error are handled by the condition 10 instructions 
that address the priority interrupt system [§ 2. 13]. The remaining flags are 
handled by condition instructions that address the processor. Its device code 
is 000, mnemonic APR. 

CONO APR, Conditions Out, Arithmetic Processor 

70020 y 
o 121314 1718 35 

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 18-32 as shown (a I in a 
bit produces the indicated function, a 0 has no effect). 

CLEAR 
PUSHDOWN 
OVERFLOW 

CLEAR 
MEMORY 
PROTECTION 

CLEAR 
NONEXISTENT 
MEMORY 

CLEAR 
FLOATING 
OVERFLOW 

SYSTEM REFERENCE 

CLEAR 
OVERFLOW 

2-93 

\ 
FLAG \ 71 I ! r-I 1--

DISABLEI ENABLE 01 SABLE.!. ENABLE DISABLEJ ENABLE CLEAR CLEAR PRIORITY 
ALL CLEAR FLOATING INTERRUPT ADDRESS I CLOCK OVERFLOW 

IN-OUT CLOCK OVERFLOW ASSIGNMENT 
DEVICES BREAK INTE~RUPT INTERRUPT INTE~RUPT 

I I 

18 19 20 21 22 23 I 24 25 26 27 28 29 30 

Notes. 

Enabling a particular flag to interrupt means that henceforth the setting 
of the flag will request an interrupt on the channel assigned (by bits 33-35) 
to the processor. Disabling prevents the flag from triggering a request. 

. A 1 in bit 19 produces the 10 reset signal, which clears the control logic in 
all of the peripheral equipment (but affects neither the priority interrupt sys­
tem, nor the processor flags cleared by this instruction or CONO PI,). 

CONI APR, Conditions In, Arithmetic Processor 

70024 y 
o 121314 1718 35 

Read the status of the .processor into the righ.thalf of location E as shown 
(ali interrupt requests are made on the channel assigned to the processor). 

1 

PUSHDOWN 
OVERFLOW 

~* 
8 9 1 

USER 
IN-OUT 

20 

MEMORY NONEXISTENT CLOCK 
INTERRUPT· 
ENABLED 

PROTECTION MEMORY 

* FLAG~ *t t * \~.---'-

ADDRESS 
CLOCK 

BREAK 

21 22 23 24 . 25 26 27 

FLOATING 
OVERFLOW 

FLOATING 
OVERFLOW 
INTERRUPT 
ENABLED 

Y \~ 
TRAP 

OFFSET 

28 29 30 

31 32 3 3 3 4 35 

*These bits request interrupts. 

OVERFLOW OVERFLOW 

INTERRUPT~ 
ENABLED 

./----' ! * 

31 32 33 

PRIORITY 
INTERRUPT 

ASSIGNMENT 
I I 

34 35 



SYSTEM REFERENCE 

2-94 

PC bears no relation to the 
break if the access was re­
quested for a console key 
function. 

This flag can also be set by 
an instruction executed from 
the console while the USER 
MODE light is on, jn which 
case PC bears no relation to 
the violation. 

PC bears no relation to the 
unanswered reference if the 
attempted access originated 
from a console key function. 

-116-

CENTRAL PROCESSOR §2.14 

Notes. 

19 Pushdown Overflow - in a PUSH or PUSHJ the count in AC left 
reached zero; or in a POP or POPJ the count reached -1. The setting 
of this flag requests an interrupt. 

20 User In-out - even if the processor is in user mode, there are no 
instruction restrictions (but memory restrictions still apply) [ § 2.16] . 

21 

22 

23 

26 

29 

Address Brea~ - while the console address break switch was on, the 
processor requested access to the memOlY location specified by the 
address switches and the memory reference was for the purpose 
selected by the address condition switches as foIlows: 

The instruction switch was on and access was for retrieval of an 
instruction (including an instruction executed by an XCT or con­
tained in an interrupt location or a trap for an unimplemented 
operation) or an address word in an effective address calculation. 

The data fetch switch was on and access was for retrieval of an 
operand (other than in an XCT). 

The write switch was on and access was for writing a word in 
memory. 

The setting of this flag requests an interrupt, at which time PC points 
to the instruction that was being executed or to the one foIl owing it. 

Memory Protection - a user program attempted to access a memory 
location outside of its area or to write in a write-protected part of its 
area and the user instruction was terminated at that time. The setting 
of this flag requests an interrupt, at which time PC points either to 
the instruction that caused the violation or to the one foIlowing it. 

Nonexistent Memory - the processor attempted to access a memory 
that did not respond within 100 'p.s. The setting of this flag requests 
an interrupt, at which time PC points eitl;ler to the instruction con­
taining the unanswered reference or to the one following it. 

Clock - this flag is set at the ac power line frequency and can thus 
be used for low resolution timing (the clock has high long term 
accuracy). If bit 25 is set, the setting of the Clock flag requests an 
interrupt. 

Floating Overflow - this is one of the flags saved in a PC word, and 
the conditions that set it are given at the beginning of § 2.9. If bit 28 
is set, the setting of Floating Overflow requests an interrupt, at which 
time PC points to the instruction foIlowing that in which the over­
flow occurred. 

30 Trap Offset - the processor is using locations 140-161 for unimple­
mented operation traps and interrupt locations. 

32 Overflow - this is one of the flags saved in a PC word, and the condi­
tions that set it are given at the beginning of § 2.9. If bit 31 is set, 
the setting of Overflow requests an interrupt, at which time PC 
points to the instruction foIlowing that in which the overflow 
occllrred. 



- U7-

§2.15 KilO MODES 

2.15 KIlO MODES 

General information about the machine modes and paging procedures is 
given in Chapter 1, in particular at the end of the introductory remarks and 
at the end of § 1.3. Here we are concerned principally with the special 
instruc.tions the Monitor uses to operate the system, the special effects that 
ordinary instructions have in executive mode, and certain hardware pro­
cedures, in particular paging and page failures, that are necessary for an 
understanding of executive programming. 

User Programming. As far as user programming is concerned, all of the 
necessary information has already been presented. For convenience however 
we list here the rules the user must observe. [Refer to the Monitor manual 
for further information including use of the Monitor for input-output.] 
• If possible, limit your memory needs to 32K, using addresses 0-37777 
and 400000-437777, to gain the savings afforded by having the status of a 
"small user". There are no restrictions of any kind on addresses 0-17 as 
these are in fast memory and are available to all users (even though page 0 
may otherwise be inaccessible). 
• If an area of memory is write-protected, eg for a reentrant program shared 
by several users, do not attempt to store anything in it. In particular do not 
execute a JSR or JSA into a write-protected page. 
• Use the MUUO codes 040-077 only in the manner prescribed in the 
Monitor manual. In general, unless they are prescribed for special circum­
stances, code 000 and the unassigned codes should not be used. 
• Unless User In-out is set do not give any 10 instruction with device code 
less than 740, HALT (JRST 4,) or JEN (JRST 12, (specifically JRST 10,)) .. 
The program can determine if User In-out is set by examining bit 6 of the PC 
word stored by JSR, JSP or PUSHJ. . 
• If your public program has the use of concealed programs, do not 
reference a location in a concealed page for any purpose except to fetch an 
instruction from a valid entry point, ie a location coritaining a JRST 1,. 

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does 
not clear User (a program cannot leave user mode this way); and a 1 in bit 6 
does not set User In-out, so the user cannot void any of the instruction 
restrictions himself. Note that a 0 in bit 6 will clear User In-out, so a user 
can discard his own special privileges. Similarly a 1 in bit 7 sets Public, but a 
o does not clear it, so a public program cannot enter concealed mode this way. 

The above rules are the result of KIlO hardware characteristics. But in a 
real sense many of these rules are actually transparent to the user, in 
particular the whole paging setup is invisible. Although the hardware allows 
for user virtual address spaces that are scattered and/or very large (eg larger 
than available physical core), the actual constraints will be dictated by the 
particular Monitor and the system manager. It may be desirable (for com­
patible operation with KAIO systems) to enforce a two-segment virtual 
address space that mimics the one imposed by the KAIO hardware. In any 
case the user must write a sensible program, which can be handled easily and 
cheaply by the system; if he uses addresses a few to a page all over memory, 
his program can be run but will require a much larger amount of core than 
necessary or cause excessive page swapping. 

SYSTEM REFERENCE 

2-95 



SYSTEM REFERENCE 

2-96 

Actually page 0 has only 496 
locations using addresses 20-
777, as addresses 0-17 refer­
ence fast memory, which is 
unrestricted and available to 
all programs. (In general a 
user cannot reference the first 
sixteen core locations in his 
virtual page 0.) Throughout 
this discussion it is assumed 
that all references are to core 
and are not made by an 
instruction executed by an 
executive XCT [see be/ow]. 

Thus when switching from 
one user to another, the Moni­
tor need change only the user 
process table. This single sub­
stitution can make whatever 
change is necessary in the 
executive address space for a 
particular user. 

-118-

CENTRAL PROCESSOR §2.15 

Paging 

All of memory both virtual and physical is divided into pages of 51 2 words 
each. The virtual memory space addressable by a program is 512 pages; the 
locations in virtual memory are specified by 18-bit addresses, where the left 
nine bits specify the page number and the right nine the location within the 
page. Physical memory can contain 8192 pages and requires 22-bit addresses, 
where the left thirteen bits specify the page number. The hardware maps the 
virtual address space into a part of the physical address space by trans­
forming the 18-bit addresses into 22-bit addresses. In this mapping the right 
nine bits of the virtual address are not altered; in other words a given 
location in a virtual page is the same location in the corresponding physical 
page. The transformation maps a virtual page into a physical page by sub­
stituting a 13-bit physical page number for the 9-bit virtual page number. 
The mapping procedure is carried out automatically by the hardware, but 
the page map that supplies the necessary substitutions is set .up by the kernel 
mode program. Each word in the map provides information for mapping 
two consecutive pages with the substitution for the even numbered page in 
the left half, the odd numbered page in the right half. 

The paging hardware contains two 13-bit registers that the Monitor loads 
to specify the physical page numbers of the user and executive process 
tables. To retrieve a map word from a process table, the hardware uses the 
appropriate base page number as the left thirteen bits of the physical address 
and some function of the virtual page number as the right nine bits. Eg the 
entire user space of 512 virtual pages at two mappings per word requires a 
page map of just half a page, and this is the first half page in the user process 
table. Thus locations 0- 377 in the table hold the rnappings for pages 0 and 
I to 776 and 777. To find the desired substitution from the 9-bit virtual 
page number, the hardware uses the left eight bits to address the location 
and the right bit to select the half word (0 for left, I for right). If the 
Monitor specifies a program as being a small user, that program is limited to 
two 16K blocks with addresses 0- 37777 and 400000-437777. This is 
pages 0-37 and 400-437, and the mappings are in locations 0-17 and 
200-217 in the page map. . 

The executive virtual address space is also 256K but the first 112K are not 
paged - in other words any address under 340000 given in kernel mode 
addresses one of the first 112K locations in physical memory directly. The 
other 144K is paged for supervisor or kernel mode anywhere irito physical 
memory. For this there are two maps. The map for the second half of the 
virtual address space uses the same locations in the executive process table as 
are used in the user process table for the user map (locations 200-377 for 
pages 400-777). The map for the remaining 16K in the first half of the 
executive virtual address space is iri the user process table, the mappings for 
pages 340-377 being in locations 400-417. Thus the Monitor can assign a 
different set of thirty-two physical pages (the per-process area) for its own 
use relative to each user. 

The' illustrations on the next two pages show the organization of the 
virtual address spaces, the process tables and the mappings for both user and 
executive. The first illustration gives the correspondence between the 
various parts of each address space and the corresponding parts of the page 



§2.1S 

40000 

40000 0 

44000 0 

77777 7 

USER 
VIRTUAL 
ADDRESS 

SPACE 

16 K 

112 K 

16K 

112K 

-119-

KilO MODES 

\ 
\ 

\ 

\ 
\ 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\\ USER 
\ \ PROCESS 
\ \ TABLE 
\ \'r--:::7:::-:-'c=:":::"--=--' 
\ . SMALL USER 0- 37 16 

/ 
I 

1/ 
I / 

/; 
I / 

I ; 

/ / 
I I 

I 
I 

I 
I 

/ 

II 

40- 377 112 

SMALL USER 400-437 16 

440 -777 112 340000 

777777 

EXECUTIVE 
VIRTUAL 
ADDRESS 

SPACE 

112 K 
NOT PAGED 

IKERNAL MOOE ONLY) 

16K 

128K 

I 

I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 

VIRTUAL ADDRESS SPACE AND PAGE MAP LAYOUT 

I 
I 

I 

I 
I 

I 

SYSTEM REFERENCE 

EXECUTIVE 
PROCESS 

TABLE 

400 -777 

SHAOEO AREAS 
ARE NOTIJSEO 
BY HAROWARE . 

2-97 

128 



SYSTEM REFERENCE -120-

2-98 CENTRAL PROCESSOR §2.1S 

USER PROCESS TABLE 

01 USER PAGE 0 
I 

I USER PAGE 1 

I I 
17 USER PAGE 36 USER PAGE 37 

20 USER PAGE 40 USER PAGE 41 

I 
I 
I 

I I 
I A VAILABLE TO SOFTWARE IF SMALL USER 
I I 
I I 
I I 
I I 

177 USER PAGE 376 

200 USER PAGE 400 
I 

USER PAGE 377 

USER PAGE 401 

I 

217 USER PAGE 436 USER PAGE 437 

220 USER PAGE 440 USER PAGE 441 
I I 
I I 
I I 
I I 
I A VAILABLE TO SOFTWARE IF SMALL USER 

I I 
I I 
I I 
I I 

377 USER PAGE 776 USER PAGE 777 

EXECUTIVE PAGE 341 400 EXECUTIVE PAGE 340 
I 

417 

420 

421 

422 

423 

424 

425 

426 

427 

430 

431 

432 

433 

434 

435 

436 

437 

440 

I 

I 
I 

EXECUTIVE PAGE 376 J EXECUTIVE PAGE 377 

USER PAGE FAILURE TRAP INSTRUCTION 

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION 

USER PUSHDOWN OVERFLOW TRAP INSTRUCTION 

USER TRAP 3 TRAP INSTRUCTION 

MUUO STORED HERE 

PC WORD OF MUUO STORED HERE 

EXECUTIVE PAGE FAILURE WORD 

USER PAGE FAILURE WORD 

KERNEL NO TRAP NEW MUUO PC WORD 

KERNEL TRAP NEW MUUO PC WORD 

SUPERVISOR NO TRAP NEW MUUO PC WORD 

SUPERVISOR TRAP NEW MUUO PC WORD 

CONCEALED NO TRAP NEW MUUO PC WORD 

CONCEALED TRAP NEW MUUO PC WORD 

PUBLIC NO TRAP NEW MUUO PC WORD 

PUBLIC TRAP NEW MUUO PC WORD 

I A VAILABLE TO SOFTWARE 
I 

7771 
~------------------------------------~ 

EXECUTIVE PROCESS TABLE 

01 
IAVAILABLE TO SOFTWARE 

37 
r-----------------------------------~ 

40 EXECUTIVE LUUO STORED HERE 

41 LUUO HANDLER INSTRUCTION 

42 

ISTANDARD PRIORITY INTERRUPT INSTRUCTIONS 

57 r ---------l 
60 

:A VAILABLE TO SOFTWARE 

177 
~-------------------.--------------------~ 

200 EXECUTIVE PAGE 400 EXECUTIVE PAGE 401 

3771 EXECUTIVE PAGE 776 1 EXECUTIVE PAGE 777 

400 

IAVAILABLE TO SOFTWARE 

417 
420 rE-X-E-C-UT-I-V-E-P-A-G-E-F-A-IL-U-R-E-T-R-A-P-IN-S-T-R-U-C-T-IO-N------~ 

421 EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION 

422 EXECUTIVE PUSHDOWN OVERFLOW TRAP INSTRUCTION 

423 EXECUTIVE TRAP 3 TRAP INSTRUCTION 

424 

I 
I 
I 
I 
I 
I 
I 
:A VAILABLE TO SOFTWARE 

I 
I 
I 
I 
I 
I 
I 

777LI ________________________________ ~ 

PROCESS TABLE CONFIGURATION 



-121-

§2.l5 KilO MODES 

map for it. The second illustration lists the detailed configuration of the 
process tables. Any table locations not used by the hardware can be used by 
the Monitor for software functions. Note that the numbers in the half 
locations in the page map are the virtual pages for which the half words give 
the physical substitution.s. Hence location 217 in the user page map contains 
the physical page numbers for virtual pages 436 and 437. 

Although the virtual space is always 256K by virtue of the addressing 
capability of the instruction format, the Monitor usually limits the actual 
address space for a given program by defining only certain pages as accessible. 
The Monitor also specifies whether each page is public or not and writeable 
or not. Each word in the page map has this format to supply the necessary 
information for two virtual pages. 

DATA FOR EVEN VIRTUAL PAGE 

012345 

PHYSICAL PAGE 
ADDRESS BITS 14-26 

DATA FOR ODD VIRTUAL PAGE 

17181920212223 

PHYSICAL PAGE 
ADDRESS BITS 14-26 

35 

Bits 5 -17 and 23-35 contain the physical page numbers for the even and 
odd numbered virtual pages corresponding to the map location that holds 
the word. The properties represented by 1 s in the remaining bits are as 
follows. 

Bit Meaning of a 1 in the Bit 

A Access allowed 
P Public 
W Write able (not write-protected) 
S Software (not interpreted by the hardware) 
X Reserved for future use by DEC (do not use) 

Associative Memory. If the complete mapping procedure described above 
were actually carried out in every instance, the processor would require two 
memory references for every reference by the program. To avoid this the 
paging hardware contains a 32-word associative memory, in which it keeps 
the more recently used mappings for both the executive and the current user. 
Each word is divided into two parts with one part containing a virtual page 
number specified by the program and the other containing the corresponding 
physical page number as determined from the page map. Hence the 
associative memory is a page table made up of a list of virtual pages and a list 
of physical pages, each with thirty-two corresponding locations. In the 
virtual list, each entry contains a 9-bit virtual page number, a single bit that 
indicates whether the specified page is in the user or executive address space, 
and a bit that indicates whether the entry is valid or not (it is not suitable to 
clear a location as 0 is a perfectly valid page number). Each corresponding 
entry in the physical list contains a l3-bit physical page number and the 
P, Wand S bits from the map half word for that page. The A bit is not 
needed in the table as the mapping is not entered into the table at all if the 
page is not accessible. 

At each reference the hardware compares the page number supplied by 

SYSTEM REFERENCE 

2-99 

There is no requirement that 
the accessible space be con­
tinuous - it can be scattered 
pages. The convention how­
ever is for the accessible space 
to be in two continuous virtual 
areas, low and high, beginning 
respectively at locations 0 and 
400000. The low part is 
generally unique to a given 
user and can be used in any 
way he wishes. The (perhaps 
nUll) high part is a reen trant 
area, which is shared by sev­
eral users and is therefore 
write-protected. The small 
user configuration is consist­
ent with this arrangement. 

The program can inspect the 
contents of the page table by 
using. the MAP instruction 
and 10 instructions that ad­
dress the paging hardware [see 
below). 



SYSTEM REFERENCE 

2-100 

When a page failure trap in­
struction is performed, PC 
points to the instruction that 
failed (or to an XCT that 
executed it), unless the failure 
occurred in an overflow trap 
instruction, in which case PC 
points to the instruction that 
overflowed. After taking care 
of the failure, the processor 
can always return to the inter­
rupted instruction. Either the 
instruction did not change 
anything, or the failure was in 
the second part of a two-part 
instruction, where First Part 
Done being set prevents the 
processor from repeating any 
unwanted operations in the 
first part. 

Since a user page failure trap 
instruction is executed in user 
address space, the Monitor 
should be careful not to have 
the trap instruction do in· 
direct addressing that might 
cause another page failure. 

Whether or not a comparison 
can be made is a function of 
the settings of the paging 
switches [§2.19] and the state 
of the User Address Compare 
Enable flag [see below]. 

... 122-

CENTRAL PROCESSOR §2.l5 

the program with those in the virtual part of the page table. If there is a 
match for the appropriate address space, the corresponding entry in the 
physical list is used as the left thirteen bits in the physical address (provided 
of course that the reference is allowable according to the P and W bits). If 
there is no match, the hardware makes a memory reference to get the neces­
sary information from the page map and enters it into the page table at the 
location specified by a reload counter. This counter is incremented when­
ever it is used to reload the table, and also whenever the location to which it 
points is used for a mapping. Hence the counter tends to stay away from 
locations containing the page numbers most frequently referenced. 

Page Failure 

A page failure that occurs during an interrupt instruction terminates the 
instruction and sets the In-out Page Failure flag, requesting an interrupt on 
the error channel assigned to the processor. In all other circumstances, if the 
paging hardware cannot make the desired memory reference, it terminates 
the instruction immediately without disturbing memory, the accumulators 
or PC, places a page fail word in the user process table, and causes a page 
failure trap. If the attempted reference is in user virtual address space, the 
page fail word is placed in location 427 of the user process table, and the 
processor executes the trap instruction in location 420 of the same table. 
If the attempted reference is in executive virtual address space, the page fail 
word is placed in location 426 of the user process table, and the processor 
executes the trap instruction in location 420 of the executive process table. 
The trap instruction is executed in the same address space in which the 
failure occurred. The page fail word supplies this information. 

luI VIRTUAL PAGE I 
8 9 17 

IF BIT 31 IS 0, BITS 31-35 
HAVE THIS FORMAT 

FAILURE 
TYPE 

31 35 

10iAIWIsiTI 
3132333435 

Whether the violation occurred in user or executive virtual address space is 
indicated by a 1 or a 0 in bit 8. If bit 31 is 1, the number in bits 31-35 
(;;;:. 20) indicates the type of "hard" failure as follows. 

23 Address failure - this is a simulated page failure caused by the satis­
faction of an address condition selected from the console. It 
indicates that while the console address break switch was on and the 
Address Failure Inhibit flag was clear (bit 8 of the PC word), the 
processor requested access to the memory location that was specified 
by the paging and address switches and for which a comparison was 
enabled, and the memory reference was for the purpose selected by 
the address condition switches as follows: 

The instruction fetch switch was on and access was for retrieval of 
an instruction (including an instruction executed by an XCT or 
contained in an interrupt location or a trap) or an address word in 
an effective address calculation. 



§2.15 

22 

-123-

KilO MODES 

The data fetch switch was on and access was for retrieval of an 
operand (other than in an XCT). 

The write switch was on and access was for writing a word in 
memory. 

The Address Failure Inhibit flag, which can be set only by a 
JRSTF or MUUO, prevents an address failure during the next instruc­
tion - the completion of the next instruction automatically clears it. 
If an interrupt or trap intervenes, the flag has no effect and it is saved 
and cleared if the PC word is saved. If it is not saved, it affects the 
instruction following the interrupt or trap. Otherwise it affects the 
instruction following a return in which it is restored with the 
PC word. 

Page refill failure - this is a hardware malfunction. The paging hard­
ware did not find the virtual page listed in the page table, so it loaded 
paging informat.ion from the page map into the table but still could 
not find it. 

20 Small user violation - a small user has attempted to reference a 
location outside of the limited small user address space. 

21 Proprietary violation - an instruction in a public page has attempted 
to reference a concealed page or transfer control into a concealed 
page at an invalid entry point (one not containing a JRST I,). 

If the violation is not one of these, then bits 31-35 have the format shown 
above where A, Wand S are simply the corresponding bits taken from the 
map half word for the page, and T indicates the type of reference in which 
the failure occl'.rred - 0 for a read reference, 1 for a write or read-modify­
write reference. 

The page fail trap instruction is set by the Monitor to transfer control to 
kernel mode. After rectifying the situation, the Monitor returns to the inter­
rupted instruction, which starts over again from the beginning. Even a 
two-part instruction that has been stopped by a failure in the second part is 
redone properly, provided the Monitor restores the First Part Done flag. 

Note that a failure does not necessarily imply that anything is "wrong". 
The virtual address space of even a small user is 32K words, which may well 
be more than is needed in a given run. Hence the Monitor may have only ten 
or twenty pages of the user program in core at any given time, and these 
would be the virtual pages indicated as accessible. When the user attempts to 
gain access to a page that is not there (a virtual page indicated in the page 
map as inaccessible), the Monitor would respond to the page failure by 
bringing in the needed page from the drum or disk, either adding to the user 
space or swapping out a page the user no longer needs. 

The same situation exists for write ability. When bringing in a user 
program, the Monitor would ordinarily indicate as writeable only the buffer 
area and other pages that will definitely be altered. Then in response to a 
write failure, the Monitor Il''lkes the page writeable and indicates to itself 
(perhaps by means of the software bit in the page map) that that page has in 
fact been altered. When the user is done, the Monitor need write only the 
altered pages back onto the drum. 

SYSTEM REFERENCE 

2-101 

Tests for hard page failures 
are actually made in the order 
given here. 

The type of reference implies 
nothing about the cause of 
failure - it indicates only the 
reason the failed reference 
was being made. 

In any page failure, the map­
ping entry for the page is 
removed from the page table 
on the assumption that the 
Monitor will change it. When 
the instruction is restarted, 
the hardware must go to the 
page map to get a new entry 
for the page table. 



SYSTEM REFERENCE 

2-102 

If the Monitor shared block 0 
with any users, it would have 
to store the user accumulators 
even when taking control only 
temporarily. 

The page failure and overflow 
trap instructions are executed 
in the user address space if 
caused by the user. 

USER FAST 
USER 

LOAD 
MEMOR'Y 

SMALL ADDRESS 
LEFT BLOCK USER COMPARE 

ENABLE 

o 2 3 4 

-124-

CENTRAL PROCESSOR § 2.15 

Monitor Programming 

The kernel mode program is responsible for the overall control of the system. 
It is the only program that has access to any of physical core unpaged and 
that has no instruction restrictions. The kernel program handles all in-out 
for the system and must set up the page maps, trap locations, interrupt loca­
tions and the like. The supervisor program labors under the same instruction 
restrictions as the user but has no way of bypassing them - they always 
apply. Supervisor mode is limited to the l44K paged part of the executive 
address space, although within that space it can read but not alter concealed 
pages (the kernel program supplies data tables of all kinds to the supervisor 
program, and the latter cannot affect them). The supervisor can give a 
JRSTF that clears Public provided it is also setting User; in other words the 
supervisor can return control to a concealed program but cannot enter kernel 
mode by manipulating the flags. The PC words supplied by ~UUOs can 
manipulate the flags in any way, switching arbitrarily from one mode to 
another, but these are in the process table and assumed to be under control 
solely of kernel mode. 

For accumulator, index register and fast memory references, the Monitor 
automatically uses fast memory block O. For each user, the kernel mode 
program must assign a block. The usual procedure is to assign blocks 2 and 3 
to individual user programs on a semipermanent basis for special applications 
and to assign block I to all other users. In this way the Monitor need not 
store blocks 2 and 3 when the special users are not running, and it need not 
store block I when it takes over control from an ordinary user temporarily. 
When switching from one user to another, the Monitor usually stores the 
first user's accumulators in his shadow area - this is locations 0-17 in user 
virtual page 0, an area not generally accessible to the user at all - and loads 
the new user's accumulators from his shadow area, where trey were stored 
after the last time the new user ran. 

Even while User is set, the interrupt instructions are not part of the user 
program and are thus subject only to executive restrictions. As int~rrupt in­
structions, JSR, JSP and PUSHJ automatically take the processor out of user 
mode to jump to an executive service routine. An MUUO can also be used. 

The paging hardware has one non-IO instruction and two condition 10 
instructions primarily for diagnostic purposes. Otherwise control over the 
system is exercised by data 10 instructions. The device code for the paging 
hardware is 0 10, mnemonic PAG. 

DATAO PAG, Data Out, Paging 

701 14 y 

o 121314 1718 3S 

Set up the paging hardware according to the contents of location E as shown. 

USER BASE ADDRESS 

I I I 
5 I 6 8 I 9 10 11 I 12 13 .14 I 15 16 17 



-125-

§2.l5 KilO MODES 

LOAD TRAP EXECUTIVE BASE ADDRESS RIGHT ENABLE 
I ~ ~ I 

18 19 20 21 22 23 I 24 25 26 I 27 28 29 I 30 

Bits 0 and 18 are change bits. If bit 0 is 0, ignore the rest of the left half 
word. But if bit 0 is 1, load bits 5 -17 into the user base register to select the 
user process table, select the fast memory block specified by bits 1 and 2 for 
the user, limit the address space to that of a small user if bit 3 is 1, and 
enable address comparison if bit 4 is 1. 

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise 
load bits 23-35 into the executive base register to select the executive 
process table, and enable overflow traps if bit 22 is 1. 

If either bit 0 or 18 is 1, invalidate all data in the associative memory. In 
other words set the Word Empty bit in each location to indicate that the rest 
of the word is meaningless and should not be used. 

DATAl PAG, Data I n, Paging 

70104 y 

o 121314 1718 3S 

Read the status of the paging hardware into location E. The information 
read is the same as that supplied by a DATAO (bits 0 and 18 are 0). 

CONO PAG, Conditions Out, Paging 

70120 y 
o 121314 1718 3S 

Load the executive stack pointer from bits 18-22 and the page table reload 
counter from bits 31 - 35 of the effective conditions E as shown. 

EXECUTIVE AC 
STACK POINTER 

~ I I I I I I I I 
18 19 20 I 21 22 23 I 24 25 26 I 27 28 29 I 30 

The executive stack pointer specifies a block of sixteen locations in the user 
pro'cess table by supplying the left five bits for a 9-bit address that references 
a location in the table; this function is used only for accessing stacked fast 
memory blocks in an instruction executed by an executive XCT [see below J. 
Loading the reload counter causes it to point to the specified location in the 
page table. 

I 
31 

31 

SYSTEM REFERENCE 

2-103 

I I I I 
32 . I 33 34 35 

The Address Compare Enable 
bit functions in conjunction 
with the console paging 
switches, . as explained in 
§2.l9. 

PAGE TABLE 
RELOAD COUNTER 

I I I I 
32 I 33 34 35 



SYSTEM REFERENCE 

2-104 

This instruction also reads the 
processor serial number into 
bits 0-9 of location E. 

~126-

CENTRAL PROCESSOR § 2.15 

CONI PAG, Conditions In, Paging 

70124 y 
o 121314 1718 3S 

Read the page table reload counter and the contents of the location in the 
virtual page table specified by it into the right half of location E as shown. 

EXECUTIVE WORO PAGE TABLE COMPLEMENT OF VIRTUAL PAGE NUMBER ADDRESS 
EMPTY RELOAD COU NTER 

I I I 
18 19 20 I 21 

It is possible for the reload 
counter to change between 
the CONI and the CONO, so 
the CONI might read a differ­
ent location than was selected 
by the CONO. 

PAGE 

22 

NO 
FAILURE 

P W S 
MATCH 

18 19 20 21 

These three instructions can 
be used to inspect the contents 
of the associative memory. 
The CONO selects a location, 
the CONI reads the contents 
of the virtual-page part of 
that location, and an MAP 
that addresses the specified 
virtual page reads the con­
tents of the physical-page part 
of that location. 

22 

I 
SPACE 

I I I I I I I 
23 I 24 25 26 27 28 29 30 31 32 I 33 34 35 

Note that bits 18-26 contain the complement of the virtual page number in 
the selected location. A 1 in bit 27 indicates the page is in the executive 
address space; a I in bit 30 means the information in bits 18-27 is invalid. 

MAP Map an Address 

257 y 

o 89 121314 1718 3S 

Map the virtual effective address E and place the resulting map data in AC 
right in the same format as it is in the page map, ie bits P, Wand S in 
bits 19-21 and the physical page number in bits 23-35. Clear AC left. 

PHYSICAL PAGE 
ADDRESS BITS 14 -26 

_L 
23 I 24 25 26 I 27 28 29 I 30 31 32 I 33 3 4 35 

This instruction cannot produce a page failure, but if a page failure would 
have resulted had an ordinary instruction in the same mode attempted to 
write in location E, place a 1 in AC bit 18. If no match can be made by the 
paging hardware, place a I in bit 22. This results in four possible situations 
as a function of the states of bits 18 and 22. 

Bit 18 

o 
o 

Bit 22 

o 
Meaning 

AC right contains valid map data. 

There is no page failure but also no match, so the 
instruction must have made an unmapped reference -
perhaps to fast memory or to the unpaged area in 
kernel mode. 

o There is a page failure but the map data is correct as 
a match exists. 
There is a page failure, and since there is no match, 
the failure must have resulted from the instruction 
referencing an inaccessible page or froin some prior 



§2.15 

-127-

KIlO MODES 

failure (such as a page refill malfunction). Hence AC 
right contains invalid information. 

Executive XCT 

Ordinarily an instruction in a user program is performed entirely in user 
address space and an instruction in the executive program is performed 
entirely in executive address space. In order to facilitate communication 
between Monitor and users, the XCT instruction allows the executive to 
execute instructions whose memory operand references can cross over the 
boundary between user and executive address spaces. 

It is very important to note that the only difference between an instruc­
tion executed by an executive XCT and an instruction performed in normal 
circumstances is in the way the memory operand references are made. There 
is no difference in the XCT itself. Everything in the XCT is done in executive 
address space, and the instruction fetched by the XCT is fetched in executive 
space. Moreover, in the executed instruction all effective address calculation 
and accumulator references are in executive space. If the instruction makes 
no memory operand references, as in a jump, shift or immediate mode in­
struction, its execution differs in no way from the normal case. The only 
difference is in memory operand references. 

Control over tlJ-e special effects of the executed instructions is determined 
by the User In-out flag (whose implied meaning is confined to user mode) 
and bits II and 12 of the A portion of the XCT instruction word (in user 
mode A is ignored). If the A bits are both 0, the XCT acts as described in 
§ 2.9, and the executed instruction differs in no way from the normal case. 
But if these bits are not both 0, then some memory operand references are 
made to user virtual address space, where the type of reference is determined 
by the A bits and the type of memory is selected by User In-out. With this 
flag set, the A bits affect both core memory and fast memory references, 
whereas with User In-out clear, the A bits affect only fast memory references. 
For the memory operand references selected by User In-out, the effect of 1 s 
in bits II and 12 is as follows: a I in bit 12 causes the executed instruction 
to perform all selected read and read-modify-write memory operand refer­
ences to be performed in user virtual address space; a I in bit II causes all 
selected memory operand write references to be performed in user space; 
and I s in both bits cause all types of selected memory operand references in 
the executed instruction to be performed in user space. 

The meaning of user space is obvious in terms of core memory references, 
but not so for fast memory. When User In-out is set, the user space for fast 
memory references depends on which fast memory block is currently 
sdected for the user. If block 0 is selected, fast memory operand references 
of the types specified by bits 11 and 12 are made to the user shadow area. If 
some other block is selected, the specified fast memory references are made 
to the selected block. 

If User In-out is clear, all core memory references are in executive 
address space. Fast memory references of the types specified by bits 11 
and 12 are made to the user process table, in particular to that set of 

SYSTEM REFERENCE 

2-105 

Read the next four paragraphs 
very carefully (reading them 
two or three times is highly 
recommended). 



SYSTEM REFERENCE 

2-106 

-128-

CENTRAL PROCESSOR §2.lS 

sixteen locations specified by the executive stack pointer. The pointer is 
given by a CONO PAG,. 

User Space Fast Memory References 

User Fast Memory Block Selected 
User In-out Zero Nonzero 

o 
Shadow area 
AC stack 

Selected block 
AC stack 

There is another flag that plays a role in the execution of instructions by 
an executive XCT. This is Disable Bypass, bit 0 of the PC word. When 
Disable Bypass is clear, a bypass in the logic allows an executed instruction 
to access the concealed user area from supervisor mode. With the flag set, an 
~ttempt to do this results in a page failure. Generally the new MUUO PC 
word would set this flag when the Monitor is being called from public mode, 
so the concealed area can be accessed only when such access is requested by 
the concealed program. 

Individual Instruction Effects. The effects of execution by an executive 
XCT on different types of instructions is as follows. 
• Instructions without memory operand references are not affected. This 
includes shifts, jumps, immediate mode instructions, CON SO, CONO, and 
even. an XCT. In fact not only is an executive XCT not affected when 
executed by an executive XCT, but the first destroys any effect the second 
would otherwise have on a third instruction (in other words, a pair of 
executive XCTs is equivalent to a pair of ordinary XCTs). 
• Instructions that refer to one memory location for reading only or reading 
and writing are controlled by the read bit (MOYE, MOYES, ADDM, AOS). 
The read bit controls writing when the write is done to the same location as 
the read, whether the memory references are done as a single cycle including 
both read and write or as separate read and write cycles. 
• Instructions that refer to one memory location for writing only are con­
trolled by the write bit (MOYEM, MAP, HRLZM). 
• Instructions that refer to two different memory locations are controlled 
by the read bit in the read part of the instruction and by the write bit in the 
write part (BLT, PUSH). 
• BLKI and BLKO are controlled by the write bit and the read bit respec­
tively. The pointer reference is done in the same address space as the 
data transfer. 
• In byte instructions all pointer ,calculations are done in executive address 
space. The read and write bits affect only the second part, ie the load 
or deposit. 

Philosophy. The purpose of the executive XCT is to facilitate the 
handling of user requirements by the Monitor, but the selection made by 
User In-out of the references affected by the read and write bits is to allow 
the Monitor to make recursive calls to itself, ie to perform MUUOs in the 
process of carrying out an MUUO given by the user. Specifically the state of 
User In-out differentiates between the Monitor response directly to the user 
MUUO and its response to its own MUUOs. 



-129-

§2.16 KAIO MODES 

The new PC word of an MUUO from the user would set User In-out so 
that core memory references can be made across the user-executive 
boundary, and fast memory references can be made to the user AC block. 
The point in choosing between the shadow area and the selected block if not 
block 0 is to reference the information that was held in the user AC block 
before the Monitor took over. If tile user shared block 0 with other users 
and the Monitor, the Monitor will have saved his ACs in the shadow area of 
his address space. The other AC blocks are not disturbed when the Monitor 
takes over temporarily, so the Monitor need not save them and they will still 
hold the user information. 

If in the course of carrying out a user MUUO, the Monitor should itself 
give an MUUO, the new PC word would clear User In-out. Thus at this level 
all core memory references are in the executive address space and fast 
memory references are to an AC block in the user process table as specified 
by the executive stack pointer. MUUO calls by the Monitor to itself can be 
nested to a number of levels, but in all cases User In-out is left clear. The 
particular AC block used at any level is specified by the stack pointer. Hence 
the AC stack in the user process table is effectively a pushdown list kept by 
the stack pointer; at each level the program must change the pointer to 
specify the appropriate block. Each user process table would contain the 
blocks needed for carrying out MUUOs for that user. 

EXAMPLE. Suppose that the Monitor has been called by an MUUO from 
the user (hence User In-out is set) and wishes to save the user's ACs in the 
shadow area. Assume that every user runs with AC block 1,2 or 3, and that 
the Monitor always sets up executive virtual page 342 to point to the same 
physical page as user page O. Using accumulator T in block 0, the Monitor 
saves the user ACs by giving these two instructions, 

MOVEI 
XCT 

T,342000 ;Initialize pointer: from 0 to 342000 
1,[BLT T,342000J 

and restores them with these two. 

MOVSI 
XCT 

T,342000 ;From 342000 to 0 
2,[BLT T,17] 

2.16 KAlO MODES 

The KAIO has only user and executive modes and uses protection and 
relocation hardware. 

Every user is assigned a core area and the rest of core is protected from 
him - he cannot gain access to the protected area for either storage or 
retrieval of information. The assigned area is divided into two parts. The 
low part is unique to a given user and can be used for any purpose. The 
high part may be for a single user, or it may be shared by several users. The 
Monitor can write-protect the high part so that the user cannot alter its 
contents, ie he cannot write anything in it. The Monitor would do this when 
the high part is to be a pure procedure to be used reentrantly by several 

SYSTEM REFERENCE 

2-107 

This makes a different set of 
sixteen words available at each 
level using the same addresses. 



SYSTEM REFERENCE 

2-108 

Note that the relocated low 
part is actually in two sections 
with the larger beginning at 
RI + 20. This is because ad­
dresses 0 -17 are not relo­
cated, all users having access 
to the accumulators. The 
Monitor uses the first sixteen 
locations in the low user 
block to store the user's accu­
mulators when ills program is 
not running. 

Some systems have only the 
low pair of protection and 
relocation registers. In tills 
case the user program is 
always nonreentrant and the 
assigned area comprises only 
the low part. 

-130-

CENTRAL PROCESSOR §2.16 

o 
LOW 

ILLEGAL 

400000 
HIGH 

ILLEGAL 

777777 

USER ADDRESSES 
BEFORE RELOCATION 

<----------~----~ o 17 
\ 
\ 

\ 

\ 
\ 
\ 

\ 

HIGH 
\ 1----1 Rh + 400000 

\ \ I 

\ \ / 
\ \ I J----j Rh + Ph + 1777 

\ \ I I 

\ " / \ I \I 
A 1\ 

/ \ / \ 
I A \ 

I / \ \ _______ R 
/ / \ 'I-----j I RI + 20 

I I \ 
I 

/ 

\ 
/ \ 

LOW 

I \ 
I \------1 RI + PI + 1777 

I 
I 
I 
I 
I 

I NON I 

: EXISTENT: 
I MEMORY I 
I I 
I I 
I I 
I I 
I I L _______ .J 

Rh MUST BE NEGATIVE 
UNLESS SYSTEM HAS A 
MEMORY LARGER THAN 
128K 

TYPICAL PHYSICAL ADDRESS 
CONFIGURA TION AFTER RELOCATION 

users. One high pure segment may be used with any number of low impure 
segments. The user can request that the Monitor write-protect the high part 
of a single program, eg in order to debug a reentrant program. All users write 
programs beginning at address 0 for the low part, and beginning usually at 
400000 for the high part. The programmed addresses are retained in the 
object program but are relocated by the hardware to the physical. area 
assigned to the user as each access is made while the program is running. 

The size and position of the user area are defined by specifying protection 
and relocation addresses for the low and high blocks. The protection address 
determines the maximum address the user can give; any address larger than 
the maximum is illegal. The relocation address is the address, as seen by the 
Monitor and the hardware, of the first location in the block. The Monitor 
defines these addresses by loading four 8-bit registers, each of which 
corresponds to the left eight bits (18-25) of an address whose right ten bits 
are all O. 

To determine whether an address is legal its left eight bits are compared 
with the appropriate protection register, so the maximum user address 
consists of the register contents in its left eight bits, 1777 in its right ten bits 
(ie it is equal to the protection address plus 1777). Since the set of all 
addresses begins at zero, a block is always an integral multiple of 102410 
(20008) locations. Relocation is accomplished simply by adding the contents 
of the appropriate relocation register to the user address, so the first address 
in a block is a multiple of 2000. The relative user and relocated address 



-131-

§2.16 KAIO MODES 

configurations are therefore as illustrated here, where P" R" Ph and Rh are· 
respectively the protection and relocation addresses for the low and high 
parts as derived from the 8-bit registers loaded by the Monitor. If the low 
part is larger than 128K locations, ie more than half the maximum memory 
capacity (P, > 400000), the high part starts at the first location after the low 
part (at location P, + 2000). The high part is limited to "I28K. If the Monitor 
defines two parts but does not write-protect the high part, the user has a. 
two-part nonreentrant program. 

If the user attempts to access a location outside of his assigned area, or 
if the high part is write-protected and he attempts to alter its contents, the 
current instruction terminates immediately, the Memory Protection flag is 
set (status bit 22 read by CONI APR,), and an interrupt is requested on the 
channel assigned to the processor [ § 2.14] . 

User Programming. The user must observe the following rules when pro­
gramming on a time shared basis. [Refer to the Monitor manual for further 
information including use of the Monitor for input-output. ] 
• Use addresses only within the assigned blocks for all purposes- retrieval 
of instructions, retrieval of addresses, storage or retrieval of operands. The 
low part contains locations with addresses from 0 to the maximum; the high 
part contains from the greater of 400000 or P, + 2000 to the maximum. 
Either part can address the other. 
• If the high part is write-protected, do not attempt to store anything in it. 
In particular do not execute a JSR or JSA into the high part. 
• Use instruction codes 000 and 040-127 only in the manner prescribed in 
the Monitor manual. 
• Unless User In-out is set do not give any 10 instruction, HALT (JRST 4,) 
or JEN (JRST 12, (specifically JRST 10,». The program can determine if 
User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or 
PUSHJ. 

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does 
not clear User (a program cannot leave user mode this way); and a 1 in bit 6 
does not set User In-out, so the user cannot void any of the restrictions 
himself. Note that a 0 in bit 6 will clear User In-out, so a user can discard 
his own special privileges. 

LUUOs (001-037) function normally and are relocated to addresses 40 
and 41 in the low block [§ 2.10]. 

Monitor Programming. The Monitor must assign the core area for each 
user program, set up trap and interrupt locations, specify whether the user 
can give 10 instructions, transfer control to the user program, and respond 
appropriately when an interrupt occurs or an instruction is executed in 
unrelocated 41 or 61. Core assignment is made by this instruction. 

DATAD APR, Data Out, Arithmetic Processor 

70014 y 
o 121314 1718 35 

Load the protection and relocation registers from the contents of location 

SYSTEM REFERENCE 

2-109 

The user can actually write 
any size. program: the Monitor 
will assign enough core for his 
needs. Basically the user must 
write a sensible program; if he 
uses absolute addresses scat­
tered all over memory his 
program cannot be run on a 
time shared basis with others. 

These instructions are illegal 
unless User In-out is set. 



SYSTEM REFERENCE 

2-110 

For a two part nonreentrant 
program, set P = O. For a one­
part nonreentrant program, 
make Ph <.PI . If the hardware 
has only one set of protection 
and relocation registers, the 
user area is defined by PI and 
R I , the rest of the word is 
ignored. 

The trap locations are 140-
141 and 160-161 in a second 
KA10 processor. 

The clock referred to through­
out this section is the DKlO 
reai time clock and should 
not be confused with the 
line frequency clock whose 
flag is one of the processor 
conditions [§ 2.14] . 

-132-

CENTRAL PROCESSOR §2.17 

E as shown, where PI, Ph, Rr and Rh are the protection and relocation 

I Pr18-25 I I Ph 18-25 Ipi Rr18-25 I I Rh 18-25 I I 
l I I I I I I I I I I I I I I I I I I I I I I I I I I I 

o 789 161718 252627 3435 

addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the 
user to write in the high part of his area. . 

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle 
hi~ own input-output. The Monitor can also transfer control to the user with 
this instruction by programming a 1 in bit 5 of the PC word, or it may jump 
to the user program with a JRST 1, which automatically sets User. The set 
state of this flag implements the user restrictions. 

While User is set, certain instructions are not part of the user program and 
are therefore completely unrestricted, namely those executed in the interrupt 
locations (which are not relocated) and in unrelocated trap locations 41 and 
61. Illegal instructions and UUO codes 000 and 040-077 are trapped in 
unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and 

. BLKO can be used in the even interrupt locations, and if there is no over­
flow, the processor returns to the interrupted user program. JSR should 
ordinarily be used in the remaining even interrupt locations, in odd interrupt 
locations following block 10 instructions, and in 41 and 61. The JSR clears 
User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are 
acceptable in that they clear User, but the first two require an accumulator 
(all accumulators should be available to the user) and the latter two do not 
save the flags. 

After taking appropriate action, the Monitor can return to the user program 
with a JRSTF or JEN that restores the flags including User and User In-out. 

2.17 REAL TIME CLOCK OKlO 

This processor option can be used to signal the end of a specified real time 
interval or to measure the real time taken by an event. With appropriate 
software the DKIO can easily be used to keep the time of day. The basic 
elemerit in the clock is an IS-bit binary counter that is incremented repeated­
iy by a clock source; a 100 kHz ± .01 % crystal-controlled source is available 
internally, or a source of any frequency up to 400 kHz can be provided ex­
ternally. Operation is synchronized so that the program can read the counter 
at any time without missing a count. Associated with the counter is an IS-bit 
interval register, which can be loaded by the program. Each time the count 
reaches the number held in the register, the clock requests an interrupt while 
the counter clears and begins a new count. With the internal clock source, 
whose period is 10 MS, the total count is about 2.6 seconds. 

The pro~am turns the clock on and off by enabling and disabling the 
counter. The clock has two modes of operation: with the User Time flag 



-133-

§2.17 REAL TIME CLOCK DKIO 

clear, the counter operates continuously; with User Time set, the counter 
stops while the processor is handling interrupts. Hence in the latter mode 
the clock discounts interrupt time and can be used to time user programs. 
In a system that contains two clocks, one can be used by the Monitor to 
time user programs while the other is used to keep the time of day. 

Instructions. The clock device code is 070, mnemonic CLK. A second 
clock would have device code 074. 

CONO CLK, Conditions Out, Clock 

70720 y 
o 121314 1718 35 

Assign the interrupt channel specified by bits 33-35 of the effective condi­
tions E and perform the functions specified by bits 23-32 as shown (a 1 in 
a bit produces the indicated function, a 0 has no effect). 

18 19 20 21 22 

SET 
COUNT 

(ERFLOW 

SET 
COUNT 
DONE 

23 24 

COUNT CLEAR 
CLOCK 

25 26 

CLEAR SET TURN TURN 
USER USER CLOCK CLOCK 
TIME TIME OFF ON 

27 28 29 30 

A in bit 26 clears the clock counter and the Count Done, Count 
Overflow and User Time flags, turns off the clock, and dismisses the PI 
assignment (assigns zero). The effect of giving conflicting conditions 
is indeterminate. 

CONI CLK, Conditions In, Clock 

70724 y 
o 121314 1718 35 

Read the contents of the interval register into the left half of location E and 
read the status of the clock into bits 26-35 as shown. 

EXTERNAL 
SOURCE 

COUNT 
OVERFLOW 

SYSTEM REFERENCE 

2-111 

CLEAR 
COUNT 

CLEAR PRIORITY 
INTERRUPT 

(ERFLOW 

31 

COUNT 
DONE ASSIGNMENT 

I I 
32 33 34 35 

A 1 in bit 25 increments 
the counter provided the clock 
is off (this is for mainte­
nance only). 

PRIORITY ~ ~* * 
USER CLOCK 
TIME ON 

18 19 20 21 22 23 24 25 26 27 28 29 30 

Notes. 

Interrupts are requested on the assigned channel by the setting of Count 
Overflow and Count Done. 

COUNT INTERRUPT 
DONE ASSIGNMENT 

I I 
31 32 33 34 35 

*These bits request interrupts. 



SYSTEM· REFERENCE. 

2-112 

\ 

Note that to time a user prop­
erly, the Monitor must also 
compensate for any noninter­
rupt time taken from the 
user. 

The comparison of the coun­
ter against the interVal register 
that follows every count is 
inhibited while this instruc­
tion is loading the register. 

The counter is always stable 
while being read, and any 
count held back is picked 
up immediately afterward. 

Following turnon the first 
count may occur at any time 
up to the full period of the 
source. 

Remember that although a 
CONO need not affect the 
mode or the clock state, every 
CONO must renew the PI 
assignment. 

26 

28 

-134-

CENTRAL PROCESSOR §2.17 

The counter is connected to an external source (0 indicates the 
internal source is connected). 

The counter cannot be incremented while an interrupt is being held 
or a request has been accepted and the channel is waiting for an 
interrupt to start. 

DATAO CLK, Data Out, Clock 

70714 y 

o 121314 1718 3S 

Load the contents of the right half of location E into the interval register. 

DATAl CLK, Data I n, Clock 

70704 y 
o 121314 1718 3S 

Read the current contents of the clock counter into the right half of 
location E. 

InitialIy the program should give a CONO CLK, I 000 to clear the clock, 
and then give a DAT AO to select the interval and a CONO to turn on the 
clock, select the mode, and assign the interrupt channel. When the count 
reaches the specified interval, Count Done sets, requesting an interrupt on 
the assigned channel. At the same time, the counter clears and a new count 
begins with the next pulse. The program should respond with a CONO to 
clear Count Done. 

The interval can be changed at any time simply by giving a DAT AO. 
However, if the program does not clear the counter at the same time, then it 
should make sure that the count has not yet reached the value of the new 
interval. If the count is already beyond that point, the counter will con­
tinue until it overflows. When the counter overflows, either because the 
count started too high, the program specified the maximum count (2 18 is 
selected by loading zero), or there is a malfunction of some sort, Count 
Overflow sets, requesting an interrupt, and a new count begins. 

To use the clock to time some operation, turn it on with the counter 
at zero. For a counter reading of C, the elapsed time is 

T(C + nJ) 

where T is the period of the source, n is the number of clock interrupts 
since the clock was started, and I is the interval selected by the program. To 
cause the clock to request an interrupt after T X n JlS, where n ~ 218 and Tis 



-135-

§2.18 KAIO OPERATION 

the period of the source in microseconds, load the interval register with n 
expressed in binary. There is an average indeterminacy of half a count every 
time the counter starts and stops. Therefore, when the clock is keeping user 
time, there is an average indeterminacy of one count for every group of 
overlapping interrupts and requests (not for every interrupt, as the counter 
is inhibited while there is any request or interrupt being held). 

For keeping the time of day , the program can use a memory location to 
maintain a count of the clock interrupts. The location should be cleared 
at midnight, and the time can be determined by combining its contents with 
the current contents of the clock counter. If the location itself is to be used 
as a low resolution clock kept in hours, minutes and seconds, it is better to 
use a more convenient interval than the full count. Using the internal source, 
an interval of 2Y2 seconds, which is octal 750220, is the most straightforward 
interval with the fewest interrupts. To interrupt every second the interval 
would be 303240. 

Operation. The KIl 0 clock , which is usually installed in a DECtape 
cabinet, has a small control panel mounted directly on the logic behind the 
cabinet doors. In the lower part of the panel is a switch for selecting the 
internal source or an external input from the BNC connector at the right. 
The external input must be supplied through a 100 ohm coaxial cable and 
must have a frequency no greater than 400 kHz; its triggering voltage change 
must be from -3 volts to ground. If the input is a pulse train, the minimum 
pulse width is 100 ns. If the input is a sequence of level changes, it must 
have a minimum low level (-3 volts) duration of 400 ns before each positive­
going change, a rise time of 60 ns maximum, and a high level duration of 
40 ns minimum. 

The leftmost light in the upper row at the top of the panel indicates when 
the clock is on (ie when the counter is enabled). The next two lights are the 
Count Overflow and Count Done flags. TIME OUT indicates when the num­
bers in the interval register and the clock counter are identical - this light 
goes out as soon as either changes state. The remaining lights in the upper 
row are the PI assignment. The two lights at the left in the lower row display 
signals that synchronize the DAT AI and DAT AO to the clock so that count­
ing is postponed while the counter is being read and there is no sampling 
while the interval is being loaded. PIOK8 is a processor-generated signal 
which indicates that there is no interrupt being held and no channel waiting 
for an interrupt ; the next light is the User Time flag. The final two lights 
indicate the origin of the clock source. 

2.18 KAIO OPERATION 

Most of the controls and indicators used for normal operation of the proces­
sor and for program debugging are located on the console operator panel 
shown here. The indicators are on the vertical part of the panel ; in front of 
them are two rows of two-position keys and switches (keys are momentary 
contact , switches are alternate action). A key or switch is on or represents 
a 1 when the front part is down. 

SYSTEM REFERENCE 

2-113 

Note that an error of .01% 
amounts to 8.64 seconds in 
24 hours. 

Clock Control Panel 



SYSTEM REFERENCE 

2-114 

-136-

CENTRAL PROCESSOR §2.18 

The thirty-six switches in the front row and the eighteen 
at the right in the back row are respectively the data and 
address switches through which the operator can supply 
words and addresses for the program and for use in conjunc­
tion with the operating keys and switches. The correspond­
ence of switches to bit positions is indicated by the numbers 
at the bottom row of lights. At the left end of the back row 
are ten operating switches, which supply continuous control 
levels to the processor. At their right are ten operating keys, 
which initiate or terminate operations in the processor:' The 
names of the operating keys and switches appear on the ver­
tical part of the panel below the lights. 

Also of interest to the operator is the small panel shown 
opposite, which is located above the main panel at the left 
of the tape reader. The upper section of this panel contains 
a total hours meter and the margin-check controls. The lower 
section contains the power switch, speed controls for slowing 
down the program, switches to select the device for readin 
mode (lower part in represents a 1), and four additional 
operating switches. The normal position for these last four 
is with the upper part in; in this position FM ENB (fast 
memory enable) is on, the others are all off. 

Indicators 

When any indicator is lit the associated flipflop is 1 or the 
associated function is true. Some indicators display useful 
information while the processor is running, but many change 
too frequently and can be discussed only in terms of the 
information they display when the processor is stopped. The 
program can stop the processor only at the completion of the 
HALT instruction ; the operator can stop it at the end of 
every instruction or memory reference, or for maintenance 
purposes, after every step in any operation that uses the shift 
counter (shifting, multiplication, division, byte manipulation). 

Of the long rows of lights at the right on the operator 
panel, the top row displays the contents of PC , the middle 
row displays the instruction being executed or just completed , 
and the bottom row are the memory indicators. The right 
half of the middle row displays MA, the left half displays IR 
[see page 1-2] . In an 10 instruction the left three instructiQn 
lights are on, the remaining instruction lights and the left AC 
light are the device code, and the remaining AC lights com­
plete the instruction code. The I, index and MA lights change 
with each indirect reference in an effective address calcula­
tion; at the end of an instruction I is always off. 

Above the memory indicators appear two pairs of words, 
PROGRAM DATA and MEMORY DATA. If the triangular 
light beside the former pair is 011, the indicators display a 



-137-

§2.18 KAIO OPER ATION 

word supplied by a DATAO PI, ; if any other data is 
displayed the light beside MEMORY DATA is on 
instead. While the processor is running the physical 
addresses used for memory reference (the relocated 
address whenever relpcation is in effect) are compared 
with the contents of the address switches. Whenever 
the two are equal the contents of the addressed 
location are displayed in the memory indicators. 
However, once the program loads the indicators, they 
can be changed only by the program until the opera­
tor turns on the MI program disable switch, executes 
a key function that references memory , or presses the 
reset key (see below) . 

The four sets of seven lights at the left display the 
state of the priority interrupt channels [see pages 
2-81 to 2-85]. The PI ACTIVE lights indicate which 
channels are on. The lOB PI REQUEST lights 
indicate which channels are receiving request signals 
over the in-out bus ; the PI REQUEST lights indicate 
channels on which the processor has accepted re­
quests. Except in the case of a program-init iated 
interrupt, a REQUEST light can go on only if the 
corresponding ACTIVE light is on . The PI IN 
PROGRESS lights indicate channels on which inter­
rupts are currently being held; the channel that is 
actually being serviced is the lowest-numbered one 
whose light is on. When a PROGRESS light goes on, 
the corresponding REQUEST goes off and cannot go 
on again until PROGRESS goes off when the interrupt is dismissed. 

At the left end of the panel are a power light and these control indicators. 

RUN 
The processor is in normal operation with one instruction following another. 
When the light goes off, the processor stops. 

PION 
The priority interrupt system is active so in'terrupts can be started (this 
corresponds to CONI PI, bit 28). 

PROGRAM STOP 
IR now contains a HALT instruction. If RUN is off, MA displays an 
address one greater than that of the location containing the instruction that 
caused the halt , and PC displays the jump address (the location from which 
the next instruction will be taken if the operator presses the continue key) . 

SYSTEM REFERENCE 

2-115 

Above: Margin Check and 
Maintenance Panel 
Opposite: Console Operator 
Panel 

N01'E: If a REQUEST light 
stays on indefinitely with the 
associated PROGRESS light 
off and PC is stat ic , check the 
Pi CYC light on the indicator 
panel at the top of bay 2, If 
it is on , a faulty program has 
hu ng up the processor. Press 
STOP, 

If RUN and PROGRAM 
STOP are both o n, the proc­
esso r is probably in an in­
direc t address loop , Press 
STOP , 



SYSTEM REFERENCE 

2-116 

CAUTION 

Never press two keys simul­
taneously as the processor· 
may attempt to perform both 
functions at once. 

If RUN is on, pressing this 
key has no effect. 

-138-

CENTRAL PROCESSOR § 2.18 

USER MODE 
The processor is in user mode (this corresponds to bit 5 of a PC word). 

MEMORY STOP 
The processor has stopped at a memory reference. This can be due to single 
cycle operation, satisfaction of an address condition selected at the console, 
reference to a nonexistent memory location, or detection of a parity error. 

The remaining processor lights are on the indicator panels at the tops of 
the bays [illustrated on page F2J. Bay 2 displays AR, BR and MQ, the 
output of the AR adder, and the parity buffer which receives every word 
transmitted over the memory bus. The RL and PR lights at the lower right 
display the relocation and protection registers for the low part of the area 
assigned to a user program and the left eight bits of the relocated address 
for that part. The remaining lights are for maintenance. 

The upper four rows on the bay 1 panel include the indicators for reader, 
punch and teletype, which are described in Chapter 3. The bottom row 
displays the information on the data lines in the 10 bus. The AR lights at 
the upper right are the flags - FXU is Floating (exponent) Underflow, DCK 
is No Divide (divide check). OV COND is the condition that the 0 and I 
carries are different, ie the condition that indicates overflow. The First 
Part Done flag is BYF6 in the MISC lights in the top row; User In-out is 
lOT USER in the EX lights at the center of the panel. The CPA lights in 
the top row and the five lights under them at the left are the processor 
conditions - PDL OV is Pushdown (list) Overflow. The AS= lights in the 
middle row indicate when the (relocated) core memory address or the fast 
memory address is the same as the address switches. The remaining lights 
are for maintenance. 

The panels on the memories are shown in Appendix F. These are 
almost exclusively for maintenance, and (as with most of the lights on 
the processor bays) if the operator must use them he should consult the 
maintenance manual and the flow charts. The ACTIVE lights indicate which 
processor currently has access to the memory. 

Operating Keys 

Each key except STOP turns on one of the key indicators at the upper right 
on the bay 2 panel. These are for flipflops that allow the key functions to be 
repeated automatically and also allow certain of them to be synchronized to 
the processor time chain so they can be performed while the processor is 
running. 

READ IN 
Clear all 10 devices and all processor flags including User; turn on the RIM 
light in the upper right on bay I and the KEY RDI light in the upper right 



-139-

§2.18 KAIO OPERATION 

on bay 2. Execute DATAl D,O where D is the device code specified by the 
readin device switches on the small panel at the left of the reader. Then 
execute a series of BLKI D,O instructions until the left half of location 0 
reaches zero, at which time turn off RIM and KEY RDI. Stop only if t~e 
single instruction switch is on; otherwise turn on RUN and execute the last 
word read as an instruction. [For information on the data format refer to 
page 2-79.] 

START 
Load the contents of the address switches into PC, turn on RUN, and begin 
normal operation by executing the instruction at the location specified by 
PC. 

This key function does not disturb the flags or the 10 equipment; hence 
if USER MODE is lit a user program can be started. 

CONT (Continue) 
Turn on RUN (if it is off) and begin normal operation in the state indicated 
by the lights. 

STOP 
Turn off RUN so the processor stops before beginning the next instruction. 
Thus the processor usually stops at the end of the current instruction, which 
is displayed in the lights. However, if a key function that can be performed 
while RUN is on has been synchronized, the processor performs that func­
tion before stopping. In either case PC points to the next instruction. 

If the processor does not reach the end of the instruction within 100 ps, 
inhibit further effective address calculation - it is assumed the processor is 
caught in an indirect addressing loop. Pressing CONT when the processor is 
stopped in an address loop causes it to start the same instruction over. 

RESET 
Clear all 10 devices and clear the processor including all flags. Turn on the 
triangular light beside MEMORY DATA (turn off the light beside PRO­
GRAM DATA). If RUN is on duplicate the action of the STOP key before 
clearing. 

XCT 
Execute the contents of the data switches as an instruction without incre­
menting PC. If RUN is on, insert this instruction between two instructions 
in the program. Inhibit priority interrupts during its execution to guarantee 
that it will be finished. 

If USER MODE'is lit all user restrictions apply to an instruction executed 
from the console. 

SYSTEM REFERENCE 

2-117 

The rightmost device switch 
is for bit 9 of the instruction 
and thus selects the least sig­
nificant octal digit (which is 
always 0 or 4) in the device 
code. 

CAUTION 

Do not initiate any other key 
function while RIM is on. If 
read in must be stopped (eg 
because of a crumpled tape), 
press RESET (see below). 

If RUN is on, pressing this 
key has no effect. 

If STOP will not stop the 
processor, pressing this key 
will. 

Note that an instruction· exe­
cuted from the console can 
alter the processor state just 
like any instruction in the 
program: it can change PC by 
jumping or skipping, alter the 
flags, or even cause a non­
eXistent-memory stop. 



SYSTEM REFERENCE 

2-118 

If RUN is on, pressing this 
key has no effect. 

If RUN is on, pressing this 
key has no effect. 

-140-

CENTRAL PROCESSOR 

NOTE 

The remaining key functions all reference memory. 
They use an absolute address and all of memory is 
available to them; in other words protection and 
relocation are not in effect even if USER MODE is 
lit. However they can set such flags as Address 
Break and Nonexistent Memory. 

EXAMINE THIS 

§2.18 

Display the contents of the address switches in the MA lights and the con­
tents of the location specified by the address switches in the memory indica­
tors. Turn on the triangular light beside MEMORY DATA (turn off the 
light beside PROGRAM DATA). If RUN is on, insert this function between 
two instructions in the program. 

EXAMINE NEXT 
Add I to the address displayed in the MA lights and display the contents of 
the location specified by the incremented address in the memory indicators. 
Turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA). 

DEPOSIt 
Deposit the contents of the data switches in the location specified by the 
address switches. Display the address in the MA lights and the word 
deposited in the memory indicators. Turn oh the triangular light beside 
MEMORY DATA (turn off the light beside PROGRAM DATA). If RUN is 
on, insert this function between two instructions in the program. 

DEPOSIT NEXT 
Add I to the address displayed in the MA lights and deposit the contents of 
the data switches in the location specified by the incremented address. Dis­
play the word deposited in the memory indicators. Turn on the triangular 
light beside MEMORY DATA (turn off the light beside PROGRAM DATA). 

Operating Switches 

Whenever the processor references memory at the location specified by the 
address switches (relocated if USER MODE is on), the contents of that loca­
tion are displayed in the memory indicators (unless the light beside 
PROGRAM DATA is on). The group of five switches at the left of the keys 
allows the operator to make the processor halt or request an interrupt when 



-141-

§2.18 KAIO OPERATION 

reference is made to the specified location in core memory for a particular 
purpose (no action is produced by fast memory reference). The purpose is 
selected by the three address condition switches. INST FETCH selects the 
condition that access is for retrieval of an instruction (including an instruc­
tion executed by an XCT or contained in an interrupt location or a trap for 
an unimplemented operation) or an address word in an effective address cal­
culation. DATA FETCH selects access for retrieval of an operand (other 
than in an XCT). WRITE selects access for writing in memory. Whenever 
reference to the specified location satisfies any selected address condition, 
the processor performs the action selected by the other two switches. ADR 
STOP halts the processor with MEMORY STOP on (PC points to the instruc­
tion that was being executed, or if the MC WR light on bay 2 is on, PC may 
point to the one following it); ADR BREAK turns on the CPA ADR BRK 
light (Address Break flag, CONI APR, bit 21) on bay 1, requesting an inter- . 
rupt on the processor channel. 

The description of each switch relates the action it produces while it is on. 

SING INST 
Whenever the processor is placed in operation, clear RUN so that it stops at 
the end of the first instruction. Hence the operator can step through a pro­
gram one instruction at a time, by pressing START for the first one and 
CONT for subsequent ones. Each time the processor stops, the ligh,ts display 
the same information as when STOP is pressed. 

CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts 
while SING INST is on. Otherwise interrupts would occur at a faster rate 
than the instructions. 

SING INST will not stop the processor if a hangup prevents it from getting 
to the end of an instruction. Use STOP or RESET. 

SING CYCLE 
Whenever the processor is placed in operation, stop it with MEMORY STOP 
on at the end of the first core memory reference. Hence the operator can 
step through a program one memory reference at a time, by pressing START 
for the first one and CO NT for subsequent ones. To determine what infor­
mation is displayed in the lights, consult the flow charts. 

PAR STOP 
Stop with MEMORY STOP on at the end of any memory reference in which 
even parity is detected in a word read. A parity stop is indicated by the fol­
lowing: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the 
PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are 
off, STOP is on, and BIT displays the parity bit for the word in the parity 
buffer at the left. 

SYSTEM REFERENCE 

2-119 

AC and index register refer­
ences can be included by 
turning off the FM ENB 
switch (see below). 

To stop at AC and index 
register references, turn off 
the FM ENB switch (see 
below). 

If IGN is on (it displays a sig­
nal from the memory), parity 
errors are not detected and no 
stop can occur. 



SYSTEM REFERENCE 

2-120 

The key function is repeated 
once after REPT is turned 
off, but this is noticeable only 
with very long repeat delays. 

The end of a key function is 
equivalent to completion of 
all processor operations asso­
ciated with the function only 
for read in, examine, examine 
next, deposit, and deposit 
next. In other cases the proc­
essor continues in operation. 
Eg the execute function is 
finished once the instruction 
to be executed is set up 
internally, but the processor 
then executes that instruc­
tion. Hence when using speed 
range 6, the operator must be 
careful not to allow the key 
function to restart before the 
processor is really finished. 

-142-

CENTRAL PROCESSOR §2.l8 

NXM STOP 
Stop with MEMORY STOP on if a memory reference is attempted but the 
memory does not respond within 100 IlS. This type of stop is indicated by 
CPA NXM FLAG (Nonexistent Memory flag) on bay 1 being on. 

REPT 
If any key (except STOP) is pressed, then every time the key function is 
finished, wait a period of time determined by the setting of the speed control 
and repeat the given key function. If CO NT is pressed and no switch is on 
that would stop the program (eg SING INST, SING CYCLE), then continue 
following the repeat delay whenever a HAtT instruction is executed. Con­
tinue to repeat the key function until RESET is pressed or REPT is turned 
off. 

The speed control includes a six-position switch that selects the delay 
range and a potentiometer for fine adjustment within the range. Delay 
ranges are as follows. 

Position Range 

I 270 ms to 5.4 seconds 

2 38 ms to 780 ms 

3 3.9 ms to 78 ms 

4 390 IlS to 7.8 ms 

5 27 IlS to 540 IlS 

6 2.2 IlS to 44 IlS 

MI PROG DIS 
Turn on the triangular light beside MEMORY DATA (turn off the light 
beside PROGRAM DATA) and inhibit the program from displaying any in­
formation in the memory indicators. The indicators will thus continually 
display the contents of locations selected from the console. 

REPT BYP 
If REPT is on, trigger the repeat delay at the beginning of the key function. 
Hence the function is repeated even if it does not run to completion. 

FM ENB 
This switch is left on for normal operation with a fast memory. Turning it 
off (lower part in) substitutes the first sixteen core locations for the fast 
memory. The switch is left off if there is no fast memory, and it can be used 
to allow stopping or breaking at fast memory references. 



-143-

§2.19 KII 0 OPERATION 

SHIFT CNTR MAINt 
Stop before each step in any shift operation. Pressing CONT resumes the 
operation. Once a shift has been stopped, the processor will continue to 
stop at each step throughout the rest of the given shift operation even if the 
switch is turned off. 

At the right end of panel I J behinq the bay doors are two toggle switches. 
FP TRP causes the floating point and byte manipulation instructions (codes 
130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap 
and interrupt locations to 140-161 for a second processor connected to the 
same memory. 

Inside each memory bay are switches for selecting the memory number 
and interleaving memories. Also in the memory are a power switch, a restart 
pushbutton, and a switch for single step operation (these three are located 
on the indicator panel for the MBIO memory). 

NOTE 
Information on the KIl 0 operation is not available 
at this time. 

SYSTEM REFERENCE 

2-121 





-145- SYSTEM REFERENCE 

Appendices 





-147-

APPENDIX A 

INSTRUCTION AND DEVICE MNEMONICS 

The illustration on the next pa~e shows the derivation of the instruction 
mnemonics. The two tables following it list all instruction mnemonics and 
their octal codes both numerically and alphabetically. When two mnemonics 
are given for the same octal code, the first is the preferred form, but the 
assembler does recognize the second. For completeness, the table includes 
the MUUOs (indicated by an asterisk) that are recognized by MACRO for com­
munication with the DECsystem-'-1 0 Time Sharing Monitor. A double dagger 
(:1:) indicates a KII 0 instruCtion code that is unassigned in the KAI O. 

In-out device codes are included only in the alphabetic listing and are 
indicated by a dagger (t). Following the tables is a chart that lists the 
devices with their mnemonic and octal codes and DEC option numbers for 
both PDP-IO and PDP-6. A device mnemonic ending in the numeral 2 is 
the recommended form for the second of a given device, but such codes are 
not recognized by MACRO - they must be defmed by the user. 

Beginning on page All is a list of all instructions showing their actions 
in symbolic form. 

Al 

SYSTEM REFERENCE 



SYSTEM REFERENCE 

A2 

MOVl; Negative ]---------, 
e MagnItude 
e Swapped 

I no effect I 
Half word {Right! to {Right} Ones 

Left f Left Zeros 
Extend sign 

BLock Transfer 

EXCHange AC and memory 

-148-

MNEMONICS 

Immediate to AC 

to Memory I to AC 

to Self 

use present pOinter} d {loaD Byte into AC 

Increment pointer an DePosit Byte in memory 

Increment Byte Pointer 

PUSH down} { ~ 
POP up an4 Jump 

SET toIM~:re~S )---. 
emory 

Complement of Ac 
Complement of Memory, lAC 

AC Immediate 
to 

Memory AND } I :ith Complement of Ac I 
inclusive OR with Complement of Memory .- Both 

Complements of Both 

eXclusive OR ___________ ...J 
Inclusive OR I 
EQuiValence 

SKIP if memory} 
JUMP if AC ---------, 

Add One to } {memory and SkiP} if 
Subtract One from AC and Jump 

{Immediate} " 
Compare Ac , 'I M and skip If AC , Wit 1 emory 

never 
Less 
Equal 
Less or Equal 
Always 
Greater 
Greater or Equal 
Not equal 

" {Positive 
Add One to Both halves of AC and Jump If N t" 
" , ega Ive 

Arithmetic SHift I { 
Logical SHift "C b' d 
ROTate . om me 

~3~ract 1 
MULtiply 

Integer MULtiply -=:JI ~ 
DiVide Immediate 
Integer DIVide to Memory 

~~:::~: ~:~ract I [and Round I ~:'" 
Floating MultiPly to Memory 
Floating DiVide to Both 

Floating SCale 

Double Floating Negate 

Unnormalized Floating Add 

FIX 
FIX and Round 

FLoa T and Round 

Double Floating AdD 
Double Floating SuBtract 
Double Floating MultiPly 
Double Floating DiVide 

Double MOV, { E } {~ 
e Negative to Memory 

Jump 

to SubRoutine 
and Save Pc 
and Save Ac 
and Restore Ac 
if Find First One 
on Flag and Clear it 
on OVerflow (JFCL 10,) 
on CaRrY 0 (JFCL 4,) 
on CaRrY 1 (JFCL 2,) 
on CaRrY (JFCL 6,) 
on Floating OVerflow (JFCL I,) 
and ReSTore 
and ReSTore Flags (JRST 2,) 
and ENable PI channel (JRST 12,) 

HALT (JRST 4,) 

PORT AL (JRST I,) 

eXeCuTe 

DATA} 

BlocK :{{In 
Out 

CONditions , 
, d Skf {all masked bits Zero 
m an Ip I some masked bit One 

I with Direct mask I 
T with Swappeq mask 

est AC Right with E 

Left with E 

I 
No modification ] 1 never 
set masked bits to Zeros d k' if all masked bits Equal 0 
set masked bits to Ones an s Ip if Not all masked bits equal 0 
Complement masked bits Always 



000 ILLEGAL 

001 1 
LUUO'S 

037 
040 *CALL 
041 *INIT 

M2} 043 RESERVED 

044 FOR 
SPECIAL 

045 MONITORS 

046 
047 *CALLI 
050 *OPEN 
051 *TTCALL 

052
1 

053 RESERVED 
FOR DEC 

054 
055 *RENAME 
056 *IN 
057 *OUT 
060 *SETSTS 
061 *STATO 
062 *STATUS 
062 *GETSTS 
063 * STATZ 
064 *INBUF 
065 *OUTBUF 
Q66 *INPUT 
067 *OUTPUT 
070 *CLOSE 
071 *RELEAS 
072 *MTAPE 
073 *UGETF 
074 *USETI 
075 *USETO 
076 *LOOKUP 
077 *ENTER 
100 *UJEN 
101 
102 
103 
104 
105 

-149-

NUMERIC LISTING 

INSTRUCfION MNEMONICS 

NUMERIC LISTING 

106 
107 
110 :j:DFAD 
1 11 :j:DFSB 
112 :j:DFMP 
113 :j:DFDV 
114 
115 
116 
117 
120 :j:DMOVE 
121 :j:DMOVN 
122 :j:FIX 
123 
124 :j:DMOVEM 
125 :j:DMOVNM 
126 :j:FIXR 
127 :j:FLTR 
130 UFA 
131 DFN 
132 FSC 
133 IBP 
134 ILDB 
135 LDB 
136 IDPB 
137 DPB 
140 FAD 
141 FADL 
142 FADM 
143 FADB 
144 FADR 
145 FADRI 
146 FADRM 
147 FADRB 
150 FSB 
151 FSBL 
152 FSBM 
153 FSBB 
154 FSBR 
155 FSBRI 
156 FSBRM 
157 FSBRB 
160 FMP 
161 FMPL 

SYSTEM REFERENCE 

A3 

162 FMPM 
163 FMPB 
164 FMPR 
165 FMPRI 
166 FMPRM 
167 FMPRB 
170 FDV 
171 FDVL 
172 FDVM 
173 FDVB 
174 FDVR 
175 FDVRI 
176 FDVRM 
177 FDVRB 
200 MOVE 
201 MOVEI 
202 MOVEM 
203 MOVES 
204 MOVS 
205 MOVSI 
206 MOVSM 
207 MOVSS 
210 MOVN 
211 MOVNI 
212 MOVNM 
213 MOVNS 
214 MOVM 
215 MOVMI 
216 MOVMM 
217 MOVMS 
220 IMUL 
221 IMULI 
222 IMULM 
223 IMULB 
224 MUL 
225 MULl 
226 MULM 
227 MULB 
230 IDIV 
231 IDIVI 
232 IDIVM 
233 IDIVB 
234 DIV 
235 DIVI 



SYSTEr~ REFERENCE -150-

A4 MNEMONICS 

236 DIVM 306 CAIN 367 SOJG 
237 DIVB 307 CAIG 370 SOS 
240 ASH 310 CAM 371 SOSL 
241 ROT 311 CAML 372 SaSE 
242 LSH 312 CAME 373 SOSLE 
243 JFFO 313 CAMLE 374 SO SA 
244 ASHC 314 CAMA 375 SOSGE 
245 ROTC 315 CAMGE 376 SOSN 
246 LSHC 316 CAMN 377 SOSG 
247 317 CAMG 400 SETZ 
250 EXCH 320 JUMP 400 CLEAR 
251 BLT 321 JUMPL 401 SETZI 
252 AOBJP 322 JUMPE 401 CLEARI 
253 AOBJN 323 iUMPLE 402 SETZM 
254 JRST 324 JUMPA 402 CLEARM 
25404 PORTAL 325 JUMPGE 403 SETZB 
25410 JRSTF 326 JUMPN 403 CLEARB 
25420 HALT 327 JUMPG 404 AND 
25450 JEN 330 SKIP 405 ANDI 
255 JFCL 331 SKIPL 406 ANDM 
25504 JFOV 332 SKIPE 407 ANDB 
25510 JCRYI 333 SKIPLE 41'0 ANDCA 
25520 JCRYO 334 SKIPA 411 A.NpCAI 
25530 JCRY 335 SKIPGE 412 ANDCAM 
25540 JOV 336 SKIPN 413 ANDCAB 
256 XCT 337 SKIPG 414 SETM 
257 tMAP 340 AOJ 415 SETMI 
260 PUSHJ 341 AOJL 416 SETMM 
261 PUSH 342 AOJE 417 SETMB 
262 POP 543 AOJLE 420 ANDCM 
263 POPJ 344 AOJA 421 ANDCMI 
264 JSR 345 AOJGE 422 ANDCMM 
265 JSP 346 AOJN 423 ANDCMB 
266 JSA 347 AOJG 424 SETA 
267 JRA 350 AOS 425 SETAl 
270 ADD 351 AOSL 426 SETAM 
271 ADDI 352 AOSE 427 SETAB 
272 ADDM 353 AOSLE 430 XOR 
273 ADDB 354 AOSA 431 XORI 
274 SUB 355 AOSGE 432 XORM 
275 SUBI 356 AOSN 433 XORB 
276 SUBM 357 AOSG 434 lOR 
277 SUBB 360 SOJ 434 OR 
300 CAl 361 SOJL 435 IORI 
301 CAlL 362 SOJE 435 ORI 
302 CAIE 363 SOJLE 436 IORM 
303 CAlLE 364 SOJA 436 aRM 
304 CAIA 365 SOJGE 437 IORB 
3p5 CAIGE 366 SOJN 437 ORB 



,..151- SYSTEM REFERENCE 

NUMERIC LISTING AS 

440 ANDCB 521 HLLOI 602 TRNE 
441 ANDCBI 522 HLLOM 603 TLNE 
442 ANDtBM 523 HLLOS 604 TRNA 
443 ANDCBB 524 HRLO 605 TLNA 
444 EQV 525 HRLOI 606 TRNN 
445 EQVI 526 HRLOM 607 TLNN 
446 EQVM 527 HRLOS 610 TDN 
447 EQVB 530 HLLE 611 TSN 
450 SETCA 531 HLLEI 612 TDNE 
451 SETCAI 532 HLLEM 613 TSNE 
452 SETCAM 533 HLLES 614 TDNA 
453 SETCAB 534 HRLE 615 TSNA 
454 ORCA 535 HRLEI 616 TDNN 
455 ORCAI 536 HRLEM 6i7 TSNN 
456 ORCAM 537 HRLES 620 TRZ 
457 ORCAB 540 HRR 621 TLZ 
460 SETCM 541- HRRI 622 TRZE 
461 SETCMI 542 HRRM 623 TLZE 
462 SETCMM 543 HRRS 624 TRZA 
463 SETCMB 544 HLR 625 TLZA 
464 ORCM 545 HLRI 626 TRZN 
465 ORCMI 546 HLRM 627 TLZN 
466 ORCMM' 547 HLRS 630 TDZ 
467 ORCMB 550 HRRZ 631 TSZ 
470 ORCB 551 HRRZI 632 TDZE 
471 ORCBI 552 HRRZM 633 TSZE 
472 ORCBM 553 HRRZS 634 TDZA 
473 ORCBB 554 HLRZ 635 TSZA 
474 SETO 555 HLRZI 636 TDZN 
475 SETOI 556 HLRZM 637 TSZN 
476 SETOM 557 HLRZS 640 TRC 
477 SETOB 560 HRRO 641 TLC 
500 HLL 561 HRROI 642 TRCE 
501 HLLI 562 HRROM 643 TLCE 
502 HLLM 563 HRROS 644 TRCA 
503 HLLS 564 HLRO 645 TLCA 
504 HRL 565 HLROI 646 TRCN 
505 HRLI 566 HLROM 647 TLCN 
506 HRLM 567 HLROS 650 TDC 
507 HRLS 570 HRRE 651 TSC 
510 HLLZ 571 HRREI 652 TDCE 
511 HLLZI 572 HRREM 653 TSCE 
512 HLLZM 573 HRRES 654 TDCA 
513 HLLZS 574 HLRE 655 TSCA 
514 HRLZ 575 HLREI 656 TDCN 
515 HRLZI 576 HLREM 657 TSCN 
516 HRLZM 577 HLRES 660 TRO 
517 HRLZS 600 TRN 661 TLO 
520 HLLO 601 TLN 662 TROE 



SYSTEM REFERENCE 

A6 

663 TLOE 
664 TROA 
665 TLOA 
666 TRON 
667 TLON 
670 TDO 
671 TSO 
672 TDOE 

tADC 024 
ADD 270 
ADDB 273 
ADDI 271 
ADDM 272 
AND 404 
ANDB 407 
ANDCA 410 
ANDCAB 413 
ANDCAI 411 
ANDCAM 412 
ANDCB 440 
ANDCBB 443 
ANDCBI 441 
ANDCBM 442 
ANDCM 420 
ANDCMB 423 
ANDCMI 421 
ANDCMM 422 
ANDI 405 
ANDM 406 
AOBJN 253 
AOBJP 252 
AOJ 340 
AOJA 344 
AOJE 342 
AOJG 347 
AOJGE 345 
AOJL 341 
AOJLE 343 
AOJN 346 
AOS 350 

-152-

MNEMONICS 

673 TSOE 
674 TDOA 
675 TSOA 
676 TDON 
677 TSON 
70000 BLKI 
70004 DATAl 
70004 RSW 

INSTRUCTION MNEMONICS 

ALPHABETIC LISTING 

AOSA 354 
AOSE 352 
AOSG 357 
AOSGE 355 
AOSL 351 
AOSLE 353 
AOSN 356 

tAPR 000 
ASH 240 
ASHC 244 
BLKI 70000 
BLKO 70010 
BLT 251 
CAl 300 
CAIA 304 
CAIE 302 
CAIG 307 
CAIGE 305 
CAlL 301 
CAlLE 303 
CAIN 306 

*CALL 040 
*CALLI 047 
CAM 310 
CAMA 314 
CAME 312 
CAMG 317 
CAMGE 315 
CAML 311 
CAMLE 313 
CAMN 316 

tCCI 014 

70010 BLKO 
70014 DATAO 
70020 CONO 
70024 CONI 
70030 CONSZ 
70034 CONSO 

tCDP 110 
tCDR 114 

CLEAR 400 
CLEARB 403 
CLEARI 401 
CLEARM 402 

tCLK 070 
*CLOSE 070 
CONI 70024 
CONO 70020 
CONSO 70034 
CONSZ 70030 

tCPA 000 
tCR 150 

DATAl 70004 
DATAO 70014 

tDC 200 
tDCSA 300 
tDCSB 304 
tDFAD 110 
tDFDY 113 
:j:DFMP 112 

DFN 131 
:j:DFSB III 

tDIS 130 
DIY 234 
DIYB 237 
DIYI 235 
DIYM 236 

tDLB 060 
tDLC 064 
tDLS 240 



-153- SYSTEM REFERENCE 

ALPHABETIC LISTING A7 

:j:DMOVE 120 FSBRB 157 HRLS 507 
.:j:DMOVEM 124 FSBRI 155 HRLZ 514 
:j:DMOVN 121 FSBRM 156 HRLZI 515 
:j:DMOVNM 125 FSC 132 HRLZM 516 

DPB 137 *GETSTS 062 HRLZS 517 
tDPC 250 HALT 25420 HRR 540 
tDSI 464 HLL 500 HRRE 570 
tDSK 170 HLLE 530 HRREI 571 
tDSS 460 HLLEI 531 HRREM 572 
tDTC 320 HLLEM 532 HRRES 573 
tDTS 324 HLLES 533 HRRI 541 
*ENTER 077 HLLI 501 HRRM 542 
EQV 444 HLLM 502 HRRO 560 
EQVB 447 HLLO 520 HRROI 561 
EQVI 445 HLLOI 521 HRROM 562 
EQVM 446 HLLOM 522 HRROS 563 
EXCH 250 HLLOS 523 HRRS 543 
FAD 140 HLLS 503 HRRZ 550 
FADB 143 HLLZ 510 HRRZI 551 
FADL 141 HLLZI 511 HRRZM 552 
FADM 142 HLLZM 512 HRRZS 553 
FADR 144 HLLZS 513 IBP 133 
FADRB 147 HLR 544 IDIV 230 
FADRI 145 HLRE 574 IDIVB 233 
FADRM 146 HLREI 575 IDIVI 231 
FDV 170 HLREM 576 IDIVM 232 
FDVB 173 HLRES 577 IDPB 136 
FDVL 171 HLRI 545 ILDB 134 
FDVM 172 HLRM 546 IMUL 220 
FDVR 174 HLRO 564 IMULB 223 
FDVRB 177 HLROI 565 IMULI 221 
FDVRI 175 HLROM 566 IMULM 222 
FDVRM 176 HLROS 567 *IN 056 

:j:FIX 122 HLRS 547 *INBUF 064 
:j:FIXR 126 HLRZ 554 *INIT 041 
:j:FLTR 127 HLRZI 555 *INPUT 066 

FMP 160 HLRZM 556 lOR 434 
FMPB 163 HLRZS 557 IORB 437 
FMPL 161 HRL 504 IORI 435 
FMPM 162 HRLE 534 IORM 436 
FMPR 164 HRLEI 535 JCRY 25530 
FMPRB 167 HRLEM 536 JCRYO 25520 
FMPRI 165 HRLES 537 JCRYI 25510 
FMPRM 166 HRLI 505 JEN 25460 
FSB 150 HRLM 506 JFCL 255 
FSBB 153 HRLO 524 JFFO 243 
FSBL 151 HRLOI 525 JFOV 25504 
FSBM 152 HRLOM 526 JOV 25540 
FSBR 154 HRLOS 527 JRA 267 



SYSTEM REFERENCE -154-

A8 MNEMONICS 

JRST 254 ORCAI 455 SETOM 476 
JRSTF 25410 ORCAM 456 *SETSTS 060 
JSA 266 ORCB 470 SETZ 400 
JSP 265 ORCBB 473 SETZB 403 
JSR 264 ORCBI 471 SETZI 401 
JUMP 320 ORCBM 472 SETZM 402 
JUMPA 324 ORCM 464 SKIP 330 
JUMPE 322 ORCMB 467 SKIPA 334 
JUMPG 327 ORCMI 465 SKIPE 332 
JUMPGE 325 ORCMM 466 SKIPG 337 
JUMPL 321 ORI 435 SKIPGE 335 
JUMPLE 323 ORM 436 SKIPL 331 
JUMPN 326 *OUT 057 SKIPLE 333 
LDB 135 *OUTBUF 065 SKIPN 336 

*LOOKUP 076 *OUTPUT 067 SOJ 360 
tLPT 124 tPAG 010 SOJA 364 

LSH 242 tPI 004 SOJE 362 
LSHC 246 tPLT 140 SOJG 367 

:j:MAP 257 POP 262 SOJGE 365 
tMDF 260 POPJ 263 SOJL 361 

MOVE 200 PORTAL 25404 SOJLE 363 
MOVEI 201 tPTP 100 SOJN 366 
MOVEM 202 tPTR 104 SOS 370 
MOVES 203 PUSH 261 SOSA 374 
MOVM 214 PUSHJ 260 SOSE 372 
MOVMI 215 *RELEAS 071 SOSG 377 
MOVMM 216 *RENAME 055 SOSGE 375 
MOVMS 217 ROT 241 SOSL 371 
MOVN 210 ROTC 245 SOSLE 373 
MOVNI 211 RSW 70004 SOSN 376 
MOVNM 212 SETA 424 *STATO 061 
MOVNS 213 SETAB 427 *STATUS 062 
MOVS 204 SETAl 425 *STATZ 063 
MOVSI 205 SETAM 426 SUB 274 
MOVSM 206 SETCA 450 SUBB 277 
MOVSS 207 SETCAB 453 SUBI 275 

*MTAPE 072 SETCAI 451 SUBM 276 
tMTC 220 SETCAM 452 TDC 650 
tMTM 230 SETCM 460 TDCA 654 
tMTS 224 SETCMB 463 TDCE 652 

MUL 224 SETCMI 461 TDCN 656 
MULB 227 SETCMM 462 TDN 610 
MULl 225 . SETM 414 TDNA 614 
MULM 226 SETMB 417 TDNE 612 

*OPEN 050 SETMI 415 TDNN 616 
OR 434 SETMM 416 TDO 670 
ORB 437 SETO 474 TDOA 674 
ORCA 454 SETOB 477 TDOE 672 
ORCAB 457 SETOI 475 TDON 676 



-155- SYSTEM REFERENCE 

ALPHABETIC LISTING A9 

TOZ 630 TRCA 644 TSO 671 
TOZA 634 TRCE 642 TSOA 675 
TOZE 632 TRCN 646 TSOE 673 
TOZN 636 TRN 600 TSON 677 
TLC 641 TRNA 604 TSZ 631 
TLCA 645 TRNE 602 TSZA 635 
TLCE 643 TRNN 606 TSZE 633 
TLCN 647 TRO 660 TSZN 637 
TLN 601 TROA 664 *TTCALL 051 
TLNA 605 TROE 662 UFA 130 
TLNE 603 TRON 666 *UGETF 073 
TLNN 607 TRZ 620 *UJEN 100 
TLO 661 TRZA 624 *USETI 074 
TLOA 665 TRZE 622 *USETO 075 
TLOE 663 TRZN 626 tUTC 210 
TLON 667 TSC 651 tUTS 214 
TLZ 621 TSCA 655 XCT 256 
TLZA 625 TSCE 653 XOR 430 
TLZE 623 TSCN 657 XORB 433 
TLZN 627 TSN 611 XORI 431 

tTMC 340 TSNA 615 ·XORM 432 
tTMS 344 TSNE 613 
TRC 640 TSNN 617 



L 6,10 6,10 10 10 DAIO 10 DA10 10 401010 AD10 

r APR PAG* CPA PI CCI CCI2 AOC AOC2 
CENTRAL PRIORITY KItO pop- 8.9 POP-B,9 ANAlOG-DIGITAl ANALOG-OIGITAI. 

PROCESSOR INTERRUPT PAGING INTERFACE INTERFACE CONVERTER CONVERTER 
6 161 6 76010 CPlO 6 461 6 6266 646 6,10 340 6,10 34010 
10 10 10 10 LPiO 10 VPIO 10 VPIO 

PTP PTR COP CDR TTY LPT DIS OIS2 
PAPER PAPER CONSOLE 

TAPE PlJNCH TAPE READER CARD PUNCH CARD READER TELETYPE LINE PRINTER DISPLAY DISPLAY 

6 136 6 1366 551 6 5166 646 10 
10 LPIO 

DC OC2 UTC UTS MTC MTS MTM LPT2 
DATA DATA 

CONTROL CONTIIlL DECTAPE MAGNETIC TAPE LINE PRINTER 

.6 6]0 10 I TDIO 10 TDIO 10 

OCSA OCSB OTC OTS OTC2 OTS2 
DATA COMMUNICATION DECTAPE DECTAPE 

CODES IN THIS SECTION RESERVED FOR USER SPECIAL DEVICES 

*ORUM PROCESSOR IN POP-6 

fpDP-7,e INTERFACE IN PDP-6 

IN-OUT 
INSTRUCll0N 

WORD 

DEVICE CODE 

10 I OLIO 10 OKlO 10 OKlO 

OLB OLC CLK CLK2 
REAL REAL 

PDP - II DATA LINK TIME CLOCK TIME CLOCK 
XYIO 10 XY1010 CRIO 10 CRIO 10 I OLIO 10 RCIO 10 RCIO 

PLT PLT2 CR CR2 OLB2t OLC2 OSK OSK2 
PLOTTER PLOTTER CARD READER CARD READER POP- I I DATA LINK SMAll DISK SMALL DISK 

OCIO 10 OCIO 10 RPIO 10 RPIO 10 RPIO 10 RPIO 6 270 

OLS OLS2 OPC OPC2 OPC3 OPC4 OF 
DATA LINE DATA LINE DISK PACK DISK PACK DISK PACK DISK PACK 
SCANNER SCANNER SYSTEM SYSTEM SYSTEM SYSTEM DISK FILE 

TIIIO 10 TMIO 

TMC TMS TMC2 TMS2 
MAGNETIC TAPE MAGNETIC TAPE 

KIlO UNRESTRICTED COOES 
RESERVED FOR USERS 

10 OSlO 10 OSlO 

OSS OS! OSS2 OSI2 
SINGLE SYNCHRONOUS SINGLE SYNCHRONOUS 

LINE UNIT LINE UNIT 

KIlO UNRESTRICTEO CODES 
RESERVED FOR DEC 

24 I 
I 

I I 

Ustd .i", PDP-6 ---~ 6 64S-! - Option "ulllber for POP-6 
Used .ithPDP-10----:1\ 0 lP10-=---\ Option IUfllber for POP-10 1 lPT (No nu",b.r indicotes device is 

~ port of ,,,drol proe."or) 

Duice "'~sttodtiS1~=-i LINE PRINTER 1 __ M"'lnollic for 4"il:l. c:04,'24 

I I 
I I 

. DEVICE MNEMONICS 

> 
0 

s:: 
'Z 

t'1 
s:: 
~ 
t=i 
rn 

(/) 

-< 
(/) 
--I 
rn 
:3: 

::;c 
rn .,., 
rn 
::;c 
rn z 
n rn 

I ...... 
V1 
(j) 

I 



-157-

ALGEBRAIC REPRESENT AnoN 

,ALGEBRAIC REPRESENTATION 

The remaining pages of this Appendix list, in, symbolic form, the actual 
operations performed by the instructions. The grouping, as given below, dif­
fers slightly from that used in Chapter 2. 

Boolean A13 In-out AI7 
Byte manipulation AI4 Program control AI7 
Fixed point arithmetic AI4 Pushdown list AI7 
Floating point arithmetic AI4 Shift and rotate AI7 
Full word data transmission AIS Test, arithmetic AI8 
Half word data transmission AI6 Test, logical AI9 

The terminology and notation used also vary somewhat from that in the 
body of the manual, as follows. 

AC 

AC+I 

E 

E+I 

PC 

(X) 

(n 
(X)R 

(X)s 

An 

A,B 

(X,y) 

«X)) 

A~B 

(AC) (E) 

I\VV-

The accumulator address in bits 9-12 of the instruction word 
(represented by A in the instruction descriptions). 

The address one greater than AC, except that AC+ I is 0 if AC is 
17. 

The result of the effective address calculation. E is eighteen bits 
when used as an address, half word operand, mask or output con­
ditions, but is a signed 9-bit quantity when used as a scale factor 
or a shift number. 

The address one greater than E, except that E+ I is 0 if E is 
777777. 

The 18-bit program counter. 

The word contained in register X. 

The left half of (X). 

The right half of (X). 

The word contained in X with its left and right halves swapped. 

The value of bit n of the quantity A. 

A 36-bit word with the 18-bit quantity A in its left half and the 
18-bit quantity B in its right half (either A or B may be 0). 

The contents of registers X and Y concatenated into a double 
word operand. 

The word contained in the register addressed by (X), ie addressed 
by the word in register X. 

The quantity A replaces the quantity B (A and B may be half 
words, full words or double words). Eg 

. (AC) + (E) ~ (AC) 

means the word in accumulator AC plus the word in memory lo­
cation E replaces the word in AC. 

The word in AC and the word in E. 

The Boolean operators AND, inclusive OR, exclusive OR, and com­
plement (logical negation). 

SYSTEM REFERENCE 

All 



SYSTEM REFERENCE 

Al2 

-158-

MNEMONICS 

+ - X -7 II The arithmetic operators for addition, negation or subtraction, 
multiplication, division, and absolute value (magnitude). 

Square brackets are used occasionally for grouping. With respect to the 
values of their terms, the equations for a given instru~tion are in chronolog­
ical order; eg in the pair of equations 

(AC) + I --,)0 (AC) 
If(AC) = 0: E --,)0 (PC) 

the quantity tested in the second equation is the word in AC after it has been 
incremented by one. 



-159- SYSTEM REFERENCE 

ALGEBRAIC REPRESENTATION A13 

Boolean 

SETZ 400 0'" (AC) SETO 474 777777777777 ... (AC) 

SETZI 401 0'" (AC) SETOI 475 777777777777 ... (AC) 

SETZM 402 0'" (E) SETOM 476 777777777777 ... (E) 

SETZB 403 0'" (AC) (E) SETOB 477 777777777777 ... (AC) (E) 

SETA 424 (AC) ... (AC) [no-op] SETCA 450 - (AC)"'(AC) 

SETAl 425 (AC) ... (AC) [no-op] SETCAI 451 - (AC)"'(AC) 

SETAM 426 (AC)'" (E) SETCAM 452 - (AC)'" (E) 

SETAB 427 (AC)'" (E) SETCAB 453 - (AC) ... (AC) (E) 

SETM 414 (E)'" (AC) SETCM 460 - (E)'" (AC) 

SETMI 415 O,E'" (AC) SETCMI 461 - [O,E] ... (AC) 

SETMM 416 (E) ... (E) [no-op] SETCMM 462 - (E)'" (E) 

SETMB 417 (E)'" (AC) (E) SETCMB 463 - (E) ... (AC) (E) 

AND 404 (AC) f\ (E) ... (AC) ANDCA 410 - (AC) f\ (E) ... (AC) 

ANDI 405 (AC) f\ O,E'" (AC) ANDCAI 411 - (AC) f\ O,E'" (AC) 

ANDM 406 (AC) f\ (E)'" (E) ANDCAM 412 - (AC) f\ (E) ... (E) 

ANDB 407 (AC) f\ (E) ... (AC) (E) ANDCAB 413 - (AC) f\ (E)'" (AC) (E) 

ANDCM 420 (AC) f\ - (E) ... (AC) ANDCB 440 - (AC) f\ - (E) ... (AC) 

ANDCMI 421 (AC) f\ - [O,E] ... (AC) ANDCBI 441 - (AC) f\ - [O,E] ... (AC) 

ANDCMM 422 (AC) f\ - (E) ... (E) ANpCBM 442 - (AC) f\ - (E) ... (E) 

ANDCMB 423 (AC) f\ - (E) ... (AC) (E) ANOCBB 443 - (AC) f\ - (E) ... (AC) (E) 

lOR 434 (AC) V (E)'" (AC) ORCA 454 - (AC) V (E)'" (AC) 

IORI 435 (AC) V O,E'" (AC) ORCAI 455 - (AC) V O,E'" (AC) 

IORM 436 (AC) V (E) ... (E) ORCAM 456 - (AC) V (E)'" (E) 

IORB 437 (AC) V (E) ... (AC) (E) ORCAB 457 - (AC) V (E) ... (AC) (E) 

ORCM 464 (AC) V - (E) ... (AC) ORCB 470 - (AC) V - (E) ... (AC) 

ORCMI 465 (AC) V - [O,E] ... (AC) ORCBI 471 - (AC) V - [O,E] ... (AC) 

ORCMM 466 (AC) V - (E) ... (E) ORCBM 472 - (AC) V - (E) ... (E) 

ORCMB 467 (AC) V - (E) ... (AC) (E) ORCBB 473 ~ (AC) V - (E) ... (AC) (E) 

XOR 430 (AC) If (E) ... (AC) EQV 444 - [(AC) If (E)] ... (AC) 

XORI 431 (AC) If O,E ... (AC) EQVI 445 - [(AC) If O,E] ... (AC) 

XORM 432 (AC) If (E)'" (E) EQVM 446 - [(AC) If (E)] ... (E) 

XORB 433 (AC) If (E) ... (AC) (E) EQVB 447 - [(AC) !of (E)] ... (AC) (E) 



SYSTEM REFERENCE -160-

A14 MNEMONICS 

Byte Manipulation 

IBP 133 Operations on (E) [see page 2-16] 
IfP-S~O: P-S-+P 
IfP - S < 0: Y + 1 -+ Y 36 - S-+ P 

LDB 135 BYTEIN «E)) -+ (AC) [see page 2-16] 

DPB 137 BYTE IN (AC) -+ BYTE IN «E)) [see page 2-16] 

ILDB 134 IBPand LDB 

IDPB 136 IBPandDPB 

Fixed Point Arithmetic 

ADD 270 (AC) + (E) -+ (AC) SUB 274 (AC) - (E) -+ (AC) 

ADDI 271 (AC) + O,E -+ (AC) SUBI 275 (AC) - O,E -+ (AC) 

ADDM 272 (AC) -of: (E) -+ (E) SUBM 276 (AC) - (E) -+ (E) 

ADDB 273 (AC) + (E) -+ (AC) (E) SUBB 277 (AC) - (E) -+ (AC) (E) 

IMUL 220 (AC) X (E) -+ (AC)* MUL 224 (AC) X (E) -+ (AC,AC+ 1) 

IMULI 221 (AC) X O,E -+ (AC)* MULl 225 (AC) X O,E -+ (AC,AC+ 1) 

IMULM 222 (AC) X (E) -+ (E)* MULM 226 (AC) X (E) -+ (E)t 

IMULB 223 (AC) X (E) -+ (AC) (E)* MULB 227 (AC) X (E) -+ (AC,AC+ 1) (E) 

IDIV 230 (AC) + (E) -+ (AC) DlV 234 (AC,AC+ 1) + (E) -+ (AC) 
REMAINDER -+ (AC+ 1) REMAINDER -+ (AC+ 1) 

IDiVI 231 (AC) + O,E -+ (AC) DlVI 235 (AC,AC+ 1) + O,E -+ (AC) 
REMAINDER -+ (AC+ 1) REMAINDER -+ (AC+ 1) 

IDlVM 232 (AC) + (E) -+ (E) DlVM 236 (AC,AC+l) + (E) -+ (E) 

IDIVB 233 (AC) + (E) -+ (AC) (E) DlVB 237 . (AC,AC+ 1) + (E) -+ (AC) (E) 
REMAINDER -+ (AC+ 1) REMAINDER -+ (AC+ 1) 

*The high order word of the product is discarded. 
tThe low order word of the product is discarded. 

Floating Point Arithmetic 

FAD 140 (AC) + (E) -+ (AC) FADR 144 (AC) + (E) -+ (AC) 

FADL 141 (AC) + (E) -+ (AC,AC+ 1) FADRI 145 (AC) + E,O -+ (AC) 

FADM 142 (AC) + (E) -+ (E) FADRM 146 (AC) + (E) -+ (E) 

FADB 143 (AC) + (E) -+ (AC) (E) FADRB 147 (AC) + (E) -+ (AC) (E) 

FSB 150 (AC) - (E) -+ (AC) FSBR 154 (AC) - (E) -+ (AC) 

FSBL 151 (AC) - (E) -+ (AC,AC+ 1) FSBRI 155 (AC) - E,O -+ (AC) 

FSBM 152 (AC)- (E) -+ (E) FSBRM 156 (AC) - (E) -+ (E) 

FSBB 153 (AC) - (E) -+ (AC) (E) FSBRB 157 (AC) - (E) -+ (AC) (E) 



-161- SYSTEM REFERENCE 

ALGEBRAIC REPRESENTATION Al5 

FMP 160 (AC) X (E) -+ (AC) FMPR 164 (AC) X (E) -+ (AC) 

FMPL 161 (AC) X (E) -+ (AC,AC+ 1) FMPRI 165 (AC) X E,O -+ (AC) 

FMPM 162 (AC) X (E) -+ (E) FMPRM 166 (AC) X (E) -+ (E) 

FMPB 163 (AC) X (E) -+ (AC) (E) FMPRB 167 (AC) X (E) -+ (AC) (E) 

FDV 170 (AC) -;- (E) -+ (AC) FDVR 174 (AC) -;- (E) -+ (AC) 

FDVL 171 (AC) -;- (E) -+ (AC) FDVRI 175 (AC) -;- E,O -+ (AC) 
REMAINDER -+ (AC+ 1) 

FDVM 172 (AC) -;- (E) -+ (E) FDVRM 176 (AC) -;- (E) -+ (E) 

FDVB 173 (AC) -;- (E) -+ (AC) (E) FDVRB 177 (AC) -;- (E) -+ (AC) (E) 

UFA 130 (AC) + (E) -+ (AC+ 1) without normalization 

DFN 131 - (AC,E) -+ (AC,E) 

FSC 132 (AC) X 2E -+ (AC) 

FLTR 127 (E) floated, rounded -+ (AC) 

FIX 122 (E) fixed -+ (AC) FIXR 126 (E) fixed, rounded -+ (AC) 

DFAD 110 (AC,AC+ 1) + (E,E+ 1) -+ (AC,AC+ 1) 

DFSB 1 1 1 (AC,AC+ 1) - (E,E+ 1) -+ (AC,AC+ 1) 

DFMP 112 (AC,AC+ I) X (E,E+ 1) ~ (AC,AC+ 1) 

DFDV 113 (AC,AC+ 1) -;- (E,E+ 1) ~ (AC,AC+ 1) 

DMOVE 120 (E,E+ 1) ~ (AC,AC+ 1) DMOVEM 124 (AC,AC+ 1) ~ (E,E+ 1) 

DMOVN 121 - (E,E+ 1) ~ (AC,AC+ 1) DMOVNM 125 - (AC,AC+ 1) ~ (E,E+ 1) 

Full Word Data Transmission 

EXCH 250 (AC) # (E) 

BLT 251 Move E - (AC)R + 1 words starting with «Ac)d -+ «AC~) [see page 2-10] 

MOVE 200 (E) -+ (AC) MOVS 204 (E)s~ (AC) 

MOVEI 201 O,E -+ (AC) MOVSI 205 E,O-+ (AC) 

MOVEM 202 (AC) -+ (E) MOVSM 206 (AC)s~ (E) 

MOVES 203 If AC * 0: (E) -+ (AC) MOVSS 207 (E)s ~ (E) 
If AC * 0: (E) -+ (AC) 

MO"N 210 - (E) ~ (AC) MOVM 214 I(E)I -+ (AC) 

MOVNI 211 - [O,E] -+(AC) MOVMI 215 O,E -+ (AC) 

MOVNM 212 - (AC) ~ (E) MOVMM 216 I(Ac)I-+ (E) 

MOVNS 213 - (E) -+ (E) MOVMS 217 I(E)I-+ (E) 
If AC * 0: (E) -+ (AC) If AC * 0: (E) -+ (AC) 



SYSTEM REFERENCE -162-

A16 MNEMONICS 

Half Word Data Transmission 

HLL 500 . (E)L -T (AClL HLLZ . 510 (ElL,O -T (AC) 

HLU 501 O-T(AClL HLLZI 511 O-T(AC) 

HLLM 502 (AClL -T (ElL HLLZM 512 (AClL,O -T (E) 

HLLS 503 If AC *' 0: (E) -T (AC) HLLZS 513 O-T (E)R 
If AC *' 0: (E) -T (AC) 

HLLO 520 (E)L,777777 -T (AC) HLLE 530 (Ek,[(Elo X 777777] -T (AC) 

HLLOI 521 0,777777 -T (AC) HLLEI 531 o -T (AC) 

HLLOM 522 (AClL,777777 -T (E) HLLEM 532 (ACk,[(AClo X 777777] -T (E) 

HLLOS 523 777777 -T (E)R HLLES 533 (Elo X 777777 -T (E)R 
If AC *' 0: (E) -T (AC) If AC *' 0: (E) -T (AC) 

HLR 544 (ElL -T (AC)R HLRZ 554 O,(ElL -T (AC) 

HLRI 545 O-T (AC)R HLRZI 555 o -T (AC) 

HLRM 546 (AClL -T (E)R HLRZM 556 O,(ACk -T (E) 

HLRS 547 (ElL -T (E)R HLRZS 557 O,(Ek -T (E) 
If AC *' 0: (E) -T (AC) If AC *' 0: (E) -T (AC) 

HLRO 564 777777,(ElL -T (AC) HLRE 574 [(Elo X 777777] ,(Ek -T (AC) 

HLROI 565 777777,0 -T (AC) HLREI 575 o -T (AC) 

HLROM 566 777777 ,(AClL -T (E) HLREM 576 [(AClo X 777777] ,(ACk -T (E) 

HLROS 567 777777 ,(ElL -T (E) HLRES 577 [(Elo X 777777] ,(ElL -T (E) 
If AC *' 0: (E) -T (AC) If AC *' 0: (E) -T (AC) 

HRR 540 (E)R -T (AC)R HRRZ 550 O,(E)R -T (AC) 

HRRI 541 E-T (AClR HRRZI 551 O,E -T (AC) 

HRRM 542- (AC)R -T (E)R HRRZM 552 O,(AClR -T (E) 

HRRS 543 If AC *' 0: (E) -T (AC) HRRZS 553 O-T (E\ 
If AC *' 0: (E) -T (AC) 

HRRO 560 777777 ;(E)R -T (AC) HRRE 570 [(E)18 X 777777] ,(E)R -T (AC) 

HRROI 561 777777,E -T (AC) HRREI 571 [E18 X 777777] ,E -T (AC) 

HRROM 562 777777 ,(AC)R -T (E) HRREM 572 [(AC)18 X 777777] ,(AC)R -T (E) 

HRROS 563 777777 -T (ElL HRRES 573 (E)18 X 777777 -T (ElL 
If AC *' 0: (E) -T (AC) If AC *' 0: (E) -T (AC) 

HRL 504 (E)R -T (AClL HRLZ 514 (E)R,O -T (AC) 

HRU 505 E-T (AClL HRLZI 515 E,O-T (AC) 

HRLM 506 (AC)R -T (ElL HRLZM 516 (AC)R,O -T (E) 

HRLS 507 (E)R -T(Ek HRLZS 517 (E)R,O -T (E) 
If AC *' 0: (E) -T (AC) If AC *' 0: (E) -T (AC) 



-163- SYSTEM REFERENCE 

ALG EBRAIC REPRESENT A TION A17 

HRLO 524 (E)R,777777 --+ (AC) HRLE 534 (E)R,[(E)18 X 7777771 --+ (AC) 

HRLOI 525 E,777777 --+ (AC) HRLEI 535 E,[E18 X 7777771 --+(AC) 

HRLOM 526 (AC)R,777777 --+ (E) HRLEM 536 (AC)R,[(AC)18 X 7777771 --+ (E) 

HRLOS 527 (E)R,777777 --+ (E) HRLES 537 (E)R,[(E)18 X 7777771 --+ (E) 
If AC =1= 0: (E) --+ (AC) If AC =1= 0: (E) --+ (AC) 

In-out 

CONO 70020 E --+ COMMAND CONSZ 70030 If STATUSR 1\ E = 0: skip 

CONI 70024 STATUS --+ (E) CONSO 70034 If STATUSR 1\ E =1= 0: skip 

DATAO 70014 (E) --+ DATA DATAl 70004 DATA --+ (E) 

BLKO 70010 (E) + 1000001 --+ (E)* «E~) --+ DATA [see page 2-771 

BLKI 70000 (E) + 1000001 --+ (E)* DATA --+ «E~) [see page 2-771 

Program Control 

JSR 264 FLAGS,(PC) --+ (E) E + I --+ (PC) 

JSP 265 FLAGS,(PC) --+ (AC) E --+ (PC) 

JRST 254 E --+ (PC) [If AC =1= 0, see page 2-631 

JSA 266 (AC) --+ (E) E,(PC) --+ (AC) E + 1 --+ (PC) 

JRA 267 E --+ (PC) «AC)d --+ (AC) 

JFCL 255 If AC 1\ FLAGS =1= 0: E --+ (PC) - AC 1\ FLAGS --+ FLAGS 

XCT 256 Execute (E) 

JFFO 243 If(AC) = 0: 0 -+ (AC + 1) 
If (AC) =1= 0: E -+ (PC) [see page 2-611 

MAP 257 PHYSICAL MAP DATA -+ (AC) 

Pushdown List 

PUSH 261 (AC) + 1000001 -+ (AC)* (E) -+ «AC)R) 

POP 262 «AC)R) -+ (E) (AC) - 1000001 -+ (AC)* 

PUSHJ 260 (AC) + 1000001 -+ (AC)* FLAGS,(PC) -+ «AC)R) E -+ (PC) 

POPJ 263 «AC)R)R -+ (PC) (AC) - 1000001 -+ (AC)* 

Shift and Rotate 

ASH 240 (AC) X 2E -+ (AC) ASHC 245 (AC,AC+I) X 2E--+ (AC,AC+1) 

ROT 241 . Rotate (AC) E places ROTC 246 Rotate (AC,AC+ I) E places 

LSH 242 Shift (AC) E places LSHC 247 Shift (AC,AC+ I) E places 

*In the KIlO, I is added to or subtracted from each half separately. 



SYSTEM REFERENCE ~164-

A18 MNEMONICS 

Arithmetic Testing 

AOBJP 252 (AC) + 100000 1 ~ (AC)* If(AC)~ 0: E~(PC) 

AOBJN 253 (AC) + 100000 1 ~ (AC)* If(AC) < 0: E ~(PC) 

CAl 300 No-op CAM 310 No-op 

CAlL 301 If(AC) < E: skip CAML 311 If(AC) < (E): skip 

CAIE 302 If (AC) = E: skip CAME 312 If(AC) = (E): skip 

CAlLE 303 If (AC) ~ E: skip CAMLE 313 If(AC) ~ (E): skip 

CAIA 304 Skip CAMA 314 Skip 

CAIGE 305 If(AC) ~ E: skip CAMGE 315 If(AC) ~ (E): skip 

CAIN 306 If(AC) * E: skip CAMN 316 If (AC) * (E): skip 

CAIG 307 If (AC) ? E: skip CAMG 317 If(AC) > (E): skip 

JUMP 320 No-op SKIP 330 If AC * 0: (E) ~ (AC) 

JUMPL 321 If (AC) < 0: E ~ (PC) SKIPL 331 If AC * 0: (E) ~ (AC) 
If (E) < 0: skip 

JUMPE 322 If(AC) = 0: E~(PC) SKIPE 332 If AC * 0: (E) ~ (AC) 
If (E) = 0: skip 

JUMPLE 323 If (AC) ~ 0: E ~ (PC) SKIPLE 333 If AC * 0: (E) ~ (AC) 
If (E) ~ 0: skip 

JUMPA 324 E~ (PC) SKIPA 334 If AC * 0: (E) ~ (AC) 
Skip 

JUMPGE 325 If(AC)~ 0: E ~ (PC) SKIPGE 335 If AC * 0: (E) ~ (AC) 
If (E) ~ 0: skip 

JUMPN 326 If(AC) * 0: E ~ (PC) SKIPN 336 If AC * 0: (E) ~ (AC) 
If (E) * 0: skip 

JUMPG 327 If(AC) > 0: E~ (PC) SKIPG 337 If AC *.0: (E) ~ (AC) 
If (E) > 0: skip 

AOJ 340 (AC) + 1 ~ (AC) SOJ 360 (AC) - 1 ~ (AC) 

AOJL 341 (AC) + 1 ~ (AC) SOJL 361 (AC) - 1 ~ (AC) 
If (AC) < 0: E ~ (PC) If (AC) < 0: E ~ (PC) 

AOJE 342 (AC) + 1 ~ (AC) SOJE 362 (AC) - 1 ~ (AC) 
If(AC) = 0: E ~ (PC) If (AC) = 0: E ~ (PC) 

AOJLE 343 (AC) + 1 ~ (AC) SOJLE 363 (AC) - 1 ~ (AC) 
If (AC) ~ 0: E ~ (PC) If (AC) ~ 0: E ~ (PC) 

AOJA 344 (AC) + I ~ (AC) SOJA 364 (AC) - I ~ (AC) 
E~ (PC) E~ (PC) 

AOJGE 345 (AC) + I ~ (Ae) SOJGE 365 (AC) - 1 ~ (AC) 
If (AC) ~ 0: E ~ (PC) If(AC) ~ 0: E ~ (PC) 

*In the KIlO, I is added to or subtracted from each half separately. 



-165- SYSTEM REFERENCE 

ALGEBRAIC REPRESENTATION AI9 

AOJN 346 (AC) + I ~ (AC) SOJN 366 (AC) - I ~ (AC) 
If (AC) =1= 0: E ~ (PC) If (AC) =1= 0: E ~ (PC) 

AOJG 347 (AC) + I ~ (AC) SOJG 367 (AC) - I ~ (AC) 
If (AC) > 0: E ~ (PC) If (AC) > 0: E ~ (PC) 

AOS 350 (E) + I ~ (E) SOS 370 (E)....:. I ~ (E) 
If (AC) =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 

AOSL 351 (E)+ I ~ (E) SOSL 371 (E) - I ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If (E) < 0; skip If (E) < 0: skip 

AOSE 352 (E) + I ~ (E) SOSE 372 (E) - I ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If(E) = 0: skip If(E) = 0: skip 

AOSLE 353 (E) + I ~ (E) SOSLE 373 (E) - I ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If(E) ~ 0: skip If (E) ~ 0: skip 

AOSA 354 (E) + I ~ (E) SOSA 374 (E) - I ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
Skip Skip 

AOSGE 355 (E) + 1 ~ (E) SOSGE 375 (E) - 1 ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If (E) ~ 0: skip If (E) ~ 0: skip 

AOSN 356 (E) + 1 ~ (E) SOSN 376 (E) - 1 ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If(E) =1= 0: skip If (E) =1= 0: skip ~ 

AOSG 357 (E) + 1 ~ (E) SOSG 377 (E) - I ~ (E) 
If AC =1= 0: (E) ~ (AC) If AC =1= 0: (E) ~ (AC) 
If(E) > 0: skip If (E) > 0: skip 

Logical Testing and Modification 

TLN 601 No-op TRN 600 No-op 

TLNE 603 If (ACk 1\ E = 0: skip TRNE 602 If (AC)R 1\ E = 0: skip 

TLNA 605 Skip TRNA 604 Skip 

TLNN 607 If (ACk 1\ E =1= 0: skip TRNN 606 If (AC~ 1\ E =1= 0: skip 

TLZ 621 (ACk 1\ - E ~ (ACk TRZ 620 (AC)R 1\ - E ~ (AC)R 

TLZE 623 If (ACk 1\ E = 0: skip TRZE 622 If (AC~ 1\ E = 0: skip 
(ACk 1\ - E ~ (ACk (AC)R 1\ - E ~ (AC)R 

TLZA 625 (AC)L 1\ - E ~ (ACk skip TRZA 624 (AC)R 1\ - E ~ (AC)R skip 

TLZN 627 If(ACk 1\ E =1= 0: skip TRZN 626 If (AC)R 1\ E =1= 0: skip 
(ACk 1\ - E -+ (ACk (AC~ 1\ - E ~ (AC)R 



SYSTEM REFERENCE -166-

A20 MNEMONICS 

tLC 641 (AC\. \f E ~ (AC\. TRC 640 (AC)R \f E ~ (AC)R 

TLCE 643 If (ACh. 1\ E = 0: skip TRCE 642 If (AC~ 1\ E = 0: skip 
(ACh. \f E ~ (ACh. (AC)R \f E ~ (AC)R 

TLCA 645 (ACh. \f E ~ (ACh. skip TRCA 644 (AC)R \f E ~ (AC)R skip 

TLCN 647 If (ACh. 1\ E =1= 0: skip TRCN 646 If (AC)R 1\ E =1= 0: skip 
(ACh. \f E ~ (ACh. (AC)R \f E ~ (AC)R 

TLO 661 (ACh. V E ~ (ACh. TRO 660 (AC)R V E ~ (AC)R 

TLOE 663 If(ACh. 1\ E = 0: skip TROE 662 If(AC)R 1\ E = 0: skip 
(ACh. V E ~ (ACh. (AC~ V E ~ (AC)R 

TLOA 665 (ACh. V E ~ (ACh. skip TROA 664 (AC)R V E ~ (AC)R skip 

TLON 667 If (ACh. 1\ E =1= 0: skip TRON 666 If (AC)R 1\ E =1= 0: skip 
(ACh. V E ~ (ACh. (AC)R V E ~ (AC)R 

TDN 610 No-op TsN 611 No-op 

TDNE 612 If(AC) 1\ (E) = 0: skip TSNE 613 If (AC) 1\ (E)g = 0: skip 

TDNA 614 Skip TSNA 615 Skip 

TDNN 616 If (AC) 1\ (E) =1= 0: skip TSNN 617 If (AC) 1\ (E)g =1= 0: skip 

TDZ 630 (AC) 1\ - (E) ~ (AC) TSZ 631 (AC) 1\ - (E)g ~ (AC) 

TDZE 632 If (AC) 1\ (E) = 0: skip TSZE 633 If (AC) 1\ (E)g = 0: skip 
(AC) 1\ - (E) ~ (AC) (AC) 1\ - (E)s ~ (AC) 

TDZA 634 (AC) 1\ - (E) ~ (AC) skip TSZA 635 (AC) 1\ - (E)s ~ (AC) skip 

TDZN 636 If (AC) 1\ (E) =1= 0: skip TSZN 637 If (AC) 1\ (E)s =1= 0: skip 
(AC) 1\ - (E) ~ (AC) (AC) 1\ - (E)g ~ (Ae) 

TDC 650 (AC) \f (E) ~ (AC) TSC 651 (AC) \f (E)g ~ (AC) 

TDCE 652 If(AC) 1\ (E) = 0: skip TSCE 653 If (AC) 1\ (E)g = 0: skip 
(AC) \f (E) ~ (AC) (AC) \f (E)g ~ (AC) 

TDCA 654 (AC) \f (E) ~ (AC) skip TSCA 655 (AC) \f (E)s ~ (AC) skip 

TDCN 656 If (AC) 1\ (E) =1= 0: skip TSCN 657 If (AC) 1\ (E)s =1= 0: skip 
(AC) \f (E) ~ (AC) (AC) \f (E)s ~ (AC) 

TDO 670 (AC) V (E) ~ (AC) TSO 671 (AC) V (E)g ~ (AC) 

TDOE 672 If(AC) 1\ (E) = 0: skip TSOE 673 If (AC) 1\ (E)s = 0: skip 
(AC) V (E) ~ (AC) (AC) V (E)s ~ (AC) 

TDOA 674 (AC) V (E) ~ (AC) skip TSOA 675 (AC) V (E)g ~ (AC) skip 

TDON 676 If (AC) 1\ (E) =1= 0: skip TSON 677 If(AC) 1\ (E)s =1= 0: skip 
(AC) V (E) ~ (AC) (AC) V (E)g ~ (AC) 



-167-

APPENDIX B-

INPUT-OUTPUT CODES 

The table beginning on the next page lists the complete teletype code. The 
lower case character set (codes 140-176}is not available on the Model 35, 
but giving one of these codes causes the teletype to print the corresponding 
upper case character. Other differences between the 35 and 37 are men­
tioned in the table, The definitions of the control codes are those given by 
ASCII. Most control codes, however, have no effect on the console teletype, 
and the definitions bear no necessary relation to the use of the codes in con-' 
junction with the DECsystem-l 0 software. 

The line printer has the same codes and characters as the teletype. The 
64-character printer has the figure and upper _ case sets, codes 040-137 
(again, giving a lower case code prints the upper case character). The "96"­
character printer has these plus the lower case set, codes 040-176. The 
latter printer actually has only ninety-five characters unless a special charac­
ter is "hidden" under the cielete code, 177. A hidden character is printed by 
sending its code prefixed by the delete code. Hence a character hidden under 
DEL is printed by sending the printer two 177s in a row. 

Besides printing characters, the line printer responds to ten control charac­
ters, HT, CR, LF, VT ,FF, DLE and DC 1-4. The 128-character printer uses 
the entire set of 7-bit codes for printable characters, with characters hidden 
under the ten control characters that affect the printer and also under null 
and delete. In all cases, prefixing DEL causes the hidden character to be 
printed. The extra thirty-three characters that complete the set are ordered 
special for each installation. 

The first page of the table of card codes [pages B6-8] lists the column 
punch required to represent any character in the two DEC codes. The octal 
codes listed are those used by the DECsystem-l 0 software. In other words, 
when reading cards, the Monitor translates the column punch into the octal 
code shown; when punching cards, it produces the listed column punch when 
given the corresponding code. The remaining pages of the table show the 
relationship between the DEC card codes and several IBM card punches. 
Each of the column punches is produced by a single key on any punch for 
which a character is listed, the character being that which is printed at the 
top of the card. 

Bl 

SYSTEM REFERENCE 



SYSTEM REFERENCE 

B2 

Even 
Parity 

Bit 

o 

I 

o 
I 

o 

o 

o 
o 

1 

o 

o 
I 

o 
o 

o 

I 

o 
o 

I 

o 

1 

o 

7-Bit 
Octal 
Code Character 

000 NUL 

001 SOH 

002 STX 

003 ETX 

004 EOT 

005 ENQ 

006 ACK 

007 BEL 

010 BS 

011 HT 

012 

013 

014 

015 

016 

017 

020 

021 

022 

023 

024 

025 

026 

027 

030 

031 

032 

033 

034 

035 

LF 

VT 

FF 

CR 

SO 

SI 

DLE 

DCI 

DC2 

DC3 

DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SUB 

ESC 

FS 

GS 

-168-

INPUT-OUTPUT CODES 

TELETYPE CODE 

Remarks 

Null, tape feed. Repeats on Model 37. Control shift P on Model 35. 

Start of heading; also SOM, start of message. Control A. 

Start of text; also EOA, end of address. Control B. 

End of text; also EOM, end of message. Control C .. 

End of transmission (END); shuts off TWX machines. Control D. 

Enquiry (ENQRY); also WRU, "Who are you?" Triggers identification 
("Here is ... ") at remote station if so equipped. Control E. 

Acknowledge; also RU, "Are you ... ?" Control F. 

Rings the bell. Control G. 

Backspace; also FEO, format effector. Backspaces some machines. 
Repeats on Model 37. Control H on Model 35. 

Horizontal tab. Control I on Model 35. 

Line feed or line space (NEW LINE); advances paper to next line. Repeats 
on Model 37. Duplicated by control J on Model 35. 

Vertical tab (VTAB). Control K on Model 35. 

Form feed to top of next page (PAGE). Control L. 

Carriage return to beginning of line. Control M on Model 35. 

Shift out; changes ribbon color to red. Control N. 

Shift in; changes ribbon color to black. ControlO. 

Data link escape. Control P (DCO). 

Device control I, turns transmitter (reader) on. Control Q (X ON). 

Device control 2, turns punch or auxiliary on. Control R (TAPE, 
AUX ON). 

Device control 3, turns transmitter (reader) off. Control S (X OFF). 

Device control 4, turns punch or auxiliary off. Control T (~, 
AUX OFF). 

Negative acknowledge; also ERR, error. Control U. 

Synchronous idle (SYNC). Control V. 

End of transmission block; also LEM, logical end of medium. Control W. 

Cancel (CANCL). Control X. 

End of medium. Control Y. 

Substitute. Control Z. 
Escape, prefix. This code is generated by control shift K on Model 35, 
but the Monitor translates it to 175. 

File separator. Control shift L on Model 35. 

Group separator. Control shift M on Model 35. 



-169- SYSTEM REFERENCE 

TELETYPE CODE B3 

Even 7-Bit 
Parity Octal 

Bit Code Character Remarks 

0 036 RS Record separator. Control shift N on Modtd 35. 
037 US Unit separator. Control shift 0 on Model 35. 

040 SP Space. 

0 041 

0 042 

043 # 
0 044 $ 

045 % 
046 & 

0 047 Accent acute or apostrophe. 

0 050 ( 

I 051 ) 

052 * Repeats on Model 37. 

0 053 + 
054 

0 055 Repeats on Model 37. 

0 056 Repeats on Model 37. 

I 057 / 
0 060 f/J 

061 I 

I 062 2 

0 063 3 

I 064 4 

0 065 5 

0 066 6 

067 7 

070 8 

0 071 9 

0 072 

I 073 

0 074 < 

075 = Repeats on Model 37. 

I 076 > 

0 077 ? 

100 @ 

0 101 A 

0 102 B 



SYSTEM REFERENCE .... 170-

B4 INPUT·OUTPUT CODES 

Even 7-Bit 
Parity Octal 

Bit Code Character Remarks 

1 103 C 

0 104 D 
105 E 

106 F 

0 107 G 

0 110 H 

III I 

112 J 

0 113 K 

114 L 

0 115 M 

0 116 N 
117 0 

0 120 P 

1 121 Q 

1 122 R 

0 123 S 

1 124 T 

0 125 U 

0 126 V 

1 127 W 

1 130 X Repeats on Model 37. 

0 131 y 

0 132 Z 

133 [ Shift K on Model35. 

0 134 \ Shift L on Model 35. 

135 1 Shift M on Model 35. 

136 t 
0 137 +- Repeats on Model 37. 

0 140 Accent grave. 

141 a 

142 b 

0 143 c 

1 144 d 

0 145 e 

0 146 f 

147 g 



Even 
Parity 

Bit 

o 
o 
I 

o 

1 

o 

o 
o 
1 

o 

I 

o 
o 

o 

o 
o 

REPT 

7-Bit 
Octal 
Code Olaracter 

150 h 

151 

152 

153 

154 

j 

k 

I 

155 m 

156 

157 

n 

o 

160 p 

161 

162 

163 

164 

q 

r 

s 

165 u 

166 

167 

170 

v 

w 

x 

171 Y 

172 z 
173 

174 

175 

176 

177 

{ 

DEL 

PAPER ADVANCE 

LOCAL RETURN 

LOCLF 

LOCCR 

INTERRUPT, BREAK 

PROCEED, BRK RLS 

HERE IS 

-171- SYSTEM REFERENCE 

TELETYPE CODE B5 

Remarks 

Repeats on Model 37. 

This code generated by ALT MODE on Model 35. 

This code generated by ESC key (if present) on Model 35, but the 
Monitor translates it to 175. 

Delete, rub out. Repeats on Model 37. 

Keys That Generate No Codes 

Model 35 only: causes any other key that is struck to repeat continuously 
until REPT is released. 

Model 37 local line feed. 

Model 37 local carriage return. 

Model 35 local line feed. 

Model 35 local carriage return. 

Opens the line (machine sends a continuous string of null characters). 

Break release (not applicable). 

Transmits predetermined 2 I-character message. 



SYSTEM REFERENCE -172-

B6 INPUT·OUTPUT CODES 

CARD CODES 

PDP-IO PDP-IO 
Character ASCII DEC 029 DEC 026 Character ASCII DEC 029 DEC 026 

Space 040 None None @ ioo 84 84 
! 041 1182 12 8 7 A 101 12 1 12 1 

042 87 085 B 102 12 2 12 2 
# 043 8 3 086 C 103 12 3 12 3 
$ 044 11 8 3 11 8 3 D 104 124 124 
% 045 084 087 E 105 12 5 12 5 
& 046 12 11 8 7 F 106 12 6 12 6 

047 8 5 86 G 107 12 7 12 7 
( 050 12 8 5 084 H 110 12 8 12 8 
) 051 11 8 5 1284 I 111 12 9 12 9 

* 052 11 8 4 11 8 4 J 112 11 1 11 1 
+ 053 12 8 6 12 K 113 112 112 

054 083 083 L 114 11 3 11 3 
055 11 11 M 115 11 4 II 4 
056 1283 12 8 3 N 116 11 5 II 5 

/ 057 o 1 01 0 117 11 6 116 
0 060 0 0 P 120 11 7 117 
1 061 1 1 Q 121 11 8 II 8 
2 062 2 2 R 122 1 I 9 11 9 
3 063 3 3 S 123 02 02 
4 064 4 4 T 124 03 03 
5 065 5 5 U 125 04 04 
6 066 6 6 V 126 05 o 5 
7 067 7 7 W 127 06 06 
8 070 8 8 X 130 07 07 
9 071 9 9 y 131 08 08 

072 82 11 8 2 or 11 0 Z 132 09 09 
073 1186 082 [ 133 12 8 2 11 8 5 

< 074 1284 1286 \ 134 1187 8 7 
075 86 8 3 ] 135 082 12 8 5 

> 076 086 1186 t 136 12 8 7 8 5 
? 077 087 12 8 2 or 12 0 +- 137 085 8 2 

Binary 7 9 
Mode Switch 1202468 
End of File 12 11 0 I, 6 7 8 9, 12 11 0 I 67 8 9 

The octal codes given above are those generated by the Monitor from the column punches. The card 
reader interface actually supplies a direct binary equivalent of the column punch, as listed in the following 
two pages. 

The first end-of-file punch is not recognized by Card Reader Stacker (CDRSTK); the other two are 
recognized only by Card Reader Stacker. 



-173- SYSTEM REFERENCE 

CARD CODES B7 

Column Column 
Punch Character Octal Punch Character Octal 

None Space 0000 129 I 4001 
0 0 1000 111 J 2400 

1 0400 11 2 K 2200 
2 2 0200 113 L 2100 
3 3 0100 114 M 2040 
4 4 0040 115 N 2020 
5 5 0020 116 0 2010 

6 6 0010 117 P 2004 

7 7 0004 118 Q 2002 
8 8 0002 119 R 2001 
9 9 0001 o 1 / 1400 
12 1 A 4400 02 S 1200 
12 2 B 4200 03 T 1100 
123 C 4100 04 U 1040 
124 D 4040 o 5 V 1020 
12 5 E 4020 06 W 1010 
126 F 4010 07 X 1004 
12 7 G 4004 08 y 1002 
12 8 H 4002 09 Z 1001 

Column 026 Data 026 
Punch Processing Fortran 029 DEC 026 DEC 029 Octal 

12 & + & + & 4000 
11 2000 
120 ? 5000 
11 0 3000 
82 +- 0202 
8 3 # # = # 0102 
84 @ @ @ @ 0042 
8 5 t 0022 
86 = 0012 
87 \ 0006 
12 8 2 ¢ ? 4202 
1283 4102 
1284 II ) < < 4042 
12 8 5 ( ( 4022 
1286 + < + 4012 



SYSTEM REFERENCE -174-

B8 INPUT.OUTPUT CODES 

Column 026 Data 026 
Punch Processing Fortran 029 DEC 026 DEC 029 Octal 

1287 t 4006 
11 82 2202 
1183 $ $ $ $ $ 2102 

11 84 * * * * * 2042 
11 8 5 ) 2022 

1186 > 2012 
11 87 -, & \ 2006 
082 See note , 1 1202 
083 1102 
084 % ( % ( % 1042 

085 +- +- 1022 
086 > # > 1012 
087 ? % ? 1006 
121101 End of File * End 0/ File * 7400 

120 246 8 Mode Switch Mode Switch 5252 

79 Binary Binary xx05 
6789 End of Filet End of Filet 
1211016789 End of Filet End of Filet 

NOTE: There is a single key for the 0 8 2 punch on the 029 but printing is suppressed. 
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a 

12 8 2 punch), and the code for II 0 to 2202 (II 8 2). 

*Not recognized as end of file by Card Reader Stacker (CDRSTK). 
tRecognized only by Card Reader Stacker (CDRSTK). 



-175-

APPENDIX C 

TIMING 

The chart on the next two pages shows the detailed timing for the KA I O. A 
similar chart for the KII 0 and timing tables for both processors will be 
added later. 

Cl 

SYSTEM REFERENCE 



SYSTEM REFERENCE 

C2 

KA10 

AOQRESS 
CALCULATION 

INSTRUCTION TIMING 
FLOW CHART 

INSTRUCTIONS THAT USE READ/MODIFY 

All Boolean In Memory and Both mode~ excepl SEll, SETA, SETCA, SETO 
ADDM, ADDB, SUBM, SUBB 
HRRM. HRLM, HLRM, HLLM and all half words in Self mode 
MOVES, MDVNS, MOVMS, MOVSS 
ILOB, lOPS (first lime only) 
IBP, BLKI, BLKO, DFN, EXCH 
ADS, 50S In all modes 

-176-

TIMING 

DATA FETCH 

t-------I. IF IN U~~~l MODE 



-177-

KAlO TIMING 

INSTRUCTION EXECUTION 

Bllulean (ellcept ANOCA, AN DeB. ORCA. ORCSI, 
H .. II Words (except HLR. HLRt, HRl. HRlI), MOVE, 
MOVS. EXCH. JfCL. JRST. JSP. XCT. UUO 17 

ANOCA. ANOCB. ORCA. ORCB. HLR. HLRI. 
HRl. HRlI. JSR.JSA, JRA. Tes! clau 

MOVN. MOVM. AOO. SUB. AOBJP. AOBJN. 
CAM. CAl. SKIP. JUMP. AOJ. AOS. SOJ. SOS 

PUSH. PUSHJ. POP. POPJ. OfN 

JFFO 

BL T 

IBP 

LOB.OPB Flfstlllnt' 

ILOB.IOPB FIfSllllllt' 

ILOB. LOB Second lime 

IOPB.OPB Second lillie 

Shih group 

MUL 
Averaye uc:epl MUll 

IMUL 
Averallfr-kcepllMULI 

fMP 
AVI!IJqe ekcepl FMPRI 

61 

4~ 

.80 

80 • 19 11111PS numher olieildlllg Os 111011 18 

69 ( •. 11 ,I Usrrl I memory wflle access' .!t2 
1I11t11 ,tulle· 09 and 1)0 to C3 

3B I 26 IllIvertlnlftt word houndary 

61 1!t per Slle COlIlli Go 10 Cl 

.74 {. I!I pel SlleeOllnt } 
• 26.' overflow 

Go to C1 

.4~ • .15 per POSllIOil count 

9~ 15 pel posilion counl 

1 39L,II } 
23 Rlqhl 

•. 15 pel shill 

601 • 13 pt111iUlS11101l 

8.36 118ltansltltlT1S 1012.341 

634 13 perlritlllalron 
7.~1 19 IId1l5111011" I", , 171 

6.39 • 13 perlranSlllUII 
811 114 trallSllmllS 101182) 

Nole IIlIIlledhlle mude lIIulllphc .. llon hdS ollly h .. lllht' aver.llie nUnlhel of 11,111$111011$ 

OIV.IDIV 

fSC 

fAD. UfA 
AverdQ( 

fSB 

RoundlllQ lell;ept dlvldel only whplI aClually dune 

LOllg ~lIode lucepl dlvldel 

FOVR. FDV leltcepl FDVU 

FDVl Wllh 1251 ACs 

FDVL withal"'.51 ACs 

CONO. CONI. CONSO. CONSl. OATAO. DATAl 
CONO. CONI. OATAO. DATAl 
CONSO. CONSl 

BLKO. BLKI 

MEMORY TIMING 

M[MORY MAIO MBIO M810 

PROCESSORS SINGLE SINGLE MULTI OR MULTI 

CYCLE 1.00 I 65 1.75 

READ ACCESS 61 60 .70 

WRITE ACCESS 20 20 30 

MODIFY 
57 .7 .• 7 COMPLETION 

NOTES 

MEMORY ACCESS TIMES INCLUDE DELAY 
INTRODUCED BY to fEET OF CA8LE 

ALL TiMES ARE NOMINAL UAXIUUM5 

13.78 

t 51 • 15 per 511111 10 IIl)1rnali/e 

138 
OJ 

{ • 15 pl'r 511111 to Ullllormatr/e 
, .15 per shltt to lIornlalile 

S.IIneasFAD· 18 

• 96 

• 69 

11.00 

13.18 

11.32 (, .11 " Userl ' memory reold access I .89 

.11 Theil WillllHlI1I 4.50 has passed since 11Isi here 
'1.69 
'1.90 

.60 Then turn 11110 DATAO. DATAl,lnd go to C2 

FAST MOU) ME10 

SINGLE SINGLE 
-.,---,--,,--
SINGLE 

(BUILT INI OR MULTI OR MULTI 

- 1.8 1.00 

21 . 83 ... 
.21 .55 .20 

- 1. 23 .65 

SYSTEM REFERENCE 

DATA STORE 

SEE MEMORY 
TI MING CHART 

FOR CYCLE 
COMPLETION TIME 

C3 





-179-

APPENDIX D 

KAIO ALGORITHMS 

All arithmetic operations on full and half words are performed in the 36-bit 
parallel adder. There are two sets of summand inputs to the adder, each set 
of 36 supplying one input to each adder stage. One set supplies the contents 
of AR, its complement, or zero; the other set supplies the contents of BR, its 
complement, or zero. Each stage also has a carry input, which is generated 
by the next less significant stage. Every stage has two outputs; the carry 
already mentioned, and a sum. The 36 sum outputs together form the sum 
of the two input words. The least significant stage has a carry input from the 
logic for performing twos complement arithmetic and incrementing by one. 
The negative of a number is formed at the sum outputs simply by supplying 
the complement of the number at one set of inputs and asserting the carry 
into stage 35. Adder stage 17 has extra input gating so that I can be added 
to or subtracted from both halves of AR simultaneously. 

The adder produces a sum in the same way that one adds binary numbers 
using pencil and paper. Each adder stage has three inputs, two summand bits 
and a carry, and two outputs, sum and carry. The sum output of a given 
stage is I if anyone or all three of the inputs are I. The carry out is I if two 
or three of the inputs are I. Calculations are performed as though the words 
represented 36-bit unsigned numbers, ie the signs are treated just like magni­
tude bits. In the absence of a carry into the sign stage, adding two numbers 
with the same sign produces a plus sign in the result. The presence of a carry 
gives a positive answer when the summands have different signs. The result 
has a minus sign when there is a carry into the sign bit and the summands 
have the same sign, or the summands have different signs and there is no 
carry. 

Thus the program can interpret the numbers processed in fixed point 
arithmetic as signed numbers with 35 magnitude bits or as unsigned 36-bit 
numbers. A computation on signed numbers produces a result which is 
correct as an unsigned 36-bit number even if overflow occurs, but the hard­
ware interprets the result as a signed number to detect overflow. Adding 
two positive numbers whose sum is greater than or equal to 235 gives a nega­
tive result, indicating overflow; but that result, which has a I in the sign bit, 
is the correct answer interpreted as a 36-bit unsigned number in positive 
form. Similarly adding two negatives gives a result which is always correct 
as an unsigned number in negative form. 

All operations discussed below have two operands, one of which is 
supplied to the adder from BR, which acts simply as a buffer and has no 
special input gating. MQ has shift gating so it can function as a low order 
extensjon of AR for handling double length operands. All actual computa­
tions take place in the single 36-bit adder, but the sum output can be placed 
in either AR or MQ, and all transfers to MQ from AR or BR are made 
through the adder. In multiplication MQ holds the multiplier and thus 

Dl 

SYSTEM REFERENCE 

This appendix treats only the 
algorithms used in the KAlO; 
for information on the KI 1 0 
algorithms refer to the main­
tenance manual. 



SYSTEM REFERENCE 
D2 

-180-
ALGORITHMS 

controls the summation of partial products; as the multiplier is shifted out, 
the low order word of the product is shifted in. In division MQ supplies the 
low order part of the dividend to AR as the quotient is being constructed in 
MQ. 

In any extended arithmetic operation, the requisite number of steps is 
counted in the 9-bit shift counter SC, which has a carry pet work for this 
purpose. SC also has a 9-bit adder for use in computations on floating point 
exponents and size and position calculations in byte manipulation. 

FIXED POINT ALGORITHMS 

Fixed point numbers are explained in detail in § 1.1. For convenience let us 
take the computer representation of the positive number x as + [x] where 
the brackets enclose the number in bits 1-35. Similarly the representation 
of -x is - [235 - x] or - [1 - x] depending on whether we are regarding num­
bers as integers or as proper fractions. ,The most negative number, -235, has 
the form -[0], which is equivalent to the unsigned integer 235. 

Addition. There are four cases of addition of two positive 35-bit numbers 
x and y. 

I. x+y 

II. (-x) + (-y) 

III. 

IV. 

x + (-y), 

x + (-y), 

x;;;'y 

x<y 

The operands are held in AR and BR, but it makes no difference which one 
is in which register. The result appears in AR. For convenience in the 
exposition we shall regard the numbers as proper fractions; to view them as 
integers, simply substitute "235" for each occurrence of "1". Since the twos 
complement format allows a representation for -1, either x or y may be 1 in 
II, and y may be 1 in IV. 

I. If x + y < 1 the adqer output placed in AR is +[x + y]. If x + y;;;' 1 
the carry out of stage 1 changes the sign. Consequently if the addition of 
two positive numbers gives a negative result, it is apparent that the sum 
exceeds the capacity of the register. The processor detects the overflow by 
checking the sign carries: there is a carry into the sign stage but none out of 
it. AR then contains 

- [x + y -1] 

II. Ignoring the carry into the sign bit in the addition of two negatives 
would give 

-[I-x] 
- [1 - y] 

+[l+l-x-y] 

If x + y ~ 1 the carry changes the sign and the result is 



-181-
FIXED POINT 

-[l-x-y] 

which is the representation of -(x + y). If x + Y > 1 there is no carry into 
the sign, and its absence in the presence of a carry out indicates overflow. 
AR contains 

+ [1 - (x + y ....: 1)] 

III. Ignoring the carry into the sign in an addition where the signs are 
different would give 

+ [x] 
-.[ 1 - y] 

-[l+x-y] 

Since x ~ y, . it follows that 1 + x - y ~ 1. Hence the carry changes the sign 
and the result is 

+ [x - y] 

When the operand signs are different, the magnitude of the result cannot 
exceed the larger operand magnitude and there. can be no overflow. Si~ce 

in this case the positive number. is at least as large in magnitude as the 
negative, there is always a carry into the sign, and this added to the. operand 
minus sign produces a carry out. 

IV. The. addition of numbers of differing signs where the negative has the 
larger magnitude gives 

+ [x] 
'-[l-y] 

-[l+x-y] 

Since x < y, then 1 + x - y < 1. Hence there are no carries associated with 
the sign and no overflow. The above result is the twos complement reptesen­
tation of x - y, ie -(y - x). 

Subtraction. The minuend from AC is in AR, and the subtrahend, which 
is either 0, E or the word from location E, is in BR. Subtraction is done 
directly by adding the twos complement of BR to AR. The logic supplies 
the complement of BR to the adder and a carry into the adder LSB. . 

Let x be the absolute value of the number in AR, and y the absolute value 
of the number in BR. There are four cases. 

I. x -(-y) 

II. (-x) -y 

III. x-y, x~y; (-x)- (-y), x';;;y 

IV. x-y, x<y; (-x)- (-y), x>y 

These correspond respectively to the four cases of addition discussed 
previously. 

Multiplication. The multiplier, O,E or the contents of location E, is in 
MQ, and the multiplicand from AC is in BR. AR is clear. The 36-step 
procedure is as follows. 

SYSTEM REFERENCE 
D3 



SYSTEM REFERENCE 
D4 

-182-
ALGORITHMS 

If MQ35 (the multiplier LSB) is 1, subtract BR algebraically from AR, but 
put the result in AR shifted one place to the right, with the LSB of the result 
going into MQO, and shift MQ right so a bit of the multiplier is dropped· from 
MQ35. Put the sign of the result in ARO and ARI (as though the shift 
followed the subtraction and did not affect the sign but did move it to 
ARl). If MQ35 is 0, simply shift AR and MQ right one, with AR35 going 
into MQO. 

In each subsequent step perform only the shift if .the bits moved in and 
out of MQ35 on the previous step were the same. If they were different, add 
Or subtract along with the shift: if the shift moved a 0 in and a lout, add 
BR to AR; if a 1 in and a 0 out, subtract BR from AR. 

Thus the ·low order bits of the running sum of partial products are shifted 
into MQ as the multiplier is shifted out. At each. step the effect of the multi­
plicand in BR on the partial sum in AR is one binary order of magnitude 
greater than in the preceding step because the partial sum was shifted right. 
Therefore BR can be combined directly with AR. If MQ35 is initially 0, 
there is no subtraction until a lis shifted into it. Simple shifting then 
continues until the next transition (from 1 to 0), following which BR is 
adde!l. 

The process continues in this way, subtracting at every 0-1 transition, 
adding at every 1-0 transition. After 35 steps MQO-34 contains the low 
half of the product magnitude,and MQ35 contains the sign of the multiplier. 
At the final step, add or subtract as required but put the result directly into 
AR; shift only MQ to move the low magnitude into the correct position and 
make MQO equal to the sign of the whole product. 

If the original operands were both negative and the result is also negative, 
~t Overflow; this can occur only when -235 is squared. In IMUL, if the high 
word is not null (ie if AR is neither clear nor allIs), set Overflow; move MQ 
to J\.R for storage of the low word. . 

To see that tltis prpcedure results in a correct product, consider the posi­
tive bi~ary integ~r 

100111011 
87654 3 2 1 ° 

where the decimal digits below the binary digits are the powers of 2 corres­
ponding to the bit positions. This number is obviously equal to 

100000000 
+ 111000 
+ 1 1 

Now an n-bit string of 1 s whose rightmost bit corresponds to 2 k is equal to 
2k+n - 2k, or equivalently 2k(2n - 2°), ie 2n - 2° is a string of n Is and the 2k 
shifts the string l~ft k places. Hence . . 

100000000 = 211+ 1 - 28 = 29 -28 

111000 = 23 +3 - 2~ = 26 -23 

1 1 = 22+0- 20 = 22-2° 

100 1 1 101 1 = 29 - 28 + 26 - 23 + 22 - 20 

In this lasr representation, each power of 2 that is subtracted corresponds to 



-183-
FIXED POINT 

a transition from 0 to 1 (scanning right to left), whereas each that is added 
corresponds to a 1-0 transition. The largest term corresponds to the transi­
tion to the sign bit, which is 0 for a positive number. The multiplication 
algorithm interprets the multiplier in this mar.ner, alternately subtracting 
and adding the multiplicand to the partial sum in the order-of-magnitude 
positions corresponding to the transitions. If a multiplier of the same magni­
tude were negative, it would have the form 

1011000101 
- 876 5 4 3 2 1 0 

in which the extra bit at the left represents the sign. The number is now 
equivalent to 

wherein opposite signs correspond to opposite transitions. The algorithm 
may thus use exactly the same sequence for a negative multiplier: this time 
the subtraction of greatest magnitude is detected by the transition to the 
sign bit, which is now 1. 

Division. The divisor, O,E or the contents of location E, is in BR. In 
DIV the high and low halves of the dividend from two accumulators are in 
AR and MQ respectively. In IDIV the one-word dividend from AC is.in AR. 
The two types of division differ mainly in setting up the dividend; in both 
cases the algorithm processes a positive dividend to get a positive quotient. 

In DIV if the dividend is negative (ARO = 1), make. it positive and set the 
negative dividend flag. To negate the dividend, move the low word to AR 
and the complement of the high word to MQ. Then move the negative of 
the low word back to MQ and the complement of the high word back to AR. 
Now the double length negative of the original dividend is in AR and MQ 
unless MQ is clear; in this event add I to AR to give the twos complement 
negative of the high word. Once the dividend is in positive form shift MQ 
left one place to close the hole between the two halves; in other words drop 
the low sign and get the 70-bit magnitude into ARI-35, MQO-34. 

If the IDIV dividend in AR is negative, negate it and set the. negative 
dividend flag. Move the one word dividend in positive form to MQ and clear 
AR. Shift MQ left, as the algorithm operates on a double length dividend in 
both types of division although the high part is null in this case. 

After the dividend is set up, compare the divisor with it to determine 
whether the division can be performed. Subtract the absolute value of the 
divisor from the high half of the dividend (if the divisor is positive, subtract 
it; if negative, add it). Since the dividend is positive, the Fesult is also 
positive if the magnitude of the divisor is less than or equal to the number in 
AR. For a fixed fraction, the divisor is subtracted from the actual dividend 
and no overflow is allowed. For a fixed integer, AR is clear and the result is 
positive only for a zero divisor; the worst possible case is the division of 
235 - 1 by 1, whose integral result can be accommodated. (Placing the one 
word dividend in MQ effectively multiplies it by r 35 , making it the frac­
tional part of a two word dividend with the binary point in the middle. The 
quotient is then a proper fraction, which is multiplied by 235 simply by 
interpreting it as an integer.) Thus if the result of this initial subtraction is 

SYSTEM REFERENCE 
D5 



SYSTEM REFERENCE 
D6 

-184-
ALGORITHMS 

positive, set Overflow and No Divide, and terminate the procedure so the 
processor goes on to the next instruction. Dividing by zero is of course 
meaningless. The reason for prohibiting a fractional division where the result 
would be greater than 1 is that it is impossible to determine the position of 
the binary point in the quotient. So it is up to the programmer to shift the 
dividend to the correct position beforehand. If the result of the initial sub­
traction is negative, the division can be performed and the processor goes 
into the division loop. 

In division on paper, one subtracts out the divisor the number of times it 
goes into the dividend, then shifts the dividend one place to the left (or the 
divisor to the right) and again subtracts out. In binary computations the 
divisor goes into the dividend either once or not at all. Each subtraction of 
the divisor thus generates a single bit of the quotient. If the subtraction 
leaves a positive difference, ie if the dividend is larger than the divisor, a 1 is 
entered into the quotient. If the difference is negative, a 0 is entered. To 
compensate for subtracting too much, the hardware could add the divisor 
back into the dividend before going to the next subtraction step. But the 
PDP-IO algorithm instead shifts first and adds the divisor back in at the new 
position. It then continues to shift and add putting as into the quotient 
until the result again becomes positive. This procedure generates the same 
quotient without ever going back a step. 

The hardware procedure is as follows. As each addition or subtraction is 
formed in the adder, put the result in AR shifted one place to the left with 
AR35 receiving a new bit of the dividend from MQO, and shift MQ left 
bringing in a bit of the quotient at MQ35. The bit brought in is the comple­
ment of the sign from the adder: if the divisor does not go into the dividend, 
the resulting minus sign (1) produces a 0 quotient bit; if the divisor does go 
in, the plus sign gives a 1. Each step loads one bit of the quotient into MQ35, 
and the low half of the dividend is shifted out of MQ as the quotient is 
shifted in. 

The first step is the test subtraction. In each subsequent step, subtract 
the absolute value of the divisor if the quotient bit generated in the previous 
step is 1, but add it back in if the quotient bit is O. Since the divisor may 
have either sign, subtract it algebraically if its sign differs from the quotient 
bit, add it if its sign is the same. 

The hardware executes 36 steps to generate 35 magnitude bits. The initial 
test step must give a 0, which serves as the sign since we are producing a 
positive quotient. In the final step put the result of the addition or subtrac­
tion directly inAR without shifting so the remainder is in the correct 
position, but shift MQ left putting the sign from the first step inMQO and 
bringing 'in the last quotient bit. (The bit dropped out of MQO is superfluous; 
it was brought into MQ35 when the hole was closed between the dividend 
halves.) 

To complete the division we must make sure the remainder is correct and 
determine the correct signs of the results. Since the operations were per­
formed on positive operands, the remainder should also be positive. A 
negative remainder indicates that too much has been subtracted. To correct 
this add the absolute value of the divisor back in. If the negative dividend 
flag is set, negate AR so the remainder has the sign of the original dividend. 



-185-
FLOATING POINT 

Now move the corrected remainder to MQ and move the quotient to AR. 
If the negative dividend flag and the divisor sign are of opposite states, 
negate AR to produce the correct quotient sign. The correct quotient and 
remainder are now in AR and MQ ready for storage. 
. As an example of the way this algorithm operates, consider a division of 
3-bit fixed fractions with a divid~nd of +.100100 and a divisor of +.10 1. 
By paper. computation we obtain the quotient this way . 

. 111 
1011100.100 

101 
10 00 

I 01 
110 
101 

Taking the processor registers to be four bits in length, AR contains 0.100, 
MQ has 0.100, ami BR has 0.101. Before starting we close the hole changing 
MQ to 1.000. The seq·uence has four steps. 

0.100 ~.OOO 
- Q.101 

1. ill 
I+- Li11 0.000 

+ 0.101 --
0.100 

2 +- 1.000 0.001 
-0.ld1 

0.011 
3 +- 0.110 0.011 

-0.101 
0.001 

4 0.001 +-0.111 

The quotient is in MQ at the right, the remainder in AR at the le(t. 

FLOATING POINT ALGORITHMS 

§ 1.1 . explains floating point numbers and § 2.6 discusses the general charac­
teristics of floating point arithmetic. Exponent computations are done in 
the SC adder using the exponents and signs from the floating point operands. 
Remember, the sign is that of the whole number, not of the exponent. 
Although bits 1-8 of a floating point number represent an exponent in the 
range -d 28 to + 127, the discussion is entirely in terms of the excess 128 
exponents in positive form, ie the set of numbers 0-255. Computations 
generally use twos complement operations even though the exponent in a 

SYSTEM REFERENCE 
D7 



SYSTH1 REFERENCE 
08 

-186-
ALGORITHMS 

negative number is a ones complement. The SC sign bit is used to detect 
exponent overflow and underflow. 

After exponent calculations are complete, operations on the fractions are 
done by the fixed point logic in AR; BR and MQ. Bits 1-8 of AR and BR 
are filled with null bits, Os in a positive number, Is in a negative. Double 
length operands are in AR and MQ with MQ8-35 forming a magnitude 
extension of AR. In almost all circumstances the logic treats ARd-35 and 
MQ8-35 as a single 64-bit register; in all two-word shifting AR35 is con­
nected to MQ8 and MQO-7 is ignored. Except in division the fixed point 
calculation generates a double length fraction, which is shifted arithmetically 
(in right shifting the sign goes into ARI ; in left shifting the sign is unaffected 
and Os enter MQ35). Almost all floating point instructions normalize the 
result, thus making use of the low order part even though the instruction 
may store only the high order word. 

Addition, Subtraction. E,O or the word from location E is in BR, and AC 
is in AR. For subtraction move the negative of the subtrahend from BR to 
AR and move the minuend from AR to BR. This reduces subtraction to 
addition, so the rest of the algorithm is the same for both. 

The initial objective is to determine the difference between the exponents 
and to determine which exponent is the larger. If the signs of the operands 
differ, add the exponents into SC. If the signs are the same, subtract the BR 
exponent from the AR exponent by adding the twos complement. Let x 
and y be the AR and BR exponents in positive form. The table below shows 
the calculations as a function of the operand signs, and the sign of the result 
in SC as a function both of the operand signs and the relative values of x 
and y. 

AR+, BR+ AR+, BR- AR-, BR+ A~-, BR-

+[x] +[x] -[255 - x] -[255 -x] 
-[256-y] -[255 - y] +[y] +[l + y] 
-[256+x - y] -[255+x-y] -[255 -x + y] -[256 -x+y] 

SC+ SC- SC+ SC- SC+ SC- SC+ SC-

x~y x<y x>y x ";;;y x<y x~y x";;;y x>y 

As can be seen from the above, if AR already contains the number with the 
smaller exponent, the SC and AR signs differ. Hence if the SC and AR signs 
are the same, switch BR and AR so the number with the smaller exponent 
can be shifted. If the exponents are equal, the signs mayor may not be the 
same but it matters not whether the transfer takes place. \ 

To control the shifting we must now get the negative of the difference 
between the exponents. Let d be Ix - YI. There are four cases as a function 
of the SC sign and whether the AR and BR signs are equal. The second 
cohimn lists the present contents of SC, the third tells what must be done to 
arrive at -[256 -d] in Sc. 

SC+, ARO= BRO 

SC+, ARO =1= BRO 

+[d] 

+[d - 1] 

Negate SC 

Complement SC 



SC-, ARO = BRO 

SC-, ARO i= BRO 

-[256-d] 

-[255 -d] 

-187-
FLOATING POINT 

Do nothing 

Add Ito SC 

If d < 64 (indicated by a negative SC with a 0 in either SCI or SC2) nullify 
ARI-8 and shift AR and MQ right d places so its bits correctly match the 
BR bits in order of magnitude. Ifd> 64 clear AR for itscontents.are of 
no significance. 

Now move the larger exponent from BR to SC in positive form, nullify 
BRI-8, and add BR and AR into AR as fixed fractions. Finally enter the 
normalizing sequence. 

This sequence first tests for a zero result. If AR and MQ8-35 are clear, 
bypass the rest of the procedure. If the fractional result has overflowed into 
AR8 (indicated by ARO i=AR8 or AR8 = 1 and AR9-35 = 0), shift right 
and increase the exponent by one. The number is now normalized. 

Complement the exponent in SC. If the instruction is not UF A and the 
number is not normalized go into the normalizing loop. In each step shift 
the double length fraction left and add 1 to the negative exponent 
(decreasing its magnitude by 1). Terminate the loop when the fraction is 
normalized, indicated by the sign and the MSB of the fraction being different 
(ARO i= AR9) or the magnitude being Y2 (AR9 =i and ARlO-35 == 0). 

If the instruction specifies· rounding,adjust the high fraction so it is 
rounded and is in twos complement form if negative.' The rounding is away 
from zero. For a positive result the high fraction must be increased if the 
low fraction is greater than half the value of the high fraction LSB. In a 
negative result the high fraction is a ones complement, which is one greater 
in magnitude than the twos complement. Hence it is already rounded and 
should be decreased in magnitude if the low fraction is <: Y2LSB. In either 
case add 2 -27 into AR if MQ8 is 1 unless MQ9...;35 is clear in a negative 
number. A 1 in MQ8 indicates a low fraction ~ Y2LSB in a ·positive number, 
..;; Y2LSB in a negative number. The condition that MQ9-35 'not be zero in 
a negative number is the case where the low fraction is exactly. Y2LSB. If the 
high fraction is actually changed, renormaliie it: A single normalizing shift 
is all that is required and it occurs in only two cases: a right shiff when 
1 - r 27 is rounded, a left shift whim -Y2 is changed to a c()rrect twos 
complement. 

Once the number has been normalized (and rounded if necessary) the 
exponent is in·negative form. Thus if theSC sign bit is 0, set Overflow and 
Floating Overflow. If SCI is also 0, the sign~bit must have been chan~ed by 
decreasing the exponent, so also set Floating Underflow (the maximum 
possible exponent overflow is 128 giving an SC contents of 7778 , and this 
can occur only in division). Insert the exponent in correct·form into ARI-8. 

The result is now ready to store from AR unless the instruction is in long 
mode. To ready the double length result subtract 27 from the positive expo­
nent in SC. Save the high word in MQ, and move the low word to AR,hut 
only if the decreased exponent is still positive. If the sign is 1, the true 
exponent of the low word is less than -128, so cleat AR. (Note that this 
condition is also true if the low exponent is > 127, which can occur only if 
the high exponent is > 154.) If the low word is nonzero, shift AR right 
one place to put the fraction in bits 9-35 (remember that all shift operations 

SYSTEM REFERENCE 
D9 



SYSTEM REFERENCE 
DlO 

-188-
ALGORITHMS 

use MQ8-'35), clear ARO so the low word has a positive sign even if the 
double length fraction is negative, and insert the low exponent in positive 
form in bits 1-8. Finally switch AR and MQ so the high and low words are 
in correct position for storage. 

Scaling. The 9-bit signed scale factor from bits 18 and 28 - 3 5 of E is in 
SC,and AC is in AR and BR. If the floating point number being scaled is 
positive, simply add the sign and exponent from BRO-8 to SC; if the number 
is negative, add the complement of BRO-8 to Sc. Let x be the exponent in 
positive form and let Y be the absolute value of the scale factor. There are 
only two cases, 

+[x] 
+[y] 

+[x + y] 

+[x] 
-[256-y] 

+[x-y] 

and in either the result is in positive form in SC. 
Now enter the normalizing sequence described under floating addition. 

Only left shifting Can occur bringing Os in from MQ. The result can be zero, 
and exponent ,overflow or underflow can occur; but there is no rounding, 
and at the end the one-word result is in AR ready for storage. 

Multiplication. E,O or the word from location E is in BR, and AC is in 
AR. Place the AR exponent in positive form in ~C, and add the positive 
form of the BR exponent to it. Since both are in excess-128 code, subtract 
128. Save the result in the floating exponent register FE ~o SC can be used 
to control the multiplication of the fractions. 

Nullify the exponent parts of AR and BR. Move the multiplier from BR 
to MQ and the multiplicand from AR to SR. Clear AR. Now multiply the 
fractions by the same procedure given for fixed point multiplication with 
the following djfferences: 
• There are only 28 steps instead of 36. 
• The shift register extension of AR for the construction of the product is 
MQ§~35. As the multiplier is, shifted, out, bits of the product come in 
at MQ8. 
• In the final step place the adder output directly into AR but do not shift 
MQ - the low fraction is in MQ8-34, the correct position for normalization. 

Clear MQ35, move the exponent back to SC, and enter the normalizing 
sequence described under floating addition. If the operands are normalized, 
at most one left shift is needed to normalize there~ult. 

Division. The divisor,E,O or the contents of location E, is in BR. The 
dividend from AC is in AR. In long mode the low half of the dividend from 
the second accumulator is in MQ; otherwise MQ.is clear. 

If the dividend is negative, make it. positive and set the negative dividend 
flag. Except in' long mode, negate the dividend simply by negating AR. For 
long mode follow, the procedure given for DIY in the second· paragraph of 
the fixed ~ivision algorithm. With a floating point operand the left MQ shift 
puts the low fraction in MQ8-34. 

Place the AR exponent in positive form in SC. ~ubtract the magnitude of 
the BR exponent from it by adding the negative form of the exponent (ones 
complement) plus 1.. Since the excess-l 28 factors cancel in the subtraction, 
add 128. Save the result in the floatIng exponent register FE so SC can be 



-189-
FLOATING POINT 

used to control the division of the fractions. 
Nullify the exponent parts of AR and BR. Subtract the absolute value of 

the divisor from the high half of the dividend. If the result is positive, 
indicating the divisor is less than or equal to the dividend, shift AR and MQ 
right and increase the exponent in SC by 1. Save the adjusted exponent in 
FE. The shift divides. by 2, so if the operands are normalized, the dividend 
must now be less than the divisor. 

Now divide the fractions by the same procedure given for fixed point 
fractional division with the following differences: 
• Since the dividend has already been adjusted, the test in the first step 
stops the division only if the divisor is zero, or is unnormalized and less than 
the dividend. A normalized divisor cannot cause the quotient to overflow. 
If the result of the initial subtraction is positive, terminate the procedure 
and set Floating Overflow as well as Overflow and No Divide. 
• Instead of 36 steps there are only 29 if the instruction specifies rounding, 
otherwise 28. 
• The shift register extension of AR is MQ8-35. As quotient bits are 
brought in at MQ35, dividend bits are supplied to AR35 from MQ8. The 
shifting clears M QO -7. 
• The MQ shift in the final step places a 27-bit quotient fraction in MQ9-35 
or a 28-bit fraction in MQ8-35. . 
• As in the fixed point algorithm generate the correct signed remainder, put 
it in MQ, and move the quotient to AR but leave it positive .. 

If the instruction spectfies rounding, shift AR right placing the 27-bit 
fraction in the correct position, and if the bit shifted out of AR35 is 1, add 
it back into AR35 to round the positive quotient. If the quotient is zero 
bypass the rest of the procedure. The reaminder will also be zero except in 
an FDVL where the double length dividend is unnormalized and its high 
fraction is zero. 

Complement the exponent in SC. If the instruction uses normalized 
operands the initial dividend adjustment guarantees that the quotient will be 
normalized. If it is not, shift AR left (bringing Os into AR35) until a 1 
appears in AR9, each time increasing the negative exponent byl (decreasing 
its magnitude). 

Since the exponent is in negative form, if SCO is 0, set Overflow and 
Floating Overflow. If SCI is also 0, the sign bit must have been changed by 
decreasing the exponent, so also set Floating Underflow. Insert the exponent 
in correct form into ARI-8. If the negative dividend flag and the divisor 
sign (BRO) are of opposite states, negate AR to produce the correct quotient 
sign. 

The quotient is now ready for storage from AR and the remaining opera-
. tions are performed only for long mode. Save the quotient in BR and bring 

the high half of the original dividend from AC to AR. Put the dividend 
exponent in SC. Decrease its magnitude by 26 if the dividend was shifted 
right at the beginning to allow the division to be performed; otherwise 
decrease it by 27. Move the remainder to AR and insert the exponent in it 
provided the remainder is not zero and the exponent is within the proper 
range, -128 to 127 (the test is that the sign resulting from the exponent 
calculation is the same as the sign of the remainder). If the exponent is 

SYSTEM REFERENCE 
Dll 



SYST~M REFERENCE 
Dl2 

-190-
ALGORITHMS 

outside that range clear AR; the assumption is that the remainder is of no 
significance (ie the exponent is too small). Move the remainder with its 
correct exponent f~om' AR to MQ and put the quotient back in AR. The 
two words are now ready 'for storage. 

8euWe I\'ecision Division. The software routine that performs double 
rrr-6dsion floating point division and the algorithm it utilizes are given at 
the end of § 2.11. FDVL performs the division 

Alb = q + rr27/b 

where q and r are the quotient and remainder. In a double precision 
division the divisor is of the form 

B = b + d2-~7 

Using the expansion 

x+y 

aIKl letting x = band y = dr27 gives 

A 

B 

Multiplying out and gathering like terms gives 

A 

B 
q + ! (r - qd)2-27 - !!... (r - qd)2-S4 + d 2 (r - qd)r81 - ••• 

b b2 b 3 

wkere the first two terms on the right are those in the equation at the 
bottom of page 2-67. 

The ratio of adjacent terms is 

Tn+l -d2-27 

Tn b 

In an alternating convergent series, the error due to truncation is smaller 
than the first term dropped. Therefore 

IErrorl 
d2-27 

< -·-T b n 

Since the maximum value of d is less than I and the minimum value of b 
(normalized) is Y2, 



-191-

APPENDIX G 

BIT ASSIGNMENTS 

The drawing on pages G2 and G3 shows the formats of the various types of 
words used by the processor. Bit -assignments in the condition anq data words 
for the 10 instructions wiII be added later. - . 

GI 

SYSTEM REFERENCE 



SYSTEM REFERENCE -192-
G2 

INSTRUCTION CODE 
(INCLUDING 1I0DEI 

DEVICE CODE 

o 2 3 

FLAGS 

BIT ASSIGNMENTS 

BASIC INSTRUCTIONS 

IN-OUT INSTRUCTIONS 

9 10 12 13 14 17 '8 

PC WORD 

12: .13 17 18 1 _______ _ 

------------

I, 
y 

y ·1 
. ;. 

PC 

35 

---------------, 
I 

*0ISA8LE BYPASS IN 
KIlO EXECUTIVE MODE 

BLT POI NTER [X WD I 
SOURCE ADDRESS DESTINATION ADDRESS 

17 '8 

BLKI/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD) 

I POSITION P I 
o 56 

- WORD COUNT I ADDRESS-l 

17 '8 

BYTE POINTER 

SIZE S y 

11 '2 13 14 \7 '8 

BYTE STORAGE 
f-----s BITS P BITS 

I BYTE NEXT BYTE 

35-P-S-, 35-P 35-P+, 

PAGE MAP WORD 

PHYSICAL PAGE 
ADDRESS BITS 14 -26 

PHYSICAL PAGE 
ADDRESS BITS 14-26 

(j 

8 9 

PAGE FAIL WORD 
VIRTUAL PAGE 

ADDRESS BITS 18-26 
17 

FAI LU RE TYPE 

31 

35 

35 

35 

35 

35 

35 

20 SMALL USER VIOLATION 
21 PROPRIETARY VIOLATION 

22 PAGE REFILL FAILURE 

23 ADDRESS FAILURE 
IF 81T 3' IS 0, 81TS 31-35 HAVE THIS FORMAT I 0 I A I Wi sir I 



-193- SYSTEM REFERENCE 

SIGN 
0+ 
1-

o 1 

WORD FORMATS 

FIXED POINT OPERANDS 

BINARY NUMBER (TWOS COMPLEMENT) 

LOW ORDER WORD IN DOUBLE LENGTH FIXED POINT OPERANDS 

o LOW ORDER HALF OF BINARY NUMBER (TWOS COMPLEMENT) 

o 1 

FLOATING POINT OPERANDS 
~6+N EXCESS 128 EXPONENT 
1- (ONES COIIPWlEIITl 

FRACTION (TWOS COMPLEMENT) 

o 1 8 9 

LOW ORDER WORD IN SOFTWARE DOUBLE LENGTH FLOATING POINT OPERANDS 
o EXCESS 128 EXPONENT -27 

IN POSITIVE FORM LOW ORDER HALF OF FRACTION (TWO~ COMPLEMENT) 

o 1 8 9 

LOW ORDER WORD IN HARDWARE DOUBLE LENGTH FLOATING POINT OPERANDS 

o LOW ORDER EXTENSION OF FRACTION (TWOS COM PLEMENTI 

o 1 

G3 

35 

35 

35 

35 

35 



SYSTEM REFERENCE 
G4 

1 0 
2 1 
4 2 
8 3 

16 4 
32 5 
64 6 

128 7 
256 8 
512 9 

1 024 10 
2 048 11 
4 096 12 
8 192 13 

163"84 14 
32 768 15 
65 536 16 

131 072 17 
262 144 18 
524 288 19 

1 048 576 20 
2 097 152 21 
4 194 304 22 
8 388 608 23 

16 777 216 24 
33 554 432· 25 
67 108 864 26 

134 217 728 27 
268 435 456 28 
536 870 912 29 

1 073 741 824 30 
2 147 483 648 31 
4 294 967 296 32 
8 589 934 592 33 

17 179 869 184 34 
34 359 738 368 35 
68 719 476 736 36 

137 438 953 472 37 
274 877 906 944 38 
549 755 813 888 39 

1 099 511 627 776 40 
2 199 023 255 552 41 
4 398 046 511 104 42 
8 796 093 022 208 43 

17 592 1'86 044 416 44 
35 184 372 088 832 45 
70 368 744 177 664 46 

140 737 488 355 328 47 
281 474 976 710 656 48 
562 949 953 421 312 49 

I 125 899 906 842 624 50 
2 251 799 813 685 248 51 
4 503 599 627 370 496 52 
9 007 199 254 740 992 53 

18 014 398 509 481 984 54 
36 028 797 018 963 968 55 
72 057 594 037 927 936 56 

144 115 188 075 855 872 57 
288 230 376 151 711 744 58 
576 460 752 303 423 488 59 

1 152 921 504 606 846 976 60 
2 305 843 009 213 693 952 61 
4 611 686 018 427 387 904 62 
9 223 372 036 854 775 808 63 

18 446 744 073 709 551 616 64 
36 893 488 147 419 103 232 65 
73 786 976 294 838 206 464 66 

147 573 952 589 676 412 928 67 
295 147 905 179 352 825 856 68 
590 295 810 358 705 651 712 69 

1 180 591 620717411 303 424 70 
2 361 183 241 434 822 606 848 71 
4 722 366 482 869 645 213 696 72 

-194-

BIT ASSIGNMENTS 

POWERS OF TWO 

1.0 
0.5 
0.25 
0.125 
0.062 5 
0.031 25 
0.015 625 
0.007 812 5 
0.003 906 25 
0.001 953 125 
0.000 976 562 5 
0.000 488 281 25 
0.000 244. 140 625 
0.000 122 070 312 5 
0.000 061 035 156 25 
0.000 030 517 578 125 
0.000 015 258 789 062 5 
0.000 007 629 394 531 25 
0.000 003 814 697 265' 625 
0.000 001 907 348 632 812 5 
0.000 000 953 674 316 406 25 
0.000 000 '476 837 158 203' 125 
0.000 000 238 418 579 101 562 5 
0.000 000 119 209 289 550 781 25 
0.000 000 059 604 644 775 ·390 625 
0.000 000 029 802 322 387 695 312 5 
0.000 000 014 901 161 193 847 656 25 
0.000 000 007 450 580 596 923 828 125 
0.000 000 003 725 290 298 461 914 062 5 
0.000 000 001 862 645 149 230 957 031 25 
0.000 000 000 931 322 574 615 478 515 625 
0.000 000 000 465 661 287 307 739 257 812 5 
0.000 000 000 232 830 643 653 869 628 906 25 
0.000 000 000 116 415 321 826 934 814 453 125 
0.000 000 000 058 207 660 913 467 407 226 562 5 
0.000 000 000 029 103 830 456 733 703 613 281 25 
0.000 000 000 014 551 915 228 366 851 806 640 625 
0.000 000 000 007 275 957 614 183 425 903 320 312 5 
0.000 000 000 003 637 978 807 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
0.000 000 000 000 000 III 022 302 462 515 654 042 363 166 809 082 031 25 
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
0.000 000 000 000 abo 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5 
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25 
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625 
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812.5 
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25 
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125 
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5 
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25 
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625 



DEVICE. 

""PI< 

PI 

l'iOC 
1'1-0 

CONVERTER 
(RDt¢) 

PTP 

PTI< 

rTY 

LPr 
(LPI(;) 

PLr 
(XY JrI) 

eli 
(CIVil) 

IN-OUT DEVICE BIT ASSIGNMENTS 

CODE ~UNC"'" ~/18 1/19 2/a 3/21 <V22 5/23 6/24 7/25 8126 9/27 f¢/28 11/29. 1213¢ 13/31 14/32 .'5/331/6/34117/35 

CONe S!:'" I/O Ctll ~~! C.12 C~~~, 
SE CUi! "-LR I!~. 

Cf" CL.Ii!. %:6v ff~"'v POL ·I~~ ... i~~~ CLOCK COV ~V '""OV PI" 
01' RESET PI>OT NKM EN4 f:L4G NRBL 'LIOG '-"'&E ENRBJ. ~Ln(3 

PD. lOT RDO! hIE'" N,M CLOC.IC: =LOC.t:: ·OV .ov rRRP 
iE=E 

'""'ov PIA CONI OV WE.e BRE"" AE'OT - ~LRG ;:L.'~G '<'IG 'UIG 'LRG EM'lBLE '::L~- E~BLE .alG ~s£r ~LRG 

OtQTnO PROrEcrION REGlSr£Ie· (l.H~-7) 
Q£.LOC~rl0N ~EGJ.sr£.e. (li!,", 18-25)_' 

ORTI1I '"" 36 D.q'r,q S~rrCJ..!ES. -.. 
CONO~ ~ '~~ ~~y ~JTY j£1RR,~r:. ': =~I:~N SELECT CJ../~N~LS 1-7 

Ra/L~ .&'"L.QG ENlM3LE. &.,II;BLE. . - SYsTEM O*NNE- PTlICr/ll£ 4C17ME ~CW SITS 2<1. 25, 26 

Q~ .. CONI 
POHE:e PR6!.lTY R9EJ1Y rNr~r IN. Ai!cGeE.s:9- OV ~I C~NEL IU:rLVE L-? ~~ ~EN4BLE C'M4NAlEI..$'7-7' -- . TIVE 

""''''0 . 3'6 81 rs ro T"HE . Nl!MO.ey IAIO/C"roRS -
¢24 

CONO B/NIJI:iY BIJ$Y 
DoNE 

PlIO ~L4Gt 

f¢{/l· 
ouT DON/£ CCWI 0. BlN~rcy SV.$Y PlIO 

"'PE ~L_ 

-l~LE'~t ? 
HOLE HOLB ""tE hOLe 11-101..£ 1 AIOL E ~rJ9O .. - - iNt~ IUNL~.;t .. 5 .. 3 " t 

.. COIVO . .. BINARY BUSY. DONE 
PI" FL4G 

1(;4 
.''i~.'" \ I T,qpE DONE CON~ ~LAG 

BINA!2Y BUSY FLRG 
PIR 

D4TRI ,-. - ,36 err Wos;eD IF BINt:;RY~ B BJTS (28-35) I~ NOT B!N4eY ~ 

; 

,.~o 
TeST 1;;1 rTl TTO rro TTl rrl r-o TTO 

!', ~L;:JG B~~~ I ~L~~ I ~~.sd::. ~L~~ ~~~y ~l..qG BUSY FLRG PlIO 
ET SET So," 

CONi TEST rTf TTl TTO no PI><I 

~2¢ 
~LIJG BuSY FL"K> &/SY .c-L,qG 

o~mo 8 BiT CH.t:JRACTE,re 7"0 TEL.ryp~ 

DR""I 8 alT CHARRCTEJ<, ,t::'J:i!OM K£'YEl04Ai!D 

CONe CL.~ BUSY oo"lE E~Ii!OR DONE 
F>i!rN ~LRG PlIO PM 

tZ4 CONI ,.,8 .... ER"""", BL<SY 
DONE ERROIe DONI< 

CHRIl. C"'_ J;:LAG PHI PIR 

""'".0 
~IlfZsr CHtlQIi!ACrE.e SECOND CNtQAlAcrER rHIRD 

CH<4RRCTER .c-Ol/lI2rH CHARJIICTER. '::-1~rJ.,l C!-(IQR.QcrE6!! 

CONO BU.sy DONE PlIO 
FL'IG 

14(; 
POWER 

BUSY DOME PlIO 
"","I ON FLAG 

PEN PEN -. +)(·lc·Yg~ D41Ro CWVM DRuM ~ 
~/SE LOJ-tl'EIi! UP DOWN £~r -

I~' OFF.$E REflD """"SL CLE4te Ii!EIWJY CLEAR CLSAIl L7~ 
COM:> C4<!D CIIRO EIv'4I!JLE ""~~!I"I EM'lBLE E~CF I~-:;;~ ~;;: PI" 

15¢ ==r:~;;£.=~~ 
C_o 

ls'= IOGAOIAG I='''' D4r,q RcJ9DY END END ""''''' CONI J~DEJ. c~eD MISSED I?':LJ~ OF C~ ~LRG 
PlIO 

F: 

DtqrlU RoW ROW ROW RO", ROW ROw ROW .row >!Ow ROW I QCW I eo;. 
12 11 QI t 2 " 4 5 6 7 B 9 

:i! 
r;; 
r;; 
;l> 

;;l 
s:: ..., 
o 
" ;l> 

" -< 
~ 
f;i 

I 
I--' 
t.O 
\on 

I 

en 
-< en 
-I rn 
3: 

:::0 
rn 
" I"T1 
:::0 
rn 
:z 

CJ n 
VI rn 



OEV/C£ . ~/18 

ask" 
("""~) 

ore 
(rD/~) 

OTS 

DLS 
(DC~) 

DC'~B/ 
«ME 

TMC 
(TM l¢) 

I BITS !=OR 
TMJ<D,q 
ONLY 

17¢ 

CONe 

CONI 

t:::JIqrlflO 
LN 

001>90 --(JATAr .. , 
CONO 

DISK 
S£L'Ecr 

_ ... 

INfrJAL 
PiqJ2rrY 

PARIN 
~£GISTI!IC 

DZSK 
NOT 

!Z£RCY 

1.'S 

PI" 

J's 

1 DoNI! PI'" 

_ n:t!fIH:K (6CDY- -'--·.sEcr~ (Bca) 
':5 .1(1'$ I J'S 

QT~«»aU I " ~ ~ 1k;lZ I JNITf~L CHAIo/NEL C!ONreo~ WOA'O ,q()DIi!ES3 

SEC7"OI1 CT~­
S6L£CT£D 

- SECro~ C"'OUfl'./i' (BCD) -----... 
M~ I 1~ 

sroc I GQ - -r .GO--IOORY r;~';;rl~~fl r~.4NS~r 1- ~uNCrfON NUMBEe I o.qT~ PIA 
~ .. ~iNNfBl'1· GlWr.v* IIItJMSER j1IrNOT1INO 4~ue1tNKI"" 

FLAG~ PflQ 

'NQjfE 
EvEN 

RtlIlIry 

re,qN.S~ l·wtliDltJU. ,s.;fe". ~ 
32¢ NUl'rlBE~ ~:==.~:~~. DATA PI~ FI../¥(,;.!/ ~J'R 

DA'f1qo. ..36 BIT waeo 

01/"'" .3'6 SIr WOIi!O 

~11Y~.ooTA I Jb!I = _NO I BLOC" co.vo I EIC'R 'r.!J.$ED DONE . 20N£. IIU,s,sED 
aNllI!JLE ~I&E ~ EN4BLR EIl/iQBLE ENI9BLE r=~"" i"""rYI ==r..;ros- a lENa I&OC"~ ~ 1 ~ i CONI E6UZNJ_ DON~ . _1!.~". MIMED '. IN. IK:TIVE. uP 10 &"OCJ< ,Q£~. o,qrA 

I.N @kII&~ EN.4!IU;: DlAIJJ.-e 6~ EM4IJL.~ __ _ __ .$P£~ ~ CN~<:,Jt: " 
.c"INIQ(. L.IEOt:$tMI/OI..E 
DATR -.r I~I b..-m:w 

.e£AO I sTop 

I=v.. 'J I"-ITYI"'''''' I JOe IrLU ............ I~ ~ACJ .1&.oc . .,J~.oc<.~I:.:;7tw.'" '-'. i [~~ lSELECT ~1324 ,&I E.eeo.e W,nED ~~_ ~~_9N~QY L&.~ EeROIi! E.eeoE" 
uP TO 
SPeM> 
7T3T 

"",mer 
~ 

I~" ~Q,~~ 

Cr;»oIO '!' 

COWl 

24~·~L 
""'.0 ",,: 
~ 

Dm1>I 

"'" ----" 
eDNO 

CONJoCi'HI 

R60urEll R£~/ WIiYTE_ ~GIsr£1i! 

':UNCno. 

UN/r 
7 ~ SAOCE UV 

p,q~IrY 

I NOr r'¥or' [ Ncir [""~NOr b""T I NOr Mit( eN Nil:: S", /llKoqm"'l(.Qev NIt: ~ ~WDIwIIC 4MI' 
SR9CE ENe SYNC D!ITJIIEhO 04"9 71fI9Jp SYNC 

c;[~ IA~ ~ .. ~fRl PIA 

~~EJ~ ~~ I PI" 

N<JMBER 

%£: I §!44 I 'fii I ~: 
~ I LINE 

acrs Slf::" srrM I SIr 

RC..,a.ml 8/'1'8 ~Slr .. 
L.INE 

Ts 

~L~ PIli 

AJUMB£R 

T4 r3 

~nq P:t4 I 

UNIT Fl4G PI.t4 CAT4 p]",q 

"IG)CT :./NIT 

34¢i! 7-~ . ""'" ------------~''''·.,.(7-.''' Cli· .. ·''''''·\ ':,3; &B~ :rER'S-""-JN--QIfm--J--~) 
Qq 

.~ 
t:),q 

7·' 

~~ 1 ST CJ-l~R,qCT6q . I • 2NO CJ.V:J~T£R • I 
~ 3 R'D CH,QR~CTER ~ .<:f TH aH1e,qCT£1l. IG-hORE= 

qIfffN : " "~;; ~~~:~;:: - ;L .; ~ ~:=~~ _____ ~ ! ': ~;=;~ .. 
DI'I r~u --:--- 1 sr CNRR4CTER 2ND C~~~CTcR 

1-( '.HN .3RD CI-IR~,qCTER - I - "4-~ CN~ll;qCrER I~~=~&:L~=" 
l5'i 

~ 
~N 1 ST CHI9Rl'U:r:ER 2ND CJ,ft9RfI1CTER 

~ 3 RO C'H4R19CTER ~ 4 TJ.I CHJ'iRRC7ER.· ~ 5 n.I CIMii!r,cfER-~ 

co . I~·~·I~~I,- 'I 
OIoILY "10 1=1.-~ I~ 1'I(c:~, I SlOP. 

TMS 

(;.g;~) 

344 IOONI'HI 

CONI I,,,,,,,,r I.E'EW/~ LoAD 
"I1H HUMi' ING" !".c:t:lINT 

04"'0 
"",I 

CONe 

ItiPEG_IE~ 
END' 
0': 

~ILE 

CLN 

I~~ 

1 CW ... 1M:W"a-.-.1 am C>mO .... ~ c"' -I' Cl-liQR,qC-ER 
. ~~ ""EM _~"&eP DONE _I COUNTe~ 

~f j~IaJ~m 
'77tlI?E... _~ LAn 

Bt4D _I joB --."1 ~.~r 1~lw~IrE I?-CJJIIN INE)(T -I r:m-q' 
T4AI!' OON£ ~~j EIfteX i,.oC'k: n:;~ t.W:T eE'Q 

INIT/RL CJlRNNE~ C"CW1RCL H-'O'i"D ~ 
W.fU~ 

I§..,% 
SEr I C,-" I .. ·T [c<;e 1 SCT~]C<R I SET I CLJO 1 SET ISEL.F PNIt# ~,.". pM/~ FM~ TtJ 1~ yt) 1~ 7'0'1'; TO I¢ 
T'E.!1r .cuLL ~ DtlPTY IiJ.1Pry ~ ~II4L EJ.IPTY eMPTY 

1<>14 

CONI ~II'i 

~14 ~~~----~~~~~~~~----~--~U-~~~~~~~~~~~---t~~~~~~==~~----------~ 
~~ 1ST PDP 8 BYTE (.q) ~ 

l),qrAI 3" BIT$ 

~~ 1ST PDP 9 SYTE (,q 2ND PDP 9 BYTE (8. 

C':l 
0\ 

~ 
C;; 
C;; 
> .., 
ttl 
;;:: 
"C 
0 
::<l 
> 
::<l 
-< 
"C 

~ 
ttl 

en 
.,-< 
C/.) 
~ 
rn 
3: 

:::0 
rn 
'"TI 
rn 
:::0 
rn 
:z 
n 
rn 

I 
~ 
lD 
O"'l 

I 



-197"'" 

DEC-IO-AMZC-D 

MACRO-10 ASSEMBLER 
PROGRAMMER'S REFERENCE MANUAL 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



MACRO 
1st Edition April 1967 
2nd Printing October 1967 
3rd Edition (Rev) August 1968 
4th Edition (Rev) June 1969 
5th Edition (Rev) October 1969 
6th Edition (Rev) August 1970 
7th Edition (Rev) April 1972 

Copyright @ 1967, 1968, 1969, 1970, 1971, 1972 by 
Digital Equipment Corporation 

The material in this manual is for information 
purposes and is subject to change without notice. 

The following are trademarks of Digital Equipment 
Corporation, Maynard, Massachusetts: 

DEC PDP 

FLIP CHIP FOCAL 

DIGITAL COMPUTER LAB 



CHAPTER 1 

1.i 
1.2 

1. 2.1 

1.2.2 

1.3 

1.4 

1.5 

1.5.1 

1.5.2 

1.5.3 

1.5.4 

1.5.5 

1. 5.6 

1.5.7 

1.5.8 

1.6 

1.6.1 

1.6.2 

1.7 

1. 7.1 

1. 7.2 

1. i.3 
1.8 

1. 8.1 

1.8.2 

1.8.3 

1. 8.4 
1.8.5 

1.8.6 

1.8.7 

1.9 

1.9.1 

1.9.2 

1.9.3 

1.10 

Version 47 

-199- MACRO 

CONTENTS 

INTRODUCTION 205 

MACRO~lO LANGUAGE - S~A~EMENTS 206 

INSTRUCTION WORD FORMATS 206 

Primary Instruction Format 207 

Input/Output Instruction Format 208 
C~UNICATION WITH MONITORS 209 

OPERATING PROCEDURES 209 

MACRO STATEMENTS ,209 

Symbols 209 

Labels 210 

SyIDboiic Addresses 210 

Operators 211 

symbolic Operators 211 

Operands 212 

Symbolic Operands 212 

Commen ts '213 

STATEMENT PROCESSING 213 

Order of Statement Evaluation 214 

Order of Expression EV,aluation ' 214 

USER-DEFINED SYMBOLS 215 

Direct Assignment Statemerits 215 

Local and Global Symbols 216 

Deleted Symbols 217 

NUMBERS 218 

Arithmetic and Logical Operations 219 

Evaluating Expressions 219 

NUmeric Terms 220 

Binary Shifting 221 

Left Arrow Shifting 222 

Floating Point Decimal Numbers 222 

Fixed Point Decimal Numbers 222 

ADDRESS ASSIGNMENTS 223 

Setting and Referencing the Location 224 
Counter 

Indirect Addressing 224 

Indexing 224 

LITERALS 225 

June 1.972 

iii 



MACRO -200-

CHAPTER 2 MACRO-I0 ASSEMBLER 

2.1 

2.1.1 

2.2 

2.2.1 

2.3 

2.3.1 

STATEMENTS - PSEUDO-OPS 

ADDRESS MODE: RELOCATABLE OR ABSOLUTE 

Relocation Before Execution - PHASE 
and DEPHASE Statements 

NAMING PROGRAMS 

Program Subtitles 

PROGRAM ORIGIN 

HISEG Statements - The HISEG Pseudo-Op 
Statement 

227 

227 

229 

230 

231 

231 

232 

2.3.2 

2.4 

2.4.1 

2.4.2 

2.4.3 

2.4.4 

TWOSEG Statements 232 

ENTERING DATA 233 

RADIX Statements 233 

Entering Data Under the Prevailing Radix 234 

DEC and OCT Statements 234 

Changing the Local Radix for a Single 235 
Numeric Term 

2~4.5 

2.4.6 

2.4.7 

2.5 

2.5.1 

2.5.2 

2.5.3 

RADIX 50 Statement 236 

EXP Statement 236 

Z Statement 236 

INPUT DATA WORD FORMATTING 236 

BYTE Statement 236 

POINT Statement - Handling Bytes 237 

2.5.4 

IOWD Statement: Formatting I/O 
Transfer Words 

XWD Statement: Entering Two Half-Words 
of Data 

2.5.5 Text Input 

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement 

2.5.6 Reserving Storage 

2.5.6.1 Reserving a Single Location 

2.5.7 VAR Statements 

2.5.8 BLOCK Statements 

2.5.9 END Statements 

2.5.10 LIT Statements 

2.5.11 Multi-Program Assembly 

2.5.12 PASS2 Statements 

2.5.13 PURGE Statements 

2.5.14 XPUNGE Statements 

2.5.15 Linking Subroutines 

2.5.15.1 EXTERN Statements 

2.5.15.2 INTERN Statements 

2.5.15.3 ENTRY Statements 

239 

239 

240 

240 

241 

242 

243 

243 

243 

244 

244 

245 

245 

245 

246 

246 

247 

247 

Version 47- June 1972 

iv 



2.6 

2.6.1 

2.6.2 

2.6.3 

2.7 

2.8 

2.8.1 

2.8.2 

2.8.3 

2.8.4 

2.9 

2.9.1 

2.9.2 

CHAPTER 3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.8.1 

CHAPTER 4 

4.1 

4.2 
4.2.1 

4.2.2 

CHAPTER 5 

CHAPTER 6 

6.1 

6.2 

6.2.1 

Version 47 

-2Dl- MACRO 

SUPPRESSION OF SYMBOLS 248 

SUPPRESS SYMBOL Statement 248 

ASUPPRESS Statement 248 

Listing Control Statements 249 

CONDITIONAL ASSEMBLY 252 

ASSEMBLER CONTROL STATEMENTS 253 

REPEAT Statements 253 

OPDEF Statements 254 

SYN Statements 255 

Extended Instruction Statements 256 

MULTI-FILE ASSEMBLY 257 

UNIVERSAL Name 257 

SEARCH Name 258 

MACROS 259 

DEFINITION OF MACROS 259 

MACRO CALLS 260 

MACRO FORMAT 261 

CREATED SYMBOLS 262 

CONCATENATION 263 

DEFAULT ARGUMENTS 264 

INDEFINITE REPEAT 265 

NESTING AND REDEFINITION 266 

ASCII Interpretation 268 

ERROR DETECTION 269 

SINGLE-LETTER ERROR CODES 269 

ERROR MESSAGES 275 

LOOKUP Errors 277 

MACRO I/O Error Messages 278 

RELOCATION 279 

ASSEMBLY OUTPUT 283 

ASSEMBLY LISTING 283 

BINARY PROGRAM OUTPUT 284 

Re1ocatab1e Binary Programs - LINK 284 
Format 

June 1972 

v 



MACRO -202-
6.2.1.1 LINK Formats for the Block Types 285 

6.2.2 Absolute Binary Programs 288 

6.2.2.1 RIMIOB Format 288 

6.2.2.2 RIMIO Format 289 

6~2.2.3 RIM Format 290 

6.2.2.4 END Statements 290 

CHAPTER 7 PROGRAHMING EXAMPLES 293 

APPENDIX A OP CODES, PSEUDO-OPS, 307 
AND MONITOR I/O COMMANDS 

A.l ASSEMBLER PSEUDO-OPS AND MONITOR CO 307 
COMMANDS 

A.2 MACHINE MNEMONICS AND OCTAL CODES 309 

APPENDIX B SUMMARY OF PSEUDO-OPS 311 

B.l PSEUDO-OPS 311 

B.l.l Conditional Assembly Statements 313 

APPENDIX C SUMMARY OF CHARACTER INTERPRETATIONS 315 

APPENDIX D STORAGE ALLOCATION 319 

APPENDIX E TEXT CODES 323 

APPENDIX F RADIX 50 REPRESENTATION 325 

APPENDIX G SUMMARY OF RULES FOR 327 
DEFINING AND CALLING MACROS 

G.l ASSEMBLER INTERPRETATION 327 

G.2 CHARACTER HANDLING 327 

G.2.l Blanks 327 

G.2.2 Brackets 327 

G.2.3 Parentheses 328 

G.2.4 Commas 328 

G~2.5 Semicolons 328 

G.2.6 Carriage Return 328 

G,2.7 Back-Slash 328 

G.3 CONCATENATION 328 

Version 47 June 1972 
vi 



-203- MACRO 

APPENDIX H OPERATING INSTRUCTIONS 331 

H.l REQUIREMENTS 331 

H.2 INITIALIZATION 331 

H.3 COMMANDS 332 

H.3.1 General Command Format 332 

H.3.2 Disk File Command Format 332 

H.4 SWITCHES 334 

Version 47 June 1972 
vii 





Chapter 1 
Introduction 

-205- MACRO 

MACRO-IO is the symbolic assembly program for the PDP-IO,and oper-

ates in a minimum of 7K pure plus lK impure core memory in all 

PDP-IO systems. MACRO-IO is a two-pass assembler. It is completely 

device independent, allowing the user to select standard peripheral 

devices for input and output files. For example, a terminal can be used 

for input of the symbolic source program, DECtape for output of the 

assembled binary object program, and a line printer can be used to 

output the program listing. 

This assembler performs many useful functions, making machine 

language programming easier, faster, and more efficient. Basically, 

the assembler processes the PDP-IO programmer's source program 

statements by translating mnemonic operation codes to the binary 

codes needed in machine instructions, relating symbols to numeric 

values, assigning relocatable or absolute core addresses for pro­

gram instructions and data, and preparing an output listing of the 

program which includes notification of any errors detected during 

the assembly process. 

MACRO-IO also contains powerful macro capabilities which allow the 

programmer to create new language elements, thus expanding and 

VERSION 47 JUNE 1972 
1-1 



-206-
adapting the assembler to perform specialized functions for each 

programming job. 

1.1 MACRO-IO LANGUAGE - STATEMENTS 

MACRO-IO programs are usually prepared on a terminal, with the aid 

of a text editing program, as a sequence of statements. Each state­

ment is normally written on a single line and terminated by a car­

riage return-line feed sequence. MACRO-IO statements are virtually 

format free; that is, elements of a statement are not placed in 

numbered columns with rigidly controlled spacing between elements, 

as in punched-card oriented assemblers. 

There are four types of elements in a MACRO-IO statement which are 

separated by specific characters. These elements are identified 

by the order of appearance in the statement, and by the separating, 

or delimiting, character which follows or precedes the elements. 

Statements are written in the general form: 

label: operator operand,operand;comments(carriage return-line feed) 

The assembler converts statements written in the foregoing form 

and translates them into machine instruction words. The formats 

used by the machine instructions are described in the following 

paragraphs. 

1.2 INSTRUCTION WORD FORMATS 

There are two typ~s of machine. instruction word formats: primary 

and input/output. 

The PDP-lO machine instructions are fully described in the PDP-lO 

System Reference Manual and listed alphabetically in Appendix A of 

this manual. Monitor I/O commands, or programmed operators have 

the same formats. (See monitor manuals.) 

The primary instruction statements may have-two operands: (1) an 

accumulator address and (2) a memory address. A memory address 

may be modified by indexing and indirect addressing. 

VERSION 47 JUNE 1972 
1-2 



-207-

1.2.1 Primary Instruction Format 

After processing primary instruction statements, the assembler 

produces machine instructions in the general 36-bit word format 

shown below: 

o 

MACRO 

35 

o 1 0 1 1 1 0 o 0 0 0 0 0 0 0 9.0 , 0 0 0 0 0 0 

INSTRUCTION 
PART 

ACCUMULATOR INDEX 
REGISTER 

ADDRESS 
PART 

10-0062 

In general, the mnemonicope~ation code, or operator, in the sym­

bolic statement is translated to its, binary equivalent and placed 

in bits 0-8 of the machi~e instruction. The address operand is 

evaluated and placed in the address part (bits l8~35 of the machine 

instruction. The assembler assigns sequential binary addresses to , 

each statement as it is pro?es!>ed by means of, ~he loqation counter. 

Labels are given the current value of th~ io~ation co,unter and are 
, ' , 

stored in the assembler'S symbol table, whete the corresponding 

binary addresses can be found if another instruction uses the same 

symbol as an address reference. 

Anyone of 16 possible accumulators may be specified in an instruc­

tion by identifying them symbolicaily or numerically as operands 

in the statement followed by a comma. The indirect address bit is 

set to 1 when the character @ prefixes a memory reference. Index­

ing is specified by writing the index registe~ used in parentheses 

immediately follow~ng the Il\emory reference; (All PDP-10 accumula­

tors, except accumulator 0, may be used as index registers.) Actu­

ally, expressions enclosed in parentheses (in the index register 

position) are evaluated as j6-bit quantities; their h~lves are ex­

changed, and then each half is added into the corresponding half 

of the ,binary word ,being asseIDbled. For example, the statements 

MOVSI AC,(1.0) ;MOVE 1.0 TO AC) 
MOVSI AC,(SIXBIT /DSK/) 

are equivalent to 

MOVSI AC,2014.00 
MOVSI AC,446353 

VERSION 47 

; MOVE 1. 0 TO AC) 

1-3 

JUNE 1972 



MACRO -208-
To illustrate this general view of assembler processing, here is a 

typical symbolic instruction. Assume that AC17, TEMP and XR are 

defined symbols, with values of 17, 100, and 3, respectively. 

LABEL: ADD AC17,@TEMP(XR) ;STATEMENT EXAMPLE) 

This is processed by the assembler and stored as a binary machine 

instruction like this: 

o 

INSTRUCTION 
PART 

• 9 

ACCUMULATOR 

17 18 

INDEX 
REGISTER. 

ADDRESS 
PART 

35 

The mnemonic instruction code, ADD, has been translated to its octal 

equivalent, 270, and stored in bits O-S. The first opera-nd specifies 

accumulator 17S • The effective memory address will be found at exe­

cutiontime by adding the contents of index register 3 to the value 

of TEMP, then taking this value as the address of the word whose 

address points to the word to be added to AC17. 

A comment following a semicolon does not affect the program in any 

way, but it is printed in the output listing. 

1.2.2 Input/Output Instruction Format 

There are eight PDP-IO I/O statements; in each statement the first 

operand is either a periphe~al device. number or a device mnemonic 

(see PDP-IO System Reference Manual for complete list). The second 

operand is a memory address. For example, 

READ: DATAl PTR,@NUM(4)) 

req1,lests that data be read in from a paper-tape reader, to be stored 

at the indirect, indexed, address given. 

The format for I/O instruction words is shown below: 

110 
INSTRUCTION 

VERSION 47 

DEvICE 
SELECTION 

9 10 

INSTRUCTION 
PART 

INDEX 
REGISTER 

17 18 

1-4 

ADDRESS 
PART 

35 

10-0063 

JUNE 1972 



-209- MACRO 
1.3 COMMUNICATION WITH MONITORS 

Programs assembled with MACRO-10 which operate under executive con­

trol of a monitor must use monitor facilities for device independent 

I/O services. This is done by means of programmed operators (opera­

tion codes 040 through 077) such as CALL. INIT, LOOKUP, IN, OUT, 

and CLOSE. 

Additional monitor commands are available to allow the user program 

to exercise control over central processor trapping, to modify its 

me~ory allocation, and other services, which are described in the 

monitor programmer's manuals. 

Monitor commands· are listed in Appendix A. 

1.4 OPERATING PROCEDURES 

Commands for loading and executingMACRO-10 are contained in Appen­

dix H. 

1.5 MACRO STATEMENTS 

As previously stated (paragraph 1.1) macro statements consist of 

a label, an operato·r, an operand and optional comments. 

The assembler interprets and processes these statements, generating 

one or more binary instructions or data words, or performaihg an 

assembly process. A statement must contain at least one of these 

elements and may contain all four types. Some statements are writ-
, 

ten with only one operand: but others may have many. To continue a 

statement on the following line ,the control (CTRL) left arrow (+)'. 

echoed as +i-, is used before the carriage return-line feed sequence 

(+ ~ or )). Examples of program statements are given in Chapt~r 7, 

Figures 7-1 and 7-3. 

Statement labels, operat~rs and operands may be ~epresented either 

numerically or symbolically. The assembler interprets all symbols 

and replace's them with a numeric (binary) value. 

1.5.1 Symbols 

The programmer may create symbols to use as statement labels, 

as operators and as operands. A symbol may consist of any 

VERSION 47 1-5 JUNE 1972 



MACRO -210-
combination of from one to six characters of the following 

set: 

The 26 letters, A-Z 
Ten digits, 0-9 
Three special characters: $ 

% 
{Dollar Sign) 
(Percent) 
(Period) 

The foregoing character set is the Radix-50 character set. 

Any statement character which is not in the Radix-50 set is treated 

as a symbol delimiter when encountered by the assembler. 

If the first characters of a symbol are numeric, the symbol is 

treated as through the numeric characters were not present. If the 

first character is a period, it must not be followed by a digit. 

Spaces must not be embedded in symbols. A symbol may actually have 

more than six characters, but only the first six are meaningful to 

MACRO-IO. 

MACRO-IO accepts programs written using both upper and lower case 

letters and symbols (e.g., programs written using the Teletype 

Model 37). Lower case letters are treated as upper casein symbols; 

additional special characters, and lower case letters elsewhere, 

are taken without change. 

1. 5.2 Labels 

I A label is the symbolic name created by the source programmer to 

ide~tify a statement. If present, the label is written as the first 

item in a statement and is terminated by a colon (:). (Refer to 

paragraph 1.5.1 for a description of how symbolic names are formed.) 

1.5.3 Symbolic Addresses 

A symbol used as a label to specify a symbolic address must appear 

first in the statement and must be immediately followed by a colon 

(:). When used in this way, a symbol is said to be defined. A 

defined-symbol can reference an instruction or data word at any 

point in the program. 

I A label can be defined with only one value; if a programmer attempts 

to redefine a label with a different value, the second value is 

VERSION 47 JUNE 1972 
1-6 



-211- MACRO 

I ignored and an error is indicated (see Chapter 4 for error mes­

sages). The following are legal labels: 

$SUM: 
ABC: DEF: 
FOO 

The following. are illegal: 

7ABC: 
LAB : 

(Both labels are legal) 

(First character must not be a digit.) 
(Colon must immediately follow label.) 

If too many characters are used in a label, only the first six 

characters given are used. For example the label ABCDEFGH: is 

recognized by the assembler~ being ABCDEF:. 

Labels are used for programmer reference as addresses for jump 

instructions, for loops and for debugging. 

1.5.4 Operators 

An operator may be one of the mnemonic machine instruction codes 

(see DECsystem-lO System Reference Manual), a command to Monitor, 

or a Fseudo-operation code which directs assembly processing. These 

assembly pseudo-op codes are described in this manual, and listed 

with all other assembler defined operators in Appendix A. 

Programmers may extend the power of the assembler by creating their 

own pseudo-operators (see OPDEF pseudo-bp) • 

An operator may be a macro name, which calls a user-defined macro 

instruction. Like pseudo-ops, macros direct assembly processing; 

but, because of their unique power to handle repetitions and to 

extend and adapt the assembly language, macros are considered 

separately (see Chapter 3). Operators are terminated with a space 

or tab. 

1.5.5 Symbolic Operators 

Symbols used as operators must be predefined by the assembler or 

by the programmer. If a statement has no label, the operator may 

appear first in the statement, and must be terminated by a space, 

tab, or carriage return. The following are examples of legal operators: 

VERSION 47 JUNE 1972 
1-7 



MACRO 
MOV 
LOC 
ZIP 

1.5.6 Operands 

':'212-
(A mnemonic machine instruction operator'.) 
(An assembler pseudo-op·.) 
(Legal only if ~efined by the user.) 

Operands are usually the symbolic addresses of the data to be ac­

cessed when an instruction is executed, or the input data' or argu­

ments or a pseudo-op or macro instruction. In each case, the in­
terpretation of operands in. a statement depends on the stat'ement 

operator. Operands are separated by commas, and terminated by a 
semicolon (;) or by a carriage return-line feed. 

In the mnemonic machine instruction, and UUO call set, if an oper­

and is followed by a comma (space-;' in the line are ignored) then 

the operand is identified as an accumulator (see instruct.ion format· 

description 'in paragraph 1. 2.1) • I.f an operan'd is not ~ollowed by: 

a comma, then it is viewed as an address (either indexed or indirect 

if negative). 

1.5.7 Symbolic Operands 

Symbols used as operands must have a value defined by the.user. 

These may be symbolic'references to :previously d~fined labels where 
the argument' t'o be used by this instruction are to be found, or . , .' , 

the values of symbolic operands may be constants or character 
strings. If the first operand references an accumulator, it must 

be followed by a comma. 

TOTAL: ADD ACl,TAG) 

: .. " 

The first operand, ACl, specifies an accumulator register, determined 

by the value given to the symbol ACI by the user. The second ?:per­

and references a memory location, whose mime or ~ymbol:i.c addres~ is 

TAG. If the user has equated ACI to 17, and the assembler has as­

signed TAG to the binary address, 000537, then the assembler inserts 

17 in the accumulator field (bits 9-12) and 000537 in the address 

field (bits 18-35) of this instruction. If an accumulator is not 

specified, but the operator requir~s one, accumulator a is assumed 

by default. If an accumulator is specifies by the. value >17 8 , the 

four least ~ignificant.bits are used. 

VERSION 47 JUNE 1972 

1-8 



-213- MACRO 
1. 5.8 Conunents 

The progranuner ,may add notes to a statement following a semicolon. 

Such conunents do not affect assembly processing or program execu­

tion, but are useful in the program listing for later analysis 

or debugging. The use of angle brackets «» should be avoided in 

conunents because they may affect the assembly. 

Each line of a program may contain a comment which explains the 

purpose of the line'and any, special action it causes., A line may 

also consist of only a conunent; this is usually done at the begin­

ning of ,each routine or major program section, to explain the,major 

flow of control, entry and exit'points and any other pertinent 

'information. 

1.6 STATEMENT PROCESSING 

The assembler has several symbol tables and corresponding search 

routines. The symbol tables arranged in the order in which they 

are searched are: 

1. Macro Table - This symbol table contains macros, 
user-defined operator definitions (op-defs) and 
synonyms (refer to the description of the SYN 
pseudo-op, paragraph 2.8.3). The macro table is 
initially empty; it grows as the user defines 
items. 

2. Op-Code Table - rhis symbol table contains all of 
the operator-codes (op-codes), the UUO calls and 
the assembler pseudo-operators (pseudo-ops). Lists 
of the foregoing items are given in Appendices A and 
B. The op-code table is generated by the assembler 
and is of fixed length; it cannot be changed except 
by reassembling MACRO. . 

3. User Symbol Table - This symbol table contains all 
user-defined symbols other than those which are 
placed in the Macro Table. This table is initially 
empty; it grows as the user defines items. 

4. Mnemonic Table - This table contains the mnemonics 
for the CALLI, MTAPE and TTCALL UUO's. The mnemonic 
table is searched only if all other measures fail. 
Any symbol found in this table is· put into the macro 
table as an op-def'as though the'user had defined it. 
Examples of the mnemonics contains'by this table are 

a) RESET as defined by the CALLI ~,~ 
b) EXIT asdefined in CALLI ~, 12 
c) OUTSRT as defined in TTCALI. 3,~ 

VERSION 47 JUNE 1972 
1-9 



MACRO -214-I Internally, the macro table and the user symbol table occupy the same 

space; however, the entries qf each table are easily distinguishable 

so no confusion takes plac~. 

1. 6.1 Order of Statement Evaluation 

The following table shows the order in which the assembler'searches 

each statement field: 

Label Field 

1. Symbol suffixed by 
colon. If coion is 
not found, no labe.l 
is present. 

Operator Field 

1. Number 
2. Macro/OPDEF 
3. ~achine operator 
4. Assembler operator 
5. Symbol . 
6. CALLI mnemonic 

'Operand Field 

1. Number 
2, Symbol 
3 : Macro/OPDEF' 
4. Machine operator 
5. Assembler pper~tor 

A single symbol could be used as a label, an operator, or an operand, 

depending o~ where it is used. 

The assembler first checks the operator field for a number, and if found, 

assum~s that no operator is present. Likewise, if a symbol is not a 

macro, OPDEF, ma~hine opera~~+ or assembler operator, the assembler will 

search the symbol table. If a defined symbo~ is found, no operator is 

present. 

If a defined operator appears in an operand field, it must generate at 
J , 

least one word of data. Statements that do not generate data may no~ 

be used ~s part of opera~d expr~s~ions~ If a statement used in an 

operand expressions generates' rtlore"t~anone word ot' data, only the 

first word generated is meaningful. 

1.6.2 Order of Expressio~ Evaluation 

Expressions are evaluated in the following order: 

- (Unary operator) 
tD, to,. tB, tF, tL 
B Shift, + Shift' 
Logical operators 
Multiply/Divide 
Add/~ubtract 

At each level, operation~ are Performed left to right. 

VERSION 47 
1-10 

JUNE 1972 



-215- MACRO 

1.7 USER-DEFINED SYMBOLS 

User-defined symbols are of two types: labels and assignments. Labels 

are generated by entering a symbol followed immediately by a colon 

(e.g., TAG:). Symbols used as labels cannot be redefined with a dif­

ferent value once they have been de£ined. The value of a label is the 

value of the location counter at the time that the label is defined. 

Assignments are used to represent, symbolically, numbers or bit patterns. 

Assignments ease the coding task in that only one line has to be changed 

(that containing 'the assignment) in order to change a number or bit pat~ 

tern which is used throughout the program. Assignment sta~~ments may be 

changed at any time, the current value of an assignment is the last v,a1 ue, 

given to the symbol used. 

1.7.1 Direct Assignment Statemen,ts 

The macro inserts new sym~ols with their assigned values directly into 

the symbol table by using a direct assignment statement of the,foIll\, 

symbol=value ~ 

where the value may be a number or expression. Note that the equal sign 

must immediately follow the symbol. For example, 

ALPHA= 5) 
BETA= 17) 

A direct assignment statement may also be used to give a new symbol the 

same value as a previously defined symbo'l: 

BETA= 17) 
GAMMA= BETA) 

The new symbol, GAMMA, is entered into the symbol table with the value 17. 

The value assigned to a symbol may be changed: 

ALPHA= 7) 

changes the value assigned in the first example from 5 to 7. 

VERSION 47 JUNE 1972 

l-ll 



. MACRO -216-
Direct assignment statements do not generate instructions or data in the 

object program. These statements are used to assign values so that symbols 

can be conveniently used in other statements. 

1.7.2 Local and Global Symbols 

user-definedsymb~ls may be used as local and global symbols in addition 

to beging used as label and assignment symbols. 

Local 'symbols are symbols which are known only to the program in which 

they are defined. Two separately assembled macro programs may contain 

local symbols which have the same mnemonic but different definitions; 

these programs, however, may be loaded and executed without conflict 

since the symbols are defined as local to each program. 

Global symbols are symbols which can be recognized by programs other 

than the one in which it is defined. The manner in which a global 

symbol is written or defined depends on where it is located: in the pro­

gram in which it is defined or the program in which it is a reference to 

a symbol defined elsewhere. 

Global symbols located in the program in which they are defined must be 

declared as available to other programs by the use of the pseudo-ops 

INTERN or ENTRY (see paragraphs 2.5.14.1 and 2.5.14.3) or by the use of 

the delimiter =: in their definition statement. For example, the symbol 

FLAG may be declared a global symbols by: 

a. INTERN FLAG (the symbol FLAG is declared internal), 

b. ENTRY FLAG (identifies the entry point of a library subroutine), 

c. FLAG=: 2~~ (FLAG is given the value 200 and is declared internal). 

NOTE 

The statement in item c of the foregoing examples 
(i.e., FLAG=: 20¢) is equivalent to the series 

INTERN FLAG 
FLAG= 200 

Global symbols located in a program in which they are references to symbols 

defined in other programs must be declared as external symbols by the use 

of the EXTERN pseudo-op (see paragraph 2.5.14.1) or a ## suffix. For 

example, the statement 

EXTERN FLAG 
. VERSION 47 

1-12 JUNE 1972 



-217- MACRO 

declares the symbol FLAG as an external reference. The statement 

MOVE 0,FLAG## 

al~o declares the symbol FLAG as an external r,eference; this statement 

is the equivalent of the series: 

EXTERN FLAG 
MOVE 0,FLAG 

1.7.3 Deleted Symbols 

sometimes a programmer may want to define a symbol in MACRO but not have 

that sYmJ:>ol ,typed out by DDT, (refer to the DDT Programmer's Reference 
, '. 

ManuaZ). In, suqh a cafje, the prQgra~er sho1J.ld define that symbol with 

a double equal sign: 

FLAG== 2~0) 

FLAG will. be. (issigne;d the value· 200 and 'will- be 

.' " 

a •. fully available, in MACRO. 

b. Available for type-i:n with DDT (ci"ssurriihg that symbols 
were loaded for the program containing FLAG). 

c . Unavailable for type-out by DDT . 

This is equivalent to ,defini-ng FLAG by-: ;., 

FLAG= 200) 

FJ,AG$K (the symbol $ represents ALT MOpE) 

to DDT. 

A symbol may be defined with and declared internal in the following 

manner 

FLAG== : 200 ) 

VERSION 47 JUNE 1972' 
1-13 



MACRO 
is equivalent to 

INTERN FLAG) 
FLAG==20rO) 

-218-

The programmer may also want to define a label in MACRO but have the out­

put of the label suppressed in DDT. The following constructions may be 

used: 

LABEL: ! 
LABEL: : ! 

1.8 NUMBERS 

LABEL is a suppressed local symbol. 
LABEL is a suppressed internal symbol. 

Numbers used in source program statements may be signed or unsigned, and 

are interpreted by the assembler~cording to the radix specified by the 

programmer, where 

2<radix<10 

The programmer may use an assembler ps'eudo-op, RADIX;' to set the radix 

for the numbers which follow. If the programmer does not use a RADIX 

statement, the assembler assumes a radix of 8 (octal) except in the case 

of the POINT pseudo~op (see paragraph 2.5.2). 

The radix may be changed for a single numeric term, by using the quali­

fier followed by a letter, D (for decimal), 0 (for octal), B (for binary), 

or F (for fixed-point decimal fractions). ,Note that.these are not control 

characters. Thus, 

tD10 
t010 
tB10 

is stored as 
is stored as 
is stored as 

1010 
1000 
0010 

The qualifier tL is used for bit position determination of a numeric 

value. tLn generates an octal value equal to the number of 0 bits to 

the left of the leftmost 1, if the numeric value n were stored in a 

computer word. 

Expression Resultant Value 

448 zero bits 

tL0 44 0000000000 •••• 0000000000 

VERSION 47 JUNE 1972 

1-14 



-219- MACRO 

Expression Resultant Value 

4lS zero bits 

tL5 

tL-1 

41 

o 

0000000000. .0000000101 

1111111111. .1111111111 

The suffixes K, M and G may be added to numbers as a shorthand method of 

specifying the number of zeros which are to follow the given number. The 

meaning of each suffix is: 

a) K, add three zeros (e.g., 5K = 5000), 

b) M, add six zeros (e.g., 5M = 5000000), 

c) G, add nine zeros (e.g., 5G = 5000000000). 

1.S.1 Arit~metic and Logical Operations 

Numbers and defined symbols may be combined using arithmetic and logical 

operators. The following arithmetic and logical operators may be used. 

Operator 

+ 

/ 
& 

Meaning 

Add 
Subtract 
Multiply 
Integer Divide 
AND 
Inclusive OR 

The assembler computes the 36-bit value of a series of numbers and 

defined symbols connected by arithmetic and logical operators, trun­

cating from the left, if necessary. The following examples show how 

these arithmetic and logical operators are written in statements. 

B= 
MULI 
MOVE 

65+Xl1-3) 
ACl+7,RHO/3l) 
A+3,BETA-5} 

Combinati,ons of numbers and defined symbols using arithmetic and logical 

operators are called expressions. 

1.S.2 Evaluating Expressions 

When combining elements of an expression, the assembler first performs 

unary operations (leading + or -), then binary shifts. The logical 

operations are then done from left to right, followed by mUltiplications 

VERSION 47 1-15 JUNE 1972 



MACRO -220-
and divisions, from left to right. Division always truncates the frac­

tional part. Finally, additions and subtractions are performed, left 

to right. All arithmetic operations are performed modulo 235. 

For example; in the statement: 

TAG: THO 3,l+A&C) 

the first operand field is evaluated first; the comma terminating this, 

operand indicates that this is an acc~~ulator. In the second operand 

field, the logical AND is performed first, the res,ul t is, added to one, 

and the sum is placed in the memory address field of the machine instruc­

tion. 

To change the normal order of operations, angl,e brackets may be, used to 

delimit expressions and indicate the order of computation. Angle brackets 

must always be used in pairs. 

Expressions may be nested to any level, with each expression enclosed in 

a pair of angle brackets. The innermost expression is evaluated first, 

the outermost is evaluated last. The following are legal expressions: 

A+B/5 
«C-D+B-29>*<A-41»+1 

I A=<B=<C=lO» 

1.B.3 Numeric Terms 

A numeric term may be a digit, a string of digits, or an expressio~ en-
, , ' 

closed in angle brackets. The assembler reduces numeric terms to a single 

36-bit value. 'Thi~ is useful when specifying operations such as local 

radix changes and binary shifts, which require single values. 

For example, the tD operator changes the local radix to decimal for the 

numeric term that follows it. The number 23:\.0 may be represented by 

tD23 
tD<5*2+13> 
tD<TEN*2+THHEE> 

but 2310 may not be written, 

tDlf.5f.5-77 

VERSION 47 JUNE L972 
1-16 



-221- MACRO 

because the tD operator affects only the numeric term which follows it, 

and in this example the second term (77) is taken under the prevailing 

radix, which is normally octal. 

The B shift operator is preceded by a numeric term (the number to be shifted) 

andis followed by another term (the bit position of the assumed point). 

The following are legal: 

tF167B17 
tBl~~llB8 

566B5 
<MARK + SIGN>B<PT-XXV> 

A bracketed numeric term may be preceded by a + or a - sign. 

1.8.4 Binary Shifting 

A number may be logically shifted left or ri'ght by following it with the 

letter B, followed by a numeric term, n, representing the bit position in 

which the right-hand bit of the number should be placed. The numeric term, 

n, may be any (decimal) bit position, starting with zero and numbering from 

left to right. If n is not used, B35 is assumed; n is taken as modulo 256 

decimal. Thus, the numbertDIO is stored as 000000 000012; but tDIOB32 is 

shifted left three binary positions and stored as 000000 000120; and DIOB4 

is shifted left 31 positions, so that its rightmost bit is in bit 4 and 

stored as 240000 000000. 

Binary shifting is a logical operation, rather than an arithmetic one. 

The following are legal binary shifts: 

IB0 
IB17 
IB35 
-lB35 
-lB53 
-lB7~ 

400000 000000 
000001 000000 
000000 000001 
777777 777777 (see explanation below) 
000000 777777 
000000 000001 

Note that the following expressions are equivalent: . 

10B32 tOlOB32 = lOB <42-10>= 10B< tD <42-10»= 10B<t D42- tDIO> 

VERSION 47 JUNE 1972 

1-17 



MACRO , -222-

The unary operators preceding a value are interpreted first by the as­

sembler before the binary shift. A leading plus sign has no effect, 

but a leading minus sign causes the assembler to shift and then to 

store the 2's complement. 

Binary shifting may operate on numeric terms, as defined in Section 1.3.2. 

1.8.5 Left Arrow Shifting 

If two expressions are combined with the operator "+", i.e., <m>+<n>, the 36-

bit value of expression m is shifted V bits (where V is the value of expres­

sion n) in the direction of the arrow (left) if V is positive or against 

the arrow if V is negative.' The effective magnitude of V is that of the 

address of an LSH instruction. 

1.8.6 Floating-Point Decimal Numbers 

If a string of digits contains a decimal point, it is evaluated as a float­

ing point decimal riumber, and the digits are taken radix 10. For example, 

the statement, 

is stored as 205420 000000. 

Floating-point decimal numbers may also be written, as in FORTRAN, with 

the number followed by the letter E, followed by a signed exponent repre­

senting a power of 10. The following examples are valid: 

NUMl: 
NUM2: 
NUM3: 

l7.2E-4) 
3.85E2) 
-567. 82 5E33) 

1.8.7 Fixed-Point Decimal Numbers 

As shown in Section 1.8, tD followed by a numeric term, is used to enter 

decimal integers. 

Fixed-point decimal numbers (mixed numbers) are preceded by tF followed by 

a number (not a numeric term, defined below) which normally contains a deci­

mal point. The assembler forms these fixed-point numbers in two 36-bit 

registers, the integer part in the first and the fractional part in the 

second. The value is then stored in one storage word in the object pro­

gram, the integer part to the left of the a ssumed binary point, the frac­

tional part to the right. 

VERSION 47 1-18 JUNE 1972 



-223~ MACRO 
The binary shift (B) operator i,s., used to position the assumed point., The 

number tF123.45BS is formed in two, registers: 

000000 000173 
346314 6'31462 

(the integer part) 
(the fraction part, left-justified) 

The B operator sets the assumed point after bit S, so the integer part is 

placed in bits O-S, and the fraction part in bits 9-35 of the storage word. 

In this case, the integer part is truncated from the left to fit the 9-bit 

integer field. Thef-raction '~art is moved into t'he 27-bit field following 

the assumed point and is truncated on the right. The result is, 

173346 314631 

t 
(assumed point) 

If a B shift operator does not 'appear in a fixed-point number,the point is 

assumed to follow bit 35, and the, fractional part is 10sL 

Fixed-point numbers are assumed to be positive unless a minus sign precedes 

the qualifier: 

0,00000 000173 tF123.45 
0{)0173, 346314 tF123.45B17 
346314 631462 tF123.45B-l 

777777 777~04 ,..,.tF123.45 
777604 431463 -tF123.45B17 
431463 146316 -tF123.45B-l 

Negative fixed-point numbers, 'such as the example above, are assembled as 

if they were positive numbers, complemented, and then logically shifted. 

1.9 ADDRESS ASSIGNMENTS 

As source statements are processed, the assembler assigns consecutive 

memory addresses to the instruction and data words of the object program. 

This is done by incrementing the location counter each time a memory 

location is assighed~ A statement which generates a' single object program 

storage word increments the location count~r by one. Another statement 

may generate six sto~age words,' incrementi~g the location counter by six. 

The mnemonic instruction and monitor command l statements generate a single, 

storage word. However, direct assignment statements and some assembler 

pseudo-ops do not generate storage words, and do not affect the location 

lThe terms monitor 
synonymous. 

VERSION 47 

command, (as ,used here) and programmed operator are 

1-19 
JUNE 1972 



MACRO -224-
counter. Other pseudo-ops and rna'cros may ge'nerate many words in the 

object program. 

1.9.1 Setting and Referencing the Location counter 

The MACRO-IO programmer may set the location counter by using the 

pseudo-ops, LOC and RELOC, which are described in Chapter 2. He may 

reference the location counter directly by using the symbol, point (.). 
\ 

For example, he can transfer to the second previously assigned storage 

word by writing: 

JRST . -2) 

1.9.2 Indirect Addressing 

The character @ prefixing an operand causes the assembler to set bit 13 

in the instruction word, indicating an indirect address. For an ex­

planation of indirect addressing and effective address calculation, 

see the PDP-ZO System Reference ManuaZ. 

1.9.3 Indexing 

If indexing is used to increment the address field, the address of 

the index register used is entered in parentheses, as the last part 

of the memory reference operand. This is normally a symbolic name 

defined by a direct assignment statement, or an octal number in the 

range 1-17, specifying 1 of the 15 index registers. However, the 

address of the index register may be any legal expression or an ex­

pression element. 

This is a symbolic, indirect, indexed, memory reference: 

I 
VERSION 47 

A: ADD 4,@NUM(17») 

NOTE 

The parentheses cause the value of the enclosed expres­
sion to be interpreted as a 36~bit word with its two 
halves interchanged, e.g., (17) is effectively 
0000i7000000. The 36-bit value is added to the in­
struction an~ may modify it. 'This is often used to 
generate right half values from left half expressions; 
for example, the statement 

TLO AC,(lB.0) 
which sets the sign bit. 

1-20 JUNE 1972 



-225- MACRO 
1. 10 LITERALS 

In a MACRO statement, a symbolic data reference may be replaced by 

a direct representation of the data enclosed in square brackets 

([]). This direct representation is called a literal. The as­

sembler stores data found within brackets in a Lite+al table, as­

signs an address to the first word of the data and insert~ tha,t 

address in the machine instructiop. 

A literal may consist of more than one statement and may generate 

more than one word of data. A literal must, however, generate at 

least one word but no more than 18 words. Literals which consist 

of only pseudo-ops (such as, .RADIX) which do not generate data or 

direct assignments are illegal. 

Literals may be nested (~.e., bracketed data within other sets of 

bracketed data) up to 18 levels. 

The following is a simple example of the user of literals. Byte 

instructions must reference by a byte pointer in this manner: 

LDB 
BP: POINT 

4,BP) 
10 ,A+3 ,14) 

(POINT is a pseudo-op which sets up a byte pointter word.) A 

literal can be used to insert the POINT statement directly. For 

example 

ILiterals 

a) 

b) 

LDB 4,[POINT 10~A+3,14]) 

are often used as constants as, for example: 

PUSH 17, [.0) 
MOVE L. [ 3 , 14 ] 

(note that .0 generates one word of zero). 

The following is an example of a multi-line literal: 

GETCHR: SOSG IBUF+2 

VERSION 47 

PUSHJ P ,{IN 
l'OPJ 
STATZ 
JRST 

JRST 
ILDB AC,IBUF+l 
POPJ P, 

jANY CHARS LEFT? 
N~ jNO, READ SOME IN 
P, jNO UNUSUAL CONDITIONS 
N,740000 jCHECK FOR ERRORS 
[MOVEI E, [SIXBIT /INPUT ERROR/] 
JRST ERRPNT] jPUBLISH ERROR MESSAGE 

EHDFILJ ; END OF FILE HANDLER 
jPICKUP NEXT CHAR 

JUNE 1972 
1-21 



MACRO -226-
NOTE 

The closing right square bracket does not terminate the 
literal if placed after the semicolon. 

The excessive use of literals, especially for small subroutines, is 

not recommended since they use up assembler space at the rate of four 

locations per data word generated. Literals also make debugging 

more difficult and may cause page faults in the KI-10 processor 

virtual memory allocation. 

The PDP-6 version of macro (MACRO-6) only permitted literals to con­

tain one statement but it permitted the right bracket to be dropped. 

Dropping the right bracket is not permitted: by MACRO-10. 

Two pseudo-ops MLON and MLOFF provide compatibility with old pro­

grams. Use of these pseudo-ops is required since 

MOVE AC,[SIXBIT/TEXTI) 

is legal in MACRO-6, even though the closing right bracket (]) of 

the literal has been omitted. In normal mode, MACRO does not allow 

such an unterminated literal. The pseudo-op 

MLON 

is set at the start of each assembly to cause the assembler to 

consider all code following a left bracket as part of a literal, 

until such time as the assembler processes a matching right bracket. 

Thus, carriage-return, line-feed does not end a literal, but 

rather the programmer must insert a right bracket. The pseudo-op, 

MLOFF 

set by the switch 10, places MACRO into the compatibility mode in 

which literals may occupy only a single line. 

The symbol • (current location) is not changed by the use of 

literals. It retains the value it had before the literal was 

entered. 

VERSION 47 JUNE 1972 
1-22 



Chapter 2 
MACRO-10 Assembler 
Statements-Pseudo-Ops 

-227- MACRO 

Assembler statements or pseudo-ops direct the assembler to perform 

certain assembler processing operations, such as converting data to 

binary under a selected radix, qr listing selected parts of the assem­

bled object progr~. In this chapter, these assembler processing 

operations are fully described. 

NOTE 

The pseudo-op name must follow the rules 
for constructing a symbol (refer ,to Para­
graph 1.5.1) and must be terminated by a 
character other than those listed in Para­
graph 1.5.1 as valid symbolic characters. 
(Normally, a space or tab is used as a 
terminator. ) 

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE 

MACRO-10 normally assembles programs with relocatable binary address'es, 

so that the program can be located anywhere in memory for execution as 

a function of what has been previously loaded. When desired, the assem­

bler will also assign absolute location addresses, either for the entire 

program or for selected parts. Two pseudo-ops control the address mode: 

RELOC and LOC. 

VERSION 47 JUNE 1972 

2-1 



MACRO -228-

RELOC N) 

This statement sets the location counter to n, which may be a number 

or an expression, and causes the assembler.to assign relocatable ad­

dresses to the instructions and data which follow. Since most re­

locatable programs start with the location counter set to 0; the 

implicit statement, 

RELOC r)) 

begins all pr9grams, and need not b~ written by the programmer who 

wants his program assembled with relocatable addresses. 
'i .. ·· .. ,· 

This statement sets the location counter to n, a number or an expres­

sion, and causes the assembler to assign absolute addresses, begin ing 

with n, to the instructions and data which follow. If the entire pro­

gram is to be assigned absolute locations, a Loe statement must precede 

all instructions and data. 

If h is not specified 

(LaC)) 

zero is assumed initially. 

If only a part of the program is to be assembled in absolute locations, 

the Loe statement is inserted at the point where theas'sembler begins 

assigning absolute locations. For example, the statement, 

LaC 2r)r)) 

causes the assembler to begin assigning absolute addresses, and the 

next machine instruction or data word is stored .at location 200 8 , 

VERSION 47 JUNE 1972 



-229- MACRO 

To change the address mode back to relocatable, an explicit RELOC 

statement. is required. If the programmer wants the assembler to con­

tinue assigning relocatable addresses sequentially, he writes, 

RELOC) 

To switch back to the next sequential absolute assignment., he writes, 

LOC) 

Thus, the programmer is not required to insert a location counter 

value in either a LOC or RELOC statement, and unless he does, both 

the relocatable coding and the absolute coding will be assigned se­

quential addresses. This is shown in the following skeleton coding. 

The single quote mark is used here, and in MACRO-10 listings, to 

identify relocatable addresses. 

-Location Counter 

- -~~1~34 
ro-~!4~74' 
~~~~75' 
~!4l~34

LOC l~~~
SUB 5,TOT

RELOC
ADD 2,XAT
LOC
EXP A-X+7

;RELOC ~ IS IMPLICIT.

;CHANGES TO ABSOLUTE, STARTING
;WITH ~~l~~~.

;SETS -LOCATION COUNTER TO 74.

;SWITCHES LOCATION COUNTER
;BACK TO ABSOLUTE SEQUENCE.

When operating:in the relocatable mode, the assembler determines

whether each location in the object program is relocatable or absolute,

using an algorithm described in Chapter 5.

2.1.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be moved into other locations for execution.

This feature is often used to relocate a frequently used subroutine,

or iterative loop, into fast memory (accumulators O~l78) just prior

to execution.

VERSION 47 JUNE 1972
2-3

MACRO -230-'-

To use this feature, the subroutine is assembled at sequential re­

locatable or absolute addresses along with the rest of the 'program,

but the first statement before the subroutine contains the assembler

operator, PHASE, followed by the address of the first'locatiori of the

block into which the subroutine is to be moved prior to execution.

All address assignments in the subroutine are in relation to the

argument of the PHASE statement. The subroutine is terminated by a

DEPHASE statement, which requires no operands, and which restores the

location counter.

In the following example, which is the central loop in a matrix inver­

sion, a block transfer instruction moves the subroutine LOOP into

accumulators 11-16.

Relocatable
Address

Absolute
Address

LOOPX:
LOOP:

MOVE [XWD LOOPX,LOOP]
'BLT LOOP-t~
JRST LOOP
PHASE 11
MOVN A (X)
FMP MPYR
FADM A (y)
SOJGE X, .-3
JRST MAIN
DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE

instruction represents accumulator 14.

Note that the code inside ,the phase todephase program segment is

loaded into the address following the previous relocatable code; all

labels inside the segment, ,however, have ~the address cor.responding

to the phase address. Thus the phased code cannot, in general, be

executed until it has been moved to the address for which it was

assembled.

2.2 NAMING PROGRAMS

Normally the first statement in a program gives the name of the pro­

gram using the TITLE pseudo-op. This pseudo-op has the form

TITLE NAME)

in which the single operand (i.e., NAME) may contain up to 60 characters.

VERSION 47 , JUNE~ 1972

2-4

-231- MACRO

The name given will be printed at the top of each page of the program

listing. The fi~st 6 characters of th~ given title ~ill ap~ear in the

assembled program as the program name. If no title is given, the

assembler inserts the name .MAIN. The program name given in the TITLE

statement is used when debugging with DDT in order to gain access to

the program's symbol table.

Only one TITLE pseudo-op is permitted in a program; it can appear any­

where in the program but is normally the first line on the first page.

Remember that a name may be longer than 6 characters, however, only

the first 6 symbol combinations (within the radix-50 set) will be used

for the program name.

2.2.1 Program Subtitles

After the first page of a program listing, the first data line en­

countered on a page may be a subtitle. Subtitles are generated using

the pseudo-op SUBTTL. This pseudo-op has the form

SUBTTL SUBTITLE~

in which the single operand (SUBTITLE) may contain up to 40 characters.

A subtitle is printed as the first data line on a page and all suc­

ceeding pages until the end of the listing or ,until the subtitle is

changed. If the current subtitle is changed by another SUB TTL state­

ment which is the first data line on a, 'page, the new subtitle appears

on the new page and all subsequent pages. If the SUBTTL statement is

not the first statement on a page, the new subtitle appears on the

next page and all subsequent pages.

subtitles can be changed as often as required; they do not generate

data and they do not affect the binary procedure only the listing.

They are used for informational purposes only.

2.3 PROGRAM ORIGIN

Initially all programs start with an implicit RELOC 13 which sets the

mode'to be relocatable and the first address to be 13. Unless other­

wise changed, the code generated will be a s'ingle-segment program.

VERSION 47 JUNE 1972
2-5

MACRO -232-

The programmer can change the relocatable nature of the program by

using a LOC statement to generate absolute code (normally used for
diagnostics) or to generate high-segment code.

High-segment (or two-segment programs) have two logical address

spaces; one starting at ~ and increasing, t~e other starting at

4~~~~~ (128K) and increasing. Two pseudo-ops, H~SEG and TWOSEG con­
trol High or two-segment program operation.

2.3.1 HISEG Statements - The HISEG Pseudo-Op Statement

This pseudo-op does not affect the assembly operations in any way ex­

cept to generate information that directs the Loader to load the

current program into the high segment if the program has reentrant

(two-segment) capability. (Refer to Block Type 3 Load Into The High

Segment, paragraph 6.2.1.1, for additional information.) This pseudo­

op should appear at the beginning of the source program.

NOTE

Whenever possible the pseudo-op TWOSEG
should be used instead of HISEG. This
pseudo-op provides functions which are
superior to those of HISEG.

HISEG may be followed by an optional argument which represents the

program high-segment origin address. This argument, when used, must

be equal to or greater than 4~~~~~ and must be a K-bound (even multiple
of 2000) value. The code produced by HISEG will execute at either

relocatable ~ or relocatable 4~~~~~ depending on the loading instruc~

tions given.

HISEG must not be used if the programmer wishes to reference data in

the low segment since locations in .the low segment are referenced by

absolute addresses only.

2.3.2 TWOSEG Statements

The TWOSEG pseudo-op generates code that directs MACRO and.LOADER to

assemble and load a two-segment program in one file. This pseudo-op
outputs a block type 3 (refer to Paragraph 6.2.1.1) which signals the

LOADER to expect two segments. An optional argument may be present

VERSION 47 JUNE 1972
~-6

-233- MACRO

which is the first address in the high segment. If no argument is

present, 400000 is assumed.

The high segment code must be preceded by

RELOC 4~~~~~

or greater; the low segment code by

RELOC ~

or an argument indicating the low segment. Each RELOC pseudo-op

swi.tches the relocation.

The listingproduc~d by the TWOSEG pseudo,":"op shows high segment.

addresses as greater than 400000·or the argument of the pseudo-op,

and low segment addresses as less than 400000 or the argument of the

pseudo-op. All relocatable addresses are flagged with a single quote.

2.4 ENTERING DATA

2.4.1 RADIX Statements

When the assembler encounters a numerical value in a statement, it con­

verts the number to a binary representation reflecting the radix

indicated by the programmer. The statement,

RADIX N)

where,n is a decimal number, 2~ n~ 10, sets the radix to n for all

numerical values that follow, unless another RADIX statement changes

the prevailing r.adix or a local radix change occurs (see below).

For example, if the programmer wants the assembler to interpret his

numbers as decimal quantities, then the prevailing radix must be set

to decimal before he uses decimal numbers.

RADIX l~)

The statement, RADIX 2, sets the prevailing radix to binary.

VERSION 47 JUNE 1972
2-7

MACRO -234-

The implicit statement, RADIX 8, begins every program; if the pro­

grammer wants to enter octal numbers, this statement is not necessary.

2.4.2 Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed

by a carriage return:

765432234567)

Data may be labeled and contain expressions:

LAB: 456+A+B/< C+D~)

Data may also be entered by first using a direct assignment statement

to place a symbol with an assigned value in the symbol table, and

then using the symbol to insert the assigned value in the object pro­

gram. For example, the direct assignment statements,

A=2)
B=5)

cause two entries in the symbol table. The following statement enters

the sum of the assigned values in the object program at symbolic

address REX.

REX: A+B) REX contains 000000 000007

The radix can also be changed locally, that is, for a single statement

or a single value, after which the prevailing radix is automatically

restored, as described in section 1.3.

2.4.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer

writes:

DEC N,N,N, ..• N)

where all of the numbers and expressions are to be interpreted as

decimal numbers. The numbers or expressions following the operator

VERSION 47 JUNE 1972

2-8

-235- MACRO
are separated by commas, and each will generate a word of storage.

. ,)
OCT N, N , N, ... N

changes the local radix to octal for this statement only, and

generates a word of memory for eacnnumber or expression.

The statement,

DEC 10,4.5,3.1416,6.03E-26,3 J

generates five decimal words of data.

2.4.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric

term is prefixed with tD, to, tB, or tF, as explained in Chapter l.

If an expression is used, it must be enclosed in angle brackets,

tD<A+B-C/200>)

These prefixes may generate a word, or part of an instruction word.

The statement,

TOTAL2:MOVE tD10,iBz)

causes the contents of ABZ to be moved to accumulator 12 8 ,

When the assembler encounters a numeric te:tin,·it fonus the binary

representation in a 36-bit register under the prevailing or local

radix. If the quantity is a part of an instruction, it is trun­

cated to fit in the required field.

For example, the accumulator fieid must have a final value in the

range 0-17 8 , In the s·tatement,

MOVE tD60,ABZ)

the ass·embler first interprets the accumulator address in a 36-bi t

register, forming the integer. 00000'0000074: out takes only the

rightmost. four bits and places them in the accumulator field of

the instruction, which resul t'S in the selection of accumulator 14 8 ,

VERSION 47 JUNE 1972
2-9

MACRO -236-
2.4.5 RADIX 50 Statement

Another radix changing statement is available, but it is used primarily

in sys.tems programming. This is .RADIX50 n, sym) which is used by the

assembler, PDP-IO Loader, DDT, and other systems programs to pack

symbolic expressions into 32 bits and add a 4-bit code field n in

bits 0-3. This is explained in Appendix F of this manual. (The

mnemonic SQUOZE may be used in place of RADIX50.)

2.4.6 EXP Statement

Several numbers and expressions may be entered by using the EXP state­

ment:

EXP X,4, tD65 ,HALF ,B+362-A ..)

which generates one word for each expression; five words were

generated for the above example.

2.4.7 Z Statement

A zero word can be entered by using the operator, Z.

LABEL: Z)

generates a full word of all zeros at LABEL. If operands follow. the Z,

the assembler forms a primary machine instruction, with the operator

field and other unknown fields zeroed. In the statement,

Z 3,.)

the assembler finds an accumulator field, but no address field, and

generates this machine instruction: 000140.000000.

2.5 INPUT DATA WORD FORMATTING

2.5.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit

words. Bytes of any length, from Ito 36 bits, may be entered by using

a BYTE statement.

BYTE (N) X,X,X ..)

The first operand (n) is the byte s.i,ze in bits. It is a decimal "number

in the range 1-36,and must be enclqsed·in parentheses. The operands

following are separated by commas, and are.the data .to be storeg. If

an operand is an expression, it is evaluated and, if necessary,truncated

from the left to the specified byte size. Bytes are packed into words,

VERSION 47 JUNE 1972
2-10

-237- MACRO
starting at bit 0, and the words are assigned sequential storage loca­

tions. If, during the packing of a word, a byte is too large to fit

into the remaining bits, the unused bits are zeroed and the byte is

stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are entered:

LABEL: BYTE (12)5,177,N ~

This assembles at LABEL as, 0005 0177 0316, where N=316.

The byte size may be altered by inserting a new byte size in parentheses

immediately following any operand. Notice that the parentheses serve

as delimiters, so commas must not be written when a new byte size is

inserted. The following are legal:

BYTE (6)5(14)NT(3)6,2,5 ~

where 6 is entered in a 6-bit byte, NT in the following 14~bit byte,

6 in the following 3-bit byte, followed by 2 and 6 in 3-bit bytes. A

BYTE statement can be used to reserve null fields of any byte size. If

two consecutive delimiters are found, a null field is generated.

BYTE (18),5 ~

When the assembler finds two delimiters, it assembles a null byte. In

this case, 000000 000005. To enter ASCII characters in a byte, the

characters are enclosed in quotation marks.

BYTE (7) "A" .)

Text handling pseudo-ops are discussed in paragraph 2.5.5.

2.5.2 POINT Statement - Handling Bytes

Five machine instructions are available for byte manipulation.

These instructions reference a byte pointer word, which is

generated by the assembler from a POINT statement of the form,

LABEL:POINT s, address, b ~ (s and b are deci~al)

where the first operand s is a decimal number indicating the byte

size, the second operand is the address of the memory location

which contains the byte, and the third operand, b, is the bit.

position in the word of the right-hand bit of the byte (if b

is not specified, the bit position is the nonexistent bit to the

VERSION 47 2-11 JUNE 1972

MACRO -238-
left of bit 0). The address specified in the second op~rand may

b~ indirect and indexed. If the byte size is not specified,

MACRO-IO as'sumes 36 bits.

In the following example, an LDB (load a byte from a memory loca­

tion into an accumulator) and an ILDB instructions are used, along

with three assembler statements. The ILDB instruction "increments"

AC to look like AB, then does a load byte; the effect of the two

instructions is the same.

000000' 0521000 000000 AA: BYTE (6)5
000001 ' ' 360600 000000" AB: POINT 6,AA,5
000002' LjLj0600 000000, ' AC: POINT 6,AA

000003 ' 1351Lj0 000001 ' START: LOB 3,AB
00000Lj' 1341Lj0 000002' ILOB 3,AC

The first statement enters the quantity 5 ina6-bit byte at

symbolic address AA which is O. The second statement is for'

reference by t~e,load byte instruction. When the LDB is executed,

the machine goes to AB for the byte size, its address, and bit

position. In this case, it finds that the byte size is 6 bits,

the byte is located in the word AA, and the right-hand bit of

the byte is in bit 5. The byte is then loaded into accumulator 3,

where it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the

byte pointer word in similar ways. The deposit byte (DPB) in-

struction takes a byte from an accumulator and deposits it, in

the position specified by the pointer word, in a memory word.

The increment byte pointer (IBP) instruction increments the bit

position indicator (the third operand in the referenced POINT

word) by the byte size. This is, useful when loading or deposit­

ing a string of bytes, using the same byte pointer word.

The increment and load byte (ILDB) and increment and deposit byte

(IDPB) instructions increment the byte pointer word by the byte

size before loading or depositing.

VERSION 47 2-12 JUNE 1972

:-239- MACRO
2.5.3 IOWD Statement: Formatting I/O Transfer Words

The assembler generates I/O transfer words in a special format

for use in BLKI and BLKO and all four pushdown instructions.

The general statement is,

IOWD N,M..)

where two operands, which may .be numbers or expressions, follow

the IOWD operator. This statement generates one data word.

The left half, of the assemb,led word contains the 2' s complement

of the first operand n, and the right half-word contains the

value of the second operand m, minus one. For example,

IOWD 6, t D256 ..)

assembles as 777772 000377.

2.5.4 XWD Statement: Entering Two Half-Words of Data

The XWD statement enters two half-words in a single storage word.

It is written in the for'm,

XWD LHW,RHW..)

where the first operand is a symbol or expression speci'fying the

left half-word, and the second operand specifies the right half­

word. Both are formed in 36-bit registers and the low order 18-

bits are placed in the half-words. The high-order 18 bits of each

operand are ignored. Three examples follow:

XWD A,B)
XWD SUM+2,DES+5)
XWD START,END)

XWD statements are uS,ed to set up pointer words for block transfer

instructions. Block tr.ansfer pointer VI,ords contain two 18-bit

addresses: the left ,half is th~:starting location of the block

, to be moved, and the. right half :.is the first location of the

destination. ,A"B may a~so be used to duplicate ,the results of

XWD A,B.

VERSION 47 JUNE 1972
2-13 .

MACRO -240-
2.5.5 Text Input

The assembler translates text written in full 7-bit ASCII or 6-bit

compressed ASCII. It will also format 7-bit ASCII with a null

character at the end of text, if desired. These codes are listed'

in Appendix E.

In all three text modes, the printing symbols in the code set are

translated to their binary representation.

To translate and store a single word containing as many as five

7-bit ASCII characters, right-justified, the input characters are

enclosed in quotation marks.

"AXE") is stored as
o 0000000 0000000 1000001 1011000 1000101
o null null A ,X E

Notice that characters are right-justified, and bit 0, which is

not used, is set to zero.

Up to six 6-bit ASCII characters may be translated and stored,

right-justified, in a single word by enclosing the input charac­

ters in single quotation marks.

'TABLES' is stored as

110100 1000Ul 100010 101100 100101 110011
TAB L E S

NOTE

The quotation marks (single or double) may
only be used to assemble a single word. To
input strings of text characters, the fol­
lowing three pseudo-ops must be used.

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement - To enter strings of

text characters, the operators ASCII, SIXBIT, and ASCIZ are us'ed."

The delimiter for the string 6f text characters is the first non­

blank character following the 'character that terminates the operator

(refer to the note on page 2.1). The binary codes are left-justified.

Unused character positions are set to zero (null). Text is termi­

nated by repeating the initial delimiter. If the initial delimiter

is a symbol constituent, the pseudo-op must be followed by a space

or a tab.

VERSION 47 2-14 JUNE 1972

-241-
The statement

ASCII "AXE" ~

where the quotation marks are the delimiters, assembles as

1000001 1011000 1000101 0000000 0000000 0
A X E null null 0

The operator ASCIZ (ASCII Zero) guarantees a null character at

the end of text. If the number of characters is a multiple of

five, another all zero word is added. For example,

ASCIZ/"AXE"/)

assembles as,

0100010 1000001 1011000 1000101 0100010 0
" A X E "

followed by another word of zeros.

0000000 0000000 0000000 0000000 0000000 0
null

MACRO

When thefull 7-bit ASCII code set is not required, the 64-character

6-bit subset may be entered, using the SIXBIT operator. Six charac­

ters are left-justified in sequential storage words. Format of

the SIXBIT statement is the same as for ASCII statements. To derive

SIXBIT code:

a. Convert lower case ASCII characters to upper case
characters.

b. Add 40 8 to the value of the character.

c. Truncate the result to the rightmost six bits.

2.5.6 Reserving Storage

The programmer can reserve single locations, or blocks of many

locations for use during execution of his program.

VERSION 47 JUNE 1972

2-15

MACRO -242-
2.5.6.1 Reserving a Single Location - The number sign (#),suf­

fixing a symbol in an operand field, is used to reserve a single

location. The symbol is defined, entered in the~~sembler's

symbol table,and can be referenced elsewhere in the program with­

out the number sign. For example,

LAB: ADD 3,TEMP#)

reserves a location called TEMP at the end of the program, which

may be used to store a value ent~red at some oth~r point in the

program. This feature is useful for storing scalars, and other

quantities which may change during- execution.

The pseudo-op INTEGER may be used to reserve storage locations

at the end of the program on a one-per-given name basis. For

example the statement

INTEGER TEMP,FOO,BAR)

will reserve 3 locations identified as TEMP, Faa and BAR. The

assignment of the locations to the names given is performed on

an alphabetical basis by the assembler rather than.on the order

in which the names are given. For example, the order of the loca­

tions reserved by the foregoing INTEGER statement would be BAR,

Faa then TEMP.

Multiple word locations may be reserved by the ARRAY pseudo-op.

For example, the statement

ARRAY FOO[2*3J)

reserves a 2-word by 3-word array in memory which is identified by

the name Faa.

VERSION 47

NOTE

If the pseudo-op TWOSEG is used, the ~ariables
reserved by an array statement must be as­
signed to the low segment only; thus, a VAR
pseudo~op is required after a RELOC back to
the low segment.

JUNE 1972

2-16

-243- MACRO
2.5.7 VAR Statements

VAR .J

This statement causes symbols which have been defined by suffixing

with the # ~ign (array and integer pseudo-ops) in previous state­

ments to be assembled as block statements. This has no effect on

subsequent symbol definitions of the same type.

If the LIT and VAR statements do not appear in the program, all

literals and variables are stored at the end of the program.

2.5.8 BLOCK Statements

To reserve a block of locations, the BLOCK operator is used. It

is followed by a single operand, which may be a number or an ex­

pression, in the current radi;x:, indicating the number of words to

be reserv~d.. Th.e assembler increments the location counter by

the value of the operand. For example,

~~TRIX: BLOCK N*M ~

reserves a block of N*M words starting at MATRIX for an array

whose dimensions are M and N.

IBLOCK is used to reserve words in a specific order; remember that

data words should be stored in the low segment in two-segment pro­

grams.

2.5.9 END Statements

The END statement must be the last statement in every program. A

sing·le operand may follow the END operator to specify the address

of the first instruction to be executed. Normally this operand is

given only in the main program; since subprograms are called from

the main program, they need not specify a starting address.

END START) start is the label at the starting address

When the assembler first encounters an END statement, it terminates

pass 1 and begins pass 2. The END also terminates pass 2, after which

VERSION 47 JUNE 1972
2-17

I

MACRO -244-

the assembler automatically assembles all previously defined vari­

ables and literals starting at the current location. l

The following processing operations can be performed at any point

in the program.

2.5.10 LIT Statements

LIT ~

This statement causes literals that have been previously defined to

be assembled, start~ng at the current location. If n literals have

been defined, the next free storage location will be at location

counter plus n. Literals defined after this statement are not af­

fected.

If a LIT statement does not appear before the END statement, the

literals are XLISTed (refer to paragraph 2.6.3). If the output

of literals is desired, the LIT pseudo-op should appear immediately

before the END statement.

2.5.11

NOTE

In a two-segment program LIT must be given
in the high segment. The END statement must
also be given in the high segment or the
literals will ~o to the low segment.

Multi~Program Assembly

rhe pseudo-op PRGEND is used to compress many small files into one

large file to save space and disk lookups. This pseudo-op has the

form PRGEND). PRGEND allows mul tiprogram assemblies, .and is used

for assempling library files (LIB40) in which all programs are ve+y

short. PRGEND takes the place of all but the last END statement.

The output is a binary file which can be loaded in search mode. The

use of PRGEND costs assembler space since the symbol tables, literal

tables and titles of each of the small files (i.e., programs) involved

must be saved at the end of pass 1. Also, since PRGEND is function­

ally an END statement, macros cannot be used over it (i.e., macros

cannot generate PRGEND as part of their expansions).

lThe END statement is also used to specify a transfer word in some
output file formats. (See Section 6.2.2.4.)

VERSION 47 JUNE 1972
2-18

'J

-245- MACRO

IIf the LIT and VAR statements do not appear in the programs, all

literals and variables are 'stored at the end of the program.

2.5.12 PASS2 Statements

PASS2 }

This statement switches the assembler to pass 2 processing for the

remaining coding. Coding preceding this statement will have been
processed by pass 1 only: This is used primarily for debugging,

such as ,testing macros defined in the pass 1 portion.

2.5.13 PURGE Statements

The PURGE statement is used to delete defined symbols. Its general

form is:

PURGE symbol, symbol, symbol ~

where each operand is a user-created label, operator, or macro

call which is to be deleted from the assembler's tables. The PURGE

statement is normally used at the end of programs to conserve stor­

age and to delete symbols for DDT. Purged symbol table space is

reused by the assembler.

If the programmer uses the same symbol for both a macro call and/or

OPDEF (refer to Se9tion 2.8.2) and for a label,a' PURGE statement

deletes the macro call or OPDEF. A repeat of the symbol in the
PURGE statement also purges the label. For example, the following

statement purges both:

PURGE SOLV,SOLV ~

The first· SOLV purges the macro call; the second SOLV purges the

label.

2.5.14 XPUNGE Statements

The XPUNGE pseudo-op deletes all local symbols during pass 2; it

has the form:

XPUNGE ~

VERSION 47 JUNE 1972
2-19

MACRO -246-

IThe use of this pseudo-op reduces the size of the REL file and

speeds up loading (especially of DDT). XPUNGE should be placed

just prior to the END statement.

2.5.15 Linking Subroutines

Programs usually consist of subroutines which contain references

to symbols in exte'rnal programs. Since these subroutines may be

assembled separately, the loader must be able to identify "global"

symbols. For a given subroutine, a global symbol 'is either a

symbol defined internally and available for reference by other

subroutines, or a symbol used internally but defined in another,

subroutine. Symbols defined within a subroutine, but available to

others, are considered internal. Symbols which are externally

defined are considered external.

These linkages between internal and external symbols are set up by

declaring global symbols using the operators EXTERN, INTERN, or

ENTRY. The double colon (::) may also be used.

2.5.15.1 EXTERN Statements - The EXTERN statement identifies symbols

which are defined elsewhere. The'sta,tement,

EXTERN SQRT, CUBE,TYPE)

declares three symbols to be external. External symbols must not

be defined within the current subroutine. These external references

may be used only as an address or in an expression that is to be,

used as an address. For example, the square root routine declared

above might be called by the statement,

PUSHJ P,SQRT)

External symbols may be used in the same manner as any other re­

locatable symbol. Examples:

EXTEk!'i A

2003"'''' vW)v)003 * ty,QVE I),A+3

"''''10003 * (·)00000 * XWD A+3,t>,

777 7 7 7 777771 8= A-7
(WDE"F (.I[XWD 8+3,A-SJ

77777'1* 777773 * Q

VERSION 47 JUNE 1972
2-20

-247- MACRO

The external symbols are flagged with asterisks. There are three

restrictions for the use of external symbols:

a. Externals may not be used in Loe and RELoe stat'e­
ments.

b. The use of more than one external in an expression
i.s not permitted. Thus, A+B (wher'e A and B are both
external~ is illegal~

c. Globals' may only be additive; therefore, the f.ollow­
ing are illegal

. -A
2*A

EXP-A
2*A-A

An alternative method for generating external symbols.is to use a

double pound sign (##) following the symbol name. This method

eliminates specifying th~.EXTERN statement. For example,

MOV 0,JOBREL##

is equivalent to

EXTERN JOBREL
MOVE 0,JOBREL

2.5.15.2 INTERN Statements- To make internal program symbols avail-
.. .

able to other programs as 'external symbols, the operators INTERN

.or ENTRY are ·used.. These statements have no effect on the actual

assembly of the program, but will make a list of symbol equivalences

available to 'other programs at load time. The statement,

INTERN MATRIX ~

makes the subroutine MATRIX available to other programs.' An 1ntern'al

symbol must be defined within the program as a label, variable, or

by direct assignmerit.

2.5.15.3 ENTRY Statements - Some subroutines have common usage, and

it is convenient to place them in a library. in'order to be called

by other programs, these library subroutines must contain the state­

ment,

ENTRY NAME)

VERSION 47 JUNE 1972

2-21

MACRO -248-
where "name" is the symbolic name of the entry point of the lib­

rary subroutine.

ENTRY is equivalent to INTERN with the following additional feature.

All names in a list ::ollowing ENTRY are defined as internal symbols

and are placed in a list at the beginning of the library of subrou­

tines. If the loader is in library search mode, a subroutine will

be loaded if the program to be executed contains an undefined global

symbol which matches a name on the library ENTRY list.

If the MATRIX subroutine mentioned before is a library subroutine,

it must contain the statement,

ENTRY MATRIX)

Since library subroutines are external to programs using them, the

calling program must list them in EXTERN statements.

2.6 SUPPRESSION OF SYMBOLS

When a parameter file is used in assemblies, many symbols get

defined but are never used. Unused defined symbols take up space

in the binary file and complicate listings of the file. Unused
and unwanted symbols may be removed from symbol tables by the use

of a pseudo-op, either SUPPRESS or ASUPRESS. These .pseudo-ops

control a suppress bit in e.ach location of the. symbol tabler if

a suppress bit is on, the sYro?_ol in tha,t location is not output.

The suppress bit is used in the file S • MAC so ,that if a bit is on

and the symbol in that location is not used later, the symbol is

not output in the CREF table.

2.6.1 SUPPRESS SYMBOL Statement

The SUPPRESS statement turns on the suppress bit for the specified

symbols.

2.6.2 ASUPPRESS. Statement

The ASUPPRESS statement turns on the suppress bit for all the symbols

in the symbol table.

VE·RSION 47 JUNE 1972

2-22

-249- f"lAGRO

2.6.3 Listing Control Statements

Program listings are normally. printed on a line printer or a terminal

depending on the listing file device specified. ~istings are

printed as the source program statements are processed during pass 2.

A sample listing is shown :in Chapter' 7.

From left to right the standard columns of a listing contain

a) the location counter,

b) the instruction or data.in octal form, and

c} the symbolic instruction or.data followed by
comments. -

RelQcatable object-code addresses are suffixed by a single quotation

mark (') which may occur in either the .left or right half.

Data is displayed in one of several modes depending on the state­

ment format. The possible statement formats are:

1) Halfword

2) Instruction

3) Input/Output

4) Byte pointer

5) .ASCII

6) SIXBIT

-' two IS-bit'bytes

- a 9-bit op-code, 4-bit
accumulator code, l-bit
indirect 'bit, 4-bit index,
and an lS-bit address seg­
ment

- 3-:-bitI/O indicator, 7-bit
I/Ode~ice specification,
3-bit operand, l-bit indirect
address bit, 4-bit index and
an lS-bit address segment

,'- 6-oit byte position, 6-bit
byte size, 1 unused bit,
l-bit indirect address bit,
4-bit index and q,n lS...;~it
address segment

- 5 Seven-bit bytes

-',6 six,",bit bytes.

NOTE

Refer to the DECsystem-lO System Reference
Manual for a complete description of word
formats.

The listing function is suppressed within macro expansion, therefore

only the macro call and any succeeding lines that generate code are

VERSION 47 JUNE 1972

2-23

MACRO ,-250-· ,,'

listed. Line printer listings always begin at the top of a page

and up to 55 lines are printed on each page. Consecutive page

numbers are printed in the upper right-hand corner of each page.

Each page also cont~ins a title and a subtitle.

The standard listing operations can:be. augmented and modified by

using the following listing control statements.

STATEMENT

PAGE)

XLIST)

LIST)

LALL)

XALL)

I
SALL·)

NOSYM)

VERSION 47

DESCRIPTION

This statement causes the assembler to skip
to the top of the next page. (A form feed
character in the input text has the same
effect and is preferred.

This statement causes the assembler to stop
listing the as'setnb'led proi,iram. The listing
printout actually starts at the beginning of,
pass 2 operations. Therefore, to suppress
all program listing, XLIST must be the first
statement in the program. If only a part.of
the program listing is to be suppressed,
XLIsT is i'ilserted at any point to stop lis~t­
ing from that point. Literals are XLISTed
if. n,o LIT ~.tatement is seen before the END
s ta temen't •

Normally used following an XLIST statement
to re,sume listing at a particular point in
the program. The LIST function is implicitly
contained in the END statement.

,.
This statement causes the assembler to list
'everything that is processed including all
text, macro expansions and list control
codes suppressed in the standard listing.

Normally used following a LALL statement to·
resume standard listing.

'This causes suppression of all macro and re­
peat expansions and their text; only the in­
put file and the binary generated will be
listed. SALL can be nullified by' either XALL
or LALL and the 1M switch can be used instead'
of SALL.

The assembler normally prints out the symbol
table at the end of the program, but the
NOSYM statement suppresses the symbol table
'printout.' ,

JUNE 1972

'2-24

-251- MACRO
STATEMENT DESCRIPTION

TAPE ,) This pseudo-op causes the assembler to begin
assembling the program contained in the next
source file in the MACRO command string. For
example,

.R MACRO
*DSK:BINAME,LPT:+TTY:,DSK:MORE
PARAM=6
TAPE
jTHIS COMMENT WILL BE IGNORED
tZ

would set the symbol PARAM equal to 6 and then
assemble the remainder of the program from the
source file DSK:MORE. Since MACRO is a 2-pass
assembler, the TTY: file would probably be re­
peated for pass 2 •

. END .OF PASS 1
PARAM=6
TAPE
tZ

Note that all text after the TAPE pseudo-op
is ignored.

PRINTX MESSAGE,) This statement, when encountered, causes the
single operand following the PRINTX operator
to be typ,ed out on the TTY. _ This statement
is frequently us'ed to print out conditional
information. PRINTXstatements are also used
in very long assemblies to report the progress
of the assembler through pass 1.

REMARK COMMENTS)On pass 1 the message is printed on both the
list device and TTY. On pass 2 it is printed
on the TTY, but only if it is not the list
device.

COMMENT,)

VERSION 47

The REMARK operator is used for statements
which contain only comments. Such statements
may also be started 'with a semi-cOlon.

This pseudo-op treats the text between the
first non-blank character. (delimiter) and the
nextbccurrence of the same character as a
comment. If the first OCCUrrence of the
delimiter is a right (left) angle bracl}e~,
the next occurrence of the delimiter must also
be a right (left) angle' bracket. The text
may include the carriage return, line feed
sequence. For example,

COMMENT/THIS IS A COMMENT
THAT IS MORE THAN ONE LINE LONG
/

Internally, the pseudo-op functions as ASCII,
but no binary is produced.

JUNE 1972
2-25

I

MACRO -252-
2.7 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional

basis depending on conditions defined by an assembler IF statement.

The general form is,

IF N, < ••••••••••••• >

where the coding within angle brackets is assembled only if the

first operand, N, meets the statement requirement.

The IF statement operators and their conditions are listed below:

Operator

IFE N, < ••• >
IFG N, < ••• >
IFGE N, < ••• >
IFL N, < ••• >
IFLE N, < ••• >
IFN N, . < ••• >
IFl, < ••• >
IF2, < ••• >

Assemble angle-bracketed coding IF:

N=O,' or blank
N>O
N=O, or N>O
N<O
N=O, or N<O
NlO
encountered during pass 1
encountered during pass 2

In the following conditional statements, assembly depends on whether

or not a symbol hasbeenf defined. The coding. enclosed in angle

brackets is assembl,ed if,

IFDEF SYMBOL, < ••• >
IFNDEF SYMBOL, < ••• >

NOTE

this symbol is defined
this symboi is not defined

SYMBOL can be an op-code or pseudo-op as
well as a user symbol.

The following conditional statements operate on character strings.

Arguments are interpreted as 7-bit ASCII character strings, and

the assembler makes a logical comparison,.character-by-character

to determine if the condition is, met.

The coding within the third set of angle brackets is assembled if

the character strings enclosed by the first two sets of angle brackets:

IFIDN <A-Z>
IFDIF <A-Z>

VERSION 47

<A-Z>,< •.. >
<A-Z>,< ..• >

2-26

(1) are identical
(2) are different

JUNE 1972

-253- MACRO·
These statements, IFIDN and IFDIF, are usually used in macro expan­

sions (see Chapter 3) where one or both arguments are dummy vari­

ables.

An alternate form is to use delimiters as in ASCII. For example:

IFDIF!A-Z!"A-Z',<--->

This allows the use of > inside the character string. If the first

non-blank (space or tab) character is a < character, then the < >

method is used; otherwise, the character is used as a delimiter.

The last pair of conditional statements is followed by a single

bracketed character string, which is either blank or not blank,

and which is followed by conditional coding in brackets.

The coding enclosed in the second set of angle brackets is as­

sembled if,

IFB < ... >,< >
IFNB < ••• > , < ••••• >

the first operand is blank
the first operand is not blan~

A blank field is either an empty field or a field containing only

the ASCII characters space (40S) or tab (lIS).

Again, delimiters can be used as in

IFB / •.•• / , < ••••• >

2.S ASSEMBLER CONTROL STATEMENTS

2.S.1 REPEAT Statements

The statement

REPEAT N, < ••• >)

causes the assembler to repeat the coding enclosed in angle

brackets n times. If more than one instruction or data word is

to be repeated, each is delimited by a carriage return. For

example,

ADDX: REPEAT 3,

VERSION 47
<ADD 6 ,xC 4»)

ADDI 4,1»

2-27

JUNE 1972

MACRO
assembles as,

ADDX: ADD 6,(4)
ADDI 4,1
ADD 6,x(4)
ADDI 4,1
ADD 6,X(4)
ADDI 4,1

-254-

Notice that the label of a REPEAT statement is placed on the first

line of the assembled coding. REPEAT statement~ maybe nested to

any level. The following simplified example show~ how .;. nested

REPEAT statement is interpret.ed.

REPEAT 3,<A)
. REPEAT 2 • <B :

C>~
. D>~

assembles as,
, ,

NOTE

Brackets indicate repetition.

2.8.2 OPDEF Statements

The programmer can define his own operatc;>rs using an OPDEF state­

ment, which is written in the form:

OPDEF SYM [STATE!"IENTI

where the first operand is defined as an operator, whose function

is defined by the second operand, which is enclosed in square

brackets. The second operand is evaluated as a statement, and the

V~RSION 47 JUNE 1972
. 2-28

-'255- MACRO
result is stored in a 36-bit word. For example,

OPDEF CALI [.03.0.0.0.0.0.0.0.0.0.0J

defines CALI as an operator, with the value 030000 000000. CALI

may now be used as a statement operator .

.03.014.0 .0.01234 CALI 3,1234

which is equivalent to,

.03.014.0 .0.01234 z 3,1234(3.0.0.0.0)

When MACRO-IO encounters a user-defined operator, it assembles a

single object-program storage word in the format of a primary in­

struction word (see Chapter 1). The defined 36-bitvalue is modi­

fied by accumulator, indirect., memory address and index fields as

specified by the user-defined operator.

For example,

OPDEF CAL [MOVE 1,@SYM(2)J~
CAL 1,BOL(2)~

The CAL statement is equivalent to:

MOVE 2,@SYM+BOL(4))
'1",

In this modification the accumulator fields are added, the indirect ...
bits are logically ORed, the memory address fields are added,

and the inde~ register addresse~ ~re added.

2.8.3 SYN Statements

The statement

SYN symbol, symbol
... ,"

defines the second operahdas synpnymous with the first operand,

which must have been previously defined. Either operand may be a

symbol or a maciq name. If the first operand is "a symbol, the

second· 'is defined as a symbol with the same value. If' the first is

VERSION 47 JUNE 1972

2-29

MACRO -256-
a macro name, the second becomes a macro name which operates identi­

cally. If the first is a machine, assembler, or user-defined opera­

tor, the second will be interpreted in the same manner. If the

first operand in a SYN statement has been previously defined as

both a label and as an operator, the second operand is synonymous.

with the label.

The following are legal SYN statements:

SYN K,X)
SYN FAD, ADD)
SYN END, XEND ~

;IF K=5, X=5

2.8.4 Extended Instruction Statements

For programming convenience, some extended operation codes are pro­

vided in the MACRO-10 Assembler. Primarily, these are used to re­

place those DECsystem-10 instructions where the combination of

instruction mnemonic and accumulator field is used to denote a

single instruction. For example:

JRST 4

is equivalent to a halt instruction. In addition, they are used

to replace certain commonly used I/O instruction-device number

combinations.

The extended instruction statements are exactly like the primary

instruction statements or I/O instruction statements, except that

they may not have an accumulat~r field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent
Extended Machine

Instructions Instructions Meaning •

JEN JRST 12, Jump and enable the PI (priority interrupt)
system

HALT JRST 4, Halt
JRSTF JRST 2, Jump and restore flags
JOV JFCL 10, Jump on overflow and clear
JCRY0 JFCL 4, Jump on CRY~ and clear
JCRYl JFCL 2. Jump on CRYl and clear
JCRY JFCL 6 , Jump on CRY!6or CRYl andt:clear
JFOV JFCL 1, Jump on floating ov~rflow
RSW DATAl 0 Read the console .switches

JUNE 1972
2-30

-257- MACRO
2.9 MULTI-FILE ASSEMBLY

2.9.1 UNIVERSAL Name

UNIVERSAL' files may be used to generate data, however, they are

normally used to generate symbols, macros and opdef's (user­

defined operators) '; The symbols' generated by UNIVERSAL files need

not be declared as I-NTERNALsymbolssince all local -'symbols in

files of this type are made available to all programs permitted

access to the file.

UNIVERSAL files used to generate data 'can save time by being set

up for a one-pass 'operation since symbol definition needs to be

assembled on one pass only. This one-pass operation can be ac~
complished in either of two ways:

1) UNIVERSAL NAME
PASS 2

END

2) UNIVERSAL -NAME
,IF 2,. <E;ND> ,

END

The first generates a listing; the second does not.

If the UNIVERSAL pseudo-op is seen in a program, the NAME is stored

in a table and a flag is set. When the END statement is seen, the

symbol table is moved to just after the pushdown stacks and buffers;

therefore, the pushdown stacks and buffers cannot be increased during

assembly. The first assembly should use the maximum of I/O devices

to be used later. The free core pointer is moved to after the top of

the moved symbol table, and pointers are stored to enable the table

to be scanned.

When assembling is done from indirect files, the universal files must

be recompiled by the /COMPIL switch. Otherwise if a REL file later

tqan the source exists, the universal file will not be compiled,

and the symbol table will not be available. In addition, if the

universal routine is modified, all routines which use it must be

recompiled by either using /COMPIL or deleting all REL files.

VERSION 47 JUNE 1972
2-31

MACRO -258-
2.9.2 SEARCH Name

The SEARCH statement opens the specified symbol table for ~~CRO

to scan if the required symbol is not found in the current symbol
table. Multiple symbol tables may be specified by separating them

with commas; they are searched in the order specified. A maximum

of ten symbol tables may be specified since each name requires

four words of core. This maximum may be redefined witp the symbol

.UNIV in MACRO.

When the SEARCH pseudo-op is seen, the specif_ied names are com­

pared with the UNIVERSAL table. If the specified names cannot be

found, the message

CANNOT FIND UNIVERSAL name

is output. If the specified-names are found, a table of searching

sequence is built. This sequence is to search the universal symbol

tables in the order specified whenever a symbol is not found in

the current symbol table. This search is to continue until the
symbol is found or all the tables have been searched. When a symbol

is found in an auxiliary symbol table, it is moved into the current

symbol table. This procedure saves time on future references at

the expense of core.

Universal files may search other universal files as long as all

names in the search list have been assembled. The table of universal

names is cleared o'n each RUN or START, but is not cleared when MACRO

responds with an asterisk.

VERSION 47 JUNE 1972
2-32

Chapter 3
Macros

-259- MACRO

When writing a program, certain coding sequences are often used

several times with only the arguments changed. If so, it is conveni­

ent if the entire sequence can be generated by a single statement.

To do this, the coding sequence is defined with dummy arguments as

a macro instruction. A single statement referring to the macro by

name, along with a list of real arguments, generates the correct

sequence.

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the opera~

tor DEFINE followed by the symbolic name of the macro. The name must

be constructed by the rules for constructing symbols. The macro

name may be followed by a string of dummy arguments enclosed in par­

entheses. The dummy arguments are separated by commas and may be

any symbols that are convenient--single letters are sufficient. A

comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is

delimited by angle brackets. The body of the macro normally consists

of a group of complete statements.

VERSION 47 JUNE 1972
3-1

MACRO -260-

For example, this macro computes the length of a vector:

DEFINE VMAG (A,B)
<MOVE IO,A
FMP 10
MOVE I,A+l
FMP 1,1
FAD 1
MOVE l,A+2
FMP 1,1
FAD 1
JSR FSQRT
MOVEM B

;ROUTINE FOR THE LENGTH OF A VECTOR
;GET THE FIRST COMPONENT
;SQUARE IT
;GET THE SECOND COMPONENT
;SQUARE IT
;ADD THE SQUARE OF THE SECOND
;GET THE THIRD COMPONENT
;SQUARE IT
;ADD THE SQUARE OF THE THIRD
;USE THE FLOATING SQUARE ROOT ~OtiTINE
;STORE THE LENGTH>

NOTE

Storing comments in a macro takes up space.
If the comments start with a double semi­
colon (;;) the comment will not be stored;
therefore, it lists in the original defini­
tion but does not list when the macro is
expanded.

3.2 MACRO CALLS

A macro may be called by any statement containing the macro name fol­

lowed by a list of arguments. The arguments are separated by, commas

and may be enclosed with parentheses. If parentheses are used (in­

dicated by an open parenthesis following the ,macro name), the argu­

ment string is ended by a qlosed parenthesis. If there are n dummy

arguments in the macro definition, all arguments beyond the first n,

if any, are ignored. If parentheses are omitted, the argument

string ends when all the dummy arguments of the macro definitions

have been assigned, or when a carriage return or semicolon delimits

an argument.

The arguments must be written in the order in which they are to be

substituted for dummy arguements. That is, the first argument is

substituted for each appearance of the ,first dummy argument; the

second argument is substituted for each appearance of .the second

dummy arguemnt, etc. For example the appearance of the statement:

VMAG VEC, LENGTH

in a program generates the instruction sequence defined above for

the macro VMAG. The cha,racter string VECT is substituted for each

occurrence in the coding of the dummy argument A, and the character

string LENGTH is substituted for the single ,occurrence of B in the

coding.

VERSION 47 3-2 JUNE 1972

•

I

. I

-261- MACRO

Statements with a macro call may have label fields. The value of the

label is the location of the first instruction generated.

3.3

CAUTION

MACRO arguments are terminated only by COMMA,
CARRIAGE RETURN, SEMICOLON or CLOSE PAREN­
THESIS (when the entire argument string was
started with an open parenthesis). These
characters may not be included in arguments
unless <> are used. Specifically, spaces or
tabs do not terminate arguments; they will
be treated as part of the argUment itself.
The symbol does not terminate arguments, it
just permits commas and other symbols to be
used as part.of an argument.

MACRO FORMAT

a. Arguments must be separated by commas. However, arguments
may also contain commas. For example:

DEFINE JFQ(A,B,C)
<MOVE [A]
CAMN B
JRST C>

If ~he data in location B is equal to A (a literal), the
program jumps to C. If A is to be the instruction ADD 2,X,
the calling macro instruction would be written

JEQ<ADD 2,X>,B,INSTX \
The angle brackets surrounding ·the argument are removed,
and the proper coding is generated •

The general rule is: If an argument contains commas, semi­
colons, or any other argument delimiters, the argument must
be enclosed in angle brackets. For every level of nesting,
one set of angle brackets is removed; therefore, to pass
arguments containing commas to nested macros the argument
should, pe encJ,osed by one set of angle brackets for each
level of nesting. The> does not terminate the argument,
a comma must be 'used.

b. A macro need not have arguments. The instruction:

DATAO PIP,PUNBUF(4)

which causes the contents of PUNBUF, indexed by register 4,
to be punched on paper tape, may be generated by the macro:

DEFINE PUNCH
<DATAO PIP,PUNBUF(4}>

The calling macro instruction could be written:

PUNCH

VERSION 47 JUNE 1972
3-3

MACRO -262-

PUNCH calls for the DATAO instruction contained in the body
of the macro.

c. The macro name, followed by a list of arguments, may appear
anywhere in a statement. The string within the angle
brackets of the macro definition exactly replaces the macro
name and argument string. For example:

DEFINE L(A,B)<3*<B-A+l»

gives an expression for the number of items in a table where
three words are used to store each item. A is the address
of the first item, and B is the address of the last item.
To load an index register with the table length, the macro
can be called as follows:

MOVEI X,L(FIRST,LAST)

3.4 CREATED SYMBOLS

When a,macro is called, it is often convenient to generate symbols

without explicitly stating them in the call, for example, symbols

for labels within the macro body. If it is not necessary to refer

to these labels from outside the macro, ~here is no reason to be

concerned as to what the labels are. Nevertheless, different sym­

bols must be used for the labels each time the macro is called.

Created symb'ols are used for this purpose.

Each time a macro that requires a created symbol is called, a symbol

is generated and inserted ,into the macro. These generated symbols

are of the f~rm .• hijk, that is, two,declmal,points followed by four

digits. The user is advised not tO,use symbols starting with two

points. The first created symbol'is •• 0001, the next is' •• 0002,

etc.

If a dummy symbol in a definition statement is preceded by a perc~nt

sign (%), it is considered to be a created symbol~ ~hen a macro is

called, all missing arguments that are of the form %X are replaced

by created symbols. However, if there are sufficient arguments in

the calling list that some of the arguments are in a position to be

assigned to the dummy arguments of the, form %X, the percent sign is

overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered to be the same as missing argu­

ments. For,example, s~ppose a macro has been defined with the

dummy string:

(A,%B,%C)

VERSION 47
3-4

JUNE 1972

-263- MACRO

If the macro were called with the argument string:

(OPD,) or OPD"

The second argument would be considered to have been declared as

null string. This would override the % prefixed to the second dummy

argument and would substitute the null string for each appearance of

the second dummy argument in the statement. However, the third ar-
, .

gument is missing.. A lab.el would be created for each occurrence of

%C. For example:

DEFINE TYPE(A,%B)
<JSR TYPEOUT
JRST %B
SIXBIT/A/
%B:>

This macro types the text string substituted for A on the c.onsole

Teletype. TYPEOUT is an output routine. Labeling the location fol­

lowing the text is appropriate since A may be text of indefinite

length. A created symbol is appropriate for this label since the

programmer would not normally reference this location. This macro

might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is ex­

ecuted. If the call had been:

TYPE HELLO,BX

the effect would be the same. However, BX would be substituted for

%B, overruling the effect of the percent sign.

3.5 CONCATENATION

The apostrophe character or single quote (') is defined as the con­

catenation operator. A macro argument need not be a complete symbol

Rather, it may be a string of characters which form a complete sym­

bol or expression when joined to characters already contained in the

macro definition. This joining, called concatenation, is performed

by the assembler when the programmer writes an apostrophe between

the strings to be so joined. As an example, the macro:

DEFINE J(A,B,C)
<JUMP'A B,C>

When called, the argument A is suffixed to JUMP to form a single sym­

bol. If the call were:

. VERSION 47 JUNE 1972
3-5

MACRO -264-

J (LE,3,X+l)

the generated code would be:

JUMPLE 3,X+l

The concatenation (') may be used in nested macros. Theassembler

. removes one operator when it performs concatenation if it is next

to (before or after) a dummy argument.

3.6 DEFAULT ARGUMENTS

Missing arguments in macros are generally replaced by nulls. For

example, the macro

DEFINE FOO (A,B,C»
EXP A,B.C>

when called by FOO(l) would generate three words of 1, ~, and ~.

Default arguments may be supplied tq override missing arguments.

When supplied, default arguments are written within angle brackets

«» after each al:'gument.For example, the addition of default ar­

guments 222 and 333 to arguments Band Cof the foregoing example

macro would be written as

DEFINE FOO (A,B<222>, «333»
EXP A,.B, C>

If the foregoing macro is called by FOO(l) it would generate the

number 1,222,333.

The following example program illustrates the use of defined default

arguments.

VERSION 47 'JUNE 1972
3-6

.MAIN
FOc

-265-

MACRO 47(113) 114:14 28-MAR-72 PAGE 1
MAC 28-MAR-72114:13

DEFINE FOOl (A,B,C)<
.EXP A, B, C>

MACRO

DEFINE F002 (A<111>,B<222>,C<333'
>)<

141414141414' 141414141414
14141414141' 141414141414
14141414142' 14140'141414
140'1414143' 141414141414
14.0014144 ' 141414141414
14141414145' 14141414014

NO ERRORS DETECTED
PROGRAM BREAK IS 14141414146
2K CORE USED

3.7 INDEFINITE REPEAT

EXP A;B,C>

FOOl (l)t
14141414141
141414141414

EXP1"t

1400141414 F002 (l)t
14141414141 EXP l,222,333t
14140222
141414333

END

It is often convenient to be able to repeat a macro one or more times

for a single call, each repetition substituting successive arguments

in the call statement for specified arguments in the macro. This may

be done by use of the indefinite repeat operator, IRP. ~he operator

IRP is followed by a dummy argument, which may be enclosed in paren­

theses. This argument must also 'be contained in the DEFINE·state­

ment's list. This argument is broken into subarguments. When the

macro is called, the range of the IRP is assembled once for each

subargument, the successive subarguments being substituted for each

appearance of the dummy argument within the range of the IRP. For

example, the single argument:

<ALPHA, BETA, GAMMA>

consists of the subarguments ALPHA, BETA, and GAMMA. The macro de­

finition:

DEFINE DOEACH(A),
<IRP A
<A»

and the call:

DOEACH<ALPHA,BETA,GAMMA>

pr9duce the following coding:

VERSION 47

ALPHA
BETA
GAMMA

3-7 JUNE 1972

MACRO ,-266-

I An opening angle bracke.t must follow the argument of the IRP state­

ment to delimit the range of the IRP since the argument is one ar­

gument to the macro. A clos.ing angle bracket must terminate the

range of the IRP. IRPC is like IRP except it takes only one charac-

ter at a time; each character is a complete argument. An example of

a program that uses an IRPC is given in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite rep~at

depending on conditions given by the assembler. This is done by the

operator STOPI. When the STOPI is encountered, the macro processor

finishes expanding the range of the IRP for the present argument

and terminates the repeat action. An example:

DEFINE CONVERT (A)
<IRP A<IFE K-A,<STOPI
CONVI A»

Assume that the value of K is 3: then the call:

CONVERT 0,1,2,3,4,5,6,7

<IRP
IFE K-0,<STOPI
CONV1 0>
IFE K-1,<STOP1
CONV1 1>
IFE K-2,<STOPI
CONV1 2>
IFE K-3,<STOPI
CONV1 3>

The assembly condition is not met for the first three arguments of"

the macro. Therefore, the STOPI code is not encountered until the

fourth argument, which is the number 3. When the condition is met,

the STOPI code is processed which prevents further scanning of the

arguments. However, the action continues for the current argument

and generates CONVI 3, i.e., a call for the macro CONVI (defined

elsewhere) with an argument of 3.

3.8 NESTING AND REDEFINITION

Macros may be nested; that is, macros may be defined within other

macros. For ease of discussion, levels may be assigned to these'

nested macros. The outermost macros, i. e.', those defined directly

to the macro processor, may be called first level macros. Macros

VERSION 47 JUNE 1972

3-8

-267- MACRO

defined within first level m~cros may be called second level macros;

macros defined within second level macros may be called third level

macros; etc.

At the beginning of processing, first level macros are known to the

macro processor and may be called in the normal manner. However,

second and highe~ level macros are not, yet defined. When a first

level macro containing second and higher level macros is called,

all its second level macros become defined to the processor. There­

after, the, level of definition is irrelevant, and macros may be

called in the normal manner. Of course, if these second level

macros contain third level macros, the third level macros are not

defined until the second level macros containing them have been

called.

When a macro of level n contains a macro of level n+l, calling the

macro results in generating the body of the macro into the user's

program in the normal manner until the DEFINE statement is encoun­

tered. The level n+l macro is then defined to the macro processor;

it does not appear in the ueer's program. When the definition is

complete, the macro processor resumes generating the macro body in­

to the user's program until, or unless, the entire macro has been

generated.

If a macro name which has been previously defined appears within

another definition statement, the macro is redefined, and the ori­

ginal definition is eliminated.

The first example of a macro calculation of the length of a vector

may be rewritten .to illustrate both nesting and redefinition.

DEFINE VMAG (A,B,%C)
<DEFINE VMAG (D,E)
<JSP S.J, VL
EXP C,E>
VMAG (A,B)

JRST %C
VL: HRRZ 2, (SJ)

MOVE (2)

%c:>
VERSION 47

FMP 0
MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1,2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM @l (SJ)
JRST 2(SJ)

3-9 JUNE 1972

MACRO' -268-

The procedure to fihd the length of 'a vector has been written as a

closed subroutine. It need only appear once in a user's program.

From then on it can be called as a subroutine by the JSP instruction.

The first time the macro VMAG is called, the subroutine-calling se­

quenceis generated followed immediately by the subroutine itself. '

Before generating the subrOutine, the macro processor encounters a

DEFINE statement- containing the name VMAG. This new macro is de':'

fined and-takes the place of the original macro VMAG.Henceforth,

when VMAG- is'c-alled, only the' calling sequence is generated; However,

the original defihi tion of VMAGis not removed until after the ex- .

pans ion is COinpl-ete.

Another example of a nested macro is given in Chapter 7, Figure 7-4.

ASCII Interpretation

If the reverseslas'h (') is 'used as the first' character of an argu­

ment 'in' a . macro call, the' value ofth'e following symbol is converted

toa7~bit ASCII character in'the current radix. If the cali is

MAC \A

and if A=500 (in the current radix), this generates the three ASCII,

character "500".

VERSION 47 JUNE 1972
3-10

-269- MACRO

Chapter·4
Error Detection

MACRO-IO makes many error checks as it processes source language

statements. If an apparent error is detected, the assembler prints

a single letter code in. the left-hand margin of the program listing

(and on the TTY, unless the listing lS on the TTY), on the same line

as the statement in question.

The programmer should examine each error indication to determine

whether or not correction is required. At the end of the listing,

the assembler prints a total of errors found; this is printed even

if no listing is requested.

Each error code indicates a general class of errors. These errors,

however, are all caused by illegal usage of the MACRO-IO language,

as described in the preceding three chapters of this manual.

SINGLE-LETTER ERROR ·CODES

,

4.1

Table

bIer.

4-1 lists the single-letter error codes output by the assem-

VERSION 47 JUNE 1972
4-1

MACRO

Error Code

A

VERSION 47

-270-

TABLE 4-1

Error Codes

Meaning

Argument error in
pseudo-op

Explanation

This is a broad class of errors
which may be caused by an impro­
per argument in a ps~udo~op. .

The following reprE!sen.t the .•.
maj ori ty of the' cOn'di tions which
would cause an A code error.

4-2

a. Symbol used is improperly
formed. For example AB?CD
would result in an A code
si~ce the character ? is
not in the Radix 50 charac­
ter set.

b. IFIDN comparison string is
too large.

c. OPDEF of macro is SYN •.

d. OPDEF, no code generated.

e. Invalid SIXBIT character
in SIXBIT/TEST Tab/

f. Byte size too big in byte
(>4D36) •

g. Radix 50 code not abso'lute,
that is Radix 50 FOp,BAR
where FOO is not f3-74 ab-
solute. .

h. End of line on IFx SYM
reached before an < .char­
acter is ·seen.

i. Assignment made in an ad­
.dress field (e.g., MOVE
A=lf3).

j. Assignme~t,of a .label
(e.g.~ TAG: TAG=l).

k. Missing symbol in SYN SYMl,.

1. Unknown symbol in SYN,.

m. Missing right parenthesis
(» in index (e.g., MOVE
],., (2 •• , .) •

n. Missing left parenthesis
in BYTE statement (e.g.,
BYT:E:31, 1, 1).

o. No comma after repeat count
(e.g., REPEAT 3 <).

p. IRP not in a macro.

'JUNE 1972

Error Code

'D

E

L

M

VERSION 47

""271- MACRO
TABLE 4'-1 (Cont)

Meaning

Muitiply-defined
symbolic reference
error,

External symbol
error

Literal error

Multiply-defined
symbol

4-3

Explanation

q. Argument for IRP is not a
dummy symbol; for example

DEFINE FOO (A) <
IRP (B), <»

r. IRP argument is a created
symbol.

s. STOPI not in IRP.

This statement contains a tag
which refers to a mUltiply­
defined symbol. It is assem­
bled with the first value de­
fined.

Improper usage of an'external
symbol. The following repre­
sent the majority of the condi­
tions which will cause an E
code error.

a. Attempting to use the same
symbol as both an external
and an internal symbol.
For example, the statement
EXT: EXTERN TXT,BRT,EXT
attempts to use EXT as both
an external and an internal
symbol.

b. Using an external symbol
for an AC or index.

c. Using an external symbol
for IFx.

d. Using an external symbol
in a LOC, RELOC, PHASE,
HISEG or TWOSEG pseudo-op.

e. Using an external symbol
in the left half of IOWD.

f. Using an external symbol
in an ARRAY size statement.

g. Using an external symbol in
a REPEAT count.

A literal is improper. A lit­
eral must generate 1 to 18 words.

EXP [SIXBIT IIJ;NO, CODE GENERATED

A symbol is defined more than
cnce. The symbol retains its
first definition, and the error
message M is typed out during
pass l.

If this type of error occurs
during pass 2, it is a phase
error (see below).

JUNE 1972

MACRO
Error Code

N

o

p

VERSION 47

""272-
TABLE 4-1 (Cont)

Meaning

Number error

Operation code un­
defined

Phase error

4-4

Explanation

If a symbol is first defined as
a i-sign suffixed tag, and later
as a label, it retains the label
definition.

Examples:

A: ADD 3,X;
A: MOVE ,C; M ERROR
A: ADD 3,X#;
X: MOVE ,C; X IS ASSIGNED THE

CURRENT VALUE OF THE LOCATION
COUNTER- .

Multiple appearances of the TITLE
pseudo-op (which generates both
a title line and program name)
are flagged as "M" (Multiple
definition) arrors~

A number is improperly entered.
The following represent the ma­
jority of the conditions which
would cause an N-type error.

a. The number exceeds the per­
mitted range (e.g.,
tF13. 33E38) •

b. A number does not follow a
B shift operator (e.g.,
tD15BZ) .

c. The number exceeds the cur­
rent radix (e.g., if radix
is 8 the single character
9 is acceptable but the
number 19 is not acceptable).

d. The binary shift given does
not rerresent ~n absolute
numeric. For example,
4B<sym> is illegal if sym
is relocatable.

e. The character given after
an up arrow (t) is not B, 0,
F, L or D.

f. The expression given after
E was not a signed (+) num-
ber. -

The operation field of this state­
ment is undefined. It is assem­
bled with a numeric code of ~.

A symbol is assigned a value as
a label during pass 2 different
from that which it received dur­
ing pass 1. In general, the as­
sembler should generate the same
number of program locations in
pass 1 and pass 2, and any dis­
crepancy causes a phase error.

JUNE 1972

Error Code Meaning

Q Questionable

VERSION 47

-273- MACRO
TABLE 4-1 (Cont)

4-5

Explanation

For example, if an assembly con­
ditional, IFl, generates three
instructions, a phase error re­
sults unless another conditional,
such as IF2, generates three pro­
gram locations during pass 2.

This is a broad class of possible
errors in which the assembler
finds ambiguous language.
Q-errors may 'or-may not generate
correct code; the assembler will
attempt to do what the program­
mer intended. The following re­
present the majority of the con­
ditions which would cause a
Q-type error.

a. More than 5 ASCII characters
are detected by the assem­
bler before a closing "
symbol is detected (e.g.,
"ABCDEFG" or "ABC). When
more than 5 characters are
detected, only the first 5
are stored.

b. More than 6 SIXBIT charac­
ters are detected by the
assembler before a closing
" symbol is detected. As
in item a, only the first
6 characters are stored
when more than 6 are de­
tected.

c. A given number is too big;
in such cases, the high­
order bits of the .number
are lost.

d. E in a number is followed
by something other than a
signed (+) numeric (e.g.,
1. ~EX). -

e. An lllegal control character
is detected in a line.
ASCII characters ~-4~ are
not permitted except for HT,
LF, VT, EF, CR and ESC.

f. A comma is detected in a
statement after all of the
required fields have been
filled (e.g., MOVE 1,2,)

g. Relocatable code is gener­
ated by the assembler be­
fore either the pseudo-op
HISEG or TWOSEG is found by
the assembler.

JUNE 1972

MACRO

Error Code

R

u

v

x

-274-
TABLE 4-1 (Cont)

Meaning

Relocation error

Undefined symbol

Value previously
undefined

Macro definition
error

Explanation

h. An instruction address
pointer is detected by" the
assembler which does not
have either all ~'s or all
l's in the left half of
its word location.

A LOC or RELOC pseudo-op is used
improperly. All of the following
conditions will cause an R-type
error.

a. An expression or assignment
is made in which relocation
is not ~ or 1 (e.g., A+B,
A*Z, liB, or X=3*B where
a and Bare relocatable).

b. A BLOCK statement is writ­
ten with a relocatable size
(e.g., BLOCK: A where A is
relocatable).

c. A relocatable variable is
used to specify an accumu­
lator (e.g., MOVE A,l where
A is relocatable).

A symbol is undefined.

A symbol used to control the as­
sembler is undefined prior to
the point at which it is first
used. Causes error message in
pass 1.

For example, BLOCK:A where A is
undefined.

An error occurred in defining or
calling a macro.

Error messages printed during pass 1 consist of two parts. The page

and sequence number, if used, plus the most recently used label is

printed on the first line. This material is then followed by +n,

where n is the (decimal) number of lines of coding between the la­

beled statement and the statement containing an error. The second

line of the error message is a copy of the erroneous line of coding,

with a letter code in the left-hand margin to indicate the type of

error. If more than one type of error occurs on the same line, more

than one letter is printed; but if the same type of error occurs

more than once in the same line, a single letter code is printed.

VERSION 47 JUNE 1972
4-6

-275- MACRO

During pass 2, as the listing is printed out, lines containing er­

rors are marked by letter codes, and a total of errors found is

printed at the end of the listing.

4.2 ERROR MESSAGES

The following error messages may be typed out on the user's terminal.

Any error message preceded by a question mark (?) is treated as a

fatal error when running under the BATCH processor (the run is ter­

minated by BATCH) •

END OF PASS 1

LOAD THE NEXT FILE

?COMMAND ERROR

?INSUFFICIENT CORE

?PDL OVERFLOW,TRY/P

?DEV NOT AVAILABLE

?N ERRORS DETECTED
?l ERROR DETECTED
NO ERRORS DETECTED

This message indicates that manual
loading is required to start pass
2. This message is issued when
the input is paper tape, cards or
keyboard.

This message indicates that manual
loading is required when the files
to be input are on paper tape,
cards or being input from the
terminal.

This message indicates that an
error was found in the last com­
mandstring input.

Not enough core is available.

This message indicates that .the
pushdown list is too small. The
use of a IP switch increases the
size of the pushdown list by 80
locations. As many IP switches
may be used as desired.

The specified device cannot be
initialized because another user
is using it.

These three statements indicate
the number of errors detected by
MACRO during assembly (errors
marked by letter codes on the
listing. Under BATCH if any error
occurs, the run is terminated.

?NO END STATEMENT ENCOUNTERED ON INPUT FILE

VERSION 47

'This message is followed by one
of the following:

4-7

IN LITERAL
IN DEFINE
IN TEXT
IN CONDITIONAL OR REPEAT
IN CONDITIONAL
IN MACRO CALL

JUNE 1972

MACRO

?PRGEND ERROR

?TOO MANY UNIVERSALS

?CANNOT FIND UNIVERSAL xxx

-276-

and

ON PAGE xxx AT yyy

where xxx = a page number and yyy
= a sequence number or TAG+offset.

NOTE

The foregoing type of message
usually indicates some error
other than a missing END state­
ment. For example:

ASCIZ/TEXT

END
where TEXT has not been closed
or

JRST [statements

END

where the literal has not been
closed.

This error message indicates that
the macro failed to restore the
symbol table for one of the pro­
grams.

This error message indicates that
too many universal programs have
been assembled. The number of
universal programs permitted is a
Macro parameter; to prevent this
error from reoccurring, the user
must reassemble macro with a new
parameter which wi~l permit the
desired assembly.

This message indicates that a
search has been made for UNIVERSAL
program xxx but it was not found
(i.e., it was not assembled). To
clear this error the program xxx
must be assembled.

xxx UNASSIGNED DEFINED AS IF EXTERNAL

PROGRAM BREAK IS xxx

HI-SEG BREAK IS xxx

VERSION 47

This message indicates that an
undefined symbol was found and
that it has been treated as if it
was an external symbol.

Where xxx is the length of the low
segment.

Where xxx is the length of the
relocated high segment.

JUNE 1972
4-8

ABSOLUTE BREAK IS xxx

xK CORE USED

-277- MACRO

Where xxx is the highest absolute
address seen over l4~.

Message indicates the size of the
low segment used to' assemble the
source program.

?UNIVERSAL PROGRAM(S) MUST HAVE SAME OUTPUT SPECIFICATIONS AS OTHER
FILES

This error message indicates that a
universal program was found which
did not have either a binary or a
listing device specified but all of
the following files had such speci­
fications,. For example the sequence

*,+UNIV
*rel,List+file

is illegal. The legal sequence
would be

'*rel, LIST+UNIV
*REL,LIST+FILE

?ERROR WHILE EXPANDING xxx This error message indicates that
the assembler experienced an inter­
nalerror while expanding the macro
identified as xxx. Errors of this
type are extremely rare; if it oc-.
curs the user should rewrite the
macro involved.

4.2.1 LOOKUP Errors

The following error messages can occur during a monitor LOOKUP,

RENAME or ENTER request on disk. The form of the error messages is:

? filename. ext then one of the following

(~) FILE WAS NOT FOUND or (~) ILLEGAL FILE NAME (used for
enter errors only)

(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER

(2) PROTECTION FAILURE

(3) FILE WAS BEING MODIFIED

(4) RENAME FILE NAME ALREADY EXISTS

(5) ILLEGAL SEQUENCE OF UUOS

(6) BAD UFD OR BAD RIB

(7) NOT A SAV FILE

(l~) NOT ENOUGH CORE

(11) DEVICE NOT AVAILABLE

(12) NO SUCH DEVICE

(13) NOT TWO RELOC REG. CAPABILITY

(14) NO ROOM OR QUOTA EXCEEDED

(15) WRITE LOCK ERROR

,VERSION 47
4-9

JUNE 1972

MACRO -278-

(16) NOT ENOUGH MONITOR TABLE SPACE

(17) PARTIAL ALLOCATION ONLY

(2~) BLOCK NOT FREE ON ALLOCATION

(21) CAN'T SUPERSEDE (ENTE'R) AN EXISTING DIRECTORY

(22) CAN'T DELETE (RENAME) A NON-EMPTY DIRECTORY

(23) SFD NOT FduND

(24) SEARCH LIST EMPTY

(25) SPD NESTED TOO I{EEPLY
(26) NO-CREATE ON FOR SPECIFIED SFD PATH

If the error code (V) is greater than 26 8 , the error message:

?(V) LOOKUP,ENTER, OR RENAME ERROR

is printed.

4.2.2 MACRO I/O Error Messages'

The following er,ror messages are generated for error conditions

found during input or output operations with peripheral devices. The

messages ai-eself-:-explanatory. '.

VERSION 47

?OUTPUT WRITE-LOCK ERROR DEVICE xxx
?OUTPUT DATA ERROR DEVICE xxx
?OUTPUT CHECKSUM OR PARITY ERROR DEVICE xxx
?OUTPUT QUOTA EXCEEDED ON DEVICE xxx
?QUTPUT BLOCK TQO:LARGE DEVICE xxx, ,
?MONITOR DETECTED SOFTWARE INPUT ERROR DEVICE xxx,
?INPUT DATA ERROR DEVICE xxx ,-
?INPUT CHECKSUM OR PARITY ERROR DEVICE xxx
?INPUT BLOCK TOO LARGE DEVICE xxx

,"

4-10

JUNE 1972 "

Chapter 5
Relocation

-279- MACRO

The MACRO-IO assembler will create a relocatable object program.

This program may be loaded into any part of memory as a function

of what has been previously loaded. To accomplish this, the

address field of some instructions must hav.e a relocation constant

added to,it. This relocation constant, ,added at load time by the

PDP-IO Loader, equals the differ~nce l;>etween the memory location

an instruction is actually loaded into and the location it is

assembled into. If a program is :)..oaded into cells beginning at

l.o:ation 14008 , the relocation-constant k would ,be 14008 •
__ i. ' .

Not all instructions must be modified by the relocation constant.

Consider the two instructions:

MOVEI 2, .-3
MOVEI 2,1

The first is used in address manipulation-and must be modified; the

second probably should not. To accomplish the relocation, the

actual expre,ssion .forming an address is evaluated and marked for

modification by .theLinking Loader. Integer elements are absolute

and not modified. Point elements (.) are relocatable and are always

VERSION 47 JUNE 1972
5-1

MACRO -280-
modified. 1 Symbolic elements may be either absolute or relo­

catable. If a symbol is defined by a direct assignment statement,

it may be relocatable or absolute depending on the expression

following the equal sign (=). If a symbol is defined as a macro,

it is replaced by the string and the string itself is evaluated.

If it is defined as a label or a variable (#), it is relocatable. 1

Finally, references to literals are relocatable. 1

To evaluate the relocatability of an expression, consider what

happens at load time. A constant, k, must be added to each re­

locatable element and the expression evaluated. Consider the

expression:

x - A+2*B-3*C + D

where A,B,C, and Dare relocatable. Assume k is the relocation

constant. Adding this to each relocatable term we get:

x = (A+K)+2*(B+K)-3*(C+K)+(D+K) R

This expression may be rearranged to separate the kls, yielding:

XR =A+2*B-3*C+D+K

This expression is suitable for relocation since it involves the

addition ofa single k. In general, if the expression can be re~

arranged to result in the addition 'of

0*K The expressibn is legal and fixed.
l*K The expression ~s legal and relocatable.
N*K Where n is any positive or negative integer other

than 0 or 1, the expression is illegal.

Finally, if the expression involves k to any power other than 1,

the expression is illegal. This leads to the following conven­

tions:

a. Only two values of relocatability for a complete
expression are allowed' (e.g." nKwhere n= {6 or +1).

b~ An element may not be divided by a relocatableelement.

c. Two relocatable elements may not be mUltiplied together.

d. Relocatable elements may not be'combined by the Boolean
operators.

lExcept under the LaC code or PHASE code which specifies absolute
addressing.
VERSION 47 5-2 JUNE 1972

-281- MACRO
If any of these rules is broken, the expression is illegal and the

assembled code is flagged.

If A, C,_ and Bare relocatable symbols, then:

A+B-C is relocatable

A-C is fixed
A+2 is relocatable

2*A-B is relocatable
2&A-B is illegal

A storage word may be relocatable in the left half as well as in

the right half. For example:

XWD A,B

VERSION 47 JUNE 1972

5-3

-283- MACRO

Chapter 6
Assem bly Output

There are two MACRO-IO outputs, a binary program and a program

listing. The listing is controlled by the listing control pseudo­

ops, which were described in Chapter 2.

6.1 ASSEMBLY LISTING

All MACRO-IO programs begin with an implicit LIST statement.

Each page begins with a TITLE line; this line contains the program's

name, the assembler version, the time of assembly, the date of

assembly and a page number. The page number is incremented by a

Form-Feed or PAGE pseudo-op.

If the code listed requires more than one page, the basic page
. . I . . .

number given on the title line does not change but a subpage number
" ,- ,.

is added and incremented for each additional page (e.g" 6~1, .6-2,

6-3, etc.).

The second line printed on each page is the SUBTITLE line. This

line contains the program filename and extensions, creation time,

creation date and any given subtitle.

VERSION 47 JUNE 1972
6-1

MACRO ~284-

From left to right, the columns on a listing page contains:

I

a. The 6-digit address of each storage word in the
binary program. These are normally sequential
location counter assignments. In the case of a
block statement, only the address of the first
word allocated is listed. An apostrophe follow­
ing the address indicates that the address is
relocatable. '

b. The assembled instructions and data words shown
in one of several forms for easier reading (see
para~raph 2.6.3).

c. The source program statement, as written by the
programmer, followed by comments, if any.

If an error is detected during assembly of a statement, an error

code is printed on that statement's line, near the left edge of

the page. If multiple errors of the same type occur in a parti­

cular statement, the error code is printed only once; but if several

errors, each of a different type, occur in a statement, an error

cpde is printed for each error. The total number of errors is

printed at the end of the listing.

The program break ,is also printed at the end of the listing. This

is the highest relocatab+e loc~tion assembled, plus one. This is

th~ first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The

choice depends on whether the program is relocatable or absolute,

and on the loading procedure to be used to load the program for

execution.

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC

statement, the LINK format ou~p~t is implicit and is automatically

produced for all relocatable MACRO-IO programs unless another format

(RIM, RIMIO, RIMIOB) is explicitly requested. The LINK format is

the only format that may be used with the Linking Loader.

The Linking Loader loads su~programs into memory, properly relocat­

ing each one and adjusting addresses to compensate for the relqcation.

VERS~ON 47 ,JUNE 1972
6-2

-285- MACRO

It also links external and internal symbols to provide communica­

tion between independently assembled subprograms. Finally, the

Linking Loader loads required subroutines while in Library Search

Mode.

Data for the Linking Loader is formatted in blocks. All blocks have

an identical format. The first word of a LINK block consists of

two halves. The left half is a code for the block type, and the

right half is a count of the number of data words in the block.

The data words are grouped in sub-blocks of 18 items. Each 18-

word sub-block is preceded by a relocation word. This relocation

word consists of 18 2-bit bytes. Each byte corresponds to one word

in the sub-block, and contains relocation information regarding that

word.

If the byte value is:

o no relocation occurs

1 the right half is relocated

2 the left half is relocated

3 both halves are relocated

These relocation words are not included in the count; they always

appear before each sub-block of 18 words or less to ensure proper

relocation.

All relocatable programs may be stored in LINK format, including

programs on paper tape, DECtape, magnetic tape, punched cards,

and disks. This format is totally independent of logical divi­

sions in the input medium. It is also independent of the block

type.

6.2.1.1 LINK Formats for the Block Types - Block Type 1 Relocatable

or Absolute Programs and Data

WORD 1
WORD 2

WORD N

VERSION 47

The location of the first data word in the block
A contiguous block of program or data words (18
or less)

(N, from 1 to 18, must be less than 2000,000 octal)

JUNE 1972
6-3

MACRO

Block Type 2 Symbols

1ST WORD
1ST WORD

2ND WORD
CODE 04:
2ND WORD
CODE 10:
2ND WORD

CODE 60:
2ND WORD
2ND WORD

CODE 60:

-286-

Consists of word pairs.

Bits 0-3 code bits
Bits 4-35 radix 50 representation of symbol
(see below) .
Data (value or pointer)
Global (internal) definition
Bits 0-35 value of symbol
Local definition
Bits 0-35 value ?f symbol

Chained global requests:
Bits 0-17=0
Bits 18-35 pointer to first word of chain
requiring defintion (refer to the LOADER
manual)

Global symbol additive request: (refer to
the LOADER manual)

Block Type 3 Load Into High Segment

When block type 3 is present in a relocatable binary program, the

Loader loads the program into the high segment if the system has

re-entrant (two-segment) capability. When u~ed, block type 3 ap­

pears immediately after the name block (type 6).

The first word is

XWD 3,,2

The second word is the relocation word

200000, ,0

The third word is

XWD HISEG BREAK"TWOSEG ORIGIN

where twoseg origin is 400000 by default.

With the TWOSEG pseudo-op, the left half of the third word is nega­

tive. On a two-segment machine, this is ignored except to set a

LOADER flag. On a one-segment machine, the difference is assumed to

be the maximum length of the high segment. A one-pass assembler

does not know this legth at the start of pass 1, therefore

VERSION 47 JUNE 1972
6-4

-287'- MACRO
XWD400000,,400000

is used to signal two segments to a two~segment machine.

On a one-segment machine, this instruction gives the error message

TWO SEGMENTS ILLEGAL

since the LOADER does not know how much space to reserve for the

high segment.'

Block Type 4 Entry Block

This block contains a list of Radix 50 symbols, each of which may

contain a 0 or 1 in the high-order code bit. Each represents a

series of logical AND conditions. If all the globals in any series

are requested, the following program is loaded. Otherwise, all

input is ignored until the next end block. This block must be the

first block in a program.

Block Type 5 End Block

This is the last block in a program. It contains two words, the

first of which is the program break, that is, the location of the

first free register above the program. (Note: 'This word is relo­

eatable.) It is the relocation constant for the following program

loaded. The second word is the highest absolute location seen (if

greater than 140). In a two-segment program, the two words are:

1) the high segment break followed by

2) the low segment break.

Block Type 6 Name Block

The first word of this block is the program name "RADIX 50). It

must ,appear before any type 2 blocks. The second word, if it

appears, defines the length of common. The left half of the second

word is used to describe the compiler type that produced the binary

file, 0 in the case of MACRO.

VERSION 47 JUNE 1972

6-5

MACRO -288-
Block Type 7 Starting Address

The first word of this block is the s.tarting address of the prog~am.

The starting address for a relocatable program may be relocated by

means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half if the pointer to the

program. The right half is the value. Either quantity may be re­

locatable.

6.2.2 Absolute Binary Programs

Three output formats are available for· absolute (non-relocatable)

binary programs. These are requested by the RIM, RIM10, and RIM10B

statements.

6.2.2.1 RIMIOB Format - If a program is assembled into absolute

locations (not relocatable), a RIM10B statement following the LaC
statement at the beginning of the source program causes the as­

sembler to write out the object program in RIM10B format. This

format is designed for use with the PDP-10 hardware read-in feature.

The program is punched out during pass 2, starting at the location

specified in the LaC statement. If the first two statements in the

program are:

LOC l.0.0.0}
RIM1.0B)'

the assembler assembles the program with absolute addresses start­

ing at 1000, and punches out the program in RIM10B format, also

starting at location 1000. The programmer may reset the location

counter duringassembly of his program, but only one RIM10B state­

ment is needed to punch out the entire program.

In RIM10B format (see Figures 6-1 and 6-2), the assemb,ler punches

out the RIM10B Loader (Figure 6-2), followed by the program in 17-

word (or less) data blocks, each block separated by blank tape.

The assembler inserts an I/O transfer word (IOWD) preceding each

data block, and also inserts a 36-bit checksum following each data

VERSION 47 JUNE 1972

6-6

-289- MACRO
block as shown in Figure 6-1. The word count in the IOWD includes

only the data words in the block, and the checksum is the simpl,e

36-bit added cpecksum of the IOWD and the da~a words.

Data blocks may contain less than 17 words. If the assembler as­

signs a non-consec~tive location, t~~ current data block is termi­

nated, and an Iowb containing the next locqtion is inserted,

starting a n~w data block.

The transfer bloqk consists of two words. The first word of the

transfer block is an instruction obtR-illed from the END statement

(see Section 6.2.2.4) and is executed when the transfer block is

read. The second is a dummy word to stop the reader.

6.2.2.2 RIM10 Format - Binary prqgrams in RIM10 format are abso­

lute, unblocked, and not checksummed. When the RIM10 statement

follows a LOC statement in a program, the assembler punches out

each storage word in the object program, starting at the absolute

address specified in the LOC statement.

RIM10 writes an arbitrary "paper tape", If it is in the format

below, it can be read in by the PDP-10 Read-In-Mode hardware.

lOWD N,FlRST)

where n is the length of the program including the transfer instruc­

tionat the end, and FIRST is the first memory location to be occu­

pi~d. The last location must be a transfer instruction to begin

the program, suc!l as:

JRST 4,GO~

For example, if a program with RIM10 output has its first location

at START and its las.t location at FINISH, the programmer may write

VERSION 47

lOWD FlNlSH-START+l,START)

NOTE

In cases where the location cou~ter is increased
but no binary output occurs (such as wit~aLOCK~
LOCn, and LIT pseudo-ops), MACRO inserts a zero
word into the binary output file for each loca­
tion skipped by the location counter.

JUNE 1972
6-7

MACRO -290-

6.2.2.3 RIM Format -This' format, which is primarily used in PDP-6

systems, consists of a series of paired words. The first word of

each pair is a paper-tape read instruction giving the core memory

address of the second word. The second word is the data word.

DATAl PTR,LOC
DATA WORD

The last pair of words is a transfer block. The first word is an

instruction obtained from the END statement (see Section 6.2.2.4)

and is executed when the transfer block is read. The second word

is a dummy word to stop the reader.

The loader that reads this format is:

LaC 20

CONO PTR,60
A: CaNSO PTR,10

JRST .-1
DATAl PTR,B
CaNSO PTR,10
JRST .-1

B: 0 '
JRST A

This loader is normally toggled into memory and started at loca­

tion 20.

6.2.2.4. END Statements - When the programmer wants output in either

RIM or RIM10B format, he may insert an instruction or starting ad­

dress as the first word in the two-word transfer block by writing

the instruction or address as an argument to the END statement.

The second word of the transfer block is zero. In RIM10 assemblies,

this argument is ignored.

If bits 0 through 8 of the instruction are zero, MACRO will insert

the instruction JRST 4,0, causing a halt when executed. The END

statements

END SA) OR END JRST SA)

will start automatically at address SA.

VERSION 47 JUNE 1972
6-8

Some other examples:

-291-

1st Transfer Block Word

END@XCT 1234
END Z4,SA
END

RIM 11218

LOADER

'st 8LOCK
OF

PROGRAM DATA

CHECKSUM

nih 8LOCK

OF

PROGRAM DATA

CHECKSUM

XCT@1234
JRST 4,SA
JRST 4,0

8LA'NK TAPE (6 FRAMES)

XI ~ 171O~,~UD~~iR8~6c~ORDS IN

ADDR,-ADDRESS OF
hi DATA 8LOCK

IOWD IS INCLUDED
IN CHECKSUM

8LANK TAPE (6 FRAMES)

8LANK TAPE (6 FRAMES)

JRST START }
~------------------4 TRANSFER 8LOCK

III

10-0060

Figure 6-1 General RIM10B Format

MACRO

VERSION 47 JUNE 1972
6-9

MACRO

VERSION 47

ST:
STI:
RD:

A:
TBLl :

TBL2 :

ADR:
CKSM=ADR-I:I

-292-

XWD -16~12J

CONO PTR~612J

HRRl A~RD+I

CaNSO PTR~10
JRST
DATAl PTR;@TBLI-RD+I(A)
~CT TBLI-RD+I(A)
XCT TBL2-RD+I (A)
SOJA~ A~
CAME: CKSM~ADR
ADD CKSM~I· (ADR)
SKlPL CKSM~ADR
JRST 4;,ST
AOBJN ADR~RD
JRST ST I

Figure 6-2 RIM10B Loader

6-10

JUNE 1972

-293- MACRO

Chapter 7
Programm ing Examples

This chapter contains four examples of macro programs. :he first

example (Figure 7-1) presents a MACRO-IO routine for calculating

the logarithm of a complex argument. This routine begins with an

ENTRY statement identifying this library routine as CLOG (Complex

Logarithm Function) and uses three external routines, ALOG, ATAN2

and CABS.

The second example (Figure 7-2) is the universal parameter file

DEF40.MAC which is used to produce the KA-lO version of LIB40.

It contains conditional assembly switches to select either a PDP-G,

KAlO or KIlO mode. It defines the accumulator conventions and

macros which simulate the KIlO hardware operations on the KAlO

processor.

Example 3 (Figure 7-3) uses DEF40 (via the SEARCH pseudo-op) for

its accumulators and the macros for DMOVE, DMOVEM and FLADD. The

macro FLADD is expanded twice to show the effect of LALL on lines

which generate text but no binary. The effect of SALL is also

shown.

Example 4 (Figure 7-4) shows nested macros which use IRPC. The

desired operation is to take an ASCII text string and store the

VERSION 47 7-1 JUNE 1972

MACRO -294-
characters four per word, left-justified, with the character count

stored in the first nine bits of the first word.

The TEXT macro counts the string characters and invokes the CODE

macro to store the characters four per word.

The CODE macro invokes a SHIFT macro which left-justifies the last

word if it is not already left-justified. The first par·t of the

example shows the normal listing, then SALL is. se.t to. show what

code the macros are generating.

VERSION 47 JUNE 1972
7-2

-..J
I

(.oJ

-< m
::0
en
o
z
.t="
.........

'­c:
z
m

.......
I.D
.........
N

'"':l
1-',
ILl
~
11
(1)

-..J
I

I-'

~
::0
0

'd
11
0
ILl
11
III
S
0
t-'
0
G'l

CLOG
CLOG

MACRO 47(113) 13:54 4-APR-72 PAGE 1
MAC 4-APR-72 13:53 APRIL 3, 1972

.0.0.0.0.0.0'

.0.0.0.0.01'

.0.0.0.0.02'

.0.0.0.0.03 '

.0.0.0.0.04'

.0.0.0.0.05'

.0.0.0.0.06'

.0.0.0.0.07'

.0.0.0.01.0'

.0.0.0.011 '

.0.0.0.012'

.0.0.0.013 '

.0.0 . .0.014 '

.0.0.0.015'

.0.0.0.016'

.0.0.0.0.0.0

.0.0.0.0.01

.0.0.0.01.0

.0.0.0.011

.0.0.0.016

.0.0.0.0.0.0 .0.0.0.0.0.0
2.01 1.0 1 16 .0.0.0.0.0.0
2.0.0 11 .0 1.0 .0.0.0.0.01
2.0.0 1.0 .0 1.0 .0.0.0.0.0.0
266 .01 .0 .0.0 .0.0.0.0.0.0*
.01lf.0.0.01lf .0.0.01lf.0.0
266 16 .0 .0.0 .0.0.0Ilf.0Ilf*
.0.0.0.0.0.0 .0.0.0.0.0.0
25.0 .0.0 .0 .0.0 .0.0.0.01.0
266 16 .0 .0.0 .0.0.0.0.0.0*
1lf.0.0.0.0.0 .0.0.0.011
.0.0.0.01lf.0 .0.0.0.0.0.0
2.0.0 .01 .0 .0.0 .0.0.0.0.0.0
2.0.0 .0.0 .0 .0.0 .0.01lf.01.0
267 16 .0 16 .0.0.0.0.01

NO ERRORS DETECTED

PROGRAM BREAK IS .0.0.0.017

2K CORE USED

TITLE CLOG
SUBTTL APRIL 3, 1972

COMMENT ;COMPLEX LOGARITHMIC FUNCTION
THIS ROUTINE CALCULATES THE LOGARITHM DF A COMPLEX ARGUMENT
g = X+l*Y WITH THE FOLLOWING ALGORITHM

LOG8g = LOG 8ABSF (g) + I*THETA
WHERE ABSF 8g) = SQRT (Xt2 + Yt2)
AND THETA IS THE COMPLEX ANGLE ATAN(Y/X)

THE ROUTINE IS CALLED IN THE FOLLOWING MANNER:
JSA Q,CLOG
EXP ARG

THE REAL PART OF THE ANSWER IS RETURNED IN ACCUMULATOR A
AND THE IMAGINARY PART IS RETURNED IN ACCUMULATOR B;

CLOG:

ENTRY CLOG
EXTERN ALOG,ATAN2,CABS

A=.0
B=l
C=l.0
D=11
Q=16

.0
MOVEI
MOVE
MOVE
JSA
EXP
JSA
EXP
EXCH
JSA
EXP
EXP
MOVE
MOVE
JRA
END

C,@(Q)
D,l(C)
C, (C)
1,CABS
C
Q,ALOG
A
A,C
Q,ATAN2
D
A
B,A
A,C
Q,l(Q)

;ENTRY TO COMPLEX LOG ROUTINE
;GET ADDRESS OF COMPLEX ARGUMENT
;GET REAL PART OF ARGUMENT
;GET REAL PART OF ARGUMENT
;CALCULATE MAGNITUDE OF g
;ADDRESS OF COMPLEX ARGUMENT
;CALCULATE LOG(ABSF (g»
;ADDRESS FOR LOG ROUTINE
;SWAP ANSWER WITH REAL PART
;CALCULATE ANGLE AS ATAN(Y/X)
;ADDRESS OF Y
;ADDRESS OF C
;PUT THETA IN IMAGINARY PART
;RESTORE REAL PART
;EXIT

I
N
I.D

'f1

~
()

e5

~
I

"'"

<:
m
:;0
en
0
:z

-'=' '-J

'­c:
:z
m

I-'
I.D
'-J
N

CLOG
CLOG

A
ALOG
ATAN2
B
C
CABS
CLOG
D
Q

MACRO 47(113) 13:54 4-APR-72 PAGE 2
MAC 4-APR-72 13:53 SYMBOL TABLE

000000
000006' EXT
000011' EXT
000001
000010
000004' EXT
000000' ENT
000011
000016

~
n
::u
0

I
N
I.D
en

I

-297- MACRO
UNIVERSAL DEF4.0 PARAMETER FILE FOR FORTRAN IV LIBRARY
SUBTTL V32(343) 23-NOV-71 /TWE

IFNDEF PDP6.<IFNDEF KA1.0,<IFNDEF KI1.0,<KA10==1»>
IFNDEF PDP6,<PDP6==0> ;CONDITIONAL ASSEMBLY PARAMETERS
IFNDEF kA10,<KA10==0>
IFNDEF KI10,<KI10==0>
IFN <PDP6!KA10!KI10-PDP6-KA10-KI1.0>,

<PRINTX MACHINE PARAMETERS DEFINED WRONG>

;ACCUMULATOR ASSIGNMENTS
A=0
B=l
C=2
D=3
E=4
F=5
G=6
H=7

Q=16 ;FOR JSA AND ARG ADDRESS FOR PUSHJ
P=17 ;PUSH DOWN POINTER

IFE KA10,<
DEFINE DOUBLE (A,B)<

A
B>

>

IFN KA1.0,<
DEFINE DOUBLE (A,B)<
ggl,==A& 7770.00,,0>
IFL ggl.,<ggl.==-ggl.-<1000,,0»
ggl,==ggl.-<0330.00,,0>
IFE B,<;ggl.==0>
gg2,==ggl.+«B+200>+-B>&<0.00777,,777777>
IFL ggl.,<gg2.==.0>

A
gg2

SUPPRESSgg1"gg2.>
DEFINE DMOVE(AC,M)<

>

IFL <g M>-<@>,<
MOVE AC,M
MOVE AC+1,1+M>

IFGE <g M><@>,<
MOVE I AC+1,M
MOVE AC,(AC+1)
MOVE AC+1,1(AC+1»

DEFINE DMOVN(AC,M)<
DMOVE AC,M
DFN AC,AC+1>

DEFINE DMOVEM(AC,M)<
MOVEM AC,M
MOVEM AC+1,1+M

>
Figure 7-2

VERSION 47
universal Parameter File DEF40.MAC

7-5
JUNE 1972

MACRO -298-
DEFINE FLMUL (AC,M,%OV)<

MOVEM AC,AC+2
FMPR AC+2,l+M
JFCL (2)

%OV:>

FMPR AC+l,M
JFCL (2)
UFA AC+l,AC+2
JFCL
FMPL AC,M
JOV %OV
UFA AC+l,AC+2
FADL AC,AC+2

DEFINE FLDIV(AC,M,%OV)<
FDVL AC,M

%OV: >

JOV %OV
MOVN AC+2,AC
FMPR AC+2,1+M
JFCL (2)
UFA AC+l,AC+2
FDVR AC+2,M
JFCL
FADL AC,AC+2

DEFINE FLADD(AC,M,%OV)<
UFA AC+l,l+M
FADL AC,M
JOV %OV
UFA AC+l,AC+2
FADL AC,AC+2

%OV:>

> ;END
IFN KIl0,<
OPDEF FLADD
OPDEF FLMUL
OPDEF FLDIV

OF KA10 CONDITIONAL

[DFAD]
[DFMP]
[DFDV]

DEFINE DFN (A,B)< DMOVN A,A
IFN «A+l>&17-<B»,<PRINTX "DMOVN A,A" CAN'T REPLACE "DFN A,B">
>
> ;END OF KI10 CONDITIONAL

END

VERSION 47 JUNE 1972
7-6

-< TEST SOME MACROS MACRO 47(113) 13:48 5-APR-72 PAGE 1 m
;::c TEST MAC 5-APR-72 13:40' %1 5-APR-72 en
a TITLE TEST SOME MACROS z

SUBTTL %1 5-APR-72 .c::-
'-J

SEARCH DEF4.0

00'00'0.0' START:
DMOVE A,(Q)

0.0.0.0.0.0' 2.0.0 .0.0 .0 16 .0.000.0.0 MOVE A,(Q) t;SIMPLE DOUBLE MOVE
.0.0.00.01' 200 00 0 16 00'.0001 MOVE A+l, 1+ (Q)

"1j DMOVE A, (Q) ;THIS ONE INDEXED
lQ .0.0.0.0.02' 2.01 .01 1 16 0.0.000.0 MOVEI A+l, (Q) c .0.0.0.0.03' 2.0.0~.0 0 01 0.0.0.0.0.0 MOVE A, (A+l) 11
CD .0.0.0.004' 200.01 0 .01 0.0.0.0.01 MOVE A+1,1(A+1)
~
I DMOVEM A,E ;STORE TO MEMORY w

.000.0.05' 2.02 0.0 .0 .0.0 0.0.0.0.04 MOVEM A,E I
~ 000.0.06' 2.02 01 .0 .0.0 .0.0.0.0.05 MOVEM A+1,1+# N I >-3 lO
~ CD lO

en FLADD A,E I
n-
Ul

0.0.0007' 13.0 .01 0 0.0 0.0.0.0.05 UFA A+1,1+E
0 .0.0.0.01.0' 141 .0.0 0 00 0.0.0.0.04 FADL A,E
S .0.0.0.011' 255 10 .0 .0.0 .0.0.00'14' JOV , • .0.001 CD

:s: .0.0.0.012' 130 01 0 .0.0 .0.0.0.0.02 UFA A+1,A+2
III .0.00013' 141 .0.0 .0 .00 .0.0.0.0.02 FADL A,A+2
()
11
0 LALL ;LIST EVERYTHING
Ul

FLADD A,#
.00.0.014' 13.0 01 .0 0.0 .0.0.0.0.05 UFA A+1,1+E
.000.015' 141 .0.0.0.0.0 .0.0.0.0.04 FADL A,E
.0.0.0.016' 255 1.0 .0 .00 .00'.0.021' JOV ,.0'0'.02
.0.0.0.017' 13.0 .01 .0 0'.0 0.0.0.0.02 UFA A+1,A+2
.0.0.0.02.0' 141 .0.0 .0 .0.0 00.0.00'2 FADL' A,A+2
.0.0.0021' . ; .0.002 : t

'-c
SALL ;CALL AND BINARY ONLY ::s: z J:> m .0.00021' 2.0.0 0.0 0 00 .000.004 DMOVE A,E n

~ e5 lO
'-J 000000' END START
N

NO ERRORS DETECTED

PROGRAM BREAK IS 00.0.023

2K CORE USED

-..J
I

00

-< m
:;:0
C/) -o
z
..c:­
'J

~
c
z
m
......
lD
'J
N

TEST SOME MACROS
TEST MAC

A
E
Q
START
.. ~~~1
•• ~~~2

MACRO 47(113) 13:48 5-APR-72 PAGE 2
5-:-APR-72 13 :4~ SYMBOL TABLE

~~~~~~ 
~~~~~4 
~~~~16 
~~~~~~' 
~~~~14' 
~~'0~21" 

$ 
n 
~ 

I 
\.N o 
o 

I 



< STORE TEXT CHARACTER BY CHARACTER 
m TEXT MAC 5-APR-72 14:44 ;0 
en 

0 
z 
.l::" 
'..J 

"'l 
1-" 

\Q 
C 
11 ro 
-..J 
I 

"'" 
CJl 
rt 
0 
11 
ro 
>-3 
ro 

-..J x 
I rt 
~ (1 

::r 
PI 
11 
PI 
0 
rt 
ro 
11 

tr 
'< 
(1 ~00000' 014101 1021.03 
::r 0.000.01' 1.04105 1.061.07 PI 
11 .00.0.0.02 ' 11.0111 112113 
PI 0.00003' 114.00.0 .0.0000.0 0 
rt 
ro 
11 

.0.0.0.000 

'- .000.0.01 C:: 
z 
m 

.0.00002 
I-' 
U) 
'..J .0.0.00.03 N 

MACRO 47(113) 14:45 5-APR-72 PAGE 1 
%1 5-APR-72 

TITLE STORE TEXT CHARACTER BY CHARACTER 
SUBTTL %1 5-APR-72 ' 

DEFINE TEXT (C)< 
N==.0 
IRPC C,<N==N+1> 
CODE (N,C) 
> 

DEFINE CODE (N,C)< 
gg==N 
IRPC C,< 
IFN gg&777B8,< 

EXP gg 
gg==.0> 

gg==gg+9+"C" > 
IFN gg,<DEFINE SHIFT 

IFE gg&777B8,> 
gg==gg+9 
SHIFT> 
> 
SHIFT 
EXP gg> 
> 

TEXT (ABCDEFGHIJKL)t 
EXP gg 
EXP gg 
EXP gg 

EXPgg> 

LALL 
TEXT (ABCDEFGHIJKL)t 
N==.0 
IRPC 
N==N+1 

N==N+1 

N==N+1 

;;INITIAL CONDITION 
;;COUNT CHARACTERS 
;;CALL MACRO TO STORE TEXT 
;END OF TEXT MACRO 

;;INITIAL CONDITION 

; ;WORD FULL 
;;START AGAIN WITH 0 
; ; END OF IRPC 
;;REMAINDER LEFT 
;;IF NOT LEFT JUSTIFIED 
;;MOVE LEFT 9 BITS 
; ;RECURSE 
; ; END OF DEFINE 
;;START MOVING LEFT 
; ;END OF IFN gg 
;END OF CODE MACRO 

I 
\.N 
o 
I-' 

I 

~ 
("'") 

e5 



r-l 
+ 
Z 
II 
II 
Z 

MACRO 

~ 
Z 
II 
II 
Z 

r-l r-l . r-l 
+ + + z z Z 
II II II 
II· II II 
Z Z Z 

. VERSION 47 

r-l 
+ 
Z 
II 
II 
Z 

-302-

7-10 

JUNE 1972 



<: STORE TEXT CHARACTER. BY CHARACTER MACRO 47(113) 14:45 5-APR-72 PAGE 1-1 m 
::0 TEXT MAC 5-APR-72 14:44 %1 5-APR-72 
en 

0 1313131312 N==N+l z 
.f.:' 1313131313 N==N+l ........ 

1313131314- N==N+l-

CODE (N,ABCDEFGHIJKL)+ 
1313131314 gg==N 

IRPC 

IFN gg&777B8;< 
EXP gg 
gg==13> 

13141131 gg==gg+-9+"A" 

-...J IFN_ gg&777B8,< I 
I Vol I-' EXPgg· . C) 

I-' gg==13>· Vol 
I 

131313.014 .I.01U1'2 _ gg:;:=g~9+"B" 

IFN gg&777B8,< 
EXP gg 
gg==0> 

13141131 1.021.03 gg==gg+-9+"C" 

IFN gg&777B8, < 
.013.0.0.04' .0141131 11321.03 EXP gg 

1313.0.0.0.0 gg==0> 
.013.01.04 gg==gg+9+"D" 

'-
IFN gg&777B8,< 

c EXP gg 
:z gg==0> ~ m 

1.041135 gg==gg+-9+"E" n 
I-" :;:c 
t.O C) 

........ 
N 



..J 
I 

I-' 
N 

-< m 
:::tI 
(J) 

0 
:z 
..l:' ....... 

C­
c 
:z 
m 

~ 
t.O 

~ 

.0.0.01.04 l.051.06 

1.041.05 1.061.07 

IFN gg&777B8,< 
EXP gg 
gg==.0> 

gg==gg~9+"F" 

IFN gg&777B8,< 
EXP gg 
gg==.0> 

gg==gg~9+"G'i 

~ 
("'") 

~ 

I 
\.N a 
..l:' 

I 



< STORE TEXT CHARACTER BY CHARACTER MACRO 47·(113) 14:45 5-APR-72 PAGE 1-2 
IT! TEXT MAC 5-APR-72 14:44 %1 5-APR-72 ;:0 
(I) 

0 IFN gg&777B8~< :z 000005' 104105 106107 EXP gg 
-t:=" 000000 gg==0> '-J 

000110 gg==gg+9+"H" 

IFN gg&777B8,< 
EXP gg 
gg==0> 

110111 gg==gg+9+"I" -

IFN gg&777B8,< 
EXP gg 
gg==0> 

000110 111112 gg==gg+9+"J" 

IFN gg&777B8,< 
EXP gg 

~ gg==0> I I 
I-' 110111 112113 gg==gg+9+"K" \.N 
w' C) 

IJ1 

IFN gg&777B8,< I 

000006' 110111 112113 EXP gg 
0.0.00.00 gg==.0> 
.0.0.0114 gg==gg+9+"L" 

IFN gg, DEFINE SHIFT 
<IFE gg&777B8,< 
gg==gg+9 
SHIFT> 
> 
SHIFT tIFE gg&777B8,< 

114.0.00 gg==gg+9 
SHIFT tIFE gg&777B8,< 

0.0.0114 0000.00 gg==gg+9 
C- SHIFT tIFE gg&777B8,< c: 3 
:z 1140.00 0.0000.0 gg==gg+9 » 
IT! SHIFT tIFE gg&777B8,< n 

:;;0 ...... gg==gg+9 C) 

to 
'-J SHIFT> 
N 



..... 
I 

I-' 
~ 

<: 
m 
::0 
en 
a 
:z 
.z::-
........ 

c.... 
c:: 
:z 
m 

~ 
1.O 
""-J 
N 

000007' 114000 000000 

STORE TEXT CHARACTER BY CHARACTER 
TEXT MAC 5-APR-72 14:44 

NO ERRORS DETECTED 

PROGRAM BREAK IS 000010 

2K CORE USED 

:, [. 

t 
t 
t 
t 
EXP gg 
t 
t 
END 

MACRO 47(113) 14:45 5-APR-72 PAGE 1-3 
%1 5-APR-72 

~ 
("""') 
:;:c 
0 

I 
\oN 
o 
CTl 

I 



Appendix A 
Op Codes, Pseudo-Ops, 
and Monitor 1/0· Commands 

-307- ·MACRO 

This appendix contains a complete list of assembler defined operators 

including machine instructi~n mnemonic codes, assembler pseudo-ops, 

monitor programmed operators, and FORTRAN programmed operators. A 

programmed operator, or unimplemented user operation code is called 

a UUO. 

A.I ASSEMBLER PSEUDO-OPS AND MONITOR COMMANDS 

The notes specify which pseudo-ops generate data, and which do not. 

Pseudo-ops that generate data may be used within literals, and in 

address operand fields. 

The initial values given by MACRO-IO to I/O instructions and FORTRAN 

UUO's for which the octal op code is not shown, are given in the notes 

and are useful in checking listings. 

ARRAY, pseudo-op, generates data 
ARG, 320, no-op (same as JUMP) 
ASCII, pseudo-op, generates data 
ASCIZ, pseudo-op, generates data 
ASUPPRESS, pseudo-op, no data generated 
BLOCK, pseudo-op, no data generated 
BYTE, pseudo-op, generates data 
CALL, 040, monitor UUo 

VERSION 47 

CALLI, 047, monitor UUO 
CLOSE, 070, monitor UUO 
COMMENT, no data generated 
DATA, 020, FORTRAN UUO 
DEC, pseudo-op, generates data 
DEC., 033, FORTRAN UUO 
DEFINE, pseudo-op, no data generated 
DEPHASE, pseudo-op, no data generated 

JUNE 1972 



MACRO 
ENC., 034, FORTRAN UUO 
END, pseudo-op , no data generated 
ENTER, 077, monitor UUO 
ENTRY, pseudo-op, no data generated 
EXP, pseudo-op, generates data 

'EXTERN, pseudo-op, no data generated 
FIN., 021, FORTRAN UUO 
GETSTS, 062, monitor UUO 
HISEG, pseudo-op, no data generated 
IFl, conditional pseudo-op 
IF2, conditional pseudo-op 
IFB, conditional pseudo-op 
IFDEF, conditional pseudo-op 
IFDIF, conditional pseudo-op 
IFE, conditional pseudo-op 
IFG, conditional pseudo-op 
IFGE, conditional pseudo-op 
IFIDN, conditional pseudo-op 
IFL, conditional pseudo-op 
IFLE, conditional pseudo-op 
IFN, conditional pseudo-op 
IFNB, conditional pseudo-op 
IFNDEF, conditional pseudo~op 
IN,' 056, monitor UUO 
IN., 016, FORTRAN UUO 
INBUF, 064, monitor UUO 
IN., 026, FORTRAN UUO 
INIT, 041, monitor UUO 
INPUT, 066, monitor UUO 
INTEGER, pseudo-op, generates data 
INTERN, pseudo-op, no data generated 
IOWD, pseudo-op, generates data 
IRP, pseudo-op, no data generated 
IRPC, pseudo-op, no data generated 
LALL, pseudo-op, no data generated 
LIST, pseudo-op, no data generated 
LIT, pseudo-op, generates data. 
LOC, pseudo-op, no data generated 
LOOKUP, 076, monitor UUO 
MLOFF, pseudo-op, no data generated 
MLON, pseudo-op, no data qenerated 
MTAPE, 072, moniror UUO 
MTOP., 024, FORTRAN UUO 
NLI., 031, FORTRAN UUO 
NLO., 032, FORTRAN UUO 
NOSYM, pseudo-op, no data generated 
OCT, pseudo-op, generates data 
OPDEF, pseudo-op, no data generated 
OPEN, 050, monitor UUO 
OUT, 057, monitor UUO 
OUT., 017, FORTRAN UUO 
OUTBUF, 065, monitor UUO 
OUTF., 027, FORTRAN UUO 
OUTPUT, 067, monitor UUO 
PAGE, pseudo-op, no data generated 
PASS2, pseudo-op, no data generated 
PHASE, pseudo-op, no data generated 
POINT, pseudo-op, generates data 
PRINTX, pseudo-op, no data generated 
PURGE, pseudo-op, no data generated 
RADIX, pseudo-op, no ,data generated 
RADIX50, pseudo-op, generates data 
RELEAS, 071, monitor UUo 

VERSION 47 

-308-
RELOC, pseudo-op, no data generated 
REMARK, pseudo-op, no data generated 
RENAME, 055, monitor UUO 
REPEAT, pseudo-op, no data generated 
RERED., 030, FORTRAN UUO 
RESET., 015, FORTRAN UUO 
RIM, pseudo-op, no data generated 
RIMIO, pseudo-op, no data generated 
RIMlOB, pseudo-op, no data generated 
RTB., 022, FORTRAN UUO 
SEARCH, pseudo~op, no data gene~ated 
SETSTS, 060, monitor UUO 
SIXBIT, ps~udo-op,rgenera~es data' 
SLIST., 025 ,FORT~N UUO 
SQUOZE, same as'RADIX50 
STATO, 061, monitor UUO 
STATUS, 062, monitor UUO 
STATZ, 063, monitor UUO 
STOPI, pseudo-op, no data generated 
SUBTTL, pseudQ-op, no data generated 
SUPPRESS, pseudo-op, no data generated 
SYN, pseudo-op, no'data generated 
TAPE, pseuqo-pp, no data generated 
TITLE, pseudo-op, no data generated 
TTCALL, 051, monitor UUO 
TWOSEG, pseudo-op, no data generated 
UGETF, 073, monitor pUO 
UJEN, 100, monitor UUO 
UNIVERSAL, pseudo-op, no data generated 
USETI, 074, monitor UUO 
USETO, 075, monitOr UUO 
VAR, pseudo-op, generates data 
WTB., 023, FORTRAN' UUO 
XALL, pseudo-oPJ no qata generated 
XLIST, pseudo-op, 'no' data generated 
XWD,'pseudo-op, generates data 
Z, pseudo-op" generates 'lata 

I .CREF, pseudo-op, no data generated 
.XCREF, pseudo-op, no, data generated 
.HWFRMT, pseudo-op, no data generated 
;MFRMT, pseudo-op,no data generated 

JUNE 1972 
A-2 



-309- MACRO 
A.2 MACHINE MNEMJNICS AND OCTAL CODFS 

The following are machine mnemonics and corresponding octal codes: 

ADD 
ADDB 
ADDI 
ADDM 
AND 

ANDB 
ANDCA 
AN DCAB 
AN DCAI 
AN DCAM 

ANDCB 
ANDCBB 
ANDCBI 
ANDCBM 
ANDCM 

ANDCMB 
ANDCMI 
ANDCMM 
ANDI 
ANDM 

A.oBJN 
AOBJP 
A.oJ 
AOJA 
A.oJE 

A.oJG 
AOJGE 
A.oJL 
AOJLE 
A.oJN 

A.oS 
A.oSA 
A.oSE 
A.oSG 
A.oSGE 

A.oSL 
A.oSLE 
A.oSN 
ASH 
ASHC 

BLKI 
BLK.o 
BLT 
CAl 
CAIA 

CAIE 
CAIG 
CAIGE 
CAlL 
CAlLE 

CAIN 
CAM 
CAMA 
CAME 
CAMG 

270 
273 
271 
272 
404 

407 
410 
413 
411 
412 

440 
443 
441 
442 
420 

423 
421 
422 
405 
406 

253 
252 
340 
344 
342 

347 
345 
341 
343 
346 

350 
354 
352 
357 
355 

351 
353 
356 
240 
244 

7-00 
7-10 
251 
300 
304 

302 
307 
305 
301 
303 

306 
310 
314 
312 
317 

CAMGE 
CAML 
CAMLE 
CAMN 
CLEAR 

CLEARB 
CLEARI 
CLEARM 
C.oNI ' 
C.oN.o 

C.oNSO 
C.oNSZ 
DATAl 
DATA.o 
DFN 

DIV 
DIVB 
DIVI 
DIVM 
DPB 

Eav 
EaVB 
EaVI 
EaVM 
EXCH 

FAD 
FADB 
FADL 
FADM 
FADR 

FADRB 
FADRI 
FADRM 
FDV 
FDVB 

FQVL 
FDVM 
FDVR 
FDVRB 
FDVRI 

FDVRM 
FMP 
FMPB 
FMPL 
FMPM 

FMPR 
FMPRB 
FMPRI ' 
FMPRM 
FSB 

FSBB 
FSBL 
FSBM 
FSBR 
FSBRB 

VERSION 47 

315 
311 
313 
316 
400 

403 
401 
402 
7-24 
7-20 

7-34 
7-30 
7-04 
7-14 
131 

234 
237 
2~5 
236 
131 

444 
447 
446 
446 
250 

140 
143 
141 
142 
144 

147 
146 
146 
170 
173 

171 
172 
174 
177 
175 

176 
160 
163 
161 
162 

164 
167 
1~5 
166 
150 

153 
151 
152 
154 
157 

FSBRI 
FSBRM 
FSC 
HALT 
HLL 

HLLE 
HLLEI 
HLLEM 
HLLES 
HLLI 

HLLM 
HLL.o 
HLL.oI 
HLL.oM 
HLL.oS 

HLLS 
HLLZ 
HLLZI 
HLLZM 
HLLZS 

HLR 
HLRE 
HLREI 
HLflEM 
HLRES 

HLRI 
HLRM 
HLR.o 
HLR.oI 
HLFl.oM 

HLR.oS 
HLRS 
HLRZ 
HLRZI 
HLRZM 

HLRZS 
HRL 
HRLE 
HRLEI 
HRLEM 

HRLES 
HRLI 
HRLM 
HRL.o 
HRL.oI 

HRL.oM 
HRL.oS 
HRLS 
HRLZ 
HRLZI 

HRLZM 
HRLZS 
HRR. 
HRRE 
HRREI 

155 
156 
132 
254-4, 
500 

530 
631 
532 
533 
501 

602 
520 
5.21 
522 
523 

503 
510 
511 
512 
513 

5¥ 
574 
575 
576 
577 

545 
546 
564 
565 
566 

567 
547 
554 
566 
656 

557 
504 
634 
535 
536 

537 
505 
506 
524 
525 

526 
527 
507 
514 
515 

616 
517 
540 
670 
571 

HRREM 
HRRES 
HRRI 
HRRM 
HRR.o 

HRR.oI 
HRR.oM 
HRR.oS 
HRRS 
HRRZ 

HRRZI 
HRRZM 
HRRZS 
IBP 
IDIV 

IDIVB 
IDIVI 
IDIVM 
IDPB 
II.DB 

IMUL 
IMULB 
IMULI 
IMULM 
I.oR 

IORB 
I.oRI 
I.oRM 
JCRY 
JCRYO 

JCRYI 
JEN 
JFCL 
JFF.o 
JF.oV 

J.oV 
JRA 
JRST 
JRSTF 
JSA 

JSP 
JSR 
JUMP 
JUMPA 
JUMPE 

JUMPG 
JUMPGE 
JUMPL 
JUMPLE 
JUMPN 

LDB 
LSH 
LSHC 
M.oVE 
M.oVEI 

A-3 

572 
573 
641 
542 
560 

561 
562 
563 
543 
650 

551 
552 
553 
133 
230 

233 
231 
232 
136 
134 

220 
223 
221 
227 
434 

437 
435 
436 
255-6, 
255-4, 

255-2, 
254-12, 
255 
243 
255-1, 

255-10, 
267 
254 
254-2, 
266 

265 
264 
320 
324 
322 

327 
325 
321 
323 
326 

135 
242 
246 
200 
201 

M.oVEM 
M.oVES 
M.oVM 
M.oVMI 
M.oVMM 

M.oVMS 
M.oVN 
M.oVNI 
M.oVNM 
M.oVNS 

M.oVS 
M.oVSI 
M.oVSM 
M.oVSS 
M!JL 

MULB 
MULl 
MULM 
.oR 
.oRB. 

.oRCA 
ORCAB 
.oRCAI 
.oRCAM 
.oRCB 

.oRCBB 

.oRCBI 

.oRCBM 

.oRCM 

.oRCMB 

.oRCMI 

.oRCMM 

.oRI 

.oRM 
POP 

POPJ 
PYSH 
PUSHJ 
ROT 
R.oTC 

RSW 
SETA 
SETAB 
SETAl 
SETAM 

SETCA 
SETCAB 

. SETCAI 
SETCAM 
SETCM 

SETCMB 
SETCMI 
SETCMM 
SETM. 
SETMB 

202 
203 
214 
215 
216 

217 
210 
211 
212 
213 

204 
205 
206 
207 
224 

227 
225 
226 
434 
437 

454 
457 
455 
456 
470 

473 
471 
472 
464 
467 

465 
466 
435 
436 
262 

263 
261 
260 
241 
245 

7-04 
424 
427 
425 
426 

450 
453 
451 
452 
460 

463 
461 
462 
414 
417 

SETMI 
SETMM 
SETO 
SETOB 
SET.oI 

SET.oM 
SETZ 
SETZB 
SETZI 
SETZM 

SKIP 
SKIPA 
SKIPE 
SKIPG 
SKIPGE 

SKIPL. 
SKIPLE 
SKIPN 
S.oJ 
S.oJA 

SOJE 
S.oJG 
SOJGE 
SOJL 
S.oJLE 

S.oJN 
SOS 
S.oSA 
S.oSE 
S.oSG 

S.oSGE 
S.oSL 
S.oSLE 
S.oSN 
SUB 

SUBB 
SUBI 
SUBM 
TOC 
TOCA 

TOCE 
TDCN 
TDN 
TDNA 
TDNE 

TDNN 
TD.o 
TDOA 
TDOE 
TD.oN 

TDZ 
TDZA 
TDZE 
TDZN 
TLC 

415 
416 
474 
477 
475 

476 
400 
403 
401 
402 

330 
334 
332 
337 
335 

331 
333 
336 
360 
364 

362 
367 
365 
361 
363 

366 
370 
374 
372 
377 

375 
371 
373 
376 
274 

277 
275 
276 
650 
654 

652 
656 
610 
614 
612 

616 
670 
674 
672 
676 

630 
634 
632 
636 
641 

TLCA 
TLCE 
TLCN 
TLN 
TLNA 

TLNE 
TLNN 
TL.o 
TL.oA 
TL.oE 

TL.oN 
TLZ 
TLZA 
TLZE 
TLZN 

TRC 
TRCA 
TRCE 
TRCN 
TRN 

TRNA 
TRNE 
TRNN 
TR.o 
TR.oA 

TR.oE 
TR.oN 
TRZ -
TRZA 
TRZE 

TRZN 
TSC 
TSCA 
TSCE 
TSCN 

TSN 
TSNA 
TSNE 
TSNN 
TS.o 

TS.oA 
TS.oE 
TS.oN 
TSZ 
TSZA 

TSZE 
TSZN 
UFA 
XCT 
X.oR 

X.oRB 
X.oRI 
X.oRM 

JUNE 1972 

645 
643 
647 
601 
605 

603 
607 
661 
665 
663 

667 
621 
625 
623 
627 

640 
644 
642 
646 
600 

604 
602 
606 
660 
664 

662 
666 
620 
624 
622 

626 
651 
655 
653 
657 

611 
615 
613 
617 
671 

675 
673 
677 
631 
635 

633 
637 
130 
256 
430 

433 
431 
432 





-311- MACRO 

Appendix B 
Summary of Ps.udo-Ops 

B.l PSEUDO-OPS 

A list of pseudo-ops ~nd their functions follows: 

ARRAY 

ASCII 

ASCIZ 

-ASUPPRESS 

BLOCK 

BYTE 

COMMENT 

DEC 

DEFINE 

DEPHASE 

END 

ENTRY 

EXP 

EXTERN 
VERSION 47 

Reserve multiple words of storage. 

Seven-bit ASCII test 

Seven-bit ASCII test.' with null characte-r guaranteed 
at end-

Turns on suppress bit for all symbols 

Reserves block of storage cells 

Input bytes of length 1-36 bit~ 

No binary produced; same as seven-bit ASCII 

Input decimal numbers 

Defines macro 

Terminates PHASE relocation mode 

Last statement of the program 

Entry point for subroutine library 

Input expressions 

Identifies external ~ymbols 

B-1 

JUNE 1972 



MACRO 
HISEG 

INTEGER 

INTERN 

IOWD 

IRP 

IRPC 

LALL 

LIST 

LIT 

LOC 

MLOFF 

MLON 

NOSYM 

OCT 

OPDEF 

PAGE 

PASS2 

PHASE 

POINT 

PRGEND 

PRINTX 

PURGE 

RADIX 

RADIX50 

RELOC 

REMARK 

REPEAT 

RIM 

RIM10 

RIM10B 

VERSION 47 

-312-
Load into high segment 

Reserve one word of storage per argument 

Define internal symbols 

Set up I/O transfer word 

Indefinite repeat of macro arguments 

Indefinite repeat of one character 

List all; expanded listing of macros 

List in normal mode 

Assemble literals 

Assign absolute addresses 

Turn off multiline literal feature 

Turn on multiline literal feature 

Suppress symbol table listing 

Input octal numbers 

Defines user-created operator; generates only one 
word 

Start a new listing page 

Terminates pass 1, remaining statement are pro­
cessed pass 2 only 

Following coding relocated at execution time 

Sets up byte pointer word 

Allows multiprogram assemblies, end one such program 

Output on terminal or listing device the rest of the 
line 

Remove symbol from table 

Sets prevailing radix to 2-10 

Compresses 36-bit words, primarily for system use 

Implied first statement; assigns relocatable addresses 

Comments only statement 

Repeat n times 

Prepare output in RIM paper-tape format 

Absolute, unblocked, output format; no checksums 

Absolute, blocked, checksummed output format 

JUNE 1972 

B-2 



SALL 

SEARCH 

SIXBIT 

SQUOZE 

STOPI 

SUB TTL 

SUPPRESS 

SYN 

TAfE 

TITLE 

TWOSEG 

UNIVERSAL 

VAR 

XALL 

XLIST 

XPURGE 

XWD 

z 

.CREF 

.XCREF 

. HWFRMT 

.MFRMT 

-313- MACRO 
Suppress listing of macros; lists only call and 
binary generated 

Opens symbol tables of universal program 

Input text in compressed 6-bit ASCII 

Same as RADIX 50 above 

Stop indefinite repeat of macro arguments 

Subtitle on listing 

Turns on suppress bit for specified symbols 

Mak!'l synonymous 

Stop processing the current file 

Title on listing and to DDT 

Assembles and loads two segment programs 

Makes symbol table available to other programs 

Assemble variables suffixed with # or ARRAY or 
INTEGER 

Stop expanded listing~ resume normal list mode 

Stop listing 

Purges local symbols on pass 2 

Input two IS-bit half words 

Input zero word 

Resume outout pf CREF information 

Stop output of CREF information 

List binary in half word format (old) 

List binary ~n multi-format (new) 

B.I.I Conditional Assembly Statements 

These conditional assembly statements in the first column are as­

sembled if the conditions in the second column exist. 

IFI Encountered during pass I 

IF2 Encountered during pass 2 

IFB Blank 

IFDEF Defined 

IFDIF Different 

IFE Zero 

V~RSION 47 . JUNE 1972 
B-3 



MACRO -314-

IFG Positive 

IFGE Zero, or positive 

IFIDN Identical 

IFL Negative 

IFLE Zero, or negative 

IFN Non-zero 

IFNB Not blank 

IFNDEF Not defined 

VERSION 47 'JUNE 1972 
B-4 



-315- MACRO 

Appendix C 
Summary of Character 
Interpretations 

The characters listed below have special meaning in the 'contexts 

indicated. These interpretations do not apply when these characters 

appear in text strings, or in comments. 

Character 

& 

VERSION 47 

Meaning 

Colon. Immediately follows all 
labels. 

Example 

LABEL: z 

Semicolon. Precedes all comments. ;THIS IS A COMMENT 

Point. Has current value of the JRST .+5 JUMP FORWARD 
location counter or indicates float- FIVE LOCATIONS 
ing point number. ,1.0 

Comma. General operand or argument DEC 10,5,6 
delimiter. EXP A+B,C-D 

Accumulator field delimiter. MOVEI 1,TAG 

References accumulator O. The 
comma is optional. 

Delimits macro arguments. 

Inclusive 

AND 
Logical Operators 

C-l 

MOVEI ,TAG 

MACRO (A,B,C) 

JUNE 1972 



MACRO 

Chatacter 

* 
/ 

+ 

1st charac­
ter of text 
string 

B 

E 

< > 

[ J' 

= 

== 

=: 

: ! 

VERSION 47 

-316-

!>leaning Example 

Multiplication 

Division 
Arith­
metic 
Operators 

Add (+A outputs 

Subtract 

In ASCII, ASCIZ and SIXBIT comment 
text strings, the first non-blank 
character is the delimiter. 

Follows number to be shifted and 
precedes binary shift count. 

Exponent. Precedes decimal ex­
ponent in f10ating~point numbers. 

Parentheses. Enclose index fields. 

Enclose the byte size in 
BYTE statements. 

Enclose the dummy argument 
string in macro DEFINE 
statements. 

Angle brackets. In an'expression, 
enclose a numeric quantity. 

In conditional assembly state­
ments~ contain a single argu­
ment, and the conditional 
cOding. 

In REPEAT statements, con­
tain cOding. to be repeated. 

In macros, enc1qse the macro 
definitinn. ' 

Square brackets. Delimit literals. 

In OPDEF statement, contain 
new operator; in ARRAY the size. 

Equal sign. Direct assignment. 

Equal sign. Direct assignment but 

"':., 

ASClIiSTRING/; 

7B2 

F22.1E5 EXPONENT 
IS 5.:;",·, 

ADD A'C:!,X (7) 
MOVEI A,(SIXBIT/ABC/) 

BYTE (6) 8, 8, 7 

DEFINE MAC(A,B,C) 

<A-B+500/C> 

IF1, MOVE'AC.f1, TAX 

REPEAT 3, <SUB 17, TAG> 

DEFINE PUNCH 
DATAO PTP, PUNBUF (4) 

ADD 5,[MOVEI 3,TAX] 

OPDEF CAL [MOVE] 
ARRAY FOO[212] 

SYM=6 
SYM-A+B*D 

no output to DDT. SYM==6 

Equal sign and colon. Direct as- FLAG=:200 
signment but automatically made 
i~ternal. 

Colon and exclamation point. Direct . LABEL:! 
assignmerit of label, no output to 
DDT, a~d automatically made internal. 

C-2 

JUNE 1972 



Character 

==: 

: : ! 

" " 

# 

" 

-317-
Meaning 

Equal sign and colon. Direct assign­
ment, no output to DDT, and automat­
ically made internal. 

Double colon and exclamation point. 
Direct assignment of label, no out­
put to DDT, and automatically made 
internal. 

Quotation marks enclose 7-bitASCII 
text, right justified, from one to 
five characters. 

Single quotation marks enclose 6-
bit ASCII text, right justified, 
from one to six characters. 

Number sign, Defines a symbol used 
as a tag. Variable. 

Alternate method of generating ex­
ternal symbols. 

Apostrophe or single quote. Concate­
nati9ti character, used within macro 
definitions or SIXBIT data. 

Reverse slash. If used as the 
first character of an argument in 
a macro call, the value of the fol­
lowing symbol is converted to an 
ASCII symbol in the current radix. 

t+ Control left arrow. Line continu­
ation. 

+ 

@ 

VERSION 47 

Left arrow. N M shift N left (or 
right) M bit positions, 

Indicates indirect addressing. 
Causes the indirect bit in an instruc­
tion to be set. 

C-3 

MACRO 
Example 

LOOP==:32 

NAME:: I 

"ABCDE" 

'TABLES' 

ADD 3,TAG# 

MOVE ~,JOBREL## 

DEFINE MAC (A,B,C); 
<JUMP'A B, C> 

'SIXBIT' 

MAC, A IF A=5~~, THIS 
GENERATES THREE 7-BIT 
ASCII CHARACTERS, 
ASCII/5~~/ 

1~~+3=1~fd~ 
1~~++3=1~ 

MOV AC,@ADDR 

JUNE 1972 





Appendix 0 

S~orage Alloca~iC)n 

-319-

MACRO allocates storage in two directions: 

·1) thesyIilboltable (user symbols and macro names) 
grows downward from top of the l~w segment (.JBREL) 

2) Macros, literals, etc., grow upward from free space 
: C.JI;3FF) • 

MACRO 

All entries in.the symbol table are two words long. The first word 

is the sy~ol name in SIXBIT. T~e second word is flags in left 

half and either value or pointer in right half. 

~ost ~yrnbols hav~a value less .than 18 bits and so can be repre-: 

sented by just the two words in the symbol table. Symbols with 

a 36~bit value (e.g., -1) have the value ~tored in a 1 word in 

free storage. and a pointer to this value stored in the symbol t~ble. 

External symbols~ave.two words in free storage, the first is ~he 

value (i.e., the last reference in a chain of references to the 

sym!:,ol). The second. i.s the sixbj.t name of the symbol. This is 

So that additive global fixups can be output. 

VERSION 47 JUNE 1972 
D-l 



MACRO -320-
Opdefs tend to have 36-bit values and are stored like other 36-

bit value symbols. 

Macro names are stored in the symbol table, the value is a pointer 

to the stored text string. 

The text string is stored in four (assembly parameter) word blocks 

which have the general form 

1) link to next block, [~ if last] " 2 characters 
2) 5 characters 
3) 5 characters 
4) 5 characters 

However, the first such block is special 

1) link to next block " link to last block 
2) pointer to default arg; " <number or args expected>+9+reference 
3) 5 characters count 
4) 5 characters 

The number of args expected is the number of arguments in the define 

statement. 

The reference count is incremented when the macro is called and 

decremented when exiting from the macro. When this count goes to 

zero the macro is removed from free space. 

The actual arguments to a macro are stored in the same linked block, 

but are not in the symbol table. Repeats (2 or more times) are also 

stored the same way. The text blocks are removed when the macro 

exits or the repeat exits since the reference count has gone to 

zero. 

The addresses of the actual argument blocks are stored in a pushdown 

stack in order of generation. 

Default arguments are stored the same way except the list is in free 

core. The pointer to this default arg list is stored in the left 

half of the second word of the first block of the macro definition. 

The text body is stored as is, except that dummy arguments are re­

placed by special symbols. 

VERSION 47 JUNE 1972 
0-2 



-321- MACRO 
The ASCII character RUBOUT (177) is used to signal a special char­

acter text. 

These characters are 

~~l ;end of macro 
~~2 ;end of dummy symbol 
~~3 ;end of Repeat 
~~4 ;end of IRP or IRPC 

If the character is 4<ch<77 it is illegal. 

If the character is <100 then it is a dummy symbol, the value of 

the character is ANDed with 37'to get the dummy symbol number and 

the corresponding pointer retrieved from the stack of pointers. 

If th- symbol was not specified (i.e., no pointer) then if the 40 

bit is on this is to be a created symbol and one is created, other­

wise the argument is ignored. 

Verbose macros can eat up a lot of storage space. 

Literals are stored in four words/block per word generated (three 

words if old format used) . 

Words are 

-3: form word 
-2: relocation bits 
-1: code 
~: pointer to next 

The pointer points to the ~ word of the next block. The code is 

the generated code. Relocation is either the relocation bits ~ 

or 1 per half word or external pointers if externs used. 

Form word is the word used for listing, this wo~d is not checked 

when comparing literals so that different forms that produce the 

same code are classed as equal. 

Long literals are both slow and take up extra storage, they should 

be written as subroutines or inline. 

Single quotes can also be used to indicate SIXBIT words, however, 

one pair of single quotes is removed by the assembler if the pair 

encloses a dummy argument. For example, in the macro 

VERSION 47 JUNE 1972 
D-3 



MACRO 

DEFINE 
MOVSI 
MOVSI 
> 

SXBT (A) < 
1, "A" 
2,"B" 

-322-

B is not a dummy argument so it can be enclosed in single quotes. 

A, however, is a dummy argument and must be enclosed in double 

quotes since one pair of quotes (the inner pair) will be removed 

by the assembler. 

VERSION 47 JUNE 1972 
D-4 



Appendix E 
Text Codes 

-323-

This appendix contains a summary of MACRO-l0 text codes. 

SIXBIT Character ASCII SIXBIT Character 7-Bit* 

00 Space 040 40 @ 
01 I 041 41 A 
02 " 042 42 B 
03 # 043 43 C 
04 $ 044 44 D 
05 % 045 45 E 
06 & 046 46 F 
07 I 047 47 G 

10 ( 050 50 H 
11 ) 051 51 I 
12 * 052 52 J 
13 + 053 53 K 
14 , 054 54 L 
15 - 055 55 M 
16 056 56 N 
17 / 057 57 0 

20 0 060 60 P 
21 1 061 61 Q 
22 2 062 62 R 
23 3 063 63 S 
24 4 064 64 T 
25 5 065 65 U 
26 6 066 66 V 
27 7 067 67 W 

30 8 070 70 X 
31 9 071 71 Y 
32 : 072 72 Z 
33 ; 073 73 ( 
34 < 074 74 \ 
35 = 075 75 ] 
36 > 076 76 t 
37 ? 077 77 -

*MACRO-l0 also accepts five of the 32 control codes in 7-bit ASCII: 

Horizontal Tab 011 
Line Feed 012 

VERSION 47 

Vertical Tab 013 
Form Feed 014 

E-l 

MACRO 

ASCII Character ASCII 
7-Bit* 7-Bit* 

100 \ 140 
101 a 141 
102 b 142 
103 c 143 
104 d 144 
105 e 145 
106 f 146 
107 9 147 

110 h 150 
111 i 151 
112 i 152 
113 k 153 
114 I 154 
115 m 155 
116 n 156 
117 0 157 

120 p 160 
121 q 161 
122 r 162 
123 s 163 
124 t 164 
125 u 165 
126 v 166 
',27 w 167 

130 x 170 
131 y 171 
132 z 172 
133 { 173 
134 I 174 
135 } 175 
136 --- 176 
137 Delete 177 

Carriage Return 015 

JUNE 1972 





-325- MACRO 

Appendix F 
Radix 50 Representation 

Radix 508 representation is used to condense 6-character symbols 

into 32 bits. Each character of a symbol is subscripted in de­

scending order from left to right: i.e., the symbols are of the 

form 

L L L L L L 
645 321 

If Cn denotes the octal code for Ln' the radix 508 representation 

is generated by the following 

where all numbers are octal. 

The code numbers corresponding to the characters are: 

Code (Octal) 

00 
01-12 
13-44 
45 
46 
47 

Characters 

Null character 
0-9 
A-Z 

$ 
% 

The top four bits are taken from the four leftmost bits of a 6-bit 

octal number (i.e., ~4-74). 

VERSION 47 F-1 JUNE 1972 





-327-

App,endixG 
Summary of Rules . for 
Defining and 'Calling Macros 

G.I ASSEMBLER INTERPRETA'l'ION 

MACRQ 

!-iACRO-IO .assembles macros by direct and immediate characte:::- substitu­

tions.When a macro call is encountered, in any field, the character 

substitutiohis made, the characters are processed, and the assembler 

continues its scan with the character fOllowing the delimiter of the 

last argument, except when it is delimited by a semicolon. Macros 

can appear any number of times on a line. 

G.2 CHARACTER HANDLING 

G.2.1 Blanks 

A macro symbol is delimited by one blank or one tab; the character 

following the delimiter is the start of the argument string even if 

it is also a blank or tab. Other than the first delimiter, blanks 

and tabs are treated as standard characters in the argument string. 

G.2.2 Brackets 

.. 
Angle brackets are~mly significant in the argument fields if the 

first character of any field is a left angle bracket. In this case, 

VERSION 47 JUNE 1972 
G-I 



MACRO -328-
no terminator or parenthesis tests are made between the left angle 

bracket and its matching right bracket. The matching brackets are 

removed from the string but the sca,n continues until a standard 

delimiter is found. 

G.2.3 Parentheses 

Parentheses serve only to terminate an argument scan. They are 

significant only when the first character following. the blank, or 

tab delimiter is a left parenthesis. In this case, the left paren­

thesis is removed and, if it matching right parenthesis is encoun­

tered prior to the normal termination of the argument scan, it is 

removed and the scan discontinued. 

G.2.4 Commas 

When a comma is encountered in an argument scan, it acts as the 

delimiter of the current argument. If it delimits the last argument, 

the character following it will be the first scanned after the sub­

sitution is processed. 

G.2.S Semicolons 

When a semicolon 1's encountered ,in an argument scan,th~ sca·p is 

discontinued. If an argument has not ,been satisfied,the remainder 

is considered null. It is saved, hO,wever, and will be the first 

character scanned after the substitution is made, normally acting 

as a comment flag. 

G.2.6 Carriage Return 

A carriage return, except when pre-empted by angle brackets (see 

Section G.2.2), will terminate the scan similar to the semicolon. 

This can be circumvented, if desired, by the control left arrow key 

described elsewhere. 

G.2.7 Back-Slash 

If the first character of any argument is a back-slash, it must be 

directly followed by a numeric term. The value of the numeric term 

is broken down into a string of ASCII digits of the current radix, 

just the reverse of a fixed-point number computation. The value is 

VERSION 47 JUNE 1972' 
G-2 



-329- MACRO 

considered to be a 36-bit positive number having a value of 0 to 

777777 777777. Leading zeros are suppressed except in the case of 0, 

in which case the result is one ASCII O. The ASCII string is sub­

stituted and the scan continued in the normal manner (no implied 

terminator) . 

The default listing mode is XALL, in which case the initial macro 

call and all lines within its range that produce binary code are 

listed. The pseudo-op LALL will cause all lines to be listed. 

Substituted arguments are bracketed by t's by the assembler. 

G.3 CONCATENATION 

The rule for concatenation is as follows: 

For each string of apostrophes, one is removed if and only if it is 

next to (either before or after) a dummy argument to that macro. 

VERSION 47 JUNE 1972 
G-3 





-331- MACRO 

Appendix H 
Operating Instructions 

H.I REQUIREMENTS 

The following are MACRO-IO operating requirements: 

Minimum Core 7K pure plus IK impure 

Additional Core Automatically requests additional core assign­
ments,from the timesharing monitor as needed. 

Equipment One input device (source program input); up to 
two output devices (machine language program 
output and listing output). If the listing 
output is to be used as, input to the Cross 
Reference (CREF) program, it must not be TTY, 
DIS or LPT. 

H.2 INITIALIZATION 

The following are commands and corresponding indications: 

.R MACRO) Loads the MACRO-IO Assembler into core. 

* The Assembler is ready to receive a command. 

VERSION 47 JUNE 1972 

H-I 



MACRO -332-

H.3 COMMANDS 

H.3.l General Command Format 

MACRO-IO general commands are as follows: 

objprog-dev:filename.ext,list-dev:filename.ext source-dev:filename.ext, •••••• source-n) 

objprog-dev: 

list-dev: 

source-dev: 

The device on which the object iJrogrClIl\ is to be written. 

MTAn: 
DTAn: 
PTP: 
DSK: 

(magnetic tape) 
(DECtape) 
(paper-tape punch) 
(disk) 

The device on which the assembly listing is to 
be written. 

MTAn: 
DTAn: 
DSK: 
LPT: 
TTY: 
PTP: 

(magnetic tape) 
(DECtape) 
(disk) } 
(line printer) 
(Teletype) 
(paper-tape punch) 

Must be one 
of these if 
input to CREF l 

The device(s) from which the source-program 
input to assembly is to be read. 

MTAn: 
CDR: 
DTAn: 
DSK: 
PTR: 
TTY: 

(magnetic tape) 
(card reader) 
(DECtape) 
(disk) 
(paper-tape reader) 
(Teletype) 

If more than one file is to be assembled from a 
magnetic tape, card reader, or paper tape reader, 

, dev: is followed by a comma for each file beyond 
the first. 

Input via the Teletype is terminated by typing 
CTRL Z (tZ) to enter pass 1; the entries must 
be retyped at the beginning of pass 2. 

filename. ext The filename and filename extension of the object 
(DSK: and DTAn: only)program file, the listing file, and the source 

file (s) • 

The object program and listing devices are 
separated from the source device by the left 
arrow symbol. 

H.3.2 Disk File Command Format 

MACRO-IO disk file commands are as follows: 

DSK:filename.ext [proj,prog] 
--------
lIf Ic switch is given, but no list-dev: is specified, DSK:CREF.CRF is assumed. 

VERSION 47 H-2 JUNE 1972 



-333 ... ' MACRO 

[proj,prog] Project-programmer number assigned to the disk 
area to be searched for the source file(s) if 
other than the user's project-programmer number. 

The installation standard protection is assigned 
to any disk file specified as output. 

NOTE 

If object coding output is not desired (e.g., a program is 
being scanned for source language errors), objprog-dev: is 
omitted. If an assembly listing is not desired, list-dev: 
is omitted. If device is not specified, DSK is assumed. 

Examples: 

.R MACRO) 
!DTA3:0BJPRG,LPT: CDR:) 

END OF PASS 1) 

[
?2 ERRORS DETECTED) 
PROGRAM BREAK IS ~~2537) 
2K CORE USED) 

~tC) 

. R MACRO) 
TMTA3:,MTA2: MTA1:,,) 

ONO ERRORS DETECTED) 
PROGRAM BREAK IS ~~3552) 
2K CORE USED) 

Assemble one source program file from the card 
reader1 write the object code on DTA3 and call 
the file OBJPRG1 write the asseinbly listing on: 
the line printer. 

The source program cards must be manually re­
fed for pass 2. 

Number of source errorS1 size of objec~ pro­
gram1 core used by assembler. 

Return to the monitor • 

Asseinble the next three source flies located 
at the present position of MTA11 write the 
object program on MTA31 write the listing on 
MTA2 for later printing. 

~,LPT: DTA1:FILE1,FILE2,FILE5) Asseinble the sou~ce,files named FILEl, FILE2, Do ERRORS DETECTED) and FILES from DTA11 produce no object coding1 
PROGRAM BREAK IS 10.01.027) write'the :listing' on' the' line printer. 
2K CORE USED) , " ", '. " . 

*,+DSK:FILE1.MAC[14,l~J) DNO ERRORS DETEGTED) . ' 
PROGRAM BREAK IS .0.0.0544 
2K CORE USED) 

~tC) 

. R MACRO 

~MTA1: ,TTY: TTY:) 

JMP R) } R: AOS G) 
G: JFCL) 

t~) 
END) 

END OF PASS 1) 
JMP R) 

VERSION 47 

Scan the source program called FILEl.MAC, 
located. in ,ar,ea 14, 12 on the disk" f.or ,source 
language errors1 prod~ce n~ object 'c~ding or 
asseinblylisting1 print all'error diagnostics 
on the terminal. 

Return to the monitor • 

Asseinble a source file from the terminal 1 write 
the object code program on MTAI and print the 
assembly listing on the terminal. 

Terminate input. 

Reenter terminal input. 
Type first statement again. 

H-3 JUNE 1972 



MACRO -334- . 

[MAIN MACRO 

o ., .0.0.0.0.0.0 .0.0.0.0.0.0 
R: AOS G 

.0.0.0~.01 35.0.0.0.0 

G: JFCL) 

.0.0.0.0.02 255.0.0.0 

END) 

?1 ERROR DETECTED} 
PROGRAM BREAK IS .0.0.0.0.03) 

. MAiN' MACRO' 

G 
R 

2K CORE 

SYMBOL TABLE) 
.0.0.0.0.02 I}, 
.0.0.0.0 . .01' ) 

USED) 

H.4 SWl;'rCHES 

1.0: 14· 2.0-DEC-67 

.0.0.0~.01' JMP 

.0.0.0.0.02' R: AOS 

.0.0.0.0.0.0 G: JFCL} 

1.0.: 14 2.0-DEC-67 

Switches are used to specify such options as: 
< ~ • • 

a. Magnetic tape control 

b. Macro call expansion 

C.Li~~ing stippressiort 

d. Pushdown list expansion 

e. Cross-reference file output. 

PAGEl) Page heading. 

R) First assembled. 
~eenter second. 

G) Second assembled. 

Reenter third. 

Third assembled. 

Reenter fourth. 

Fourth assembled. 

Typeout of s~l 
table. 

PAGE2) 

Return to the monitor. 

All switches are preceded bi a slash (/) or enclosed in parentheses, 

andusual~yoccur prior to ,the left arrow (see Table H-l). 

VERSION 47 JUNE 1972 
H-4 



switch 

A 

B 

C 

E 

F 

G 

H 

L 

M 

N 

o 

p 

Q 

S 

T 

w 

x 

z 

VERSION .47 

-335-
Table H-l 

MACRO-10 Switch Options 

Meaning 

Advance magnetic tape reel by one file. 

Backspace magnetic tape reel by one file. 

MACRO 

Produce listing file in a format acceptable as input to CREF; unless the file 
is named, CREF. CRF is assigned as the f~1ename; if no extension is given, 
.CRF.is assigned; if no list~dev: is speclfied, DSK: is assumed. IC must 
appear between the comma and the left-arrow • 

. List macro expansions (same function as LALL pseudo-op). 

New format for output binary listing (.MFRMT pseudo-op). 

Old format for output binary listing (.HWFRMT pseudo-op). 

Print Help text· (Le., this list of switches and explanations). 

Reinstate listing .. (used after· list suppression by either the XLIST 
pseudo-op or 5 switch). 

List only call, no binary, in macro expansion (same .SALL pseudo-op).· 

suppress error printouts on the terminal. 

Sets the pseudo-op MLOFF which allows literals to occupy on· a single 
line.· 'i'his·meansliterals may be terminated with a carriage return, 
line feed instead of a right bracket. 

Increase the size of· the pushdown list. This switch may appear as 
many times as desired (pushdown list is initially set to a size of 8010 
locations; each Ip increases its size by 8010). Ip must appear on the 
left of the left arrow. 

Suppress Q (questionable) error indications on the listing; Q messages 
indicate assumptions made during pass 1. IQ must appear on the left 
of the left-arrow. 

Suppress listing (same function as XLIST pseudo-op). 

Skip to the logical end of the magnetic tape. 

Rewind the magnetic tape. 

Suppress all macro expansions (same function as XALL pseudo-op). 

Zero the DEC tape directory. 

NOTE 

Switches A through C and T, W, X, and Z must im­
mediately follow the device or file to which the 
individual switch refers. 

H-5 

JUNE 1972 



MACRO 
Examples: 

.R MACRO) 
~MTAl:,DTA3:,/C+PTR:) 

END OF PASS 1) 

[
?3 ERRORS DETEC~ED) . 

. PROGRAM BREAK IS 00040]) 
.2K CORE VSED) . ' 

*DTA2:ASSEMB.ONE/Z,LPT: 
- MTA4:/W,) 

[
NO ERRORS DETECTED} 
PROGRAM BREAK IS 005231) 
3K CORE USED) 

*MTAl:/W,LPT:+MTA3: 
- /W,(AA),(BB») 

[
?l ERROR DETECTED) 
PROGRAM BREAK IS 000655) 
2K CORE USED) 

*FOO,/C FOO) 
NO ERRORS DETECTED) . 
PROGRAM BREAK IS 000765) 
2K CORE USED) 

!+C) 

VERSION 47 

-336-

Assemble one source file from the paper tape 
reader·; write the object code o,n MTA1; write 
the assembly listing on DTA3 in cross­
reference format and call the file CREF.CRF. 

The paper tape must be re-fed by the operator 
for pass. 2. 

End-of-assembly messa.ges·, 

Rewind MTA4 and assemble the first two source 
files on it; write the object code on DTA2, 
after zeroing the. directory, and call the file 
ASSEM.ONE; write the assembly listing on the 
line printer. 

Rewind MTAl and, M'I'A3 and.assemble files 1, 4, 
and 3 (in that order) from MTA3; print the 
assembly listing. on the line printer; write 
the object code on MTA1. 

Assemble source file FOO on DSK:; write the 
ass.embly l;i.sting on· . .r)SK in cross-reference 
format calling the file' CREF .CRF. Write ob­
ject code, on D.SK calling it_ FOO. REL. 

Return to the monitor. 

JUNE 1972 
H-6 



-337-

DEC-IO-MRRC-D 

MONITOR CALLS 

This manual reflects the software as of the 5.06 release of the monitor. 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



MON nOR CALLS -338-

The material in this manual is for informational purposes 

and is subject to change without notice. 

Copyright © 1971, 1972, 1973 by Digital Equipment Corporation 

Actual distribution of the software described in this 
specification will be subject to terms and conditions to be 
announced at some future date by Digital Equipment 
Corporetion. 

DEC assumes no responsibility for the use or reliabil ity of its 
software on equipment which is not supplied by DEC. 

The software described in this manual is furnished to 
purchaser under a license for use on a single computer system 
and can be copied (with inclusion of DEC's copyright notice) 
only for use in such system, except as may otherwise be 
provided in writing by DEC. 

The following are trademarks of Digital Equipment 
Corporation, Maynard, Massachusetts: 

DEC 
FLIP CHIP 
DIGITAL 

PDP 
FOCAL 
COMPUTE R LAB 

1st Printing June 1971 
2nd Printing (Rev) January 1972 

3rd Printing (Rev) June 1972 
4th Printing (Rev) March 1973 



-339-

CONTENTS 

CHAPTER 1 MEMORY FORMAT 

1.1 

1.2 

Memary Protection and Relocation 

-User's Core Storage 

1.2.1 

1.2.2 

Job Data Area (JOBDAT) 

Vestigial Job Dota Area 

CHAPTER 2 INTRODUCTION TO USER PROG RAMMING 

2.1 Processor Modes 

2.1.1 User Mode 

2.1.2 User I/O Mode 

2.1.3 Executive Mode 

2.2 Programmed Operaton (UUOs) 

2.2.1 Operation Codes 001-037 (User UUOs) 

2.2.2 Operation Codes 040-On and 000 (Monitor UUOs) 

CALL and CALLI 

Suppression of Logical Device NOlTI!!s 

Restriction on Monitor UUOS in Reentrant User 

Programs 

MON nOR CALLS 

Page 

359 

360 

360 

365 

367 

367 

367 

368 

368 

369 

369 

371 

382 

382 

2.2.3 Operation Codes 100-127 (Uni~lemented Op Codes) 383 

·2.2.4- Illegal Operation Codes 

2.2.5 Naming Conventions for Monitor Symbols 

CHAPTER 3 NON-I/O UUOS 

3.1 Execution Contral 

3.1.1 Starting 

iii 

383 

383 

385 

385 

April 1973 



MON ITOR CALLS -340-
CONTENTS (Cant) 

Page 

SETDDT AC, or CALLI AC, 2 385 

3.1.2 Stopping 385 

Illegal Instructions (700-m, JRST 10, JRST 14) 
and Unimplemented OP Codes (101-127) 385 

HALT or JRST 4 386 

EXIT AC, or CALLI AC, 12 386 

3.1.3 Trapping 387 

APRENB AC, or CALLI AC, 16 387 

Error Intercepting 388 

3.1.4 Suspending 391 

SLEEP AC, or CALLI AC, 31 391 

HIBERAC, or CALLI AC, 72 391 

WAKE AC, or CALLI AC, 73 392 

3.2 Core Contral 393 

3.2.1 Definitions 393 

3.2.2 LOCK AC, or CALLI AC, 60 394 

KA10 Systems 396 

Core Allocation Resource 397 

UNLOK. AC, or CALLI AC, 120 397 

3.2.3 CORE AC, or CALLI AC, 11 401 

3.2.4 SETUWP AC, or CALLI AC, 36 403 

3.3 Segment Control 403 

3.3.1 RUN AC, orCALU AC, 35 403 

3.3.2 GETSEG AC, or CALLI AC, 40 407 

3.3.3 REMAP AC, or CALLI AC, 37 408 

3.3.4 Testing for Sharable High Segments 408 

3.3.5 Modifying Shared Segments and Meddling 409 

3.4 Program and Profile Identification 410 

3.4.1 SETNAM AC, or CALLI AC, 43 410 

3.4.2 SETUUO AC, or CALLI AC, 75 410 

3.4.3 LOCATE AC, or CALLI AC, 62 412 

3.5 Inter-Program Communication 412 

3.5.1 TMPCORAC, or CALLI AC, 44 4'12 

CODE = 0 (. TCRFS), Obtain Free'Space 413 

iv April 1973 



· 3.6 

3.7 

3.8 

-341-
CONTENTS (Cont) 

CODE= 1 (.TCRRF), Read File 

CODE = 2 (. TCROF), Read and_Delete Rle 

CODE =3 (.TCRWF), Write File 

CODE = 4 (. TCRRO), Read Directory 

CODE = 5 (. TCROD), Read and'Clear Directory 

Environmental Information 

3.6. 1 

3.6.2 

3.6.3 

3.6.4 

Timing Information 

DATE AC, or CALLI AC, 14 

TIMER AC, or CALLI AC, 22 

MSTIME AC, or CALLI AC., 23 

Job Status Information 

RUNTIM AC, or CALLI AC, 27 

PJOB AC, or C~LU AC, 30 

GETPPN AC, or CALU AC, 24 

OTHUSR AC, or CALLI AC, n 
Monitor Examination 

PEEK AC, or CALU AC, 33 

SPY AC, or CALLI AC, 42 

POKE. AC, orCALLIAC, 114 

GETTAB AC, orCALU AC, 41 

Configuration Information 

SWITCH AC, or CALLI, AC, 20 

LIGHTS AC, or CALLI AC, -1 

DAEMON AC, or CALLI AC, 102 

3.7.1 • DCORE Function 

3.7.2 .CLOCK Function 

3.7.3 Returns 

Real-Time Pl'Ogl'Omming 

3.8.1 RTTRP AC, or CALLI AC, 57 

Data Block Mnemonics 

Interrupt Level Use of RTTRP . 

RTTRP Returns 

Restrictions 

Removing Devices from a PI Channel 

v 

MON nOR CALLS 

Page 

413 

413 

414 

414 

414 

414 

414 

415 

415 

415 

416 

416 

416 

416 

416 

416 

416 

416 

417 

417 

442 

442 

442 

442 

442 

443 

443 

444 

444 

446 

447 

447 

448 

449 

April 1973 



MaN nOR CALLS -342-
CONTENTS (Cont) 

Page 

Dismissing the Interrupt 449 

Examples 449 

3.8.2 RTTRP Executive Mode Trapping 453 

Example 454 

3.8.3 TRPSETAC, or CALLI AC, 25 455 

3.8.4 UJEN (Op Code 1(0) 457 

3.8.5 HPQ AC, orCALU AC, 71 457 

3.9 METE R. AC, or CALLI AC, 111 . 458 

CHAPTER 4 I/O PROG RAMMING . 

4.1 I/O Organizqtion 461 

4.1.1 Files 461 

4.1.2 Job I/O Initialization 461 

4.2 Device Selection 462 

4.2.1 Nondirectory Devices '162 
4.2.2 Directory Device 463 

4.2.3 Device Initialization 
i 

463 

Data Channel 463 

Device Name 463 

InitiQI File Status 464 
Data Modes 464 

I Buffer Header 445 
4.3 Ring Buffers 466 

4.3.1 Buffer Structure 466 

Buffer Ring Header Blcx:k 466 

Buffer Ring 467 

4.3.2 Buffer Initialization 468 

Monitor Generated Buffers 468 

User Ge~rated Buffers 469 

4.4 File Selection (lOOKUP and ENTER) 470 

4.4. 1 Th~ LOOKUP 'Operator 470 

4.4.2 The E NTE R Operator 471 

4.4.3 RENAME Operator 472 

vi April 1973 





MONITOR CALLS -344-
CONTENTS (Cent) 

Page 

CHAPTER 5' VO PROGRAMMING FOR NONDIRECTORY DEVICES 

5~ 1 Card Punch 494 

5. 1. 1 Concepts 494 
5.1.2 Data Iv\odes 494 

ASCII, Octal Code 0 494 
ASCII Line, OctalCoCie 1 495 
Image, Octal Code 10 495 
Image Binary,Ociol Code 13 495 

Binary, Octal Code 14 495 

5.1.3 Spec ial Programmed Operator Service 495 

5.1.4 File Status 496 
-'C"'" ." ,(.\ . -,' . ~ .. 

' ... ~ . 5.2 Card Reader 496 
. ; ·r~~!/ 

.~ . ,. . 
, " 5.2. 1 Concepts 496 ~.) .... :,. < '.~ 

:::~t '': 

5.2.2 Datci Iv\odes 497 

ASCII, Octal Code 0 497 

ASCIlLine, Octal Code 1 497 

Image, Octal Code '10 497 
Image Binary, Octal Code 13 ' 497 

Binary, Octal Code 14 497 

Super-Image, Octal Code 110 497 

5.2.3 Special Progra~m~d Operator Service 498 

5.2.4 File Status 498 

5.3 Display with Light Pen 499 

5.3.1 Data Iv\odes, 499 

5.3.2 Background 499 

5.3.3 Display UUOs 499 

INPUT 0, ADR' 499 

OUTPUT 0, ADR 499 

5.3.4 File Status 501 

5.4 Line Printer 502 

5.4. 1 Data Iv\odes 502 

ASCU, O~tal'Code 0 ' 502 

ASCII Line, Octal Code 1 502 

Im~e, Octal Code 10 502 

, , 
viii April 1973 



-345- MON ITOR CALLS 
CONTENTS (Cont) 

Page 

5.4.2 Special Programmed Operator Service 502 

5.4.3 File Status 502 

5.5 Magnetic Tape 503 

5.5. 1 Data Modes 503 

ASCII, Octal Code 0 503 

ASCII Line, Octal Code 1 503 

Image, Octal Code 10 503 

Image Binary, Octal Code 13 503 

Binary, Octal Code 14 503 

DR (Dump Recorcls}, Octal Code 16 503 

D (Dump), Octal Code 17 504 

5.5.2 Magnetic Tape Fonnat 504 

5.5.3 Special Programmed Operator Service 504 

MTAPE UUO 505 

MTCHR. AC, or CALU AC, 112 507 

5.5.4 9-Channel Magtape 507 

Digital-Compatible Mode 508 

Industry-Compatible Mode 508 

Changing Modes 509 

5.5.5 File Status 511 

5.6 Paper-Tape Punch 512 

5.6. 1 Data Modes 512 

ASCII, Octal Code 0 512 

ASCII Line, Octal Code 1 512 

Image, Octal Code 10 512 

Image Binary, Octal Code 13 512 

Binary, Octal Code 14 512 

5.6.2 Special Programmed Operator Service 512 

5.6.3 File Status 513 

5~7 Paper-Tape Reader 513 

5.7.1 Data Modes (Input Only) 513 

ASCII, Octal Code 0 513 

ASCII Line, Octal Code 1 513 

Image, Octal Code 10 513 

ix April 1973 



~10N ITOR CALLS -346-
CONTENTS (Cont) 

Page 

Image Binary, Octal Code 13 514 

Binary, Octal Code 14 514 

5.7.2 Special Programmed Operator Service 514 

5.7.3 File Status 514 

5.8 Plotter 515 

5.8.1 Data Modes 515 

ASCII, Octal Code 0 515 

ASCII line, Octal Code 1 515 

IMAGE, Octal Code 10 515 

IMAGE BINARY, Octal Code 13 515 

BINARY, Octal Code 14 515 

5.8.2 , Special Programmed Operator Service 515 

5.8.3 File Status 516 

5.9 Pseudo-TTY 516 

5.9.1 Concepts 516 

5.9.2 The HIBE R UUO 517 

5.9.3 File Status 518 

5.9.4 Special Programmed Operator Service 519 

OUT, OUTPUT UUOs 519 

IN, INPUT UUOs 519 

RELEASE UUO 519 

JOBSTS UUO 519 

CTUOB UUO 520 

5.10 Terminals 521 

5.10. 1 Data Modes 522 

ASCII, Octal Code 0 and ASCII Line, Octal Code 1 522 

Image, Octal Code 10 523 

5.10.2 DDT Sub mode 524 

5.10.3 Special Programmed Operator Service 525 

INCHRW ADR or TTCALL 0, ADR 526 

OUTCHR ADR or TTCALL 1, ADR 526 

INCHRS ADR ornCALL 2, ADR 527 

OUTSTR ADR or nCALL 3, ADR 527 

INCHWL ADR or nCALL 4, ADR 527 

x April 1973 



-347- f10N nOR CALLS 

CONTENTS (Cont) 

Page 

INCHSL ADR or TTCALL 5, ADR 527 

GETLCH ADR or TTCAlL 6, ADR 527 

SETLCH ADRor TTCALL 7, ADR 528 

RESCAN ADR or TTCALL 10, 0 528 

CLRBA ADR or TTCALL'l1, 0 528 

CLRBFO ADRorTTCALL 12, 0 529 

SKPINC ADRorTTCALL 13,0 529 

SKPINL ADR or TTCALL 14, 0 529 

IONEOU ADR or TTCALL 15, E 529 

5.10.4 GETLIN AC, or CALLI AC, 34 529 

5.10.5 TRMNO. AC, or CALLI AC, 115 529 

5.10.6 TRMOP. AC, or CALLI AC, 116 530 

5.10.7 File Status 533 

5.10.8 Paper-Tape Input from the Terminal (Full-Duplex 
Software) 534 

5.10.9 Paper-Tape Output at the Terminal (Full-Duplex 
Software) 534 

CHAPTER 6 VO PROGRAMMING FOR DIRECTORY DEVICES 

6.1 DECtape 536 

6.1.1 Data tv\:)des 536 

Buffered Data tv\:)des 536 

Unbuffered Data tv\:)des 536 

6.1.2 DECtape Format 536 

6.1.3 DECtape Directory Format 537 

6.1.4 DECtape File Format 539 

Block Allocation 540 

6.1.5 I/O Programming 540 

LOOKUP D, E 541 

ENTER D, E 542 

RENAME D, E 543 

INPUT, OUTPUT, CLOSE, RELEASE 544 

6.1.6 Special Programmed Operator Service 545 

USETI D, E 545 

xi June 1973 



MONITOR CALLS -348-

CONTENTS (Cont) 

Page 

USETO 0, E 545 
UGETF 0, E 545 
UTPC LR AC, or CALLI N:., 13 546 
MTAPE p, 1 and MTAPE 0, 11 546 
DEVSTS UUO 546 

6.1.7 File Status 546 
6.1.8 Important Considerations 548 

6.2 Disk 549 

6.2. 1 Data Modes 549 

Buffered Data Modes 549 

Unbuffered Data Modes 549 

6.2.2 Structure of Disk ryles 549 

Addresing by Monitor 550 
Storage Allocation Tc:Ole (SAT) Blocks 550 

File Directories 551 

FiI~ Format 554 

6.2.3 Access Protection 554 

UFO and SFD Privileges 556 

6.2.4 Disk Quotas 559 

6.2.5 Simultaneous Access 560 

6.2.6 FiI"e Structure Names 560 
Logical Unit Names 560 
Physical Controller C lass Names 560 
Physical Controller Names 560 

Physical Unit Names 560 
Unit Selection on Output 561 

Abbreviations 561 

6.2.7 Job Search List 562 

6.2.8 User Programming 563 

Four-Word Arguments for LOOKUP, ENTER, 
RENAME UUOs 564 
Extended Arguments for LOOKUP, ENTER, 
R~NAME UUOs ~71 

Error Recovery for ENTER and RENAME UUOs 576 

6.2.9 Special Programmed Operator Service 577 

PAni. AC, or CALLI AC, 110 577 

xii June 1973 



6.3 

6.2.10 

6.2.11 

-349-
CONTENTS (Cont) 

USETI and USETO UUOs 

SEEK UUO 

RESET UUO 

DEVSTS UUO 

CHKACC UUO 

STRUUO AC, or CALLI AC, 50 

JOBSTR AC, or CALLI AC, 47 

GOBSTR AC, or CALLI AC, 66 

SYSSTR AC, or CALLI AC, 46 

SYSPHY AC, or CALLI AC, 51 

DEVPPN AC, or CALLI AC, 55 

DSKCHRAC, or CALLI AC, 45 

DISK. AC, or CALLI AC, 121 

Simultaneous Supersede and Update 

File Status 

Disk Packs 

Removable Fi Ie Structures 

Identification 

IBM Disk Pack Compatibility 

Spooling of Unit Record I/O on Disk 

6.3.1 Input 'Spooling 

6.3.2 Output Spooling 

CHAPTER 7 MONITOR ALGORITHMS 

7.1 

7.2 

7.3 

Job Schedu ling 

Program Swapping 

Device Optimization 

7.3. 1 Concepts 

7.3.2 Queuing Strategy 

7.3.3 

7.3.4 

Position-Done Interrupt Optimization 

Transfer-Done Interrupt Optimization 

Fairness Considerations 

Channel Command Chaining 

Buffered Mode 

xiii 

MON nOR CALLS 

Page 

584 

587 

587 

588 

588 

588 

590 

591 

592 

593 

593 

597 

599 

600 

601 

602 

603 

603 

603 

603 

604 

604 

605 

607 

609 

609 

610 

611 

611 

611 

611 

611 

April 1973 



~~ON ITOR CALLS -350-
CONTENTS (Cont) 

Unbuffered Mode 

7.4 Monitor Error Handling 

7.4. 1 Hardware Detected Errors 

7.4.2 Software Detected Errors 

7.5 Directories 

7.5.1 Order of Filenames 

7.5.2 Directory Searches 

7.6 Priority Interrupt Routines 

7.6.1 Channel Interrupt Routines 

7.6.2 Interrupt Chains 

7.7 Memory Parity Error Analysis, Reporting and Recovery 

APPENDIX A DECTAPE COMPATIBILITY BETWEEN DEC COMPUTERS 

APPENDIX B WRITING REENTRANT USER PROGRAMS 

B.l 

B.2 

B.3 

B.4 

Defining Variables and Arrays 

Example of Two-Segment Reentrant Progltlm 

Constant Data 

Single Source File 

APPENDIX C CARD CODES 

APPENDIX D DEVICE STATUS BITS 

APPENDIX E ERROR CODES 

APPENDIX F COMPARISON OF DISK-LIKE DEVICES 

APPENDIX G MAGNETIC TAPE CODES 

APPENDIX H FILE RETRIEVAL POINTERS 

H.l A Group Pointer 

H. 1. 1 Folded Checksum Algorithm 

xiv 

Page 

612 

612 

612 

613 

613 

613 

613 

613 

613 

614 

618 

623 

623 

624 

624 

641 

642 

April 1973 



H.2 

H.3 
H.4 
H.5 

-351-

CONTENTS (Cont) 

End-of-File Pointer 

Change of Unit Pointer 

Device Data Block 

Access Block 

xv 

MON nOR CALLS 

Page 

642 

642 

642 

642 

April 1973 



MONITOR CALLS -352-

ILLUSTRATIONS 

Figure No. Title Page 

1-1 KA 10 User Address Mapping 361 

1-2 KIlO User Address Mapping 361 

3-1 Locking Jobs In Core on KA 10 Systems 398 

4-1 User's Ring of Buffe~ 467 

4-2 Detailed Diagram of Individual Buffer 468 

5-1 Pseudo-TTY 517 

6-1 DEClape Directory Format 537 

6-2 Format of a File on Tape 539 

6-3 Format of a DECtape Block 540 

6-4 Basic Disk File Organization for Each File Structure 551 

6-5 Disk File Organization 553 

6-6 Directory Paths on a Single File Structure 583 

6-7 Directory Paths On Multiple File Structures 583 

TABLES 

Tmle No. Title Page 

1-1 Job Data Area Locations (for user-program reference) 362 

1-2 Vestigial Job Data Area Locations 365 

2-1 Manitor Programmed Operators 369 

2-2 CALL and CALLI Monitor Operations 372 

3-1 GETTAB Tables 419 

4-1 Buffered Data Modes 465 

4-2 Unbuffered Data Modes 465 

4-3 File Status Bits 479 

5-1 Nondirectory Devices 493 

5-2 MT APE Functions 505 

6-1 Di rectory Devices 535 

6-2 LOOKUP Parameters 541 

6-3 ENTER Parameters 542 

xvi June 1973 



-353- MON nOR CALLS 

TABLES (Cent) 

Table No. Title Page 

6-4 RENAME Parameters 543 

6-5 File Structure Names 5q2 

6-6 ExtendeciLOOKUP, ENTER, and RENAME Arguments 571 

6-7 • FSSRC Error Codes 590 

7-1 Software States 610 

C-l ASCII Card Codes 629 

C-2 DEC -029 Card Codes 629 

C-3 DEC -026 Card Codes 630 

D-t Device Status Bits 631 

E-J Error Codes 635 

F-J . Disk Devices 637 

G-l ASCII Codes CI'ld BCD Equivalents 639 

xvii April 1973 





-355- MON nOR CALLS 

·ALPHABETICAL LIST OF MONITOR CALLS 

ACTIVATE, 378 GETTAB, 417 RENAME, 472 
APRENB, 387 GOBSTR, 591 RESDV., 483 
ATTACH, 379 RESET, 461, 587 

HIBER, 391 RTTRP, 444 
CHGPPN, 378 HPQ,457 RUN,403 
CHKACC, 588 RUNTlM, 416 
CLOSE,481 IN, 474 
CORE, 401 INBUF, 468 SEEK, 587 
CTLJOB, 520 INIT, 463 SETDDT, 385 

INPUT, 474 SETNAM, 410 
DAEFIN, 379 SETPOV, 374 
DAEMON,442 JBSET., 380 SETSTS, 480 
DATE, 415 JOBPEK, 379 SETUUO, 410 
DDTGT,372 JOBSTR, 590 SETUWP, 403 
DDTlN, 525 JOBSTS, 519 SLEEP, 391 
DDTOUT, 525 SPY, 416 
DDTRL, 372 LIGHTS, 442 STATO, 480 
D EACTIVA TE, 378 LOCATE, 412 STATZ, 480 
DEVCHR,488 LOCK,394 STRUUO, 588 
DEVGEN, 378 LOGIN, 373 SWITCH, 442 
DEVLNM, 484 LOGOUT, 373 SYSPHY, 593 
DEVNAM,491 LOOKUP, 470 SYSSTR, 592 
DEVPPN, 593 
DEVSIZ, 490 METER .• , 458 TIMER,415 
DEVSTS, 487 MSTlME,415 TMPCOR,412 
DEVTYP, 489 MTAPE, 505 TRMNO., 529 
DISK., 599 MTCHR., 507 TRMOP., 530 
DSKCHR, 597 TRPJEN, 374 
DVRST., 381 OPEN,463 TRPSET, 455 
DVURS., 381 OTHUSR,416 TTCALL, 525 

OUT,474 
ENTER, 471 OUTBUF,468 UGETF, 545 
EXIT, 386 OUTPUT,474 UJEN, 457 

UNLOK., 397 
FRCUUO, 379 PATH., 577 USETI, 545, 584 
FRECHN, 377 PEEK, 416 USETO, 545, 584 

PJOB, 416 UTPCLR, 546 
GETCHR,372 POKE.,417 
GETLIN, 529 WAIT,478 
GETPPN, 416 REASSIGN, 484 WAKE, 392 
GETSEG,407 RELEASE, 483 WHERE,491 
GETSTS, 480 REMAP, 408 

5.06 Monitor xix April 1973 





-357- MON ITOR CALLS 

FOREWORD' 

DECsystem-l0 Monitor Calls is a complete reference document describing the monitor programmed 

operators (UUOS) and is intended for the experienced assembly languoge programmer. The information 

presented in this manual reflects the 5.06 release of the monitor. The monitor calls are grouped in a 

monner that facilitates easy learning, and once they are mastered, the user can refer to the end of the 

Table of Contents and to the index for an alphabetical list of the UUOS. 

DECsystem-l0 Monitor Calls does not include reference material on the operating system commonds. 

This information can be found in DECsystem-l0 Operating System Commands (DEC-10-MRDC-D). 

Inc luded in DECsystem-l0 Operating System Commands are discussions on commands processed by both 

the monitor command language interpreter and the programs in the Batch system. The two manuals, 

DECsystem-l0 Monitor Calls and DECsystem-l0 Operating System Commands, supersede the Time­

sharing Monitors manual (DEC-T9-MTZD-D) and all of its updates. 

A third manual, Introduction to DECsystem-lO Software (DEC-l0~MZDA-D), is a general overview of 

the DECsystem-10. It is written for the person, not necessarily a programmer , who knows computers 

and computing concepts and who desires to know the relationship between the various components of 

the DECsystem-l0. This manual is not intended to be a programmer's reference manual, and therefore, 

it is recommended that it be read at least once before reading the above-mentioned reference docu­

ments. 

SYNOPSIS OF DECsystem-l0 MONITOR CALLS 

Chapter 1 discusses the format of memory and briefly describes the job data area. Chapter 2 introduces 

all of the monitor programmed operators available to a user program and the various processor modes 

in which a user program operates. The UUOs available for non-I/O operations are presented in 

Chapter 3. These programmed operators are used to obtain execution, core, and segment control; 

program identification; environmental information; and real-time status. An introduction to I/O 

programming is presented in ChQpter 4; the services the monitor performs for the user and how the user 

xxi April 1973 



MON ITOR CALLS -358-

program obtains these services are also discussed. VO progromming specific to the nondirectory de­

vices and directory devices is explained in Chapters 5 and 6, respectively. Algorithms of the monitor, 

described in Chapter 7, give the user an insight into system operation. The appendices contain supple­

mentary reference material and tables. 

CONVENTIONS USED IN DECsystem-10 MONITOR CAllS 

The following conventions have been used throughout this manual: 

dev: 

list 

job n 

file .ext 

core 

adr 

C(adr) 

[proj, progJ 

fs 

tx 

* 

n 

rdi rectoryJ 

Any logical or physical device name. The colon must be included 
when d device is used as port of a file specification. 

A single file specification or a string of file specifications. A file 
specification con~ists of a filename (with or without a filename ex­
tension), a device name, a directory name, ond a protection. 

A job number assigned by the system. 

Any legal fi lename and fi lename extension. 

Decimal number of 1K blocks of core (KA 10). 
Decimal number of poges of core (KIlO). 

An octal address. 

The contents of an octal address. 

Project-prOgrammer numbers; the square brackets must be included 
in the command string. 

Any legal fi Ie structure name or abbreviation. 

The symbol used to indicate the ESCAPE Key • 

A control cha!Qcter obtained by depressing the CTRl key and then 
the character key x. 

A bock arraw used in command string to separate the input and output 
file specifications. 

A equal sign uSed in a command string to separate the input and out­
put file specifications. 

The system program response to a command string. 

The monitor response to a command string. 

The symbol used to indicate that the user should depress the RETURN 
key. This key must be used to terminate every command to the monitor 
command longuage interpreter. 

Underscoring used to indicate computer typeout. 

A decimal number. 

A designation identifying a particular disk area. This designation can 
be in the form r proj, progJ which identifies a U FDor [proj, prog, sfd, 
sfd, ••• J which identifies a sub-file directory path branching from a 
UFD. The square brackets are required. 

xxii April 1973 



-359- r10N ITOR CALLS 

CHAPTER 1 
, MEMORY FORMAT 

1.1 MEMORY PROTECTION AND RELOCATION 

Each user program is run with the processor in a special mode called the user mode; in this mode the 

program must operate within an assigned area in core, and certain operations are illegal. Because 

every user has an assigned area in core, the rest of core is unavailable to him. He cannot gain access 

to a protected area for either storage or retrieval of information. 

The assigned area of each user can be divided into two segments. If this is the case, the low segment 

(impure segment) is unique for a given user and can be used for any purpose. The high segment ~ 

segment) can be used by one user or it can be shared by many users. If the high segment is shared, the 

program is a reentrant program. The monitor usually write-protects the high ~egment so that the user 

cannot alter its contents. This i~ done, for example, when the high segment is a pure procedure to be 

used reentrantly by many users. One high pure segment can be used with any number of low impure 

segments. Any user program that attempts to write in a write-protected high segment is aborted and 

receives an error message. If the monitor defines two segments but does not write-protect the high 

segment, the user has a two-segment non-reentrant program (refer to Paragraph 3.2.4). 

The DECsystem-TO monitor defines the size and position of a user's area. On KA10-based systems 

(DECsystem-l040, -1050, and -1055), the monitor uses relocation by specifying protection and re­

location addresses for the low and high segments. The protection address is the maximum relative 

address the user can reference. The relocation address is the absolute core address of the first loca­

tion in the segment, as seen by the monitor in the hardware. The monitor defines these addresses by 

loading four 8-bit registers (two 8-bit registers in a KA10 based system with the KTlO option instead of 

the KTlOA option), each of which correspond to the left eight bits of an 18-bit PDP-l0 address. 

Thus, segments always contain a multiple of 1024 words. 

On KIlO-based systems (DECsystem-1070 and -1077), the user's area is page mapped. This means 

that each ~ (a page consists of 512 words) of the user's area is associated with a page of physical 

core memory. Because the assignment of physical pages of core does not need to be contiguous, the 

monitor has greater freedom in allocating core. The monitor associates (maps) pages in the user'!; area 

with physical pages in core in such a way that the user appears to have one or two segments as with a 

KA10-based system. Therefore, in most cases, the user does not need to be concerned with the type 

1-1 March 1973 



r10N ITOR CALLS -360-
of processor on which his program is running. However, the unit of core allocation is different on the 

two processors. The unit of allocation on the KA10 is 1024 words (1K) and on the KIlO, is 512 words 

(1 page). 

In general, the term mapping refers to both relocation (KA10) and page mapping (KIlO). On either 

processor, a user address is called a relative or virtual address before it is mapped, and an absolute 

or physical address after it is mapped. 

To take advantage of the fast accumulators, memory addresses 0-17S are not mapped and all users have 

access to the accumulators. Therefore, relative locations 0-17 S cannot be referenced by a user's 

program. The monitor saves the user's accumulators in this area when the user's program is not running 

ami while the monitor is servicing a UUO from the user. Refer to the PDP-l0 System Reference 

Manual for a more complete description of the relocation and mapping hardware. 

1. 2 USER'S CORE STORAGE 

A user's core storage consists of blocks of memory, the sizes of which are an integral multiple of 1024 

(2oooS) words on the KA 1 O-based system and 51210 (1000S) words on the KIlO-based system. In a 

non-reentrant monitor, the user's core storage is a single contiguous block of memory. After mapping, 

the first address in a block is a multiple of 2oo0S or 1OooS• The relative user and relocated address 

configurations on the KA 10 are shown in Figure 1-1, where PL, RL, PH' and RH are the protection 

and relocation addresses for the low and high segments, respectively. If the low segment is more than 

half the maximum memory capacity (PL~ 400000), the high segment starts at the first location after I the low segment (at PL + 2000). The high segment is limited to 12SK. The relative user address con­

figurations on the KI10are shown in Figure 1-2, where PL and PH are the protection addresses fQr 

the low and high segments, respectively. 

Two methods are available to the user for loading his core area. The simplest way is to load a core 

image stored on a retrievable device (refer to RUN and GET commands). The other method is t~ use 

the relocatable binary loader to link-load binary files. The user con then write the core image on 

a retrievable device for future use (refer to SAVE command). 

1. 2.1 Job Data Area (JOBDA T) 

The first 140 octal locations of the user's core area are always allocated to the iob data area (refer to 

Table 1-1). Locations in this area are given mnemonic assignments where the beginning characters are 

• J B • The iob data area provi des storage for spec ifi c i nformat i on of interest to both the mon i tor and the 

user. Some locations, such as .JBSA and .JBDDT, are set by the user's program for use by the 

monitor. Other locations, such as .JBREL, are set by the monitor and are used by the user's program. 

In particular, the right half of .JBREL contains the highest legal address set by the monitor when the 

user's core allocation changes. 

5.05 Monitor 1-2 June 1972 



o 
17 

400000 

777777 

5.05 Monitor 

--------- f\ LOW 
SEGMENT 

I' 

ILLEGAL 

V 
HIGH 

SEGMENT 
1/ 

ILLEGAL 

USER ADDRESSES 
BEFORE RELOCATION 

7 

400000 

771777 

-361-
o 
17 

MON !TOR CALLS 
HARDWARE 
ACCUMULATORS 

/' RH + 400000 

,/ 

\ 

\ 

HIGH, 
SEGMENT 

r--~-----

I- -L0~ ~!A.. A!l~A 
LQW 

SEGMENT 

NON­
EXISTENT 

MEMORY 

RL 
RL+ 20 
RL+140 

RL+ PL+ 1777 

I RH MUST BE NEGATIVE 

j' UNLESS SYSTEM HAS A 
MEMORY LARGER THAN 

j128K, 

TYPICAL PHYSICAL ADDRESS 
CONFIGURATION AFTER 
RELOCATION 10-0594 

Figure 1-1 KAl0 User Address Mapping 

LOW 

SEGMENT 

ILLEGAL 

HIGH 

SEGMENT 

ILLEGAL 

USER ADDRESSES 
eEFORE MAPP ING 

0 

r---
f' 

I I 
I I 

"- I I 

§ 
-....... ----..:::::: -- I I I- -----. ---. 

I 
I 

I I 

I I 
I NONMi~g>:yENT I 
I I 
I I 
I I 

..l- J... 

..,. I 
I I 

\7177117 ~ ____ ....J 
TYPICAL PHYSICAL ADDRESS 
CONFIGURATION AFTER MAPPING 

Figure 1-2 KIlO User Address Mapping 

1-3 June 1972 



r·10N nOR CALLS 

Name 

.JBUUO 

.JB41 

.JBERR 

• JBREL 

.JBBLT 

.JBDDT 

.JBCN6 

.JBPFI 

.JBHRl 

5.04 Nbnitor 

Octal 
Location 

40 

41 

42 

45 

74 

106 

114 
(value) 

115 

-362-
Table 1-1 

Job Data Area Locations 
(for user-program reference) 

Description 

User's location 40a. Used by the hardware when proc­
essing user UUOs (001 through 037) for storing op code 
and effective address. 

User's I ocati on 418. Conta i ns the beg inn ing address of 
the user's programmed operator service routine (usually 
a JSR or PUSHJ). 

Left half: Unused. 
Right half: Accumulated error count from one system 
program to the next. System programs should be written 
to look at the right half only. 

Left half: Zero . 
Right half: The highest relative core location available 
to the user (i. e., the contents of the memory protection 
register when this user is running). 

Three consecutive locations when the LOADER puts a 
BLT instruction and a CALLI UUO to move the program 
down on top of itself. These locations are destroyed on 
every executive UUO by the executive pushdown list. 

Left half: The last address of DDT. 
Right half: The starting address of DDT. If contents are 
0, DDT has not been loaded. 

Six temporary locations used by the CHAIN program 
(refer to the LOADER manual) after it releases all I/O 
channels •. JBCN6 is defined to be in .JBJDA. 

All user I/O must be to locations greater than • JBPFI. 

Left half: First relative free location in the high seg­
ment (relative to the high segment origin so it is the 
same as the high segment length). Set by the LOADER 
and subsequent GETs, even if there is no file to initial­
ize the low segment. The left half is a relative quan­
tity because the high segment can appear at different 
user origins at the same time. The SAVE command uses 
this quantity to know how much to write from the high 
segment. 
Right half: Highest legal user address in the high seg­
ment. Set by the monitor every time the user starts to 
run or does a CORE or REMAP UUO. The word is 
~401m unless there is no high segment, in which case 
it will be zero. The proper way to test if a high seg­
ment exists is to test this word for a non-zero value. 

1-4 January 1972 



Name 

.JBSYM 

.JBUSY 

.JBSA 

.JBFF 

.JBREN 

• JBAPR 

.JBCNI 

.JBTPC 

.JBOPC 

5.04 M:>nifor 

Octal 
Location 

116 

117 

120 

121 

124 

125 

126 

127 

130 

-363-

Table 1-1 (Cont) 
Job Data Area Locations 

(for user-program reference) 

Description 

MON nOR CALLS 

Contains a pointer to the symbol toble created by link­
ing loader. 
Left half: Negative of the length of the symbol table. 
Right half: Lowest address used by the symbol table. 

Contains a pointer to the undefined symbol table created 
by linking loader or defined by DDT. This location has 
the same format as .JBSYM. There are no undefined 
symbols if the contents is ~ O. 

Left half: Rrst free location in low segment (set by 
loader). 
Right half: Starting address of the user's program. 

Left half: Zero. 
Right half: Address of the first free location following 
the low segment. Set to C (. JBSA\H by RESET UUO; 

Left half: Unused. 
Right half: REENTER starting address. Set by user or 
by loader and used by REENTER command as an alternate 
entry point. 

Left half: Zero • 
Right half: Set by user program to trap address when 
user is enabled to handle APR traps such as illegal 
memory, pushdown overflow, arithmetic overflow, and 
clock. See APRENB UUO. 

Contains state of APR as stored by CONI APR when a 
user-enabled APR trap occurs. 

Monitor stores PC of next instruction to be executed 
when a user-enabled APR trap occurs. 

The previous contents of the job's last user mode pro­
gram counter are stored here by monitor on execution 
of a DDT, REENTER, START, or CSTART command. 
After a user program HALT instruction followed by a 
START, DDT, CST ART, or REENTER command, .JBOPC 
contains the address of the HALT. To proceed at the 
address specified by the effective address, it is 
necessary for the user or h is program to recompute the 
effective address of the HALT instruction and to use 
this address to start. Simi larly, after an error during 
execution of a UUO followed by a START, DDT, 
CSTART, or REENTER command, .JBOPC points to the 
address of the UUO. For example, in.DDT to continue 
after a HALT, type 

.JBOPC/I0000 .,3010 JRST @ .$X 

1-5 January 1972 



~'ON nOR CALLS 

Name 

.JBCHN 

.JBCOR 

.JBINT 

• JBOPS 

• JBCST 

.JBVER 

.J8DA 

Octal 
Location 

131 

133 

134 

135 

136 

137 

140 

-364-
Table 1-1 (Cont) 

Job Data Area Locations 
(for user-program reference) 

Description 

Left half: Zero or the address of first location after first 
FORTRAN IV loaded program. 
Right half: Address of first location after first FORTRAN 
IV Block Data. 

Left half: Highest location in low segment loaded with 
non-zero data. No low file written on SAVE or SSAVE 
if less than 140. Set by the LOADER. 
Right half: User argument on last SAVE or GET command. 
Set by the monitor. 

Left half: Reserved for the future. 
Right half: Zero or the address of the error-intercepting 
block (refer to Paragraph 3.1.3.2) • 

Reserved for all operating systems. 

Reserved for customers • 

Program version number. The bits are defined as follows: 

Bits 0-2 The group who last modified the program 

0= Digital development group. 
1 = Other Digital employees. 
2-4 = Reserved for customers. 
5-7 = Reserved for customer's users. 

Bits 3-11 Digital's major version number. Usually 
incremented by 1 after a release. 

Bits 12-17 Digital's minor version number. Usually 
0, but may be used if an update is needed 
after work has begun on a new major ver­
sion. 

Bits 18-35 Edit number. Usually not reset. 

The VERSION and the SET WATCH VERSION commands 
output the version number in standard format. Refer to 
DECsystem-l0 Operating System Commands. 

The val ue of this symbol is the first location available 
to the user. 

NOTE: Only those JOBDAT loc~tions of significant importance to the user are given in this 
table. JOBDAT locations not listed include those that are used by the monitor and those 
that are unused at present. User programs should not refer to any locations not listed above 
because such locations are subject to change. 

5.04 Monitor 1-6 January 1972 



I 

-365- MON nOR CALLS 

JOBDAT is loaded automatically, if needed, during the loader's library search for undefined global 

references, and the values are assigned to the mnemonics. JOBDAT exists as a .REL file on device 

SYS: for loading with user programs that symbolically refer to the locations. User programs should 

reference locations by the assigned mnemonics, which must be declared as EXTERN references to the 

assembler. All mnemonics in this manual with a .JB prefix refer to locations in the job data area. 

1.2.2 Vestigial Job Data Area 

A few constant data in the job data area may be loaded by a two-segment, one-file program without 

using instructions on a GET command (.JB41, .JBREN, .JBVER), and some locations are loaded by the 

monitor on a GET (.JBSA, .JBCOR, .JBHRL). The vestigial job data area (the first 10 locations of 

the high segment) is reserved for these low-segment constants; therefore, a high-segment program is 

loaded into 400010 instead of 400000 (refer to Table 1-2). With the vestigial job data area in the 

high segment, the loader automatically loads the constant data into the job data area without req~ir­

ing a low file on a GET, R, or RUN command, or a RUN UUO. SAVE will write a low file for a 

two-segment program only if the LH of .JBCOR is 1408 or greater. 

Table 1-2 
Vestigial Job Data Area Locations 

Symbol 
Octal t 

Location Description 

.JBHSA 0 A copy of .JBSA. 

. JBH41 1 A copy of .JB41 . 

• JBHCR 2 A copy of . JBCOR • 

.JBHRN 3 LH: restores the LH of .JBHRL, 
RH: restores the RH of .JBREN. 

.JBHVR 4 A copy of .JBVER. 

.JBHNM 5 High segment name set on a SAVE. 

.JBHSM 6 A pointer to the high-segment symbols, 
if any. 

7 Reserved for future use. 

.JBHDA 10 First location not used by vestigial job 
data area. 

tRelative to origin of high segment, usually .JBHGH = 4000008 , 

1-7 March 1973 





-367- r'1ON nOR CALLS 

CHAPTER 2 
INTRODUCTION TO USER PROGRAMMING 

2.1 PROCESSOR MODES 

In a single-user, non-timesharing system, the user's program is subject only to those conditions 

inherent in the hardware. The program must 

a. Stay within the memory capacity. 

b. Observe the hardware restrictions placed on the use of certain memory locations. 

c. Observe the restriction on interrupt instructions. 

With timesharing, the hardware limits the central processor operations to' one of three modes: user 

mode, user I/o mode, and executive mode. 

2.1.1 User Mode 

Normally, user programs run with the processor in user mode and must operate within an assigned area 

of core. In user'mode, certain instructions are illegal. User mode is used to guarantee the integrity of 

the monitor and each user program. The user mode of the processor is characterized by the following: 

I a. Automatic memory protection and mapping (refer to Chapter 1). 

b. Trap to absolute location 40 in the monitor on any of the following: 

(1) Operation codes 040 through 077 and operati on code 00, 

(2) Input/output instructions (DATAl, DATAO, BLKI, BLKO, CONI, CONO, 
CONSZ, and CONSO), 

(3) HALT (i.e., JRST 4,), 

(4) Any JRST instruction that attempts to enter executive mode or user I/o mode. 

c. Trap to relative location 40 in the user area on execution of operation codes 001 
through 037. 

'2.1.2 User I/o Mode 

The user I/o mode (bits 5 and 6 of PC word = 11) of the central processor allows privileged user pro­

I grams to be run with automatic protection and mapping in effect, as well as the normal execution of 

5.05 Monitor 2-1 June 1972 



mN nOR CALLS -368-

all defined operation codes. The user I/o mode provides some protection against partially debugged 

monitor routines and permits infrequently used device service routines to be run as a user job. Direct 

control of special devices by the user program is particularly important in real-time applications. 

To utilize this mode, the user must have bit 15 (JB.TRP) set in the privilege word. RESET AC, or 

CALU 0 terminates user I/O mode. User I/O mode is not used by the monitor and is normally not 

available to the timesharing user (refer to Paragraph 3.8.3). 

2.1.3 Executive Mode 

I
, The monitor operates with the processor in executive mode, which is characterized by special 

memory protection and mapping (refer to Chapter 1) and by the normal execution of all defined 

operation codes. 

User programs run in user mode; therefore, the monitor must schedule user programs, service interrupts, 

perform all input and output operations, take action when control returns from a user program, and 

perform any other legal user-requested operations that are not available in user mode. The services 

the monitor makes available to user-mode programs and how a user program obtains these services, are 

described in Chapters 3 and 4. 

2.2 PROGRAMMED OPERATORS (UUOs) 

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as 

UUOs. They are software-implemented instructions because 'from a hardware point of view, their 

function is not pre-specified. Some of these op-codes trap to the monitor, and the rest trap to the 

user program. 

After the effective address calculation is complete, the contents of the instruction register, along with 

the effective address, are stored, and an instruction is executed out of the normal sequence. 

Although there is one operating system for all configurations of the DECsystem-10, some UUOs may not 

be included in each DECsystem-10. This is especially true of the DECsystem-1040, the basic system 

intended for small installations who do not want all of the system's features because of a constraint on 

core. UUOs are deleted from the DECsystem-1040 by feature test switches defined at MONGEN time. 

In the standard DECsystem-1040, many of these switches are off, and therefore, the corresponding 

UUOs are not available. This saves core but limits various features of the operating system. In the 

UUO descriptions that follow, footnotes indicate if the switch is normally absent in the DECsystem-

1040. If not stated, the UUO is available on all configurations of the DECsystem-10. 

5.05 Monitor 2-2 June 1972 



I 

-369- r~ON ITOR CALLS 
2.2.1 Operation Codes 001-037 (User UUOs) 

Operation codes 001 through 037 do not affect the mode of the central processor; flius, when executed 

in user mode, they trap to user location 40, which allows the user program complete freedom in the 

use of these programmed operators. 

If a user's undebugged program accidentally executes one of these op-codes when the user did not 

intend to use it, the following error message is normally issued: 

HAL T AT USER PC addr 

This message is given because the user's relative location 41 contains HALT (unless his program haS 

overtly changed it) which is provided by the loader; addr is the location of the user UUO. 

2.2.2 Operation Codes 040-077 and 000 (Monitor UUOs) 

Operation' codes 040 through 077 and 000 trap to absolute location 40, with the central processor in 

executive mode. These programmed operators are interpreted by the monitor to perform I/O operations 

and other control functions for the user's program. 

Operation code 000 always returns the user to monitor mode with the error message: 

?ILLEGAL UUO AT USER PC addr 

Table 2-1 lists the operation codes 040 through 077 and their mnemonics. 

Table 2-1 
Monitor Programmed Operators 

Op Code Call Function 

040 CALL AC, rSIXBIT/NAME/J, or Programmed operator extension (refer to 
NAME AC, Paragraph 2.2.2.1). 

041 INIT 0, MOOE Select I/O device (refer to Paragraph 
SIXBIT/OEV / 4.2.3). 
XWO OBUF, IBUF 
error return 
norma I return 

042 No operation 

043 No operation 

044 No operotion 
Reserved for installation-
dependent definition. 

045 No operation 

046 No operation 

5.06 Monitor 2-3 March 1973 



r·10iHTOR CALLS -370-

Op Code 

047 

050 

051 

052 

053 

054 

055 

~56 

057 

060 

061 

062 

063 

064 

065 

066 

Table 2-1 (Cont) 
Monitor Programmed Operators 

Call Function 

CALLI AC, N Programmed operator extension (refer to 
Paragraph 2.2.2.1). 

OPEN, 0, E Select I/O device (refer to Paragraph 
error return 4.2.3). 
norma I return 
E: EXP STATUS 

SIXBIT /DEV/ 
XWD OBUF, IBUF 

TTCALL AC, ADR Extended operations on job-coritrolling 
terminal (refer to Paragraph 5.10.3). 

Reserved for future expansion by DEC. 

Reserved for future expansion by DEC. 

Reserved for future expansion by DEC. 

RENAME 0, E Rename or delete a file (see Section 
error return 4.4.3). 
normal return 
E: SIX BIT /FILE/ 

SIX BIT /EXT! 
EXP <PROT> B8+DATE 
XWD PROJ, PROG 

IN 0, INPUT and skip on error or EOF (see 
normal return Section 4.5). 
error or EOF return 

OUT 0, OUTPUT and skip on error or EOT (see 
norma I return Section 4.5). 
error return 

SETSTS 0, STATUS Set file status (see Section 4.6.2). 

STATO 0, BITS Skip if file status bits = 1 (see Section 
RO: NO SELECTED BITS = 1 4.6.1). 
R 1: SOME SELECTED BITS = 1 

GETSTS 0, E Copy file status to E (see Secti on 4.6. 1). 

STATZ 0, BITS Skip if file status bits = 0 (see Section 
RO: SOME SELECTED BITS = 1 4.6.1). 
R 1: ALL SELECTED BITS = 0 

INBUF 0, N Set up input buffer ring with N buffers 
(refer to Paragraph 4.3.2). 

OUTBUF 0, N Set up output buffer ring with N buffers 
(refer to Paragraph 4.3.2). 

INPUT 0, Request input or request next buffer (refer 
to Paragraph 4.5). 

2-4 



Op Code 

067 

070 

071 

072 

073 

074 

075 

076 

077 

100 

-371- MONITOR CALLS 
Table 2-1 (Cont) 

Monitor Programmed Operators 

Call Function 

OUTPUT D, Request output or request next buffer (refer 
to Paragraph 4.5). 

CLOSE D, Terminate file operation (refer to Paragraph 
4.7). 

RElEAS D, Release device (refer to Paragraph 4.8. 1). 

MTAPE D, N Perform tape positioning operation (refer 
to Paragraphs 5.5.3 and 6.1.6.5). 

UGETF D, Get next free block number on DECtape 
(refer to Paragraph 6.1.6.3). 

USETI D, E Set next input block number (refer to 
Paragraphs 6.1.6.1 and 6.2.9.2). 

USETO D, E Set next output block number (refer to 
Paragraphs 6.1.6.2 and 6.2.9.2). 

lOOKUP D, E Select a fi Ie for input (refer to Paragraph 
error return 4.4.1). 
norma I return 
E:SIXBIT /FIlE/ 

SIXBIT /EXT/ 
0 
XWD PROJ, PROG 

ENTER D, E Select a file for output (refer to Paragraph 
error return 4.4.2). 
normal return 
E: SIXBIT /FIlE/ 

SIXBIT /EXT/ 
0 
XWD PROJ, PROG 

UJEN Dismiss real-time interrupt (refer to 
Paragraph 3.8.4). 

2.2.2.1 CAll and CALLI - Operation codes 040 through 077 limit the monitor to 408 operations. 

The CAll operation extends this set by specifying the name of the operation by the contents of the 

location specified by the effective address (e.g., CAll [SIXBIT /EXIT/l). This capability provides 

for indefinite extendability of the monitor operations, at the overhead cost to the monitor of a table 

lookup. 

The CALLI operation eliminates the table lookup of the CAll operation by having the programmer or 

the assembler perform the lookup and specify the index to the operation in the effective address of 

the CALLI. Table 2-2 lists the monitor operations specified by the CAll and CALLI operations. 

2-5 



MONITOR CALLS 

CALLI 
CALLI t 

Mnemonic 

CALU AC, -2 
••• -n 

CALU AC, -1 LIGHTS 

CALLI AC, 0 RESET 

CA~U AC, 1 DDTIN 

CALIJ AC, 2 ~ETDDT 

CALU AC, 3 DOTOUT 

CALli AC, 4 DEVCHR 

CALU AC, 5 DDTGT 

~ALU AC, 6 GETCHR 

CALU AC, 7 DDTRL 

CALL AC, 10 WAIT 

CALU AC, 11 CORE 

-372-
Table 2-2 

CALL and CA~LI Monitor Operations 

CALL 

Customer defined 

CALL AC, [SIXBIT/LIGHTS;j 

CALL [SIXBIT~ESET;j 
return 

MOVEI AC,BUFFER 
CALL AC, [SIXBIT/DDTIN;j 
only return 

MOVEI AC, DDT -start-adr 
CALL AC, [SIXBIT/SETDDT;j 
only return 

MOVEI AC, BUFFER 
CALL AC, rSIXBIT/DDTOUTj] 
only return 

MPVE AC, [SIXBIT/dev;j or 
MOVEI AC, channel no. 
CALL AC, rSIXBIT/DEVCHR;j 
only return 

C(AC) = 0 if no such device 
C{AC) = DEVMOD word of device 

data block if device is 
found. 

CA~L AC, [SIXBIT/DDTGT;j 
only return 

AC: = SIXBIT/DEV/ 
CALL AC, [SIXBIT/GETCHR;j 
only return 

CALL AC, [SIXBIT/DDTRL;j 
on!yreturn 

AC field is software channel number. 
CALL AC, [SIXBIT;WAITj] 
only retl,lrn 

MOVE AC, rXWD HIGH ADR or 0, 
LOW ADR or 0] 
CALL AC, [StXBIT/CORE/] 
error reh,rrn, assignment unchanged 
normal return, new assignment 

AC: = max. 'core available (in 1K 
blocks) on error or normal 
return. 

2-6 

Function 

Reserved for definition by 
each customer. installation • 

Display AC in console lights 
{refer to Paragraph 3.6.4.2}. 

Reset I/O device {refer to 
Paragraph 4. 1 • 2}. 

DDT mode console input 
(refer to Paragraph 5.9.2). 

Set protected DDT starting 
address (refer to Paragraph 
3.1.1.1). 

DDT mode console output 
(refer to Paragraph 5.9 ;2). 

Get device characteristics 
(refer to Paragraph 4. 10.2). 

No operation, historical 
UUO. 

Same as CALLI AC, 4. 

No operation; historical 
UUO. 

Wait until device is inactive 
(refer to Paragraph 4.5.3). 

Allocate core (refer to 
Paragraph 3.2.3). 



I 

CALLI 
CALLl t 

Mnemonic 

CALLI AC, 12 EXIT 

CALLI AC, 13 UTPCLR 

CALLI AC, 14 DATE 

CALLI AC, 15 LOGINtt 

CALLI AC, 16 APRENB 

CALLI AC, 17 LOGOUT tt 

CALLI AC, 20 SWITCH 

CALLI AC, 21 REASSI 

CALLI AC, 22 TIMER 

CALLI AC, 23 MSTIME 

-373-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

CALL 

CALL AC, [SIXBlT/EXIT/l 
return 
If AC 'I 0, devices are not released 
and CONT and CCONT commands 
are effective. 

AC field is software channel number 
CALL AC, [SIXBIT,AJTPCLR/l 
only refurn 

CALL AC, rSIXBIT,/bATE/l 
only return 

AC: = date in compressed format 

MOVE AC, [XWD -N, LOC] 
CALL AC, [SIXBIT/lOGIN/l 
RO: return 

Does not return if C{RO) is a 
HALT instruction. 

MOVEI AC, BITS 
CALLAC, [SIXBIT/APRENB/l 
return 

CALL AC, [SIXBIT/lOGOUT/l 
no return 

CALL AC, [SIXBIT/SWITCH/l 
return 

AC: contents of console data 
switches 

MOVE AC, job number 
MOVE AC+1, [SIXBIT,/bEV/l 
CALL AC, [SIXBITjREASSI/l 
return 
If C{AC) = 0 on return, the job spec­
ified has not been initialized. If 
C{AC+1) = 0 on return, the device is 
not assigned to calling job, or device 
isTIY. 

CALL AC, [SIXBIT/rIMER/l 
return 

AC: = time in jiffies, right 
justified. 

CALL AC, [SIXBIT/~STIME/J 
return 

AC: = time in milliseconds, right­
justified. 

2-7 

['·1ON nOR CALLS 

Function 

Stop job, may release de­
vices depending on contents 
of AC (refer to Paragraph 
3.1.2.3). 

Clear DECtape directory 
(refer to Paragraph 6.1.6.4). 

Return date (refer to Para­
graph 3.6.1. 1). 

Privileged UUO in that the 
calling job must not be logged 
in. Is a no-op if executed 
by a job already logged-in. 

Enable central processor 
traps (refer to Paragraph 
3.1.3.1). 

Privileged UUO available 
only to system-privileged 
programs. Is treated like an 
EXIT UUO if executed by a 
non-system-privileged pro­
gram. 

Read console data switches 
(refer to Paragraph 3.6.4. 1 ). 

Reassign device (refer to 
Paragraph 4.8.3). 

Read time of day in clock 
ticks (refer to Paragraph 
3.6.1.2). 

Read time of day in milli­
seconds (refer to Paragraph 
3.6.1.3). 

March 1973 



florlITOR CALLS 

CALLI 
CALLI t 

Mnemonic 

CALLI AC, 24 GETPPN 

CALLI AC, 25 TRPSET 

CALLI AC, 26 TRPJEN 

CALLI AC, 27 RUNTIM 

CALLI AC, 30 PJOB 

CALLI AC, 31 SLEEP 

CALLI AC, 32 SETPOV 

CALLI AC, 33 PEEK 

CALLI AC, 34 GETLIN 

CALLI AC, 35 RUN 

-374-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

CALL 

CALL AC, [SIXBIT/GETPPN/I 
normal return 
alternate return 

AC: = XWD proj. no., prog. no. of 
this job. Alternate return is 
taken only if job is privileged 
and the same proj-prog number 
occurs twi ce in the table of 
jobs logged in. 

MOVE AC, [XWD N, LOC] 
CALL AC, [SIXBITjrRPSET/l 
error return 
norma I return 
LOC: JSR TRAP 

CALL [SIXBITjrRPJEN/I 

MOVE AC, job number or 0 
CALL AC, [SIXBIT/1WNTIM/I 
only return 
AC: = running time of job 
AC: = 0 if non-existent job 

CALL AC, [SIXBIT/PJOB/l 
return 
AC: = job number, right-justified 

MOVE AC, time to sleep in seconds 
CALL AC, [SIX BIT/SLEEP /I 
return 

CALL AC, [SIXBIT/SETPOV/l 
return 

MOVEI AC, exec adr 
CALL AC, [SIXBIT/pEEK/I 
return 

AC: = C(exec-adr) 

CALL AC, [SIXBIT/GETLIN/l 
return 

AC: = SIXBIT TTY name, left-
justified (e.g., CTY, TTY27) 

MOVSI AC, start adr increment 
HRRI AC, E 
RUN AC, 
error return 
normal return 

2-8 

Function 

Return project-programmer 
number of job (refer to 
Paragraph 3.6.2.3). 

Set trap for user I/O mode 
(refer to Paragraph 3.8.3). 

Illegal UUOi replaced by 
UJEN (op code 100). 

Return the jobs running time 
in milliseconds (refer to 
Paragraph 3.6.2.1). 

Return job number (refer to 
Paragraph 3.6.2.2). 

Stop job for specified time 
in seconds (refer to Para-
graph 3.1.4.1). 

Superseded by APRENB UUO. 

Return contents of executive 
address (refer to Paragraph 
3.6.3.1). 

Return SIX BIT name of at-
tached terminal (refer to 
Paragraph 5.9.4). 

Transfer control to selected 
program (refer to Paragraph 
3.3.1). 



-375- MaN nOR CALLS 
Table 2-2 {Cont} 

CALL and CALLI Monitor Operations 

CALLI 
CALU t 

CALL Function 
Mnemonic 

CALLI AC, 35 RUN E: SIXBIT/DEVICEI 
{continued} SIX BIT /FI LEI 

SIX BIT /EXT I 
0 
XWD proj no. prog no 
XWD 0; optional core assignment 

CALLI AC, 36 SETUWP MOVEl AC, BIT Set or clear user mode write 
SETUWP AC, protect for high segment 
error return {refer to Paragraph 3.2.4}. 
normal return 

CALLI AC, 37 REMAP MOVEI AC, highest adr. in low seg Remap top of low segment 
REMAPAC, into high segment {refer to 
error return Paragraph 3.3.3}. 
normal return 

CALLI AC, 40 GETSEG MOVEI AC, E Replace high segment in 
GETSEG AC, user's addressing space {re-
error return fer to Paragraph 3.3.2}. 
normal return 
E: SIXBIT/DEVICEI 

SIX BIT /FI LEI 
SIX BIT /EXT I 
0 
XWD proj no, prog no 
0 

CALLI AC, 41 GETTAB MOVSI AC, job no. or index no. Return contents of monitor 
HRRI AC, table no. table or location {refer to 
GETTAB AC, Paragraph 3.6.3.4}. 

"-
error return 
normal return 
C(AC) unchanged on error return 

AC: = table entry if table is defined 
and index is in range. 

CALLI AC, 42 Spy MOVEI AC, highest physical adr. Make physical core be hig~ 
desired segment for examination of 
SPY AC, monitor {refer to Paragraph 
error return 3.6.3.2~. 
normal' return 

CALLI AC, 43 SETNAM MOVE AC, [SIXBIT/NAME/J Set program name in monitor 
SrNAM AC, job table '(refer to Paragraph 
retum 3.4.1). 

CALLI AC, 44 TMPCOR MOVE AC, [XWD CODE, BLOCK] Allow temporary in-core 
TMPCO~, file storage for job {refer to 
error return Paragraph 3.5.1}. 
na:ma'i return 

5.04 Monitor 2-9 Feb~uary 1972 



MONITOR CALLS 

CALLI 
CALLI t 

Mnemonic 

CALU AC, 44 TMPCOR 
(continued) 

CALU AC, 45 DSKCHR 

CALU AC, 46 SYSSTR 

CALU AC, 47 JOBSTR 

CALU AC, 50 STRUUO 

CALU AC, 51 SYSPHY 

-376-
Table 2-2 (Cont) 

CALL and CALU Monitor Operations 

CALL 

BLOCK: XWD NAME, 0 
IOWD BUFFLEN,BUFFER 

AC: = value depending on CODE and 
whether error or normal return 
is taken. 

MOVE AC, [XWD+N, LOC] 
DSKCHR AC, 
error return 
norma I return 

AC: = XWD status, configuration 
LOC: = SIXBIT!NAME/ 

~ } ~Iu., 'ew,"ed 

MOVEI AC, 0 or 
MOVE AC, [SIXBIT/FSNAME/J 
SYSSTR AC, 
error return - not a fi I e structure 
norma I return 

AC: = next file structure name in 
SIX BIT , left-justified 

MOVE AC, [XWD N, LOC] 
JOBSTR AC, 
error return 
normal return 

AC: = argument 

Contents Use 

LOC/SIXBIT/NAME/or - 1 arg 
LOC+ 1;XWD proj no. 

prog. no. value 
LOC+2/status bits value 

MOVE AC, [XWD N, LOC] 
STRUUO AC, 
error return 
normal return 

AC: = status or error code 

Contents 

LOC:function 
numbers 

LOC+1: 

Use 

arg 
arg depending 
on function 
number 

MOVEI AC, 0 or last unit name 
SYSPHY AC, 
error return 
normal return 

2-10 

Function 

Return disk characteristics 
(refer to Paragraph 6.2.9.13). 

Return next fi Ie structure 
name (refer to Paragraph 
6.2.9.10). 

Return next fi Ie structure 
name in the jobs search list 
(refer to Paragraph 6.2.9.8). 

Man ipu late fi If! structures 
(refer to Paragraph 6.2.9.7). 

Return all physical disk units 
(refer to Paragraph 6.2.9. 11). 



-377- ~lorJ nOR CALLS 
Table 2-2 (Cont) 

CALL and CALU Monitor Operations 

CALLI 
CALLI t CALL Function 

Mnemonic 

CALU AC, 52 FRECHN Reserved for future use. 

CALU AC, 53 DEVTVP MOVE AC, [SIXBIT/dev/J or Retum properties of device 
MOVEI AC, channel no. (refer to Paragraph 4. 10.3). 
DEVTVP AC, 
error return 
normal return 

CALU AC, 54 DEVSTS MOVEI AC, channel no. of device Retum hardware device 
DEVSTS AC, status word (refer to Para-
error return graph 4.10.1). 
normo I return 

CALU AC, 55 DEVPPN MOVE AC, [SIXBIT/DEV!J Return the project program-
DEVPPN AC, mer number associated with 
error return a devi ce (refer to Paragraph 
normol return 6.2.9.12). 

AC: = XWD proj-prog. number on a 
normal retum 

CALU AC, 56 SEEK ttt AC is software channel number Perform a SEEK to current 
SEEK AC, selected block for software 
retum channel AC (refer to ~ara-

graph 6.2.9.3). 

CALU AC, 57 RTTRP MOVEI AC, RTBLK Connect real-time devices to 
RTTRP AC, PI system {refer to Paragraph 
error return 3.8.1}. 
norma I return 

I CALU AC, 60 LOCK MOVE AC, [XWD high seg Lock iob in core (refer to 
code, low seg code] Paragraph 3.2.2). 
LOCK AC, 
error retum 
normal retum 

CALLI AC, 61 JOBSTS MOVEI AC, channel no. or Retum status information 
MOVNI AC, iob about device TTY and/or 
JOBSTS AC, controlled iob (refer to 
error retum Paragraph 5.9.4.4). 
normal return 

CALLI AC, 62 LOCATE MOVEI AC, location Change the iob's logical 
LOCATE AC, station (refer to Paragraph 
error retum 3.4.3). 
normal return 

CALLI AC, 63 WHERE MOVEI AC, channel no. or Retum the physical station 
MOVE AC, [SIXBIT/dev/J of the device (refer to 
WHERE AC, Paragraph 4.10.5). 
error return 
normal retum 

5.05 Monitor 2-11 June 1972 



r·mrHTOR C,~LLS 

CALLI 

CALLI AC, 64 

CALLI t 
Mnemonic 

DEVNAM 

CALLI AC, 65 CTLJOB 

CALLI AC, 66 GOBSTR 

CALLI AC, 67 ACTIVATE 

CALLI AC, 70 DEACTIVATE 

CALLI AC, 71 HPQ 

CALLI AC, 72HIBER 

CALLI AC, 73 WAKE 

CALLI AC, 74 CHGPPN tt 

CALLI AC, 75 SETUUO 

CALLI AC, 76 DEVGEN 

-378-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

CALL 

MOVEI AC, channel no. or 
MOVE AC, [SIXBIT/dev/l 
DEVNAM AC, 
error return 
norma I return 

MOVE AC, job number 
CTLJOB AC, 
error return 
normal return 

MOVE AC, [XWD N, LOC] 
GOBSTR AC, 
error return 
normal return 

LOC: job number 
LOC+1: XWD proj no, prog no 
LOC+2: SIXBIT/NAME/or-1 
LOC+3: 0 
LOC+4: Status bits 

MOVE AC, high-priority queue no. 
HPQAC, 
error return 
normal return 

MOVSl AC, enable bits 
HRRI AC, sleep time 
HIBER AC, 
error return 
norma I return 

MOVE AC, job no. 
WAKE AC, 
error return 
normal return 

MOVE AC, new proj. prog. no. 
CHGPPN AC, 
error return 
norma I return 

MOVE AC, [XWD function, argu­
ment] 
SETUUO AC, 
error return 
normal return 

2-12 

Function 

Return physical name of de­
vice obtained through generic 
INIT/OPEN or logical de­
vice assignment (refer to 
Paragraph 4.10.6). . 

Return job number of con­
troll ing job (refer to Para­
graph 5.9.4.5). 

Return next fi Ie structure 
name in an arbitrary job's 
search list (refer to Para­
graph 6.2.9.9). 

} Re,~ved I~ the luI", •. 

Place job in high priority 
scheduler's run queue (refer 
to Paragraph 3.8.5). 

Allow job to become dormant 
until the specified event 
occurs (refer to Paragraph 
3.1.4.2). .. 
Allow job to activate the 
specified dormant job (refer 
to Paragraph 3.1.4.3). 

Change project-programmer 
number. Gives an error 
return if executed by a job 
already logged-in. 

Set system and job para­
meters (refer to Paragraph 
3.4.2). 

Reserved for the future. 

March 1973 



CALLI 

CALLI AC, 77 

CALLI AC, 100 

CALLI AC, 101 

CALLI AC, 102 

CALLI AC, 103 

CALLI AC, 104 

CALLI AC, 105 

CALLI t 

Mnemonic 

OTHUSR 

CHKACC 

DEVSIZ 

DAEMON 

JOBPEK tt 

ATTACHtt 

DAEFINtt 

CALLI AC, 106 FRCUUOtt 

-379-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

OTHUSR AC, 
non-skip return 
skip return 

CALL 

AC: = proj. prog. no. 

MOVE AC, [EXP LOC] 
CHKACC AC, 
error return 
normol return 
LOC: XWD action, protection 
LOC+ 1: directory proj-prog no. 
LOC+2: user proj-prog no. 

MOVE AC, [EXP LOC] 
DEVSIZ AC, 
error return 
normal return 
LOC: EXP STATUS 
L OC+ 1: SIX BIT /dev / 

MOVE AC, [XWD + length, adr of 
argo list] 
DAEMON AC, 
error return 
normal return 

MOVE AC, adr ~f arg block 
JOBPEK AC, 
error return 
normal return 

MOVE AC, [XWD line no., job no.1 
ATTACH AC, 
error return 
normal return 

MOVE AC, [XWD + length, adr of 
arg. list] 
DAEFIN AC, 
error return 
norma I return 

MOVE AC, [XWD + length, adr of 
arg. list] 
FRCUUO AC, 
error return 
norma I return 

2-13 

MONITOR CALLS 

Function 

Determine if another job is 
logged in with same project­
programmer number (refer to 
Paragraph 3.6.2.4). 

Check user's access to the 
file specified (refer to 
Paragraph 6.2.9.6). 

Determine buffer size for the 
specified device (refer to 
Paragraph 4. 10.4). 

Request DAEMON to per­
form a specified task (refer 
to Paragraph 3.7). 

Read or write another job's 
core. Gives the error return 
if executed by a non-syste~­
pri vileged program. 

Attach the job to the spec­
ified TTY line number. 
Gives the error retum if 
executed by a non-system­
pri vileged program. 

Indicate that the request to 
the DAEMON program has 
been completed. Gives the 
error return if executed by 
a non-system-privileged 
program. 

Force a command for a job. 
Gives the error retum if ex­
ecuted by a non-system­
privileged program. 



MONITOR CALLS 

CALLI 
CALUt 

Mnemonic 

CALLI AC, 107 DEVLNM 

CALLI AC, 110 PATH. 

CALLI AC, 1 ~ 1 METER. 

CALLI AC, 112 MTCHR. 

CALLI AC, 113 JBSET. +t 

CALLIAC, 114 POKE. 

5.04 Monitor 

-380-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

CALL 

MOVE AC, [SIXBIT/dev/l or 
MOVEI AC, channel no. 
MOVE AC+1, [SIXBIT/logical name/l 
DEVLNM AC, 
error return 
normal return 

MOVE AC, [XWD + length, adr. of 
argument list] 
PATH. AC, 
error return 
norma I return . 
ADR: N or SIX BIT /NAME/ 
ADR+1: Scan switch 
ADR+2: PPN 
ADR+3: SFD name 
ADR+4: SFD name 

MOVE AC, [XWD N, LOC] 
METER. AC, 
error return 
normal return 
LOC: function code 
LOC+1: argument depends 
LOC+2: on function code used. 

LOC+N-1: 

MOVEI AC, channel no. or 
MOVE AC, [SIXBIT/dev/J 
MTCHR. AC, 
error return 
normal return 

MOVE AC, [2"BLOCK] 
JBSET. AC, 
error return 
normal return 
BLOCK: 0" job number 
BLOCK+1: function" value 

MOVE AC, [3"BLOCK] 
POKE. AC, 
error return 
normal return 
BLOCK: location 
BLOCK+1: old value 
BLOCK+2: new value 

2-14 

Function 

Set a logical name for this 
specified device (refer to 
Paragraph 4.~.4). 

Read or modify the default 
directory path or read the 
current path of a fi Ie OPEN 
on a chqnnel. Refer to 
Para~raph 6.2.9.1. 

Provide performance analysis 
and metering of dynamic 
system varia~les. Refer to 
Paragraph 3. 9. 

Return characteristics of the 
magnetic tape. Refer to 
Paragraph 5.5.3.2. 

Execute the specified 
function of SETUUO for a 
particular job. 

Alter the specified location 
in the Monitor. Refer to 
Paragraph 3.6.3.3. 

February 1972 



CALLI 
CALLI t 

Mnemonic 

CALLI AC, 115 TRMNO. 

CALLI AC, 116 TRMOP. 

CALLI AC, 117 RESDV. 

CALU AC, 120 UNLOK. 

CALLI AC, 121 DISK. 

CALLI AC, 122 DVRST. tt 

CALLI AC, 123 DVURS. tt 

-381-

Table 2-2 (Cont) 
CALL and CALLI Monitor Operations 

CALL 

MOVE AC, job number 
TRMNO. AC, 
error return 
norma I return 

MOVE AC, [XWD N, ADR] 
TRMOP. AC, 
error return 
normal return 
ADR: function code 
ADR+l: terminals's universal index 

Following arguments depend 
. on function used. 

MOVE AC, channel no. 
RESDV. AC, 
error return 
normal return 

MOVSI AC, 1 
MOVSI AC,O 
HRRI AC, 1 
HRRI AC,O 
UNLOK. AC, 
error return 
hormal return ' 

MOVE AC, [XWD function, ADR] 
DISK. AC, 
error return 
normal return 

MOVE AC, [SIXBIT/devj] or 
MOVEI AC, channel no. 
DVRST. AC, 
error return 
normal return 

MOVE AC, [SIXBIT/dev/] or 
MOVEI AC, channel no. 
DVURS. AC, 
error return 
normal return 

MONITOR CALLS 

Function 

Return number of the ter­
minal currently controlling 
the specified job. Refer to 
Paragraph 5.10.5. 

Perform miscellaneous ter­
minal functions. Refer to 
Paragraph 5. 10.6. 

Reset the specified channel. 
Refer to Paragraph 4.8.2. 

Unlock a locked job in core. 
Refer to Paragraph 3.2.2.4. 

Set or read a disk or fi Ie 
system parameter (e.g., set 
the c;lisk priority for a 
channel or the iob). Refer 
to Paragraph 6.2.9.14. 

Restrict the specified device 
to a privi leged iob. 

Remove the restricted 
status of the specified 
device. 

tThe CALLI mnemonics are defined in a separate MACRO assembler table, which is scanned whenever 
an undefined OP CODE is found. If the symbol is found in the CALLI table, it is defined as though it 
had appeared in an QPpropriate OPDEF statement, that is 

RETURN : EXIT 
If EXIT is undefined, it will be assembled as though the program contained the statement 

OPDEF EXIT [CALLI 12] 
This facility is available in MACRO V.43 and later. 

5.05 Monitor 2-15 June 1972 



MaN ITOR CALLS -382-
Table 2-2 (Cont) 

CALL and CALLI Monitor Operations 

ttThis CALLI is a system-privileged UUO avai lable only to users logged in under [1,2] or to programs 
running with the JACCT bit set. Complete documentation for system-privileged UUOs appears in the 
Specifications section of the DECsystem-l0 Software Notebooks. 

ttt All CALLI's above CALLI 55 do not have a corresponding CALL with a SIXBIT argument. This is to 
save, monitor tab Ie space . 

The customer is ,allowed to add his own CALL and CALLI calls to the monitor. A negative CALLI 

effective address (-2 or less) should be used to specify such customer-added operations. 

2.2.2.2 Suppression of Logical Device Names - Some system programs, e.g., LOGOUT, require 

I/O to specific physical devices regardless of the logical name assignments. Therefore, for any CALLI , 

... , if blit 19 (UU'IPH~) iln the effective addresslo
l 
fbthe CALLI isThnot equal to bit

f
18
1
, only I dPhy.sical names 

wilbe used;. ogica device assignments wi e ignored. is suppression 0 ogica eVlce names 

will be ignored. This suppression of logical device names is helpful, for example, when using the 

results of the DEVNAM UUO where the physical name corresponding to a logical name is returned. 

2.2.2.3 Restriction on Monitor UUOs in Reentrant User Programs - A number of restrictions on UUOs 

that involv~ a high segment prevent naive or malicious users from interferring with other users while 

sharing segments and minimize monitor overhead in handling two-segment programs. The basic rules 

are as follows: 

a. All UUOs can be executed from the low or high segment although some of their argu­
ments cannot be in or refer to the high segment • 

. b. No buffers, buffer headers, or dump.-mode command lists may exist in the high segment 
for reading from or writing to any I/o device. 

c. No I/O is processed into or out of the high segment except via the SAVE and SSAVE 
commands. 

d. No'STATUS, CALL or CALLI UUO <llIows a store in the high segment. 

e. The effec:tive address of the LOOKUP, ENTER, INPUT, OUTPUT, and RENAME UUOs 
cannot be in the high segment. If any rule is violated, an address check error message 
is given. 

f. As a convenience' in writing user programs, the monitor makes a special check so that 
the INF UUO can be executed from the high segment, although the calling sequel'\ce 
is in the high segment. The monitor also' allows the effective ciddress of the CALL UUO, 
~hich contains the SIXBIT monitor function name, and the effective address of the OPEN 
UUO, which contains the status bits, device name, and buffer header addresses, in the 
high segment. The address of TTCALL I, and TTCALL 3, may be in the high segment for 
convenience in typing messages. ' 

5.05 Monitor 2-16 June 1972 



-383- ~10N nOR CALLS 

2.2.3 Operation Codes 100-127 (Unimplemented Op Codes) 

Op code l00{UJEN) 

Op codes 10 1-107 
114-117 
123 

Op codes 110-113 
120-122 
124-127 

2.2.4 Illegal Operation Codes 

Dismiss real-time interrupt from user mode 
(refer to Paragraph 3.S.4). 

Monitor prints ?ILL INST. AT USER nand 
stops the job. 

These op codes are valid on the KIlO. If 
used on the KA 10, the monitor prints 
?KIlO ONLY INST • AT USER n and stops 

. the job. 

T~ eight VO instructions (e .g., DATAl) and JRST instructions with bit 9 or 10 = 1 {e.g. , HALT, 

JEN} are interpreted by the monitor as illegal instructions {refer to the System Reference Manual in 

the Software Notebooks}. The job is stopped and a question mark is printed immediately. A carriage 

retum-line feed is then output, followed by an error message. For example, a DATAl instruction 

would produce the following: 

? 
? ILL INST AT USER addr 

2.2.5 Naming Conventions for Monitor Symbols 

The names of the monitor's data base symbols cOlltain dots or percent signs so that they can be made 

user-mode symbols without conflicting with previously-coded user programs. Data symbols can be 

divided into five classes: 

1) numbers 

2) masks 

3} UUO names 

4) GETTAB arguments 

5) error codes. 

Symbols defining numbers begin with a dot, followed by a two-letter prefix indicatin'g the type of 

number, and end with a three-character abbreviation representing the specific number. Numbers are 

IS-bit quantities and include core addresses and function codes. The folloWing are examples of names 

of vari ous numbers: 

5.06 Monitor 

.JBxxx 

.GTxxx 

.RBxxx 

Job Data Area 

GETTAB table numbers 

Extended arguments for LOOKUP, ENTER, RENAME 

2-17 March 1973 



r10N nOR CALLS -384-

Names for masks start with a two-letter prefix indicating the individual word, followed by a dot, and 

end with three characters representing the specific mask. Masks are 36-bit quantities and include bits 

and fields. The following are examples of names of masks: 

JP.xxx 

JW.xxx 

PC. xxx 

Privilege word bits 

WATCH word bits 

PC word bits 

Names for UUOs implemented after the 5.03 release of the monitor are five or less characters followed 

by a dot. For example, 

PATH. 

TRMOP. 

UUO to modify directory path 

UUO to perform terminal functions. 

ll'ldividual words within a GETT AB table start with a percent sign, followed by two characters repre­

senting the generic name of the table, and end with three characters identifying the specifi'c word. 

For example, 

%NSCMX 

%CNSTS 

CORMAX word in the nonswapping data table. 

States word in the configuration table. 

Names of bytes and bits within a GETTAB word begin with two characters representing the word, 

followed by a percent sign, and end with three characters designating the specific byte. 

ST % DSK 

ST % SWP 

Byte representing disk system; contained in the states word. 

Byte indicating swapping system; contained in the states word. 

Error codes returned on a UUO error have names with the following pattern: two characters indicating 

the UUO, three characters designating the failure type, and a terminating percent sign. 

DMILF% 

RTDIU% 

LKNLP% 

DAEMON error; illegal function. 

RTTRP error; device in use. 

LOCK error; no locking privileges. 

Many of the values useful in user programming are encoded in the parameter file C.MAC for the con­

venience of writing and modifying programs. 

5.04 tvhnitor 2-18 January 1972 



-385- r10N nOR CALLS 

CHAPTER 3 
. ~ON-I/O UUOS 

3.1 EXECUTION CONTROL 

3.1.1 Starting 

A user program may start another pr<?9ram only by using the RUN or GETSEG UUOs {refer to 

Paragraphs 3.3.1 and 3.3.2}. A user at a terminal may start a program with the monitor commands 

RUN~ START, CSTART, CONT, CCONT, DDT, and REENTER {refer to DECsystem-l0 Operating 

System Commands}. The starting address either appears as an argument of the command or is stored 

in the user's job data area {refer t? Chapter 1}. 

3.1.1.1 SETDDT AC, or CALLI AC, 2 - This UUO causes the contents of the AC to replace ~he 

DDT starting address, which is stored in the protected job data area location. JBDDT. The starting 

address is used by the monitor command, DDT. 

3.1.2 Stopping 

Any of the following procedures can stop a running program: 

a. One 1C from the user's terminal if the user program is ina TTY input wait; otherwise, 
two fCs from the user's terminal {refer to DECsystem-l0 Operating System Commands}; 

b . Amon i tor detec ted error; 

c. Program execution of HALT, CAL~ LSIXBIT/EXIT/J, or CALL I.Sp(BIT/LOGOUT/J. 

3.1.2.1 Illegal Instructions {700-777, J~ST 10, JRST 14} and Unimplemented OP C?des (101-127)­

Illegal instructions trap to the monitor, stop the job, and print: I ?ILL INST. AT USER adr or ?KI ONLY INST. AT USER adr 

Refer to Paragraph 2.2.3 for an explanation of op codes 101-127. Note that the program cannot be 

continued by typing the CONT or CCONT commands. 

5.06 Monitor 3-1 March 1973 



r10NITOR CALLS -386-
3.1.2.2 HALT or JRST 4 - The HALT instruction is an exception to the illegal instructions; it traps 

to the mon itor, stops the job, and prints: 

?HALT AT USER adr 

where n is the location of the HALT instruction. If the HALT instruction is in location 41 and the 

program executed a user UUO (operation codes 001-037), the address in the error message is that 

of the user UUO instead of address 41. 

However, the CONT and CCONT commands are still valid, and, if typed, will continue the program 

at the effective address of the HALT instruction. After a user program HALT instruction followed 

by a START, DDT, CSTART, or REENTER commCl'ld, • JBOPC contains the address of the HALT. 

To praceed at the address specified by the effective address, it is necessary for the user or his 

program to recompute the effective address of the HALT instruction and to use this address to start 

(refer to .JBOPC description, Table 1-1 in Paragraph 1.2.1). HALT is not the instruction used to 

terminate a program (refer to Paragraph 3.1.2.3). HALT is useful for indicating impossible error 

conditions. 

3.1.2.3 EXIT AC, or CALLI AC, 12 - When the value of AC is zero, all VO devices (including 

real-time devices) are RELEASed (refer to Paragraph 4.8.1); the job is unlocked from core; the user 

mode write protect bit (UWP) for the high segment is set; the APR traps are reset to 0; the PC flags 

are cleared; and the job is stopped. If timesharing was stopped (refer to Paragraph 3.8.3), it is 

resumed. In other words, after r~leasing all I/O devices that close out all files, a RESET is done 

(refer to Paragraph 4.1.2). The carriage-return/line-feed is performed, and 

EXIT 

is printed on the user's terminal, which is left in monitor mode. The CONT and CCONT commands 

cCl'lnot continue the program. 

I When the value of AC is nonzero, the job is stopped, but devices are not RELEASed CI'Id a RESET is 

not done. Instead of printing EXIT, only a carriage-return and line-feed is performed, CI'Id a period 

is printed on the user's terminal. The CONT and CCONT commonds may be used to continue the 

program. In other words, this form of EXIT does not affect the state of the job except to stop it and 

I return the terminal to monitor mode. Programs using EXIT I, (MONRT.) as a substitute for EXIT 

(to eliminate the typing of EXIT) should RELEASE all devices first. 

5.06 Monitor 3-2 March 1973 



I 

I 

-387- mN ITOR CALLS 
3.1.3 Trapping 

3.1.3.1 APRENB AC, or CALLI AC, 16 - APR trapping allows a user to handle any and all traps 

that occur while his job is running on the central processor, including illegal memory references, 

non-existent memory references, pushdown list overflow, arithmetic overflow, floating-point over­

flow, and clock flag. To enable for trapping, a APRENB AC, or CALLI AC, 16 is executed, where 

the AC contains the central processor flags to be tested on interrupts, as defined below: 

Nome AC Bit Trap On 

AP .REN 18 400000 Repetitive enable 
AP.POV 19 200000 Pushdown overflow 
AP.ILM 22 20000 Memory protection violation 
AP.NXM 23 10000 Nonexistent memory flag 
AP.PAR 24 4000 Parity error 
AP.CLK 26 1000 Clock flag 
AP.FOV 29 100 Floating-point overflow 
AP.AOV 32 10 Arithmetic overflow 

When one of the specified conditions occurs while the central processor is in user mode, the state of 

the central processor is CONditioned Into (CONI) locatiOn, .JBCNI, and the PC is stored in location 

.JBTPC in the job data area (refer to Table 1-1 in Paragraph 1.2.1). Then control is transferred'to 

the user trap-answering routine specified by the contents of the right half of .JBAPR, after the 

arithmetic and floating-point overflow flags are cleared. (However, the job is stopped if the PC 

is equal to the first or second instruction in the user's trap routine.) The user program must set up 

location .JBAPR before executing the APRENB UUO. To return control to his interrupted program, 

the user's trap-answering routine must execute a JRSTF @ .JBTPC which clears the bits that have been 

processed and restores the state of the processor. 

The APRENB UUO normolly enables traps for only one occurrence of any selected condition and must 

be re-issued after each condition of a trap. To disable this feature, set bit 18 to a 1 when executing 

the UUO. However, even with bit 18 = 1, clock interrupts must be re-enabled after each trap. 

If the user pragram does not enable traps, the monitor sets the PDP-l0 processor to ignore arithmetic 

and floating-point overflow, but enables interrupts for the other error conditions in the list above. 

If the user pragram produces such on error condition, the monitor stops the user job and prints one of 

the following appropriate messages: 

?PC OUT OF BOUNDS AT USER PC addr 
? ILL MEM REF AT USER PC addr 
? NON-EX MEM AT USER PC addr 
? PDL OV AT USER PC addr 
? MEM PAR ERROR AT USER PC addr 

T~ CONT and CCONT commands will not succeed after such an error. 

5.06 Monitor 3-3 March 1973 



nOfHTOR CALLS -338-

3.1 ~3.2 Error Intercepting - When certain conditions occur in the program, the monitor intercepts 

the condition and examines location .JBINT in the job data area. Depending on the contents of 

this locatiOn, control is either retained by the user program or is given to the mon itor for action. If 

this location is zero, the job is stopped and the user and possibly the operator are notified by appro­

priate messages, if any. If location .JBINT is non-zero, the contents is interpreted as the address 

of a block with the following format: 

where 

LOC: XWD N, INTLOC 
LOC+1: XWD BITS, CLASS 
LOC+2: 0 
LOC+3: 0 

N is the number of words in the block (N >3). 

INTLOC is the location at which the program is to be restarted. 

BITS is a set of bits interpreted as follows: 

If bit 0 = 1, an error message, if any, is not to be typed on the user's 
terminal or, in some cases, the operator's terminal. 

If bit 0 = 0, an error rriess9ge, if any, will be typed on the user's 
terminal and possibly the operator's terminal. 

CLASS is a set of bits interpreted as follows: 

For eoch type of error, CLASS has a specific bit. For a g.iven error, the job will 
be interrupted if the appropriate bit is 1 and the content of LdC+2 is zero. The 
job will be stopped if either the appropriate bit is 0 or _the appropriate bit is 1 and 
the content of LOC+2 is not zero. By requiring LOC+2 to be zero, the possibility 
of a loop occurring is prevented. 

The monitor examines the CLASS bits and the contents of LOC+2 to determine if the job is to be 

stopped or interrupted on the particular error. If the job is interrupted, the following informotion 

is then stored in LOC+2 and LOC+3: 

LOC+2 
LOC+3 

The last user PC word. 
RH= the channel number. 
LH = the error bit as defined in CLASS (see below). 

The job is then restarted at location INTLOC. 

The CLASS bits are defined as follows: 

Device Errors 

Bit 351 (ER. IOV) represents device errors that can be corrected by human 
intervention. The appropriate message returned to the user is 

DEVICE xxx OPR zz ACTION REQUESTED 

where xxx is the device name, and zz is the number of the station at which the opera­
tor is located. The operator receives the message 

%PROBLEM ON DEVICE xxx FOR JOB n 

l This bit depends on FTOPRERR which is normolly off in the DECsystem-1040. 

5.06 Monitor 3-4 March 1973 



I 

-389- rmrl I TOR CALLS 
where xxx is the device name, and n is the number of the job that is stopped. When 
the operator has corrected .the error; he starts the job with the JCONT command and 
the message . 

CONT BY OPER 

appears an the user's terminal to signify that the error has been corrected. 

fC Intercept 

Bit 341 (ER. ICC) indicates a fC intercept. This inter.cept allows the user's program· 
to process a fC itself instead of allowing the job to automatically return to monitor 
level. If this bit is 1; the job does not return to monitor level on two fCs (or on one 
fC if the job is in TTY input wait), but instead tr<Jps to t~e user's interrupt routine. 
There are no messoges associated with this bit. When enabled for fC, the program 
should normally exit immediately by releasing any special resources and issuing an 
EXIT UUO (MONRT. or CALLI 1,12) •• If the user types .CONT, the job continues. 

TITLE CONCIN -- SAMPLE FOR CONTROL-C INTERCEPT 

; ]HIS ROUTINE SHOwS HOw TO·ENABLE FOR A CONTROL-C INTERCEPT 
;AND HANDLE IT CORRECTLY. THE IDEA IS TO GET THE USER TO 
;~NITOR LEVEL AS· QUICKLY AS POSSIBLE. 

LOC 
EX? 
RELOC 

I NTBLK: XWD 
XiIID 
Z 
Z 

; mE INTERRUPT 

INTLOC: MOVEM 
HLRZ 
CAIE 
HALT 

EXIT 
MOVE 
EXCH 
PUSH 
SETZM 
POPJ 

TEMPI: Z 

134 
INTBLK 

4,INTLOC 
O,2 

ROUTINE STARTS 

I,TEMPI 
I,INTBLK+3 
1,2 

;SET POINTER IN .JBINT 
TO THE INTERRUPT BLOCK 

;4 WORDS LONG"PLACE TO START 
;NO MESSAGE CONTROL"TYPE 2 (tC) 
;GETS LAST USER PC 
;LH GETS INTERRUPT TYPE 

HERE 

;SAVE AC I 
;GET REASON FOR INTERRUPT 
;SEEIF CONTROL-C 
;ERROR IF NOT 

;RELEASE ANY SPECIAL RESOURCES HERE 
BUT BE CAREFUL THAT THIS DOES NOT 
TAKE VERy LONG OR CAUSE A LOOP. 

I , 
I, I NTBLK+2 
I, TEMPI 
P,INTBLK+2 
INTBLK+2 
P, 

;RETURN TO MONITOR 
; GET RETURN PC 
; RESTOREAC 
;SAVE RETURN ADDRESS 
;CLEAR INTERUPT TO ALLOW ANOTHER ONE 
;RETURN TO PROGRAM WHERE STOPPED 

; TEMPORARY 

1 This bit depends on FTCCIN which is normally off in the DECsystem-1040 

5.06 Monitor 3-5 March 1973 



MON nOR CALLS -390-

The foUowing example iUustrates user lC processing by a program which will not let users reach mon­

itor level by means of a lC. 

LOC 
EXP 
RELOC 

134 
INTBLK 

;SET UP .JBINTTO POINT TO 
THE INTERRUPT BLOCK 

INTBLK: XWD 3,INTLOC ;3 WORDS LONG"PLACE TO START 
;NO MESSAGE CONTROL"TYPE 2 (TC) 
; GETS LAST USER PC 

XWD 0,2 
Z 
Z ;LH GETS INTERRUPT TYPE 

; !HE INTER~UPT ROUT! NE 

INTLOC: SKIPL RENF'LA ;OK TO FAKE A REENTER? 
JRST .+3 

SETZM INTBLK+2 
JRST REENRT 

SETOM RENSWH 

PUSH P,INTBLK+2 
SETZM INTBLK+2 
POPJ P, 

;NO, CURRENT ROUTINE CANNOT BE 
; INTERRUPTED 

;YES, RE-ENABLE INTERRUPT AND GO 
TO INTERRUPT ROUTINE 

;SET FLAG TO SAY "REENTER AS SOON AS 
; YOU CAN" . 
;GET LA~TPC. PUS~/POP 
;RE-ENABLE INTERRUPT 
;GO BACK TO INTERRUPTED ROUTINE 

NOTE THAT IF A CONTROL-C IS 
TYPED AFTER THE SETZM, THE 
I NTERRUPTS NEST. 

Off-line Disk Unit 

Bit 33 (ER.OFL) indicates a disk unit has dropped off-line. The operator is given the 
message 

UNIT xxx WENT OFF-LINE (FILE UNSAFE) 
PLEASE POWER DOWN AND THEN TURN IT ON AGAIN 

immediately and then once every minute. The user receives the message 

DSK IS OFF-tINE. WAITlNG FOR OPERATOR 
. ACTION. TYPE lC TO GET A HUNG MESSAGE· 

5.06 Monitor 

(IN 15 SECONDS). DONT TYPE ANYTHING TO WAIT 
FOR THE OPERATOR TO FIX THE DEVICE. 

3-6 March 1973 



1 

2 

-391- MONITOR CALLS 
If the user has a system resource, he receives the additional message: . 

THE SYSTEM WILL DO NO USEFUL WORK UNTIL 
THE DRIVE IS FIXED OR YOU TYPE 1C 

Full File Structure 

Bit 32 (ER.FUL) indicates that a file structure has filled up with data (i .e., there are 
no free blocks). There are no messages associated with this bit. 

Exhausted Disk Quota 

Bit 31 (ER.QEX) indicates that the user's disk quota has been exhausted. The user 
receives' the message 

[EXCEEDING QUOTA file structure name] 

Exceeded Time limit 

Bit 301 (ER. TLX) indicates that the use~:s run time limit (as set by a previous 
SET TIME command) has been exceeded. This bit is used only by non-batch 
jobs. The user receives the message 

?TIME LIMIT EXCEEDED 

3.1.4 Suspending 

3.1.4.1 SLEEP AC, or CALLI AC,31 - This UUO temporarily stops the job and continues it auto­

matically after the elapsed real-time (in seconds) indicated by the contents of the AC. There is 

an implied maximUm of approximately 68 sec (82 sec in 50:'" Hz countries) or 1 min. A program that 

requires a longer SLEEP or HIBER time should use the HIBER UUO with no clock request and then call 

DAEMON, via the .CLOCK function (refer to Paragraph.3.7.2), to wake it. 

3.1.4.2 HIBER AC, or CALLI AC, 722 - The HIBERNATE UUO allows a job to become dormant 

until, a specified event occurs. The possible events that can wake a hibernating job are: 1) input 

activity from the user's TTY or any ITY INITed by this job (both line made and character mode), 

2) PTY activity for any PTY currently INITed by this job, 3) the time-out of a specified amaunt 

of sleep time, or 4) the issuance of a WAKE UUO directed at this job either by some other job with 

wake-up rights or by this job at interrupt level. 

The HIBERNATE UUO must contain in the left half of AC the wake-condition enable bits and in the 

right half the number of ms for which the job is to sleep before it is awakened. 

This bit depends on FITLIM which is normally off in the DcCsystem-l040. 

This UUO depends on FTHIBWAK which is normally off in the DECsystem-l040. 

3-7 March 1973 



f10N nOR CALLS. -392-
The call is as follows: 

MOVSI AC, enable bits 
HRRI AC, sleep time 
HIBER AC, 

iget HffiERNATE conditions 
inumber of ms to sleep 
ior CALLI AC, 72 

error return 
normal return 

The HIBERNATE UUO enable condition codes are as follows: 

Bits 
18-35 

15-17 

13-14 

12 
o 

Meaning 
Number of ms sleep time. It is roun~~d up to an even 
multiple of jiffies (maximum being 2 jiffies).' Zero 
means no clock request (i .e., infinite sleep). 

WAKE UUO protection code: 
Bit 17 (HB.RWT) = 1, project codes must match. 
Bit 16 (HB.RWP) = 1, programmer codes must match. 
Bit 15 (HLRWJ) = 1, only this job can wake itself. 

Wake on TTY input activity: 
Bit 14 (H3.RTC) = 1, wake on character ready. 
Bit 13 (HB.RTL) = 1, wake on line of input ready. \ 

(I-e .RPT) Wake on PTY activity since last HIBERNATE. 
(HB.SWP) Causes job to be swapped out immediately. 

An error return is given if the UUO is not implemented. The SLEEP UUO s~uld be used in this case. 

A normal return is given after an enabled condition occurs. 

Jobs either logged-in as [1,2) or running with the JACCT bit on can wake any hibernating job regard­

less of the protection code •. This allows priyileged programs, which are the only jobs that can wake 

certain system jobs, to be written. 

A RESET UUO always clears the protection code and wake-enable bits for the job. Therefore, until 

the. first HffiERNATE UUO is called, there is no protection ogainst wake-up commands from other 

jobs. To guarantee that no other job wakes the job, a WAKE UUO followed by a HffiERNATE UUO 

with the desired protection code shOuld be executed. The WAKE UUO ensures that the first HffiER­

NATE UUO alw(l}'s returns immediately, leaving the job with the correct protection code. 

3.1.4.3 WAKE AC, or CALLI AC, 731 - The WAKE UUO allows one job to activate a dormant job 

when some event occurs. This feature can be used with Batch so that when a lob wants a core dump 

taken, it can wake up a dump program. Also, real-time process control jobs can cause other process 

control jobs to run in response to a specific alarm condition. The WAKE UUO can be called for a 

RTTRP job running at interrupt level, thereby allowing a real-time job to wake its background portion 

1This UUO depends on FTHIBWAK which is normally off in the DECsystem-1040. 

3-8 March 1973 



I 

I 

-393- r'10N nOR CALLS 
quitkly in order to respond to some real-time condition. (Refer to Paragraph 3.8.1.2 for the 

restrictions on accumulators when using the RTTRP UUO at interrupt level.) 

The call is as followS: 

MOYE AC, JOBNUM 
WAKE AC., 
error return 
normal return 

inumber of job to be awakened 
ior CALLI AC, 73 

An error return is given if the proper wake privileges are not specified. There is ~ w~e bit associated 

with each iob~ If any,of the enabled co~ditions specified in the last HIBERNATE uub occurs, then 

the wake bit i~ set. Th~ next time a HIBERNATE UUO is ex~uted,the wake bit is cleared and the 

HIBERNATE uub returns immediately. The wake bit eliminates the problem of a job going to sleep 

and missing any wake conditions. 

On .a normal r~turn, the jab has been ,aw~ened and has started at the location of the normal retum 

of the H~ER UUO that caused it to become dormant. 

3.2 CORE CONTROL 

Far various reasons, privileged jabs may desire to be locked in core so that they qre never to be con­

sidered for swapping or shuffling. Some examples of these jobs are as follows: 

Real-time jobs 

Display jabs 

Batch 

Performance analysis 

3.2.1 Definitions 

These j9bs require immediate access to the processor in respOnse 
fo an interrupt from an I/O device. 

The dis~lay must be refreshed fram a display buffer in the user's 
corearec:i in order to keep the display piCture flicker-free. 

Batch throughput may be enhanced by locking the Batch job 
controller In core. 

J~bsinonitoring the activities of the system need to be locked 
in core so that they can be invOked quickly with low overhead 
in order to record octivities of the monitor. 

In Swapping and non-swapping systems, unlocked jObs can occupy only the physicc:il core not occupied 

by locked jobs. Therefore, locked jobs and timesharing jobs contend with one another f~ physical 

core memory. In order to control this contention, the system manager is provided with a number of 

system parameters as descri l:ed below. 

Total User Core is the physical core that can be used for locked and unlocked jobs. This.valueis 

equal to total physical core minus the monitor size. 

CORMIN is the guaranteed amount of contiguous core that a single unlocked jab can hove. This value 

is a constant system parameter and is defined by the system manager at mdnitor generation time using 

5.06 Monitor 3-9 March 1973 



I 

~10N nOR CALLS -394-
MONGEN. It can be changed at monitor startup time using the ONCE ONLY dialogue. This value 

can range from 0 to Total User Core. 

CORMAX is the largest contiguous size that an unlocked job can be. It is a time-varying system 

parameter that is reduced from its initial setting as jobs are locked in core. In order to satisfy the 

guarCllteed size of CORMIN, the monitor never allows a job to be locked in core if this action would 

result in CORMAX becoming less than CORMIN. The initial setting of CORMAX is defined at monitor 
- \ 

generation time using MONGEN and can be changed at monitor startup time using the ONCE ONLY 

dialogue. CORMAX can range from CORMIN to Total User Core. A guaranteed amount of core 

available for locked jobs can be made by setting the initial value of CORMAX to less than Total User 

Core. 

. 1 
3.2.2 LOCK AC, or CALLI AC, 60 

This UUO provides a mechanism for locking jobs in user memory. The user moy specify if the high 

segment, low segment, or both segments are to be locked, and whether the core is to be physically 

contiguous. Note that on KA10-based systems, core is always allocated contiguously, and that the 

job may be moved to an extremity of user core before it is locked. 

A job may be locked in core if all of the following are true: 

a. The job has the LOCK privilege (set from the accounting file ACCT .5YS by LOGIN). 

b. The job, when locked, would not prevent CIlother job from expanding to the guaranteed 
limit, CORMIN. 

c. The job, when locked, would not prevent CIl existing job from running. Note that 
unlocked jobs can exceed CORMIN. 

d. The job when mapped, if specifying exec mapping, would not exceed the maximum 
amount of exec virtual address space available for locking (KIlO only). 

The call is: 

MOVE AC, [XWD high seg. code, low seg. code} 
LOCK AC 
error return 
normal return 

;or CALLI AC, 60 
;AC contains an error code 

The segment codes are a series of bits which specify the way in which the high segment (LH code) 

and the low segment (RH code) are to be locked. The order and position of the bits in the left half 

correspond to the order and position of the bits in the right half; that is, to obtain the bit number for 

the high segment, subtract 18 from the corresponding bit for the low segment. The bits are shown 

below. 

1This UUO depends on FTLOCK which is normally off in the DECsystem-1040. 

5.06 Monitor 3-10 March 1973 



I 

Bit 17 (high segment)" 
Bit 35 (low segment) 

Bit 16 (high segment) 
Bit 34 (low segment) 

Bit 15 (high segment) 
Bit 33 (low segment) 

-395- t·1ON I TOR CALLS 

If 1, lock the segment in the manner indicated by 
the following bits. 

If 0, do not lock the segment; the following bits 
are ignored. 

If 0, map contiguously in the exec virtual memory 
(always implied on the KA10). This causes the 
segment to be added to the exec virtual address 
space so that it can be executed in exec mode. For 
example, this is required when exec mode real-time 
trapping (RTTRP) is used On the KIlO, the amount 
of exec virtual address spoce used by locked jobs 
is a limited resource with a defined maximum per 
processor. If mapping the segment would cause the 
maximum to be exceeded, the LKNEM% error 
retum is given. The maximum amount available can 
be obtained from the CPU variable GETTAB table 
for each processor (GETTAB word %CVEVM). The 
c!Jl'rent amount used can also be obtained from the 
table (%CVEVU). 
If 1, do not map in exec virtual memory. 

If 0, lock in contiguous physical memory locations 
(always implied on the KA10). This causes the 
segment to be moved and remapped, if necessary, 
so that its physical core is contiguous. On the 
KA10 system, the segment is also moved to one end 
of user core in order to minimize fragmentation of 
memory. 

If 1, do not attempt physical contiguity. 

If the user requests a segment to be locked in contiguous physical memory, the monitor atfempts to 

lock the segment as low in physical memory as passible. When the segment is locked below 112K, 

physical and virtual contiguity are equivalent, and thus in this case, virtual contiguity does not 

require the exec virtual memory resource to ochieve contiguity. 

On a KAla-based system, physical memory is always allocated c~ntiguously and user segments are 

" directly addressable in exec mode, and therefore, bit codes 1,3,5 and 7 are synonomous. 

The setting of bits 33 and 34 (bits 15 and 16) is compatible with the implementation of the LOCK 

UUO on a KA10-based system. That is, code 1 is the most restrictive, so that a program coded for 

the KA10 system that implicitly uses these properties will alsa run on the KIlO system. Applications 

that do not require all properties can add the appropriate bits to the LOCK UUO's calling sequence. 

On a normal return, the job is locked in core. If there is a high segment, the LH" of AC contains its 

absolute address in units of pages (one page is 512 words). The value can be converted to a word 

ac:lclress by shifting it left nine bits. If there is no high segment, the LH of AC contains zero. The 

RH of AC contains the absolute address of the low segment, shifted right nine bits. 

5.06 Monitor 3-11 March 1973 



I 

I 

f1DrHTOR CALLS -396-

On an error return, the job is not locked in core and AC either is unchanged or contains an error 

code. The AC is unchanged when the LOCK UUO is executed in monitors previous to the implemen­

tation of the UUO. An error code indicates the condition that prevented the job from being locked. 

The error codes are as follows: 

Error Code 

0 

2 

3 

4 

Name 

LKNIS% 

LKNLPOIo 

LKNCA% 

LKNCM% 

LKNEM% 

Explanation 

The UUO is not included in this system because it has 
not been defined with MONGEN or because the appro­
priate feature test switch is off. 

The jOb ~es not have locking privileges, or RTTRP 
privileges, if required. 

If the job were locked in core, it would not be possible to 
run the largest existing non-locked job. (Applies on Iy to 
swapping systems.) 

If the job were locked in core, it would not be possible to 
meet the guaranteed largest size for an unlocked job, that 
is, CORMAX would be less than CORMIN. 

The mode of locking requested exec virtual memory mapping 
but the allowable amount of exec mapping has been exhausted. 

NOTE 

The CORE UUO may be give~ for the high segment of a locked 
job only if it is removing the high segment from the addressing 
space. When the segment is locked in core, the CORE UUO and 
the CORE command with a non-zero argument cannot be satisfied 
and, therefore, always give an error return. The program should 
determine the amount of core needed for the execution and request 
this amount before executing the LOCK UUO. 

Although memory fragmentcition is minimized byboth the LOCK UUO and the shuffler, the locking 

.algorithm always allows job locking, even though severe fragmentation may take place, as long as 

1) all existing jobs can continue to run; and 

2) at least CORMIN is ava,ilable as a contiguous spoce (see Figure 3-1 E). 

Therefore, it is important that system managers use caution when granting locking privileges. The 

following are guidelines for minimizing fragmentation when using the LOCK UUO. 

3.2.2.1 KA10 Systems - The guidelines for KA10 systems are: 

a. There is no memory fragmentation if two jobs or less are locked in core. 

b. There is no fragmentation if the locked jobs do not relinquish their locked status 
(i.e., no job terminates that has issued a LOCK UUO). In general, jobs with 
locking privileges should be production jobs. 

5.06 Mon itor 3-12 March 1973 



-397- t·10NITOR CALLS 

c. If a job issuing a LOCK UUO is to be debugged and production jobs with locking 
privileges are to be run, the job to be debugged should be initiated and locked in 
core first, since it will be locked at the top of core. Then, the production jobs 
should be initiated since they will all be locked at the bottom of core. This pro­
cedure reserves the space at the top of core for the job being debugged and 
guarantees that there is no fragmentation as it locks and unlocks. 

d. With a suitable setting of CORMIN and the initial setting of CORMAXin relation 
to Total User Core, the system manager can establish a policy which guarantees 

1) d maximum size for any unlocked job (CORMIN), 

2) a minimum amount of total lockable core for all jobs (Total User Core -
CORMAX), and 

3) the amount of core which locked and unlocked jobs can contend for on a 
first-come-first-serve basis (Total User Core - initial CORMAX + CORMIN). 

3.2.2.2 Core Allocation Resource - Because routines that lock jobs in core use tloe swapping and 

core allocation routines, they are considered a sharable resource. This resource is the semipermanent 

core allocation resource (mnemonic=CA). When a job issues a LOCK LJLJO and the system is currently 

engaged in executing a LOCK UUO for another job, the job enters the queue associated with the core 

'lilocation resource. Because a job may share a queue with other jobs and because swapping and 

shuffling may be required to position the job to where it is to be locked, the actual execution time . 

needed to complete the process of locking a job might 00 onJhe order of seconds. 

When it has been established that a job can be locked, the low segment number and the high segment 

number (if any) are stored as flags to activate the locking routines when the swapper and shuffler are 

idle. The ideal position for the locked job is also stored as a goal for the locking routines. In KA10 

swapping systems, the ideal position is always achieved to guarantee minimum fragmentation. In 

nonswapping systems, minimum fragmentation is achieved only if the ideal position does not contain 

an active segment' (see Figure 3-1). 

In swapping systems, after the job is locked in core, the locking routine determines the size of the 

new largest contiguous region available to unlocked jobs. This value will be greater than or equal 

to CORMIN. If this region is less than the old value of CORMAX, then CORMAX is set equal to 

the size of the new reduced region. Otherwise, CORMAX remains set to its old value. 

3.2.2.3 UNLOK. AC, or 'CALLI AC, 1201_ This ULJO provides a mechanism for c:i job to unlock 

itself without doing a RESET UUO. The user can specify if one or both segments are to be unlocked. 

The call is: 

MOYSI AC, 1 
MOYSI AC, 0 

HRRI AC,' 1 
HRRI AC, 0 
UNLOK. AC, 
error return 
normal return 

;if high segment is to be unlocked 
;if no high segment, or if high segment 
; is not to be un locked 
;if low segment is to be unlocked. 
;if low segment is not to be unlocked. 
;or CALLI AC, 120 

1 This UUO depends on FTLOCK which is normally off in the DECsystem-l040. 

3-13 March 1973 



MON nOR CALLS 

A) 

I----------------------~! 
r~CM I TOR 

!.----------------~---~-! 11/1111111111111111111111 
111111111111~/1111111111! 
:IIIIIIIIIIIIIIIIIIII///! 
I-----------------------! 
I TI~E-SHARI~G Joe 
I ISSuING LOCK VUO ! ___ - ___ ~--_~ _____ w _____ : 

I/IIII//III/I/IIIII/I/II! 
IIIIIIIIII/IIIIIII/IIIII! 
IIIIIIIII//II/IIIIIIIIII! 
tllllllllllllllllllll/III 
tlllll//IIIIIIIIIIIIIIII! 
I/IIIII/III/IIIIIIIIIIII! 
l/III/IIIIIIIII/IIIIIII/! 
lllllllll/IIIII/IIIIIIII! 
llllllllill/IIIIIIIIIIII! 
I/IIIIII/IIIIIIIIIII/III! 
IIIIIIIII/IIIII/I/I/IIII! 
.1/11111/111111111/11111/: 
!11/1111111/1111111111/1: 
IIIIIII/IIIIIIIIIIIIIII/! 
!-----------------------! 

B) BEFORE 

!------._._----_.-------! 
MON ITOR 

l/IIIIIIII//IIIIIIIIIIII! 
!II/IIIIIII/IIIIIIIII/II! 
II/IIIIIIIIIIIIIIIIIIIII! 

:.------~-------------.-! I TI~E~SHARI~G ~06 
: ISS~ING LO~K uuo 
:------.. ---------------! 
!IIIIIIIIIIIIIIIIIIIIIII: 
IIIIIII/IIIIIII/IIIIIIII! 
11/1111/111111111111111/1 
I 1111/11111/11111/1 II/II! 
I/IIIIIIIII/IIIIIIIIIII/! 
!IIII/I/III/IIIIIIIIIIIII 
!1111111111/lllllllillll: 
IIIIIIIIIIIIIII/IIIII/II! 
lllllllllil/IIIIIIIIIIII! 
1/lllillll/II/IIIIIIIIII! 
lllllllll/IIIIIIIIIIIIII! 
l/I/IIIIIII/III/III/i/i/! 
l----------------·-·----! 
I LOCKED JOB 

!-----------------------! 

-398-

.. 

• 

, 

.. 

.. 

.. .. .. 
t 

f 

~O'~:~AX 

• .. 

AFTER 

:-----------------------t 
MONITOR 

!-----------------------
11/11111'1111/1/1111111/1 
:IIIIIIIIIIIIIIIIII/IIII! 
!/IIIIIIIIIII/IIIIIIIIII! 
!IIIIIIII/I/IIIIIIIIIIIII 
!11111/11/11111111111/11! 
:IIIIIIIIIIII/IIIIIIIII/! 
:IIIIIIIIIIIIII/IIIIIIII! 
!IIIIIIIIIIIIIIII/I/I/II! 
:llllllllllllillllllllll! 
:IIIIIIIIII/I/IIIIIII/II! 
:IIIIIIIIIIII/IIIII/IIII! 
:IIIIIIIIIIIIII/III/IIII! 
!IIIIIIIIIIIIIIIIIIIIII/! 
:1/111/111111111111111 111 
!IIIII/IIIIIIII/IIIIIII/l 
:11111111/11111/111/1111: 
tllllllll/IIIIIIIIII/III! 
:IIIIIIIIIIIIIIIIII/IIII! 

!------------.---------.! : LOCKED JOG 

MQNITOR 

! LOCf~EO Jor:; 

:------------.----------: :IIIIIII!IIIIIIIIIIII/II! 
!IIIII/IIIIIIII//II/I/I/l 
:11111111111111111111/11: 
:IIIII/IIIIIIII/i/II//II! 
llllllllllllllllllllllll! 
!IIIIIIIIIIII/III/I//III! 
!IIIIIIIIIIIIIIIIIIII/II: 
!IIIIIIIIIIIIIIIIIII//II: 
llllll/IIIIIIIIIIIIIIII/! 
llllll/IIIIIIIIIIII/il//! 
llllllllllllllllllll//II! 
lllll/IIIIIII/I/IIIIIIII! 
!IIIIIIIIII/II/IIIIII/II! 
:11/111111111111111/1111: 
:111111111 1 1111111111/1/: 
:IIIIIIIIIIIIIIIIIIII/I/! 

!-------.-----~-.-------~ 

.. , 
t , 

• , 
, 

COFIMAX 
• , 

,. 

.. 

.. , , , , 
, 

CORM AX 
t , 

, 

• 

Figure 3-1 Locking Jobs In Core on KA 10 Systems 

3-14 March 1973 



C) BEfORE 

:-----------------------! 
MONITOR 

!----------·----------~-I I LOC~ED ..lea ! ., 

:----~------------.---.-! lIIIIIIIIIIIIIIIIYI/IIIll 
lllllllllll/II/.IIIIIIIII! 

t-----------·---·-~-----! ! TIME-SHARING J08 
! IS~UING L~C~ u~b 

:-------~--p~~----~---~-! 
llllllll/IIIIIII//I/IIII~ 
1111111111111111111/1111! 
11111111111Itll/llllllll! 
:/1111111111111111111111! 
:'I"II'IIIII/I,,'I'I"I! 
!)IIIII/IIII~/I/IIIIIIII: 
!IIIIIIIIII)IIIIIIIIIIII! 
:IIIIIII/IIIIIIIIIIIIIII! 
!",II',I,'IIIII,IIIII'I: 
:lllllllllllilllllllllll! 

! LOCKED JOB 
l 
l---------- .. -----------! 

D) BEfORE 

!-------.--.------~-----! 
H0,N HOR 

!----.-.---------~-~-.--! 
IIIIIIIIIIIIIIIIIIIIIIII! 
lll/I/IIIIIIIIIIIIIIIII/! 
t----------_·-----------: 
! LOCKED J08 

1-----------------------1 llllllllllllllll/I/IIIII! 
llllllllllllllllllllllll! 
t-·_·-------------------! 
: TrME-SHARr.N~ J08 
! ISSUING LOCK UUQ 
I 
!-----------------------! 
!/IIIIIIIIIIII/I/IIIIIII! 
llllllllllllllllllllllll! 
:lllllj~/V/~II/III!;111/~ 
lllllllllllllllll!IIIII!! 
l'l,ilj'lll/)'Iilj}jj,j/! 
r----~--_--_~_- _______ ~_! 

!-----------------------! 

-399-

.,. 
t 

t 
t 
t 

t 

CQRMAX 

t , 
t , 
t 

t 

t 

t . .. 

... 
t 

t , 
t 
t 

C.Ot.:MAX 

MON nOR· CALLS 

AFTER 

:----------···_·-----···1 
:--1CNJTOR 

!------··---·---·-·-~-~-I l LOCKED JOB 

!-----.-.-------.-----~-! ! LOCKED J06 

!-----------.---.-~-~-~~! 
!IIIIIIIIII/I/I/IIIIIII/l 
!IIIIIIIIII/I/II/IIIIII/l 
lllllllll/I/III/I/III/I/! 
lllllllllll/III/III/I/I/l 
!IIII/IIIIIII/IIIIIII/III 
!IIIIII/III///I///////I/l 
11/1/1/11111111/1/1/1//11 
lllllllllllllll/IIII//I/l 
11/1/1//1111111/1/1/////1 
11/1/1/11/1/111/1/1/1///1 
11/1(1//111/111///1/1///1 
!IIIIIIIIII/III/II/II/I/l 
!II/II//I/IIII/II/IIIII/! 
!-.---.-.-.-~---.---~--~: : LOCKED JOB 

t-------·---·-------~--·! 

AFTER 

!---------------~---.---, 
HON ITOR 

!-----------------------I 11/1/1//1/1/1/1///1/1///1 
11/1///1111/1/1/1/1/11//1 

!-~-------------~-~-~---l 
! LOCKED JOB 

J---------------------~-I 1 LOCKED JOB 

, . 
!----·--·-----~-·--··---I ~/11111/11111/1/1///11111 
11/1////1/111/1/1/1/1//11 
!/I/IIIIIIIIIIIII/II//III 
lllllllllllll/I/III/I/i/l 
!II//II/IIIII/IIII/II/III 
flllllllllllllll/IIII/))1 
!1/11111111111111/1/lllll 
:/I~/IIIIIIIIII~I/I/j/I/l 

!--------------~·---·---I ! LOCKED JOB 

:--------------.--------\ 

• 
t 
t , 

CORMAX , 
t 
t 

• • • 
t 

t 

• 
• 

• CORMAX 
t 

t 
t , 
• 

Figure 3-1 Locking Jobs In Core on KA 10 Systems (Cont) 

March 1973 
3-15 



MON ITOR CALLS 

E) Unlikely Fragmentation Case 

8EfCRE 

:.--------.-.----------~: 

t-----------------------! 
I TI~E-SHARING J08 
1 ISSuING LOCK UUO 
f----------------·_·----! 
llllllllllllll/IIII/IIII! 
llllllllllllllli/II/III/! 
!IIIIII/IIIIIII/IIIIIIIII 
llllllllll/IIIIIIIIIIIII! 
://1111111111111/111 ' 1111 
11111111/llllllllllllllll 
lll/IIIIIIIIIIIIIIIIIIII! 
f-----------------------! 
I-----------------------! 11/1111111111111111111111 
IIIII/IIIIIIIIIIIIIIIIII! 
l/III/IIIIIIIII,IIIIIIII! 
IIIIIIIIIIIIIII/I/III/II! 
11111111111111/1111111/1! 
!IIIIIIIIIIIIIIIIIIIIIII! 
:-----------------------: 
1 LOC~ED JOB 

!------------------.--_.! 

.. 
t , 
t 

-400-

CQRMAX , 
t 

, , .. 

ArTER 

!-- •• -------~---.---.-~.J 
! : 

"10NITOR 

t---------------·-----~·r 11/111111111111///111//11 
11//1/111/1/1/1///111/1/1 
l/IIIIIII/i/I//il/I/II//t 
!II/III/I///II//I//I///il 
11/1111/111/1/1///1111111 
11/1111/1/1/111/1111/1/11 
lll/III/III/III/IIII////! 
1//11/111/1/1/1///1/1/1/1 
11//111/1/11/11//11/11111 
11///1111/1/111/111/111/1 

:------------~ .. -------.: ! LOCKED JOB 
t--·---·-----------~~-~-I ! LOCKED JOB 

~--··-----------------~·t !1111/1/1/11//I/II/111111 
!/IIII/IIIIIIII/IIII/IIII 
!------------------.-.--J 
! LOCKEQ JOg 
1 
:--.----------.--.--.-~.! 

Figure 3-1 Locking Jobs In Core on KA 10 Systems (Cont) 

.. 
• 
• , , 

CORMAX , 
• , 
• , .. 

An error return is given if the UUO is not implemented. If this is the case, a job can relinquish its 

loCked status when either the .user program exec~tes an EXIT or RESETUUO, .or .the monitor pedorms 

an implicit RESET for the user. Implicit RESETS occur when 

a. The user program issues a RUN UUO, or 

b. The user types any of the following monitor commands: R, RUN, GET, SAVE, 
SSAVE, CORE 0, and any system program-invoking command. 

NOTE 
If several jobs are sharing (I locked high segment, the 
high segment is unlocked only when the SN%LOK bit is 
turned off for all jobs sharing,the segment· (i.e., when all 
jobs which executed the LOCK UUO have performed the 
unlock function) (refer to GETT AS table 14). 

On a normal return, the segment (or job) is unlqc:ked and becomes a candidate for ~wappirig and 

shuffling. Any meter points (METER. UUO) are deactivated CI'1d, if th~ low segment is unlocked~ any 

real-time devices are RESET. CORMA>< is increased to reflect the new'size of the largeslcontiguous 

region available to unlacked jobs. However, CORMAX is never set to a greater value than its initial 

setting • 

3-16 March 1973 



-401- f!ONITOR CALLS 

3.2.3 CORE AC, or CALLI AC, 11 

This Liuo provides a user program with the ability to expand and contract its core size as its memory 

recjuirements change. To allocate core in either or both segments, the left half of AC is used to 

specify the highest user address to be assigned to the high segment and the right half is used to specify 

the highest user address in the low segment. The monitor will assign the smollest amount of core which 

will satisfy the request. If the left half of AC contains 0, the high segment core assignment is not 

changed. If the left half of AC is non-zero and is either less than 400000 or the length of the low 

segment, whichever, is greater, the high segment is eliminated. If this is executed from the high seg­

ment, an illegal memory error message is printed when the monitor attempts to return control to the 

i II ega I address. 

A RH of 0 leaves the low segment core assignment unaffected. The monitor clears new core before 

assign ing it to the user; therefore, privacy of information is ensured. 

The error retum is given if: 

1) The LH is greater than or equal to 400000 and the system does not have a 
two-segment capability. 

2} The LH is greater than or equal to 400000 and the user has been meddling 
without write occess privileges {refer to Paragraph 6.2.3}. 

3} The LH and the RH are bath zero. 

In swapping systems, this programmed operator retums the maximum number of 1 K core blocks {all of 

core minus the monitor, unless an installdtion chooses to restrict the amount of core} available to the 

user. By restricting the amount of core available to users, the number of jobs in core simultaneously 

is increased. In nonswapping systems, the number of free and dormant 1 K blocks is retumed; therefore, 

the CORE UUO and the CORE command retum the same informatiOn. 

For compatibility, the KIlO also returns the number of 1K blocks available even though core is allo­

cated in 512-word pages. The value retumed is truncated to the nearest multiple of 1K{e.g., if 21 

pclges are available, the value retumed in 10K}. If it is necessary to obtain the exact amount of core 

available in units of pages, the user can examine the monitor location CORMAX {in GETTAB table 

12} with the GETTAB UUO {refer to Paragraph 3.6.3.4}. CORMAX is the maximum number of words 

available to the user and thus can be converted to either pages or K. 

The call is: 

MOVE AC [XWD HIGH ADR or 0, LOW ADDR or OJ 
CORE AC, ior CALLI AC, 11 
error return 
normal return 

3-17 March 1973 



mllITOR CALLS -402-

The CORE uuo re-assigns the low segment (if RH is non-zero) and then re-assigns the high segment 

(if LH is non-zero). If the sum of the new low segment and the old high segment exceeds the maximum 

amount of core allowed to a user, the error return is given, the core assignment is unchanged, and the 

maximum core available to the user for high and low segments (in lK blocks) is returned in the AC. 

In a nonswapping system, the number of free and dormant 1 K blocks is returned. 

If the sum of the new low segment and the new high segment exceeds, the maximum amount of core 

allowed to a user, the error return is given, the new low segment is assigned, the old high segment 

remains, and the maximum core available to the user in 1 K blocks is returned in the AC. Therefore, 

to increase the low segment and decrease the high segment at the same time, two separate CORE 

UUOs should be used to reduce the chances of exceeding the maximum size allowed to a user job. 

If the new low segment extends beyond 377m, the high segment shifts up into the virtual addressing 

space instead of being overlaid. If a long low segment is shortened to 377777 or less, the high seg­

ment shifts from the virtual addressing space to 400000 instead of growing longer or remaining where 

it was. If the high segment is a program, it does not execute properly after a shift unless it is a self­

relocating program in which all transfer instructions are indexed. 

If the high segment is eliminated by a CORE UUO, a subsequent CORE UUO, in which the LH is 

greater than 400000, will create a new, nonsharable segment rather than re-establishing the old high 

segment. This segment becomes sharable after it has been: 

a. Given an extension .SHR. 

b. Written onto the storoge device. 

c. C lased so that a directory entry is made. 

d. Initialized from the storoge device by GET, R, or RUN commands or RUN or GETSEG 
UUOs. 

The loader and the SAVE and GET commands use the above sequence to create and initialize new 

sharable segments. 

A user program which expands core should compare its highest desired address with its highest legal 

address obtained from the Job Data Area location .JBREL (refer to Chapter 1). If the desired address 

is greater than the highest legal address, the program should execute a CORE UUO for the new desired 

address (not for the highest old legal address plus 512 or 1024). The monitor then updates .JBREL by 

the number of words in its basic core allocation unit (i .eo, 1024 words on the KA 10 processor or 512 

words on the KIlO processor). Subsequent compares of the desired address and the highest legal address 

do not cause a CORE UUO until the next increase of core is required. If used this way, a CORE 

UUO will execute on both the KA10 and KIlO processors and will require less monitor CPU time 

because the number of CORE UUOs needed will be minimized. 

The following example illustrates the method for obtaining core only when needed. 

5.06 Monitor 3-18 March 1973 



-403- r'1ON nOR CALLS 
;S UBROUTI NE TO 
;CALL: MOVE 

PUSHJ 
RETURN 

GET CORE ONLY WHEN NEEDED 
TI, HIGHEST DESIRED ADDRESS 
P, CHKCOR 

HERE UNLESS NO I"1ORE CORE 

CHKCOR: CAMLE 
POPJ 
CORE 

JRST 
POPJ 

T I, .JBREL## 
P, 

;GREATER THAN HIGHEST LEGAL ADDRESS? 
;NO, PRESENT CORE BIG ENOUGH. 

T I, ;YES, GET NEXT INCREMENT OF CORE. 
ERROR 

P, 

3.2.4 SETUWP AC, or CALLI AC, 36 

; NO T A V A !LA B L E • 
;NEXT INCREMENT ASSIGNED. 

This UUO allows a user program to set or dear the hardware user-mode write protect bit and to obtain 

the previous setting. It must be used if a user program is to modify the high segment. 

The call is: 

SETUWP AC, 
error return 
normal return 

iOR CALLI AC, 36 

If the system has a two-register capability, the normal return will be given un less the user has been 

meddling without write privileges, in which case an error return will be given. A normal return is 

given whether or not the program has a high segment, because the reentrant software is designed to 

allow users to write programs for two-register machines, which will run under one-register machines. 

Compatibility of source and relocatable binary files is, therefore, maintained between one-register 

and two-register machines. 

If the system has a one-register capability, the error return (bit 35 of AC=O) is given. This error return 

allows the user program to find out whether or not the system has a ~o-segment capability. The user 

program specifies the setting of the user-mode write protect bit in bit 35 of AC (write protect::: 1, 

write privileges = 0). The previous setting of the user-mode write protect bit is returned in bit 35 

of AC, so that any user subroutine can preserve the previous setting before changing it. Therefore, 

nested user subroutines, which either set or clear the bit, can be written, provided the subroutines 

save the previous value of the bit and restore it on returning to its caller. 

3.3 SEGMENT CONTROL 

. 3.3.1 RUN AC, or CALLI AC, 35 

This UUO has been implemented so that programs can transfer control to one another. Both the low 

and high segments of the user's addressing space are replaced with the program being called. 

The call is: 

5.06 Monitor 

MOYSI AC, starting address increment 
HRRI AC, adr of six-word argument block 
RUN AC, 
error return (unless HALT in LH) 
[normal return is not here, but to start­
ing address plus increment of new program] 

3-19 

or CALLI AC, 35 

March 1973 



11orlITOR CALLS -404-

The arguments contained in the six-word block are: 

E: SIXBIT/logical device namel 
S IXB IT/fi lenamel 

SIXBfT/ext. for low filel 

o 
XWD proj. no., prog. no. 
XWD 0, optional core 

assignment 

;for either or both high and low files 

;if LH = 0, .LOW is assumed if high 
segment exists, .SAV is assumed if 
high segment does not exist. 

;if= 0, use current user's proj, prog 
; ~ H = new h ig hest user address to b~ 
assigned to low segment. 
~H is ignored rather than setting high 
segment. . 

A user program usually wi II. specify only the first two words and set the others to O. The RUN UUO 

destroys the contents of all of the user·s ACs and releases all the user's I/O channels; therefore, argu­

ments or devices cannot be passed to the next program. 

The RUN UUO to certain system programs (e.g., LOGIN, LOGOUT) automatically sets the approp­

riate privileged bits (JACCT and JLOG). These bits are not set (or are turned off if they were set) 

for programs that are not privileged programs from device SYS or for programs whose starting address 

offset is greater than 1. Assigning a device as SYS does not cause these bits to be set. 

The RUN UUO clears all of core. However, programs shQuld not count on this action, and must still 

initialize core to the desired value to allow programs to be restarted by a IC, START sequence with­

out having to do I/O. 

Programs on the system library shauld be called by using device SYS with a zero project-programnier 

number instead of device DSK with the project-programmer number [1, 4]. The extension should also 
I 

be 0 so that the calling user progr~m does not need to know if the called system program is reentrant 

or not. 

The LH of A,C is added to and storeq in the starting address (.JBSA) of the new program before control 

is transferred to it. The command C followed by the START command restarts the program at the 10-

cation specified by the RUN UUO, so that the user can start the current system program over ogain. 

The user is considered to be meddling with the program (refer to Paragraph 3.3.5) if the LH of AC is 

not 0 or 1 unless the program being run is execute-only for this job. In this case, the offset is treated 

as O. 

Programs accept commCl'lds from a terminal or a file, depending on how they were started, due to 

control by the program calling the RUN UUO. The following convention is used with all of DEC·s 

standard system programs: 0 in LH of AC means type an asterisk and accept commands from the terminal. 

A 1 means accept commands from a commCl'ld file, if it exists; if not, type an asterisk and accept 

commands from the terminal. The convention for naming system program command files is that 

3-20 March 1973 



~he, filename be of the form 

###111. TMP 

-405- f'1OtHTOR, CALLS 

where III are the first three (or ~ewer if three do not exist) characters of the name of the program 

doing the LOOKUP, and ### is the decimal character expansion (with leading zeroes) of the binary 
.' "' . 

job number. The job number is included to allow a user to run two or more jobs ~rider the same 

project-programmer number. For example, 

009PIP. iMP 
039MAC.TMP 

Decimal numbers are used so that a user listing his directory can see the same number as the P JOB 

command types,. These command files are temporary and may, therefore, be deleted by the KJOB 

program (refer to KJOB command and Appendix C in DECsystem-l0 Operating System Commands). 

At times it is necessary to remember the arguments that a user typed in to invoke a program (i. e, the 

argumentsCXl a GET or RUN command). For example, the COBOL program n,eeds these arguments 

in order to'GETSEGthe next overlay from the same place. In all monitors, when the program is 

first started; 'this inf9rmation can be obtained from the following accumulator$: 

ACO (.SGNAM) contains the filename. 
AC7 (.SGPPN) contains the directory name. 
ACll (.SGDEV) contains the device name. 
AC,17 (.SGLOW) contains the extension of the low segment., 

Note that the starting address should be changed by the program so that a C, START sequence will 

not destroy th~-re~e~ber~d ~~uments in theACs. This information shauld not be used when desiring 

to save the current segment name (GETTAB should be used in this case), but rather when obtaining 

the call 'ar9~m.ents, before calling the next seg~ent. 

The RUN 'UUOcan gi';'e an ~rror return with an error code in AC, if any errors ~re,detectedi thus, the 

user programmay'aftempt to recover from the error and/or give the user a more informative message 

on how to proceed. Some user programs do not go to the bother of including' error recovery code. 

The monitOrdet'ectsthis and does not give an error return if the L H of the error retUrn location is a 

HALT instruction. If this is the case, the monitor simply prints its standard error message for that type 

of error and returns the user's t~rminal to monitor mode. This optional error re~overy pracedure also 

allows a user program to analyze the error ,code received and then execute, a second RUN LJUO with 

a HALT if the error code indicates an error for which the monitor message iS5ufficienfly informative or 

one ITom which the user program cannot recover. 

The error codes 'are an extension of the LOOKUP, ENTER, andRENAMEUub error codes and are 

defined in thels.MAC manitor·file. Refe~ to Apl?endix E for an explanati~!'l?f th~'~rror codes. 

i " 

March 1973 



mUITOR CALLS -406-

The monitor does not atterrpt an error return to a user program after the high or lowsegmenf containing 

the RUN UUO has been overlaid. The UUO should be placed in the low seginent in case the error 

is discovered after the high segment has been released. 

, To successfully program the RUN UUO for all size systems and for all system prC19'r~ms with a size that 

is not known at the time the RUN UUO is coded, it is necessary to understanithe ~eq~enc;e of opera­

tions the RUN UUO initiates. Assume that the job executing the RUN UUO ha~ both a I~w; and a high 
, ". . . 

segment. (It can be executed from either segment; however, fewererr.ors c.an.be returned to the user' 

if it is executed from the high segment.) 

The sequence of operations for the RUN UUO is asfollows: \'" .. 

1. Does a high segment already exist with desired name? 

10. 

30. 

35. 

40. 

41. 

If yes, go. to 30. . 
INIT and LOOKUP filename .SHR. If not found, go to 10. . 
Read high file into top of low segment by extending it. (Here the' old segment 
and new high segment and old ~igh segment together may not exceed the maxi­
mum user core legally available to this job at the time of the UUO nor ~y it 
cause the total amount of virtual core assign~d to all users to e~ceed the site" 
of the swapping space.) 

REMAP the top of low segment replacing old high segment inlogiccil addressing . " 

space. .. . 
If high segment is sharchle (.SHR) store its name so others can shar~it. 
Always go to 40 or return to user if GETSEG UUO • 

• - • .",. I 

LOOKUP filename • HGH. If not found, go to 41 or error return to user if 
GETSEG:uub. . , ,. ,~ 

Read high file into top of low segment by extending it. (The 019Iow,segmellt: 
and new high segment and old high segment together may not exce~ the maxi­
mum user core legally available to this job at the time of the UUO nor~li1ayit ,. ' 
cause the total amount of virtual core assigned to all users to exceed the ~iz.e 
oftheswapping space.) . ", .' 

· Check for VOerrors. If any, error ret\,lrn to user un less HALT in ~HQf ret,urn. 
Go to 41. ' , 

Remove old high segment, if any, from logical addressing space. , 
, Plc;lce the sharable segment in user's 10gicC!1 addressing space. Go to 40 or. re­

turn to user if GETSEG UUO. 

Remove old high segment, if any, from logical addressing space. 
(Go to 41). 

Copy vestigial job data area into job data area. 
Does the new high segment have a low file 
(LH of .JBCOR :> 137)? 
If not, go to 45. 

· LOOKUP filename .SAVor .LOWor user specified extension, Error·if not, 
· found. Return to user if there is no HALT in LH of error return, provided that 
if the CALL is from the high segment, 'it is still the originaJ"highsegmenf'ana 
has not been removed from the user's addressing space. Otherwise, the monitor 
prints one of the following error messages: 

3-22 March 1973 



-407-

? NOT A SAVE FILE 
?filename .SAV NOT FOUND 
?TRANSMISSION ERROR 
?LOOKUP FAILURE n 
?nK OF CORE NEEDED 
?NO START ADR 

and stops the job. 

~10N nOR CALLS 

Reassign low segment core according to size of fi Ie or user specified core argu­
ment, whichever is larger. Previous low segment is overlaid. Read low file 
into beginning of low segment. Check for I/O errors. If there is on error print 
error message and do not retum to user. If there are no errors, perform START. 

45. Reassign low segment core according to larger of user's core argument or argument 
when file saved (RH of .JBCOR). 

NOTE 
To be guaranteed of handling the largest number of errQrs, 
the cautious user should remove his high segment from high 
logical addressing space (use CORE UUO with a one in lH 
of AC). The error handling code should be put in. the low 
segment along with the RUN UUO and the size of the low 
segment reduced to 1 K. A better idea wou Id be to have 
the error handling code written once and put in a seldom 
used (probably nonsharable) high segment, which could be 
gotten in high segment using GETSEG UUO (see below) 
when ~ error retum occurs to low segment on a RUN UUO. 

3.3.2 GETSEG AC, or CALLI AC, 40 

This UUO has been implemented so that a high segment can be initialized from a file or shared segment 

without affecting the low segment. It is used for shared data segments,. sh(]redpragram overlays, and 

rvn-time routines ~uch as FORTRAN or COBOL object time systems. This programmed operator works 

e~actlylike tlJe RUN UUO with the following exceptions: 

a. No attempt is made to read a low file. 

b. The accumulators are not preserved. The only change made to JOBDAT is to set 
the left half of .JBHRl to 0 (a SAVE commond then saves all of the high segment) 
and the right half to the highest legal user address. 

c •. If an error occurs, control is returned to the location of the error retum, unless the 
left half of the location contains a HALT instruction. 

d. On a normal return, the control is returned to two locations following the UUO, whether 
it is called from the low or high segment. It should be called from the low segment unless 
the normal return coincides with the starting address of the new high segment. 

e. User channels 1 through 17 are not released so the GETSEG UUO can be used for pro­
gram overlays, such as the COBOL compiler. Channel 0 is released because it is used 
by the UUO. 

3-23 March 1973 



~'ON nOR CALLS -408-

f. • JBSA and. JBREN are zeroed if they point to a high segment that is be ing removed. 
This produces the message: 

? NO START ADDRESS 

if a START or REENTER command is given. 

Refer to steps 1 through 30 of the RUN UUO description (Paragraph 3.3.1) for details of GETSEG 

UUO operation. 

3.3.3 REMAP AC, or CALLI AC, 37 

This UUO takes the top part of a low segment and remaps it into the high segment. The previous high· 

segment (if any) will be removed from the user's addressing spoce. The new low segment will be the 

previous low segment minus the amount remapped. 

The call is: 

MOVEI AC, desired highest adr in low segment 
REMAP AC, ior CALLI AC, 37 
error return 
normal return 

The monitor rounds up the address to the nearest core allocation unit of either 102410 (20008) words 

on KA10-based systems or 51210 (10008) words on KIlO-based systems. If the argument exceeds the 

length of the low segment, remapping will not take place, the high segment will remain unchanged 

in the user's addressing space, and the error return will be taken. The error return will also be taken 

if the system does not have a two-register capabi I ity. The content of AC is unchanged. The content 

of . JBREL (refer to Paragraph 1.2.1) is set to the new highest legal user address in the low segment. 

The LH of .JBHRL is set to 0 (a SAVE command then saves all of the highsegmerit) and the RH is set 

to the highest legal user address in the high segment (401777 or greater or 0). The hardwcire-reloca­

tion will be changed, and the user-mode write protect bit will be set. 

This UUO is used by the LOADER to load reentrant programs, which make use of all of physical core. 

Otherwise, the LOADER might exceed core in assigning additional core and moving the data from the 

low to the high segment with a BLT instruction. The GET command also uses this UUO to perform 

I/O into the low segment instead of the high segment. 

3.3.4 Testing for Sharable High Segments 

Occasionally, it is desirable for a program to determine whether its high segment i~ sharable. If the 

high segment is sharable, the program may decide not to modify itself. The following code tests 

the high segment whether or not 1) the system has a high segment capabi lity ·or 2) the job has a high 

segment. 

3-24 March 1973 



HRROI T, .GTSGN 
GETTAB T, 
JRST .+2 
TLNN T, (SN%SHR) 
JRST NOTSHR 

-409-

;see if high segment is sharable 
;Iook at monitor .GTSGN table 
;table or UUO not present 
;is sharable bit on? 
;no, go ahead and modify here 
iif high segment is sharable. 

3.3.5 Modifying Shared Segments and Meddling 

~'OfJ ITOR C.~LLS 

A high segment is usually write-protected, but it is possible for a user program to turn off the user 

write-protect bit or to increase or decrease a shared segment's core assignment by using the SETUWP 

or CORE UUO. These UUOs are legal from the high or low segment if the sharable segment has not 

been "meddled" with, unless the user nas write privileges for the file that initialized the high segment. 

Even the molicious user can have the privilege of running such a program, although he does not have 

the access rights to modify the file used to initialize the sharable segment. 

Meddling is defined as any of the following, even if the user has privileges to write the file which 

initialized the sharable segment. 

a. START or CSTART commonds with an argument. 

b. DEPOSIT commond in the low or high segment. 

c. RUN UUO with anything other than a 0 or 1 in LH of AC as a starting address increment. 

d. GETSEG UUO. 

It .is not considered meddling to perform any of the above commands or UUOs with a nonsharable pro­

gram. It is never considered meddling to type 1C followed by START (without an argument), CONT, 

CCONT, CSTART (without an argument), REENTER, DDT, SAVE, or E command. 

When a sharable program is meddled with, the monitor sets the meddle bit for the user. An error return 

is given when the clearing of the user write-protect bit is attempted with the SETUWP UUO or when 

the reassignment of core for the high segment (except to remove it completely) is attempted with tloe 

CORE UUO. An attempt to modify the high segment with the DEPOSIT command causes the message 

OUT OF BOUNDS 

to be printed. If the user write-protect bit was not set when the user meddled, it will be set to pro­

tect the high segment in case it is being shared. The command and the two UUOs are allowed in spite 

of meddling, if the user has the access privileges to write the file which initialized the high segment. 

A privileged programmer is able to supersede a sharable program, which is in the process of being 

shared by a number of users. When a successful CLOSE, OUTPUT, or RENAME UUO is executed for 

a file with the same directory name and filename (previous name if the RENAME UUO is used) as the 

segment being shared, the name of the segment is set to O. New users do not share the older version, 

but they do share the newer version. This requires the monitor to read the newly created file only 

once to i~itialize it. The monitor deletes the older version when all users are finished sharing it. 

3-25 March 1973 



I 

f1ONITOR CALLS -lI10-

Users with access privileges are able to write programs that access sharable data segments via the 

GETSEG UUO (which is meddling) and then turn off the user write-protect bit using SETUWP UUO. 

With DEC tape, write privileges exist if it is assigned to the job (cannot be a system tape) or is not 

assigned to any job and is not a system tape. 

When control can be transferred only to a small number of entry points (two), which the shared program 

is prepared to handle, then the shared program can do anything it has the privileges to do, although 

the person running the program does not have these privileges. 

The ASSIGN (and the DEASSIGN, DISMOUNTjREMOV, FINISH, KJOB commands if the device was 

previously assigned by console) command clears all shared segment names currently in use, which were 

initialized for the device, if the device is removable (DTA, MTA). Otherwise, new users could con­

tinue to share the old segment indefinitely, even if a new version were maunted on the device. 

Therefore, it is possible to update the library during regular timesharing, if the programmer has 

access privileges. 

3.4 PROGRAM AND PROFILE IDENTIFICATION 

3.4.1 SETNAM AC, or CALLI AC, 43 

This UUO is used by the LOADER. The content of AC contains a left-justified SIXBIT program name, 

which is stored in a monitor job table. The information in the table is used by the SYSTAT program 

(refer to Table 3-1 in Paragraph 3.6.3.3). This UUO clears the "SYS:" program bit JB.LSY (used by . 

Batch), clears the execute-only bit, and outputs a SET WATCH VERSION number (refer to 

DECsystem-10 0 perating System Commands). 

3.4.2 SETUUO AC, or CALLI AC, 751 

This UUO is used to set varioUs system or job parameters. To set system parameters, the user must be 

logged in under [1, 2] or the job must be running with the JACCT bit set. Refer to the Specifications 

section of the DECsystem-10 Software Notebooks for a complete description of the privileged functions. 

The contents of AC contain a function code in the left half and an argument in the right half. The 

call is: 

MOVEAC, [XWD function, argument] 
SETUUO AC, 
error return 
normal return 

iOr CALLI AC, 75 

1This UUO depends on FTSET which is normally off in theDECsystem-1040. If FTSET is on, 
individual functions depend on the other feature test switches as noted in the text. 

5.06 Monitor 3-26 March 1973 



-411- MON nOR CALLS 

The functions and arguments are as follows: 

Function 

o 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

Name Argument 

.STCMX CORMAX. Privileged function. 

.STCMN CORMIN. Privileged function. 

• STOAY 

.STSCH 

.STCDR 

.STSPl 

.STWTC 

• STOAT 

.STOPR 

• STKSY 

.STClM 

• STTlM 

.STCPU 

• STCRN 

• STlMX 

DAYTIME. Privileged function (FTSEDAT) • 

SC HED. Privileged function. 

CDR (input name counter for this job). Nota privileged 
function. If AC is non-zero, the content is the same as 
the next input name. If AC is 0, the current counter is 
returned in AC (FlSPl). 

SPOOL for this job. Not a privileged function unless 
the user is unspooling devices. Bits are bits 31-35 of 
• GTSPl (FTSPl). 

Bit 35 JS. PlP 
Bit 34 JS.PPl 

line printer spooling 
plotter spooling 

Bit 33 JS. PPT 
Bit 32 JS.PCP 

paper tape punch spool ing 
card punch spooling 

Bit 31 JS. PCR card reader spooling 

WATCH for this job. Not a privileged function. Bits 
are bits 1-6 of .GTWCH (FTWATCH). 

Bit 1 JW.WDY watch time of day 
Bit 2 JW. WRN watch run time 
Bit 3 JW.WWT watch wait time 
Bi t 4 JW. WDR watc h disk reads 
Bit 5 JW. WDW watch disk writes 
Bit 6 JW. WVR watch version numbers. 

DATE. Privileged function (FTSEDAT). 

o PR • Privileged function. 

KSYS. Privileged function (FT5UUO) • 

CORE limit. Privileged function (FTTLIM). 

TIME limit for this job. Privileged function (FTTLIM) • 

CPU specification for this job. The following bits 
select the CPU on which the job is allowed to run. 

Bit 35 
Bit 34 
Bit 33 
Bit 32 
Bit 31 
Bit 30 

SP.CRO 
SP.CR 1 
SP.CR2 
SP.CR3 
SP.CR4 
SP.CR5 

CPUO 
CPUI 
CPU2 
CPU3 
CPU4 
CPU5 

CPU runnability. Privileged function • 

lOG MAX. Privileged function • 

3-27 Mcrch 1973 



mN ITOR CALLS 
Function 

17 

~ 

21 

-412-
Name Argument 

.STBMX BATMAX. Privileged function. 

.STBMN BATMIN. Privileged function. 

.STDFL DSKFUL for this job. Not a privileged function. An 
arg~ment of 0 (.DFPSE) causes a pau~e and an argument 
of 1 (.DFERR) causes an error when the disk is fun or the 
u~r's quota is exceeded. The current setting can 
be determined by issuing an argument other than 0 or 1. 
The value retur.,ed is either 0 or 1 dependi"ng on whether 
PAUSE or ERROR is set. The initial setting 'is ERROR., 

The error return is given if 1) the UUO is not implemented, 2) the ~ser does not have the correct 

privileges for the function specified, or~) the argument specified is invalic:l. 

On C! normal return, AC remains unchanged. 

~.4.3 LOCATE AC~ or CALLI AC, 621 

This UUO is used to c~ange the logical station associated with the user's job. The call is: 

MOVEI AC, station number 
LqCATE AC, ior CALLI AC, 62 
error return 
normal return 
" , 

The station number requested is contained in AC as follows: 

-1 changes the job's location 10 the physical station of the job's 
cOl1trollinSl termina~. 

o changes the job's locati9" 10 the central station. 

n changes the job's location 10 remote station n. 

The normal return is taken if the UUO is implemented, the station is defined, and the station is 1n 

contact. Subsequent generic device specifications are at the new station. The error return is taken 

if the UUO is not implemented or the specified stati~n is illegal or not in cOl1tact. 

3.5 INTER-PROGRAM COMMUNICATION 

3.5.1 TMPCOR AC, or CALLI AC, 442 

This UUO allows a job to leave several short files in core from the running of one user program or 

system program to the next. These files are referenced by a three~haracter filename and are unique 

1 This UUO depends on FTREM which is normally off in the DECsystem-l040. 

2This UUO depends on FTTMP which is normally off in the DECsystem-l040. 

5.06 Monitor 3-28 March 1973 



-413- ~10N ITOR CALLS 

to each job. All files are deleted when the job is killed. This system of te"llorary storage improves 

response time and reduces the number of disk operations. If this UUO fails, the file specification 

DSK:nnnNAM. TMP, where nnn is the job number and NAM is the three-character filename, should 

be used for temporary disk storage. 

Each temporary file appears to the user as one dump mode buffer. The actual size of the file, the 

number of temporary files a user can have, and the total core a user can use for temporary storage 

are parameters determined at MONGEN time. All te"llorary files reside in a fixed area, but the 

space is dynamically allocated among different jobs and several different files for any given lob. 

The call is: 

MOVE AC, [XWD CODE, BLOCK] 
TMPCOR AC, 
error return 
normal return 

BLOCK: XWD NAME, 0 
IOWD BUFLEN, BUFFER 

ior CALLI AC, 44 

iNAME is filename 
iuser buffer area 
i{zero for no buffer) 

The AC must be set by the user program prior to execution of the UUO and is changed by the UUO on 

return to a value that depends on the particular function performed. Functions of the l'MPCOR UUO 

are presented in the following paragraphs. 

3.5.1.1 CODE = 0 (. TCRFS), Obtain Free Space - This is the only form of the UUO that does not 

use a two-word parameter block and, therefore, the contents of AC are ordinarily set to O. A normal 

return is given (unless the UUO is not implemented), and the number of the free words available to 

the user is returned in AC. 

3.5.1.2 CODE = 1 (. TCRRF), Read File - If the specified file is not found, the number of free 

words available for temporary files is returned inAC and the error return is taken. If the specified 

file is found, the length of the file in words (that is, the length in BUFLEN when writing the file 

rounded up to the next highest multiple .of four) is returned in AC, and as much of·the file cis possible 

is copied into the user's buffer. The user may check for truncation of the file by comparing the' 

contents of AC with B UFLEN • 

3.5.1.3 CODE = 2 (. TCRDF), Read and Delete File - This function is similar to CODE = 1, except 

that if the specified file is found, it is deleted and its space is reclaimed. 

3-29 March 1973 



r-l0N nOR CALLS -414-
3.5.1.4 CODE = 3 (.TCRWF), Write File - If a file exists with the specified name, it is deleted 

and its space reclaimed. The requested size of the file is the value in BUFLEN rounded up to the 

next highest multiple of four. If there is enough space 

a. The file is written. 

b. The number of remaining blocks is returned in AC. 

c. The normal retum is taken.' 

If there is not, enough space to completely y-trite the file 

a. The file is not written. 

b. The number of free words available to the user is retumed in AC. 

c. The error return is t(lken. 

3.5.1.5 CODE = 4 (. TCRRD), Read Directory - The number of different files in the temporary file 

area of the job is returned in AC. An entry is made for each file in the user's buffer area until either 

there is no more space or all fi les have been listed. The error return is never t~en. The user may 

check for truncation of the entries by comparing the contents of AC with BUFLEN. The format of a 

directory entry is as follows: 

XWD NAME, SIZE 

where NAME is the filename and SIZE is the file length in words. 

3.5.1.6 CODE = 5 (. TCRDD), Read and Clear Directory": This function is~imilar to CODE = 4, 

except that any files in the temparary storage area of the job are deleted and their space is reclaimed. 

This UUO is used by the LOGOUT program. 

3.6 ENVIRONMENTAL INFORMATION 

3.6.1 Timing}nformation 

The 5.05 and later monitors use two time and two date standards. The time accounting is performed 

by two clocks. The APR clock, driven by the power source frequency (60 Hz in North America, 

50 Hz inmost other countries), is accurate over long periods of time. For this reason, it is used to 

keep the time of day, e.g., for the TIMERUUO. It can also be used for runtime accounting measure­

ment (i.e., keeping track of the processor time each job uses). However, there will be some loss of 

accuracy since the time intervals in which a job runs are often less than the period of the APR clock. 

3-30 March 1973 



-415- r10N nOR CALLS 

The DKlO clock, a 100000 Hz clock, is accurate over short periods of time. It is used to perform 

runtime accounting, and thereby achieves greater accuracy than the APR clack. 

I The traditional DECsystem-IO date (returned with the DATE UUO) isa IS-bit integer. This integer is 

incremented by I each day, by 31 each month (regardless of the actual number of days in the month), 

and by 12*31 each year (also regardless of the actual number of days in the year). This date format 

is easy to resolve into year-month-daYi however, the difference between two dates in this format is 

I not necessarily the actual number of days between them. 

A universal date-time standard (GETTAB table 11, item 53) is also used in which the left half of the 

word is the date and the right half is the time. The date is uniformly incremented each day (at 

midnight, Greenwich Mean Time) with I being November 18, 1858. This date is consistent with the 

Smithsonian Astronomical Date Standard and other computer systems. The time is a frqction of a day. 

Thus, the 36-bit quantity is in units of days with a binary point between the left and right halves. 

The resolution is approximately 1/3 of a second; that is, the leas"t significant bit (bit 35) represents 

approximately 1/3 of a second. Since the time is Greenwich Mean Time (GMT), all installations 

have a date-time reference which is independent of lacation and local time conventions. 

For convenience, the monitor maintains a set of GETTAB values which gives the local date and time 

in terms of year, month, day, hours, minutes, and seconds (GETTAB table 11, items 56-63). 

3.6. I. I DA TE AC, or CALLI AC, 14 - A IS-bit binary integer computed by the formula 

date={{year-1964)x 12+{month-1 »x31+day-1 

represents the date. 

This integer representation is returned right justified in AC. 

3.6.1.2 TIMER AC, or CALLI AC, 22 - This UUO returns the time of day, in clock ticks (jiffies), 

right justified in AC. A jiffy is 1/60 of a second (16.6 milliseconds) for 60-cycle power and 1/50 

of a second (20 milliseconds) for 50-cyclepower. The MSTIME UUO should normally be used sO 

that the time is not a function of the cycle. 

3.6.1.3 MSTIME AC, or CALLI AC, 23 - This UUO returns the time of day, in milliseconds, right 

justified in AC. 

3-31 June 1973 



mrHTOR CALLS -416-
3.6.2 Job Status Information 

3.6.2.1 RUNTIM AC, or CALLI AC, 27 - The accumulated running time (in milliseconds) of the 

lob number specified in AC is returned right justified in AC. If the job number in AC is zero, the 

running time of the currently running job is retumed. If the job number in AC does not exist, zero 

is returned. 

3.6.2.2 PJOB AC, or CALLI AC, 30 - This lJuo returns the job number right justified in AC. 

3.6.2.3 GETPPN AC, or CALLI AC, 24 - This UUO returns in AC the project-programmer pair of 

the job. The project number is a binary number in the left half of AC, and the programmer number 

is a binary number in the right half of AC. If the program has the JACCT bit set, a skip return is 

given if the old project-programmer number is also logged in on another job. 

3.6.2.4 OTHUSR AC, or CALLI AC, 77 - This UUO is used to determine if another job is logged 

in with the same project:"programmer number as the job executing the UUO. The non-SKIP return 

is given if 

1) the UUO is not implemented, in which case the AC remains unchanged, or 

2} the UUO is implemented md no other jobs are logged in with the same 
project-programmer number, in which case the AC contains the project­
programmer number of the job executing the UUO. 

The SKIP return is given, if the UUO is implemented and other jobs are logged in with the same 

project-programmer number. The AC ,contains the project-programmernumber of the job executing 

the UUO. This UUO is used by KJOB. 

3.6.3 Monitor Examination 

3.6.3.1 PEEK AC, or CALLI AC, 33 - This UUO allows a user program to examine any location in 

the monitor. It is used by SYSTAT, FILDDT, and DATDMP and could be used for on-line monitor 

debugging. The PEEK UUO requires bit 16 (JP.SPA - examine all of core) and/or bit 17 (JP.SPM­

examine the monitor) to be set in the privilege word. GTPRV. 

The calJ is: 

MOVEI AC, exec address . 
PEEK AC, 

;TAKEN MODULO SIZE OF MONITOR 

;OR CALLI AC, 33 

This call retums with the contents of the monitor location ,in AC. 

3.6.3.2 SPY AC, or CALLI AC, 42 - This UUO is used for efficient examination of the monitor 

during timesharing. Any number of K of physical core (not limited to the size of the monitor) is 

3-32 March 1973 



-417- r10f"l ITOR CALLS 

placed into the user's logical high segment. This amount cannot be saved with the monitbr SAVE 

. command (only the low segment is saved), cannot be increase~ or decreased by the CORE UUO 

(error return taken), or cannot have the user-mode write "'Protect bit cleared (error return taken). 

The call is: 

MOVEI AC, highest physical core location desired 
SPY AC, iO( CALLI AC, 42 
error return 
norma I return 

Any program that is written to use the Spy UUO should try the PEEK UUO if it receives an error 

return. The Spy UUO requires bit 16 (JP .SPA - examine all of core) anq/or bit 17 (JP .~PM -

examine the monitor) to be set in the privilege word .GTPRV. 

3.6.3.3 POKE. AC, or CALLI AC, 1141 - This UUO is used by a privileged user to alter one loca­

tion in the monitor at a time. The POKE. UUO requires bit 4 (JP.POK) to be set in the privilege 

word • GTPRV : 

The call is: 

MOVE AC, [3"ADR] 
POKE. AC, 
error return 
normal return 

ADR: monitor location 
old value· 
new value 

The error return is given if: 

The user is not privileged; AC contains O. 

;or CALLI AC, 114 

The value specified in AD~+l as the old value is not the same as the actual value 
contained in. the monitor location; AC contains 1. 

The address specified is not a valid monitor addressi AC contains 2. 

3.6.3.4 GEnA~ AC, or CALLI AC, 41 - This UUO provides a mechanism which will not vary 

from monitor to manitor for user programs to examine the contents of certain monitor locations. 

The call is: 

MOVE AC, [XWD index, table number] 
GETTAB AC, ior CALLI AC, 41 
error return 
norma I return 

1 This UUO depen,ds on FTPOKE which is normally off in the DECsystem-1040. 

3-33 March 1973 



r~ON ITOR CALLS -418-

The left half of AC contains a job number or some other index to a table. Some job numbers may 

refer to high segments of programs by using arguments greater than the highest job number for the 

current monitor. A LH of -1 indicates the current job number. A LH of -2 references the job IS high 

segment. An error return is given if there is no high segment or if the hardware and software are 

non-reentrCl1t. The right half of AC contains a table number from the list of monitor data. tables and 

parameters in Table 3-1. The entries in these ta,les are globals in the manitor subroutine COMMON. 

The actual values of the core addresses of these locations are subject to change and can be found in 

the LOADER storage map for the monitor. The complete description of these globals is found in the 

listing of COMMON. 

The customer is allowed to add his own GETTAB tables to the monitor. A negative right half should 

be used to specify such customer-added tables. 

An error return leaves the AC unchanged and is given if the job number or index number in the left 

half of AC is too high, the table number in the right half of AC is too high, or the user does not have 

the privilege of accessing the specified table. 

A normal retum supplies the contents of the requested table in AC,or a zero if the table is not defined 

in the current monitor. 

The SYSTATprogram makes frequent use of this UUO. 

NOTE 

Many GETTAB tables have information in the undescribed 
bits. This information is likely to change and should be 
ignored. Although the field may currently be zero, there 
is no reason to believe that it will always be zero. 

3-34 Marvh 1973 



Table Nurmers 
(RH of AC) Table Names 

00 • GTSTS 

01 .GTADR 

02 .GTPPN 

03 .GTPRG 

I 04 .GTTIM 

05 . GTKCT 

06 .GTPRV 

07 .GTSWP 

10 .GTTTY 

11 .GTCNF 

12 .GTNSW 

13 .GTSDT 

14 • GTSGN 

15 .GTODP 

16 .GTLDV 

5.06 Monitor 

-419- r'lON nOR CALLS 

Tobie 3-1 
GETTAB Tables 

Explanation 

Job status word; index by job or segment number • 

Job relocation and protection; index by job or 
segment number 

Project and programmer numbers; index by job or 
segment number 

User program name; index by job or segment 
number. 

Total run time used in units of jiffies; index by 
job number. The value of a jiffy can be obtained 
from b'it 6 of the STATES word (item 17 in the 
.GTCNF table). 

Kilo-Core ticks of job; index by job nurmer • 

Privilege bits of job; index by job number, refer 
to Paragraph 3.6.3.4.1. 

Swapping parameters of job; index by job or seg-
ment nurmer. 

Terminal-to-job translation; index by job number. 

Configuration table; index by item number, refer 
to Paragraph 3.6.3.4.2. 

Nonswapping data; index by item number, refer to 
Paragraph 3.6.3.4.3. 

Swapping data; index by item nurmer, refer to 
Paragraph 3.6.3.4.4. 

High segment table; index by job number • 
Bit 0 = 0, then bits 18-35 are index of high segment 
(if bits 18-35 = 0, then there is no high segment). 
Bit 0 = 1, then bits 18-35 are number of K to spy on. 
Bit 1 (SN%SHR) = 1 if job has a high segment that 
is sharable. 
Bit 5 (SN%LOK) = 1 if job has a high segment that 
is locked. 

Once-only disk parameters; index by item number, 
refer to Paragraph 3.6.3.4.5. 

5-series monitor disk parameters; index by item 
number, refer to Paragraph 3.6.3.4.6. 

3-35 March 1973 



Tab Ie Numbers 
(RHofAC) 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

Table Ndmes 

.GTRCT 

• GTWCT 

. GTDBS 

.GTTDB 

.GTSLF 

.GTDEV 

.GTWSN 

• GTLOC 

.GTCOR 

• GTCOM 

.GTNM1 

.GTNM2 

• GTCNO 

• GTTMP 

.GTWCH 

.GTSPL 

.GTRTD 

-420-

Table 3-1 (Cont) 
GETIAB Tables 

Explanation 

Disk blocks read by job; used by DSK command: 
a. Bits 0-11 = incremental blocks 
b. Bits 12-35 = total blockS since start of job. 
Index by job number. Job 0 indicates the number 
of blocks swapped in • 

Disk blocks written by job: 
a. Bits 0-11 = incremental blocks. 
b. Bits 12-35 = total blocks since start of job. 
Index by job number. Job 0 indicates the number 
of blocks swapped out • 

Reserved for future. 

Reserved for future. 

Table of GETIAB addresses (GETTAB immediate); 
index by GETTAB table number, refer to 
Paragraph 3.6.3.4.7. 

Device or file structure name of sharable high seg­
ment. Index by high segment number. 

Two-character SIXBIT names for job queues; index 
by item numbers, refer to Paragraph 3.6.3.4.8 • 

Job's logical station; index by job number. 

Physical core allocation. One bit per one K of 
core if system does not include LOCK UUO. Two 
bits per entry if system includes LOCK UUO. A 
non-zero entry indicates core ih use. 

Table of SIXBIT names of monitor commands • 

First half of name of user in SIXBIT; index by job 
humber. 

Last half of name of user in SIXBIT; index by job 
number. 

Job's charge number; index by job number • 

Job's TMPCOR poihters; index by job number • 

Job's WATCH bits; index by job number, refer to 
Paragraph 3.6.3.4.9. 

Job's spooling control bits; index by job number, 
refer to Paragraph 3.6.3.4.10. 

Job's real-time status word; index by job number. 

3-36 March 1973 



Table Numbers 
(RH of AC) 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

5.06 Monitor 

Table Names 

.GTLIM 

• GTQQQ 

.GTQJB 

• GTCM2 

.GTCRS 

.GTlSC 

• GTOSC 

• GTSSC 

.GTRSP 

.GTSYS 

.GTWHY 

.GTTRQ 

-421- MOIl nOR CALLS 

Table 3-1 (Cont) 
GETTAB Tables 

Explanation 

Job's time limit in'jiffies and Batch status; index by 
job number. . 
a. Bits 1-9 (JB. LCR) = job's core limit. 
b. Bit 10= 1 (JB.LBT) ifa Batch job. 
c. Bitll = 1 (JB.LSY) if program comes from SYS. 
Set on R command or equi.valent. Cleared on R 
commond (or equivalent) or SETNAM UUO. 
d. Bits 12-35 (JB.LTM) = job's time limit. 

Timesharing scheduler's queue headers • 

Timesharing scheduler's queue that job is in; index 
by job number. 

Table of SET command names • 

Status of hardware taken on a crash. 
0: CR.SAP = CONI APR, 
1: CR.SPI= CONI PI, 
2: CR.SSW = DATAl APR 
The remainder of the tab Ie contains the status of 
the various devices. 

Swapper's input scon list of queues. 

Swapper's output scan list of queues • 

Scheduler's scan list. Qf queues . 

Response counter table. Time in jiffies when user 
started to wait for his job to run. This time is 
cleared when the job is first given to the processor 
by the sc hedu I er • 

System variables which are independent of CPU. 
Word 0 (%SYERR) = system wide hardware error count. 
Word 1 (%SYCCO) = number of times COMCNT 
was off. 
Word 2 (%SYDEL) = number of error-logging dis-
ab led errors. . 
Word 3 (%SYSPC) == LH is a 3-Ietter code of the 
last STOPCD. 
RH is tl-e address +1 of the last STOPCD execufE!d. 
Word 4 (%SYNDS) = number of debug STOPCDs. 
Word 5 (%SYNJS) = number of job STOPCDs. 
Word 6 (%SYNCP) = total number of commands 
processed by the system since it was started. 

Operator why comments in ASCIZ. 

Total time job was in run queues whether it was 
runn i ng or not. 

3-37 March 1973 



MONITOR CALLS 

Table Numbers 
(RH of AC) Table Names 

54 .GTSPS 

55 .GTCOC 

56 .GTCOV 

57 .GTClC 

60 .GTClV 

61 .GTC2C 

62 .GTC2V 

63 .GTC3C 

64 .GTC3V 

65 .GTC4C 

66 .GTC4V 

67 .GTC5C 

70 .GTC5V 

71 .GTFET 

72 .GTEDN 

5.06 Monitor 

-422-
Table 3-1 (Cont) 

GETTAB Tables 

Explanation 

Job status ~ord of second processor. 
Bit 29 (SP .SCO) = SET CPU command can be used. 
Bit 35 (SP .. CRO) = SET CPU UUO can be used. 
Bits for other processors can be obtained by shifting 
left 1 bit per processor. 

CPUO CDB co~stants; index by item number, refer 
to Paragraph 3.6.3.4.11. 

CPUO CDB variables; index by item number, refer 
to Paragraph 3.6.3.4.12. 

CPU1 CDB constants; index by item number; see 
.GTCOC. 

CPU1 CDB variables; index by item number; see 
.GTCOV. 

CPU2 CDB constants; index by item number; see 
.GTCOC. 

CPU2 CDB variables; index by item number; see 
.GTCOV. 

CPU3 CDB constants; index by item number; see 
.GTCOC. 

CPU3 CDB variables; index by item number; see 
.GTCOV. 

CPU4 CDB constants; index by item number; see 
.GTCOC. 

CPU4 CDB variables; index by item number; see 
.GTCOV. 

CPU5 CDB constants; index by item number, see 
.GTCOC. 

CPU5 CDB variables; index by item number; see 
.GTCOV. 

Current setting of all features defined in F.MAC, 
index by item number, refer to Paragraph 3.6.3.4. 14. 

Table of ersatz device names (e.g., NEW, LIB) 
with their corresponding project-programmer num-
bers. The search lists of these devices can be 
obtained from the PATH;UUO. 

3-38 March 1973 



I 

-423- MONITOR CALLS 

3.6.3.4.1 Entries in Table 6- .GTPRV (privilege Table) 

Each job has a one-word entry to indicate job privileges. The privilege bits are as follows: 

Bit Mnemonic Meaning 

1-2 JP.DPR Highest disk priority for this job. 

3 JP.MET Job is allowed to execute the METER.UUO. 

4 JP.POK Job is allowed to execute the POKE.UUO. 

5 JP.CCC Job is allowed to cha;,ge its CPU specification 
via a command or UUO. 

6;"9 JP;HPQ Highest high-priority queue available to this job. 

10 JP.NSP Job is allowed to unspool devices. 

13 JP.RTt Job is allowed to execute the RTTRP UUO. 

14 JP.LCK Job is allowed to execute the LOCK UUO. 

15 JP. TRP Job is allowed to execute the TRPSET UUO. 
I 

16 JP.SPA Job is allowed to PEEK and SPY on all of core. 

17 JP.SPM Job is allowed to PEEK and Spy on the monitor. 

3.6.3~4.2 Entries in Table 11 - .GTCNF (Configuration Table) 

Item Location 

0 %CNFGO 

4 %CNFG4 

5 %CNDTO 

6 %CNDTl 

7 %CNTAP 

10 %CNTIM 

11 %CNDAT 

12 %CNSIZ 

13 %CNOPR 

14 %CNDEV 

15 %CNSJN 

16 %CNlWR 

Use 

Name of system in ASCIZ. 

Date of system in ASCIZ. 

Name of system device (SIXBIT). 

Time of day in jiffies. 

Today's date (15-bit format). 

Highest location in monitor +1. 

Name of OPR TTY (SIXBIT). 

LH is start of DDB (device-data-block) chain. 

LH=;"# of high segments, RH=+# of jobs 
(counting NULL job). 

Non-~ero if system has two-register hardware and 
software. 

3':'39 June 1973 



r'1ON nOR CALLS 

Item Location 

17 %CNSTS 

I 

20 %CNSER 

21 %CNNSM 

5.06 Monitor 

-424-

Use 

Location describing feature switches of this system 
in LH, and current state in RH. 

Assembled according to MONGEN dialog and 
S.MAC: 
Bit 0=1 if disk system (ST"IoDSK) 
Bit 1=1 if swap system (ST"IoSWP) 
Bit 2=1 if LOGIN system (ST"IoLOG) 
Bit 3=1 if full duplex software (ST%FTT) 
Bit 4=1 if privilege feature (ST%PRV) 
Bit 5=1 if assembled for choice of reentrant or non­

reentrant software at monitor load time (ST%TWR) 
Bit 6=1 if clock is 50 cycle instead of 60 cycle 

(ST%CYC) 
Bit 7-9 type of disk system (ST%TDS): 

if 0, 4-series disk system. 
if 1, 5-series disk system. 
if 2, spooled disk. 

Bit 10=1 if independent programmer numbers be­
twe~n project (INDPPN is non-zero) (ST%IND) 

Bit 11=1 if image mode on terminal (8-bit SCNSER) 
(ST%IMG) 

Bit 12=1 if dual processor system (ST%DUL) 
,Bit 13=1 if multiple RIBs supported (ST"IoMRB) 
Bit 14",,1 if high precision time accounting (ST%HPT) 
Bit 15 = 1 if overhead excluded from time account-

ing (ST%EMO) 
Bit 16=1 if real-time clock (ST%RTC) 

Bit 17=1 if built to handle FOROTS (ST%MBF) 

Set by the privileged operator command, SET 
SCHED: 
Bit 27=1 means no operator (ST%NOP) 
Bit 28=1 means unspooling devices (ST"IoNSP) 
Bit 29=1 means assigning devices (ST%ASS) 
Bit 33=1 means only Batch jobs may LOGIN (except 

from CTY or OPR) (ST%BON) 
Bit 34=1 means no remote LOGINs (ST%NRL) 
Bit 35=1 means no more LOGINs except from CTY 

or OPR (ST%NlG) 

Serial number of PDP-10 processor. Set by 
MONGEN dialog. 

Number of nanoseconds per memory cyc Ie for memory 
system. If the GETT AB fails, the nUnDer of nano­
seconds per memory cycle is t D1000. Used by 
SYSTAT to compute shuffling time. 

3-40 March 1973 



-425- r~ONITOR C.~LLS 

Item location Use 

22 %CNPTY PTY para."eters for Batch. 

lH = the number of the first invisible terminal 
(y.-hich is one greater than the number of the CTY) 
R,H = the number of PTY's in the system configura-
tion. 

23 %CNFRE AOBJN word to use bit map in monitor for allaca-
ting 4-word core blocks. 

24 %CNi..bC . qt-=O, R!i=address in monitor for free 4-word core 
blac~ areas. (This is never changed while 
moriito.. runsJ. 

25 %CNSTB link to STB chain for remote Bateh. 

26 %CNOPl AddreSs of the line data block (lOB) of the 
operator's terminal. 

27 %CNTTF Pointer to TTY free chunks. 

30 %cNrrc l H=number of TTY chunks. 
RH=address of first TTV chunk. 

31 %CNTTN Number of free TTY chunks. 
: . . 

32 %CNlNS Point~r to current TTV as seen by the command 
decoder. 

33 %CNlNP Pointer to examine TTY line table, including 
remOte terminals. . . 
lH= -total number of TTY lines. 
RH=beginning of line table. 

34 %CNVER Version of monitor. (Stored in location 137 of 
monitor asa save file when mbnitor is not running.) 
Bits 0-17reserved for customei'~ 
Bits 18-23 monitor level (e.g., 5) 
Bits 24-29 monitor release (e.g.1. 3). 
Bits 30-35 used for internal development. 
If the GETTAB fails, the monitor is a version 
previous to 5.03 

35 %CNOSC Pointer to data set control table. 
lH = -length of table. 
RH = beginning of control table. 

36 %CNOlS last received interrupt from the DCI0. 

37 %CNCCI las. received interrupt from the 6801. 

40 %CNSGT last dormant seg!'lent which was deleted to free a 
segment number. 

41 %CNPOK Address of last location changed in monitor by the 
POKE.UUO. 

3-41 March 1973 



rmN nOR CALLS 

Item 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

Location 

%CNPUC 

%CNWHY 

%CNTIC 

%CNPDB 

%CNRTC 

%CNCHN 

%CNLMX 

%CNBMX 

%CNBMN 

%CNDTM 

%CNLNM 

%CNBNM 

%CNYER 

%CNMON 

%CNDAY 

%CNHOR 

%CNMIN 

%CNSEC 

-426-
Use 

LH = the number of the job which successfully 
executed the POKE.UUO last. 

RH = the number of successful POKE .UUOs executed. 

The reason for the last reload (SIXBIT unabbreviated 
operator CI'lswer). Refer to ONCE in the DEC­
system-10 Software Notebooks. 

The number of clock ticks per second. This is the 
time-of-day clock. The nUnDer is obtained by 
conducting a simple experiment at mon itor load 
time. A different clock can be used for increm­
ental run time accounting (refer to %CNRTC 
below). 

The pointer to the process data block (PDB) pointer 
tables. 

The run time clock rate {jiffies per second}. That 
is, the rate of the clock used to measure the run 
time of the job and the system statistics (null, lost, 
and overhead time). This is the precision of the 
measurement, not the units of measurement. 

The pointer to the list of channel (DF10) data 
blocks. 
LH = the address of the 1st channel data black. 
RH = unused. 

LOG MAX. The maximum number of jobs allowed 
to LOGIN. 

BATMAX. The maximum number of Batch jobs 
allowed to LOGIN. 

BATMIN. The guaranteed nUnDer of Batch jobs 
{i .e., the number of jobs reserved for Batch}. 

The universal date-time standard {refer to 
Paragraph 3.6. 1}. 

LOGNUM. The number of jobs currently logged-in. 

BATNUM. The number of Batch jobs currently 
logged-in. 

LOCYER. The year. 

LOCMON. The month (Jan = 1, Feb=2, etc.). 

LOCDAY. The local day of the month (1,2, 
3, ... ). 

LOCHOR. The local hour in 24-hr format. 

LOCMIN. Minutes(O, 1, .•• ,59}. 

LOCSEC. Seconds {O, 1, ••. , 59}. 

3-42 March 1973 



Item location 

64 %CNGMT 

65 %CNDBG 

66 %CNFRU 

-427- MON ITOR CALLS 

Use 

Offset for the universal date-time standard in order 
~o convert it to local time from Greenwich Mean 
Time (not yet implemented). 

Debugging status word. 
Bit 0=1 System debugging (ST%DBG). 
Bit 1=1 Reload on debug stop code (ST%RDC). 
Bit 2=1 Reload on job stop code (ST%RJE). 

Amount of free core 'currently in use by the 
monitor. 

3.6.3.4.3 Entries in Table 12 - .GTNSW (Nonswapping Data) 

With the 5.05 and later monitors, no new entries will be added to the .GTNSW table because many 

of the parameters in this table are dependent upon the processor used and therefore are different for 

eoch processor in a multiprocessor system. GETTAB tables 51-70 exist for new parameters as well as 

the .GTNSW parameters. 

Item 

o 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

5.06 Monitor 

location 

%NSCMX 

%NSClS 

%NSCTl 

%NSSHW 

%NSHlF 

%NSUPT 

%NSSHF 

%NSSTU 

%NSHJB 

%NSClW 

%NSlST 

Obsolete, 

unspecified data. 

Use 

CORMAX. Size in .words of largest legal user 
job +1 (low seg+high seg). 

Byte pointer to last free block. 

Total free+dormant+idle K physical core left 
(virtual core). 

Job number shuffler has stopped. 

Absolute address of job above lowest hole, 0 if 
no job. 

Time system has been up in jiffies. 

Total number of words shuffled by system. 

Number of job using SYS if not a disk. 

Highest job number currently assigned. 

Total number of words cleared by system. 

Total number of clock ticks when null job ran and 
other jobs wanted to but could not because: 
a. Swapped out or on way in or out. 
b. Monitor waiting for I/O to stop so it can shuffle 
or swap. 
c .. Job being swapped out because of expanding 
core. 

3-43 March 1973 



f'lONITOR CALLS 

Item Location 

23 %NSMMS 

24 %NSTPE 

25 %NSSPE 

26 %NSMPC 

27 %NSMPA 

30 %NSMPW 

31 %NSMPP 

32 %NSEPO 

33 %NSEPR 

34 %NSNXM 

35 %NSKTM 

36 %NSCMN 

37 %NSABC 

40 %NSABA 

41 %NSUR 

42 %NSACR 

43 %NSNCR 

44 %NSSCR 

-428-
Use 

Size of physical memory in words. 

Total number of user parity errors (memory) since 
system was loaded. 

Totcil number of spurious (refer to Paragraph 7.7) 
pari ty errors (memory). 

Total humber of multiple parity errors (memory). 

The absolute location of the last user mode mem-
ory parity error. 

The contents of the last user mode memory parity 
error. 

The user Pc of the last user mode memory parity 
error. 

Total number of PDL OVR's at UUO level in exec 
mode which were not recovered. 

Number of PDL OVR's at UUO level which were 
recovered by assigning extended list. 

Highest legal value of CORMAX. 

Count-down timer for SET KSYS UUO. 

Amount of core guaranteed to be available after 
locking jobs in core (CORMIN). 

Count of number of address breaks handled. 

Contents of data switches on last address break. 

Last job that ran if diffel'l:mtfrom the current job. 

Accumulated CPU response. Total number of 
jiffies that all users waited for their jobs to 
initially run after either a command was issued 
wh ich ran a job (program) or terminal input was 
given that removed the job from a TTY input wait 
sta~e • 

Number of CPU responses for all users waiting for 
jobs to run (refer to %NSACR above). Dividing 
the value of %NSACR by the value of %NSNCR 
gives the average response time since system startup. 

Accumulated squares of the CPU response times 
obtained from %NSACR. 

3-44 March 1973 



I 

I 

-429- r1or'llTOR CALLS 
3.6.3.4.4 Entries in Table 13 - .GTSDT (Swapping Data) 

Item Location 

0 %SWBGH 

%SWFIN 

2 %SWFRC 

3 %SWFIT 

4 %SWVRT 

5 %SWERC 

6 %SWPIN 

Use 
Number of K in biggest hole in core. 

-Job number of job being swapped out, 
+Job number of job being swapped in. 

Job being forced to swap out. 

Job waiting to be fit into core. 

Amount of virtual core left in system in K 
(in itially set to number of K of swapping space). 

LH=number of swap read or write errors, 
RH=error bits (bits 18-21 same as status bits) + 

number of K discarded. 

-1 if job swapped in (monitors which swap process 
data blocks (PDBs) only). 

3.6.3.4.5 Entries in Table 15 - .GTODP (Once-Only Disk Parameters) 

Item 

o 

2 

3 

~ocation 

%ODSWP 

%ODK4S 

%ODPRT 

%ODPRA 

Use 

Unused, contains zero in 5-series monitors. 

K of disk words set aside for swapping on all units 
in "active swapping list. 

In-core protect time multiplies ~ize of job in K-1. 

In-core protect time added ta above result after 
multiply. 

3.6.3.4.6 Entries in Table 16 - .GTLVD (5-series Monitor Disk Parameters) 

Item 

o 

2 

3 

4 

5 

5.06 Monitor 

Location 

%LDMFD 

%LDSYS 

%LDFFA 

%LDHLP 

%LDQUE 

%LDSPB 

Use 

Project-programmer number for UFDs only [1,1]. 

Project-programmer number for device SYS [1,4]. 
In 4-series monitors [1,1]. 

Project-programmer number for FAILSAFE [1,2]. 

Project-programmer number for SYSTAT and HELP 
[2;5] • 

Project-programmer number for spooling programs 
[3,3] • 

a. U"Faddress of first PPB block. 
b. Rt-Faddress of next PPB block to be scanned. 

3-45 March 1973 



Item 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

Location 

%LDSTR 

%LDUNI 

%LDSWP 

%LDCRN 

%LDSTP' 

%LDUFP 

%LDMBN 

%LDQUS 

%LDCRP 

%LDSFD 

%LDSPP 

%LDSYP 

%LDSSP 

%LDMNU 

%LDMXT 

%LDNEW 

-430-

Use 

a. LH=address of first file structure data block. 
b. R H=relative address of next fi Ie structure data 

block, i.e., the address within the dc:ita block 
which points to the actual address of the next 
data block. 

a. LH=address of data block of first unit in system. 
b. RH=relative address of .data block of next unit 

in system. 

a. LH=address of first unit for swapping in system. 
b. RH=relative address of next unit for swapping 

in system. 

Number of 4-word access blocks for disk systems 
allocated at ONCE - only time. 

Standard file protection code (057), can be changed 
by installation. In 4-5eries monitors (055). 

Standard UF D protection code (775), can be 
changed by installation. In 4-5eries monitors (055). 

Number of monitor buffers allocated at once-only 
time (2). In 4-5eries monitors, 1. 

SIXBIT name of file structure containing 3,3.UFD 
for spooling and OMOUNT queues. In 4-series 
monitors, DSK. 

UFD used for storing system crashes. In·4-series 
monitors, [10,11. 

Maximum number of nested SFD's which the monitor 
allows to be created. 

Protection of spooled output files (bits 0-7). 

Standard protection for files in SYS: (155) except 
for files with an extension of .SYS. 

Standard protection for files in SYS: with an 
extension of .SYS (157). 

Maximum negative argument to USETI which reads 
extended RIBs. 

Maximum number of blocks transferred with one 
I/O operation (one IOWD). Normally 100000 but 
can be defined at MONGEN to be smaller so that 
a job daing high priority disk I/O will be locked 
out for a shorter period of time (since it can be 
locked out for as long as the channel is busy). 

Project-programmer number for experimental 
SYS [1,51. 

3-46 March 1973 



Item Location 

26 %LDOLD 

27 %LDUMD 

30 %LDNDB 

-431- i·10NITOR CALLS 

Use 

Project-Programmer number for library of super­
seded system programs [1,3]. 

Proie~t-programmer number for user mode diagnos­
tics [6,6]. 

Default number of disk buffers in a buffer ring. 

3.6.3.4.7 Entries in Table 23 - .GTSLF (GETTAB Immediate) 

This table is useful for a program that uses the SPY UUO for efficiency and needs the core address of 

the monitor tables. Absolute location 151 in the monitor contains the address of the beginning of 

this table. 

The formot of each entry is as follows: 

Examples: 

LH=B its 0-8 = maximum item number in table. 
Bit 9 = data may be process data. 
Bit 10 = data may be segment data. 
Bits 14-17 = a monitor AC. 

R H=executive-mode address of tabl e (i tem O). 

XWD ITEM + JBTMXL, JOBSTS 
XWD ITEM + TTPMXL, TTYTAB 

3.6.3.4.8 Entries in Table 25 - .GTWSN (Two-character SIXBIT names for job queues) 

Word 0 

Bits 0-11 ~ contain the two SIXBIT character 'mnemonic of job state code O. 
Bits 12-23 = contain the two SIXBIT character mnemonic of job state code 1. 
Bits 24-35 = contain ,the two SIXBIT character mnemonic of job state code 2. 

Word 1 

Bits 0-11 = contain the mnemonics of job state code 3. 
Bits 12-23 = contain the mnemonics of job state code 4. 
Bits 14-35 = contain the mnemonics of job state code 5. 
etc. 

The job state codes for a disk system are as follows: 

RN one of the run queues. 
WS I/O wait satisfied. 
TS TTY I/O wait satisfied. 
DS disk I/O walt scitisfied. 
AU disk alter UFO wait. 

5.06 Monitor 3-47 March 1973 



r'1ONITOR CALLS -432-
disk monitor buffer wait. 
disk storage allocation wait. 
disk core block scan wait. 
DECtape control wait. 
second DEC tape control wait. 
data control wait. 
magnetic tape control wait. 

MQ 
DA 
CB 
D1 
D2 
DC 
MT 
CA 
10 
TI 
DI 
SL 
NU 
ST 
JD 

core allocation wait (to be locked). 
I/O wait. 
TTY I/O wait. 
disk I/O wait. 
sleep wait. 
null state. 
stop (t C) state. 
DAEMON wait. 

These state codes are printed by SYST AT. Note that SYST AT displays other codes based on analysis, 

such as the following: 

TO 
tc 
tw 
OW 
HB 

TTY output. 
iob stopped. 
command wait. 
operator wait. 
hibernate. 

3.6.3.4.9 Entries in Table 35 - .GTWCH (WATCH Table) 

Ecich iob has a one-word entry to indicate the WATCH bits. The bits for each word are as follows: 

Bit Mnemonic Meaning 

1 JW.WDY Watch time of day. 
2 JW.WRN Watch run time. 
3 JW.WWT Watch wait time. 
4 JW.WDR Watch disk reads. 
5 JW.WDW Watch disk writes. 
6 JW.WVR, Watch versions. 

3.6.3.4.10 Entries in Table 36 - .GTSPL (Spooling Table) 

Each iob has a one-word entry to indicate the spooling control bits. These bits are as follows: 

Bit 

35 
34 
33 
32 
31 

24-26 

Mnemonic 

JS.PLP 
JS. PPL 
JS. PPT 
JS. PCP 
JS. PCR 
JS. PRI 

3-48 

Meaning 

Line printer spooling. 
Plotter spooling. 
Paper tape punch spooling. 
Card punch spooling. 
Card reader spooling. 
Disk priority. 

March 1973 



-433- "10iJ I TOR. CALLS 

3.6.3.4.11 Entries in Table 55 - .GTCOC (CPUO CDB constants table) 

The items in this table correspond to the items in the constants table for each processor. 

CPUI 
CPU2 
CPU3 
CPU4. 
CPU5 

Item 

o 

2 

3 

4 

5 

6 

7 

10 

11 

Table 57 - .GTClC 
Table 61 - .GTC2C 
Tabl~ 63 - .GTC3C 
Table 65 - • GTC4C 
Table 67 - .GTC5C 

Location 

%CCPTR 

%CCSER 

%CCOKP 

%CCTOS 

%CCLOG 

%CCPHY 

%CCTYP 

%CCMPT 

%CCRTC 

%CCRTD 

Use 

L H=pointer to next C DB, or (j if this is the last 
CDB. 
RH=unused. 

APR serial number. 

If less than or equal to zero, CPU is running ok. 
If greater than zero, CPU has stopped running 
correctly. 
Contents of word is the number of jiffies CPU has 
been stopped. 

Trap offset for KA 10 interrupt locations (0 or 100). 

Logical CPU name in SIXBIT (CPUn). 

Physical CPU name in SIXBIT (CPAn, CPIn, or 
CP6nh 

Type of processor (LH for customers, RH for DEC) 

1 (.CC166) = PDP-6 
2 (.CCKAX) = KAI0 
3 (.CCKIX) = kIio 

, 
Relative GETTAB pointer to memory parity bad 
address subtable. Refer to Paragraph 3.6.3.4.13. 

Bits 0-8 

Bits 18-35 

maximum relative entry in sub­
table 
relative address of first word in 
subtable in CPU variable GETTAB 
(.GTCOV). 

If word is 0, the subtable has been conditionaily 
assembled out of the monitor. 

Real time clock (DKI0) DDB. If word is 0, there 
is no real time clock on this CPU. 

Real time clock DDB if high precision time account­
ing. If 0, there is no high precision time account­
ing on this CPU. 

3-49 Iv\arch 1973 



r10N I TOR CALLS 
Item location 

12 %CCPAR 

13 %CCRSP 

-434-
Use 

Relative GETT AB pointer to memory pority subtable. 
Refer to Paragraph 3.6.3.4.13. 

Bits 0-8 

Bits 18-35 

maximum relcitive entry in 
subtable. 
relative address of first word in 
subtable in CPU variable 
GETTAB. (.GTCOV). 

If word is 0, the subtable hos been conditionally 
assembled out of the monitor. 

Relative GETTAB pointer to response subtable. 
Refer to Paragraph 3.6.3.4.13. 

Bits 0-8 

Bits 18-35 

Maximum reiative entry in 
subtable. 
relative address of first word in 
subtable in CPU variable GETTAB 
(.GTCOV). 

3.6.3.4.12 Entries in Table 56 - .GTCOV (CPUO COB Variable Table) 

The items in this table correspond to the items in the variables table for each processor. 

Item 

5 

12 

14 

15 

16 

CPUI 
CPU2 
CPU3 
CPU4 
CPU5 

location 

%CVUPT 

%CVLST 

%CVTPE 

%CVSPE 

Table 60- .GTCIV 
Table 62 - . GTC2V 
Table 64 - .GTC3V 
Table 66 - .GTC4V 
Table 70 - .GTC5V 

Use 

Uptime in jiffies for this CPU. 

lost time in jiffies for this CPU. 

Total memory parity error words--detected during all 
CPU sweeps on this CPU while processor was in 
exec or user mode. If the system halts, this 
location has already been updated. 

Total spurious memory parity errors detected on this 
CPU (i.e., errors which did not reoccur when the 
CPU swept through core). Can .occur on a read­
pause-write which rewrites memory or on a channel­
detected parity not found on the sweep (refer to 
%CVPCS in parity subtable.) 

%CVMPC Multiple memory pority errors for this CPU. That 
is, the number of time the operator pushed 
CONTINUE after a serious memory parity halt. 
L H == 1 if serbus error on this bad pority (must halt). 
LH is cleared on CONTINUE or STARTUP. 

3-50 March 1973 



, I 

I 

Item 

17 

20 

21 

27 

30 

31 

32-34 

35 

36 ' 

37 

40 

41 

42 

43 

45 

5.06 Monitor 

Location 

%CVMPA 

%CVMPW 

%CVMPP 

%CVABC 

%CVABA 

%CVUR 

%CVSTS 

%CVRUN 

%CVNUL 

%CVEDI 

%CVJOB 

%CVOHT 

%CVEVM 

%CVEVU 

%CVLLC 

-435- MaN nOR CALLS 
Use 

Memory parity address for this CPU. That is, 
first bad physical memory address found when the 
monitor swept through core after processor or 
channel detected first parity error. 

Memory parity word for this CPU. That is, contents 
of first bad word found by monitor when it swept 
through core after the processor or channel detect­
ed first bad parity. 

Memory parity PC for this CPU. That is, PC of 
last memory parity (not counting sweep through 
core). \ 

Address break count on this CPU. 

Address break address on this CPU. 

Last job run on this CPU including the null job. 

Obsolete. Refer to items 20-23 in the Response 
Subtable. 

Stop timesharing on this CPU. Contains job 
number which performed the TRPSET UUO. 

Operator-controlled scheduling for this CPU 
(OPSER: SET RUN command). 
Bit 0 (CVOAlRUt-.n = 1 do not run jobs on this CPU. 

Null time in jiffies for this CPU. 

LH = exec PC so that offending instruction can be 
corrected. 
RH = number of exec "don't care" interrt.pts (i .e., 
user enabled APR interrupts which monitor causes 
(AOV, FOV). 

Current job running on this CPU (0 is null job). 

Overhead time in jiffies for this CPU. Includes 
clock queue processing, short command processing, 
swapping and scheduling decisions, and software 
context switching. Does not include UUO 
execution or VO interrupt time, since these times 
are not overhead. 

(KIlO only) Maximum amount of exec virtual address 
space to be used for mapping user segments on a 
LOCK UUO. 

(KIlO only) Current amount of exec virtual address 
space being used for mapping user segments on a 
LOCK UUO. 

On a dual processor system, the count of the number 
of times a CPU has Ioq:>ed in the CPU interlock 
while waiting for it to be relinquished by the 
second CPU. 

3-51 March 1973 



Item Location 

46 %CVTUC 

47 %CVTJC 

-436-

Use 

Total number of UUOs executed on this CPU from 
exec and user mode. 

Total number of job context switches from one job 
to a different job, including the null job, on this 
CPU. 

3.6.3.4.13 GETTAB Subtables - Via the GETTAB mechanism, GETTAB subtables make monitor­

collected data available to user programs and, at the same time, allow the installation to decide 

if it wants to use more monitor table space without invalidating any user programs. These subtables 

are included in all systems except the DECsystem-1040. However, they may be excluded by changing 

the appropriate conditional assermly switches with MONGEN. It is anticipated that only installations 

that need the core space for other uses will decide to exclude the subtab!es. 

To reference a subtable, the user program first daes a GETIAB UUO to obtain the pointer to the sub­

table (refer to Paragraph 3.6.3.4. 11)~ Then the program does a second GETIAB to get the desired 

item in the subtable. If the pointer is zero, the desired subtable is not included in the system. 

The following example illustrates the method for obtaining the accumulated response times for CPU N 

for all users that waited for their jobs ta initially run after TTY input was given. 

XCCRSP-.xwD 13,55 
XCVRUnJ 

.GTC0Vu56 
MOVEI Tl,N 
LSH U,N 
MOVE T2, [%CCRSPl 

ADD T2, Tl 
GETTAB T2, 

'JRST NONE 
JUMPE·T2,NONE 

AOOI T2,XCVRAI 

HRL T2,T? 

HRRI T2,.GTC0V(T1) 
GETTAB T2, 

JRST NONE 

HERE WITH RESPONSE 

Response Subtable 

,wORD AND TABLE NUMBER FOR RESPONSE SUBTABLE 
lSUBTABLE INDEX fOR ACCUMULATED TTY INPUT UUO 
; RESPONSE. 
lGETTAB TABLe FOR CPU0 VARIABLES 
;CPU NUMBER (0,1, ••• ,5) 
lCONSTANTS TABLE GETTAB INDEX MOVES UP BY TwOS. 
1RELATIVE GETT~B POINTER WdRD FOR RESPONSE 
, SUBTABLE FOR CPU0. 
;FOR~ GETTAB ARGUMENT FOR CPU N, 
;GET RELATIVE POINTER TO RESPONSE SUBTABLE. 
;NOT THERE (MONITOR IS ONE BEFORE 5,05) 
lIF 0, SUBTABLt NOT INCLUDED IN THIS 
; LOAD.OF THE MONITOR, 
lFORMDESIREO INDEX IN SUBTABLE WITH 
; RESPECT TO VARIABLE GETTAB. 
lRELATIVE.ADORESS OF SUBTABLE WITH 
, RESPECT TO VARIABLE TABLE. 
;FORM PROPER GETTAB FOR CPU VARIABLES. 
iGET RESPONSE TIME. 
lNOT THERE. THIS SHOULD NOT HAPPEN SINCE 
1 ZERO TEST ON RELATIVE POINTER FAI~ED. 

IN T2 . 

The resp:>nse subtabfe is pointed to by %CCRSP in the constants table for each processor. This sub­

table is under the conditional assembly switch FTRSP. Refer to Paragraph 3.6.3.4.3 for additional 

response informotion. 

5.06 Monitor 3-52 March 1973 



I 

I 

I 

Item 

o 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

5.06 Monitor 

location 

%CVRSO 

%CVRNO 

%CVRHO. 

%CVRlO 

%CVRSI 

%CVRNI 

%CVRHI 

%CVRLI 

%CVRSR 

%CVRNR 

%CVRHR 

%CVRlR 

%CVRSX 

%CVRNX 

%CVRHX 

-437- ~'ON ITOR CALLS 

Use 

Accumulated TTY output UUO responses. That is, 
the total number of jiffies users have spent waiting 
for their jobs to do a TTY output UUO (on CPUO) 
after either a command was issued which ran a job 
or terminal input was given that removed the job 
from a TTY input wait state. 

Number of TTY output UUO responses for this CPU. 

The high-order sum of the squares of TTY output UUO 
responses. Used for computing standard deviation. 

The low-order sum of the squares of TTY output UUO 
responses. 

Accumulated TTY input UUO responses for this CPU. 
That is, the total number of jiffies users have spent 
waiting for their jobs to do a TTY input UUO (on 
CPUO) after either a command was issued which 
ran a job or terminal input was given that removed 
the job from a TTY input wait state. 

Number of TTY input UUO responses for this CPU. 

The high-ordersum of the squares of TTY input UUO 
responses. Used for computing standard deviation. 

The low-order sum of the squares of TTY input UUO 
responses. 

Accumulated CPU quantum requeue responses. That 
is, total number of jiffies users spent waiting for 
their jobs to exceed the CPU quantum on this CPU 
after either a command was issued which ran a job 
or terminal input was given that removed the job 
from a TTY input waif state. 

Number of CPU quantum requeue Iesponses for this 
CPU. 

The high-orCler sum of the squares of CPU quantum 
requeue response. Used for computing standard 
deviation. 

The low-order sum of the squares of CPU quantum 
requeue response. 

Accumulated response terminated by the first 
occurrence of one of the above 3 events (TTY 
output, TTY input, or CPU quantum requeue). 

Number of such responses in %CVRSX. 

The high-order sum of the squares of responses in 
%CVRSX. Used for computing standard deviation. 

3-53 March 1973 



~1ONITOR CALLS 

Item 

17 

20 

21 

22 

23 

Parity Subtable 

Location 

%CVRLX 

%CVRSC 

%CVRNC 

%CVRHC 

%CVRLC 

-438-

Use 

The low-o rder sum of the squares of responses in 
%CVRSX. 

Accumulated CPU responses on this CPU. Total 
number of jiffies that users waited for their jobs 
to run after either a command was issued which 
ran a job or terminal input was given that removed 
the job from a TTY input state. 

Number of CPU responses for all users waiting for 
their jobs to run. Dividing .this value into the 
value of %CVRSC giv~s the average response time 
since the system was started. 

The high-order sum of the squares of CPU responses 
9n this CPU. 

The low-order sum of the squares of CPU responses 
on this CPU. 

The pority table is pointed to by %CCPAR in the constants table for each pracessor. This subtable is 

under the conditional assembly switch FTMEMPAR. Refer to Paragraphs 3.6.3.4.3 and 7.7 for 

additional parity information. 

Item 

o 

2 

3 

4 

5 

6 

7 

10 

11 

5.06 Monitor 

Location 

%CYPLA 

%CVPMR 

%CVPTS 

%CVPSC 

%CVPUE 

%CVPAA 

%CVPAC 

%CVPOA 

%CVPOC 

%CVPCS 

Use 

Highest bad memory parity address on last sweep of 
memory. Used to tell operator the range of bad 
addresses. 

Relative address (not virtual address) in the high or 
low segment of the last memory parity error. 

Number of parity errors on the last sweep of core. 
Set to 0 at beginning ~f the sweep. 

Number of parity sweeps by the monitor. 

Number of user-enClb led parity errors. Refer to 
Paragraph 3.1 .3.1. 

The AND of bad addresses on the last memory pority 
sweep. 

The AND of bad contents on the last memory parity 
sweep. 

The OR of bad addresses on the last memory parity 
sweep. 

The OR of bac! contents on the last memory parity 
sweep. 

Number of spurious parity errors. (The APR sweep 
found no bad pClrity but the channel had requested 
the sweep rathe~ than the processor). This indicates 
a channel m~inory port problem. 

3-54 March 1973 



-439- MONITOR CALLS 

Bad Address Subtable 

The bad address table is pointed to by %CCMPT in the constants table for eoch processor. This sub­

table is under the conditional assembly switch FTMEMPAR and contains the bad addresses on the last 

memory parity sweep. It is not cleared and the number of valid entries is kept in %CVPTS in the 

parity subtable. 

3.6.3.4.14 Entries in Table 71 - .GTFET (Feature Table) 

This table provides the user with a mechanism for determining the current settings of all features defined 

in F.MAC 

Item 

o 

2 

Location 

%FTUUO 

%FTRTS 

%FTCOM 

Use 

UUOs 
Bit 26 = 1 if control-C intercept (F%CCIN). 
Bit 27= 1 if JOBSTS and CTLJOB 

UUOs are implemented (F%PTYU). 
Bit 28 = 1 if PEEK UUO implemented (F%PEEK). 
Bit 29 = 1 if POKE. UUO implemented (F%POKE). 
Bit 30 = 1 if JOB continue (F%JCON). 
Bit 31 = 1 if spooling supported (F%SPL). 
Bit 32 = 1 if job privileges supported (F%PRV). 
Bit 33 = 1 if DAEMON supported (F%DAEM). 
Bit 34 = 1 if GETTAB exists (F%GETT). 
Bit 35 = 1 if 2-register relocation (F%2REL). 

Real time and scheduling features 
Bit 27 = lif swapper (F%SWAP). 
Bit 28 = 1 if shuffler (F%SHFL). 
Bit 29 = 1 if DKI0 service (~tbRTC). 
Bit 30 = 1 if LOCK UUO implemented (~tbLOCK). 
Bit 31 = 1 if TRPSET UUO implemented (F%TRPS). 
Bit 32 = 1 if real-time traps implemented (~tbRTTR). 
Bit 33 = 1 if SLEEP UUO implemented (~tbSLEE). 
Bit 34 = 1 if HIBER and WAKE UUOs supported 

(F%HIBW). 
Bit 35 = 1 if high priority queues supported (F%HPO) 

Commands 
Bit 23 = 1 if COMPIL commands (~tbCCL). 
Bit 24 = 1 if COMPIL-class (F%CCLX). 
Bit 25 = 1 if QUEUE (F%QCOM). 
Bit 26 = 1 if SET WO and command (F%SET). 
Bit 27= 1 if VERSION (~tbVERS). 
Bit 28 = 1 if Batch control file commands (F%BCOM). 
Bit 29 = 1 if SET DAYTIME and SET DATE (~tbSEDA). 
Bit 30 = 1 if WATCH (F%WATC). 

3-55 March 1973 



f10NITOR CALLS -440-
Item Location Use 

Bit 31 = 1 if FINISH and CLOSE (F%FINI). 
Bit 32 = 1 if REASSIGN (F%REAS). 
Bit 33 = 1 if E and D (F%EXAM). 
Bit 34 = 1 if SEND (F%TALK). 
Bit 35 = 1 if ATTACH (F%ATTA). 

3 %FTACC Accounting information 
Bit 31 = 1 if time and core limits (F%TLIM). 
Bit 32 = 1 if charge number (F%CNO). 
Bit 33 = 1 if user name (F%UNAM). 
Bit 34 = 1 if ki lo-core-ticks accumulation (F%KCT). 
Bit 35 = 1 if run-time computation (F%TIME). 

4 %FTERR Error control and internal options 

I Bit 26 = 1 if swapping process data block (F%PDBS). 
Bit 27= 1 if KIlO features at startup time (F%KIlO). 
Bit 28 = 1 if METER. UUO supported (F%METR). 
Bit 29 = 1 if execute-only .files (F%EXON). 
Bit 30 = 1 if illegal instruction message checks for 

for KIlO instructions (F%KII). 
Bit 31 = 1 if code to load BOOTS from disk 

(F%BOOT). 
Bit 32 = 1 if more than one swapping device 

(F%2SWP). 
Bit 33 = 1 if DAEMON error logging (F%EL). 
Bit 34 = 1 if multi-processor code loaded (f=OkMS). 
Bit 35 = 1 if memory parity error recovery 

(F%MEMP). 

5 %FTDEB Debugging features 
Bit 28 = 1 if response time measurement (F%RSP). 
Bit 29 = 1 if why reload code (f=O/oWHY). 
Bit 30 = 1 if pate h space left in tables (f=O/oPA TT). 
Bit 31 = 1 ifback-tracking information left in 

COMMON (F%TRAC). 
Bit 32 = 1 if monitor halts on error (F%HALT). 
Bit 33 = 1 if redundancy checking for internal errors 

(F%RCHK). 
Bit 34 = 1 if monitor write protected (f=OkMONP). 
Bit 35 = 1 if monitor check summing (F%CHEC). 

6 %FTSTR File structure parameters 
I Bit 21 = 1 if NUL device (F%NUL). 

Bit 22 = 1 if LIB/SyS/NEW (F%LIB). 
Bit 23 = 1 if disk priority transfers (F%DPRI). 
Bit 24 = 1 if append to last block (F%APLB). 
Bit 25 = 1 if append implies read (F%AIR). 
Bit 26 = 1 if generic device search (f=O/oGSRC). 
Bit 27= 1 if rename across directories (f=OkDRDR). 
Bit 28 = 1 if SEEK UUO (F%DSEK). 
Bit 29 = 1 if super USETI/USETO (F%DSUP). 
Bit 30 = 1 if disk quotas (F%DQTA). 

5.06 Monitor 3-56 March 1973 



-441- r'10N nOR CALLS 

Item Location Use 

Bit 31 = 1 if multiple file structures (PkSTR). 
Bit 32 = 1 if 5-series UUOs (F%5UUO). 
Bit 33 = 1 if physjcal-only I/O (F%PHYO). 
Bit 34 = 1 if sub-file directories (PkSFD). 
Bit 35 = 1 if STRUUO functions (F%MOUN). 

7 %FTDSK Internal disk parameters 

I Bit 21 = 1 if DEBUG CB interlo.ck (F%CBDB) 
Bit 22 = 1 if LOGIN syst~m (F%LOGI). 
Bit 23 = 1 if disk system (F%DISK). 
Bit 24 = 1 if race-condition prevention in FILFND 

(F%FF~E). 
Bit 25 = 1 if swap read error recovery (F%SWPE). 
Bit 26 = 1 if bad block marking (F%DBBK). 
Bit 27 = 1 if UFD compressor (PkDUFC). 
Bit 28 = 1 if disk error simulation (F%DETS). 
Bit 29 = 1 if extended RIBs supported (F%DMRB). 
Bit 30= 1 if smaller allocation for disk core blocks 

(F%DSMC). 
Bit 31 = 1 if allocation optimization (F%DALC). 
Bit 32 = 1 if disk usage statistics (PkDSTT). 
Bit 33 = 1 if hung disk recovery (P/oDHNG). 
Bit 34= 1 if disk off-line recovery (F%DBAD). 
Bit 35 = 1 if latency optimization (F%DOPT). 

10 %FTSCN Scanner options 

I Bit 27 = 1 if TTY BLANK command (Pk TBLK). 
Pit 28 = 1 if page and display knowledge 

(F%TPAG). 
Bit 29 = lif automatic dialer supported (F%DTAL). 
Bit 30 =.1 if special line control (PkSCLC). 
Bit 31 = 1 if hardware (DC 10 or DC68) scanner 

(F%SCNR). 
Bit 32 = 1 if modem control (F%MODM). 
Bit 33 = 1 if single scanner 630 (P/o630H). 
Bit34= 1 ifU.!<. modem supported (F%GP02). 
Bit 35 = 1 if real half-duplex terminals (F%HDPX). 

11 %FTPER I/O Parameters 
Bit 27= 1 ifCDP trouble intercept (P/oCPTR). 
Bit 28 = 1 if CDR trouble intercept (P/oCRTR). 
Bit 29 = 1 if CTVI supported (PkCTYl). 
Bit 30 = 1 if rematestation supported (F%REM). 
Bit 31 = 1 if LPT error recovery (F%LPTR). 
Bit 32 = 1 if device errors to operator (F%OPRE). 
Bit 33 = 1 if CDR super-image made (F%CDRS). 
Bit 34 = 1 if MTA density and buffer size (PlbMTSE). 
Bit 35 = 1 if TMPCOR area (F%TMP). 

5.06 Monitor 3-57 March 1973 



r'1otHTOR CALLS -442-

3.6.4 Configuration Information 

3.6.4.1 SWITCH AC, or CALLI AC, 20 - This UUO returns the contents of the central processor 

data switches in AC. Caution must be exercised in using the data switches because they are not an 

allocated resource and are always available to all users. 

3.6.4.2 LIGHTS AC, or CALLI AC, -1 - This UUO displays the contents of AC in the console 

lights. 

3.7 DAEMON AC, OR CALLI AC, 1021 

This UUO requests the DAEMON program to perform a specified function for the user program. The 

call is: 

MOVE AC, [XWD length (n+ 1), ADR] 
DAEMON AC, 
error return 
normal return 

ADR: function 
arg1 
arg2 

;or CALLI AC, 102 

The length of the argument list can be zero if the number of arguments is fixed. The first word of the 

argument list is the code for the requested function. Non-privileged functions of the DAEMON UUO 

are presented in the following paragraphs. Refer to the Specifications section of the DECsystem-10 

Software Notebooks for a description of the privileged functions. 

3.7.1 • DCORE Function 

This function causes DAEMON to write a dump file of the job's core area. The call is: 

ADR: 1 ;. DCORE function 
SIXBIT/dev/ 
S IXB IT/file/ 
SIXBIT/ext/ 
o 
XWD ppn 
SIXBIT/SFD1/ 

S IXB IT/S FD N/ 

1This UUO depends on FTDAEM which is normally off in the DECsystem-1040. 

3-58 March 1973 



-443- MaN nOR CALLS 

If an argument is omitted, the default is the same as in the OCORE command (refer to DECsystem-10 

Operating System Commands). 

3.7.2 .CLOCK Function 

This function causes DAEMON to enter a request in the clock queue in order to wake the job after the 

specified number of seconds has elapsed. The UUO returns as soon as the request is entered. The 

HIBER UUO with no clock request (refer to Paragraph 3.1.4.2) should then be used to place the job 

in the sleep queue. 

The caII is: 

ERROR: ••• 

MOVEI AC, BLOCK 
DAEMON AC, 

JRST ERROR 
SETZ AC, 
HIBER AC, 

JRST ERROR 

BLOCK: 2 
+seconds 

;simulate the DAEMON UUO 
; with the SLEEP UUO. 
i .CLOCK function 
in umber of seconds to sleep. 

I lf the job already has a request in the clock queue, the new request supersedes the current request. 

Thus, jobs desiring to be awakened several times should issue one request for the soonest wake time. 

There is no maximum on the amount of time a job can sleep and therefore, this UUO is useful when a 

sleep time of more thon 63 seconds is desired (the SLEEP and HIBER UUOs have an implied maximum of 

I 63 seconds). A request specifying 0 seconds clears the jab's entry in the clock queue and immediately 

wakes the job. Note thot the resolution of the timer may be several seconds slow if the system is 

heavily loaded. 

3.7.3 Returns 

The error retum is given if the UUO is not implemented, DAEMON is not running, or DAEMON can­

not complete the requested function. If the UUO is not implemented or DAEMON is not running, AC 

remains unchanged. If DAEMON cannot complete the request, AC contains one of the foIIowing error 

codes: 

DMILF-k Illegal function. 

2 DMACK% Address check. The argument block is outside of 
user core or in the jab data area. 

3 DMWNA% Wrong number of arguments. 

4 DMSNH% Impossible UUO failure (should never hoppen). 

5.06 Monitor 3-59 

(Cont on next page) 

March 1973 



~1ONITOR CALLS -444-

I 

5 DMCWF% 
6 DMNPVOA, 

7 DMFFB% 
10 DMPTH% 

Cannot write file. An OPEN or INIT failed. 
No privi leges. An attempt was made to write 
in the accounting files without having the proper 
privi leges. 
FACT for!OOt is bad. 
Invalid path specification. 

The normal return is taken if the requested function is successfully completed. 

3 .8 REAL-TIME PROGRAMMING 

3.8.1 RTTRP AC, or CALLI AC, 571 

The real-time trapping UUO is use~ by timesharing users to dynamically connect real-time devices to 

the priority interrupt system, to respond to these devices at interrupt level, to remove tl,e devices 

from the interrupt system, and to change the PI level on which the devices are ossociated. The 

RTTRP UUO can be called from UUO level or from interrupt level. This is a privileged UUO that 

requires the job to have real-time privileges (granted by LOGIN) and to be locked in core (accom­

p!ished by LOCK UUO). These real-time privileges are assigned by the system manager and obtained 

by the monitor from ACCT. SYS. The privi lege bits required are: 

1) JP.LCK (Bit 14) - allows the job to be locked in core. 

2) JP.RTT (Bit 13) - allqws the RTTRP UUO to be executed. 

WARNING 

Improper use of features of the RTTRP UUO can cause the 
system to fail in a number of ways. Since design goals of 
this UUO were to give the user a~ much flexibility as 
possible, some system integrity had to be sacrificed. The 
most common errors are protected against since user pro­
grams run in user mode with all ACs ~aved. It is recom­
mende~ that debugging of real-time programs not be done 
when system integrity is important. However, once these 
programs are debugged, they can run simultaneausly with 
batch and timesharing programs. 

Real-time jobs control devices one of two ways: block made or single mode. In block mode, an en­

tire block of data is read before the user's interrupt program is run. In single mode, the user's interrupt 

program is run every time the device interrupts. furthermore, there are two types of block mode: 

fast block mode and normal block mode. These differ in response times. The response time to read a 

block of data in fast block mode is 6.5 IlS fler word and in normal block mode, 14.6 f.IS per word. 

(This is the CPU time to complete each d~a transfer.) In all modes, the response time measured from 

the receipt of the real-time device interrupt to the start of the user control program is 100 fJS. 

1 This UUO depends on FTRTTRP which is normally off in the DECsystem-1040. 

5.06 Monitor 3-60 March 1973 



-445- ~10N nOR CA,LLS 

The RTTRP UUO allows a real-time job to either put a BLKI or BLKO instruction directly on a PI 

level (block mode) or add a device to the front of the monitor PI channel CONSO skip chain (single 

mode). Since the BLKI and BLKO are executed in exec mode, a KIlO-bcsed system requires that the 

job be mopped in exec virtual memory, in addition to being locked (refer to the LOCK UUO). When 

an interrupt occurs from the real-time device in single made or at the end of a block of data in block 

mode, the monitor saves the current state of the mochine, sets the new user virtual memory and APR 

flags, and traps to the user's interrupt routine. The user services his device and then returns control 

to the monitor to restore the previous state of the mochine and to dismiss the interrupt. 

In fcst block mode the monitor places the BLKI/BLKO instruction directly in the PI trap location fol­

lowed by a JSR to the context switcher. This action requires that the PI channel be dedicated to the 

real-time job during any transfers. In normal block made the mon,itor places the BLKI/BLKO instruc­

tion directly after the real-time device's CONSO instruction in the CONSO skip chain (refer to 

Chapter 7). 

Any number of real-time devices using either single made or normal block mode can be placed on any 

available PI channel. The average extra overhead for each real-time device on the same chamel is 

5.5 fJS per interrupt. 

The call is: 

MOVE I AC, RTBLK 
RTTRP AC, 
error return 
normal return 

The data b lock depends on the mode used. 

RTBLK: y:y.JD PIC HL, TRPADR 
EXP APRTRP 
CONSO DEV, BITS 
o 

The data block in fast block mode is: 

RTBLK: y:y.JD PIC HL, TRPADR 
EXP APRTRP 
BLKO DEV, BLKADR 
o 

The data block in normal block mode is: 
RTBLK: y:y.JD PIC HL, TRPADR 

EXP APRTRP 
CONSO DEV, @BITMSK 
BLKI DEV, BLKADR 

;AC contains address of data block. 
lor CALLI AC, 57, put device on PI level. 
iAC contains an error code. 
;PI is set up properly. 

In single mode the data bl~ck is: 

iPI channel (1-6) and trap address. 
;APR trap address. 
;CONSO chain instruction. 
ino BLKI/BLKO instruction. 

iPI and trap address when BLKO done. 
iAPR trap address. 
;BLKIor BLKO instruction. 
iBLKADR points to the IOWD of 
iblock to be sent. 

ichannel and trap address. 
;APR trap address. 
;control bit mask from user area. 
;B LKI instruction. 

3-61 March 1973 



MON nOR CALLS -446-

On multiprocessor systems, the real-time trap UUO applies only to the processor specified by the job's 

CPU specification (refer to the SET CPU command or the SET UUO). If the specification indicates 

mare th<J"l one processor, the specification is changed to indicate CPUO. Note that the PI channel 

(PIC Hl) and processor traps (APRTRP) are on Iy for the indicated CPU. 

3.8.1.1 Data Block Mnemonics - The following rmemariics are used in describing the data block 

associated with the RTTRP UUO. 

PIC Hl - PIC Hl is the PI level on which the device is to be placed. levels 1-6 are legal depending 

on the system configuration. If PICHl = 0, the device is remaved from all levels. When a device is 

placed on a PI level, normally all other occurrences of the device on any PI level are removed. If 

the user desires the same device on more than one PI level simultaneously (i.e., a data level and an 

error level), he can issue the RTTRP UUO with PIC Hl negative. This indicates to the system that any 

other occurrence of this device (on any PI level) is not to be removed. Note that this addition to a 

PI level counts as a real-time device, occupying one of the possible real-time device slots. 

TRPADR - TRPADR is the location trapped to by the real-time interrupt (JRST TRPADR). Before the 

trap occurs, all ACs are saved by the monitor and can be overwritten without concern for their con- . 

tents. 

APRTRP - APRTRP is the trap location for all APR traps. When an APR tr~ occurs, the monitor 

simulates a JSR APRTRP. The user gains control from an APR trap on the same PI level that his real­

time device is on. The monitor always traps to the user program on illegal memory references, non­

existent memory references, and push-down overflows. This allows the user to properly turn off 

his real-time device if needed. The monitor also traps on the conditions specified by the APRENB 

UUO (see Paragraph 3.1.3.1). No APR errors are detected if the interrupt routine is on a PI level 

higher than or equal to the APR interrupt level. 

DEV - DEV is a real-time device code. 

BITS - BITS is the bit mask of all interrupt bits of the real-time device and must not contain any other 

bits. If the user desires control of this bit mask from his user area, he may specify one level of in­

direction in the CONSO instruction (no indexing), i.e., CONSO DEV, @ MASK where MASK is 

the location in the user area of the bit mask. MASK must not have any bits set in the indirect or 

index fields. 

BlKADR - BlKADR is the address in the user's area of the BlKI/BlKO pointer word. Before returning 

to the user, the monitor adds the proper relocation factor to the right half of the pointer word. Data 

can only be read into the low segment above the protected job data area, i.e., above location 114. 

3-62 March 1973 



-447- ~10N nOR CALLS 

Since the pointer word is in the user's area, the user can set up a new pointer word when the word 

count goes to 0 at interrupt level. This allows fast switching between buffers. When the user desires 

to set up his own pointer word, the right half of the word must be set as a'I exec virtual instead of a 

user virtual address. The job's relocation value is returned from both the LOCK UUO and the first 

RTTRP UUO executed for setting the BLKI/BLKO instruction. If this pointer word does not contain a 

legal address, a portion of the system might be overwritten. A check should be made to determine if 

the negative word count in the left half of the pointer word is too large. If the word count extends 

beyond the user's own area, the device may cause a non-existent memory interrupt, or moyoverwrite 

a timesharing job. If all of the ci:>ove precautions are taken, this method of setting up the pointer 

word is much faster and more flexible than issuing the RTTRP UUO at interrupt level. 

3.8.1.2 Interrupt Level Use of RTTRP - The format of the RTTRP UUO at interrupt level is similar 

to the format at user ievel except for two restrictions: 

1) AC 16 and AC 17conl'lot be used in the UUO call (i.e., CALU 16, 57 is 
illegal at interrupt level). . 

2) All ACs are overwritten when the UUO is executed at interrupt level. There­
fore, the user must save any desired ACs before issuing the RTTRP UUO. This 
restriction is used to save time at interrupt level. 

CAUTION 

If an interrupt level routine executes a RTTRP UUO that 
affects the device currently being serviced, no additional 
UUOs of any kind (inc ludihg RTTRP) can be executed dur­
ing the remainder of the interrupt. At this point, ony sub­
sequent UUO dismisses the interrupt. 

3.8.1.3 RTTRP Returns - On a normal return, the job is given user lOT privileges. These privileges 

allow the user to execute all restricted instructions including the necesscry VO instructions to con­

trol his device. 

The lOT privi lege must be used with caution because improper use of the I/O instructions could halt 

the-system (i .e., HALT on the KAl0; CONO APR, 0; PATAO APR, 0; CONO PI, 0 on the KA10 

and KIlO; and CONO PAG, 0 or DATAO PAG, 0 on the KIl 0). Note that a user can obtain just 

the user lOT privilege by issuing the RTTRP UUO with PICHL= O. 

An error return is not given to the user until RTTRP scans the entire data block to find as many errors 

as possible. On return, AC may contain the following error codes. 

3-63 Mcrch 1973 



MONITOR CALLS 

Name 

I RTJNP% 

RTCPU% 

RTDIU% 

RTIAU% 

I RTJNl% 

RTSLE% 

RTIlF% 

RTPWI% 

RTEAB% 

RTTAB% 

RTPNB% 

RTPNA% 

, 

Code 

Bit 24=1 

Bit 25=1 

Bit 26=1 

Bit 27=1 

Bit 28=1 

Bit 29=1 

Bit 30=1 

Bit 31=1 

. Bit 32=1 

Bit 33=1 

Bit 34=1 

Bit 35=1 

Value 

4000 

2000 

1000 

400 

200 

100 

40 

20 

10 

4 

2 

-448-

Meaning 

Job not privileged. 

Not permitted on CPU1. (This is a temporary error 
condition reflecting the fact that the initial release 
of the 5.05 monitor will not support the RTTRP UUO 
on CPU1). 

Device already in use by another job. 

Illegal AC used during RTTRP UUO at interrupt level. 

Job not locked in core. 

System limit for real-time devices exceeded.· 

Illegal format of CONSO, BlKO, or BlKI instruction. 

BlKADR or pointer word illegal. 

ErrOr address out of bounds. 

Trap address out of bounds. 

PI channel not currently available for BlKI/8LKO's. 

PI channel not available (restricted use by system). 

3.8.1.4 Restrictions -

5.06 Monitor 

1) Devices may be chained onto any PI channel that is not used for BLKVBLKO in­
structions by the system or by other real-time users using fast block mode. This 
inc ludes the APR channel. Normally PI levels 1 and 2 are reserved by the 
system for magnetic tapes and DECtapes. PI level 7 is always reserved for the 
system. 

2) Each device must be chained onto a PI level before the user program issues the 
CONO DEV, PIA to set the device onto the interrupt level. Failtre to observe 
this rule or failure to set the device on the same PI level that was specified in 
the RTTRP UUO could hang the system. . 

3) If the CONSO bit mosk is set up and one of the corresponding flags in a device 
is on, but the device has not been physically put on its proper PI level, a trap 
may occur to the user's interrupt service routine. This occurs because there is 
a CONSO skip chain for each PI level, and if another device interrupts whose 
CONSO instruction is further down the chain than that of the real-time device, 
the CON SO associated with the real-time device is executed. If one of the 
hardware device flags is set and the corresponding bit in the CONSO bit mask 
is set, the CONSO skips and a trap occurs to the user program even though the 
real ..... ime device was not causing the interrupt on that channel. To avoid this 
situation the user can keep the CONSO bit mask in his user area (refer to 

. i?aragraph 3.8.1 .1). This procedure allows the user to chain a device onto the 
interrupt level, keeping the CON SO bit mask zero until the device is actually 
put on the proper PI level with a CONO instruction. This situation never 
crises if the device flags are turned off until the CONO DEV, PIA can be 
executed. 

3-64 March 1973 



-449- ~10N nOR CALLS 

4) The user should guard against putting programs on high priority interrupt levels 
which execute for long periods of time. These programs could cause real-time 
programs at lower levels to lose data. 

5) The user program must ryot change any locations in the protected job data area 
Oocations 20-114), b~ause the user is running at interrupt level and full con­
text switching is notperformed. 

6) If the user is using theBLKI/BLKO feature, he must restore the BLKI/BLKO 
pointer word before dismiSsing any end-of-block interrupts. This is accom­
plished with another RTTRP IJUO or by directly modifying the absolute pointer 
word supplied by the first RTTRP UUO. Failure to reset the pointer word 
could cause the device to overwrite all of memory. 

3.8.1.5 Removing Devices from a PI Channel - When PIC HL=O in the data block (see Paragraph 

3.8.1.1), the device specified in the CONSO instruction is removed from the interrupt system. If 

.the user removes a device from a PI chain, he must also remove the device from the PI level (CONO 

DEV, 0). 

A RESET, EXIT, or RUN UUO from the timesharing levels removes all devices. from the interrupt levels 

(see Paragraph 3.2.2.4). These UUOs cause a CONO DEV, Oto be executed before the device is 

removed. Monitor commands that issue implicit RESETS also remove real-time devices (e.g., R, RUN, 

GET, CORE 0, SAVE, SSAVE). 

3.8.1.6 Dismissing the Interrupt - The user pragram must always dismiss the interrupt in order to al­

low monitor to properly restore the state of the machine. The interrupt moy be dismisseq with any 

UUO other than !he RTTRP UUO or, on the KA 10, any instruction that traps to absolute location 60. 

The standard methad of dismissing the interrupt is with a UJEN instruction (op code 100). This 

instruction gives the fastest possible dismissal. 

3.8.1.7 Examples 

********** EXAMPLE 1 ********** 
SINGLE MODE 

TITLE RTSNGL - PAPER TAPE READ TEST USING CONSO CHAIN 

PIOFF'=400 
PION=200 
TAPE=400 
BUSY=20 
DONE=10 

PDATA: Z 

lTURN PI SYSTEM OFF' 
;TURN PI SYSTEM ON 
lNO MORE TAPE IN READER IF TAPE=0 
lDEVICE IS BUSY READING 
;A CHARACTER HAS BEEN READ 

;LOCATION WHERE DATA IS READ INTO 

3-65 March 1973 



MaN nOR CALLS 

PTRTST: RESET 
MOVE [XWD 1~1] 

LOCK 
JRST FAILED 
SETZM PTRCSO 
SETZM DONFLG 
MOVEI RTBLK 
RTTRP 
JRST FAILED 
MOVEI I~DONE 

HLRZ 2~RTBLK 
TRO 2~BUSY 
CONO P I ~P 101'1' 
MOVEM I#PTRCSO 
CONO PTR#(2) 
CONO PI#PION 
MOVEI 5 
SLEEP 
SKIPN DONFLG 
JRST .-3 
EXIT 

RTBLK: XWD S#TRPADR 
EXP APRTRP 
CONSO PTR~@PTRCSO 
Z 

PTRCSO: Z 
DONFLG: Z 
RTBLKI: Z 

Z 
CONSO PTR~0 
Z 

TRPADR: CONSO PTR~TAPE 
JRST TDONE 
DATAl PTR~PDATA 
UJEN 

APRTRP: Z 
TDONE: MOVEI RTBLKI 

CONO PTR#0 
RTTRP 
JfCL 
SETOM DONFLG 
SETZM PTRCSO 
UJEN 

-450-
JRESET THE PROGRAM 
JLOCK BOTH HIGH AND LOW SEGMENTS 
;LOCK THE JOB IN CORE 
JLOCK UUO FAILED 
JMAKE SURE CON~O BITS ARE ZERO 
JINITIALIZE DONE fLAG 
JGET ADDRESS Of REAL TIME DATA BLOCK 
JPUT REAL TIME DEVICE ON THE PI LEVEL 
;RTTRP UUO FAILED 
;SET UP CONSO BIT MASK 
JGET PI. NUMBER FROM RTBLK 
JSET UP CONO BITS TO START TAPE GOING 
JGUARD AGAINST ANY INTERRUPTS 
;STORE CONSO BIT MASK 
JTURN PTR ON 
JALLOW INTERRUPTS AGAIN 
;SET UP TO SLEEP FOR 5 SECONDS 

JHAVE WE FINISHED READING THE TAPE 
;NO GO BACK TO SLEEP 

JPI CHANNEL AND TRAP ADDRESS 
JAPR ERROR TRAP ADDRESS 
JINDIRECT CONSO BIT MASK = PTRCSO 
JNO BLKI/O INSTRUCTION 

JCONSO BIT MASK 
JPI LEVEL TO USER LEVEL COMM. 
JDATA BLOCK TO REMOVE PTR 
JFROM PI CHANNEL 

;END OF TAPE? 
;YES# GO STOP JOB 
;READ IN DATA WORD 
JDISMISS THE INTERRUPT 

JAPR ERROR TRAP ADDRESS 
;SET UP TO REMOVE PTR 
;TAKE DEViCE OFF HARDWARE PI LEVEL 
;REMOVE FROM SOFTWARE PI LEVEL 
JIGNORE ERRORS 
JMARK THAT READ IS OVER 
JCLtAR CONSO BIT MASK 
JDISMISS THE INTERRUPT 

FAILED: TTCALL 3#[ASCIZ/RTTRP UUO fAILED!/] 
EXIT 

END PTRTST 

3-66 Mcrch 1973 



BLKTST: 

RTBLK: 

POINTR: 
OPOINT: 
TABLE: 
DONF'LG: 
RTBLK1: 

TRPADR: 

APRTRP: 
TOONE: 

-451- MON ITOR CALLS 

********** EXAMPLE 2 ********** 
F'AST BLOCK MODE 

TITLE RTF'BLK - PAPER TAPE READ TEST IN BLKI MODE 

TAPE=400 
BUSY=20 
DONE=10 
RESET 
MOVE [XWD 1#1] 
LOCK 
JRST F'AILE.D 
SETZM DONF'LG 
MOVEI RTBLK 
RTTRP 
JRST F'AILED 
HLRZ 2 .. RTBLK 
TRO 2 .. BUSY 
CONO PTR, (2) 
MOVEI 5 
SLEEP 
SKIPN DONF'LG 
JRST .-3 
EXIT 

XWD 6,TRPADR 
EXP APRTRP 
BLKI PTR,POINTR 
Z 

10WD 5,TABLE 
10WD 5,TABLE 
BLOCK 5 
Z 
Z 
Z 
CONSO PTR,jiJ 
Z 

CONSO PTR .. TAPE 
JRST TDONE 
MOVE OPOINT 
MOVEM POINTR 
UJEN 

Z 
MOVEI RTBLKI 
CONO PTR,jiJ 
RTTRP 
JF'CL 
SETOM DONF'LG 
UJEN 

;NO MORE TAPE IN READER IF' TAPE=0 
JDEVICE IS BUSY READING 

. JA CHARACTER HAS BEEN READ 
;RESET THE PROGRAM 
;LOCK BOTH HIGH AND LOW SEGMENTS 
;LOCK THF. JOB IN CORE 
JLOCK UUO F'AILED 
JINITIALIZE DONE F'LAG 
;GET ADDRESS OF' REAL TIME DATA BLOCK 
JPUT REAL TIME DEVICE ON THE PI LEVEL 
;RTTTP UUO F'AILED 
;GET PI NUMBER F'ROM RTBLK 
;SET UP CONO BITS TO START TAPE GOING 
;TURN PTR ON 
JSET UP TO SLEEP F'OR 5 SECONDS 

JHAVE WE F'INISHED READING THE TAPE 
;NO GO BACK TO SLEEP 

JPI CHANNEL AND TRAP ADDRESS 
;APR ERROR TRAP ADDRESS 
;READ A BLOCK AT A TIME 

;POINTER F'OR BLKI INSTRUCTION 
JORIGINAL POINTER WORD F'OR BLKI 
JTABLE AREA F'OR DATA BEING READ 
;PI LEVEL TO USER LEVEL COMM. 
;DATA BLOCK TO REMOVE PTR 
JF'ROM PI CHANNEL 

;END OF' TAPE? 
;YES, GO STOP JOB 
lGET ORIGINAL POINTER WORD 
;RESTORE BLKI POINTER WORD 
lDISMISS THE INTERRUPT 

JAPR ERROR TRAP ADDRESS 
;SET UP TO REMOVE PTR 
JTAKE DEVICE OF'F' HARDWARE PI LEVEL 
JREMOVE F'ROM SOF'TWARE PI LEVEL 
JIGNORE ERRORS 
JMARK THAT READ IS OVER 
JDISMISS THE INTERRUPT 

F'AILED: TTCALL 3,[ASCIZ/RTTRP UUO F'AILED!/] 
EXIT 

END BLKTST 

3-67 Mcrch 1973 



MON ITOR CALLS -452-

BLKTST: 

RTBLK: 

POINTR: 
(pO INT: 
TABLE: 
DONF'LG: 
RTBLK1: 

TRPADR: 

APRTRP: 
TOONE: 

********** EXAMPLE 3 ********** 
NORMA~ BLOCK MODE 

TITLE RTNBLK - PAPER TAPE READ TEST IN BLKI MODE 

TAPE=400 
BUSY=20 
DONE=10 

RESET 
MOVE [XWD 111] 
LOCK 
JRST rAILED 
MOVEI RTBLK1 
RTTRP 
JRST F'AILED 
CONO PTRI0 
SETZM DONF'LG 
MOVEI RTBLK 
RTTRP 
JRST F'AILED 
MOVE POINTR 
MOVEM OPOINT 
HLRZ 21RTBLK 
TRO 21BUSY 
CONO PTR 1(2) 

MOVEI 5 
SLEEP 
SKIPN DONF'LG 
JRST .-3 
EXIT 

XWD 6 .. TRPADR 
EXP APRTRP 
CONSO PTRiDONE 
BU<I PTRIPOINTR 

IOWD S .. TABLE 
Z 
BLOCK 5 
Z 
Z 
Z 
CONSO PTR .. 0 
Z 

CONSO PTRITAPE 
JRST TDONE: 
MOVE OPOINT 
MOVEM POINTR 
UJEN 

Z 
MOVEI RTBLK1 
CONO PTR .. 0 
RTTRP 
JfCL 
SETOM DONI'LG 
UJEN 

'NO MORE TAPE IN READER IF' TAPE=0 
JDEVICE IS BUSY READING 
JA CHARACTER HAS BEEN READ 

JIO RESET 
'LOCK BOTH HIGH AND LOW SEGMENTS 
JLOCK THE JOB IN CORE 
;LOCK UUO fA ILED 
'GET ADDRESS Or REAL TIME BLOCK 
;GET USER lOT PRIVILEGE 
,UUO fAILED! 
;CLEAR ALL PTR F'LAGS 
JINITIALIZE DONE F'LAG 
;GET ADDRESS Of REAL TIME DATA BLOCK 
'PUT REAL TIME DEVICE ON THE PI LEVEL 
'RTTRP UUO F'AILED 
'GET RELOCATED POINTER WORD I'OR LATER 
;STORE I'OR INTERRUPT LEVEL USE 
'GET PI NUMBER fROM RTBLK 
;SET UP CONO BITS TO START TAPE GOING 
HURN PTR ON 
;SET UP TO SLFEP F'OR 5 SECONDS 

JHAVE WE F'INISHED I.EADING THE TAPE 
'NO GO BACK TO SLEEP 

JPI CHANNEL AND TRAP ADDRESS 
;APR ERROR TRAP ADDRESS 
'WAIT ONLY F'OR DONE fLAG 
;READ A BLOCK AT A TIME 

;POINTER F'OR BLKI INSTRUCTION 

HABLE AREA f'OR DATA BEING READ 
;PI LEVEL TO USER LEVEL COMM. 
;DATA BLOCK TO REMOVE PTR 
'I'ROM PI CHANNEL 

;END Or TAPE? 
JYESI GO STOP JOB 
'GET ORIGINAL POINTER LOCATION 
;STORE IN POINTER LOCATION 
;DISMISS THE INTERRUPT 

;APR ERROR TRAP ADDRESS 
;SET UP TO REMOVE PTR 
;TAKE DEVICE Orr HARDWARE PI LEVEL 
,REMOVE fROM SOfTWARE PI LEVEL 
'IGNORE ERRORS 
'MARK THAT READ IS OVER 
;DISMISS THE INTERRUPT 

fAILED: TTCALL 3 .. [ASCIZ/RTTRP UUO fAILED!/) 
EXIT 

END BKJTST 

3-68 March 1973 



-453- MON nOR CALLS 

3.8.2 RTTRP Executive Mode Trapping 

In special cases, the real-time user requires a faster response time than that offered by the RTTRP UUO 

when executed in user mode. To accommodate these cases, the user can specify a special status bit in 

the RTTRP UUO call, which gives the program control in exec mode (refer to Pcragraph 2.1.3). Exec­

mode trapping gives response times of less than 10 f.IS to real-time interrupts. To use this exec-mode 

trapping, the job must have real-time privileges (granted by LOGIN) and be locked in core (accom-

I plished by the LOCK UUO). On KIlO-based systems, the job must also be mapped contiguously in 

exec virtual memory (refer to the LOCK UUO). The privilege bits required are: 

1) JP. TRP (Bit 15) 

2) JP. LCK (Bit 14) 

. 3) JP.RTT(Bit 13) 

Several restrictions must be placed on user programs in order to achieve this level of response. On 

receipt of ell interrupt, program control is transferred to the user's real-time program without saving 

ACs and with the processor in exec mode. Therefore, the user program must save and restore all ACs 

that are used, ,must not execute any UUOs, and cannot leave exec mode. This means that the programs 

must be self-relocating (i .e., through the ~se of an index or base register). 

CAUTION 

Improper use of the exec mode feature of the RTTRP UUO 
can cause the system to fail in a number of ways. Un­
like the user mode feature of RTTRP, errors are not pro­
tected ogainst since the programs run in exec mode with 
no ACs saved. 

To specify RTTRP exec-mode trapping, bit 17 of the second word in the data block (RTBLK) must be 

set to 1. This implies that no context switching is to be clone and that a JSR TRPADRis to be used to 

enter the user's real-time interrupt routine. The user program must save CI'1d restore all ACs and should 

dismiss the interrupt with a JRSTF @ TRPADR. This instruction must be set up prior to the start of the 

real-time device as an absolute or unrelocated instruction. This CCl'1 be dane because the LOCK UUO 

returns the absolute addresses of the low and high segments after the job is locked in a fixed place 

in memory. 

The exec-mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single 

mode, normal block mode, and fast block mode. 

5.06 Monitor 3-69 March 1973 



MaN ITOR CALLS 
3.8.2.1 Example 

TITLE RTEXEC 

PIA=5 
DONE=10 
BUSY=20 
TAPE=400 
1=1 
AC=2 

-454-

OPDEr HIBERNATE [CALLI 72J 

RTEXEC: RESET 
SETZM DOl'!rLG 
MOVE AC,[XWD 1,IJ 
LOCK AC, 

JRST rAILED 
/-fRRZS AC 
LSH AC,9 
MOVEM AC,INDEX 

ADDM AC,EXCHWD 
ADDM AC, JENWD 
MOVEI AC,RTBLK 
RTTRP AC, 
JRST rAILED 
CONO PTR,20+PIA 

SLEEP: MOVEI AC,tD1000 
HIBERNATE AC, 
JRST FA ILED 
SKIPN DONFLG 
JRST SLEEP 
EXIT 

RTBLK: XWD PIA,TRPADR 
XWD I ~PRTRP 
CONSu TR,DONE 
o 

TRPADR: 0 
EXCHWD: EXCH 'I, INDEX 

CONSO PTR,TAPE 
JRST TDONE<I)' 
DATAl PTR,PDATA(I) 

RETURN: EXCH I,INDEX(I) 
~NWD: JRSTF @TRPADR 

APRTRP: 0 
TOONE: CONO PTR,0 

SETOM DONFLGCI) 
JRST RETURNCI) 

JRESET THE PROGRAM 
JINITIALIZE. THE DONE FLAG 

JLOCK, THE JOB IN CORE 
JABSOLUTE ADDRESS OF JOB IS RETURNED 
J IN AC 
~ERROR RETURN 
JGET' ONLY LOW SEGMENT ADDRESS 
JJUSTIrY ADDRESS 
JSAVE BASE ADDRESS "OR USE AT INTERRUPT 
JLEVEL 
JRELOCATE INTERRUPT LEVEL PROGRAM 
JR~LijCATE ~~tURN INSTRUCTION 
JCONNECT REAL TIME DEVICE 
JTO THE PI SYSTEM 
J~TTRP UUO rAILED 
JSTART REAL TIME DEVICE READING 
JSLEEP 
JFOR 10 MILLISECONDS 
JFAILED 
JIS THE INTERRUPT LEVEL PROGRAM DONE 
JNO, GO BACK TO SLEEP 
JYES, EXIT 

JBIT 17 SAYS TRAP IN EXEC MODE 

JJSR TRPADR IS DONE UPON INTERRUPT 
JSET UP INDEX REGISTER 
JTAPE FINISHED? 
JYES, STOP THE READER 
JNO, READ IN THE NEXT CHARACTER 
JRESTORE AC'S USED 
JDISMISS THE INTERRUPT 

JAPR ERRORS WILL TRAP HERE 
JTAKE THE READER OFF LINE 
JMARK THAT THE TAPE IS FINISHED 
JGO DISMISS THE INTERRUPT 

rAILED: TTCALL 3,[ASCIZ/UUO FAILURE/] 
EXIT 

DONrLG: 0 
PDATA: 0 
JNVEX: 0 

END RTEXEC 

JrLAG TO SPECIrY END Or JOB 
JDATA WORD 
JBASE INDEX REGISTER 

3-70 Mcrch 1973 



-455- MONITOR CALLS 

3.8.3 TRPSET AC, or CALLI AC, 251 

The TRPSET feature may be used to guarantee some of the fast response requirements of real-time users. 

In order to achieve, fast response to interrupts, this feature temporarily suspends the running of other 

jobs during its use. This limits the class of problems to be solved to cases where the user wants to 

transfer data in short bursts at predefined times. Therefore, because the data transfers are short, the 

time during which timesharing is stopped is also short, and the pause probably will not be noticed by 

the timesharing users. 

The TRPSET UUO allows the user program to gain control of the interrupt locations. If the user does 

not have the TRPSET privileges (JP. TRP, bit 15), an error return to the next location after the CALLI 

is always given, and the user remains in user mode. Timesharing is turned back on. If the user has 

the TRPSET privileges, the central processor is placed in user I/O mode. If AC contains zero, time­

sharing is turned on if it was turned off. If the lH of AC is within the range 40 through 57 of the 

central processor, all other jobs are stopped from being scheduled and the specified executive PI lo­

cation (40-57) is pate hed to trap. directly to the user .. In this case, the manitor moves the contents 

of the relative location specified in the right half of AC, converts the user virtual address to the 

equivalent exec virtual address, and stores the address in the specified executive PI location. ~ 

KIl O-based system, this requires that the user segment accessed during the interrupt be locked and 

I mapped contiguously in the exec virtual memary (refer to the lOC K UUO). If the segment does not 

meet these requirements, the error return is .given. 

On a multiprocessor system, the TRPSET UUO applies to the processor specified by the job's CPU 

specification (refer to the SET CPU command or' the SET UUO). If the specification indicates only 

CPU 1, an error return is given if the job is not locked in core. When the specification indicates 

mare than one processor, the spec ification is c hanged to indicate CPUO (the master processor). 

Thus, the user can set up a priority interrupt trap into his relocated core area. On a normal return, 

AC contains the previous contents of the address specified by lH of AC, so that the user program may 

restore the original contents of the PI location when the user is through using this UUO. If the lH of 

AC is not within the range 40 through 57, an error return is given just as if the user did not have the 

privileges. The basic call is: 

ADR: 

TRAP: 

MOVE AC,[XWD N, ADR] 
TRPSET AC, 
ERROR RjTURN 
NORMAL RETURN 

JSR TRAP ;Instruction to be stored 
;in exec PI location 
;after relocation added to it. 
;Here on interrupt from exec. 

1This UUO depends on FTTRPSET which is normally off in the DECsystem-1040. 

5.06 Monitor 3-71 March 1973 



MONITOR CALLS -456-
The monitor assumes that user ADR contains either a JSR U or BLKI U, where U is a user virtual 

address; consequently, the monitor adc:ls a relocation to the contents of location U to make it CI"I 

absolute 10WD (i.e., an exec virtual address). Therefore, a user should reset the contents of U 

before every TRPSET call. 

A RESET UUO returns the user to normal user mode. The following instruction sequence is used to 

place the real-time device RTD on channel 3. 

INT46 : 

INT47 : 

START: 

XITINT: 

8LKI RTD .. IN8LOK 

JSR XITINT 

MOVEI AC .. INT46 
HRLI AC .. 46 
TRPSET AC .. 
JRST EXITR 
MOVE AC .. [XWD 47 .. INT471 
TRPSET AC .. 
JRST EXITR 

o 

;relocation constant 
;for user is added 
ito RH when instructions 
;are placed into 46 and 47. 

;error return 
;normal retum 

;error return 
;normal retum 

;PC saved 
;interrupt dismiss routine 

To mointain compatibility between a KA10-based system and a KIlO-based system, the interrupt routine 

should be executed in exec mode. However, for convenience, the routine can be executed in user 

mode in order to avoid relocation to exec virtual memory. This is possible on KA 10-based systems if 

care is taken when dismissing the interrupt (see example below). On KIlO-based systems, if there is 

a possibility that the interr~t may occur during the job's bockground processing, the interrupt routine 

must be executed in exec mode (and thus must be locked and exec-mapped with the LOCK UUO). In 

particular, if the job is executing a UUO at background level, the use of UJEN at interrupt level may 

cause an error. On KIlO-based systems it is recommended that the TRPSET interrupt routines always 

be coded to run in exec mode (refer to the RTTRP UUO for programming techniques.) 

On KA 10-based system, the interrupt routine can be coded to run in user mode if the following pro­

cedure is observed. If the interrupt occurs while some other part of the user's program is runn ing, the 

user may dismiss !Tom the interrupt routine with a JEN @ XITINT. However, if the machine is in 

exec mode, a JEN instruction issued in user mode does not work because of memory relocation. This 

is solved by a call to UJEN (op code 100). This UUO causes the monitor to dismiss the interrupt !Tom 

exec mode. In this case, the address field of the UJEN instruction is the user location when the 

retum PC is stored (i.e., UJEN XITINT). The following sequence enables the user program to decide 

whether it can issue a JEN to save time or dismiss the interrupt with a UUO call. 

3-72 March 1",3 



Exa~le (KA10-based system only): 

XITINT: 0 

JRST 1,.+1 

MOVEM AC, SAVEAC 

MOVE AC, XIT INT 
SETZM EfLAG 

TLNN AC, 10000 

SETOM EfLAG 
MOVE AC, SAVEAC 
SKIPE EfLAG 
UJEN XITINT 
JEN @ XIT INT 

SAVEAC: 0 

EfLAG: 111 

-457- ~'ON nOR CALLS 

;PC with bits in lH 

;essential instruction. 
;returns machine to 
;user mode. 
;save accumulator AC 
;service interrupt here 

;get PC with bits 

;was machine in user 
;mode at entry? 
;no , 
;RESTORE saved AC 

;not in user mode at entry 

\ 

On entering the routine from absolute 47 with a JSR to XITINT + REl (where REl. is the relocation 

constant), the processor enters exec mode. The first executed instruction in the user's routine must, 

therefore, reset the user mOde flag, thereby enabling relocation and protection. The user must pro­

ceed with caution when changing ehannel interrupt chains under timesharing, making certain thatthe 
. , 

real-time job can co-exist with other timesharing jobs. 

3.8.4 UJEN (Op Code 100) 

Thi~ op e~de dismisses a uSer I/O mode interrupt if one is in progress. If the interrupt is from user 

made, a JRST 12, instruction dismisses the interrupt. If the interrupt came from executive mode, 

however, this operator is used to dismiss the interrupt. The monitor restores all accumulators, and 

executes JEN @ U where user location U contains the program counter as stored by a JSR instruction 

when the interrupt occurred. 

3.8.5 
" 1 

HPQ AC, or CALLI AC, 71 

The HPO UUO is used by privileged users to place their jobs in a htgh-priority scheduler run queue. 

These queues are always scanned by the scheduler before the normal run queues, and any runnable job 

l This UUO depends on FTHPQ which is normally off in the DECsystem-l040. 

3-73 March 1973 



MOfJ I TOR CALLS -458-

in one of these queues is executed before all other jobs in the system. In addition, these jobs are 

given preferential access to sharable resources (e.g., shared device controllers). Thus, real-time 

associated jobs can receive fast response from the timesharing scheduler. 

Jobs in high-priority queues are not examined for swap-out until all other queues have been scanned. 

If a job in a high-priority queue must be swapped, the lowest priority job is transferred first, and the 

highest priority job last. If the highest priority job is swapped, then that job is the first to be swapped 

in for immediate execution. Therefore, in addition to being scanned before all other queues for job 

execution, the high-priority queues are examined after all other queues for swap-out and before all 

queues for swap-in. 

The HPQ UUO requires as an argument the high-priority queue number of the queue to be entered. 

The lowest high-priority queue is 1, and the highest priority queue is equivalent to the number of 

queues that the system is built for. The call is as follows: 

MOVE AC, HPQNUM 
HPQ AC, 
error return 
normal return 

;get high-priority queue number 
;or CALLI AC, 71 

On an error return, AC contains -1 if the user did not have the correct privileges. The privilege bits 

are 6 through 9 in the privilege word (.GTPRV). These four bits specify a number from 0-17 octal, 

which is the highest priority queue attainable by the user. 

I On a normal return, the job is in the desired high-priority queue. A RESET or an EXIT UUO returns 

the job to the high-priority queue specified in the last SET HPQ command. A queue number of 0 as 

an argument places the job back to the timesharing level. 

3.9 METER .AC, OR CALLI AC, 1111 

This UUO provides a mechanism for system performance metering by allowing privileged users to 

dynamically select and collect performance statistics from the manitor. The multifunction UUO 

controls all aspects of the metering facility in order that the user can collect, present, or reduce data 

for performance analysis or can tune individual jobs or the entire system. The METER. UUO requires 

JP.MET (bit 3) to be set in the privilege word .GTPRV. 

1 
This UUO depends on FTMETR which is normally off in the DECsystem-1040. 

5.06 Monitor 3-74 March 1973 



-459- f'10N !TOR CALLS 
The general call is: 

where 

MOVE AC, [XWD N, ADRJ 
METER.AC, 
error return 
normal return 

;or CALLI AC, 111 

N is the number of arguments in the argument list. 
ADR is the beginning of the argument list. 

If N is 0, the default number of arguments depends on the particular function used. Arguments in the 

list can be 1) arguments for the monitor, 2) values returned from the monitor, or 3) a combination of 

both. The first word of the argument block is the code for the particular function. The detailed 

descriptions of the various functions of the METER. UUO are presented in the METER. Specification 

in the Software Notebooks; the following is a list of the functions available. 

Function Code Name Description 

0 .MEFCI Initialize meter channel 

1 .MEFCS Obtain meter channel status 

2 .MEFCR Release meter channel 

3 .MEFPI Initialize meter paints 

4 .MEFPS Obtain meter point status 

5 .MEFPR Release meter points 

On an error return, the appropriate error code is returned in AC. Refer to the METER. Specification 

for the error codes. 

On a normal return,· AC is perserved. 

3-75 March 1973 





-461- r10NITOR CALLS 

CHAPTER 4 
1/0 PROGRAMMING 

/ 

All user-mode I/o programming is controlled by monitor programmed operators. I/o is directed by 

a. Associating a device and a ring of buffers with one of the user's I/o channels (IN IT , 
OPEN). 

b. Optionally selecting a file (LOOKUP, ENTER). 

c. Passing buffers of data to or from the user program (IN, INPUT, OUT, OUTPUT). 

Device specification may be delayed from program-generation time until program-run time because 

the monitor 

a. Allows a logical device name to be associated with a physical device (ASSIGN or MOUNT 
mon itor command). 

b. Treats operations that are not pertinent to a given device as no-operation code. 

For example: a rewind directed to a line printer does nothing, and file selection operations for de­

vices without a filename directory are always successful. 

4.1 I/o ORGANIZATION 

4.1.1 Files 

A file is an ordered set of data on a peripheral device. The extent of a file on input is determined by 

an end-of-file condition dependent on the device. For example: a file is terminated by reading an 

end-of-fi Ie gap from magnetic tape, by an end-of-fi Ie card from a card reader, or by depressing the 

end-of-file switch on a card reader (refer to Chapter 5). The extent of a file on output is determined 

by the amount of information written by the OUT or OUTPUT programmed operators up through and 

including the next CLOSE or RELEAS operator. 

4.1.2 Job I/o Initialization 

The monitor programmed operator 

CALL [SIX BIT /RESET/l or CALLI 0 

4-1 



-462-
should normally be the first instruction in each user program. It immediately stops all I/O transmis­

sions on all devices without waiting for the devices to become inactive. All device allocations made 

by the INIT arid OPEN operators are cleared and, unless the devices have been assigned by the 

ASSIGN or MOUNT monitor command, the devices are returned to the monitor facilities pool. The 

content of the left half of . J BSA (program break) is stored in the right half of • J BFF so that the user 

buffer area is reclaimed if the program restarts. The left half of .JBFF is cleared. Any files that 

have not been closed are deleted on disk. Any older version with the same filename remains. The 

user-mode write-protect bit is automatically set if a high segment exists, whether it is sharable or not; 

therefore, a program cannot inadvertently store into the high segment. Additional functions of the 

RESET UUO include 1) unlocking the iob if it was locked, 2) releasing any real-time devices, 3) re-I setting any high-priority queues set by the HPQ UUO to the value set by the HPQ command, 4) re-

sumi~ timesharing if it was stopped as a result of a TRPSET UUO with a non-zero argument, 5) reset­

ting the action of the HIBER and APRENB UUOs, and 6) clearing all PC flags except USRMOD. 

4.2 DEVICE SELECTION 

For all I/O operations, a spec ific device must be associated with a software I/O channel. Th is speci­

fication is made by an argument of the INIT or the OPEN programmed operators. The INIT or the 

OPEN programmed operators may specify a device with a logical name that is associated with a par­

ticular physical device by the ASSIGN or MOUNT monitor command. Some system programs, e.g., 

LOGOUT, require I/O to specific physical devices regardless of what logical names have been as­

signed. Therefore, on an OPENUUO, if the sign bit of word 0 of the OPEN block is 1 (UU. PHS), 

the device name is taken as a physical name only, and logical names are not searched. A given de­

vice remains associated with a software I/O channel unti I re leased (refer to Paragraph 4.8. 1) or until 

another INIT or OPEN is performed for that channel. Devices are separated into two categories: 

those with no filename directory (refer to Chapter 5) and those with at least one filename directory 

(refer to Chapter 6). 

Assignable devices (i .e., non-disk and non-spooled devices) in the monitor's pool of available 

resources are designated as being either unrestricted or restricted. An unrestricted device can be 

assigned directly by any iob via the ASSIGN command or INIT or OPEN UUO. A restricted device 

can be assigned directly only by a privileged iob (i.e., a iob logged in under [1,2] or running with 

the JACCT bit set). However, a non-privileged user can have a restricted device assigned to him indi­

rectly via the MOUNT command. This command allows operator intervention for the selection or 

denial of a particular device; thus the operator can control the use of assignable devices for the nO,n­

privileged user. This is particularly useful when there are multiprogramming batch and interactive jobs 

competing for the same devices. The restricted status of a device is set or removed by the operator with 

the OPSER commands :RESTRICT and :UNRESTRICT, which use the privileged UUOs, DVRST. and 

DVURS. (refer to UUOPRV in the DECsystem-l0 Software Notebooks). 

4.2.1 Nondirectory Devices 

For nondirectory devices (e. g., card reader and punch, I ine printer, paper-tape reader and punch, 

and user terminal), selection of the device is sufficient to allow I/O operations over the associated 

5.06 Mon itor 4-2 . March 1973 



-463- MONITOR CALLS 

software channel. All other file specifiers, if given, are ignored. Magnetic tape, a nondirectory 

device, requires, in addition to the name, that the tape be properly positioned. It is advisable to 

use the programmed operators that select a file, so that a directory device may be substituted for a 

nondirectory device at run time. 

4.2.2 Directory Device 

For directory devices (e.g., DECtape and disk), files are addressable by name. If the device has a 

single file directory (e.g., DECtape) the device name and filename are sufficient information to de­

termine a file. If the device has multiple file directories (e.g., disk) the name of the file directory 

must also be specified. These names are specified as arguments to tht;! LOOKUP, ENTER, and RENAME 

programmed operators. 

4.2.3 Device Initialization 

The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a de­

vice and associate it with a software I/o channel number for the job. These UUOs perform almost 

identical functions; the OPEN UUO is a reentrant form of I NIT and is preferred for this reason. In 

addition to the deviCe name, these programmed operators accept, as arguments, an initial file status 

and the location of the input and output buffer headers. The calls are: 

OPEN D,S~EC 
error return 
norma I return 

SPEC: EXP STATUS 
SIXBIT /dev/ 
XWD OBUF, IBUF 

INIT D,STATUS 
SIX BIT /dt;!v/ 
XWD OBUF, IBUF 
error return 
normal return 

The normal return is taken if a device is selected, and if the device is associated with a software I/o 

I channel. The error return is taken if the requested device is in use, if the requested device does not 

exist, or if the device is restricted and has not been assigned with the MOUNT command. 

4.2.3.1 Data Channel - These programmed operators establish a correspondence between the device 

and a 4-bit channel number, D. Nost of the other input/output operators require this channel number 

as an argument. If a device is already assigned to channel D, it is released (refer to Paragraph 4.8.1). 

4.2.3.2 Device Name - The device name, dev, is either a logical or physical device name, with 

logical names taking precedence over physical names. With multiple stations, the method of device 

selection depends on the format of the specified SIXBIT device name. 

If devn (e.g., LPTl, CDR3) is specified, the monitor attempts to select the devi ce spec ifi cally re­

quested. 

5.05 Monitor 4-3 June 1972 



r'10N nOR CALLS -464-
If devSnn (e.g., CDPS 14, PTPS 12) is specified, the monitor attempts to select any device of the de­

sired type at the requested station. If a device of the desired type has been previously assigned to 

this job at the requested station and is not INITed on another channel, it will be selected in prefer­

ence to an unassigned device. 

If dev (e.g., LPT, DTA) is specified, the monitor attempts to select a device of the desired type at 

the job's logical station. If all devices of this type are in use, the error return is taken. If no device 

of the desired type exists at the user's logical station, the monitor attempts to select the device at the 

central station. If the desired type of device has already been assigned to the job at the appropriate 

station (either the job's logical stcition or the central station) and is not INITed on another channel, it 

will be selected instead of an unassigned device. 

In non-disk systems, if the specified device is the system device SYS, the job is placed into a system 

device wait queue and continues to run when SYS becomes available. In disk systems where thesys­

tem device is one or more file structures, control returns immediately. 

The job may pause with the message 

?STATION nn NOT IN CONTACT 

if the requested station is not in contact with the central station. After station nn has established 

contact with the central station, the user types CONTINUE for a return to job execution. 

4.2.3.3 Initial File Status - The file status, including the data made, is set to the vCllue of the sym­

bol STATUS. Thereafter, bits are set by the monitor and may be tested and reset by the user via 

monitor programmed operators. Bits 30-35 of the file status are normally set by an OPEN or INIT 

UUO. Refer to Table 4-3 in Paragraph 4.6.2 for the file statos bits. If the data mode is not legal 

(refer to Chapters 5 and 6) for the specified device, the job is stopped and the monitor prints 

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr, 

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator 

on the user's terminal. The terminal is left in monitor made. 

4.2.3.4 Data Modes - Data transmissions are either unbuffered or buffered. (Unbuffered mode is 

sometimes referred to as dump made.) The mode of transmission is specified by a 4-bit argument to the 

INIT, OPEN, or SETSTS programmed operator. Tables 4-1 and 4-2 summarize the data modes. 

4-4 



Octal Code 

o 

2-7 

10 

11-12 

13 

14 

Octal Code 

15 

16 

17 

Name 

.IOASC 

.IOASL 

• IOIMG 

.IOIBN 

.IOBIN 

Name 

.IOIDP 

.IODPR 

.IODMP 

-465-
Table 4-1 

Buffered Data fvbdes 

MONITOR CALLS 

Meaning 

ASCII. Seven bit bytes packed left justified, five characters 
per word. 

ASCII line. Same as 0, except that the buffer is terminated 
by a FORM, VT, LINE-FEED, or ALTMODE character. Dif­
fers from ASCII on TTY (half-duplex softWare) and PTR only. 

Unused. 

Image. A device dependent mode. Thirty-six bit bytes • 
The buffer is filled with data exactly as supplied by the de­
vice. 

Unused. 

Image binary. Thirty-six bit bytes. ThIs mode is simi lar to 
binary mode, except that no automatic formatting or check­
summing is done by the monitor. 

Binary. Thirty-six bit bytes. This is blocked format con­
sisting of a word count, n (the right half of the first data 
word of the buffer), followed by n 36-bit data words. 
Checksum for cards and paper tape. 

Table 4-2 
Unbuffered Data fvbdes 

Meaning 

Image dump. A device dependent dump mode. Thirty-six 
bit bytes. 

Dump as records without core buffering; Data is transmitted 
betWeen any contiguous blocks of core and one or more stan-
dard length records on the dev:ice for each command word in 
the command list. Thirty-six bit bytes. 

Dump one record without core buffering. Data is transmitted 
betWeen any contiguous block of core and exactly one rec-
ord of arbitrary length on the device for each command word 
in the command list. Thirty-six bit bytes. 

4.2.3.5 Buffer Header - Symbols OBUF and IBUF, if non-zero specify the location of the first word 

of the 3-word buffer ring header block for output and input, respectively. Buffered dcita modes utilize 

a ring of buffers in the user area and the priority interrupt system to permit the user to overlap compu­

tation with his data transmission. Core memory in the user's area serves as an intermediate buffer 

5.04 Monitor 4-5 January 1972 



MONITOR CALLS -466-
between the user's program and the device; The buffer storage mechanism consists of a 3-word buffer 

ring header block for bookkeeping and a data storage area subdivided into one or more individual buf­

fers linked together to form a ring. During input operations, the monitor fills a buffer, makes that 

buffer available to the user's program, advances to the next buffer in the ring, and fills that buffer if 

it is free. The user's program follows the monitor, either emptying the next buffer if it is full or wait­

ing for it to fill. 

During output operations, the user's program and the monitor exchange roles; the user program fills the 

buffers and the monitor empties them. Only the headers that will be used need to be specified. For 

instance, the output header need not be specified, if only input is to be done. Also, data modes 15, 

16, and 17 require no header. If either of the buffer headers or the 3-word block starting at location 

SPEC lies outside the user's allocated core a~ea t, the job is stopped and the monitor prints 

ILLEGAL UUO AT USER addr 

(addr is the address of the OPEN or INn operator) on the user's terminal, leaving the terminal in mon­

itor mode. 

The first and third words of the buffer header are set to zero. The left half of the second word is set 

up with the byte pointer size field in bits 6 through 11 for the selected device-data mode combination. 

If the same device (other than disk) is INned on two or more channels, the monitor retains only the 

buffer headers mentioned in the last INn (a 0 specification does not override a previous buffer header 

specification). Other I/o operations to any of the channels involved act on the buffers mentioned in 

the last INn previous to the I/O operations. 

4.3 RING BUFFERS 

4.3.1 Buffer Structure 

The ring buffer (see Figure 4-1) is comprised of a buffer ring header block and buffer rings. 

4.3.1. 1 Buffer Ring Header Block - The location of the 3-word buffer ring header block is specified 

by an argument of the INn and OPEN operators. InformQtion is stored in the header by the monitor 

in response to the user execution of monitor programmed operators. The user's program finds all the 

information required to fill and empty buffers in the header. Bit position 0 of the first word of the 

header is a flag, which, if 1, means that no input or output has occurred for this ring of buffers. The 

t Buffer headers may not be in the user's ACs; however, the buffer headers may be in location above 
.JBPFI (refer to Table 1-1 in Paragraph 1.2.1). 

4-6 



-467- rmN nOR CALLS 

right half of the first word is the address of the second word of the buffer currently used by the user's 

program. The second word of the header contains a byte pointer to the current byte in the current 

buffer. The byte size is determined by the data mode. The third word of the header contains a number 

of bytes remaining in the buffer. A program may not use a single buffer header for both input and out­

put, nor maya single buffer ring header be used for more than one I/o function at a time. Users can­

not use the same buffer ring for simultaneous input and output; only one buffer ring is associated with 

each buffer ring header. 

BUFFER RfNG 

FILE STATUS 
USE BIT --....,. 

I SIZE BUF 2 r-
BUF 1: 

BOOKKEEPING WORD COUNT 
WORD 

DATA 

BUFFER RING 
HEADER BLOCK 

FILE STATUS 

USEI 
I CURRENT USE BIT ~ I SIZE BUF 3 

BIT BUFFER BUF 2: 
BOOKKEEPING 

BUFFER POINTER WORD WORD COUNT 

BYTE COUNTER 

DATA 

FILE STATUS 
USE BIT-------. I SiZE BUF 1 

BUF 3: 
BOOKKEEPING 

WORD 
WORD COUNT 

DATA 

10-0539 

Figure 4-1 User's Ring of Buffers 

4.3.1.2 Buffer Ring - The buffer ring is established by the INBUF and OUTBUF operators, or, if 

none exists when the first IN, INPUT, 0 UT, or OUTPUT operator is executed, a 2-buffer ring is set 

up. The effective address of the INBUF and OUTBUF operators specifies the number of buffers in the 

ring. The location of the buffer ring is specified by the contents of the right half of .JBFF in the 

user's job data area. The monitor updates. JBFF to point to the first location past the storage area. 

4-7 



r'1ONITOR CALLS -468-
All buffers in the ril1g are identical in structure. The right half of the first word contains the file sta­

tus w~en the monitor advances to the next buffer in the ring (see Figure 4-2). Bit ° of the second 

word of a buffer, the use bit, is a flag that indi cates whether the buffer contains active data. This 

bit is set to 1 by the monitor when the buffer is full on input or being emptied on output, and set to ° 
when the buffer is empty on output or is being filled on input. In other words, if the use bit = 0, the 

buffer is available to t~~ filler; if the use bit = 1, the buffer is available to the emptier. The use bit 

prevents the monitor and the user's program from interfering with each other by at_tempting to use the 

same buffer simultaneously. Buffers are advanced by the UUOs and not by the user's program. The 

use bit in each buffer should never be changed by the user's progr?m except by means of the UUOs. 

Bits 1 throu9,h 17 of the second word of the buffer contain the size of the data area of the buffer plus 

1. The size of this data area depends on the device. The rig~t half of the third word of the buffer is 

reserved for a count of the number of words that actually contain data. The left half of this word is 

reserved for other bookkeeping purposes, depending on the particular ~evice and the data mode. 

FILE STATUS FIRST WORD 

USE 

BIT -

I SIZE OF 
ADDRESS OF SECOND 
WORD OF NEXT BUFF-

DATA AREA ER IN RING 
SECOND WORD 

BOOKKE.EPING WORDS COU~T. N THIRD WORD 

N DATA WORDS DATA AREA 

------------
UNUSED 

10-0592 

Figure 4-2 Detailed Diagram of Individual Buffer 

4.3.2 Buffer Initialization 

Buffer data storage areas may be established by the INBUF and 0 UTBUF programmed operators, or by 

the first IN, INPUT, OUT, or OUTPUT operator, if none exists at that time, or the user may set up 

his own buffer data storage area. 

4.3.2.1 Monitor Generated Buffers - Each device has an associated standard buffer size (refer to 

Chapters 5 and 6). The monitor programmed operators INBUF D ,n (operation code 064) and 

OUTBUF D,n (operQtion code 065) set up a ring of n standard size buffers associated with the input 

and output buffer headers, respectively, specified by the .Iast OPEN or INIT operator on data channel 

4-8 



-469- MONITOR CALLS 
D. If n = 0 on either INBUF or OUTBUF, the default number of buffers for the specified device is set 

up. If no OPEN or INIT operator has been performed on channel 0, the monitor stops the job and 

prints 

I/O TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the INBUF or OUTBUF operator) on the user's terminal leaving the terminal in 

th~ ~nitor mode. 

The storage space for the ring is taken from successive locations, beginning with the location speci­

fied in the right half of .JBFF. This location is set to the program break, which is the first free loca­

tion above 'the program area , by RESET. If there is insufficient space to set up the ring, the monitor 

automatically attempts to expand the user's core allocation by 1 K. If this fails, the monitor stops the 

job and prints 

ADDRESS CHECK FOR DEVICE dev AT USER addr 

(dev is the physical name of the device associated with channel 0 and addr is the location of the 

INBUF or OUTBUF operator) on the user's terminal, leaving the terminal in monitor mode. 
. . 

This message is also printed when an INBUF (OUTBUF) is attempted if the last INIT or OPEN UUO 

on' ch~nnel 0 did not specify an input (output) buffer header. 

The ring is set up by setting the second word of each buffer with a zero use bit, the appropriate data 

area size, and the link to the next buffer. The first word of the buffer header is set with a 1 in the 

ring use bit, and the .right half contains the address of the second word of the. first buffer. 

4.3.2.2 User Generated Buffers - The following code illustrates an alternative to the use of the 

INBUF programmed operator. Analogous code may replace OUTBUF. This user code operates similar­

ly to INBUF. SIZE must be set equal to the greatest number of data words expected in one physical 

record. 

GO: 

5.04 Monitor 

OPEN I ~OPNBLK 
JRST NOTAVL 

MOVE 0~. [XWD 400000 ~ BUF 1 + I ] 

MOVEM 0~ MAGBUF 
MOVE 0~ [POINT BYTSIZ.0.3S1 

MOVEM 0~ MAGBUF+l 
JRST CONTIN 

4-9 

;INITIALIZE ASCII MODE 
;THE 400000 IN THE LEFT HALF 
;MEANS THE BUFFER WAS NEVER 
;REFERENCED. 

;SET UP NON-STANDARD BYTE 
;SIZE 

;MAGNETIC TAPE UNIT 0 
;INPUT ONLY 

(continued on next page) 

January 19n 



MON ITOR CALLS 
OPNBLK: 0 

S I XB IT /MTA0/ 
XWD 0,MAGBUf 

MAGBUf: BLOCK 3 

BUrt: 0 
XWD SIZE+l,BUf2+1 

BLOCK SIZE +1 

BUf2: 0 
XWD SIZE+l,BUf3+1 
BLOCK SIZE+l 

BUf3: 0 
XWD SIZE+l,BUfl+l 
BLOCK S I ZE+ 1 

4.4 FILE SELECTION (LOOKUP and ENTER) 

-470-
;GO BACK TO MAIN SEQUENCE 
;SPACE FOR BUFFER RING HEADER 
;BUFFER 1, 1ST WORD UNUSED 
;LEFT HALF CONTAINS DATA AREA 
;SIZE+l, RIGHT HALF HAS 
;ADDRESS OF NEXT BUFFER 
;SPACE FOR DATA, 1ST WORD 
;RECEIVES WORD-COUNT. THUS 
;ONE MORE WORD IS RESERVED 
;THAN IS REQUIRED FOR DATA 
;ALONE 
;SECOND BUFFER 

;THIRD BUFFER 
;RIGHT HALF CLOSES THE RING 

The LOOKUP (operation code 076) and ENTER (operation code 077) programmed operators select a 

fj Ie for input and output, respectively. These operators are not necessary for nondirectory devices; 

however, it is good programming practice to always use them so that directory devices may be substi­

tuted at run time (refer to ASSIGN command). The monitor gives the normal return for a LOOKUP 

or ENTER to a nondirectory device; therefore, user programs can be coded in a device-independent 

fashion. 

4.4.1 The LOOKUP Operator 

LOOKUP selects a file for input on channel D. 

LOOKUP D,E 
error return 
norma I return 

E: SIXBIT/file/ 
SIX BIT/ext/ 

;filename, 1 to 6 characters, left-justified 
;filename extension, 0 to 3 
;characters, left-justified 
;The remaining words in the argument block 
iare ignored for nondirectory devices. Refer 
ito Paragraph 6.1.5.1 for the DECtape 
iLOOKUP and Paragraph 6.8.2.1 for the 
idisk LOOKUP. 

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the job, 

prints 

I/O TO UNASSIGNED CHANNEL AT USER LOC addr 

4-10 June 1973 



I 

-471- rmfHTOR CALLS 

and returns the user's terminal to monitor mode. The input side of channel D is closed if not already 

closed. The output side is not affected. 

On DECtape, LOOKUP searches the device directory as specified by an INIT. On disk, the user's 

file directory as specified by the contents of location E+3 is searched. Refer to Paragraph 6.1.5.1 

for details of a DECtape LOOKUP and Paragraph 6.8.2.1 for details of a disk LOOKUP. 

If the device is a directory device and the file is found, the normal retum is taken and information 

concerning the file is retumed in location E+l through E+3. The normal return is always taken if the 

device associated with the channel D does not have a directory. The error return is taken if 1) the 

file is not found, 2) the file is found but the user does not have access to it (refer to Paragraph 6.2.3 

for the description of file access codes), or 3) the device associated with channel D is a non-input 

device. Refer to Appendix E for the error cades returned in bits 18-35 of location E+l. 

4.4.2 The ENTER Operator 

ENTER selects a file for output on channel D. 

ENTER D, E 
error return 
norma I return 

E: SIXBIT/file/ 

S IXB IT/ext/ 

;filename, 1 through 6 
;characters, left-justified 
;filename extension, 0 through 3 characters, 
; left-justified 
;The remaining words in the argument block are 
;ignored for nondirectory devices. Refer to 
;Paragraph 6.1.5.2 for the DECtape ENTER 
;and Paragraph 6.8.2.1 for the disk ENTER. 

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the 

job, prints 

I/o TO UNASSIGNED CHANNEL AT USER LOC addr 

and returns the user's terminal to monitor mode. The output side of channel D is now closed (if it was 

not closed); the input side is not affected. On DECtape, ENTER searches the device directory as 

specified by an INIT. On disk, the user's file directory, as specified by the contents of location 

E+3, is searched. 

If the device does not have a directory, the normal return is always taken. On directory devices, if 

the fi Ie is found and is not being written or renamed, the fi Ie is deleted (the user must have access 

privileges to the file), and the storage space on the device is reclaimed. On DECtape, this deletion 

must occur immediately on ENTER to ensure that space is available for writing the new version of the 

4-11 June 1973 



t10N ITOR CALLS -472-

file. On disk, the deletion of the previous version does not occur until output CLOSE time, provided 

bit 30 of CLOSE is 0 (refer to Paragraph 4.7.7). Consequently, if the new file is aborted when par­

tially written, the old version remains. The normal return is taken, and the monitor makes the file 

entry, and recor~ file information. 

The error retum is taken if: 

a. The filename in location E is O. 

b. The file is found but is being written or renamed. 

c. The user does not have access to the file, as supplied by the file if it exists or 
by the UFD if the file does not exist. 

d. The device associated with channel D is a non-output device. 

Refer to Paragraph 6.8.2.1 for details of a disk ENTER and Paragraph 6.1.5.2 for details of a DEC­

tape ENTER. Refer to Appendix E for the error codes returned in bits 18-35 of location E+l. 

4.4.3 RENAME Operator 

The RENAME (operation code 055) programmed operator is used 

a. To alter the filename, filename extension, and file access privileges 

b. To delete a file associated with channel D on a directory device 

RENAME D,E 
error return 
normal return 

E: SIXBIT/file/ 
SIXBIT/ext/ 

;filename, 1 to 6 characters 
;filenome extension, 0 to 3 
;characters. 
;The remaining words in the 
;argument block are ignored 
;for nondirectory devices. 
;Refer to Paragraph 6. 1 .5.3 
;for the DECtape RENAME 
;and Paragraph 6.8.2. 1 for 
;the disk RENAME. 

If no device has been associated with chamel D, the monitor stops the job, prints 

I/O TO UNASSIGNED CHANNEL AT USER LOC addr 

and returns the user's terminal to mon itor mode. 

The normal return is given if: 

a. The device spec Hied is a nondirectory device. 

b. If the filename specified in location E is 0, the file is deleted after all 
read references are completed. 

c. If the filename specified in location E and the filename extension specified in 
the left half of location E+l are the same as the current filename and filename 
extension, the access protection bits are set to the contents of bits 0 to 8 of 
location E+2. 

4-12 June 1973 



-473- r'1OfJ nOR CALLS 

d. If the filename/filename extension specified differ from the current fi lename/fi lename 
extension, a search is made for the specified filename and filename extension. If a 
~atch is not found (1) the filename is changed to the filename in location E, (2) the 
filename extension is'chongeq to the filename extension in the left half of location 
E+ 1, (~) the access protection bits are changed to the contents of bits 0-8 of location 
E+2, and (4) the acce~s ~ate is unchanged. . 

The error return is given if: 

a. No file is selected on channel D. . , 

b. The specified file is not found. 

c. The fi Ie is found but is being written, superseded, or renamed. 

d. Th~ file is found but the user does not have the privileges to RENAME the file. 

!!. Th~ filename/filename extension specified differ from the current filename/filename 
extension, a search is made for'the specified filename and filename extension. If a 
matcH is found, the error return is 'token. ' 

f. The UFD is deleted. 

I Refer to Appendix E for the error codes returned in bits 18-35 of location E+1. Refer to Paragraph 

6.1.5.3 for details qf a DECtape RENAME anq Paragraph 6.8.2.1 for details of a disk RENAME. 

Examples 

General Device Initialization 

INIOEV: 0 
OPEN 3"OPNBLK 

JRST NOTAVL 

iJSR HERE 
iCHANNEL 3 
iWHERE TO GO IF DTA5 IS BUSY 

iFROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM 
iREQU'IREIv\ENTS 

MOVE 0" JOBF'F' 
MOVEM 0" SVJBF'F' 

INBUF' 3,,4 
OUTSUF' 3,,1 
LOOKUP 3" INNAM 

JRST NOTI'NO 

ENTER 3" OUT NAME 
JRST NOROOM 

JRST @ INIDEV 
OPNBLK: 14 

SIXBIT/OTA51 
XWO· OBUF'"IBUF' 

OBUF: BLOCK 3 
IBUF': BLOCK 3 

5.06 Monitor 4-13 

iSAVE THE FIRST ADDRESS OF THE BUFFER 
iRING IN CASE THE SPACE MUST BE 
iRECLAIMED 
iSET UP 4 INPUT BUFFERS 
iSET uP 1 OUTPUT BUFFER 
ilNITIALIZE AN INPUT FILE 
iWHERE 10 GO IF THE INPUT FILENAME IS 
iNOT IN THE DIRECTORY' 
iINITIALIZE AN OUTPUT FILE 
iWHERE 10 GO IF THERE IS NO ROOM IN 
iTHt DIROC,TORY FOR A NEW FILENAME 
iRETURN TO MAIN SEQUENCE 
iBtNARY MODE 
iDEVICE DECTAPE UNIT 5 
iBOTH INPUT AND OUTPUT 
iSPACE FOR OUTPUT BUFFER HEADER 
i~PACE FOR INPUT BUrFER HEADER 

(continued on next page) 

March 1973 



MON nOR CALLS 

INNAM: SIXBIT/NAMEI 
S IXB IT IEXT I 

o 
o 

OUTNAM: SIXBIT/NAMEI 
S IXB IT IEXT I 
o 
o 

4.5 DATA TRANSMISSION 

The programmed operators 

INPUT D,E and IN D,E 
normal return 
error return 

-474-

;FILE NAME 
;FILE NAME EXTENSION (OPTIONALLY 0), 
;RIGHT HALF WORD RECEIVES THE 
;FIRST BLOCK NUMBER 
;RECEIVES THE DATE 
;UNUSED FOR NONDUMP I/o 
;SAME INFORMATION AS IN INNAM 

transmit data from the fi Ie selected on channel D to the user's core area. The programmed operators 

OUTPUT D,E and OUT D,E 
norma I return 
error return 

transmit data from the user's core area to the file selected on channel D. If specified, E is the 

effective address of the next buffer to be written. If E is not specified, the next buffer in the 

sequence is implied. 

If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and prints 

I/o TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator) on the user's terminal 

and the terminal is left in monitor mode. If the device is a multiple-directory device and no file is se­

lected on channel D, bit 18 of the fi Ie status is set to 1, and control returns to the user's program. 

Control always returns to the location immediately following an INPUT (operation code 066) and an 

OUTPUT (operation code 067). A check of the file status for end-of-file and error conditions must 

then be made by another programmed operator. Note that to trap on a hardware write-locked device, 

the user should use location .JBINT (refer to Paragraph 3.1.3.2). Following an INPUT, the user pro­

gram should check the word count of the next buffer to determine if it contains data: Control returns to 

the location immediately following an IN (operation code 056) if no end-of-file or error condition ex­

ists (i.e., if bits 18 through 22 of the file status are all 0). Control returns to the location immediate­

ly following an OUT (operation code 057) if no error condition or end-of-tape exists (i .e., if bits 18 

through 21 and bit 25 are all zero). Otherwise, control returns to the second location following the 

IN or OUT. Note that IN and OUT UUOs are the only ones in which the error return is a skip and the 

normal return is not a skip. 

4-14 Iv\arch 1973 



-475- MONITOR CALLS 
4.5.1 Unbuffered Data Nodes 

Data modes 15, 16, and 17 utilize a command list to specify areas in the user's allocated core to be 

read or written. The effective address Eof the IN, INPUT, OUT, and OUTPUT programmed operators 

point to the first word of the command list. Three types of entries may occur in the command list. 

a. 10WD n, loc - Causes n words from loc through loc+n-l to be transmi tted • The next 
command is obtained from the next location following the 10WD. The assembler pseudo­
op 10WD generates x:#D -n, loc-l. 

b. x:#D 0, y -. Causes the next command to be taken from location y. Referred to as a 
GOTO word. Up to three consecutive GOTO words are allowed in the command list. 
After three consecutive GOTO words, an I/O instruction must be written. . 

c. 0 - Terminates the command list. 

Each 10WD which causes data to be transferred writes a separate record. Thus, for devices other than 

DECtape, the following two examples produce the same result •. 

1) OUTPUT 0, [lOWD 100, BUFl 
10WD 100, BUF2 
Z] 

2) OUTPUT 0, [IOWD 100, BUFl 
Z] 

OUTPUT 0, [IOWD 100, BUF2 
Z] 

For DECtape (where space is an important consideration), the first example writes one block, and the 

second writes two. 

The monitor does not return program control to the user until the command list has been completely 

processed. If an illegal address is encountered while processing the list, the job is stopped and the 

monitor prints 

ADDRESS CHECK AT USER addr 

on the user's terminal and the terminal is left in monitor mode. 

Example: Dump Output 

Dump input is similar to dump output. This routine outputs fixed-length records. 

DMPINI: 

DMPOUT: 

5.05 Monitor 

o 
OPEN 0,0PNBU( 

JRST NOTAVL 
JRST @ DMPI N I 

o 
OUTPUT 0,OUTLST 

STATZ 0, 740000 
CALL[SIXBIT IEXIT/] 

JRST @DMPOUT 

4-15 

;JSR HERE TO INITIALIZE A FILE 
;CHANNEL 0 
;WHERE TO GO IF MTA2 IS BUSY 
;RETURN 

iJSR HERE TO OUTPUT THE OUTPUT AREA 
iSPECIFIES DUMP OUTPUT ACCORDING 
;TO THE LIST AT OUTLIST 
;CHECK ERROR BITS 
iQUIT IF AN ERROR OCCURS 
iRETURN 

June 1972 



MONITOR CALLS 
DMPDON: 0 

CLOSE 0~ 

STATZ 0~ 740000 

CALL[SIXBIT IEXIT/] 
RELEAS 0~ 

JRST @DMPDON 
OPNBLK: 16 

SIXBIT IMTA21 
o 

OUTLST: IOWD BU~SIZ~BU~~ER 

o 

BU~~ER: BLOCK BUFSIZ 

4.5.2 Buffered Data Modes 

-476-
iJSR HERE TO WRITE AN END OF FILE 
iWRITE THE END OF FILE 
iCHECK FOR ERROR DURING WRITE 
iEND OF FILE OPERATION 
iQUIT IF ERROR OCCURS 
iRELINQUISH THE DEVICE 
iRETURN 
·DUMP MODE 
;MAGNETIC TAPE UNIT 2 
iNO RING BUFFERS 
i$PECIFIES DUMPING A NUMBER OF 
;WORDS EQUAL TO BUFSIZ, STARTING 
iAl LOCATION BUFFER' 
;SPECIFIES THE END OF THE COMMAND 
;LIST . 
iOUTPUT BUFFER, MUST BE CLEARED 
:A'ND FILLED BY THE MAIN PROGRAM 

In data modes 0, 1, 10, 13, and 14 the effective address E of the It-.!PUT, IN, OUTPUT and OUT 

programmed operators may be used to alter the normal sequence of buffer reference. If E is 0, the 

address of the next buffer is obtained from the right half of the second word of the current buffer. 

If E is non-zero, it is the address of the second word of the next buffer to be refer~ced. The buffer 

pointed to by E can be in an entirely separate ring from the present buffer. Once a new buffer loca-

I tion is established, the following buffers are taken from the ring started at E. Since buffer rings are 

not changed if I/O activity is pending, it is not necessary to issue a WAIT UUO. 

4.5.2.1 Input - If no input buffer ring is estoblished when the first INPUT or IN is executed, a 

2-buffer ring is set up (refer to Paragraph 4.3.2). 

Buffered input may be performed synchronously or asynchronously at the option of the user. If bit 30 

of the file status is 1, each INPUT and IN programmed operator performs the following: 

(1) Clears the use bit in the second word of the buffer with an address in the right half 
of the first word of the buffer header, thereby making the buffer available for re­
filling by the monitor. 

(2) Advances to the next buffer by moving the contents of the second word of the current 
buffer to the right ha If of the first word of the 3-word buffer header. 

(3) Returns control to the user's program if an end-of-file or error condition exists. 
Othe~ise, the monitor storts the device, which fills the buffer and stops transmission. 

(4) Computes the number of bytes in the buffer from the number of words in the buffer 
(right half of the first dato word of the buffer) and the byte size, and stores the re-
su It in the third word of the buffer header. 

(5) Sets the position and addr~ss fields of the byte pointer in the second word of the 
buffer header, so that the first data byte is obtained by an ILDB instruction. 

(6) Returns control to the user's program. 

Thus, in synchronous mode, the position of a device (e.g., magnetic tape), relative to the current 

data, is easily determined. The asynchronous input mode differs in that once a device is started, suc­

cessive buffers in the ring are fi lied at the interrupt level without stopping transmission until a buffer 

4-16 March 1973 



I 

-477- MaN nOR CALLS 

whose bit is 1 is encountered.· Control returns to the user's program after the first buffer is fi lied. The 

position of the device, relative to the data currently being processed by the user's program, depends 

on the number of buffers in the ring and when the device was last stopped. 

Example: General Subroutine to Input One Character 

JGET -­
J 
JCALL: 
J 
I 

GET: 

ROUTINE TO GET ONE BYT~ rROM 
NULLS(~) WILL B~ OI_clROED 

THE INPUT riLE 

JSP A,GET 
END-Or-rILE RETU~N 

RETURN WITH 8YTE IN ~ 

SOSGE 
JRST 
ILDB 
JUMPN 

18+2 
GETeF' 
C,Ia+l 
C,l(A) 

IDECREMENT T~E BYTE COUNT 
IBUFFER EMPTY--GET ANOTH(K ON~ 
,SOMETHING THERE·~GET IT -
'RETURN Ir NOT NULL 
, •• If NULLS ARE SIGNIFICANT, THIS 
, SHOULD BE A JRST l(A) 

JRST GET INULL--LOOP rOR ANOTHER CHARACTER 

lHERE WHE~ INPUT BUrrER IS EMPTY 
JASK THE MONI!OR rOR THE NEX! aUrrER AND JUMP BACK 
JRETURN TO USER lr E~D·OF-FI~E 

GETBr: IN 
JRST 

GETSTS 
TRNN 
JRST 

TRi! 
SETSTS 

GET8rE: TRNE 
JRST 
JRST 

I , 
GET 
1, C 
C,7~823 

GETBn: 

C,74B23 
r # (C) 

C,11322 
(A) 

GET 

JGET BUFF'ER F'ROM MONITOR 
'NO ERRORS OR EOr-.JUMP BACK 
IGET ERROR STATUS 
JSEE Ir ANY ~RRORS 
INO--GO CHECK EOF' 

, •• INSERT ERROR ROUTINE HERE 
, ~o8 EXAMPLE. TYPE C IN OCTAL 
I WITH MESSAGE GIVING FILE NAME, ET~, 

ICLEAR ERROR BITS 
,TELL. MONITOR 

'SEE Ir END OF riLE 
,YES--GIVE NON-SKIP RETURN 
INO--JUMP BACK TO PROCESS OATA 

4.5.2.2 Output - If no output buffer ring has been established (i .e., if the first word of the buffer 

header is O), when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (refer to Paragraph 

4.3.2). If the ring use bit (bit 0 of the first word of the buffer header) is 1, it is set to 0, the current 

buffer is cleared to all Os, and the position and address fields of the buffer byte pointer (the second 

word of the buffer header) are set so that the first byte is properly stored by an IOPB instruction. The 

byte count (the third word of the buffer header) is set to the maximum of bytes that may be stored in 

the buffer, and control is returned to the user's program. Thus, the first OUT or OUTPUT initializes 

the buffer header and the first buffer, but does not result in data transmission. 

If the ring use bit is 0 and the bit 31 of the fi Ie status is 0, the number of words in the buffer is com­

puted from the address field of the buffer byte pointer (the second word of the buffer header) and the 

buffer pointer (the first word of the buffer header), and the result is stored in the right half of the third 

5.05 Monitor 4-17 June 1972 



I 

I 

MONITOR CALLS -478-

word of the buffer. If bit 31 of the file status is 1, it is assumed that the user has already set the word 

count in the right half Of the third word. The buffer use bit (bit 0 of the second word of the buffer) is 

set to 1, indicating that the buffer contains data to be transmitted to the device. If the device is not 

currently active (i. e., not receiving data), it is si'arted. The buffer header is advanced to the next 

buffer by setting the buffer pointer in the first word of the buffer header. If the buffer use bit of the 

new buffer is 1, the job is put into a woit state until the buffer is emptied at the interrupt level. The 

buffer is then cleared to Os, the buffer byte pointer and byte count are initialized in the buffer header, 

and control is returned to the user's program. 

Example: General Subroutine to Output One Character 

;PlJT -- ROUTINE 
ICAI.L.: MOVE 

JSP 
RETURN 

TO PUT ON; BYT~ INTO THE OUTPUT PII.E 
C,tl't'TE 

PUT: 

pure: 
SQSG 
JriST 
IOpa 
JRST 

A,PUT 

OB+2 
PUTBF 
C,OB+1 
(A) 

'AOVANCE BYTE COUNTER 
'JUMP IF BUFrER rUI.L. (OR EIRSI CAI.I.) 
,PUT BYTE INTO BUFfER 
'RETURN TO CAI.I.ER 

'JUMP HERE WHEN RUFFER IS fU~L ANO THE NEXT ONE IS NEEDED 
'GtVE THE MONITOR THE 9UfFEH ANO JUMP BACK 

pUTer: OUT 
JRST 

MOVEM 
GETSTS 

TRi! 
SETSTS 
MOVE 
JRST 

0, 
PUTC 
C,SAVEC# 
O,C 

C,741323 
0, (c ) 
C,~AVEC 
PUTe 

J •• 
J 

4.5.3 Synchronization of Buffered I/O 

'GIVE BUrFER TO MONITOR 
.NO ERRORS--JUMP BACK 
'ERROR--SAVE AC rOR STATUS CH~CKJNG 
'GET ERROR STATUS -

IN~ERT OUTPUT .ERROR ROUTINE HlRE 
rOW EXAMPLE, TYPE C IN OCTAL. -
WI1H MESSAGE GIVING rILE NAME' ET~, 

iCLEAR ERROR BITS 
j TEU, MON I TOR 
.RESTORE CHARACTER 
!JUMP BACK TO PROCESS CHARACTER 

In some instances, such as recovery from transmission errors, it is desirable to delay until a device 

completes its I/o activities. The programmed operator 

WAIT D, or CALLI D, 10 

returns control to the user's program when all data transfers on channel D have finished. This UUO 

does not wait for a magnetic tape spacing operation, since no data transfer is in progress. An 

MTAPE D, 0 (refer to Paragraph 5.5.3) should be used to wait for the mognetic tape controller to be 

freed after completing spacing and I/o activity on magnetic tape. In addition, the UUO does not 

wait for physical I/O to the terminal to be completed; it waits only until the user's buffer is empty. 

Therefore, the'usual motive for the WAIT UUO, error recovery, does not apply to the terminal. If no 

device is associated with data channel D I control returns immediately. After the device is stopped, 

the position of the device relative to the data currently being processed by the user's program can be 

determined by the buffer use bits. 

5.05 Monitor 4-18 June 1972 



I 
,I 

-479-
4.6 STATUS CHECKING AND SETTING 

MONITOR CALLS 

The file status is a set of 18 bits (right-half worcl), which reflects the current state of a file trmsmis­

sion. The initial status is a parameter of the INIT and OPEN operators. Thereafter, bits are set by 

the monitor, and may be tested md reset by the user via the STATZ, STATO, and SETSTS monitor 

programmed operators. Table 4-3 defines the file status hits. All bits, except the end-af-file bit, 

are set immediately by the monitor as the conditions occur, rather than being associated with the buffer 

currently being used. However, the file status is stored with each buffer so that the user can deter­

mine which bufferful produced an error. The end-of-file bit is set when the user attempts to read past 

the last block of data (i.e., it is set on an IN or INPUT UUO for which there is no corresponding data; 

Bit 

18 

19 

20 

21 

22 

23 

24-29 

30 

31 

32-35 

5.06 Monitor 

Table 4-3 
File Status Bits 

Meaning 

Improper mode (IO.IMP). Attempt to write on a software write-locked 
tape or file structure, or a software detected redundancy failure occurred. 
Usually set by monitor. 

Hard device detected error (10. DER), other than data parity error. This 
is a search, power supply, or channel memory parity error. The device is 
in error rather than the data on the medium. However, the data read into 
core or written on the device is probably incorrect. Usually set by monitor. 

Hard data error (IO.DTE). The data read or written has incorrect parity 
as detected by hardware (or by software on CDR, PTR). The user's data 
is probably non-recoverable even after the device is fixed. Usually set 
by monitor. 

Block too large (IO.BKT). A block of data from a device is too large to 
fit in a buffer; a block number is too large for the unit; the file structure 
(DSK) or un it (DTA) has fi lied; or the .user's quata on the file structure has 
been exceeded. Usually set by monitor. 

End offile (IO.EOF). The user program has requested data beyond the last 
record or block with an IN or INPUT UUO, or USETI has specified a block 
beyond the last data block of the file. When set, no data has been read in­
to the input buffer. Usually set by monitor. 

I/O active (IO.ACT). The device is actively transmitting or receiving data. 
~Iways set by monitor. . 

Device dependent parameters. Refer to Chapters 5 and 6 and Appendix 0 for 
detailed information about each device. Usually set by user. 

Synchronous input (IO.SYN). Stops the device after eoch buffer is filled. 
Usua lJy set by uSer. 

User word count (IO.UWC). Forces the monitor to use the word count in the 
third word of the buffer (output only). The monitor normolly computes the word 
count from the byte pointer in the buffer header. Usually set by user. 

Data mode (IO.MOD). Refer ta Tables 4-1 and 4-2. Usually set by user. 

4-19 March 1973 



MONITOR CALLS -480-

the previous IN or INPUT UUO obtained the end of the data). Therefore, when this bit is set, no data 

has be~n placed in the input buffer. 

The programmed operators discussed in this section are the software equivalents of the hardwired in­

structions CO NO , CO NI, CONSO, and CO NSZ. A more thorough description of bits 18 through 29 

for each device is given in Chapters 5 and 6 and in Appendix D. 

4.6.1 File Status Checking 

The file status (refer to Table 4-3) is retrieved by the GETSTS (operation code 062) and tested by the 

STA TZ (operation code 063) and STATO (operation code 061) programmed operators. In each case, 

the accumulator field of the instruction selects a data channel. If no device is associated with the 

specified data channel, the monitor stops the job and prints 

I/o TO UNASSIGNED CHANNEL AT USER addr 

(addr is the location of the GETSTS, STATZ, or STATO programmed operator) on the user's terminal 

and the terminal is left in monitor mode. 

GETSTS D, E stores the file status of data channel D in the right half and 0 in the left half of loca­

tion E. 

STATZ D, E s~ips, if all fi Ie status bits selected by the effective address E are O. 

STATO D, E skips, if any file status bit selected by the effective address E is 1. 

4.6.2 File Status Setting 

The initial file status is a parameter of the INIT and OPEN programmed operators; however, the file 

status may be changed by the SETSTS (operation code 060) programmed operator. Error status bits 

10.ERR (IO.IMP, 10.DER, 10.DTE, and 10.BKT) must be cleared by this programmed operator if the 

user is attempting an error recovery. In addition, the SETSTS UUO can be used to clear the end-of­

file bit, but this is not sufficient to clear the end-of-file condition. Further inputs will not occur un­

til the end-of-file condition (determined by an internal monitor flag 10END) is cleared by a CLOSE 

or INIT UUO. 

SETSTS D,Ewaits until the device on channel D stops transmitting data and replaces the current file 

status, except bit 23, with the effective address E. If the new data mode, indicated in the right four 

bits of E, is not legal for the device, the job is stopped and the monitor prints 

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr 

(dev is the physical name of the device and addr is the location of the SETSTS operator) on the user's 

terminal and the terminal is left in monitor mode'. If the user program changes the data mode, it must 

4-20 



-481- MON ITOR CALLS 
also change the byte size for the byte pointer in the input buffer header (if any) and the byte size and 

item count in the output buffer header (if any). The output item count should be changed by using the 

count already placed there by the monitor and dividing or multiplying by the appropriate conversion 

factor, rather than assuming the length of a buffer.' Incorrect I/O may result if a data mode change 

requires a different buffer leng,th. SETSTS does not change buffer lengths. The mode specified in the 

INIT is used to determine buffer sizes even though the buffer ring has not been created. 

4.7 FIlE TERMINATION 

File transmission is terminated by the CLOSE D,N (operation code 070) programmed operator. N is 

usually zero, but individual options may be selected independently to control the effect of the CLOSE. 

Usually a given channel is OPEN for file transmission in only one direction, and CLOSE has the effect 

of either closing input if INPUTs have been done or closing output if OUTPUTs have been done. How­

ever, disk and DECtape may have a single channel OPEN for both INPUT and OUTPUT, in which case 

the first two options below are useful. 

4.7.1 CLOSE D ,0 

The output side of channel D is closed (bit 35=0). In unbuffered data modes, the effect is to execute 

a device dependent function. In buffered data modes, if a buffer ring exists, the following operations 

are performed: 

a. All data in the buffers that has not been transmitted to the device is written. 

b. Device dependent functions are performed. 

c. The ring use bit (bit 0 of the first word of the buffer header) is set to 1 indicating that 
the bufferririg is available. 

d. The buffer byte count (the third word of the buffer header) is set to O. 

e. Control returns to the user program when transmission is complete. 

The input side of channel D is also closed (bit 34=0). The end-of-file flag is always cleared. Further 

action depends on the data mode in unbuffered data modes, the effect is to execute a device dependent 

function. In buffered data modes, if a ring buffer exists, the following operations are performed: 

a. Wait until device is inactive. 

b. The use bit of each buffer (bit 0 of the second word) is cleared indicating that the buffer 
is empty. 

c. The ring use bit of the buffer header (bit 0 of the first word of the buffer header) is set to 
1 indicating that the buffer ring is available. 

d. The buffer byte count (the third word of the buffer header) is set to O. 

e. Control returns to the user program. 

4-21 



MON nOR CALLS -482-
On output CLOSE, the unwritten blocks at the end of a disk file are automatically deallocated (bit 

33=0) l On input CLOSE, the access date of a disk file is updated (bit 32=0). 

4.7.2 CLOSE 0,1 (Bit 35=1, CL. OUT) 

The closing of the output side of channel 0 is suppressed. Other actions of ClOSE are unaffected. 

4.7.3 CLOSE 0,2 (Bit 34=1, CL.IN) 

The closing of the input side of channel 0 is inhibited; other actions of ClOSE are unaffected. 

4.7.4 ClOSE 0,4 (Bit 33=1, Cl.OLL) t 

The unwritten blocks at the end of a disk file are not deallocated. This capability is provided for 

users who specifically allocate disk space and wish to retain it. 

4.7.5 CLOSE 0,10 (Bit 32=1, CL.ACS) t 

The updating of the access date on ClOSE input is inhibited. This capability is intended for use with 

FAILSAFE, sa that files can be saved on magnetic tape without causing the disk copy to appear as if it 

has been accessed. 

4.7.6 CLOSE 0,20 (Bit 31=1, Cl.NMB) t 

I The deleting of the NAME block and the access tables in monitor core on CLOSE input is inhibited if 

a LOOKUP was done without subsequent INPUT. This bit is used by the COMPIL program to retain the 

core block in order to speed up the subsequent access by the system program called by COMPIL. 

4.7.7 CLOSE 0,40 (Bit 30=1, Cl.RSn t 

The deleting of the original file, if any, is inhibited if an ENTER which creates or supersedes was 

done. The new copy of the file is discarded. This bit is used by the queue manager (QMANGR) to 

create a file or a unique name and not supersede the original file. 

4.7.8 CLOSE 0,100 (Bit 29=l,Cl.OAn t 

I The NAME block and access tables are deleted from the disk data base and the space is returned to 

free core. 

t Meaningful with disk files only, ignored with non-disk files. 

5.05 Monitor 4-22 June 1972 



-483- MON ITOR CALLS 

Any combinations of the above bit settings are legal. 

Example: Terminating a File 

DROPDV: 0 
CLOSE 3, 

STATZ 3, 740e)00 
JRSTOUTERR 

RELEAS 3, 

MOVE 0, SVJBF'F' 
MOVEM 0, JOBF'F' 
JRST @ DROPDV 

4.8 DEVICE TERMINATION AND REASSIGNMENT 

4.8.1 RELEASE 

;JSR HERE 
;WRITE END OF FILE AND TERMINATE 
;INPUT 
;RECHECK rlNAL ERROR BITS 
;ERROR DURING CLOSE 
;RELINQUISH THE USE OF THE 
;DEVICE, WRITE OUT THE DIRECTORY 

;RECLAIM THE BUFFER SPACE 
;RETURN TO MAIN SEQUENCE 

When all traAsmission between ""'e.user's program and a device is finished, the program must relinquish 

the device by performing a 

RELEASE D, 

RELEASE (operation code 071) returns control immediately, if no device is associated with data chan­

nel D. Otherwise, both input and output sides of data channel D are CLOSEd and the correspondence 

between channel D and the device, which was established by the INIT or OPEN programmed operators, 

is terminated. Any errors that occurred are recorded in the BAT block if a super USETI/USETO was 

used with channel D. If the device is neither associated with another data channel nor assigned by the 

ASSIGN or MOUNT monitor command, it is returned to the monitor's pool of available facilities. 

Control is returned to the user's program. 

4.8.2 RESDV. AC, or CALLI AC, 117 

This UUO allows a user program to reset a single channel. It is similar to the RELEASE UUO except 

any files and buffers are not closed. Files that are open on the channel are deleted; any older ver­

sion with the same filename remains. All I/O transmissions on the channel are stopped, and device 

allocations made by the INIT or OPEN UUOs on the specified channel are cleared. The device is re­

turned to the monitor pool unless it has been assigned by the ASSIGN or MOUNT monitor command. 

The call is: 

MOVEI AC, channel number 
RESDV. AC, ; or CALLI AC, 117 
error return 
normal return 

5.04 Monitor 4-23 January 1972 



I 

~1ON ITOR CALLS -484-
On an error return, either the AC is unchanged if the UUO is not implemented, or AC contains -1 if 

there is no device associated with the channel. 

On a normal return, the channel is reset. 

4.8.3 REASSIGN AC, or CALLI AC, 21 

This UUO reassigns a device under program control to the specified job and clears the directory cur­

rently in core, but does not clear the logical name assignment. A device can be reassigned if it is as­

signed to the current job, or if it is both not assigned to any job and is not detached. A RELEASE UUO 

is performed unless the job issuing the UUO is reassigning the device to itself by specifying -1 in AC 

or is deassigning the device by specifying 0 in AC. If the device is restricted when it is deassigned with 

a 0 in AC, it is returned to the restricted pool of devices and can be reassigned to a non-privileged iob 

by a privileged iob. (This is the method by which the MOUNT command is implemented.) 

The call is: 

MOVE AC, job number 
MOVE AC+1, [SIXBIT /DEVICE/] 
REASSIGN AC, . 

ior MOVEI AC+1, channel nUmber 
ior CALLI AC, 21 

return ierror and normal 

If on return the contents of AC = 0, the specified job has not been initialized. If the contents of 

AC+l9l, the device has not been assigned to the new job, the device is the job's controlling terminal, 

the logical name is duplicated, or the logical name is a physical name in the system and the job reas­

signing the device is either logged in under a different project-programmer number or is not the operator. 

. 1 
4.8.4 DEVLNM AC, or CALLI AC, 107 

This UUO sets the logical name for the specified device. Upon call of the UUO, AC contains either 

the device name or the channel number associated with the device. The call is: 

MOVE AC, [SIXBIT /dev/] 
MOVE AC+1, rSIXBIT /Iog.name/] 
DEVLNMAC, 
error return 
normal return 

On an error return, AC contains one of the following: 

ior MOVEI AC, channel no. 

ior CALLI AC, 107 

AC = unchanged if the UUO is not implemented. 
AC = -1 if a non-existent device or channel number was specified. 
AC = -2 if the logical name is already in use. 
AC = -3 if device is neither assigned by a console command (ASSIGN, 

MOUNT) nor by the program (IN IT , OPEN). 

On a normal return, AC and AC+1 are unchanged. 

lThis UUO depends on FT5UUO which is normally off in the DECsystem-l040. 

5.06 Monitor 4-24 March 1973 



~ .. 

-485- MON nOR CALLS 
4.9 EXAMPLES 

4.9.1 FileReading 
-"'-1' 

'1'\:' 
The following uub sequence is required to read a file: 

(PEN 

LOOKUP 

INBUF' 

INPUT 

INPUT 

CLOSE 

RELEASE 

4.9.2 File Writing 

Establishes a file structure-channel correspo~dence (or a 
set of fi Ie structure channel correspondences). 

Establishes a file-channel correspondence. Invokes 
a search of the UFD. Returns information from the fil~SY$tem. 

(Opt i ona I) Sets up 1 to N ri ng buffers i nt~le top of core, 
expand core if necessary-. 

Sets up 2-buffe~ drv.g if no INBUF was done. 

Requests buffers of data from the monitor. 

Breaks fi Ie-channel correspondence. 

Breaks device-channel correspondence. 

,.. , 

The following UUO sequence is required to write a file: 

OPEN 

ENTER 

OUTPUT 

OUTPUT 

CLOSE 

RELEASE 

Forms file structure-channel correspondence (or a set 
of file structure channel correspondences). 

Forms file-channel correspondence. The monitor creates 
some temporary storage for interlocking and shared access 
purpose for the fi lename. No directory entry is made. 

Passes buffers of data to monitor for transmission to storage device. 
Should not be used for the final buffer because CLOSE completes 
the action of ENTER. 
Completes the action of ENTER. Adds filename to file system. 
Normally returns allocated, but unused, blocks to the file 
system. 

Breaks device-channel correspondence. 

4-25 



1 
! 

MaN ITOR CALLS -486-
4.9.3 Ale Readlng/Wrltlng 

TITLE FILTRN -- SAMPLE 1/0 PROGRAM 

JA PROGRAM THAT READS 7,.BIT ASC II CHARS FROM rILE INF ILE.DAT 
JON DEVICE DATA AND OUTPUTS THEM TO FILE OUTFIL.LST ON DEVICE LIST 
INOTE THAT DEVICES DATA AND LIST ARE LOGICAL NAMES. THUS 
JTHE PHYSICAL NAMES ARE DETERMINED AT RUN TIME TO PROVIDE DEVICE 
JlNDEPENDENCE. 
JBOTH INPUT AND OUTPUT FILES ARE ACCESSED SEQUENTIALLY. 

START: " RESET 

OPEN I,,{ 'I ' 
SIXBIT IDATft,/ 
XWD 0" IBUrl 1 

HALT 
OPEN 2,,[ 1 

SIXBIT ILISTI 
XWD OBUF2",0l 

HALT 
LOOI<UP 1 "LI, 

HALT 
ENTER 2"E2 

HALT 
INBUF 1 .. 3 

JDEVICE RESET (IN CASE PROGRAM 
J IS RESTARTED) 
JCONNECT DEVICE DATA TO PROG ON CH 

JINBUFI IS THE INPUT BUFFER HEADER 
JE','i'RDR RETURN 
JCONNECr .DEV ICE LIST TO CH 2 

IOBUF2 IS OUTPUT BI!JFFER HEADER 

10PEN FILE INrILE.DAT FOR" INPUT 
JERROR RETURN 
JOPEN FILE OUTF IL.LST FOR OU'l1'PUT 

JCREATE 3 INPUT BUFFERS 
JS INCE. NO BUFFERS SPEC IFIED FOR O(ITPUT 
J ON FIRST OUTPUT THE MONITOR WILL 
J MAI<E 2 

JtHIS IS THE BASIC 1/0 LOOP FOR THE JOB 

I'£WCHR: JSR 
JSR 
JRST 

GET 
PUT 
NEWCHR 

JGO GET ONE INPUT CHARACTER 
JGO PUT THE CHARACTER RECEIVED 
JLOOP FOR NEXT ONE 

JGET -- ROUTINE TO GET ONE CHARACTER FROM THE INPUT 
lIT ENDS THE PROGRAM AT INPUT END-Or-FILE 

GET: Z 
GET I : SOSGE 

JRST 
ILDB 
JUHPE 

JRST 

GETBF: IN 
JRST 

STATZ 
HALT 

FINISH: CLOSE 
CLOSE 
RELEAS 
RELEAS 
EXIT 

5.04 Monitor 

IBUFI+2 
GETBF 
3"IBUFl+I 
3"GETI 

@GET 

I " 
GETl 
1,,74B23 

I, 
2" 
1 " 
2, 

JENTRY/EXIT 
JIS INPUT BUFFER EMPTY? 
JYES--INPUT FROM DEVICE 
JGET A CHARACTER FROM INPUT BUFFER 
JIF NULL" THROW IT AWAY AND GET NEXT 
J CHARACTER. THIS IS CONVENTIONAL FOR 
J ASCII DATA. 
JRETURN WITH CHARACTER IN AC 3 

JDO INPUT FROM DEVICE 
ILOOP IF NO ERRORS AND NOT EOF 
JSEE IF ERROR READING 
JYES--GIVE UP 

JEOF--CLOSE INPUT 
JCLOSE OUTPUT 
JRELEASE DEVICE DATA 
JRELEASE DEVICE LIST 
IEXIT TO MONITOR 

(continued on next page) 

4-26 January 1972 



-487- MONITOR CALLS 
JPUT--ROUTINF TO PUT ONE CHAkACTEk ONTO THE OUTPUT 

PUT: 

PUTC: 

PUTSF': 

JOATA 

u: 

E2: 

IBUFl: 
08UF2 : 

Z 
SOSG OBUF'2 +2 
JRST PUTBF' 
IDPS 3 .. 0BUF'2+1 
JRST @PUT 

OUT 2 .. 
JRST PUTC 

HALT 

STORAGE AREA 

S IXS IT IINF'ILEI 
SIXBIT IDATI 
Z 
Z 

S IXBIT 10UTF' ILl 
SIXBIT ILSTI 
Z 
Z 

BLOCK 3 
BLOCK 3 

END START 

4.10 DEVICE INFORMATION 

4.10.1 DEVSTS AC, or CALLI AC, 541 

JENTRY/EXIT 
JIS OUTPUT BUF'F'ER F'ULL? 
JYES--GO OUTPUT IT 
JPUT CHARACTER IN BUFF'ER 
lRETURN 

JOUTPUT BUF'F'ER TO DEVICE 
10K.. NOW STORE CHARACTER IN BUF'F'ER 
'GIVE UP IF'. OUTPUT ERROR 

JlNPUT F'ILE NAME 
'INPUT EXTENSION 
JPROTECTION AND CREATION DATE RETURNED 
JINPUT DIRECTORY. 13 MEANS MY OWN 

JOUTPUT F'ILE NAME 
;OUTPUT EXTENSION 
JPROTECTION CAN GO HERE. 13 MEANS STD. 
JOUTPUT DIRECTORY. o MEANS MY OWN 

;INPUT BUF'FER HEADER 
;OUTPUT BUF'FER HEADER 

This VUO retrieves the DEVSTS word of the device data block for an INITed device. The DEVSTS 

word is used by a device service routine to save the results of a CONI after each interrupt from the 

device. Refer to Appendix 0 for the device status bits. Devices that use the DEVSTS UUO are the 

following: CDR, COP, MTA, DTA, PTR, PTP, DSK, LPT, and PLT. 

The call is: 

MOVEI AC, channel number of device 
DEVSTS AC, 
error return 
normal return 

ior MOVE AC, rSIXBIT/dev/l 
iOr CALLI AC, 54 
iUUO I')Ot implemented for any devices 
iAC contains the DEVSTS 
iword of the DDB. 

On retum, the contents of the DEVSTS word is retumed in AC. Therefore, if the device service rou-
! 

tine does not sfore a CONI, useless information may be retumed fo user. Note that an error retum is 

not indicated if the device service routin~ does not use the DEVSTS word for its intended purpose. De­

vices with both a control and data interrupt sfore the controller CONI (MTS, DTS, DSK, DSK2, DPC, 

DPC2). 

1 This UUO depends on FT5UUO which is normally off in the DECsystem-1040. 

5.04 Monitor 4-27 February 1972 



MON nOR CALLS -488-
The DEVSTS UUO is not meaningful when used in asynchronous buffered I/O mode unless a WAIT UUO 

(see Paragraph 4.5.3) is issued first to ensure synchronization of the actual data transferred with the 

device status returned. 

4.10.2 DEVCHR AC, or CALLI AC, 4 

This U~O allows the user to determine the physical characteristics associated with a device name. 

When the UUO is called, AC must contain either the logical or physical device name as a left-justified 

SIXBIT quantity, or the channel number of the device as a right-justified quantity. 

The call is: 

MOVE AC, [SIXBIT/DEV /I 
DEVCHR AC, 
return 

ior MOVEI AC, channel number of device 
ior CALLI AC,4 

If the device is not found or the channel is not INITed, the contents of AC is zero on return. If the· 

device is found, the following information is returned in AC. 

Name Bit Explanation 

DV.DRI Bit 0 = 1 DECtape directory is in core. This bit is cleared by an ASSIGN 
or DEASSIGN to that unit. 

DV.DSK Bit 1 = 1 Device is a disk. 

DV.CDR Bit 2 = 1 Device is a card reader (DV.IN = 1) or card punch (DV.OUT 
= 1). 

DV.LPT Bit 3 = 1 Device is a line printer. 

DV.TTA Bit 4 = 1 TTY is controlling a job. 

DV.TTU Bit 5 = 1 TTY is in use as a user terminal (even if detached). 

DV. TTB Bit 6 = 1 Free bit left from SCNSRF. 

DV.DIS Bit 7 = 1 Device is a display. 

DV.LNG Bit 8 = 1 Device has a long dispatch table (that is, UUOs other than 
INPUT, OUTPUT, CLOSE, and RELEASE perform real actions). 

DV.PTP Bit 9 = 1 Device is a paper-tape punch. 

DV.PTR Bit 10 = 1 Device is a paper-tape reader. 

DV.DTA Bit 11 = 1 Device is a DECtape. 

DV.AVL Bit 12 = 1 Device is available to this job or is already assigned to this job. 

DV.MTA Bit 13 = 1 Device is a magnetic tape. 

DV.TTY Bit14=1 Device is a TTY • 

DV.DIR Bit 15 = 1 Device has a directory (DTA or DSK). 

(continued on next page) 

5.04 Monitor 4-28 January 1972 



-489- MONITOR CALLS 

Name Bit Explanation 

DV.IN Bit 16 = 1 Devi ce can perform input. 

DV.OUT Bit 17 = 1 Devi ce can perform output. 

DV.ASC Bit 18 = 1 Device is assigned by a console command. 

DV.ASP Bit 19 = 1 Device is assigned by program {I NIT or OPEN}. 

Remaining If bit 35-n contains aI, then mode n is legal for that device. 
bits The mode number {O through 17} must be converted to decimal 

{e.g., mode 178 is represented by bit 35-1510 or bit 20}. 

I 4.10.3 DEVTYP AC, or CALLI AC, 53 

I 

The device-type UUO is used to determine properties of devices. This UUO accepts, as an argument, 

a device name in SIXBIT or a right-justified channel number. The call is: 

MOVE AC, [SIXBIT/dev/l 
DEVTYP AC, 
error return 
norma I return 

ior MOVEI AC, channel no. 
;or CALLI AC, 53 

The error return is given if the UUO is not implemented. In this case, the DEVCHR UUO should be 

used. On a normal return, if AC=O, the specified device does not exist or the channel is not INITed. 

If the device exists, the following information is returned in AC. 

Name Bit Explanation 

1Y .MAN Bit 0 = 1 LOOKUP/ENTER mandatory. 

Bits 1-11 Reserved for the future. 

1Y .AVL Bit 12 = 1 Device is available to this job. 

1Y .SPL Bit 13 = 1 Spooled on disk. {Other bits reflect properties of real 
device, except variable buffer size.} 

1Y .INT Bit 14 = 1 Interactive device {output after each break character}. 

1Y .VAR Bit 15 = 1 Capable of variable buffer size {user can set his own 
buffer lengths}. 

TY .IN Bitl6=1 Capable of input. 

1Y .OUT Bitl7=1 Capable of output. 

1Y .JOB Bits 18-26 Job number that currently has device INITed or 
ASSIGNed. 

{continued on next page} 

5.06 Monitor 4-29 March 1973 



MaN nOR CALLS -490-

Name Bit Explanation 

Bits 27-28 Reserved for the future. 

TY.RAS Bit 29 Device is a restricted device (i .e., can be assigned 
only by a privileged lob or the MOUNT command). 

TY.DEV Bits 30-35 Devi ce type code. 

Code 0 (. TYDSK) Disk of some sort 
Code 1 (. TYDTA) DECtape 
Code 2 (.TYMTA) Magnetic tape 
Code 3 (. TYTTY) TTY or equivalent 
Code 4 (. TYPTR) Paper-tape reader 
Code 5 (. TYPTP) Paper-tape punch 
Code 6 (. TYDIS) Display 
Code 7 (. TYLPT) line printer 
Code 10 (. TYCDR) Card reader 
Code 11 (. TYCDP) Card punch 
Code 12 (. TYPTY) Pseudo-TlY 
Code 13 (.TYPLT) Plotter 
Code 14-57 Reserved for Digital 
Code 60-77 Reserved for customer 

I 4.10.4 DEVSIZ AC, or CALLI AC, 101 

I 

This UUO is used to determine the buffer size for a device if the user wants to allocate core himself. 

The call is: 

MOVE AC, [EXP LOC] 
DEVSIZ AC, 
error return 
norma I return 

LOC: EXP STATUS 
LOC+ 1: SIXBIT /dev/ 

;or CALLI AC, 101 

;first word of the OPEN block 
;second word of the OPEN block 

The error return is given if the UUO is not implemented. On a normal return, AC contains one of 

the following values: 

5.06 Monitor 

If the mode is illegal, AC contains -2. 

If the device does not exist, AC contains -1. 

If the device exists, but its data mode is dump mode, AC contoins O. 

If the device exists and the data mode is legal, AC contains in bits 
0-17 the default number of buffers, and in bits 18-35 the default buf­
fer size (including the first three words of the buffer). 

4-30 March 1973 



1 
4.10.5 WHERE AC, or CALLI AC, 63 

-491- ~1ONITOR CALLS 

This UUO returns the physical station number of the specified device. When the UUO is called, 

AC contains either the channel number of the device as a right-justified quantity, or the device name 

as a left-justified SIXBFT quantity. The call is: 

MOVE AC, [SIX BIT /dev/l 
WHERE AC, 
error return 
normal return 

;or MOVEI AC, channel no. 
;or CAL LI AC, 63 

If OPR is specified as the device name, the station number at which the job is logically located is 

returned; if OPRO is specified, the station number of the central station is returned; and if TTY is 

specified, the station number at which the job's TTY is located is returned. 

On a normal return, the LH of AC contains the station's status, and the RH of AC contains the station 

number associated with the device. The station's status is represented by the following bits: 

Bit 13 = 1 if the station is dial-up (RM .SDU). 
Bit 14 = 1 if the station is loaded (.RMSUl). 
Bit 15 = 1 if the station is in the loading procedure (.RMSUG). 
Bit 16 = 1 if the station is down (.RMSUD). 
Bit 17 = 1 if the station is not in contact (.RMSUN). 

The error return is taken if the UUO is not implemented, the specified channel is not INITed, or the 

requested device does not exist. 

I 4.10.6 DEVNAM AC, or CALLI AC, 64 

I 

This UUO returns the physical name of a device obtained through either a generic INIT/OPEN or a 

logical device assignment. When the UUO is called, AC contains either channel number of the de­

vice as a right-justified quantity, or the device name as a left-justified SIXBIT quantity. The call is: 

MOVE AC, [SIX BIT /dev/l 
DEVNAM AC, 
error return 
normal return 

;or MOVEI AC, channel no. 
;or CALLI AC, 64 

The normal return is taken if the specified device is found, and AC contains the SIXBIT physical 

devi ce name. 

The error return is taken if the UUO is not implemented (AC is unchanged), the specified channel 

is not INITed, or no such device exists. 

1 This UUO depends on FTREM which is normally off in the DECsystem-l040. 

5.06 Monitar 4-31 March 1973 





I 

I 

CHAPTER 5 
I/O PROGRAMMING FOR 
NONDIRECTORY DEVICES 

-493- MON nOR CALLS 

This chapter explains the unique features of each standard nondirectory I/o device. Each device 

accepts the programmed operators explained in Chapter 4, unless otherwise indicated. Table 5-1 is a 

summary of the characteristics of all nondirectory devices. Buffer sizes are given in octal and include 

three bookkeeping words. The user may determine the physical characteristics associated with a logi­

cal device name by calling the DEVCHR UUO (refer to Paragraph 4.10.2). 

Physical Controller 
Device 

Name Number 

Card Punch CDP -
Card Reader CDR,CDRI -

Console CTY -
Terminal 

Display DIS -
Line Printer LPT, LPTl 

Magnetic MTAO,MTAI TM10A 
Tape ••. , MTA7 TMlOB 

516(PDP-6 

Paper-Tape PTP -
Punch 

Paper-Tape PTR -
Reader 

Table 5-1 
Nondirectory Devices 

Unit Programmed 
Number Operators 

CP10A OUTPUT, OUT 

CRlOA INPUT, IN 
461 (PDP-6) 

L T33A, L T33 B INPUT, IN 
LT35A, LT37AC OUTPUT, OUT 
626 (PDP-6) 

VR30, VPlO INPUT, OUTPUT 
34OB, 30 

LPIOC OUTPUT 

TU20A,TU20B INPUT, IN 
TU30A, TU30B OUTPUT, OUT 

MTAPE 

PC09 OUTPUT, OUT 
761 (PDP-6) 

PC09 INPUT, IN 
760(PDP-6) 

Data 
Buffer 
Size 

Modes 
(Octal)t 

A, AL, I, IB,B 35 

A,AL,I,IB, 36 
B, SI 

A, AL, I 23 

ID Dump only 

A, AL, I 37 

A, AL, I 203tt 
IB, B 
DR, D 

A, AL, I 43 
IB, B 

A, AL, I 43 
IB, B 

t Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A 
DEVSIZ UUO may be employed. 
ttThe buffer size for magnetic tape may be changed with the SET BLOCKSIZE monitor command (refer 
to the DECsystem-l0 Operating System Commands). 

5-1 June 1972 



MONITOR CALLS 

Physical Controller 
Device 

Name Number 

Plotter PLT XYlO 

Pseudo-TTY PTY -

Terminal TTYO, TTY1, DC10 
•.• , TTY1n DC68A 

630(PDP-6) 

-49It- . 

Table 5-1 (Cont) 
Nondirectory Devices 

Unit Programmed 
Number Operators 

XYlOA OUTPUT, OUT 
XY10B 

- INPUT, IN 
OUTPUT, OUT 

L T33A, LT33B INPUT, IN 
LT35A, LT37 AC OUTPUT, OUT 
VT06 TTCALL 

Data 
Buffer 
Size 

Modes (Octal)t 

A, AL, I 46 
IB, B 

A, AL 23 

A, AL, I 23 

Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A 
DEVSIZ UUO may be employed. 

5.1 CARD PUNCH 

The device mnemonic is CDP; the buffer size is dependent on the data mode. 

Data Mode 

A, AL 

I, IB 

B 

5.1.1 Concepts 

Buffer Size 

238 (208 data) words - 80 7-bit ASCII characters 

368 (338 data) words - 80 12-bit bytes 

358 (328 data, 338 punched) words - 26 data words, 

word count and checksum punched. 

The header card is the first card of an ASCII file and identifies the card code used (refer to Appendix C). 

This card is not punched for data modes other than ASCII. The header card has the same punches in all 

columns. This punch depends on the card code used; for example, in DEC026, the header card has 

12-2-4-8 punched in columns 1-80. 

The end-of-fi Ie (EOF) card is the last card of each output fi Ie. This card is punched for all data modes. 

The end-of-file card has a 12-11-0-1-6-7-8-9 punch in columns 1 through 80. 

5.1.2 Data Modes 

5.1.2.1 ASCII, Octal Code 0 - ASCII characters are converted to card codes and punched (up to 80 

characters per card). Tabs are simulated by punching from 1 to 8 blank columns; form-feeds and car­

riage returns are ignored • 

5-2 



-495- MONITOR CALLS 

Line-feeds cause a card to be punched. All other nontranslatable ASCII characters cause a question 

mark to be punched. Cards can be split between buffers. Attempting to punch more than 80 columns 

per card causes the error bit 10. BKT (bit 21 of status word) to be set. The CLOSE will punch the last 

partial card and then punch an EOF card. 

Ca~ds are normally punched with DEC026 card codes. If bit 29 (octal 100) of the status word is on 

(from INIT, OPEN, or SETSTS), cards are punched with DEC029 codes (refer to Appendix C). The 

first card of any file (the header card) indicates the card code used (12-0-2-4-6-8 punched in column 

1 for DEC029 card codes; 12-2-4-8 punched in column 1 for DEC026 card codes). 

5.1.2.2 ASOI Line, Octal Code 1 - The same as ASCII mode. 

5.1.2.3 Image, Octal Code 10 - In image mode, each buffer contains 27 words, each of which 

contains three 12-bit bytes. Each byte corresponds to one card column. Since there is room for 81 

columns in the buffer (3 x 27) and there are only 80 columns on a card, the last word contains only 2 

bytes of data; the third byte is thrown away. If the byte size is set by the program to be 12-bit bytes 

(the monitor normcilly sets 36-bit bytes), the program must skip the last byte in the buffer. Image 

binary causes exactly one card to be punched for each output. A program should not force an output 

every 80 columns since, if the program is in spooled mode, it will waste a large amount of disk space. 

The CLOSE punches the last partial card and then punches an EOF card. 

5.1.2.4 Image Bi~ary, Octal Code 13 - Same as Image. 

5.1.2.5 Binary, Octal Code 14 - Column 1 contains the word count in rows 12-3. A 7-9 punch is in 

column 1. Column 2 contains a checksum as described for the paper-tape reader (refer to Paragraph 

5.7.1.5); columns 3 through 80 contain up to 26 data words, 3 columns per word. Binary causes ex­

actlyone card to be punched for each output. The CLOSE punches the last partial card and then 

punches an EOF card. 

5.1.3 Special Programmed Operator Service 

Following a CLOSE, an EOF card is punched. Columns 2 through 80 of the header card and the EOF 

card contain the same punches that appear in column 1 of the respective card for easy file identifica­

tion. These laced punches ~re ignored by the card reader service routine. 

After each interrupt, the card punch stores the results of a CONI in the DEVSTS word of the device 

data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to 

Paragraph 4. 10. 1). 

5.04 Monitor 5-3 January 1972 



MONITOR CALLS -496~ 

5. 1.4 F i Ie Sta tus (Refer to Appendi x D) 

The file status of the card punch is shown below. 

Standard Bits 

SET BY USER 

SET 
BY MONITOR 

Bit 19 - IO.DER 

Bit 21 - IO.BKT 

Bit 23 - IO.ACT 

UNUSED 

Device Dependent Bits 

SET BY USER 

Bit 29 - IO.D29 

5.2 CARD READER 

18 21 24 27 30 33 35 

19 21 23 

11/l11~ 11111II11111 
10-0546 

Punch error 

Reached end-of-card with data remaining in buffer. 

Device is active. 

18 20 22 24 27 

29 

IIIII~ 
10-0547 

If 1, punch DEC029 card codes in ASCII mode. 
If 0, punch DEC026 codes. 

The card reader device mnemonic is CDR; the buffer size is 368 (338 data) words. 

5.2. 1 Concepts 

I For ASCII input, a header card can be the first card of the file and identifies the card code used 

(DEC026 or ANSI standard). The header card is used only when changing from or back to installation 

standard on ASC II input. The header card must not be present with any other data modes; if present, 

the header card is treated cis incorrect format or read as data. Refer to Appendix C for the card codes. 

5.05 Monitor 5-4 June 1972 



-497- MONITOR CALLS 
An EOF card may have one of three forms: 12-11-0-1 punched in column 1, 6-7~8-9 punched in 

column 1, or a logical OR of the two punched in column 1. Columns 2 through 80 are ignored. The 

EOF card has the same effect as the EOF key on the card reader. This key must be depressed or the 

end-of-file card must be present at the end of each input file for all data modes. 

To be compatible with PD P-11 operating systems, the DECsystem-10 card reader service accepts several 

other header card-code cards and EOF cards. Only column 1 is looked at; columns 2-80 are ignored. 

EOF 

DEC026 

ANSI 

5.2.2 Data Modes 

Punched by DECsystem-10 

12-11-0-1-6-7-8-9t 

12-2-4-8 

12-0-2-4-6-8 

Also accepted 

12-11-0-1 
6-7-8-9 

12-11-8-9 t 

12-0-7-9 

5.2.2.1 ASCII, Octal Code 0 - All 80 columns of each card are read and translated to 7-bit ASCII 

code. Blank columns are translated to spaces. At the end of each card a carriage return/line feed is 

appended. As many complete cards as can fit are placed in the input buffer, but cards are not split 

between two buffers. Using the standard-sized buffer, only one card is placed in each buffer. 

I Cards are normally translated as DEC026 card codes (refer to PDP-10 System Reference Manual). If a 

DEC029 header card is encountered, any following cards are translated as DEC029 codes (refer to 

Appendix C) until the 029 conversion mode is turned off. The 029 mode is turned off either by a RELEASE 

command or by a DEC026 header card. Columns 2 through 80 of both of these cards are ignored. 

5.2.2.2 ASCII Line, Octal Code 1 - This mode is the same as ASCII mode. 

5.2.2.3 Image, Octal Code 10 - All 12 punches in all 80 columns are packed into the buffer as 12-

bit bytes. The first 12-bit byte is in column 1. The last word of the buffer contains columns 79 ,and 80 

as the left and middle bytes, respectively. The EOF button is processed as in ASCII mode. Cards are not 

split between two buffers. 

5.2.2.4 Image Binary, OCtal Code 13 - This mode is the same as Image. 

5.2.2.5 Binary, Octal Code 14 - Card column 1 must contain a 7-9 punch to verify that the card is 

in binary format. Column 1 also contains the word count in rows 12 through 3. The absence of the7-9 

punch results in setting the 10.1 MP (bit 18 of status word) flag in the card reader status word. Card 

column 2 must contain a 12-bit checksum as described for the paper-tape binary format. Columns 3 

through 80 contain binary data, 3 columns per word for up to 26 words. Cards are not split between two 

buffers. The EOF button is processed the same as in ASC II mode. 

-5. 2. 2.6 Super-Image, Octal Code 110 tt - Super-image mode may be initialized by setting bit 29 of 

the card reader's lOS word. This mode causes the 36 bits read from the I/O bus to be BLKl'd directly 
to the user's buffer. For this mode, the default size of the input buffer is 81 10 words (8010 data words). 

I t Thes~_ cards are symmetric in the sense that the pattern of the punches is the same if the card is turned 
ttupside down. 

This mode depends on FTCDRSI which is normally off in the DECsystem-1040. 

5.05 Monitor 5-5 June 1972 



MONITOR CALLS -498-
5.2.3 Special Programmed Operator Service 

The card reader, after each interrupt, stores the results of a CONI in the DEVSTS word in the device 

data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to 

Paragraph 4.10.1). 

5.2.4 File Status (Refer to Appendix D) 

The file status of the card reader is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER 

18 21 24 
SET 
BY MONITOR 

Bit 18 - IO.IMP 

Bit 19 - IO.DER 

Bit 20 - IO.DTE 

Bit 22 - IO.EOF 

Bit 23 - IO.ACT 

Device-Dependent Bits 

Bit 29 - IO.SIM 

10-0548 

7-9 punch absent in column 1 of a presumed binary card. 
The card reader is stopped. 

Photocell error, card motion error, data missed. The card 
reader is stopped. 

Computed checksum is not equal to checksum read on binary 
card. The card reader is stopped. 

EOF card read or EOF button pressed. 

Device is active. 

18 21 24 27 30 35 --y---.., 
UNUSED 

10-0549 

18 21 24 27 29 30 33 35 

SET BY USER 1L..--LI_.l....---II--IIIIIIIIIL.II_L---....J 
10-0541 

Super-Image mode. 

5-6 



-499- MONITOR CALLS 
5.3 DISPLAY WITH LIGHT PEN 

The device mnemonic is DIS; there is no buffer because the display uses device-dependent dump mode 

only. 

5.3.1 Data Modes 

For IMAGE DUMP, Octal Code 15, an arbitrary length in the user area may be displayed on the scope. 

The command list format is as described in Chapter 4 with the addition for the Type 30, VR30 and VP10 

display, that, if RH = 0, and LH 'I 0, then LH specifies the intensity for the following data (4 to 13). 

5.3.2 Background 

During timesharing on a heavily-loaded system, the monitor service routine for the Type 30, VR30, 

and VP10 guarantees a flicker-free picture on the display if the job is locked in core. To maintain 

this picture, the picture data must be available for the display at least every two jiffies. If the system 

is lightly loaded, it is not necessary to keep the job in core. When the job is swapped, a minimum 

amount of flicker may occur, but the job has high priority to be swapped-in again. 

5.3.3 Display UUOS 

The I/o UUOs for both displays operate as follows: 

INIT D, 15 
SIXBIT IDISI 
o 
ERROR RETURN 
NORMAL RETURN 
CLOSE D, 

or 
RELEAS D, 

;MODE 15 ONLY 
;DEVICE NAME 
iNO BUFFERS USED 
iDISPLAY NOT AVAILABLE 

;STOPS DISPLAY AND 
iRELEASES DEVICE AS 
iDESCRIBED IN CHAPTER 4 

5.3.3.1 INPUT D, ADR - If a light pen hit has been detected since the last INPUT command, then 

C(ADR) is set to the location of last light pen hit. If no light pen hit has been detected since last 

INPUT command, then C(ADR) is set to -1. 

5.3.3.2 OUTPUT D, ADR - ADR specifies the first address of a table of pointers. This table is 

composed of pointers with the following format: 

o 1718 35 

LH RH 

10-0550 

5.04 Monitor 5-7 January 1972 



MONITOR CALLS -500-
For the Type 30, VR30 and VPlO Display: 

If LH = 0 and RH = 0, then th is is the end of the command list. 

If LH 10 and RH = 0, then LH is the desired intensity for the following data or commands. 
The intensity ranges from 4 to 13, where 4 is the dimmest and 13 is 
the brightest. 

If LH = 0 and RH I 0, then RH is the address of the next pointer. Successive pointers are 
int~rpreted beginning at RH. 

If LH 10 and RH 10, then -LH words beginning at address RH + 1 are output as data to 
the display. The format of the data word is !he following: . 

o 7 8 1718 2526 35 

I y-coord x-coord I 

For the Type 3408 Display: 

If RH = 0, then th is is the end of the command list. 

If LH = 0 and RH 10, then RH ,is the address of the next pointer. Successive pointers are 
interpreted beginning at RH. 

If LH 10 and RH 10, then -LH words beginning at address RH+1 are output as data to the 
display. The format of the data word is described in the Precision 
Incremental CRT Display Type 340 Maintenance Manual. 

An example of a valid pointer list for the VR-30 display is: 

OUTPUT D. LIST ; OUTPUT DATA 
;POINTED TO BY LIST 

LIST; XWC 5. 0 ; INTENSITY 5 (DIM) 
IOWD 1 , A ;PLOT A 
IOWD 5,SUBPI ;PLOT SUBPICTURE 1 
XWD 13,0 ; INTENSITY 13 (BRI GHT) 
IOWD I, C ;PLOT C 
IOWD 2,SUBP2 ;PLOT SUBPICTURE 2 
XWD 0, LIST! ;TRANSFER TO LIST 1 

LI ST! : XWD 10,0 ;INTENSITY 10 ( NORMAL) 
IOWD 1 ,B ;PLOT B 
IOWD 1 ,D ;PLOT D 
XWD 0.0 ;END OF COtv:MAND LIST 
OUTPUT D, LIST ;OUTPUT DATA 

;POINTED TO BY LIST 
A: XWD 6.6 ;Y= 6, X=6 
B: XWD 70,105 ;Y= 70, X=105 
C: XWD 105,70 ;Y= 105, X=70 
D: XWD 1000.200 ;Y=1000, X=200 

SUBPI: BLOCK 5 ;SUBPICTURE 1 
SUB2: BLOCK 2 ;SUBPICTURE 2 

5-8 



-501-
An example of a valid pointer list for the Type 340B Display is: 

OUTPUT D, LIST 

LIST: IOWD I ,A 
IOWD 5,SUBPI 
lOWD I,C 
IOWD 5,SUBPI 
IOWD I,B 
IOWD 2,SUBP2 
IOWD 0,LIST! 

LIST!: IOWD I ,'D 

IOWD 5,SUBPI 
IOWD I ,A 
IOWD 2,SUBP2 
XWD 0,0 

A: X=6 Y=6 
B: X=105 Y=70 
C: X=70 Y=105 
D: X=1000 Y=-200 

SUBP I : BLOCK 5 
SUBP2: BLOCK 2 

;OUTPUT DATA POINTED 
;TO BY POINTER IN LIST 

; SET STARTING POINT 
; DRAW A CIRCLE 
;SET STARTING POINT 
; DRAW A CIRCLE 
;SET STARTING POINT 
; DRAW A TRIANGLE 
;TRANSFER TO LIST! 

;SET STARTING POINT 
;(100,-200) 
; DRAW A CIRCLE 
;SET STARTING POINT 
;DRAW A TRIANGLE 
; STOP 

;DRAW A CIRCLE 
;DRAW A TRIANGLE 

TO 

TO 

TO 

TO 

TO 

MONITOR CALLS 

( 6, 6) 

( 70,105 ) 

( 105, 70 ) 

(6,6) 

The example shows the flexibility of this format. The user can display a subpicture by setting up a 

pointer. He can also display the same subpicture in many different places by setting up pointers to 

the subpicture, each preceded by a pointer to commands for the display to reset its coordinates. 

5.3.4 File Status (See Appendix D) 

The file status of the display is shown below. 

Standard Bits 

18 21 24 27 30 33 35 

SET BY USER 
I1111111111111111111111111111111111 

23 

SfT BY MONITOR 
I11111 

10-0~~2' 

Bit 23 - IO.ACT Device is active. 

18 21 24 27 30 33 35 

UNUSED 

10-0~~3 

Device Dependent Bits' - None. 

5-9 



MONITOR CALLS -502-
5.4 LINE PRINTER 

The device mnemonic is LPT; the buffer size is 378 (368 data) words. 

5.4.1 Data Modes 

5.4.1.1 ASCI, Octal Code 0 - ASCII characters are transmitted to the line printer exactly as they 

appear in the buffer. Refer to the PDP-l0 System Reference Manual for a list of the vertical spacing 

c harac ters • 

5.4.1.2 ASCII Line, Octal Code 1 - This mode is exactly the same as ASCI and is included for pro­

gramming convenience. All format control must be performed by the user's program; this includes 

placing a RETURN, LINE-FEED sequence at the end of each line. 

5.4.1.3 Image, Octal Code 10 - This mode is the same as ASCI mode. 

5.4.2 Special Programmed Operator Service 

The first output programmed operator of a file and the CLOSE at the end of a file cause an extra form­

feed to be printed to keep files separated. 

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device 

data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to 

Paragraph 4.10.1). 

5.4.3 File Status (See Appendix D) 

The file status of the line printer is shown below. 

Standard Bits 

IB 21 24 27 29 30 33 35 

SET BY USER IL---II---L----L.---III~IIIIIWIIIIIIIIIIUIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIIIIIIIII 
Bit 29 - 10. SFF Suppress FORM FEEDS on an OPEN or RELEASE 

23 

SET BY MONITOR IIIII1 
10-0554 

Bit 23 - IO.ACT Device is active. 

UNUSED 11111111111111111111111111111 1111111111111111111111111111 I 

to-0555 

Device dependent bits - None. 

5.04 Monitor 5-10 January 1972 



-503- r10N ITOR CALLS 
5.5 MAGNETIC TAPE 

Magnetic tape format is industry compatible, 7- or 9-channel 200,556, and SOO bits/in. {see 

description below}. The device mnemonic is MTAO, MTA1, .•• , MTA7; the buffer size is 203S {200S 

data} words. The user may change the density and/or the blocksize of a magnetic tape by using the 

SET DENSITY and SET BLOCKSIZE monitor commands {refer to the DECsystem-10 Operating System 

Commands}. 

5.5.1 Data Modes 

5.5.1.1 ASCII, Octal Code 0 - Data appears to be written on magnetic tape exactly as it appears in 

the buffer. No processing or checksumming of any kind is performed by the service routine. The parity 

checking of the magneti c tape system is suffi cient assurance that the data is correct. Normally, all 

data, both binary and ASCII, is written with odd parity and at SOO bits per inch unless changed by the 

installation. A maximum qf 200S words per record is allowed if the monitor has set up the buffer ring. 

If the user builds his own buffers, he may specify any number of words per record. The word count is 

not written on the tape. If an I/O error occurs or an end-of-tape is reached, reading ahead ceasing 

on input and implied output ceases on output. 

5.5.1.2 ASCII Line, Octal Code 1 - The mode is the same as ASCII. 

5.5.1.3 Image, Octal Code 10 - The mode is the same as ASCII, but data consists of 36-bit words. 

5.5.1.4 Image Binary, Octal Code 13 - The mode is the same as Image. 

5.5.1.5 Binary, Octal Code 14 - The mode is the same as Image. 

5.5.1.6 DR {Dump Records}, Octal Code 16 - Standard fixed length records {12S words is the standard 

unless installation standard is changed at MaNGEN time} are read into or written from anywhere in 

the user's core area without regard to the standard buffering scheme. Control for read or write opera­

tions must be via a command list in core memory. The command list format is described in Chapter 4. 

For input operations a new record is read for each word in the command list {except GOTO words}; if 

the record terminates before the command word is satisfied, the service routine reads the next records. 

If the command word runs out before the record terminates, the remainder of the record is ignored. 

For each output command word, enough standard length records are followed by one short record to 

exactly write all of the words on the tape. If an I/O error occurs or the end-of-tape is reached, no I additional commands are retrieved from a dump made command list, and Va is terminated. When the 

end of file is read, the user receives the standard EOF return {the error retum from the INPUT or 

IN UUO}cmd the 10.EOF bit is set in the file status word. This bit can be retrieved with the GETSTS 

5-11 March 1973 



MONITOR CALLS -504-

I UUO. The EOF character (178 for 7-channel tapes or 238 for 9-channel tapes) is read into the user's 

buffer. The next INPUT or IN UUO wi II read the next record on the tape. 

I 

5.5.1.7 D (Dump), Octal Code 17 - Variable length records are read into or written from anywhere 

in the user's core area without regard to the standard buffering scheme. Control for read or write oper­

ations must be via a command list in core memory. The command list format is described in Chapter 4. 

For input operations a new record is read for each word in the command list (except GOTO words); if 

the record terminates before the command word is satisfied, the service routine skips to the next com­

mand word. If the command word runs out before the record terminates, the remainder of the·record 

is ignored. For each output command word, exactly one record is written. Refer to Paragraph 5.5.1.6 

for the description of EOF handling in dump mode. 

5.5.2 Magnetic Tape Format 

Magnetic tape format can generally be described as unlabelled, industry-compatible format. That is, 

as far as the user is concerned, the tape contains only data records and EOF marks, which signal the 

end of the data set or the end of the fi Ie. 

An EOF mark consists of a record containing a 178 (for 7-channel tapes) or a 238 (for 9-channel tapes). 

EOF marks are used in the following manner: 

a. No EOF mark precedes the first file on a magnetic tape. 

b. An EOF mark follows every file. 

c. Two EOF marks follow a file if that file is the last or only file on the tape. 

Files are sequentially written on and read from a magnetic tape. A file consists of an integral number 

of physical records, separated from each other by interrecord gaps (area on tape in which no data is 

written). There mayor may not be more than one logical record in eachphysical record. 

5.5.3 Special Programmed Operator Service 

CLOSE performs a special function for magnetic tape. When an output file is closed (both dump and 

nondump), the I/o service routine automatically writes two EOF marks and backspaces over one of 

them. If another file is opened, the second EOF mark is wiped out leaving one EOF mark between 

files. At the end of the in-use portion of the. tape, however, a double EOF character, which is de­

fined as the logical end of tape, appears. 

After each interrupt, the magnetic tape service routine stores the results of a CONI in'the DEVSTS 

word. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to 

Paragraph 4.10.1). 

5-12 March 1973 



-505- MONITOR CALLS 
5.5.3.1 MTAPE UUO - The MTAPE programmed operator provides for tape manipulation functions 

such as rewind, backspace record, backspace file, and 9-channel tape initialization. The format is 

MTAPE D, FUNCTION 

where D is the device channel on which the magnetic tape unit is initialized. FUNCTION is selected 

according to Table 5-2. 

Symbol Function 

MTWAT. 0 

MTREW. 1 

MTEOF. 3 

MTSKR. 6 

MTBSR. 7 

MTEOT. 10 

MTUNL. 11 

MTBLK. 13 

MTSKF. 16 

MTBSF. 17 

MTDEC. 100 

MTIND. 101 

Table 5-2 
MTAPE Functions 

Action 

No operation; wait for spacing and I/O to finish. 

Rewind to load point. 

Write EOF. 

Skip one record. 

Backspace record. 

Space to logical end of tape; terminates at either two 
consecutive EOF marks or at the end of first record 
beyond end of tape marker. 

Rewind and unload. 

Write 3 in. of blank tape. 

Skip one file; implemented by a series of skip record 
operati ons. 

Backspace files; implemented by a series of backspace 
record operat ions. 

Initialize for Digital-compatible 9-channel. t 

Initialize for industry-compatible 9-channel tape. tt 

t Digital-compatible mode writes (or reads) 36 data bits in five frames of a 9-track 
l"fIagnetic tape. It can be any density, any parity, and is not industry compatible. 
This mode is in effect until aRELEAS D, or a MTIND.D, is executed. 

tt Industry-compatible 9-channel mode writes (or reads) 32 data bits per wad in four 
frqmesof a 9-track magtape and ignores the low order four bits of a word. It must 
be 800 bits/in. density, odd parity. 

MTAPE waits for the magnetic tape unit to complete the action in progress before performing the in­

dicated function, il'1c1uding no operation (O). Bits 18 through 25 of the status word are then cleared, 

the indicat~d function is initiated, and control is immediately returned to the user's program. It is 

important to remember that when performing buffered input/output, the I/O service routine can be 

reading several blocks ahead of the user's program. MT APE affects only the physical position of the 

tape and does not change th~ data that has already been read into the buffers. Therefore, an INPUT 

5.04 Monitor 5-13 January 1972 



MONITOR CALLS -506-
or OUTPUT following a MTAPE may not retrieve the buffer containing the block requested. However, 

a single buffer ring retrieves the expected block since the device must stop after each INPUT or 

OUTPUT. Alternatively, if bit 30 (10. SYN) of the file status word is set via the INIT or SETSTS UUO, 

the device stops after each buffer is filled on an INPUT or OUTPUT. Thus, the MTAPE will apply to 

the buffer supplied on the next INPUT or OUTPUT • 

MTAPE functions must be followed by MT APE 0 if subsequent operations depend on the completion of 

the MTAPE function. If this is not done, subsequent input and output UUOs are ignored until the 

magnetic tape control is freed. This problem occurs frequently in programs that issue a REWIND at 

the beginning of the program. The tape may actually be positioned at the beginning of the tape; 

however, the processing of the MTAPE function may cause the first input to be ignored. 

Issuing a backspace file command to a magnetic tape unit moves the tape in the reverse direction until 

the tape has: 

a. passed the end of fi Ie mark 

b. reached the beginning of the tape. 

The end of the backspace file operation positions the tape heads either immediately in front of a file 

mark or at the beginning of the tape. 

In most cases it is desirable to skip forward over this file mark. This is decidedly not the case if the 

beginning of the tape is reached; in this case, giving a skip file command would skip the entire first 

file on the tape stopping at thebeginning of the second file, rather than leaving the tape positioned 

at the beginning of the first file. Therefore, a typical (incorrect) sequence for backspace file would 

be: 

MT8SF'. MT .. 
WAIT MT .. 
STATO MT .. 4000 
MTSI<F'. MT .. 

;Backspace file 
;Wait for completion 
;8eginning of tape? 
;No, skip over file mark 

It is necessary to wai~ after the backspace file instruction to ensure that the tape is moved to the EOF 

mark or the beginning of the tape before testing to see whether or not it is the beginning of the tape. 

The instruction WAIT'MT, cannot be used for this purpase; it waits only for the completion of I/O 

transfer operation. (Backspace file is a spacing operation, not an I/O transfer operation.) Instead, 

use the following sequence for backspace fi Ie: 

5.04 Monitor 

MTAPE 
MTAPE 
STATO 
MTAPE 

MT,17 
MT .. 0 
MT .. 4000 
MT .. 16 

5-14 

;Backspace file 
;Wait for completion 
;8eginning of tape? 
;No, skip over file mark 

January 1972 



-507- r10N nOR CALLS 
The device service routine must wait until the magnetic tope control is free before processing the 

MTAPE MT, 0 command, which tells the tape control to do nothing. Thus, the service routine achieves 

the waiting period necessary for the completion of the previous operation and the proper positioning of 

the tape. 

5.5.3.2 MTCHR. AC, or CALU AC, 1121 - This UUO returns the characteristics (presently only 

the density is returned) of the specified magnetic tape drive. The density of the drive can be speci­

fied by setting bits 27 and 28 in the status word when the drive is INITed and can be chCl'lged with 

the SET DENSITY command. The call is: 

MOVE AC, I5IXBIT/dev/l 
MTCHR. AC, 
error return 
normal return 

ior MOVEI AC, channel number 
;or CALLI AC, 112 

In determining the density to return, the monitor examines the initial file status specified with the 

INIT UUO and returns the indicated density value. if this value is zero, the monitor then determines 

if the user specified a density with the SET DENSllY system command. If no density has been speci­

fied in this way, the monitor returns the system defau It density. 

The MTCHR. UUO is used to obtain more complete information thon that returned with the GETSTS 

UUO. The GETSTS UUO returns only the density specified in the INIT UUO and if the density is 

specified as zero (for the system default), zero is returned, not the actual system default. The den­

sity specified in the SET DE NSllY command cannot be returned with the GETSTS UUO. 

The error return is given if the UUO is not implemented (AC remains unchanged) or if there is no de­

vice on the specified channel or if the device is not a magnetic tape (AC contains -1). 

I On a normal return, bits 34 and 35 of AC contain the current density of the magnetic tape drive: 

AC contains 1 
AC contains 2 
AC contains 3 

5.5.4 9-Channel Magtape 

200 bpi 
556 bpi 
800 bpi 

Nine-channel magtape may be written and read in two ways: normal Digital-compatible format and 

industry-compatible format. 

1This UUO depends on FT5UUO which is normally off in the DECsystem-1040. 

5-15 March 1973 



MaN ITOR CALLS -508-

5.5.4.1 Digital-Compatible Mode - Digital-compatible mode, the usual mode, allows old 7-channel 

user mode programs to read and write 9-channel tapes with. no modification. Digital-compatible mode 

writes 36 data bits in five bytes of a nine track magtape. It can be any density, and parity, and is not 

industry compatible. The software mode is specified in the usual manner during initialization or with 

a SETSTS. User mode I/o is nandled precisely as 7-track magtape. It is assumed that most DEC 

magtapes will be written and read in Digital-compatible mode. 

For the data word in core there are 5 magnetic tape bytes per 36-bit word. Parity bits are'unavailable 

to the user. Bits are written on tape as shown above; bits 30 and 31 are written twice and tracks 8 and 

9 of byte 5 contain O. On reading, parity bits and tracks 8 and 9 of byte 5 are ignored, the OR of 

bits (B30) is read into bit 30 of the qata word, the OR of bits (831) is read into bit 31. 

Data Word on Tape 

Tracks 

9 8 7 6 5 4 3 2 1 

BO Bl B2 B3 B4 B5 B6 B7 P 
B8 B9 BlO B11 B12 B13 B14 B15 P 
B16 B17 B18 B19 B20 B21 622 B23 P 
824 B25 B26 B27 B28 B29 (1330) (B31) P 
0 0 (B30) (B31) B32 B33 B34 B35 P 

P = Parity 
BN = Bit N in core. 

5.5.4.2 Industry-Compatible Mode - For reading and writing industry-compatible 9-channel magtapes, 

an MTAPE D, 101 UUO must be executed to set the status. MTAPE D, 101 is meaningful for 9-channel 

magtape only and is ignored for all other devices. In the left half of the status word, bit 2 (which 

cannot be read by the user program) may be cleared, thus, the device is returned to 9-channel Digital­

compatible status by a RELEAS, a call to EXIT, or an MTAPE D, 100 UUO. These MTAPE UUOs act 

only as a switch to and from industry-compatible mode and affect I/o status only by setting the density 

to 800 bits/in. and odd parity. 

I On INPUT, four 8-bit bytes are read into each word in the buffer, left justified, with the remaining 

four bits of the word containing character parity error indicators corresponding to the 8-bit bytes. 

On OUTPUT, the leftmost four 8-bit bytes of each word in the buffer are written out in four frames, 

with the remaining four rightmost bits of the word being ignored. 

5-16 March 1973 



-509- ~10N nOR CALLS 

Data Word on Tape 

Tracks 

9 8 7 6 5 4 3 2 1 

80 81 82 83 84 85 86 87 832 
88 89 810 811 812 813 814 815 833 
816 817 818 819 820 821 822 823 834 
824 825 826 827 828 829 830 831 835 

For data word in core, four magnetic tape bytes carry four 8-bit bytes from the data word. Parity bits 

are obtained as shown above when reading. The rightmost four bits (32-35) are ignored on writing. 

5.5.4.3 Changing Modes - MTAPE CH, 101 automatically sets density at 800 bits (i.e., 800 eight­

bit bytes) per inch and sets odd parity. Note that buffer headers are set up, when necessary by the 

monitor in the usual manner according to the I/O mode in which the device is initialized. In order to 

operate on eight-bit bytes, the user must insert the byte size in the byte pointer before the first IN or 

OUT. 

5-16a March 1973 





I 

-511- MaN nOR CALLS 
5.5.5 File Status (refer to Appendix D) 

The file status of the magnetic tape is shown below. 

Standard Bits 

SET BY USER 

SET BY MONITOR 

Bit 18 - IO.IMP 

Bit 19 - 10.DER 

Bit 20 - 10.DTE 

Bit 21 - 10.BKT 

Bit 22 - 10.EOF 

Bit 23 - 10.ACT 

18 21 24 
------~---~---,----~ 

10-0556 

Unit was write-locked when output was attempted, 
or illegal operation was specified to the magnetic­
tape control. 

Data was missed, tape is bad, or transport is hung. 

Parity error. 

Record read from tape exceeds buffer size. 

EOF mark encountered. A 178 (for 7-channel tapes) or a 
238 (for 9-channel tapes) appears in buffer. 

Device is active. 

Device Dependent Bits 

18 21 24 26 27 30 33 35 

SET BY USER L.....-I ---L...--.L...-....IlIWIIIIIIIWIIIWIIIIIIIIIIIIIWWL.III/III--I......---I 
10-0557 

Bit 26 - 10.PAR I/o parity. 0 for odd parity, 1 for even parity. Odd 
parity is preferred. Even parity should be used only 
when creating a tape to be read in binary coded deci­
mal (BCD) on another computer. 

Bit 27-28 - 10.DEN I/O density. 00 = System standard. Defined at 
MONGEN time and can be changed 
with the SET DENSITY command. 
01 = 200 bits/in. . 
10 = 556 bits/in. 
11 = 800 bits/in. 

Bit 29 - 10.NRC I/o no read check. Suppress automatic error correction 
if bit 29 is 1. Norma I error correction repeats the de­
sired operation 10 times before setting an error status bit. 

5-17 March 1973 



MaN ITOR CALLS -512-
18 21 24 25 27 30 33 35 

SET BY MONITOR I~---L....---WIIIIIIIIIIIW/....-IIIII IL...--.....L.---L-----JI 
IO-05!>e 

Bit 24 ~IO.BOT 

Bit 25 - 10.EOT 

I/o beginning of tape. Unit is at beginning of tape mark. 

I/o tape end. Physical end of tape mark encountered. 

5.6 PAPER-TAPE PUNCH 

The device mnemonic is PTP; the buffer size is 438 (408 data) words. 

5.6.1 Data Modes 

5.6.1.1 ASCII, Octal Code 0 - The eighth hole is punched when necessary in order to make even 

parity . Tape-feed without the eighth hole (000) is inserted after form-feed. A rubout is inserted 

after each vertical or horizontal tab. Null characters (000) appearing in the buffer are not punched. 

5.6.1.2 ASCII Line, Octal Code 1 - The mode is the same as ASCII mode. Format control must be 

performed by the user's program. 

5.6.1.3 Image, Octal Code 10 - Eight-bit characters are punched exactly as they appear in the 

buffer with no additional processing. 

5.6.1.4 Image Binary, Octal Code 13 - Binary words taken from the output buffer are split into six 

6-bit bytes and punched with the eighth hole punched in each line. There is no format control or 

checksumming performed by the I/O routine. Data punched in this mode is read back by the paper­

tape reoder in the IB mode. 

5.6.1.5 Binary, Octal Code 14 - Each bufferful of data is punched as one checksummed binary block 

as described for the paper-tape reader. Several blank lines are punched after each bufferful for visual 

clarity. 

5.6.2 Special Programmed Operator Service 

The first output programmed operator of a file causes approximately two fanfolds of blank tape to be 

punched as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No 

EOF character is punched automatically. 

After each interrupt, the paper-tape punch stores the results of a CONI in the DEVSTS word of the 

device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user 

(refer to Paragraph 4. 10. 1). 

5-18 



-513-
5.6.3 Fi Ie Statu!> (Refer to Appendix D) 

The fj Ie status for the paper~tape punch is shown below. 

Standard Bits 

21 24 27 30 33 35 

SET BY USER 

23 

SET BY MONITOR\ L.. _L-IIUW\\\\IL----L--'-----L-~ 
10-0559. 

Bit 23 - 10.ACT Device is active. 

UNUSED 

10-0560 

Device Dependent Bits - None. 

5.7 PAPER-TAPE READER 

The device mnemonic is PTR; the buffer size is 438 (408 data) words. 

5.7.1 Data Modes (Input Only) 

NOTE 

To initialize the paper-tape reader, the input tape must 
be threaded through the reading mechanism and the FEED 
button must be depressed. 

MONITOR CALLS 

5.7.1.1 ASCII, Octal Code 0 - Blank tape (000), RUBOUT (377), and null characters (200) are 

ignored. All other characters are truncated to seven bits and appear in the buffer. The physical end 

of the paper tape serves as an EOF, but does not cause a character to appear in the buffer. 

5.7.1.2 ASCII line, Octal Code 1 - Character processing is the same as for ASCII mode.' The buffer 

is terminated by UNE FEED, FORM, or VT. 

5.7.1.3 Image, Octal Code 10 - There is no character processing. The buffer is packed with 8-bit 

characters exactly as read from the input tape. Physical end of tape is the EOF indication but does 

not cause a character to appear in the buffer. 

5-19 



MON nOR CALLS -514-
5.7.1.4 Image Binary, Octal Code 13 - Characters not having the eighth hole punched are ignored. 

Characters are truncated to six bits and packed six to the word without further processing. This mode 

is useful for reading binary tapes having arbitrary blocking format. 

5.7.1.5 Binary, Octal Code 14 - Checksummed binary data is read in the following format. The 

right half of the first word of each physical block contains the number of data words that follow and 

the left contains half a folded checksum. The checksum is formed by adding the data words using 2's 

complement arithmetic, then splitti~g the sum into three 12-bit bytes and adding these using l's com­

plement arithmetic to form a 12-bit checksum. The data error status flag (refer to TQble 4-3 in 

Paragraph 4.6.2) is raised if the checksum miscompares. Because the checksum and word count appear 

in the input buffer, the maximum block length is 40. The byte pointer, however, is initialized so as 

not to pi ck up the word count and checksum word. 

Again, physical end of tape is the EOF indication, but does not result in putting a character in the 

buffer. 

5.7.2 Special Programmed Operator Service 

After each interrupt, the paper-tape reader stores the results of a CONI in the DEVSTS word of the 

device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user 

(refer to Paragraph 4.10.1). 

5.7.3 File Status (Refer to Appendix D) 

The file status of the paper-tape reader is shown below. 

Standard Bits 

SET BY USER 

18 20 22 23 

SET BY MONITOR IIIIIIII..IIII~ ..IIIIIII.IIIIII....IIIIIIIIIIIIIIIIL.IIII'---I-----L...----L-----1 

Bit 18 - IO.IMP 

Bit 20 - IO.DTE 

Bit 22 - IO.EOF 

Bit 23 - IO.ACT 

Binary block is incomplete. 

Bad checksum in binary mode. 

lo-oe61 

Physical end of tape is encountered. No character 
is stored in the buffer. 

Device is active. 

5-20 



-515- r10N nOR CALLS 

1819 21 

UNUSED 

10-0562 

Device dependent bits - None 

5.8 PLonER 

The device mnemonic is PLTi the buffer size is 438 (408 data) words. The plotter takes 6-bit characters 

with the bits of each character decoded as follows: 

-x +x +Y -y 
PEN PEN DRUM DRUM CARRIAGE CARRIAGE 

RAISE LOWER UP DOWN LEFT RIGHT 

10-0563 

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the 

incremental plotter, refer to the PDP-l0 System Reference Manual.) 

5.8.1 Data Modes 

5.8.1.1 ASOI, Octal Code 0 - Five 7-bit characters per word are transmitted to the plotter exactly 

as they appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each charac­

ter is ignored. 

5.8.1.2 ASCII Line, Octal Code 1 - This mode is identical to ASCII mode. 

5.8.1.3 IMAGE, Octal Code 10 - Six 6-bit characters per word are transmitted to the plotter ex­

actly as they appear in the buffer. 

5.8.1.4 IMAGE BINARY, Octal Code 13 - This mode is identical to Image mode. 

5.8.1.5 BINARY, Octal Code 14 - This mode is identical to Ill)age mode. 

5.8.2 Special Programmed Operator Service 

The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is 

sent to the plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is sent 

to the plotter. These two pen-up commands are the only modifications the monitor makes to the user 

output fil e • 

5-21 



r10N nOR CALLS -516-
After each interrupt, the plotter stores the results of a CONI in the DEVstS word of the de~ice data 

block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to 

Paragraph 4.10.1). 

5.8.3 File Status (Refer to Appendix D) 

The file status of the plotter is shown below. 

Standard bits 

18 21 24 27 30 33 35 

SET BY USER I 
I1111111111111111111111111111111111 

23 

SET BY MONITOR I 
11111 I 

10-0564 

Bit 23 -IO.ACT D~vice is active. 

UNUSED 

10-0565 

Device dependent bits - None 

I 5.9 PSEUDO-TTY 

I 

The ,deviCe mnemonic is PTYO, PTY1, ••• i PTYn. (The number of pseudo-TTYs is specified at 

MONGEN time.) The buffer size is 238 (208 data) words. 

5.9. 1 Conc;:epts 

Ecich job in the DECsystem-lO is usually initiated by a user at a physical terminal. Except in the 

case of a DETACH opera,tion, the job remains under the control·of the user IS terminal until it is ter­

minated by either the KJOB command or the LOGOUT UUO. For each physical terminal there is a 

block of core in the monitor, containing information about the physical terminal and including two 

buffers as the link between the physical terminal and the job. It is through these buffers that the 

terminal sends input to the job, and the job returns output to the terminal. 

5.06 Monitor 5-22 N\arch 1973 



-517- MONITOR CALLS 
Sometimes it is desirable to allow a job in the DECsystem-10 to be initiated by a program instead of 

by a user. Sinc~ a program cannot use a physical terminal in the way a user can, some means must be 

provided in the monitor for the program to send input to and accept output from the job it is controlling. 

The monitor provides this capability via the pseudo-TTY (PTY). The PTY is a simulated terminal and is 

not defined by hardware. like hardware-defined terminals, each PlY has a block of core associated 

with it. This block of core is used by the PTY in the same manner as a hardware-defined terminal uses 

its block of core. Figure 5-1 shows the parallel between a hardware-defined terminal and a software­

defi ned PTY. 

USER 

CONTROLLING 
PROGRAM 

r----' 
I -- PHYSICAL I 

TERMINAL 

I 
r---..J 

-!-
I 

DEVICE PTY 

DEVICE Tn; 
OR 

I DEVICE TIYn 

MONITOR 

DEVICE TIV, I 
OR 

I DEVICE TIYm 

L ________ --1 

Figure 5-1 Pseudo-TTY 

CONTROLLED 
JOB 

CONTROLLED 
JOB 

10-0545 

The controlling program, most commonly the batch processor, uses the PTY in the same way a user uses 

a physical device. It initiates the PTY, inputs characters to and waits for output from the PTY, and 

closes the PTY using the appropriate programmed operators. The job controlled by the pragram per­

forms I/o to the PTY as though the PTY were a physical terminal. 

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it 

is not possible for the controlling program to simply rely on waiting for activity in the controlled job. 

A controlling program may also wish to drive more than one controlled job, and be able to respond to 

any of these jobs; therefore, the controlling program cannot wait for any particular PTY. For these 

two reasons, the PTY differs from other devices in that it is never in a I/o wait state. Timing is ac­

complished by the HIBER UUO and the status bits of the PTY. 

5.9.2 The HIBER UUO 

The HIBER UUO (refer to Paragraph 3.1.4.2) allows the 'controlling program to temporarily suspend its 

operation until either there is activity in the controlled job or the specified amount of sleep time runs 

out, whichever occurs first. If bit 12 in the AC is set in the HIBER UUO call, any PTY activity since 

5-23 



MaN ITOR CALLS -518-
the last HIBER UUO causes the controlling program to be awakened. If no PlY activity occurs before 

the limit of sleep time is reached, the controlling program is activated, and it checks the controlled 

. job's run time or other criteria to determine whether the job should be interrupted. If the job should 

be interrupted, the controlling program may output two control-C characters to stop the job. (A 

timesharing user stops a running job in the same way.) If the job should not be interrupted, the con­

trolling program should repeat the HIBER UUO. 

If bit 12 in AC is not set, unnecessary delays might result if activity occurred on a PTY while the 

controlling job was sleeping. To avoid these delays, a check is made when a PTY status bit changes 

to determine if the controlling program is in a sleep. If it is, the sleep time is cleared so the con­

troll ing program can service the PTY. 

5.9.3 File Status {Refer to Appendix D} 

The file status of the pseudo-TTY is shown below. 

Standard Bits 

SET BY USER 

21 23 

SET BY MONITOR I"--_' ...... IIII ....... IIII_IJ _"---L...-.......&...-----' 

Bit 21 - 10. BKT 

Bit 23 - IO.ACT Device is active. 

10-0570 

Device Dependent Bits 

18 21 24 27 30 33 35 

SET BY MONITOR ,---I ___ ........... 1111111 ........... 11111111111"--1 _______ ............... 

Bit 24 - IO.PTI 

Bit 25 - IO.PTO 

Bit 26 - IO.PTM 

10-0571 

Job is. in a TTY input wait. The controlling job 
should perform an OUTPUT to the PTY. 

The TTY buffer has output to be read by an 
INPUT from the PTY. 

Any characters typed into the TTY buffer (by 
OUTPUT to the PTY) are read by the monitor 
command decoder instead of by the controlled 
job (i .e., the controlled job is in monitor mode). 

5-24 



-519- MaN nOR CALLS 
5.9.4 Special Programmed Operator Service 

5.9.4.1 OUT, OUTPUT UUOs - The first OUTPUT operation after an INIT or OPEN causes the 

special actions of the RELEASE UUO (refer to Paragraph 5.9.4.3) and then the following normal out­

put operations. 

a. Characters from the controlling program's buffer ring are placed in the input buffer 
of the TTY linked to the PTY. 

b. The 10.PTI bit is cleared. 

c. The 10.PTM bit is set or cleared as determined by the state of the TTY. 

The following are exceptions to the normal output action: 

a. NULLS (ASCII 0(0) are discarded. 

b. If more OUTPUTS are performed than are accepted by the controlled job and if the limit 
on this excess is exceeded, the 10.BKT bit is set and the remainder of the controlling 
program's buffer is discarded. 

c. Lower case characters sent to the controlled job are translated to upper case if the ap­
propriate bit in the TTY is set. 

5.9.4.2 IN, INPUT UUOs - Characters are read from the output buffer of the TTY and are placed 

in the buffer ring of the controlling program. If there are no characters to read, an empty buffer is 

returned. The INPUT UUO does not cause a WAIT. 

All the avai lable characters are passed to the controll ing program. If there are more characters to 

read than can fit in the buffer of the controlling program, the 10. PTO bit remains set and another 

INPUT should be done. If the output buffer of the TTY is exhausted by the INPUT UUO, the 10.PTO 

bit is cleared. 

5.9.4.3 RELEASE UUO - The RELEASE UUO causes the following special actions: 

a. Any characters in the output buffer of TTY are discarded. 

b. If the controlled job is still attached to TTY, it is detached. 

c. The PTY is disassociated from the software channel. 

CAUTION 

Haphazard use of the PTY and subsequent RELEASE opera­
tions may leave detached jobs tying up core and other sys­
tem resources. 

I 5.9.4.4 JOBSTS UUO - This UUO provides status information about devices TTY and/or the con­

trolled job in order to allow complete and accurate checking of a controlled job. 

I 
5.06 Monitor 5-25 March 1973 



r'10N ITOR CALLS -520-
The call is: 

MOVEI AC, user channel number 
JOBSTS AC, 

;or MOVNI AC, job number 
;or CALLI AC, 61 

error return 
norma I return 

When the UUO is called, AC contains a number n specifying the job and/or the TTY to be checked. 

If n is from 0 to 17, the specified TTY and job are those currently INITed on the user's channel n. 

If n is negative, the job to be checked is job number (-n). 

The error retum is given if one of the following is true: 

a. the UUO is not implemented. If this is the case, check the I/o status word. 

b. n is out of range. 

c. there is no PTY INITed on channel n. 

Otherwise the normal retum is given and AC contains the following status information: 

Name 

JB.UJA 

JB.ULI 

JB.UML 

JB.UOA 

JB.UDI 

JB.UJC 

JB.UJN 

Bit 

Bit 0 = 1 

. Bit 1 = 1 

Bit 2 = 1 

Bit 3 = 1 

Bit 4 = 1 

Bit 5 = 1 

Bits 6-17 

Bits 18-35 

Job number is assigned. 

Job is logged in. 

Explanation 

TTY is at monitor level. 

TTY output is available. 

TTY is at user level and in input wait, or TTY is at monitor 
level and can accept a command. In other words, there is 
no command awaiting decoding or being delayed, the job is 
not running, and the job is not stopped waiting for operator 
device action. 

JACCT is set. In particular, tCtC will not work. 

Reserved for the future. 

Job number being checked or 0 if no job number is assigned. 

I 5.9.4.5 CTLJOB UUO - This UUO is used to determine the job number of the program (job) that is 

controlling the specified job, if any. 

The call is: 

I 
5 • 06 Mon ifor 

MOVE AC, job number 
CTLJOB AC, 
error return 
norma I return 

5-26 

;-1 means user's job 
;or CALLI AC, 65 

March 1973 



-s2i- MON nOR CALLS 

On a normal return, AC contains the job number of the program (job) that is controlling the controlled 

job. If AC = -1, the specified job is not being controlled via a PTY. 

An error return is given if the uLio is not implemented or the job number is too large. 

5.10 TERMINALS 

The device mnemonic is TTYO, TTY1, ••• , TTY176, TTY177, CTY; the buffer size is 238 (208 data) 

words. 

Line number n of the Data Line Scanner DC10, PDP-8 680 System, or PDP-8/f DC68A System is refer­

red to as TTYn. The console terminal is CTY. The DECsystem-10 monitor automatically gives the 

logical name TTY to the user's terminal when a job is initialized. 

Terminal device names are assigned dynamically. For interconsole communication by program, one 

of the two users must type DEASSIGN TTY to make the terminal available to the other user's program 

as an I/o device. Typing ASSIGN TTYn is the only way to reassign a terminal that has been de­

assigned. 

In a fu II-duplex terminal service, the two functions of a console, typein and typeout, are handled 

independently, and do not need to be handled in the strict sense of output first and then input. For 

example: if two operations are desired from PIP, the request for the second operation can be typed 

before receiving the asterisk after completion of the first. To stop unwanted output, a Control 0 is 

typed. Also, the command Control C does not stop a program instantly; the Control C will be delayed 

until the program requests input from the keyboard, and then the program will be stopped. When a 

program must be stopped instantly, as when it gets into a loop, Control C typed twice stops the pro­

gram. 

If, during output operations on a half-duplex terminal (not a local copy terminal), an echo-check 

failure occurs (i.e., the received character was not the same as the transmitted character), the I/o 
rexitinesuspends ootput until the user types the next character. If that character is fC, the terminal 

is immediately placed in monitor mode. If it is fO, all TTY output buffers that are currently full are 

ignored, thus cutting the output short. All other characters cause the service routine to con~inue 

output. The user may cause a deliberate echo check by typing.in while typeout is in progress. For 

example, to return to monitor control mode while typeout is in progress, the user must type any char­

acter ("X ", for example) until an echo check occurs and output is suspended; then he types tC. 

Programs waiting for TTY output are awakened ten characters before the output buffer is empty, causing 

them to be swapped in sooner and preventing pauses in typing. Programs waiting for TTY input will be 

awakened ten characters before the input buffer is filled, thus reducing the possibility of lost typein. 

5-27 



MONITOR CALLS -522-
5.10.1 Data Modes 

5.10.1.1 ASCII, Octal Code 0 and ASCII Line, Octal Code 1 - The input handling of all control 

characters is as follows. Characters with ASCII codes of 000 to 037 echo as tx and are passed to the 

program as a control character unless noted otherwise. 

000. 

001 

002 

003 

004 

005 

006 

007 

010 

011 

012 

013 

014 

015 

016 

017 

020 

021 

022 

023 

5.04 Monitor 

NULL 

tA 

tB 

tC 

tD 

tE 

tF 

tG 

tH 

tI 

tJ 

tK 

tL 

tM 

tN 

to 

tP 

(EaT) 

(WRU) 

(Bell) 

(Backspace) 

(TAB) 

(Linefeed) 

(Vertical tab) 

(Form) 

(Carriage 
return) 

tQ (XON) 

tR (TAPE) 

tS (X OFF) 

Ignored on input; suppressed on output. 

No special action. 

No special action. 

Not passed to program. The user's terminal is switched to . 
monitor mode the next time input is requested by the program. 
Two successive tCs cause the terminal to be immediately 
switched to monitor mode. Performs a tU and a to. For 
user program control of tC, refer to Paragraph 3.1.3.2. 

Not echoed; therefore typing in a control-D (EaT) does not 
cause a full-duplex data phone to hang up. 

No special action. 

No special action. 

Echoes as Bell and is a break character. 

Echoes as backspace. 

Echoes as a TAB ~r an equivalent number of spaces. Refer 
to the SET TTY TAB commahd. 

Echoes as a linefeed and is a break character. 

Echoes as a vertical tab or 4 linefeeds. Refer to the SET 
TTY FORM command. 

Echoes as a FORMFEED or 8 linefeeds. Refer to the SET 
TTY FORM command. 

Passed to program if terminal is in a paper-tape input mode; 
otherwise, supplies a linefeed echo, is passed to program as 
a CR and LF, and is a break character due to the LF. 

No special action. 

Not passed to program. Complements output suppression bit 
allowing users to turn output on or off. INPUT, INIT, and 
OPEN cl ear the output suppression bit. This bit is also 
cleared by any other INPUT-class operation, such as DDlIN 
and TTCALLS 0, 2,4, and 5, by input test TTCALLS 13 and 
14, and by returning to monitor command level via tC or 
EXIT operations. Echoed as to followed by carriage return/ 
linefeed • 

No special action. 

Starts paper-tape mode if • TTY TAPE command has been 
given; refer to Paragraphs 5.10.8 and 5.10.9. 

No special action. 

Ends paper-tape mode; refer to Paragraphs 5.10.8 and 5.10.9. 

5-28 January 1972 



I 

024 

025 

026 

027 

030 

031 

032 

033 

034 

035 

036 

037 

040-137 

140-174 

175 and 176 

177 

fT (NO TAPE) 

tU 

tV 

tW 

tx 

ty 

tZ 

t[ (ESC) 

t\ 

t] 

tt 

t .. 

-523- MON ITOR CALLS 
No special action. 

Deletes input line back to last break character. Echoed 
as tU followed by a carriage retum/linefeedi is a break 
character. Passed to program if full character-set mode 
is true. 

No special action. 

No special action. 

No special action. 

No special action. 

Acts as EOF on TTY input. Echoes as tZ followed by car~ 
riage return/linefeed. Is a break character. 

The standard ASCII escape. Echoed as $i is a break character. 

No special action. 

No special action. 

No special action. 

No special action. 

Printing characters, no special action. 

Lower case ASOIi translated to upper case, unless lower 
case mode is on. Echoes as upper case if translated to 
upper case. 

Old versions of altmode; converted to the standard 
escape (033) unless in full character set mode INIT 
or TRMOP. UUO) or no ALTmode conversion is speci­
fied (TRMOP. UUO or SET TTY NO ALT command). 

RUBOUT or DELETE: 

a. Completely ignored if in paper-tape mode (XON). 

b. Break character, passed to program if either DDT 
mode or full character-set mode is true. 

c. Otherwise (ordinary case) causes a character to be 
deleted for each rubout typed. All the characters 
deleted are echoed between a single pair of back­
slashes. If no characters remain to be deleted, echoes 
as a carriage return/linefeed. 

On output, all characters are typed just as they appear in the output buffer with the exception of TAB, 

VT, .and FORM, which are processed the same as on type-in. Programs should avoid sending to, be­

cause it may have catastrophic effects (e.g., it may hang up certain elata sets). 

5.10.1.2 Imoge, Octal Code 10 - Image mode is legal for TTY input and output, except for terminals 

I controlled by pseudo-TTYs (refer to Paragraph 5.9). Note that the terminal to be INITed in image 

mode must be ASSIGNed to a job. An attempt to do input to an unassigned terminal receives an error 

retum with the IO.IMP bit set in the file status word. Image mode is available only in the 5.02 

monitor and later. 

5.06 Moilitor 5-29 March 1973 



r10N ITOR CALLS -524-
Because, on input, any sequence of input characters must be allowed, fC and fZ may not cause their 

usual escape functions. This means that if the user program accepts all characters and does not release 

the terminal from image mode, no typein will release the user from this state; consequently, the ter­

minal would effectively become dead to the system. The break character cannot be used to escape 

from this situation, because DClO and the 630 do not detect the break character. To solve this de­

sign problem~ an image input state is defined. If during the image input state, no charac;:ters are re­

ceived for 10 seconds the end-of-file is forced. After another 10 seconds, the image input state is 

terminated by SCNSER (scanner service) and a tC is simulated. Therefore, if the user discavers that 

his program has failed because of this condition, he simply stops typing until a fC appears. 

The image input state begins when the program goes into I/o wait because of an INPUT UUO in image 

I mode. It ends when the program executes any non-image terminal output operation. If no output is 

desired, the TTCALL UUO can be executed to output a null string. 

When using image mode input to read binary tapes, echoing should be suppressed by setting bit 28 in 

the TTY status word. 

NOTE 

Because there are no break characters in image mode, characters 
are transferred a character at a time instead of a line at a time. 
Therefore, an input buffer may only have one character in it 
when control is returned to the user program. 

On output, the low-order eight bits of each word ·in the user's buffer are output. These characters 

are transmitted exactly as supplied by the user. Parity is neither checked nor added, and filler char­

acters are not generated. Image mode affects buffered output (IN IT , OUTPUT UUOs) only, except 

for one TTCALL function (refer to Paragraph 5.10.3). 

I 5.10.2 DDT Submode 1 

I 

To allow a user's program using buffered I/O and the DDT debugging program to use the same terminal 

without interferring with one another, the TTY service routine provides the DDT submode. This mode 

does not affect the TTY status if it is initialized with the INIT operator. It is not necessary to use 

INIT to perform I/O in the DDT submode. I/O in DDT mode is always to the user's terminal and not 

to any other device. 

In the DDT submode, the user's program is responsible for its own buffering. Input is usually one 

character at a time, but if the typist types characters faster than they are processed, the TTY service 

routine supplies buffers fu II of characters at the same time. 

1 The usage described in this section is obsolete; new programs should use the TTCALL UUO 
(refer to Paragraph 5.10.3). 

5.06 Monitor 5-30 March 1973 



I 

-525- MON nOR CALLS 

To input characters in DDT mode, use the sequence 

MOVEI AC~BUf 
CALL AC~ [SIXBIT/DDTIN/J 

BUF is the first address of a 21-word block in the user's area. The DDTIN operator delays, if necessary, 

until one character is typed in. Then all characters (in 7-bit packed format) typed in since the pre­

vious occurrence of DDTIN are moved to the user's area in locations BUF, BUF+ 1. The character string 

is always terminated by a null character (OOO). RUBOUTs are not processed by the service routine but 

are passed on to the user. The specia I control characters f 0 and fU have no effect.. Other characters 

are processed as in ASCII mode. 

To perform output in DDT mode, use the sequence 

~OVE I AC ~ BUf 
CALL AC ~ [S I XB IT IDDTOUT IJ 

BUF is the first address of a string of packed 7-bit characters terminated by a null (OOO) character. 

The TTY service routine delays unti I the previous DDTOUT operation is complete, then moves the 

entire character string into the monitor, begins outputting the string, and restarts the user's program. 

Character processing is the same as for ASCII mode output. 

5.10.3 Special Programmed Operator Service 

The TTCALL UUO is used to extend the capabilities of the terminal. The TTCALl operations are per­

formed for a physical terminal (not a logical name TTY) and most operations reference the terminal 

controlling the job which executed the UUO. (There are exceptions, such as in the case of GETLCH.) 

The general form of the TTCALL (operation code 051) programmed operator is as follows: . 

TTCALL AC, ADR 

The AC field describes the particular function desired, and the argument (if any) is contained in ADR. 

ADR may be an AC or any address in the low segment above the job data area (137). It may be in 

high segment for AC fields 1 and 3. The functions are: 

5.06 Mon itor 5-31 March 1973 



MaN nOR CALLS -526-

AC Field Mnemonict Action 

0 INCHRW Input character and wait 

1 OUTCHR Output a character 

2 INCHRS . Input character and skip 

3 OUTSTR Output a string 

4 INCHWL Input character, wait, line mode 

5 INCHSL Input character, skip, line mode 

6 GETLCH Get line characteristics 

7 SETLCH Set line characteristics 

10 RESCAN Reset input stream to command 

11 CLRBFI Clear type-in buffer 

12 CLRBFO Clear type-out buffer 

13 SKPINC Skip if a character can be input 

14 SKPINL Skip if a line can be input 

15 IONEOU Output as an image character 

16-17 (Reserved for expansion) 

tThe TTCALL mnemonics are defi~ed in a separate MACRO assembler table, 
which is scanned if an undefined OP CODE is found. If the symbol is found 
in the TTCALL table, it is defined as though it had appeared in an appro-
priate OPDEF statement, for example: ' 

TYPE: OUTCHR CHARAC 

If OUTCHR is undefined, it will be assembled as though the program con­
tained the statement: 

OPDEF 'OUTCHR TTCALL 1, 

This facility is available in MACRO V.44 and later. 

INPUT and INPUT TEST operations (TTCALLs 0, 2, 4, 5, 13 and 14) also clear the effect of the pre­

vious to type in. 

5.10.3.1 INCHRW ADR or TTCALL 0, ADR - This command inputs a character into the low-order 

seven bits of location ADR. If there is no character yet typed, the program waits. 

I 5.10.3.2 OUTCHR ADR or TTCAll 1, ADR - This command outputs to the user's terminal the char­

acter in location ADR. Only the low order 7 bits of the contents of ADR are used. The remaining 

bits do not need to be zeroes. 

If there is no room in the output buffer, the program waits until room is available. ADR may be in 

high segment. 

5.06 Monitor 5-32 March 1973 



-527- r'1ON nOR CALLS 
5.10.3.3 INCHRS ADR or nCALL 2, ADR - This command is similar to INCHRW, except that it 

skips on a successful return, and does not skip if there is no character in the input buffer; it never 

puts the job into a wait. 

TTCALL 2 .. ADR 
JRST NONE 

JRST DONE 

5.10.3.4 OUTSTR ADR or TTCALL 3, ADR - This command outputs a string of characters in ASCIZ 

format: 

TTCALL 3 .. MESSAGE 
MESSAGE: ASCIZ ITYPE THIS OUTI 

ADR may be in high segment. 

5.10.3.5 INCHWL ADR or TTCALL 4, ADR - This command is the same as INCHRW, except that it 

decides whether or not to wait on the basis ~f lines rather than characters; as such, it is the preferred 

way of inputting characters, because INCHRW causes a swap to occur for each character rather than 

each line (compare DDT and PIP input). In other words, INCHWL returns the next character in the 

line if a break character has been typed. 1 If a break character has not been typed, INCHWL waits. 

Repeated uses of INCHWL return each of the successive characters of the line. 

Note that a control-C character in the input buffer is sufficient to satisfy the condition of a pending 

iine. Therefore, when the input is done, the control-C is interpreted and the job is stopped. This 

definition of a line also applies to nCALL 5, and TTCALL 14,. 

5.10.3.6 INCHSL ADR or nCALL 5, ADR - This command is the same as INCHRS, except that its 

decision whether to skip is made on the basis of lines rather than characters. 

5.10.3.7 GETLCH ADR or nCALL 6, ADR - This command takes one argument, from location ADR, 

and returns one word, also in ADR. The argument is a number, representing a TTY line. Bits 18 and 

19 of the line number are ignored since terminal numbers begin at 200000. If the argument is negative, 

the line number controlling the program is assumed. If the line number is greater than those defined 

in the system, a zero answer is returned. 

1If the input buffer becomes nearly filled, the waiting-of-line condition is satisfied even though no 
break character appears. This is true of all line-mode input operations. 

5.04 Monitor 5-33 January 1972 



I 

~10N nOR CALLS -528-
T he norma I answer format is as foil ows: 

Name Bit Meaning 

GL.ITY 0 Line is a pseudo TTY • 

GL.CTY Line is the CTY. 

GL.DSP 2 Line is the display console. 

GL.DSL 3 Line is the dataset data line. 

4 Obsolete. 

GL.HDP 5 Line is half-duplex. 

GL.REM 6 Li ne is a remote TTY. 

GL.RBS 7 Line is at a remote batch station. 

GL.LIN 11 A line has been typed in by the user. 

12 Obsolete. 

GL.LCM 13 Lower case input mode is on. 

GL.TAB 14 Termina I has tabs. 

GL.LCP 15 Terminal input is not echoed, because device 
is local copy. 

GL.PTM 16 Control Q (paper-tape) switch is on. 

17 Obsolete. 

18-35 200000 + line number. 

5.10.3.8 SETLCH ADR or TTCALL 7, ADR - This command allows a program to set and clear some of 

the bits for GETLCH. They may be changed only for the job's controlling TTY. Bits 13, 14, 15, and 

16 can be modified. Bits 18 and 19 of the line number argument are ignored. 

Example: 

SETO AC,g 

GETLCH AC 
TLZ AC,8 IT 13 
TLO AC,E:JlT 14 
SFTLCH AC 

5.10.3.9 RESCAN or TTCALL 10, 0 - This command is intended for use only by the COMPIL program. 

It causes the input buffer to be res canned from the point where the last command began. If bit 35 of E 

is 1, the error return is given if there is a command in the input buffer. If the input buffer is empty, 

the skip return is given. Obviously, if the UUO is executed other than before the first input, that 

command may no longer be in the buffer. ADR is not used, but it is address checked. 

5.10.3.10 CLRBFI or TTCALL 11, 0 - This command causes the input buffer to be cleared as if the 

user had typed a number of CONTROL Us. It is intended to be used when an error has been detected 

(e.g., if a user did not want any commands that he might have typed ahead to be executed). 

5.06 Monitor 5-34 March 1973 



-529- MaN nOR CALLS 

5.10.3.11 ClRBFO or TTCAll 12, 0 - This command causes the output buffer to be Cleared as if 

the user had typed CONTROL O. It should be used rarely, because usually one wants to see all out- . 

put, up to the point of an error. This command is inCluded primarily for completeness. 

5.10.3.12 SKPINC or TTCAll 13, 0 - This command skips if the user has typed at ieast one 

character. It does not skip if no characters have been typed; however, it never inputs a character. 

It is usefu I for a computer-based program that wants to occasiono IIy check for input and, if ant, go 

off to another routine (such as FORTRAN operating system) to actually do the input. 

5.10.3.13 SKPINl orTTCAll 14, 0 - This command is the same as SKPINC, except that a skip 

occurs if the user has typed at least one line. 

5.10.3.14 IONEOU ADR or TTCAll 15, E - This c~mand outputs the low-order eight bits of the 

contents of E as an image character to the terminal. 

5.10.4 GETtIN AC, or CALLI AC, 34 - This UUO returns the SIXBIT physical name of the terminal 

that the job is attached to. 

The call is: 

GETUN AC, ;OR CAlU AC, 34 

The name is returned left justified in the AC. If the job issuing the UUO is currently detached, the 

left half of AC contains a 0 on return. The right half of AC contains the right half of the physical 

name of the terminal to which the job was most recently attached. Therefore, by testing the left half 

of AC, jobs can determine if they are attached to a terminal. 

Example: 

CTYor TTY3 or TTY30 

This UUO is used by the lOGIN program to ,print the TTY name. 

1 
5.10.5 TRMNO. AC, or CAlU AC, 115 

This UUO is used to obtain the number of the terminal currently controlling a particular job. This 

terminal number can then be used as the argument to the GETlCH (refer to Paragraph 5. 10.3.7) and 

TRMOP. (refer to Paragraph 5.10.6) UUOs. 

lThis UUO depends on FT5UUO which is normally off in the DECsystem-l040. 

5.04 Monitor 5-35 February 1972 



MON nOR CALLS 

The call is: 

MOVE AC, job number 
TRMNO. AC, 
error return 
norma I return 

-530-

;or CALLI AC, 115 

On a normal return, the right half of AC contains the universal I/O index (.UXxxx) for the terminal. 

The range of values is 200000 to 20fJ771 octal. The symbol .UXTRM (octal value 200000) is the offset 

for the terminal indices. 

On an error return, if the AC is unchanged, the UUO is not implemented. If the AC contains zero, 

one of three errors occurred: 

1) The job is currently detached and therefore, no terminal is controlling it. 

2) The job number is unassigned; i.e., there is no such job. 

3) The job number is out of range and therefore illegal. 

The particular error condition can be determined from the JOBSTS UUO (refer to Paragraph 5.9.4.4). 

For example, 

MOVEI AC, number 
TRMNO. AC, 

JRST .+2 
JRST OK 
JUMPN AC, oot implemented 
MOVNI AC, number 
JOBSTS AC, 

JRST illegal number 
JUMPL AC, detached 
JRST no job assigned. 

1 
5.10.6 TRMOP. AC, or CALLI AC, 116 

This UUO allows the user to control, examine, and modify information about any terminal connected 

to the system. Many of the functions of this UUO are extensions to the nCALL input and output 

functions (refer to Paragraph 5.10.3). Certain functions are privileged, or require that the user have 

the terminal ASSIGNed. Generally, any function is legal for the terminal on which the job issuing 

the UUO is running. In addition, any READ or SKIP function is legal for any terminal if the job 

issuing the UUO 1) has the privilege bit JP.SPM set, 2) is running with the JACCT bit set, or 3) is 

logged in as [1, 2J. A SET or output function is legal for any terminal if the job 1) has the privilege 

bit JP. POK set, 2) is running with the JACCT bit set, or 3) is logged-in as [1,2]. 

1 This UUO depends on FT5UUO which is normally off in the DECsystem-l040. 

5.04 Monitor 5-36 January 1972 



-531- MON ITOR CALLS 
The call is: 

MOVE AC, [XWD N, ADR] 
TRMOP. AC, ior CALLI AC, 116 
error-return 
norma I return 

ADR: function code 
ADR+1: universal I/O index 

ADR is the address of the argument block and N is the length (N must be at least 2). The first word of 

the argument block contains the code for the requested function. The second word contains the uni­

versal I/O index of the terminal to be affected (.UXTRM + line number). This index is in the same 

format as returned by the TRMNO. UUO (refer to Paragraph 5.10.5). Remaining arguments in the 

argument block depend on the particular function used. 

Function codes are defined within the following ranges: 

oooo-om 
1000-lm 

2000-2m 

3000-3777 

Perform a specific action. 

Read a parameter. 

Set a parameter. 

Reserved for DEC customers. 

The functions within the range 0000-0777 are as follows: 

• TOSIP 1 

.TOSOP 2 

• TOCIS 3 

• TOCOS 4 

• TOOUC 5 

.TOOIC 6 

.TOOUS 7 

.TOINC 10 

• TOIlC 11 

• TODSE 12 

.TODSC 13 

.TODSF 14 

5.04 Monitor 

Skip if terminal input buffer is not empty . 

Skip if terminal output buffer is not empty. 

Clear terminal input buffer • 

Clear terminal output buffer • 

Output character to terminal from ADR+2 (not yet implemented) • 

Output image made (8-bit) character from ADR+2 (not yet im­
plemented). 

Output ASCIZ string to terminal from address at ADR+2 (not yet 
implemented). 

Input character from terminal to AC, normal mode (not yet 
implemented). 

Input character from termi"al to AC, image mode (not yet im­
plemented). 

Enable modem for outgoing call • 

Enable and place outgoing call on modem with dialer. Phone 
number of up to 17 digits is stored in 4-bit bytes in ADR+2 and 
ADR+3 and is terminated by a 17 byte. If caller must wait for 
a second dial tone (e.g., after dialing a 9), a 16 byte results 
in a 5 second wait. 

Hang up modem (i .e., disconnect call). 

5-37 January 1972 



MONITOR CALLS -532-
The READ (1000-1777) and SET (2000-2777) functions are parallel; i.e., if function 1002 reads a 

particular parameter, t~en function 2002 sets the same parameter. Values for the READ functions are 

returned in AC; arguments to the SET functions are given in ADR+2. One-bit quantities are not 

range-checked; instead bit 35 of ADR+2 is stored. The following description of the READ function 

codes indicate if there is a corresponding SET function code. 

Read Code Range Description Corresponding SET 

1000 1 bit Output in progress (. TOOIP) No 

1001 1 bit Terminal at monitor mode (. TOCOM) No 

1002 1 bit Paper tape mode (.TOXON) Yes 

1003 1 bit Lower case (if set, no lower case) Yes 
(. TOLCT) 

1004 1 bit Slave switch (. TOSL V) Yes 

1005 1 bit Tab switch (if 0 = spaces, if 1 = tab) Yes 
(. TOTAB) 

1006 1 bit Form switch (if 0 = linefeeds, if 1 = Yes 
formfeeds) (. T OFRM) 

1007 1 bit Local copy switch (if set, no echo) Yes 
(. TOLCP) 

1010 1 bit Free CR-LF switch (if set, no CR-LF) Yes 
(. TONFC) 

1011 o to 377 Horizontal position of carriage No 
(. TOHPS) 

1012 16. to 200. Carriage width (. TOWID) Yes 

1013 1 bit TTY GAG bit (if set, NO GAG), yes 
(.TOSND) 

1014 1 bit Half-duplex line (.TOHLF) Yes, privileged 

1015 1 bit Remote line (. TORMT) Yes, privileged 

1016 1 bit Display terminal (. TODIS) Yes, privileged 

1017 o to 3 Fi lIer class (. TOFLC) Yes 

1020 1 bit Paper tape enabled (. TOTAP) Yes 
1021 1 bit Paged display mode (also set and Yes 

cleared by SET TTY PAGE)(. TOPAG) 

1022 1 bit Suspended output (need XON to re- Yes 
sume) (also set by XOFF, formfeed, or 

I 
page size exceeded, if paged display 
mode)(. TOSTP} Not i~lemented. 

1023 o to 63. Page size (number 'of lines) ( also set by Yes 
SET TTY PAGE)(. TOP?Z) Not implemented. 

1024 o to 63. Page counter (number of I ines output Yes 
this page)(. TOPCl) . 

1025 1 bit Suppress blank lines on output (0 = Yes 
normal output and 1 = suppress multiple 
linefeeds) and convert formfeeds and 
vertical tabs to linefeeds (also set and 
cleared by SET TTY BLANK)(. TCSLK} 

5.06 Iv\on i tor 5-38 March 1973 



I 

Read Code 

1026 

Range 

1 bit 

-533-
Description 

Suppress ALTmode conversion on input 
(0 = 175 and 176 converted to 033 and 
1 = no conversion) (also set and cleared 
by SET TTY ALT)(. TOALT) , 

~10N nOR CALLS 

Corresponding SET 

Yes 

On an error return, AC is either unchanged or contains an error code. 

AC 

unchanged 
a 
1 
2 
3 
4 
5 

Name 

TOPRC% 
TORGB% 
TOADB% 
TOIMP% 
TODIL% 

Meaning 

UUO is not implemented. 
The requested function is not implemented. 
User is not privileged to perform this function. 
Argument is out of range. 
Argument list length or address is illegal. 
Dataset activity to a non-dataset terminal. 
Subfunction failed (e.g., call not properly completed from dialer). 

5.10.7 File Status (Refer to Appendix D) 

The file status of the terminal is shown below. 

Standard Bits 18 21 24 27 30 33 35 
~--~--~--~----

SET BY USER 

23 

SET BY MONITOR 1WIIL~111~---'--.....IIIIIIWl-IIII -.L.----.L---'~ 

Bit 18 - 10.IMP 

Bit 23 - 10.ACT 

18 

10- 0566 

TTY is not assigned to a job (for image mode input 
processing) . 
Device is active. 

22 24 26 

UN USE 0 
,---I -----IWlIL1111111...£IIW.~IIIIIIIIIIIW&.IIIIIIII _ __'______' 

10- 0567 

Device Dependent Bits 

5.06 Monitor 

18 21 24 27 30 33 35 

SET BY USER ,---I --'----~lIIWIIWlllllillllllLllllL.lllllll__'_____' 

Bit 27 - 10. TEC 

Bit 28 - 10.SUP 
Bit 29 - 10.FCS 

10 -0568 

This bit causes 001 through 037, 175, and 176 (octal) 
to echo the chcracter exoctly as received by the manitor. 
There is no special echo (e.g., $ or t x). 
Suppresses echoing on the tenninal. 
Full character set. Pass all characters except iower case 
and t C. Lower case is controlled by the SET TTY LC 
commCl'ld and its corresponding TRMOP. UUO function. 

5-39 March 1973 



~1ON ITOR CALLS -534-

1819 21 24 28 30 33 35 

SET 8Y MONITOR L....IJIII ~IIJIl11WIU""IIIIIII.IIL..-111 -'--.L....-.....L--'--~ 
IO-O~69 

Bit 19 - IO.DER 

Bit 20 - IO.DTE 

Bit 21 - IO.BKT 

Ignore interrupts for three-fourths of a second. 

Echo failure has occurred on output. 

Character was lost on typein. 

5.10.8 Paper-Tape Input from the Terminal (Full-Duplex Software) 

Paper-tape input is possible from a terminal equipped with a paper-tape reader that is controlled by 

the XON (tQ) and XOFF (tS) characters. When commanded by the XON character, the terminal 

service reads poper tapes, starting and stopping the paper tape as needed, and continuing until the 

XOFF character is read or typed in'. While in this mode of operation, any RUBOUTS will be discarded 

and no free line feeds will be inserted after carriage returns. Also, TABS and FORM FEEDS will not be 

simulated on a Teletype Model 33 to ensure output of the reader control characters. To use poper 

tape processing, the terminal with a paper-tape reader must be connected by a full-duplex connection 

and only ASCII poper tapes should be used. 

The correct operating sequence for reading a paper tape in this way is as follows: 

.R PIP) , 
*DSK: F' I LE.-TTY: tQ) 

THIS IS WHAT ,IS ON' TAPE 
~ORE OF' THE SAME 
LAST LINE t Z 
*tC 

5.10.9 Paper-Tape Output at the Terminal (Full-Duplex Software) 

Paper-tape output is possible on any terminal-mounted paper-tape punch, which is controlled by the 

TAPE, AUX ON (tR) and-TAflE-; AUX OFF (tT) characters. The punch is connected in porallel with 

the keyboard printer, and therefore, when the punch is on, all characters on the keyboard are punched 

on tape. 

LT33B or LT33HTeletypes can have the reader and punch turned-off and on under program control. 

When commanded by the AUX ON character, the TIV service punches paper tapes unti I the AUX OFF 

character is read or typed in. The,AUX OFF character is the last character punched ~n tape. 

When writing programs to output to the terminal paper-tape punch, the user should punch several 

inches of blank tape before the AUX OFF character is transmitted. This last character may then be 

torn off and discarded. 

5-40 



I 

I 

-535- MONITOR CALLS 

CHAPTER 6 
I/O PROGRAMMING FOR DIRECTORY DEVICES 

This chapter explains the unique features of the standard directory devices. Each device accepts the 

programmed operators explained in Chapter 4, unless otherwise indicated. Table 6-1 is a summary of 

the characteristics of the directory devices. Buffer sizes are given in octal and incl ude three book­

keeping words. The user may determine the physical characteristics associated with a logical device 

name by calling the DEVCHR UUO (refer to Paragraph 4.10.2). 

Physical Controller 
Device 

Name Number 

DECtape DTAO, DTA1, miD 
••• ,DTA? 551 (PDP-6) 
DTBO, DTB1, 
••• ,DTB7tt 

Fixed- DSK, FHA, RC10 
Head FHAO, ... , 
Disk FHA3 

Disk Pack DSK, DPA, RP10 
DPAO, ... , 
DPA7 

Table 6-1 
Directory Devices 

Unit Programmed 
Number Operators 

russ INPUT, IN 
555(PDP-6) OUTPUT, OUT 

LOOKUP, ENTER 
MTAPE, USETF, 
USE TO, USETI 
UTPCLR 

RD10 INPUT, IN 
RM10B OUTPUT, OUT 

LOOKUP, ENTER 
RENAME, SEEK 
USE TO, USETI 

RP01 INPUT, IN 
RP02 OUTPUT, OUT 

LOOKUP, ENTER 
RENAME, SEEK 
USE TO, USETI 

Data 
Buffer 
Sizes 

Modes 
(Octal t) 

A,AL,I 202 
B,IB 
DR,D 

A,AL,I 203 
B ,IB 
DR,D 

A,AL,I 203 
B,IB 
DR,D 

tBuffer sizes are subject to change and should be calculated rather than ass'umed by user programs. 
A DEVSIZ UUO may be employed. 

tt Recognized if dual DEC tape controller is supported. 

5.05 tv1onitor 6-1 June 1972 



MaN ITOR CALLS 
6.1 DECTAPE 

-536-

The device mnemonic is DTAO, DTA1, ..• , DTA7; the buffer size is 2028 words (1778 user data, 2008 

I transferred). On systems with dual DECtape controllers, the drives on the second controller have the 

mnemonic DTSO, DTS1, ••• , DTS7. 

6.1.1 Data Modes 

Two hundred words are written. The first word is the link plus word count. The following 1778 words 

are data supplied to and from user programs. 

6.1.1.1 Buffered Data Modes - Data is written on DECtape exactly as it appears in the buffer and 

consists of 36-bit words. No processing or checksumming of any kind is performed by the service rou­

tine. The self-checking of the DECtape system is sufficient assurance that the data is correct. Refer 

to Paragraph 6.1 .2 for further information concerning blocking of information. 

6.1.1.2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area 

without regard to the standard buffering scheme. Control for read or write operations must be via a 

command list in core memory. The command list format is described in Chapter. 4. On the KilO, if the 

10WD list is modified as the result of I/O performed (i .e., an INPUT UUO reads into the 10WD list) 

and the word count of any of the 10WDs read into the I ist is greater than the following value: 

(maximum word count specified in original list-2)/512 + 2 

then the job is stopped and the monitor types 

ADDRESS CHECK AT USER adr 

Fi Ie-structured dump mode data is automatically blocked into standard-length DECtape blocks by the 

DECtape service routine. Each block read or written contains 1 link word plus 1 to 1778 data words. 

Unless the number of data words is an exact multiple of the data portion of a DECtape block (1778), 

the remainder of the last block written after each output programmed operator is wasted. The input pro­

grammed operator must specify the same number of words that the corresponding output programmed 

operator specified to skip over the wasted fractions of blocks. 

6.1.2 DECtape Format 

A standard reel of DECtape consists of 578 (11028) prerecorded blocks each capable of storing 128 

(2008) 36-bit words of data. Block numbers that label the blocks for addressing purposes are recorded 

between blocks. These block numbers run from 0 to 1101 8 , Blocks 0, 1, and 2 are normally not used 

during timesharing and are reserved for a bootstrap loader. Block 10010 (1448) is the directory block, 

which contains the names of all files on the tape and information relating to each file. Blocks 310 

through 9910 (1-1438) and 101 10 through 57710 (145-1101 8) are usable for data. 

If, in the process of DECtape I/o, the I/o service routine is requested to use a block number larger 

than 1101 8 or small er than 0, the monitor sets the 10. BKT flag (bit 21) in the fil e status and returns. 

5.05 Monitor 6-2 June 1972 



-537- r-1ON nOR CALLS 
6.1.3 DECtape Directory Format 

The directory block (block 10010) of a DECtape contains directory information for all files on that 

tape; a maximum of 22 files can be stored on anyone DECtape (see Figure 6-1). 

8l0CK 1 2 3 4 5 6 7 

o *1*1 1 

83 WORDS 
65 1 1 1 

1 1 1 

1 1 1 

1 

1 
] BIT 35 CONTAINS 

HIGH ORDER DIGITS 
OF CREATION DATES 

66 

82 

I I I I I I 1 0 I I I + I + I + I + I 
83 FilENAME 1 

22 WORDS 84 FilENAME 2 

105 EXTENSION 1 .. lOW DATE 1 

106 EXTENSION 2 ** lOW DATE 2 

22 WORDS 

126 

127 
10 

TAPE lABEL 

NOTES' 
* Reserved for system, contains 36 as does block 1448 for the 

directory. 

*tf For zero-compressed files. this area holds the number of 1K 
blocks (-I) needed to load the file (up to 64K). 

+ Repres.nls blocks 1 t 0 2 through tl05, which are nol available 
contains 378 . 

10-0572 

BIT 35 UNUSED 

Figure 6-1 DECtape Directory Format 

The first 83 words (0 through 82 10) of the directory block contains slots for blocks 1 through 577 on a 

DECtape. Each slot occupies five bits (seven slots are stored per word) and represents a given block 

on the DECtape. Each slot contains the number of the file (1-268) occupying the given block. This 

allows for 581 slots (83 words x 7 slots per word). The four extra slots represent nonexistent blocks 

1102 through 11058 • 

Bit 35 of the first 66 words (0 through 6510) of the directory block contain the high order 3 bits of 

the 15-:bit creation date of each file on the DECtape. (Note that the low order 12 bits of the creation 

date of each file are contained in words 105 through 12610. This split format allows for compatibility 

among monitors and media as old as 1964.) The high order 3 bits of the 15-bit creation date for fi Ie 1 

are contained in bit 35 of words 0, 22, and 44. Word 44 contains the first (most significant) digit; word 

6-3 June 1973 



MON ITOR CALLS -538-

1
22 contains the second and word 0 contains the third. The high order digits for file 2 are contained 

in bit 35 of words 1, 23, and 45 with the digits in the same order as described for file 1. The high' 

order digits for the remaining files are organized in the same fashion. 

Words 83 through 10410 of the directory block contain the filenames of the 22 files that reside on the 

DECtape. Word 83 contains the filename for file 1, word 84 contains the filename for file 2. File­

names are stored in SIXBIT code. 

The next 22 words of the directory block (words 105 through 1261O) primarily contain the filename 

I extensions and the low order part of the creation dates of the 22 files that reside, on the DECtape, in 

the same relative order as their filenames. The bits for each word are as follows: 

, 

Bits 0 - 1710 

Bits 18.- 2310 

Bits 24 - 3510 

The filename extension in SIXBIT code. 

The number of 1 K blocks minus 1 needed to load the 
file (maximum value is 63). This information is stored 
for zero-compressed files only. 

The low order 12 bits of the date on which the file 
was created. ~Note that the high order digits are 
encoded in bit 35 of words 0 through 6510>. The 
creation date is computed with the follOWing formula: 
((year-19M) * 12 + (month-l)} * 31 + day -1 

Word 12710 of the directory block is the tape label. 

The message 

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n 

occurs when any of the following conditions are detected: 

a. A parity error occurred while reading the directory block. 

b. No slots are assigned to the file number of the file. 

c. The tape block, which may be the first block of the file (i .e., the first block for the 
file encountered while searching backwards from the directory block), cannot be 
read •. 

Ordinary user programs never manipulate DECtape directories explicitly since the LOOKUP and ENTER 

programmed operators (refer to Paragraphs 6.1.5.1 and 6. 1.5.2) automatically record all necessary 

entries in the directory for the user. These programmed operators have all the capability needed to 

process the name and creation date of a file. However, a small number of special purpose programs 

do process directories by explicit action rather than using the LOOKUP and ENTER operators. For 

such programs, the following examples illustrate methods for 1} assembling the 15-bit creation date 

and 2} storing the'15-bit creation date. The number of the file (an integer from 1 to 22) is in register 

Pl and the directory block begins at location DIRECT. 

6-4 June 1973 



I 

-539- r·10N nOR CALLS 
Example 1 Special Purpose Assembly of the Creation Date 

LDB 
MOVEI 
TONE 
TRO 
TONE 
TRO 
TONE 
TRO 

Tl, [POINT 12, DIRECT+ fD104 (PI), 35] 
T2, 1 
T2, DIRECT-l (Pl) 
Tl, 1 B23 
T2, DIRECT+ fD21 (PI) 
Tl, lB22 
T2, DIRECT+fD43 (PI) 
Tl, J B21 

iGET LOW PART 
iSET UP TO TEST LOW BIT 
;IF SET IN DIRECTORY 
;THEN SET BIT IN DATE 
iREPEAT FOR EACH BIT IN 
iHIGH PART OF DATE 

Example 2 Special Purpose Storage of the Creation Date 

DPB 
MOVEI 
ANDCAM 
TRNE 
IORM 
ANDCAM 
TRNE 
IORM 
ANDCAM 
TRNE 
IORM 

Tl, [POINT 12, DIRECT+tD104 (Pl), 35J 
T2, J 
T2, DIRECT-l (PI) 
Tl, lB23 
T2, DIRECT-l (Pl) 
T2, DIRECT+fD21 (PI) 
Tl ,IB22 
T2, DIRECT+ fD21 (PI) 
T2, DIRECT+ fD43 (Pl) 
Tl, 1 B21 
T2, DIRECT+fD43 (PI) 

iSAVE LOW PART 
is ET UP TO MARK LOW BIT 
;CLEAR DIRECTORY BIT 
iIF BIT IN DATE SET, 
iSET DIRECTORY BIT 
, 
iREPEAT FOR EACH BIT IN 
iHIGH PART OF DATE 

6.1.4 DECtape File Format 

A file consists of any number of DECtape blocks. 

~ ............... B B B . ...... ~ L L L 
K K K 

1 2 3 

END ,J DIRECTORY BE GIN 

10-0573 

Figure 6-2 Format of a File on Tape 

Each block contains the following: 

Word 0 Left half 

Right half 

Words 1 through 1778 

The link. The link is the block number of the next 
block in the file. If the link is zero, this block is 
the last in the file. 

Bi ts 18 through 27: the block number of the first 
block of the file. Bits 28 through 35: a count of 
the number of words in this block that are used 
(maximum 1778), 

Data packed exactly as;he user placed in his buffer 
or in dump mode files, the next 177 words of memory. 

6-5 June 1973 



NON I TOR CALLS' -540-

LINK I FIRST BLOCK I WORD 
NUMBER COUNT 

DATA 

10-0574 

Figure 6-3 Format of a OECtape Block 

6.1.4.1 Block Allocation - Normally, blocks are allocated by starting with the first free block 

nearest the directory and going backwards to the front of the tape (block 0). When the end of the 

tape is reac~ed, the direction of the scan is reversed. Blocks are not written ccmtiguou~ly; rather 

they are separated by a spacing factor. This allows the drive to stop and restart to read the next 

block of the file without having to back up the tape. The spacing factor is normally four, but for 

dump mode and UGETF followed by an ENTER, the spacing factor is two (refer to ~ragraph 6.1.6.3). 

~.1.5 I/o Progr~mming 

OECtape is a directory device; therefore, file selection must be performed by the user before data is 

transferred. File selection is accomplished with ~OOKUP and ENTER UUOs. The UUO format is as 

follow,: 

UUO 0, E 

where 0 specifies the user channel associated with this device, and E points to a four-word parameter 

block. The parameter block has the following format: 

E 

E+I 

E+2 

E+3 

FILE 

EXT 

0 

-N 

6-6 

HIG~I 0 IBLOCK 
DATE # 

II'OFIK I LOW 
BLOCKS DATE 

ADR-I 

(continued on next page) 

June 1973 



I 

I 

where 

-541-

FILE is the fi lename in SIXBIT ASCII. 

EXT is the filename extension in SIXBIT ASCII. 

HIGH DATE contains the high order 3 bits of the creation date. 

BLOCK # is the number of the first block of the file. 

# of I K, b locks is the number of b locks needed to load the fi Ie 
if the file is a zero-compressed file (bits 18-23). . 

LOW DATE contains the low order 12 bits of the date on which 
the file was originally created (bits 24-35). The format is the 
same as that used by the DATE UUO. 

-N is the negative word length of the zero'-compressed file. 

ADR-l is the core address of the first word of the fi Ie minus 1. 

Location E + 3 is used for zero-compressed files. 

MaN ITOR CALLS 

6.1.5.1 LOOKUP D, E - The LOOKUP programmed operator sets up an input file on channel D. 

The contents of location E and E + 1 (left half) are matched against the filenames and filename exten­

sions in the DECtape directory. If no match is found, the error return is taken (refer to Appendix E). 

If a ~at«h. is found, lo~ations E + I through E + 3 are filled by the monitor, and the normal return is 

I taken (refer to Table 6-2). Refer to Section d. of Paragraph 6.2.8.1 for sample code of assembling 

the 15-bit creation date. 

: 

On Call 

Parameter Use t 

E A 

E + I A 

E+2 I 

E+3 I 

Table 6-2 
LOOKUP Parameters 

Contents Parameter 

SIXBIT /FILE/ E 

SIXBIT /EXT/ E + I 

- E+2 

- E+3 

On Return 

Use t Contents 

V SIXBIT /FILE/ 

V LH = SIXBIT /EXT/ 
RH = high order 3 
bits of 15-bit cre-
ation date (Bits 18-20) 
unused (Bits 21-25) 
first block # (Bits 26-35) 

V LH = 0 
RH = # of IK blocks 

(Bits 18-23) tt 

low order 12 bits of 
15-bit creation date 
(Bits 24-35)tt 

V 10WD LENGTH, 
ADRtt 

tA = argument from user program, V = value from monitor, I = ignored. 

ttFor zero-compressed files only. 

6-7 June 1973 



MON ITOR CALLS -542-
The first block of the file is then found as follows: 

a. The first 83 words of the DECtape directory are searched backwards, beginning 
with the slot immediately prior to the directory block, until the slot containing 
the desired file number is found. 

b. The block associated with this slot is read in and bits 18 through 27 of the first 
word of the block (these bits contain the block number of the first block of the 
file) are checked. If the bits are equal to the block number of this block, then 
this block is the first block; if not, then the block with that block number is 
read as the first block of the fi Ie. 

6.1 .5.2 EN TER D, E - The ENTER programmed operator sets up an output fil e on channel D. The 

DEC tape directory is searched for a filename and filename extension that match the contents of 

location E and the left half of location E + 1. If no match is found and there is room in the directory, 

the monitor records the information in locations E through E + 2 in the DECtape directory (refer to 

I Table 6-3). An error ret~rn is given if there is no room in the directory for the file (refer to Appendix 

E). Refer to Paragraph 6.2.8.3 for a special note on error recovery. If a match is found, the new 
" . .. " " . 

entry replaces the old entry, the old file is reclaimed immediately, and, the monitor records the file 

information. This process is called superseding and differs from the process on disk in that, beca~se 

I of the small size of DECtape, the space is reclaimed before the fi Ie is written rather than after. Refer 

to Section d. of Paragraph 6.2.8.1 for sample code for setting the 15-bit creation date. 

. 
On Call 

Parameter Use t 

E A 

E + 1 . A 

E+2 A 

E+3 I 

Table 6-3 
ENTER Parameters 

Contents Parameter 

SIXBIT /FILE/ E 

LH = SIXBIT /EXT/ E + 1 
RH = high order 3 
bits of 15-bit cre-
ation date (bits 
18-20). 

RH = low order 12 E+2 
bits of desired 15-
bit creation date 
or O. (0 implies 
current date) 

- E+3 

tA = argument from user program, V = value from monitor, 

6-8 

On Return 

Use t Contents 

V SIXBIT /FILE/ 

V LH = SIXBIT /EXT/ 
RH = high order 3 
bits of 15-bit cre-
ation date (bits 
18-20). 

V RH = low order 12 
bits of 15-bit cre-
ation date (bits 
24-35). 

I -

I = ignored. 

June 1973 



-543- MON nOR CALLS 
6.1.5.3 RENAME D, E - The RENAME programmed operator-alters the filename or filename extension 

of an existing file, or deletes the file directory from the DECtape associated with channel D. If lo­

cation E contains a 0, RENAME deletes the directory of the specified file; otherwise, RENAME 

searches for the file and enters the information specified in location E and E + 1 into the DECtape 

directory (refer to Table 6-4)~ RENAME must be preceded by a LOOKUP or an ENTER, to select the 

file that is to be RENAMED, and a CLOSE. The ~rror return is given if a LOOKUP has not been done 

I (refer to Appendix 'E). Refer to Paragraph 6.2.8.3 for a speci'al note on error r·~covery. 

Parameter 

E 

E + 1 

E+2 

E+3 

Table 6-4 
RENAME Parameters 

On Call 

Use t Contents parameter 

A SIXBIT /FILE/ E 
or 0 

A LH = SIXBIT /EXT/ E + 1 
RH = high order 3 
bits of 15-bit cre-
ation date (bits 
18-20). 

A RH = low order 12 E+2 
bits of 15-bit cre-
ation date or 0 (0 
implies current date). 

I ... E+3 

On Return 

Use t Contents 

V SIXBIT /FILE/ 

V LH = SIXBIT /EXT/ 
RH = high order 3 
bits of 15-bit cre-
ation date (bits 
18-20). 

V RH = low order 12 
bits of 15-bit cre-
ation date (bits 
24-35). 

I -

tA = argument from user program, V = value from monitor, I = ignored. 

Unlike on disk, a DECtape RENAME works on the last file LOOKUPed and ENTERed for the device, 

not the last file for this channel. The UUO sequence required to successfully RENAME a file on 

DEC tape is as follows: 

LOOKUP D,E 
CLOSE D, 
RENAME D,E1 

or 

ENTER D,E 
CLOSE D, 
RENAME D,E1 

6-8a June 1973 



MONITOR CALLS -544-
6.1.5 .4 INPUT, OUTPUT, CLOSE, RELEASE - When performing nondump input operations, the 

DECtape service routine reads the links in each block to determine what block to read next and when 

to raise the EOF flag. 

When an OUTPUT is given, theDECtape service routine examines the left half of the third word in the 

output buffer (the word containing the word count in the right half). If this half contains -1, it is 

replaced with a 0 before being written out, and the file is thus terminated. If this half word is greater 

than 0, it is not changed and the service routine uses it as the block number for the next OUTPUT. If 

this half word is 0, the DECtape service routine assigns the block number of the next block for the 

next OUTPUT. 

6-8b June 1973 



-545- ~lorHTOR CALLS 
For both INPUT and OUTPUT, block 100 (the directory) is treated as an exception case. If the user's 

program gives 

USETI D, 1448 

to read block 100, it is treated as a l-block file. 

The CLOSE operator places a -1 in the left half of the first word .in the last output buffer, thus termi­

nating the file. 

The RELEASE operator writes the copy of the directory, which is normally kept in core onto block 100, 

but only if any changes have been made. Certain console commands, such as KJOB or CORE 0, 

perform an implicit RELEASE of all devices and, thus, write out a changed directory even though the 

user's program fail ed to give a RELEASE. 

6.1.6 Special Programmed Operator Service 

Several programmed operators are provided for manipulating DECtape. These UUOs allow the user to 

manipulate blOCk numbers· and to handle directories. 

6.1.6.1 USETI D, E - The USETI programmed operator sets the DECtape on channel D to input block 

E next. Since the monitor reads as many buffers as it can on INPUT, it is difficult to determine which 

buffer the monitor is processing when the USETI is given. Therefore, the INPUT following the USETI 

may not obtain the buffer containing the block specified. However, if a single buffer ring is used, 

the desired block is retrieved since the device must stop after each INPUT. Alternatively, if bit 30 

(IO.SYN) of the file status word is set via an I NIT , OPEN, or SETSTS UUO, the device stops after 

eachbufferful of data on an INPUT so that the USETI will apply to the buffer supplied by the next 

INPUT • 

6.1.6.2 USETO D, E - The USETO programmed operator sets the DECtape on channel D to output 

block E next. With multiple-buffered I/O, the output following the USETO may not apply to the 

buffer containing the specified block, since the monitor transfers as many buffers as possible with each 

OUTPUT. Therefore, a single buffer ring should be used, or bit 30 (IO.SYN) of the file status word 

should be set. Refer to Paragraph 6.1.6.1. 

6.1.6.3 UGETF D, E - The UGETF programmed operator places the number of the next free block of 

the file in the user's location E. 

5.04 Monitor 6-9 January 1972 



MON nOR CALLS -546-

If UGETF is followed by an ENTER, the monitor modifies its algorithm in the following manner: 

1) the first block is written nearest the front of, the tape instead of nearest 
the directory. ' 

2) the spacing factor is changed to 2 instead of 4 so that very large programs 
can fit almost entirely in a forward direction. 

Thisf~ature allows user programs, such as PIP, to write SAY format files which can be read by the 

executive mode utility program TENDMP (see the DECsystem-10 Software Notebooks). 

6.1 .6.4 UTPCLR AC, or CALLI AC, 13 - The UTPCLR programmed operator clears the directory of 

the DECtape on the ::Ievice channel specified in the AC field. A cleared directory has zeroes in the 

first S3words except in the slots related to blocks 0, 1,2, and 10010 and non~istent blocks 1102 

through 1105S• Only the directory block is affected by UTPCLR. This programmed operator is a no­

operation if the device on the channel is not a DECtape. 

6.1.6.5 MTAPE 0, 1 and MTAPE 0, 11 - MTAPE 0, 1 rewinds the DECtape and moves it into the end 

zone at the front of the tape. MTAPE 0, 11 rewinds and unloads the tape, pulling the tape completely 

onto the left-hand reel, and clears the directory-in-core bit. These commands affect only the physical 

position of, the tape, not the logical position. When either is used, the user's job can be ~wapped out 

while the DECtape is rewinding; however, the job .cannot be swapped out it an INPUT or OUTPUT is 

done while the tape is rewinding. 

6.1 .6.6 DEVSTS UUO - After each interrupt, the DECtape service routine stores the results of a 

CO NI in the DEVS 1'5 word of the device data block. The DEVSTS UUO is used to return the contents 

of the DEVSTS word to the user (refer to Paragraph 4.10.1). 

6.1.1 File Status (Refer to Appendix D) 

The file status of the DECtape is sha.vn on the next page. 

6-10 



Standard Bits 

SET BY USER 

SET BY MONITOR 

Bit 18 -IO.IMP 

. Bit 19 -IO.DER 

Bit 20 -IO.DTE 

Bit 21 -IO.BKT 

Bit 22 -IO.EOF 

Bit 23 - 10.ACT 

UNUSED 

Device Dependent Bits 

-547- MONITOR CALLS 

10-0576 

An attempt was made to read block 0 in nonstandard 
dump mode • 

Data was missed. 

Parity error. 

Block number is too large or tape is full on OUTPUT. 

EOF mork encountered on input. No special character 
appears in buffer. 

Device is active. 

18 21 24 27 30 33 35 

11111111111111111111111 

,0-0577 

18 21 24 2728 2930 33 35 , 

SET 8Y USER 111111 

Bit 28 -IO.SSD 

Bit 29 -IO.NSD 

5.04 Monitor 

10-0578 

DECtape is in semi-standard I/O mode. The setting of 
this bit is recognized only if bit 29 (nonstandard I/O mode) 
is on. Semi-standcrd mode is similar to nonstandard mode 
except, 1) block numbers are checked for legality, and 
2) the tape is started in the same direction as it was' pre­
viously going. 

DECtape is in a nonstandard-I/O mode format as opposed 
to standard-I/O mode. No file-structured operations are 
performed on the tape. Blocks are read or written se­
quentially; no links are generated (output) or recognized 
(input). The first block to be read or written must be set 
by a USETI or USETO. In nonstandard-I/O mode, up to 
200s words per block are read or written as user data (as 
opposed to the standard mode of 1 link plus word count 
followed by 1778 words). No dead reckoning is used on 
a search for a block number as the tape may be composed 
of blocks shorter than 200 words. The ENTER, LOOKUP, 
and UPTCLR UUOs are treated as no-ops. Block 0 of the 
tape may not be read or written in dump mode if bit 29 
is on, because the data must be read in a forward direction 
and block 0 normally cannot be read forward. 

6-11 January 1972 



MON ITOR CALLS -548-
6.1.8 Important Considerations 

When positioning to a desired block on DECtape, the technique of dead reckoning is used. This means 

that the DECtape service routine starts the DEC tape spinning and computes the time it should take to 

reach the desired block. Meanwhile, the service routine performs a service for another user, if any, 

and then returns just before the computed time has elapsed. If the desired bloc,k has not been reached, 

this proces~ is repeated until it is successful. This technique is used to keep the controller free for 

other uses while the DECtape is spinning., 

When an attempt is made to write on a write-locked tape or to access a drive that has no tape mounted, 

the message 

DEVICE DTAn OPERATOR zz ACTION REQUESTED 

is given to the user. When the situation has been rectified, CONT maybe typed to proceed. However, 

if this message is output because of an attempt to write on a write-locked tape and any operation that 

causes a RESET to be performed (e.g., a GET or RUN command) is then executed, a, RELEASE will be 

done on the DECtape. This RELEASE causes any attempt to write the directory to output the same 

message. To avoid the second output of the message, the' user should ASSIGN the DECtape again thus 

causing the DECtape service routine not to write the directory on the RELEASE. 

Thl!! DECtape service routine reads the directory from a tape the first time it is recjuired to perform a 

LOOKUP, ENTER, or UGETF; the directory image remains in core until a new ASSIGN command is 

executed from the consol e. To inform the DEC tape service routine that a new tape has been mounted 

on an assigned unit, the user ,",ses an ASSIGN command. The directory from the old tape can be trans­

ferred to the new tape, thus destroying the information on that tape unless the user reassigns the DEC­

tape transport every time he mounts a new reel. 

Although DECtape is a file-structured blocked device, there is a limit to the number of files that may 

be opened simultaneously on a single DECtape. A given DECtape may be OPENed or INITed on two 

software channels (maximum) at the same time, once for INPUT and once for OUTPUT. An attempt to 

INIT on two channels for INPUT or two channels for OUTPUT generates no error indication, and only 

the most recent INIT is effective. This restriction explains why the following examples do not work. 

Example 1: 

.R :;'I LeO!"l 
*TTY:;DTAl:Pl,DTAl:P2 

FILCOM accepts the command string but the comparison does not work because the DECtape cannot 

be associated with the Input side of two software channels at the same time. 

6-12 March 1973 



Example 2:. 

-549-

.R MACRO 
~TA1:BIN#DTA1:LST~DTA2:PROG 

MON nOR CALLS 

MACRO accepts the command string but does not produce the desired results because a single DECtape 

cannot be associated with the output side of twosoftwcire channels at the same time. However, the 

following example works, because only one file is opened for reading and one file for writing • 

6.2 DISK 

• R MACRO 
.oTA1:BIN~DTA1:S0URCE 

The device mnemonic is DSK, FHA, DPA; the buffer· size is 2038. (2008 data) words • 

6.2 .1 Data Modes 

6.2.1.1 Buffered Data Modes - Data is written on the disk exactly as it appears in the buffer • Data 

consists· of 36-bif wores. 

CAUTION 

All buffered mode operations utilize a 200 octal word 
data buffer. Attempts to set up non-standard buffer 
sizes are ignored. In particular, attempting to use 
buffer sizes smaller than 200 words for input result in 
da·tabeing read in past the end of the buffer destroy­
ing Yfhat information .was ~ere (e.g., the I:!.uffer . 
header of the n~t buffer) • . 

6.2.1,.2 ,Unbuffered Data Modes - Data is read into or: written from anywhere in the user's core area 

without regard to th.e normall:!uffering sc;heme. Control. for read or write operations must be via a 

command list in core memory. The command list format is descril:?ed in Chapter.4. The disk control 

automatically measures dump data into standard-length disk blocks of 200 octal words. Unless the 

number· of data words is an exact multiple of the standard length~f a disk block (200 words) after each 

command word in the command list, the remainder of that block is wasted. 

6.2.2 Structure of Disk Files 

The file structures of a disk system minimize the number of disk seeks fOr sequential or random access 

during either buffered or unbuffered I/O. The assignment of physical space for data is performed autO­

matically by the monitOr when logical files are written or deleted by user programs. Files may be any 

6-13 



MON nOR, CALLS -550-
length, and each user may have as many files as he wishes, as long as disk space is available and the 

user has not exceeded his logged-in quota. Users or their programs do not need to give initial 

estimates of file length or number of files. Files may be simul taneaulsy read by more than one user at 

a time, thus allowing data sharing. A new version of a file may be recreated by one user while other 

users,continue to read the old version, thus allowing for smooth replacement of shared programs and 

data iiJes. Finally, one user may selectively update partions of a file, rather than ~r,eate a new one. 

6.2.2.1 Addressing by Monitor - The file structure described in this section is generally transparent 

to the user, and a detailed knowledge of this material is not essential for effective user-mode use of 

the disk. One set of disk-independent file handling routines in the monitor services all disks and drums. 

This set of routines interprets and operates upan file structures, processed disk UUOs, queues disk re­

quests, and makes optimization decisions. The monitor deals primarily with logical units within file 

structures ,and converts to physical units in the small device-dependent routines just,before issuing I/O 

commands. All queues, statuses, and flags are organized by logical unit rather than by physical unit. 

The device-dependent routines perform the I/O for specific storage devices and translate logical block 

numbers to physical disk addresses. 

All references made to disk addresses refer to the logical or relative addresses used by the system and 

not to any physical addressing scheme involving records, sectors, or tracks, that may pertain to a par­

ticular physical device. The basic unit that may be addressed is a logical disk block, which consists 

of 2008 36-bit words. 

6.2.2.2 Storage Allocation .Table (SAT) Blocks - Unique to each file structure is a file named 

SA T.SYS. This file reflects the current status of every addressable block on the disk. Only the 

monitor can modify the contents of SA1.SYS as a result of file creation, deletion, or space allocation, 

although this file may be read by any user. The SAT file consists of bits indicating both the portion of 

file storage in use and the portion that is available. To reduce the size of SA 1. SYS ,each bit can be 

used to represent a contiguous set of blocks 'cofl ed a cluster. Monitor overhead is decreased by as­

signing and releasing file storage in clusters of blocks rather than single blocks. 

If a particular bits is on, it indicates that the corresponding cluster is bad or nonexistent or has been 

allocated to a file. It mayor may not contain data {i.e., files may contain allocated but unwritten 

clusters}. If the bit is off, it indicates that the corresponding cluster is empty, or available to be 

written on. 

It is recommended that cluster sizes should evenly divide blocks on a unit. In the 5.02 monitor, the 

refresher rounds up the number of clusters to the next highest full cluster. In the 5.03 and later 

monitors, the refresher truncates to the largest number of full clusters. With truncation, the last few 

5.04 Monitor 6-14 January 1972 



-551- MON nOR CALLS 
blocks are not included in the addressing space, but may be used for swapping; therefore, they are not 

part of SWAP.SYS even though they are in the swapping space. In addition, any bad blocks in the 

extra blocks are not included in SWAP .SYS. 
" 

6.2.2.3 File Directories - A directory is a file which contains as data pointers to other files on the 

disk. There are three levels of directories in each file structure: 

a. 

b. 

c. 

The master file directory (MFD). 

The user file directories (UFDs). 

The sub-file directories (SFDs). 1 

The master file directory consists of two-word entries; the entries are the ~ames of the user file diree-' 

tories on the file struCture. The first word of each entry contains the project-programmer number of 

the user. The left half of the second 'word of each' entry contains the mnemonic UFD in SIXBIT and 

the right half contains a pointer to the first cluster of the user file directory (see Figure 6-4). The 

main function of the maste~ file directory is to serve as a directory of individual user file directories. 

A continued MFD is the MFDs on all file structures in the job's sear~h list. 

L 
MASTER FILE 

DIRECTORY 

,~v 1 

UFO 

10 

UFO 

20 20 

UFO 

· ~ · · 

USER FILE 
DIRECTORIES 

FILE 1 

EXT I 
FILE 2 

EXT I 
FILE 3 

EXT 1 
· · · 

FILE X 

EXT I 
FILE Y 

EXT I 
FILEZ 

EXT I 
· · · 

DATA FILES 

I 
----t 
~ -

r----,-

; 

I 
----t 
~ r--

-
10-0543 

Figure 6-4 Basic Disk File Organization for Each File Structure 

1 Sub-file directories depend on FTSFD which is normally off in the DECsystem-1040. 

5.04,Monitor 6-15 January 1972 



MON nOR CALLS -552-
The entries within a user file directory are the names of files existing in a-given project-programmer 

number area within the file structure. The first word of each entry contains the filename in SIXBIT. 

The left half of the second word contains the filename extension in SIXBIT, and the' right half contains 

a pointer to the first cluster of the file (see Figure 6-4). This pointer specifies both the unit and the 

super-cluster of the file structure in which the file appears. The right half of the directory entry is 

referred to as a compressed file pointer (CFP). A continued UFD is all the UFDs for the same project­

programmer number on all file structures in the job's search list. 

When the user is logged-in, each file structure for which he has a quata contains a UFDfor his project­

programmer number. Each UFD contains the names of all the user's files for that file structure only. 

UFDs are created only by privileged programs (i .e., LOGIN in response to a LOGIN command, and 

OMOUNT in response to a MOUNT command). A user is not prevented from attempting to read a file 

in another user's UFD on a file structure for which he does not have a UFD. Whether or not the user is 

successful depends on the protection specified for the fi Ie being referenced. 

As an entry in the user file directory, the user can include a sub-file directory (SFD). 'Tlie'sub-file 

directory is similar to the other types of directories in that it contains as data all the names of fil~ 

within the directory. This directory is pointed to by a UFD or a higher-level SFD nested in any 

arbitrary tree structure. The maximum number, of nested SFDs allowed is defined via a MONGEN 

question and can be obtained from a GETTAB table (GETTAB table .GTLVD, item 17). Files can be 

written or read in SFDs nested deeper than the maximum but SFDs cannot be created. (There is an 

absolute maximum of 6, including the UFD.) Unlike UFDs, a sub-file directory can be created by 

any program. A continued SFD, or sub-directory, is all of the SFDs on all file structures in the job's 
, -

search list with the same name and path. 

This third level of directory allows groups of files beJonging to the same user to be separate from each 

other. This is useful when organizing a large number of files according to function. In addition, 

simultaneous batch runs of the same program for a single user can use the same filenames without 

conflicting with each other. As long as the files are in different sub-file directories, they are unique. 

A file is uniquely identified in the system by a file structure name, a directory path, a filename and 

an extension. The directory path is an ordered list of directory names, starting with a UFD, which 

uniquely specifies a directory without regard to a file structure. The PATH. UUO is used to set or 

read the default directory path for a job (refer to Paragraph 6.2.9.1). Default paths can be a job's 

UFD, an SFD in a job's UFD, a UFDdifferent from the job's UFD, or anSFD in another UFD. If a 

default path is not specified, it is the job's UFD. The notation FILE. EXT [PPN,A, B, •.• , N] designates 

the file named FILE.EXT in the UFD [PPN] in the SFD N, which is in the SFD .•• , which is in the 

SFD A. The path to the file named FILE.EXT is [PPN,A,B,,, .,N]. 

5.04 Monitor 6-16 January 1972 



01 . 
~ 
~ g 
0' .. 

0-
!... 
...... 

c... 
Q 
:::J 
c: 
Q 

-< 
~ 
N 

~ 
MASTER FilE DIRECTORY I 
RI. 

UFO 

3 3 

UF 

~I 
U~ 

USER FILE DIRECTORY I 

I-------tT 

L.J 10 ~J r" 

UFO r 

r===t-

OATA 

SWAP 

R1B 

~ 
~ 

OATA 

SYsTI 
~ 
SYS 

BADBLK I JJ 
r-

I--SysT 

I I_i~NI 
'I HOflE' 

I SYS 

mEIl- I. 
E'X~ 

-

FILE 1 

Il.!~ 
~ r N 

~ EXT 

SFO 

L-

block 10'0 

~ 
I--

'---

~ 
I--

I--

5FD OATA RI. 

r1 mEY~ EXT I FI LEY 

EXT 

FILEI 

SFO 

-

Figure 6·5 Disk File Organization 

USER FILES 

r"~ 

L--~ 

SFO RIB 

~ 
FILEI 

SFOI 

-

SFO DATA RI. 

r1 EX~IIEZ D1 FILEZN I 
EXTT 

1-------tT----

~ 

L--I--

I 
V1 
V1 
v.I 
I 

3: 
<:) 
:z --I 
<:) 
A:I 

n 
::t:» 
r­r­en 



~'ON nOR CALLS -554-
To improve disk access and core searching times, only UFD names are kept in the MFD (project­

programmer number 1,1). All system programs and monitor file structure files are contained in another 

project-programmer number directory called the .system library. For convenience both to users typing 

commands and to user programs, device name SYS is interpreted as the system library; therefore, no 

special programming is required to read as a specific file from device SYS. In command strings, the 

abbreviation SYSx: represents the system library on file structure DSKx; i. e., SYSA: represents the 

system library on DSKA. 

6.2.2.4 File Format - All disk files (including directories) are composed of two parts: 

a . pure data . 

b. information needed by the system to retrieve this data. 

Each data block contains exactly 2008 words. If a partially fi lied buffer is output to the disk by a 

user, a full block is written with trailing zeros filling in to make 2008 words. A partial bl~ck input 

later appears to have a full 2008 data words. Word counts associated with individual blocks are not 

retained by the system except in the case of the last block of the file. 

There are three links in the chain by which the system references data on the disk. This chain is 

transparent to the user, who might look on the directory as having four-word entries analogous to DEC­

tapes. The first link is the two':"word directory entry that points to the second link, the retrieval infor­

mation block (RIB). The RIB, in turn, points to the third link, the individual data blocks of the file 

(see Figure 6-5) • 

The retrieval block contains all the pointers to the entire file. Retrieval information associated with 

each file is stored and accessed separately from the data; therefore, system reliability is increased 

because the probability of destroying the retrieval information is reduced. System performance is im­

proved because the number of positionings necessary for random access is reduced. 

For recovery purposes, a copy of the retrieval information block is written immediately after the last 

data block of the file when a CLOSE is compl eted. If the first RIB is lost or bad, the monitor can 

recover by allowing a recovery program to use the second RIB; therefore, a data file of n blocks has 

two additional overhead blocks: relative block 0, containing the primary RIB; and relative block 

n + 1, containing the redundant RIB (refer to Appendix H). 

6.2.3 Access Protection 

Nine bits of the retrieval information of a file are used to indicate the protection of that file. This 

protection is necessary because the disk is shared by many users, each of whom may desire to keep 

certain files from being written on, read, or deleted by other users. The nine bits are divided into 

5.04 Monitor 6-18 January 1972 



I 

I 

-555- r10N nOR CALLS 
three classes because the users are divided into three categories: 1) the owner of the file, 2) the users 

wi th the same proiect number as the owner, and 3) all other users. 

Ordinarily, the owner of a file is any user whose programmer number is the same as the programmer num­

ber of the UFD containing the file, regardless of whether the two proiect numbers match. Therefore, in 

order to maintain only one owner for each file, the installation should not assign the same programmer 

number to different users, no matter how many proiects the installation has. A user working on more 

than one proiect, but having the same programmer number, can reference all his files as an owner under 

each of hisproiect-programmer numbers. 

However, some installations may decide that a user is the owner of a file only when both the proiect 

and programmer numbers under which the user is logged in match the pair identifying the UFD. If this 

is the case, the same programmer number ca~ be assigned to different users in different proiects. This 

allows the task of assigning programmer numbers to be delegated to project leaders without concern for 

duplication since the proiect numbers will be different from one proiect to another. However, a user 

working on more than one proiect cannot have the same owner access to all files that he has written. 

The definition of the owner of a file is specified at monitor generation time with MONGEN(INDPPN). 

No matter how the installation defines an owner, project numbers 0 to 7 are always independent of 

the project-programmer number (i .e., a user with a project number from 0 to 7 is considered the own­

er of all files with that project number). 

A member of the owner's project is any user whose logged-in-project number is the same as the owner's, 

regardless of his programmer number. 

The three bits associated with each category of users are encoded as follows: 

Code 

7 

6 

5 

4 

3 

2 

1 

o 

5.06 Monitor 

Access Protection 

Greatest protection, which means no access privileges. 
However, the owner may LOOKUP the file so that he 
can change the protection to a less restrictive code via 
a RENAME. Thus for the owner, this code is equivalent 
to codes 6 and 5. ' 

Execute-only. This disables user meddling and examining 
(DUMP, DCORE, D, E, SAVE, SSAVE, START n, CSTART n, 
DDT, COREn) with the error message ?ILLEGAL WHEN 
EXECUTE ONLY. An error retum is given on a LOOKUP 
to an execute-only file to all users except the owner of the file. 

Read, execute. 

Append, read, execute. 

Update, append, read, execute. 

Write, update, append, read, execute. 

Rename, write, update, append, read, execute. 

Change protection, rename, write, update, append, read, 
execute. 

6-19 March 1973 



I 

I 

MaN nOR CALLS -556-
The following example illustrates the nine-bit protection field of a file that has a protection of 057. 

owner proiect all other 
members users 

This code means: 

1) The owner has complete privileges (code 0). 

2) The proiect members have read and execute privileges (code 5). 

3) All other users have no access privileges (code 7). 

The greatest protection a file can have is 7, and the least ,is O. Usually the owner's field is 0 or 1. 

However, it is always possible for the owner of a file to change the access protection associated with 

the file even if the owner-protection is not set to O. Thus codes 0 and 1 are equivalent wheri they 

appear in the owner's field. Access protection can be changed by executing a RENAME UUO or by 

using the PROTECT monitor commond as follows: 

PROTECT file.ext <nnn » 

When an ENTER UUO specifies a protection code of 000 and the file does not exist, the monitor sub­

stitutes the standard protection code as defined by the installation. The normal system standard is 

057. This protection prevents users in different projects from accessing another user's files; however, 

a standard protection of 055 is recommended for in-house systems where privacy is not as important 

as the capd> i Iity of sharing files among projects. No program should be coded to assume knowledge 

of the standard protection. If it is necessary to use this standard, it shauld be obtained through the 

GETTAB UUO. 

To preserve files with LOGOUT, a protection code of 1 in the owner's field should be associated with 

the files. LOGOUT preserves all files in a UFO for which the protection code for the owner is greciter 

than zero'. The PRESERVE monitor command can be used to obtain a protection code of 1 in the owner's 

field. 

6.2.3.1 UFO and SFO Privileges - The protection code associated with each file completely describes 

the access rights to that fiie independently of the protection code of the UFO. UFOs and SFOs may be 

read in the same manlier as files but cannot be written explicitly, because they contain RIB pointers to 

particular disk blocks. For UFO and SFO privileges, users are divided into the same three categories 

as for files. Each category has three independent bits: 

5.06 Monitor 

Bit 

4 
2 
1 

AcceSs Privileges 

Allow LOOKUPs in UFO or SFO. 
Allow CREATEs in UFO or SFO. 
Allow the UFO or SFO to be read as a file. 

6-20 March 1973 



-557- MaN nOR CALLS 
The owner is permitted to control access to his own UFD and SFD. It is always legal for the owner to 

issue a RENAME to change the protection of his directories. Any program can create or delete SFDs; 

however, only privileged programs are allowed to create, supersede, or delete a UFD. The monitor 

checks for the following types of privileged programs: 

a. Jobs logged in under project-programmer number [l,2] (FAILSAFE). 

b. Jobs running with the JACCT bit set in JBTSTS (LOGIN, LOGOUn. 

6-2Oa March 1973 





-'559-
Privileged programs are allowed to: 

a. Create UFDs (and SFDs). 

b. Delete UFDs (and SFDs). 

c. Set privi leged LOOKUP, ENTER, and RENAME arguments. 

d • Ignore fi Ie protec ti on codes. 

MONITOR CALLS 

UFD and SFD privileges are similar with the exception being that SFDs can be RENAMEd and deleted 

by both privileged programs and the owner of the SFD if his protection byte is 7. 

6.2.4 Disk Quotas1 

Each project-programmer number in each file structure is associated with two quotcis that limit the 

number of blocks that can be stored under the UFD in the particular fiI~ structure. The quotas are: 

a. Logged-in quota. 

b. Logged-out quota. 

When the user logs in, he automatically starts using his logged-in quota. Because this is not a 

guaranteed amount of space, the user competes with other users for it. The logged-out .quota is the 

amount of space that the user must be within in order to log off the system. Normally, the logged-out 

quota is less. than or equal to theloggecl-in quota, so that the user must delete temporary files. 

If a user exceeds his logged-in quota, the monitor types the following messoge: 

[EXCEEDING QUOTA ON fsl 

where fs is thelname of the file structure. The message appears in square brackets (I ike the TECO core 

expansion message) to suggest a warning rather than an error. Unlike most monitor messages, this 

messoge indicates that the user program may continue to run, and the console remains in user mode. 

The user program can no longer create or supersede files (ENTER gives an error return). Files already 

ENTERed are allowed to continue for a specified number of blocks. This amount is called the!?:!.!!!..­

drawn· amount and is a parameter of the file structure. The overdrawn amount specifies the number of 

blocks by which the logged-in UFD may exceed its logged-in quata. When the user exceeds the over­

drawn amount, the 10. BKT bit is set, and further OUTPUTs are not allowed. A CLOSE operates suc­

cessfully, including the writing of the last buffers and the RIBs. 

When the user logs i~, the LOGIN program reads the I.ogged-in quota from the file AUXACC .SyS for 

all public file structures in which the user is allowed to have a UFD. This information is passed to the 

monitor where it is kept in core. If the quota has changed since the user logged in last, LOGIN up­

dates (or creates) the RIB of each UFD with the new quotas. 

1Quota checking depends on FTDQTA which is normolly off in the DECsystem-1040. 

5.04 Monitor 
6-21 

January 1972 



~1ONITOR CALLS -560-

6.2.5 Simultaneous Access 

In its core areo, the monitor maintains two four-word blocks called access blocks. These blocks control 

simultaneous access to a single file by a number of user channels. All active files have access blocks 

that contain fil e status information. The access blocks ensure that a maximutn·of one user channel 

supersedes or updates a given file at a given time. 

6.2.6 File Structure Names 

Each file structure has a SIXBIT name specified by the operator at system initialization time .. This name 

I can consist of four or less alphanumeric characters and must not duplicate any device, unit, or existing 

file structure name or its abbreviation. The recommended names for the file structures in the public 

pool are DSKA, DSKB, .•. , DSKN {in order of decreasing speed}. 

When a specific file structure is INITed {e.g., DSKA}, LOOKUP and ENTER searches are restricted 

to that file structure. Usually a channel is INITedwith the generic name DSK, in which case all file 

structures in the ac tive search I ist of the job are searched (refer to Paragraph 6.2.7) . 
; " 

6.2.6. 1 L~ical Unit Names - When a single file structure name is specified, the set of all the units 

in that file·structure is impHed; however, it is possible to specify a particular logicalu~it within a 

file structure {e.g., DSKAO, DSKA1, DSKA2 are three logical units in the file structure DSKA}.· The 

monitor deals with file structures rather than with individual units; therefore, when reading files, 

specifying a logical unit within a file structure is equivalent to specifying the file structure itself. The 

monitor locates the file regardless of which unit it is on within a file structure. However, in writing a 

file, the monitor uses the logical unit name as a guide in allocating spoce and will, if possible, write 

the file on the unit specified. In this way, a user can apportion files among different units for increased 

throughput. 

6.2.6.2 Physical Controller Class Names - In addition to DSK, single file structure names (DSKA), 

and logical unit names {DSKAO}, it is possible to specify a class of controllers. If the system has one 

controller of the type specified, the result is the same as if the user had specified the physical.control­

ler name. The controller classes supported by DEC are: 

DR {future drum}, FH, DP 

6.2.6.3 Physical Controller Names -It is possible to specify any of the units on a particular con­

troller. The monitor relates that name to the fi Ie structures, which contain at least one unit on the 

specified controller. More than one file structure may be specified when a physical controller name 

is used. The c~>ntrollers that DEC supports are: 

DRA, DRB {future drum}, FHA, FHB, DPA, DPB 

6.2.6.4 Physical Unit Names - When a physical controller name is specified, all units on that con­

troller are implied. It is possible to specify a physical unit name ona particular controller. The 

physical unit names that DEC supports are: 

6-22 March 1973 



I 

I 

DRAO, DRBO 

FHAO, ... , FHA3 

FHBO, ••. , FHB3 

DPAO, ... , DPA7 

DPBO, .•• , DPB7 

-561- f'1ON nOR CALLS 
Reserved for future drum (RX 1 0) . 

Mixture of Burroughs fixed-head disks (RDlO) 
and Bryant drums (RM10B) on RClO control. 

Mixture of Burroughs fixed-head disks. (RDlO) 
and Bryant drums (RM10B) on second RC10 
control. 

Mixrure of RP02 and RP03 disk packs on RP10 
control. 

Mixture of RP02 and RP03 disk packs on second 
RP10 control. 

6.2.6.5 Unit Selection on Output - if the user specifies a file structure name on an ENTER, the 

monitor chooses the emptiest unit on the file structure which does not currently have an open file 

(UFD's are not considered opened) for the job. This selection improves disk throughput by distributing 

files for a particular job on different units. For example, in a MACRO assembly with two output files 

and one input file, it is probable that the monitor would allocate the output files on units separate 

from each other and from the input file. If this were the only job running, there would be almost no 

seeks. Therefore, to take advantage of this, programs should LOOKUP input files before ENTERing 

output files. 

6.2.6.6 Abbreviations - Abbreviations may be used as arguments to the ASSIGN command and the 

INIT and OPEN UUOs. The abbreviation is checked for a first match when the ASSIGN, INIT, or 

OPEN is executed. The file structure or device eventually represented by the particular abbreviation 

depends on whether a LOOKUP or ENTER follows. A LOOKUP applies to as wide a class of units as 

possible, whereas an ENTER applies to a restricted set to allow files to be written on particular units 

at the user's option. For example, consider the following configuration: 

File Structure 

DSKA 
DKSB 
DSKC 
DSKD 
PRVA 

Physical Unit 

FHAO, FHA 1, F HA2 
FHBO, FHBl 
DPAO, DPA1, DPA2, DPA3 
DPBO, DPB1, DPB2 
DPB3 

Table 6-5 shows the file structures and units implied by the various names and abbreviations. 

6-23 March 1973 



r10N nOR CALLS -562-
Table 6-5 

File Structure Names 

Argument Supplied to File Structures or Units Implied 
ASSIGN, MOUNT, INIT, OPEN LOOKUP ENTER 

D, DS, PSK Generic DSK according to job search 
list (refer to Paragraph 6.2.7) 

P, PR, PRV, PRVA DPB3 DPB3 

F, FH, FHA DSKA, DSKB FHAO 

FHB DSKB FHBO 

FHAO DSKA FHAO 

FHBO DKSB FHBO 

DP DKSC, DSKD, PRVA t DSKC 

DPA DSKC DSKC 

DPB DSKD, PRVA t DSKD, 

DPAO DSKC DPAO 

DPB2 DSKD DPB2 

DPB3 PRVA PRVA 

tOnly if user has done a MOUNT. 

6.2.7 Job Search List 

To a user, a file structure is like a device; that is, a file structure or a set of file structures may be 

specified by an INIT or OPEN UUO or by the first argument of the ASSIGN or MOUNT command. A 

console user specifies a file structure by naming the file structure and following it with a ~olon. 

There is a flexible naming scheme that applies to file structures; however, most user programs INIT 

device DSK, which selects the appropriate file structure, unless directed to do otherwise by the user. 

The appropriate file structure is determined by a job search list. A job search list is divided into two 

parts: 

a. an active search I ist (usually referred to as the job search list), and 

b. a passive search list. 

The active search list is an ordered list of the file structures that are to be searched on a LOOKUP or 

ENTER when device DSK is used. The passive search list is an unordered list of file structures main­

tained by the monitor for LOGOUT time. At this time, LOGOUT requires that the total allocated 

6-24 



-563- MaN nOR CALLS 
blocks on each UFD in both the active and passive search lists be below the logged-out quota. Each 

job has its own active search list (established by LOGIN) with file structures in the order that they 

appear in the administrative control file AUXACC .SYS. Thus, a user has a UFD for his project­

programmer number in each file structure in which LOGIN allows him to have files. With the MOUNT 

com'mand, mounted file structures may be added to the active search list. The following is an example 

of a search list: 

DSKB, DSKA, FENCE, DSKC 

DSKB and DSKA comprise the active search list. These file structures are represented by generic name 

DSK for this job. DSKC is the name of a file structure that was previously in the active searc'hlist. 

FENCE represents the boundary between the active and passive search list. 

Each file structure in a job search list may be modified by setting one of two flags with the 

JOBSTR UUO: 

a. Do.not create in this structure if just generic DSK is specified. 

b. Do not write in this structure. 

Setting the "do not create" flag indicates that no new files are to be created on this file structure un­

less explicitly stated. For example: if the "don't create" flag is set 

DSKA: FOO'" 

allows FOO to be created on DSKA, but 

DSK: FOO" 

does not. For LOOKUPs on device DSK, the monitor searches the structures in the order specified by 

the job search list. For ENTERs when the filename does not exist (creating, see below), the file is 

placed on the first file structure in the search I ist that has space and does not have the "do not create" 

flag set. For ENTERs when the filename already exists on any file structure in the search list (super­

seding, see below), the file is placed on the same structure that contains the older file. If the write­

lock bit is set for the file structure, a write-lock error (ERWLK%) is given on the supersede. Because 

superseding is treated differently from creating, a user may explicitly place a file on a particular file 

structure, for example, a fast one with the do not create bit set, so that subsequent supersedes will re­

main on that fi Ie structure even though generic DSK is used. 

6.2.8 User Programming 

Three types of writing on the disk may be distinguished. If a user does an ENTER with a filename 

which did not previously exist in his UFD, he is said to be creating that file. If the filename previous­

ly existed in his UFD, he is said to be superseding that file; the old version of the file stays on the disk 

6-25 



r10N nOR CALLS -564-
{and is available to anyone who wants to read it} until the user does the output CLOSE. At the time 

of the CLOSE, the user's UFD is changed to point to the new version of the file and the old version is 

either deleted immediately or marked for deletion later if someone is currently reading it; the space 

occupied by deleted files is always reclaimed in the SAT tables {refer to Paragraph 6.2.2 .2}. Finally, 

if a user does a LOOKUP followed by an ENTER {the order is important} on the same filename on the 

same user channel, he will be able to modify selected blocks of that file, using USETO and USETI 

UUOs {refer to Paragraph 6.2.9.2} without creating an entirely new version; this third type of writing, 

called updating, eliminates the need to copy a file when making a small number of changes. A 

LOOKUP followed"by an ENTER and OUTPUT {in that order} writes the output at the beginning of the 

file. To append information to the file, a USETI -1 is used before the OUTPUT. . 

As a standard practice, user programs should read, create, and supersede {new file with same filename} 

fil es on different user channels. However, for compatibility with DECtapes, it is possible to read and 

create, or read and supersede, two files on the same user channel as long as all OUTPUTs and the 

CLOSE output are done before the Lookup and the first input, or vice versa. In other words, a 

CLOSE UUO is required between successive LOOKUPs and ENTERs unless updating is intended. 

The actual file structure of the disk is generally transparent to the user. In programming for Vo on 

the disk, a format analogous to that of DECtapes is used; that is, the user assumes a four-word directory 
. . 

entry similar in form to the first four words of retrieval information. The UUO format is approximately 

the same as for DEC tapes: 

UUO D,E 

where UUO is an Vo programmed operator, and D specifies the user channel associated with this 

device. E points ei"ther to a four-word directory entry or an extended argument block in the user's 

program. 

6.2.8.1 Four-Word Arguments for LOOKUP, ENTER, RENAME UUOs - The four-word argument 

block has the following format: 

where 

E NAME 

E+l EXT I HIGH~I DATE 2 DATE I 

E+2 PROT I M I I LOW TIME DATE 2 OR 

PROJECT I PROGRAMMER 
NUMBER NUMBER E+3 L.I __ O_---J~_A_DR_..J E+3 

10-0~93 

NAME is the filename in SIXBIT, or, if a UFD, is the project number in the 
left half and the programmer number in the right half. 

EXT is the filename extension in SIXBn ASCII. {continued on next page} 

6-26 June 1973 



I 
-565- MaN nOR CALLS 

HIGH DATE 2 contains the high order 3 bits of the date on which the 
file was originally created (bits 18-20). 

DATE 1 is the dat~ the file was last referenced (RENAME, ENTER, or 
INPUT) in the format of the DATE UUO (bits 21-35). 

PROT is the protection code for the file (bits 0-8). 

M is the data mode (ASCII, binarYi dump) (bits 9-12). 

TIME is the time that the file was originally created, represented as 
the number of minutes past midnight of the creation date (bits 13-23). 

LOW DATE 2 is the low order 12 bits of the date (in the same format 
as the DATE UUO) on which the file was originally created (bits24-35). 

NOTE 

The two-part format for DATE 2 (creation date) is used to maintain 
compa~ibility with monitors and media as old as 1964. 

The programmed operators (UUOs) operate as follows: 

a. ENTER UUO - ENTER D, E causes the monitor to store the four-word directory en­
try tor later ~ntry into the proper UFD or SFD when user channel D is closed or 
released. 

NAME 

EXT 

HIGH DATE 2 

DATE.1 

PROT· 

M 

The filename must be nonzero; otherwise, an 
error return resu Its. 

The fi lename extension may be zero; if so, the 
monitor leaves it as zero. 

If a nonzero date is obtained by concatenating 
the high order 3 bits in this field with the low 
order 12 bits in LOW DATE 2, then the monitor 
uses that value as the creation date for the file. 
If the date is zero, the monitor supplies the high 
order digits of the current date from the overflow 
in E + 2. 

The date may be zero, in which case the moni­
tor substitutes the current date. The date must 
not be in the future; if this is so, the current 
date is used. 

If the protection code is 0, the monitor sub­
stitutes the installation standard as specified 
at MONGEN time. If the protection code is 
o arid this ENTER is superseding a fi Ie, the 
protection of the new file is copied from the 
old fi Ie. RENAME may be used to change the 
protection after a file has been completely 
written and when it is being closed. 

The data mode is supplied by the monitor. It 
was set by the user in the last INIT QrS ETSTS 
UUO on channel D. 

6-27 June 1973 



I 

MON ITOR CALLS 
TIME, LOW DATE 2 

PROJECT NUMBER 
PROGRAMMER NUMBER 

-566-

If these are 0, and bits 18-20 of E + 1 are zero 
the monitor supplies the current date and time 
as the creation date and time for the fi Ie. The 
high order digits of the creation date overflow 
to bits 18-20 of E + 1 (HIGH DATE 2). If 
either is nonzero, the monitor uses the HIGH 
DATE 2 supplied by the user in E + 1 and the 
TIME and LOW DATE 2 supplied in E + 2. 
Thus, files may be copied without changing 
the original creation time and date. . 

If this word is' 0, the file will be wriften in the 
default directory.' (For example, if the default 
path is [10, 10, A], the file will be written in 
SFD A which is contained in [10, 10] .UFD.) 
The default path is determined by the PATH. 
UUO (refer to Paragraph 6.2.9. 1). If a de­
fault path has not been specified via the 
PATH. UUO, it is the job's UFD (i .e., the 
project-programmer number under which the. 
user is logged in)~ 

If this word is a project-programmer number, . 
the file will be written in the UFD specified 
(i.e., sub-directories will not be scanned). ' 
This allows the program to write in the .disk 
area under which the job is logged in alt.hough 
the default ditectory is different. Note that 
it is generally not possible to create (ENTER) 
fi les in another user's area of the disk, be­
cause UFOs are usually protected from all but 
the owner when creating files.' , 

If this word is XWD 0, ADR, the file will be 
written according to the path specified by ADR. 
The argument block beginning at ADR is the 
same as in the PATH. UUO (refer to Paragraph 
6.2.9.1) except that the first two argument~ 
(ADR and ADR + 1) are ignored. The scan 
switch (ADR + 1) is not needed since if the file 
is found in the specified directory, it will be 
superseded, and if not found, it will be created 
at the end of the path of the specified directory, 
even if a file with the same name appeal'J in an 
upper-level directory. A path specification 
in the ENTER block overrides any default path 
specification given in the PATH. UUO. 

With certain tyPes of error returns peculiQr to the disk, the right half of E + 1 is 
set to a specific number to indicate. the error that caused the return. For ex­
ample, if the extension UFD' is specified and bit 18 (RP. DIR) 9f the file status 
status word is not set, the right of E + 1 is set to 2 (protection failure). 'RElfer 
to Paragraph 6.2.8.3 for a special note on error recovery. Refer to Appendix 
E for the error codes returned on the ENTER UUO. 

6-28 June 1973 



I 

-567- r1DrJ nOR CALLS 
When issuing a supersede ENTER (an ENTER after a LOOKUP on the same chan­
nei), the user should check that locations E through E + 3 are as he desires. 

When an ENTER is executed by the monitor on a file that exists, a new file by 
that name is written, and those bits in the SAT blocks that correspond to the 
blocks of the old file are zeroed when the CLOSE (or RELEAS) UUO is executed 
provided that bit 30 of the CLOSE is 0 (refer to Paragraph 4.7.7). Space is 
thereby retrieved and available 'to other users 'after the new file has been success­
fully written. If a file structure is INITed on channel D, the monitor maximizes 
the job's throughput by selecting the emptiest unit for which the job has no opened 
files (refer to Paragraphs 6.2 .~.5 and 6.2.6.6). 

b. LOOKUP UUO - LOOKUP D, E causes the monitor to read the appropriate UFD or' 
SFD. If a later version of the file is being written, the old version pointed to by 

' .. : 

the UFDis read. ' 

NAME. 

~T 

DATE 1, PROT, M, 
• TIME, LOWan'dHiGH 
DATE 2 

PROJECT NUMBER 
PROGRAMMER NUMBER 

The same as on an ENTER. 

The same as on an ENTER. 

These arguments are ignored. The monitor 
returns these quantities to the user in E + 1 
and E + 2. 

If this word is 0, the file will be read from 
the user's default directory path. The entire 
path is searched only if the scan switch is set 
via the PATH. UUO (refer: to Paragraph 
6.2.9.1). Ifa default path has not been 
specified, it is the project-programmer num­
ber under wh i ch the user' is logged in. If a 

, project-programmer number 'is specified, 
the file will be read from the UFD specified 
(i .e., ,sub-directories will not be scanned). 
Thus, it is possible to read fi les in other 
user's directories, provided the file's pro-

, taction mask permits reading and the UFD 
permits LOOKUPs'. If this word is XWD 0, 
ADR , the file will be read a,ccording to the 
path specified by ADR • The cirgument 
block beginning at ADR is the same as in 
the PATH. UUO except that the first argu­
ment is ignored, and the second argument, 
if 0, uses the default value of the scan­
ning switch (refer to the PATH. UUO): A 
path sp~cification in the LOOKUP block 
o~rridesany default path specification 
given in the PATH. UUO. 

5.04 Monitor 6-29 June 1973 



I 

~10N nOR CALLS -563-
The monitor returns the negative word count {or positive block count for fi les 
larger than 217 words} in the LH of E + 3, 0 in RHof E + 3. when the four-word 
argument block is given. As a result, the monitor treats a negati ve project­
programmer number as if it were 0, however, this will not always be true; 
therefore, programs must be written to either clear E + 3 before doing a 
L OaK UP, ENTER, or RENAME or set E + 3 to the desired project-programmer 
number. In the future, a negati ve project-programmer number may be used 
to indicate SIXBIT alphabetic characters for project and 'programmer initials. 

The numbers placed in the RH of E + 1 on an error return have a significance 
analogous to that described for the ENTERUUO {refer to Appendix E}~ 

If the file is currently being superseded, the old file is used. 

c. RENAME UUO - RENAME D, E is used to alter the filename,the filename ex­
tension and/or protection ofa file, or to delete a file from the disk. This UUO 
can be used to change the name of an S FD, but an attempt to change the exten­
sion or project-programmer number associated with an SFD, the name, ex­
tension, or project-pro,grammer number associated with a UFD, or the project­
programmer number of a device with an implied project-programmer number 
(e.g., SYS:, NEW:, OLD:) results in a protection error. To RENAME a file, 
a LOOKUP or 'ENTER must, first be done to identify the file-for the RENAME 
UUO. LocationsE tlToughE+ 2 ere as described for ENTER •. If E + 3 == 0, there 
is no change in the directory of the file. If E + 3 is the default project-programmer 
number, the file is renamed in that UFD. If E + 3 has a different project-programmer 
number than the one in which the file is LOOKUPed or ENTERed (Le., E + 3 
is not the default project-programmer number), the monitor deletes -the directory 
entry from the old directory (UFD or SFD) and inserts the directory entry into the 
specified UFD,'proYided the user has the privileges to delete files from the old 
directory, and to create files in the new UFD. (This is an effic ient way to move 
a file from one UFD to another, since rio I/O needs to be done on the data blocks 
of the file.) If E + 3 == XYVD 0, ADR, the file is renamed into a new SFD or UFD 
according to the path specified byADR. (Refer to the PATH.UUO.) Therefore, 
the only way to RENAME a file into a SFD different from the one which it is in 
to give an explicit path via an argument block. 

A CLOSE is optional because RENAME performs a CLOSE. However, a 
CLOSE should not be issued between a LOOKUP and RENAME if the file is 
not in the default path or cannot be obtciined from the default path by scan­
ningbecauseCLOSE erases all memory of the path of a file. If a CLOSE is 
performed and the file is not in the default path, the RENAME returns the FILE 
NOT FOUND error;1 In addition, disk accesSes are minimized if a CLOSE 
does not precede a RENAME. 

RENAME enters the information specified in E through E + 2 into the retrieval 
information and proper directory; If the contents of E is zero, RENAME has 
the effect of deleting the'file. Although only a privileged job can delete a 
UFD, any job can delete an SFD. _ If the directory is not empty or if a job is 
currently using the directory, the RENAME returns the DIRECTORY NOT 
EMPTY error. (Refer to Appendix E for the error codes.) Refer to Paragraph 
6.2.8.3 for a special note on error recovery. 

6-30 June 1973 



-569- MON nOR CALLS 

When issuing a RENAME UUO, the user must ensure that the status at locations 
E through E + 3 are as he desires. An ENTER or LOOKUP must have preceded the 
RENAME; therefore, the contents of E through E + 3 will have been altered, or 
filled if the E is the same for all UUOs. 

d. Examples - The sample code below can be used to assemble the 15-bit creation 
date of a disk (or DECtape) fi Ie in register Tl after a successful LOOKUP. The 
four-word argument block begins at location E. 

lOB 
lOB 
DPB 

Tl, [POINT 12, E+2, 35] 
T2, [POINT 3, E+1, 20] 
T2, [POINT 3, Tl, 23] 

;GET LOW-ORDER PART 
iGET HIGH-ORDER PART 
;MERGE THE TWO PARTS 

The following sample code illustrates setting the 15-bit creation date in the 
four-word ENTER argument block from the value in register Tl. 

DPB 
ROT 
DPB 

Tl, [POINT 12, E+2, 35] 
Tl,-tD12 
Tl, [POINT 3, E+ 1, 20] 

6-300 

iSTORE LOW-ORDER PART 
iPOSITION HIGH PART 
iSTORE HIGH-ORDER PART 

June 1973 





I 
I 

-571- MON nOR CALLS 
6.2.8.2 Extended Arguments for LOOKUP, ENTER, RENAME UUOs - A number of quantities have 

been added to the existing four-word block. The user program may specify exactly the number of 

words in the argument block. If the left half of E is 0 and the right half of E is three or greater , the 

right half of E is interpreted as the count of the number of words which follow. If the right half of 

E is less than three, a file-not-found return is given because the user program is not supplying enough 

arguments. Allowed arguments suppl ied by the user program are returned ~y the monitor as values. 

If the user program supplies arguments that are not allowed, the monitor ignores these arguments and 

supplies values on return. Table 6-6 indicates the arguments that may be supplied by a user program. 

Table 6-6 
Extended LOOKUP, ENTER, and RENAME Arguments 

Rei. Loc Symbol Lookup 
Create Update 

Arguments and Value 
Supers Rename 

0 .RBCNT A A A Count of arguments following 

1 .RBPPN AO AO AO Directory name (project-programmer no.) or 
pointer 

2 .RBNAM A A A Filename in SIXBIT 

3 .RBEXT A A A Fi Ie extension (LH) 
V AO A High order 3 bits of IS-bit creation date 

(bits 18 .... 20) . 
Access date (bits 21-35) 

4 .RBPRV V AO A Privi lege (bits 0-8) 
V V A Mode (bits 9-12) 
V AO A Creation time (bits 13-23) 
V AO A Low order 12 bits of IS-bit creation date 

(bits 24-35) 

5 .RBSIZ V V V Length of file in data words written 
(+no. words) 

6 .RBVER V A 'A Octal version number (36 bits) 

7 .RBSPL V A A Filename to be used in output spooling. 

10 .RBEST V A A Estimated length of file (+no. blocks) 

11 .RBALC V A A Highest relative block number within the file 
allocated by user or monitor to file. 

A = Argument (supplied by privileged or nonprivileged user program) and returned by monitor as 
a value. 

AO = Argument like A with the addition that a 0 argument causes the monitor to substitute a 
default value. 

V = Value (returned by monitor) cannot be set even by privileged program, monitor ignores 
argument. 

A1 = Argument if privileged program (ignored if nonprivileged). 

6-31 

(continued on next page) 

June 1973 



~10N ITOR CALLS 

Rei. Loc Symbol 

12 .RBPOS 

13 .RBFTl 

14 .RBNCA 

15 .RBMTA 

16 .RBOEV 

17 .RB.STS 

20 .RBELB 

21 .RBEUN 

22 .RBQTF 

23 .RBQTO 

24 .RBQTR 

25 .RBUSO 

26 .RBAUT 

27 .RBNXT 

30 .RBPRO 

31 .RBPCA 

32 .RBUFO 

33 • RBFLR 

34 .RBXRA 

.35 .RBTIM 

-572-
Table 6-6 (Cont)' 

Extended LOOKUP, ENTER, and RENAME Arguments 

Lookup 
Create Update 

Arguments and Value 
S~pers Rename 

V A A Logical block no. of first block to allocate 
within F.S. 

V A. A Future nonprivileged argument - reserved 
for DEC 

-
V A A Nonprivileged argument reserved for 

customer to define 

V A1 A1 T ape I abe I if on backup tape 

V V V Logical unit name on which the file is located 

V A1 A1 1) LH~ombined status of all files in UFO 
2) RH=Status of this file 

V V V Bad logical block within error unit 

V V V 1) LH=Logical unit no. within F. S. of bad 
unit: (0", N). 

V V V 2} RH=No. of consecutive blocks in bad 
region 

V A1 A1 (UFO-only) FCFS logged-in quota in blocks 

V A1 A1 (UFp-only) logged-out quota in blocks' 

V A1 A1 (UF~-only) reserved logged-in quota 

V A1 A1 (UFP-only) no. of blocks used at last 
logout 

V A1 A1 Author proiect-programmer number (creator 
'or superseder) 

V A1 A1 Next file structure name If file continued 

V A1 A1 Predecessor file structure name if file con-
tinued 

V A1 A1 Privileged argument word reserved for each 
customer to define as he wishes 

V' V V Logical block !'lumber within F.S. (not 
cluster no.) of the RIB of , the UFO in which 
the name of th is fiI~ appea'rs 

V V V Relative block number in file of first block 
in RIB 

V V V Extended RIB address 

V V V Creation date in universal date-time stCl"ldard 
(refer to Paragraph 3.6) 

A = Argument (supplied by privileged or nonprivileged user program) and returned by monitor as 
a value. 

AO = Argument like A with the addition that a 0 argument causes the monitor t9 substitute a 
defaul t valu!'. 

V = Value (returned by monitor) cannot be set even by privileged program, monitor iQnores 
argument. 

A1 = Argument if privileged program (ignored ifnonprivileged). 

6-32 



I 

-573- MorUlOR CALLS 
The following explanotion is a more complete description of the terms used in Table 6-6. 

. . . . , . 

.RBPPN 

.RBNAM 

.RBEXT' 

.RBPRV 

.RBSIZ 

• RBVER 

.RBSPL 

.RBEST 

LH~tal'project number (right-justified). , 
RH =octa I programmer number. 
The project-programmer number, isof the UFO in which the fi Ie is to be 
LOOKedUP; ENTERed, or RENAMEd. To LOOKUP the MFO, • RBPPN 
musteontain a 1 in the left half and al in the right half indicating that 

, the filename (.RBNAM) is to be LOOKedUP:ln project 1, programmer l's 
UFO (the MFD)'. - " 

SIXBIT filename, left justified with trailing nulls. If tl1e MFO or UFO 
is ,being LOOKedUP ,ENTERed, or RENAMEd; this ·Iocation contains 
theproject-prograinmer number. If a SFO is being LOOKedUP, 
ENTERed, or RENAMEd, this location contains the directory name. 
The argu,",nt can be 0 only on a RENAME, in which case the file is 
de,leted. If the filename is not left justified on ENTER~ most programs 
are"unsucee~ful on a sllbsequent LOOKVP. ,The, monit~ cannot left­
justify the ~rgument because it may be an oc.tal project':'programmer 

"number.' " " 

LH=5IXluT filename extension, left justifi~d with trailing nulls. Null 
'e?Ctensions are discourag~d because they convey no i'nformation. If the 

.' extension is not left Justified on ENTER, most pr09rams are unsuccessful 
",or:' A su~~eCfu~lit LOqKUP ~ RH,bfts' 18,-2Q = high order 3 bits of 15-bit 

'creatioridate, bits 21-35=access date 'in standard format. If an error 
return is given, bits 18-35 are set to an error code by the monitor before 
the error (no skip), return is taken., Refer fo Pqragraph 6.2.8.3 fora' 
spec,ial note on error recovery. 

: .". .' . . 

Bits 0-8=protection codes. (RB.PRV) 
Bits'9-'12=data riiode in which file is created. (RB.MOD) 

,'Bits'137"23=c~eation time' in minutes since midnight. " (RB'.CRT) 
Bits 24-3S=low order 12 bits of 15-bit crecition date in standard format. 

(RB.CRO) . , 

Written length of file. The word is the ~sitivenumber9f words written 
in the file. For extended arguments;thi~ word is never used for project­
programmer numbers. (The four-word block remains compatible so that 

, L,H=-number of words in fiJe.,RH=O.) This argument is ignored, and a 
value is always returned. 

Octal version number like ,the contents of locati.on .137 in the job data area • 

, LH =patch level (A= 1 , B=2, etc.) , 
Set by ,!,onitor except in the case. of privileged programs. 

RH=oetal version number~never converted to decimal. This argument 
is accepted, except on a LOOKUP. If a user program wishes to increase 
the version number by 1 on each UPOA TE, it should add 1 to location 
E + 6 between the LOOKUP aod the ENTER. 

Filename to be used to label the output on a device which is being 
spooled. The filename is taken from the ENTER to the .device, or is 0 
if an ENTER was not done. ' . ' ," 

E~timated leOgth of file in positive number of blocks. On an ENTER, 
FILSER uses this value as the number of blocks to allcicate for the file. 

, If the ,estimated number of blocks is too low, incremental allocation 
, is done. 

6-33 June 1973 



I 

I 

MONITOR CALLS 

.RBALC 

.RBPOS 

. RBFTl 

. RBNCA 

.RBMTA 

.RBDEV 

• RBSTS 

5.06 Monitor 

-574-

Number of 128:"word blocks, N, to be allocated to the file a'fter completion 
of ENTER or RENAME. This number includes the RIBs of the file. N is ' 
equivalent to last relative block of the file. 

A 0 means do not change allocation rather than deallocate all the blocks 
of the file. All of the data blocks can be deallocated by superseding the 
file and doing no outputs before the CLOSE. This argument can be used 
to allocate additional space onto the end of the file" deallocate pre­
viously allocated but unwritten space, or truncate written data blocks. 

The smallest unit of disk space that the monitor canaJ!ocate is a cluster 
of 128-we>rd blocks. Typically small devices use a cll,lster size of 1 
block. If N i$ not the last block of a cluster, the monitor rounds up, 
thereby adding a few more blocks than the user requested. 

Logical block number, L, of the first block to be allocated for a new 
group of clusters appended to the file. A logical blckk number is 
specified with respec't to the entire file structure. Logical block num­
bers begin with logical block number O. This f~turecombined with 
DSKCHR UUO allows a user program to allocate a file with respect to 
tracks and cylinders for maximum efficiency when thE! program runs 
alone. Because SAT ~Iqcks, swapping spclce, and bad blocks are 
scattered throughout. a file structure, programs using 'this feature 
must be prepare~ to handle such contingencies. ~tis'diScouraged for 
any programs to d~enc;l on blocks actually used'for all9cationto 
operate without e~rors. . " , 

Future nonprivilegeda.~gument reserved for DEC • 

Nonprivileged argument reserved for customer definition • 

A 36-bit tape I~bel if file has been put on magnetlctape. If allocated 
space is 0, thenfi!e was deleted /Tom disk when it was copied on mag­
netic tape. Argument is accepted only from privileged programs; other-
wise, it is ignored. ' " 

The logical name of the unit on which the file is located. Ignored as an 
argument, returned asa value . 

Fil e status word 

'LH=status ofUFD. Bit 0=1 (RP.LOG) if the user is logged in and is set 
by LOGIN. LOGOUT clears this bit. ' 

RH=status of file. 

Bit 18=1 (RP.DIR) if file is a directory file; needed to protect the system 
from a user who 'might try to modify a directory file. The protection error 
is given if extension UFD is given on an ENTER or RENAME and 
this bit is not set. 

Bit 19=1 (RP.NDL) if file canno~ be deleted, renamed, or superseded, 
even by a privileged program or by a user logged in under [1,21 . 

'Bit21=1 (RP.NFS) iffile should not be dumped by FAILSAFE because 
certain files are needed before FAILSAFE can run. 

Bit 22=1 (RP .ABC) if file always has bad checksum (because the monitor 
never' recomputes the checksum) e.g., S# AP • SYS. SAT. SYS . 

Number of 128-word blocks, N, to be allocated to the file after cOl1l>letion 
of ENTER or RENAME. This number includes the RIBs of the file. Nis 
equivalent to last relative block of the fj Ie. 

6-34 
(continued on next page) 

March 1973 



-:-575- MON nOR CALLS 
.RBSTS (Cont) Bit 26=1 (RP.CMP) if UFO. compressing. 

.ReELB 

.RBEUN 

.RBQTF 

.RBQTO 

Bit 32=1 (RP.BFA) iffile is bad because ofa FAILSAFE 
restore. 

Bit 33=1 (RP.CRH) if file was closed after a crash. 

eit 35=1 (RP. BOA) if fite is bad because of damage 
Clssessment. 

The follo~ing bits apPear in both the Lt1 and RH of this location: 

Bi~ II (RP .URE) and bit 29 (RP .FRE) = I if any fi Ie in this UFO (or this 
file) has had a hard data error whi'le reading. (The 10. DTE bit has been 
s~t.)' An e~tryis ~de in the ~Tblock so that the bad region is not 
reus~d. . 

im 10 (RP,. UWE) and bit 28 (RP. FVJe) = I if any file in this UFO (or this 
file) has had a hard data error while writil'!g. (The 10. DTE bit has been 
set.) An entry is made in the BAT bl6ckso that the bad region is not 
reused. ' 

Bit ~ (Rr .UCE) an~ bit 27 ~P. Fq) = lif any file,in this UFO (or this 
file) has ~d a software checksum error or redundancy check error. 
(The IO.IMP bit has be'en set.) " 

NOTE' 

,Device errors (IO.DER) are not, flagged in'the file status 
wor~ because they refer to a device and disappear when 
a device is fixed. " ,.' , 

Logical block nUJ1lber '1itbin the unit on whi,ch last date error (lO.DTE) 
occurred, as oppoSed to:b!ock';.vithin file structure.' Set by the monitor 
in the RIB on 9 CLOSE'wh~n the hardware detects either a hard bad 
parity error or ,twoseard~ errors while reading or 'writing the file. Device 
Frrors, checksum, and redundancy err~rs are not stored here. This argu­
ment isi9nofe~, anpa value ls reMned';', 

LH=logicai unit number within file structure on which last bad region 
was ,det~ted. "" , 

RH9iymber of ~d blO!=ks in the last-defected,bad rE!9ion. The bad 
reg'ion mqy extend ber.ondthe file.' This argument is i9nored~' and a 
value ,is returned. ' 

Meaningful for UFO only. Contains first-come-first-served logged-in 
quota. Thisqu~tQ i~ the maximum nu'mp'e~ of data and RIB blocks that 
can be in' this cfirectory in this structure while the user is lOgged in. 
'The UFDand'ifsRIB are not' counted: Argument is ignored unless it is 
from a privjf~ed.program. 

'. '. t ' 

Meaningful for UFO only. Contains logged,:,out quota. lbis quota is the 
maximum number df data and RIB blockS that can b~ left if' 'this directory 
in thisfi Ie structure affer the user logs off. LOGOUT,requires the user, 
to be below thi~ quota to log off. LOGIN stores the,se quOtas in the RIB 
of fhe 'UFO, so that LbGOUT does nothave to sccn ACCT.SYS at 
LOGOUTtime to find the quota. Argument is ignored upless it is from 
a priv,il~ed program.' ' : 

6-35 



r'10N nOR CALLS -576-

.RBQTR Meaningful for UfO only .. (Reserved for the fUfure.) Contains'reserved 
logged-in quota " This .quo~ is the gu.aranteed number of blocks the user 
has when he logs in,. Argument is ignored' unless it. is from a privileged 
program • 

. RBUSO Meaningful for UFO only. 'Contains number of data and RIB blocks used 
iri thrs directory in this file structure by the user when he last logged off. 
LOGIN reads this word so that it does not have' to LOOKUP all files 

.RBAUT 

• RBNXT 

.RBPRO 

• RBPCA 
.RBUFO 

.RBFLR 

.RBXRA 

.REHIM .. 

.in order, to set up, the number of blocks the user has.written. LOGIN 
s'ets bit o of" the file status wOrd (.RBSTS) and LOGOUT clears it in 
order to indicate. :whetber LOGOUT has stored the quantity. Argument 

. isAgnor~d unless it is from a privileged program. 

Contains proiect-programmer number of the creator or superseder of the 
fi Ie, as opposed, to owner of file. Usually the author and the owner are 
thesanie. Only whenci file Wcreat~d in a differen'f directory are these 
different:. This argument i·s used by Batch forvaJidating queue entries in 
other directories. Argument is ign'ored unless it:is from a privileged program. 

Reserved for future . 

. Reserved fOr future;' 

. Pri'til'Elged ~rgument'reser~ed 'for'customer d~finitiori • .. '.' . ; 

The logical block number (not cluster number) in the file structure of the 
RIB of the UFO i,n which the name of this file appears. 

The relative block number of the file to which the first pointer of this RIB 
·points. H is used for multiple RIBs·(i.~~', 0 for prime RIB). 

'The ex"te~dedRIB addr~ss (Ibgic~{ unit. number and cluster address of next 
RfB in a multiple-RIB file).' .....' 

The dat~ cind time'bf creation of the file in' the universal date-t-iri,e standard 
(refer to Paragrc:iph 3.6 )'. That is, the LH contain's the date and the RH 

.'contcins.the',timeas a fraction ofa.day. ' . 

. : ; 

! ; 

6.2.8.3 Error Recovery for ENTER and RENAME UUOs - Error codes for the LOOKUP, ENTER, and 

RENAME UUQs.are. returned in the tight half'of location E + lof the four-word argument block and 

in the right half of location E + 3 (.RBEXT) in the extended argument block. This means that the 
. ". '. ... 

error coci~ ove~rites the 'high oi-cle~'3 bits of the creatio~ dcit~ and the eritire access date. Since the 
. ~ •.•.. ',' :.,." • '. ." J; ." . . . ...... • :;:.-

vast majority of programs recover from these errors either by,aborting or 'by reinitializing the entite 

argument biock, this' overwriting of data does not cause anycproblems ... However, a small number of 

programs ~aY'atte~pt recov~ryby fixing just the incorrect part of the cU'9u'ment block and then re-
. . '.<.=. :. :: ': . . . . . ,., ". . .", . 

trying the UUO;, These prOgrams should,always restore the' right halfof location E + 1 before retrying 

an ENTER or a RENAME UUO. (In order to eliminate pr~blems for ptograms recovering from errors 

for .files with, zero creation'd~tes~ which is the most common case, err,?r' codes are r~stricted to a 

maximum of 15: bits even though the entire right half of E+ ] is used. [naddition, the 5.06B and 

lat~r mo~itors force acc'~ss dates to 'be great~r, t hal"! or eq'ual to the' cre~tlon date, but never greater 
, . '\. '.' 

than the current date.) 

6-36 June 1973 



-577- f'~ON nOR CALLS 
6.2.9 Special Programmed Operator Service 

The following are special programmed operator service UUOs. 

6.2.9.1 PATH. AC, or CALLI AC, 1101 - This UUO sets or reads the default directory path, or reads 

the current directory path on a channel. The call is: 

MOVE AC, [XWD n, ADR] 
PATH. AC, 
error return 
noriTlQI return 

ADR: arg 
sc,!"s'lYHch 
ppn 
SFD 1 name 
SFD2 name 

ADR+n-1: 0 

The first word of t~e argument block contains one of the following: 

C (ADR) = SlXBIT device name, or XWD 0, D2 
Return the current path for the specified device or channel D. 

C (ADR) = XWD JOB, -1 
Return the defQult directory path. 

C (ADR} = -2 . . 
Define the default directory path. 

C (ADR) = -3 
Define the additional path to be searched when a file is not found in the user's 
directory path. 

C (ADR) =XVVD JOB, -4 
Return the additional path to be searched when a file is not found in the user's 
di rectory path. 

'This UUO depends on FTSFD which is normally off in the DECsystem-1040. 

2Note that this function of the PATH. UUO is available even if FTSFD is tumed off. 

6-360 June 1973 





I 

-579- r10N !TOR CALLS 

If the left half of ADR is a job number N and the right half of ADR is -lor -4, the returned values are 

for either 

1) job N if O<::N~ the highest legal job number, or 

2) the current job if N is outside the above range (i. e., N~ 0 or N > the highest legal 
jobnumber). 

When defining a path within a UFD (C(ADR) = -2), .ADR+l is the scan switch, ADR+2 is the default 

project-programmer number, and the remainder of the argument block up to the first zero word defines 

the default path. The scan switch determines whether or not the monitor scans for the file on a LOOKUP. 

If the switch is 1 ,the monitor examines the specified directory only; higher level directories are not 

searched. If the switch is 2, the following occurs: 

1) The monitor searches the UFD or SFD specified by the path (either explicit 
or default path). If the file is found, the scon is terminated. 

2) If the file is not found, the monitor backs up one directory along the path and continues 
the scan (i.e., it scans the directory in which thec'urrent S,FD appears). The scan is 
terminated when the UFD is searched or when the file is found. 

Scanning allows directories to be nested since any file not found in the current SFD, is obtained auto­

matically from a higher level directory. This is useful when' a user has a default directory in use con­

taining files he is currently working on and a higher level directory containing 'checked-out-routines. 

Since SFDs are continued across file structures but the depth of the nesting of directories is not neces­

sarily the same on each file structure, each scan searches the file structures that are 1) in the iob's 

search list and 2) have SFDs to the depth specified in the path. The file structures are searched in the 

same order as they appear in the search list. 

On on ENTER, the scan switch is ignored; if the file is found in the specified directory, h will be 

superseded. If the file is not found, it will be created at the end of the path in the specified directory 

whether or not a file with the same name appears in a higher level directory. 

When defining the additional path to be used after the user's directory path is searched (C(ADR) = -3), 

ADR+l indicates if SYS (bit 35 = 1) or experimental SYS (bit 34 = 1) is to be scanned, and ADR+2 is 

the project-programmer number to be used for a user library. These locations are used as follows. If 

the file is not found in the user's directory path on a LOOKUP DSK:, the directory specified in 

ADR+2 is searched for the file. This directory must be a UFD and allows users with different directory 

paths to share a common direct.ory of files. If the file is not found in the library and if bit 35 of 

ADR+l is set, the system library (SYS: [1,4]) is seorched. In addition on a LOOKUP SYS:, if bit 34 
of ADR+l is set, the directory area [1,5] is searched before the system library area [1,4]. The [1,5] 

area is called the experimental SYS areo (NEW:) and can be used to separate software that is near the 

end of the development and testing stages from the standard system software on the system library [1,4). 

When returning a path, ADR+l contains the following: 

5.06 Monitor 

bits 34 and 35 
bit 33=1 
bit 32=1 
bit 31=1 

the scan switch 
if experimental SYS (NEW:) is searched 
if SYS is searched 
if there is a user library 

(continued on next page) 

6-37 March 1973 



~10N nOR CALLS -580-
bit 30=1 

bits 27-29 

if the user-supplied project-programmer number is to be 
ignored on a LOOKUP or ENTER UUO and the implied 
project-programmer num6er of the device is to be used 
(e.g., [1,4] if SVSi. [1,5] if NEW). The implied project­
programmer number is returned in ADR +2. 

the type of search Ust: 
o a non-standcii-d search list (e.g., DSKA) 
1 job search Ii~t 
2 ALL search list 
3 SYS search list 

and ADR+2 througb ADR+n-1 is the path. If t,h~ path is less thO" n-1 words, a zero word is stored at 

the end. If ADR contains a device name or channei number When the UUO is called, the file structure 

I name or ersatz device name is returned in ADR depending on the name specified (e.g., SYS is 

returned only if C(ADR) = SYS and the iob does not have a device with the logical name SYS). If a 

LOOKUP or ENTER has been done on the specified device or channel number, the following is 

returned in the argument block: 

I 

I 

I 

ADR: 
ADR+h 
ADR+2: 
ADR+3: 

ADR+m: 

the SIXBIT name of the file structure or ersatz device 
the scan switch. 
the actual proiect-programmer number associated with the file. 
the actual path of the fi Ie. 

o the end of the path if m <n-1. 

If no LOOKUP or ENTER has been done, the following is returned: 

ADR: SIXBIT DSK or ersatz device name. 
ADR+1: the scan switch. . 
ADR+2: 

ADR+3: 

the job's default project-programmer number (or the project-
programmer number of the ersatz device). . 
the default path to the file. 

ADR+m: o the end of the path if m <n-1 

On an error return, 

AC is unchanged if the UUO is not imp.lemented. (SFD remains a reserved extension, 
but all SFD code disappears.) The GETTAB which returns the maximum number of 
SFDs allowed returns Oor fai Is. The default path is the user's proiect-programmer 
number. 

AC is 0 if the device or channel number does not represent a disk. 

AC is -1 if a SFD in the path specification is not found. 

(continued on next page) 

5.06 Monitor 6-38 March 1973 



-581- MaN nOR CALLS 

Examples 

1) This example sets the default path to [27,235, SUB] with no scanning in effect. 

MOVE 1, [XWD 5, A] 
PATH. 1, 
error 
normal 

A: -2 
1 
27,235 
SUB 

° 2) Refer to Figure 6-6. The path plus filename for file A is X.MAC (JO,63]. The 
path plus filename for file B is Y.CBL (J4,5]. The path plus filename for file C 
is Z.ALG (]4,5, M]. 

3) Refer to Figure 6-7. The iob's search list is DSKA/N, DSKB, DSKC and the default 
path is [PPN, A, B, C, D]. 

A) LOOKUP DSK: with no matches scans in order: DSKA:D (.SFD), DSKA:C, 
DSKB:C, DSKA:B, DSKB:B, DSKA:A, DSKB:A, DSKA:PPN (.UFD), DSKB:PPN 
DSKC:PPN. 

B) LOOKUP DSK: FILE2 finds DSKA: FILE2 [PPN, A, B, C]. 

(continued on next page) 

6-38a March 1973 





-583- MON nOR CALLS 

Z·ALG 
10-0837 

Figure 6-6 Directory Paths on a Single File Structure 

10-0838 

Figure 6-7 'Directory Paths on Multiple File Structures' 

5.06 Monitor 6-39 March 1973 



MaN ITOR CALLS -584-
C) LOOKUP DSKB: FILE2, or LOOKUP DSKC: FILE2 fails. 

D) ENTER DSK: FILE9 receives an error since no file structure has both the 
no-create bit off and the directory striJcture [PPN, A, B, C, D]. 

E) ENTER DSKA: FILEl creates the file at the end of. the path on DSKA (the 
file designated by (FILEl) in diagram). . 

If the default path is [PPN, A, B, C]: 

A) ENTER. DSK: FILE6 creates DSKB: FILE6 [PPN, A, B, Cl (thefil~ desig-
nated by (FILE6) in diagram). . 

B) ENTER DSK: FILE2 supersedes FILE2 in DSKA: [PPN, A, B, CJ 

C) LOOKUP DSK: FILE4 fails. 

D) ENTER DSK: FILE7 supersedes FILE7 in DSKB: [PPN, A, B, C]. 

4) The user defines the following path. 

MOVE 1, [XWD 5,A] 
PATH. 1, 
error 
MOVE 1, [XWD 3, BJ 
PATH. 1, 
error 

A: -2 
2 

10,63 
NAME 
o 

B: -3 
. 3 

10,7 

Define the default directory path 
Scanning is in effect 
The UFO [10,63] 
The SFD [NAME] 
The default path is [l0,63,NAMEl 

Define an additional path: 
Both experimental SYSancfSYS <;Ire searched. 
The user library is [lO,n 

If the user is logged in as [l0,10] and does a LOOKUP DSK: FILTST, the following di'rectories are 

searched in order: 

[NAME.SFD] 
[l0,63. UFD] 
[l0~7. UFO] 

. Il ,5. UFD] 
[l,4. UFD] 

f 
} 

iob's search list. 

system's search list. 

If the user is logged in as [l0, 10] and does a LOOKUP DSK: PRJFIL [lo", 155], the following direc­

tories are searched: 

[l0,155. UFD] 
[l0,7. UFD] 
[l,5. UFD] 
[l,4. UFD] 

} 
} 

iob's search list 

·system's search list 

6.2.9.2 USETI and USETO UUOs - The function of these UUOs is to notify the disk service routines 

that a particular relative block (instead of the next block in sequence) is to be us~d on the following 

INPUT or OUTPUT on the specified channel. USETI and USETO do not perform I/o; they simply 

change the current position of the file. Note that each INPUT or OUTPUT also logically advances 

the file; therefore, to reread or rewrite the same block a USETI (or USETO) must be given before each 

INPUT (or OUTPUT). 

5.05 Monitor 6-40 June 1972 



-585- MON ITOR CALLS 
Since the monitor reads (writes) as many buffers as it can on INPUT (OUTPUT), it is difficult to 

determine which buffer the monitor is processing when the USETI (USETO) is given. Thus, the INPUT 

(OUTPUT) following the USETI (USETO) may not read (write) the buffer containing the block specified 

with the USETI (USETO). However, a single buffer ring reads (writes) the desired block since the de­

vice must stop after each INPUT (OUTPUT). Alternatively, if bit 30 of the status word (lO.SYN) is 

set via an INIT, OPEN, or SETSTS UUO, the device stops after each bufferful of data on an INPUT 

(OUTPUT) so that the USETI (USETO) will apply to the buffer supplied on the next INPUT (OUTPUT). 

The calls are: 

USETI D, Nand USETO D,N 

where D is the channel number, and N designates a block relative to the beginning of the file. N can 

be in the following ranges: 

N 

1':"7m778 

o 
-2, ...• ,-108 

-1 

Block Represented 

Blocks of the file 

Prime (1st) RIB 

Extended (2nd to the 8th) RIB 1 

Last block accessed (USETO) or end of file (USETI). 

Note that the 18-bit effective address used for N is interpreted as both an unsigned positive integer and 

a signed (2's complement) integer. This is required since, with extended RIBs, there can be mOre than 

3777778 (largest positive signed integer) blocks in a file. The exact interpretation of N depends upon 

the context of the USETI/USETO (i.e., reading, writing, updating). 

When reading or writing a file, USETI precedes an INPUT and USETO precedes an OUTPUT (i .e., 

USETI is illegal for a non-privileged program unless a LOOKUP has been done, 'and USETO is illegal 

for a non-privileged program unless an ENTER has been done). However, there are special cases when 

updating a file (bot.h a LOOKUP and an ENTER have been done) when USETI may be followed by an 

OUTPUT and USETO may be followed by an INPUT. The action performed on a USETI or USETO de­

pends on the value of N. 

When N is a biock number less than or equal to the current size of the file in blocks (i .e., N is a block 

that has been previou~ly written), USETI or USETO points to block N in order to read or write that 

block on the next INPUT or OUTPUT. 

1The number of extended RIBs allowed on the system can be changed with MONGEN and can be ob­
tained from a GETTAB table (.GTLVD, item 23). Extended RIBs depend on FTMRIB which is normally 
off in the DECsystem-1040. 

5.04 Monitor 6-41 January 1972 



f'10N nOR CALLS -586-
When N is a block number greater than the current size of the file in blocks, USETI followed by an 

IN PUT receives the end-of-file return (e. g., if the fi Ie is 5 blocks long, USETI with n=7 receives 

the end of file return). On a USETO followed by an OUTPUT, the monitor allocates the intervening 

blocks, writes zeroes in the first new block up to block N -I, and then writes block N •. For example, 

if the fi Ie is 2 blocks long, USETO with n~ writes zeroes in block 3 and the data on the OUT PUT in I block 4. If the number of blocks requested cause the disk to be filled or the user's quota.to be exceeded, 

as many blocks as allowed will be allocated and the 10. BKT bit will be set in the status word. In 

addition, in update mode, USETI followed by an OUTPUT appends the data to the end of the file 

(i.e., makes the file larger). USETO followed by an INPUT allocates and zeroes the first new block 

up to block N-I and then receives the end-of-file return. 

When N=O on reading, writing, and updating, USETI and INPUT read the prime RIB, and USETO and 

OUTPUT receive the 10.BKT error. In addition, in update mode, USETO and INPUT read the prime 

RIB, and USETI and OUTPUT receive the 10.BKT error. 

When N=-2 to -IDS' a USETI and INPUT read the indicated extended RIB (-2 is the 2nd RIB, .•• , 

-IDS is the Sth RIB). USETO followed by an OUTPUT attempts to allocate a large number of blocks 

(since N is interpreted as an unsigned integer) and therefore is not recommended because the user's 

disk quota will probably be exceeded. 

When N=-I, USETO and OUTPUT rewrite the last block in which I/O was performed. USETI and IN-

. PUT receive the end of file return. In addition, in update mode, USETI followed by OUTPUT appends 

the data to the end of the file, and USETO and INPUT read the last block in which I/O was performed. 

The user can append data to the last block of an append-only fi Ie by specifying a USETO followed by 

an OUTPUT to the last block. I The monitor then reads the block (of N words) into a monitor buffer, 

copies words N+I through 200 from the user's buffer into the monitor buffer, and rewrites the block. 

The current length of the block can be obtained from the LOOKUP/ENTER block. It is not necessary 

to read the last block of the file before appending to it because the data already existing in the block 

is not changed. 

When appending data to the last block of a file, the 10. BKT bit is set and no output is done if 

1) Any block before the last block is written. 

2) The last block already contains 200 words. 

3) Fewer blocks are written than the current size of the block. 

If the last block is written with a buffer-mode OUT PUT, the size of the last block becomes 200 words, 

and therefore, cannot be appended to. 

Append-only files can be read only if FTAIR is on. Note that BASIC stores data at the beginning 

of files that it must read and therefore, to run BASIC, FTAIR must be turned on. 

IThis feature depends on FTAPLB, which is normally off in the DECsystem-I040. Therefore a new 
block must be written in order to append to a fi Ie. 

5.05 Monitor .6-42 June 1972 



-587- MaN ITOR CAllS 
If no previous ~OOKUP or ENTER has been done, these UUOs are considered to besuper-USETI and 

super-USETO which are available only to privileged programs. If the program is non-privileged, 

super-USETI and super-USETO cause the 10. BKT bit to be set in the status word. These privileged 

UUOs are documented in UUOPRV.RNOin the OECsystem-10 Software Notebooks. 

6.2.9.3 SEEK UUO 1 - This UUO, when used in coniunction with USETI and USETO, allows user pro­

grams control over the time at which positioning operations occur. Following a regular USETI or 

USETO, positioning is to the cylinder containing the requested relative block within a file. Following 

a super-USETI or super-USETO, positioning is to the cylinder containing the specified disk block. 

The call is: 

SEEK AC, 
return 

; or CALLI 0, 56 

o specifies a software channel number. The SEEK UUOs are honored by the monitor only if the unit 

for which they are issued is idle. If the unit is in any other state, the SEEK UUO is a no-operation. 

SEEK UUOs issued for public file structures are treated in the same way as private file structures. 

This allows users to debug programs using a public disk pack and later run the same programs using a 

private disk pack. 

The following is proper UUO sequence for issuing a SEEK. 

For output 

a. USETO to select a block (relative or actual) 

b. SEEK to request positioning 

c. computations 

d. OUTPUT to req~est actual output 

For in·put 

a. USETI to select a block (relative or actual) 

b. SEEK to request positioning 

c. computations 

d. INPUT to request actual input. 

6.2.9.4 RESET UUO - This UUO causes files that are in the process of being written, but have not 

been CLOSEd or RELEASed, to be deleted; the space is reclaimed. If a previous version of the file 

with the same name and extension existed, it remains unchanged on the disk (and in the UFO). If the 

programmer wishes to retain the newly created file and to delete the older version, he must CLOSE or 

RELEASe the file before doing a RESET UUO. 

1This UUO depends on FTOSEK which is normally off in the OECsystem-1040. 

5.04 Monitor 6-43 
January 1972 



MON nOR CALLS -588-
6.2.9.5 DEVSTS UUO - After each interrupt, FILSER stores the results of a CONI in the DEVSTS 

word of the device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word 

to the user (refer to Paragraph 4.10.1). 

I 6.2.9.6 CHKACC UU0 1 - This UUO allows programs to check the user's access to a particular file. 

The call is: 

MOVE AC, [EXP LOC] 
CHKACC AC, 
error return 
normal return 

;or CALLI AC, 100 

The LH of LOC contains the code for the type of access to be checked and the RH of LOC contains a 

9-bit protection field. If the access code contained in the LH of LOC is greater or equal to 7, then 

the RH of LOC is interpreted as UFD privilege bits. LOC+1 contains the project-programmer number 

of the directory, and LOC+2 contains the project-programmer number of the user. 

The type of access to be checked is represented by one of the following codes: 

o .ACCPR 
1 .ACREN 
2 .ACWRI 
3 .ACUPD 
4. .ACAPP 
5 .ACRED 
6 .ACEXO 
7 .ACCRE 

10 .ACSRC 

Change protection. 
Rename. 
Write. 
Update. 
Append. 
Read. 
Execute only. 
Create in UFD. 
Read di rectory as a file. 

The error return is given if the UUO is not implemented. On a normal return, AC contains 0 if access 

is allowed or -1 if access if not allowed. 

6.2.9.7 STRUUO AC, or CALLI AC, 50 - This UUO manipulates file structures and is intended pri­

marily for monitor support programs. 

The call is: 

MOVE AC, [XWD N, LOC] 
STRUUO AC, 
error return 
normal return 

;or CALLI AC, 50 
;AC contains an error code 
;AC contains status information 

N is the number of words in the argument list starting at location LOC. For the functions with a fixed 

length argument list, N may be O. 

The first word of the argument list specifies the function to be performed. Function 0 (.FSSRC) is the 

only unprivileged function; the remaining functions are available only to jobs logged-in under [1,2] 

1 This UUO depends on FT5UUO which is normally off in the DECsystem-1040. 

5.05 Monitor 6-44 June 1972 



-589- MONITOR CALLS 
or to programs running with the JACCT bit set. Refer to the Specifications sectio,n of the DECsystem-

10 Software Notebooks for a complete description of the privilege,d fI,Jnctionsand their appropriate 

error codes. 

The present functions are as follows: 

Function. Name 

o 

2 

3 

4 

5 

6 

7 

10 

'. FSSRC 

• FSDSL 

• FSDEF 

. FSRDF 

. FSLOK 

• FSREM 

.FSULK 

• FSUCL 

.FSETS 

Define a new search lisHor this iob, This is the only 
unprivileged function. . . . . . . 

Define a new search list for anyiob or for the system . 
Privi leged function. . . 

Define a new fi Ie structur~. Privi leged function . 

Redefine an existing file structure. Privil;ged function. 

Prevent any f~rther new It~ms, ENTERs, or LOOKUPs . 
Privi legedfunction. 

Remove file, structure from system. Privileged function • 

Test and set UFD interlock. Privileged function . 

. Clear UFD interlock. Privile~ed function • 

Simulate disk hardware errors. Privileged function. 

6.2.9.7.1 Function 0 .FSSRC - This function allows a'new file structure search list to be specified 

for the iob issuing thel,lUO. The call is: 

LOC: 
LOC+1: 
LOC+2: 
LOC+3: 
LOC+4: 
LOC+5: 
LOC+6: 

MOVE AC, [XWD N, LOC] 
STRUUO AC, 
error return 
normal return 

o 
. first file structure name 
o 

. stat!Js bits 
second file structure name 
o 
status bits 

;. FSSRC 

The argument list consists of word triplets, which specify the new search list order to replace the cur­

rent search list. The current search list may be determined with the JOBSTR UUO. The first word 

contains a left-iustified file structure name in SIXBIT. The second word is not used at present. The 

third word contains the following status bits: 

Bit 0 = 1 if software write-protection is requested for this file structure. 

Bit 1 = 1 if files are not to be created on this file structure unless the specific 
file structure is specified in an ASSIGN command or in on INIT or 
OPENUUO. 

. . , 

The user may use the MOUNT command to add a new file structure name to his search list. The 

MOUNT program 

5.04 Monitor February 1972 



~1ONITbR' CALLS -590-
a. Requests 'the file strueture to be mounted (if it is not already mounted). 

b. ;' Creates a UFD for the user if he has a logged-in quota in file SYS: QUOTA.SYS 
on that file structure. 

A user cannot create files on a file structure unless he or the proiect-programmer number ,specified h9S 

a UFD on that file structure. However, by using the .FSSRC function, the user may add a file structure 

name to his search list if the file structure is mounted and either the user has a UFD for that file struc­

ture or he does not want to write ,on that file strllcture. If the user attempts to delete a file structure 

name from his search list by the .FSSRC function, the monitor moves the file structure name from the 

active search list to the passive search list. The DISMOUNT command must be used to remove the file 

structure from the active or passive search ,list.' The DISMOUNT command causes the mount count to 

be decremented" signifying that the u~r is finished with the file structure; and checks that the user 

has not exceeded his I~gged-~ut quota o~' the file structure. . . , '. 

Symbol Code 

FSILF% 0, 
FSSNF% 1 
FSSSA% 2 
FSTME% 4 
FSRSL% 17 

.' 

'Table,6..;7 
.;FSSRC Error Codes 

Explanation 

IIIeg91 func-tioncode. 
One or more fi I e struc tures not found. , 
One or more file structures single access only. 
Too many entries in'search list. 
File structure is repeated in a search list definition. 

6.2.9.8 JOBSTR AC, or CALLI AC, 471 .., This UUO returns the next file structure name in the job's 

search list along with other information about the file structure. Programs like DIRECT use this UUO to 

list a user's directory correctly and specify in which file structures the files occur/a's well as the order 

in which they are scanned. 

The call is: 

MOVE AC, [XWD N, LOC] 
JOBSTR AC~ 
error return 
normal return 

;or CALLI AC, 47 

LOC is the address of the N-word argument block. When the UUO is cQlled, the first word shoulc;l be 

one of the following: 

a. -1 to return the first file structure name in the search list. 

b. a file structure name to return the next file structure following the specified name. 

c. 0 to return the file structure name immediately following the FENCE. Refer to 
Paragraph 6.2] • . 

lIn the DECsystem-l040, FTSTR is normally off so that there is only one file structure on the system. 
However, this UUO is implemented and returns the file structure name or -1. 

6-46 



-591- r10N nOR CALLS 

On return, the first word contains: 

a. the first file structure name in the search list if -1 was specified. 

b. the next file structure name appearing after the specified name or after the FENCE 
(if 0 was specified). 

c. 0 if the item after the specified name is the FENCE. 

d. -1 if there are no more file structure names .in the search list, or the search list is 
empty. 

The second word contains 0 (reserved for a future argument), and the third word contains status bits. 

Current status bits are: 

Bit 0 = 1 

Bit 1 = 1 

if software write protection is in effect for this job. 

if files are not to be created on this file structure, when·a 
multiple. file structure name is specified in an INIT or OPEN 
UUO. Files can be created if a specific file structure or 
physical unit is specified. 

The following is an example of reading a job's search list. 

SETOM LOC 

LOOP:ty\OVEI AC, LOC 
JOBSTR AC, 
JRST ERROR 
MOVE AC, LOC 
JUMPE AC, FENCE 
AOJE AC, END 

JRST LOOP 
LOC: -1 

o 
o 

;place -1 in LOC to get 1st 
;name in search list. 
;setup AC. 
;do the UUO. 
;error return. 
;get file structure name returned. 
;jump if it is the FENCE. 
;Iump if end of search list (-1). 

;L OC has next fiI e struc ture name. 

;repeat with next file structure name. 
;file structure name. 
;reserved for future use. 
;status bi ts. 

6.2.9.9 GOBSTR AC, or CALLI AC, 66 - This UUO returns successive file structure names in ttie 

search list of either an arbitrary job or the system.' The GOBSTR UUO is a generalization of the 

JOBSTR UUO (see Paragraph 6.2.9.8). It is a privileged UUO unless information being requested is 

either about the system search list or the jobs logged-in under the same project""'programmer number as 

the calling job's number. For example, the KJOB program needs information about the search lists 

of jobs logged in under the same projeCt-programmer number as the job logging out. The privi lege bits 

required are either JP. SPA (bit 16) or JP. SPM (bit 1.7) of the privi lege word (. GTPRV). 

The call is: 

5.04 Mon itor 

MOVEAC, [XWD N,LOC] 
GOBSTR AC, 
error return 
normal return 

;or CALLI AC, 66 
;AC contains an error code 

6-47 January 1972 



r'10NITOR CALLS -592-. 

When the UUO is called, AC specifies the length (N) and address (LOC) of an argument list. N may 

be 0, 3, 4, or 5 where N = 0 has the same effect as N = 3. Only the arguments included by N(LOC, 

LOC+1, .•• ,LOC+N-l) are used or returned. The argument list is as follows: 

LOC: job number 

>WVD proj, prog 

SIXBIT /fil e struc ture name/ 
o 
Status 

;job whose search 
;list is desired. 
;proj ec t-programmer 
;numberof above j6b. 
;or -1 or O. 
;currently unused. 
;status bits are the same 
;as in JOBSTR iJUO. 

If the job number = -I, the number of the job issuing the UUOis used. If the job numl;>er = 0, the 

given project-programmer number is ignored and the system search list is used. When the given 

project-programmer number is -1, the project-programmer number of the job issuing the UUO is used. 

On an error return, AC contains one of the following error codes: 

Code N\eaning 

3 If LOC+2 is not 0, -1, or a file structure name in jobs 
search list. 

6 

10 

12 

If job number (LOC) and project-programm~r, 
number (LOC + 1) do not correspond. 

If job'issuing the UUO is not privileged. 

If the length specified for the argument list is not 
valid. 

6.2.9.10 SYSSTR AC, or CALLI AC, 46 - This UUO provides a simple mechanism to obtain all the 

file structure names in the system. The proper technique to access all files in all UFDs is to access the 

MFD on each file structure separately. Monitor support programs use this UUO to access aHthe files 

in the system. 

The call is: 

MOVEI AC, 0 or the last value returned by previous SYSSTR 
SYSSTR AC, ;or CALLI AC., 46 
error return 
norrTlol return 

An error return is given if either 

a. The UUO is not implemented 

b. The argument is not a file structure name 

On a normal return, the next public or private file structure name in the system is. returned in AC. A 

return of 0 in AC on a normal return means that the list of file structure names has been exhausted. If 

5.06 Monitor 6-48 March 1973 



-593.,. MONITOR CALLS 
. 0 is specified ,as an argument, the first file, structUre name is returned in AC. The argument cannot be 

a physicai disk unit name or a ,logical name. 

6.2.9.11 SYSPHY Ac, Or CALLI AC, 51 1 - This UUO returns all physical disk units in the system. 

the SYSPHY UUO is similar to the SYSSTR UUO (see Paragraph 6.2.9.10). 

The call is: 

MOVE I A,C, 0 or the last unit name returned by previous SYSPHY 
SYSPHYAC; ior CALLI AC, 51 
errOr return inot implemented or not a physical disk 
normal return iunit name 

On the first call AC should be 0 to request the return of the fint physical unit name. On subsequent 

calls, Ac should contain the previously returned unit name. 

An error return is given if AC does not contain a physical disk unit name as zero. On a normal return, 

the next physical unit name in the system is returned in AC. A return of 0 in AC indicates that the 

list of physical units has been exhausted. 

-;- " ,,1 . . - , -. 
6.2.9.12 DEVPPN AC, or CALLI AC, 55 - This UUO allows a user program to obtairi the project~ 

. . . . . 
programmer number associated with a disk device. The devic~ argument given can be a logical d~ice 
name, a physical device name, ,or one of the special devices called enatz devices. (Refer to DEC­

sY$f'em-10 Operating System Commcinds for the list of system devices.) 

When the UUO is called, ACmust contain either the 'device name as a left-justified SIXBIT qlJOntity, 

or the channel number of the device as a right-justified quantity. 

The call is: 

MOVE AC, [SIXBIT /DEV/l 
DEVPPN AC, 
error return 
norrhal return . 

The error return is token if: 

ior MOVEI AC, channel number 
ior CALLI AC, 55 

1i"his UUO depends on FT5UUO which is normally off in the DECsysterh-1040. 

5.06 Monitor 6-49 Mareh 1973 



~10N nOR CALLS -594-

a. The UUO is not implemented; therefore, the contents of AC remain the same on 
return. In this case, obtain the appropriate project-programmer number as follows: 

1. For the user's area, use the GETPPN UUO (refer to Paragraph 3.6.2.3). 

2. For the special ersatz devices,use the default project:"programmer numbers 
appearing in the following list. 

Device 

All: 
BAS: 
COB: 
DSK: 
HLP: 
LIB: 
MXI: 
NEW: 
OLD: 
SYS: 

Project-programmer Number 

User's project-programmer number 
[5,1] 
[5,2] 
User's project-programmer number 
[2,5] 
Set by each user 
[5,3] 
[1,5] 
[1,3] 
[1,4] 

b. The device does not exist or the channel is not INITed; therefore, zero is 
returned in AC. 

c. The devi ce is not a di Ski the user's project-programmer number is returned in AC. 

If a legal .device is specified, the normal return is given and the project-programmer number associated 

with the device is retumed in AC. However, if the user has device NEW: enabled in his search list 

and device SYS: is given as the argument to the DEVPPN UUO, the project-programmer number 

retumed is [1,5] . 

5.06 Monitor 6-50 March 1973 



-595- ~1ON ITOR CALLS 
The following is CI'I example for reading a UFO if either device SYS or the user's area is specified. 

MOVEI 
GETTAB 

MOVE 
MOVE,., 

MOVE 
MOVE,., 
DEVPPN 

JRST 

,BACK HERE WITH 

GOTPPNI MOVEM 

OPEN 
JRST 

1.00KUP 
JRST 

IN 
JRST 

JRST 

;HERE IF DEVPPN 

GETPPX: CAHN 
JRST 
GETPPN 

JFCL 
JRST 

GETPPS; MOVE 
GETT AB 

MOVE 
JRST 

MODEl 14 

" 

A,l6 
A, 
A,tl"ll 
A,MFDPPN 

A,DEVNAM 
A,MODE+l 
A, 
GETPPX 

IMPLIED 

A,PPN 

1,I'IODE 
ERROR 
I,PPN 
ERROR 
I, 
USEIT 
ERROR 

FAILS 

PPN IN A 

A, tsIXBIT /SYS/) 
GETPPS 
A, 

GOTPPN 

A,tl"lS) 
A, 
A,t1,,1) 
GOTPPN 

,~INARY 
,DEVICE 

,GET MfO PROJECT-PROGRAMMER NUMBER 
,NO CHANGE IF NO GETTAB 
, IN CASE OF LEVEL C 
,STORE MFD DIRECTORY NUMBER 

,GET DEVICE NAME TyPED BY USER 
;STORE FOR OPEN 
,GET PROJECT PROGRAMMER NUMBER 
, NOT IMPLEMENTED OR NO SUCH DEVICE 

,STORE PPN IMPLIED BY DEVICE NAME 

;TRY TO OPEN DEVICE 
;NOT AVAILABLE 
;TRY TO LOOKUP UFO 
;NOT TI'IERE 
,READ FIRST BLOCK 
,GO 00 USEFUL WORK 
,ERROR OR END OF FILE 

,SEE IF DEVICE NAME SYS: 
;YES--GO HANDLE SYS: 
INO-.. GET OWN PPN 
,(IN CASE OF JACCT) 
,OK--PWOCEED ABOVE 

'FIND SYS: PPN 
,FROM ~ONITOR TABLES 
;(IN CASE OF LEV. C) 
,OK--PROCEED ABOVE 

READ 
NAME 

0"INBUFH ,BUFFER HEADER 

PPNI 0 1DIRECTORY NAME 
SIXBH IUFO/ ,EXTENSION 

" MFOPPNI 1" 1 'LOOKUP UFO IN MFO 

6-5Oa March 1973 





-597- MON ITOR CALLS 
6'.2.9.13 DSKCHR AC,or CALLI AC, 45 - The disk characteristics UUO provides necessary infor­

IT!ation for allocating storage efficiently on different types of disks. Most programs are able to use the 

g,eneric device nal)1e DSK rather than special disk namesi however, this UUO is needed by special 

mon i tor su pport programs. 

This UUO accepts, as arguments, names of file structures (e.g., DSKA), types of controllers (e.g., 

DP), controllers (e.g.,DPA), logical units (e.g., DSKA3), physical disk units (e.g., DPA3), or 

. logical device names (e.g., ALPHA). If the argument in LOC specifies more than one unit, the values 
I . 

returned in AC are for 'the first unit ofthe specified set. If the argument specifies mor.e than one file 

structure {i.e. , DSK or logical device name for disk), the first unit of the first file structureis returned. 

The call is: 

tvIOVE AC, [XWD+N, LOC] 

DSKCHR AC, 
error return 
normal'return 

;N is the number of locations 
;of arguments and values starting 
;at location LOC 

;or CALLI AC, 45 
;not a disk 

On a normal return,' AC contains status information in the left half and configuration information in 

the right haiL The left half bits have been chosen so that the normal state is O. 

Name Bit 

DC.RHB Bit 0 = 1 

DC.OFL Bit 1 = 1 

DC.HWP Bit 2 = 1 

DC.SWP Bit 3 = 1 

... 
DC.sAF Bit 4 = 1 

DC.ZMT Bit 5 = 1 

Bit 6 = 1 

:DC.STS Bits 7 and 8 
. DCSTD =11 
• DCSTN =10 

= 01 
. DCSTP =00 

DC.MSB Bit 9 = 1 

DC.NNA Bit 10 = 1 

DC.AWL Bit 11 = 1 

Bits 12 - 14 

Explanation 

The monitor must reread the home block before the next 
operation to ensure that the pack ID is correct. The 
monitor sets this bit when a disk pack goes off-line. 

The unit is off-line. 

The unit is hardware write-protected. 

,The unit belongs to a file structure that is write­
protected by software for this job . 

The unit belongs to a single-access file structure. 

The unit belongs to a FHe structure with a mount count 
that has gone to zero (i. e., no one 'i s using the fi I e 
structure). Available in 5.02 monitors and later. 

Reserved for the future. 

Unit status 
The unit is down. 
No pack is mounted. 
Reserved for the future. 
A pack is mounted • 

The unit has more than one SAT block. 

The unit belongs to a file structure for: which the 
operator has requested no new INITs, LOOKUPs, or 
ENTERs; set by privileged STRUUO function. 

The file structure is write-locked for all jobs. 

. Reserved for future expansion. 

6-51 



~1ON ITOR CALLS -598-

Name Bit Explanation 

DC.TYP Bits 15 - 17 The code identifies which type of argument was passed 
to the monitor in location LOC. 

DC.DCN Bits 1B - 20 Data channel number that software believes hardware 
is connected to; first data channel is O. 

DC.CNT Bits 21 - 26 Controller type: 
• DCCFH ~1 FH (Burroughs disk, Bryant drum) controller RC 10 
.DCCDP =2 DP (Memorex disk packs) controller RP10 

DC.CNN Bits 27 - 29 Control'ler number; first controller of each type starts at 
o (e.g., DPA = 0, DPB = 1) 

DC.UNT Bits 30 - 32 Unit type; a controller-dependent field used to distin-
guish various options of a unit o!"l its c~ntroller. 

If bits 21 - 26 and bits 30 - 32 then type is 

1 0 RDlO Burroughs disk (.DCUFD) 
1 1 RM10B Bryant drum (.DCUFM) 
2 1 RP02 disk pack ,. DCUD2) , 
2 2 RP03 disk p~ck (.DCUD3) 

DC.UNN Bits 33 - 35 Physical unit number within controller; first unit is 0 

T~e -user program supplies in location LOC a left-iustified, SIXBIT disk name which may be one of the 

following: 

. DCTDS 

. DCTAB 
• DCTFS 
• DCTUF 
. DCTCN 
• DCTCC 
. DCTPU 

o 
1 
2 
3 
4 
5 
6 

generic disk name 
subset of fi Ie structures because of fi Ie structure abbreviation 
fi Ie structure name 
unit within a file structure 
controller type 
controller 
physical disk unit name 

or a logical name for one of the above assigned by the ASSIGN or NIOUNT monitor command. 

On a normal return, the monitor returns values in the following locations: 

LOC+1 (. DCUFT) 

LOC+2 (.DCFCT) 

LOC+3 (. DCUNT) 

LOC+4 (.DCSNM) 

LOC+5 (. DCUCH) 

The number of blocks left of the logged-in iob quota before the UFD 
of the iob is exhausted on the unit specified in LOC. If negative, 
the UFO is overdrawn. If the negative number is 400000 000000, 
the UFD has not been accessed since LOGIN; therefore, the monitor 
does not know the quota. 

The number of blocks on a first-come first-served basis left for all 
users in the fi Ie structure. . 

The number of blocks left for all users on the specified unit. 

The file structure name to which this unit belongs. 

Characteristic sizes 

a. . Bits 0-8 are the number of blocks/cluster (DC. UCC) 
b. Bits 9-17 are the number of blocks/track (DC.UCT) 
c. Bits 18-35 are the number of blocks/cylinder (DC.UC.Y) 

(see Appendix F). -

6-52 



LOC+6 (. DCUSZ) 

LOC+7 (. DCSMT) 

LOC+10 (.DCWPS) 

LOC+11 (. DCSPU) 

LOC+12 (.bCK4S) 

LOC+13(. DCSAJ) 

-599- MON nOR CALLS 
The number of 128-word blocks on the specified un it. 

The mount count for the fi Ie structure. The mount count is the number 
of iobs that have done a tv10UNT command for this fi Ie structure with­
out executing a DIStv10UNT command; it is a use count. 

The number of words containing data bits per SAT block on this unit. 

Number of SAT blocks per unit. 

Number of K allocated for swapping. 

Zero if none or more than one iob has this file structure mounted.· 
XWD :-1"n if only iob n has file structure mounted but it is not single 
access. XWD 0, ,n if iob has file structure mounted and it is single 
access; 

LOC+14 (.DCULN) The unit'~ logical name (e.g., DSKBO). 

LOC+15 (.DCUPN) The unit's physical name (e.g., DPAO). 

LOC+16 (.DCUID) The unit's ID (e.g., 2RP003). 

LOC+17 C. DCUFS) The first logical block used for swapping on this unit. 

6.2.9.14 DISK. AC, or CALLI AC, 121 - TheDISK. UUO is a general-purpose call designed for 

setting and examining parameters of the disk and file systems. Its present function allows the user to 

assign a priority for disk operations (data transfers and head positionings) either for a user I/O channel 

or for his job (all I/O channels). Therefore, when a disk operation is initiated, the request with the 

highest priority is selected. If there is more than one request with the same priority, the one most 

satisfying disk optimization is chosen (refer to Chapter 7). 

The range of permissible disk priorities is -3 to +3 with 0 being the normal timesharing priority. Thus, 

a iob can request a lower than normal priority (e.g., when the iob is a background iob). The maximum 

priority (greater than 0) that the user is allowed to assign is set ~y bits 1 and 2 (JP. PRI) of the privilege 

word .GTPRV. 

The call is: 

tv10VE AC, [XWD function, ADR] 
DISK. AC, 
error return 
normal return 

The present function is 

Function 

o 
Name 

.DUPRI 

;or CALLI AC, 121 

Description 

Set the disk priority 

ADR contains, in the right half, the desired priority (-3 to +3) and in the left half, one of the 

following; 

LH (ADR) = n 

LH (ADR) =-1 

~H (ADR) = -:2 

5.05 "Monitor 

Sets the priority for channel n (n is from 0 to 17). 

Sets the priority for all channels OPENed by the iob. 

Sets the priority for the entire iob. 

6-53 June 1972 



rl0N nOR CALLS -600-'I When a priority is set for a channel,it overrides any priority set for the iob and remains in effect 

until the channel is RELEASed. When set for the iob, the priority remains in effect until RESET 

by another DISK. UUO or the SET DSK PRlcommand (refer to DECsystem-IO Operating System 

Commands). 

6.2.9.15 Simultaneous Supersede and Update - Files that may be simultaneously superseded or up­

dated by several different users should be, treated with care. The problem arises when one user has a 

copy of information to besuperseaed by another user. For example, file F contains a count of the 

number of occurrences of a certain event. The count is 10 at a given time. When two users observe 

separate instances of the event, each tries to incrementthecounL 

Supersede - Incorrectly 

Job 1 

LOOKUPA,F 

READ COUNT (=10) 
ADD 1 (=11) 

ENTER B, F 
WRITE OUT (=11) 
CLOSE B, 

In this example, job 2 ignored job l's increment. 

Supersede - Correctly 

Job 1 

ENTER B, F 
LOOKUP A, F 

INPUT A, (=10) 
ADDl (=11) 
OUTPUT B, (=11) 
CLOSE B, 

Job 2 

LOOKUP C, F 
READ COUNT (=10) 
AD,D 1 (=11) 

ENTERD, F 

ENTERD, F 
WRITE OUT (=11) 
CLOSE D, 

Job 2 

ENTER D, F 

ENTER D, F 
LOOKUP C, F 
INPUT C, (=11) 
ADDl (=12) 
OUTPUT D, (=12) 
CLOS~ D, 

(Fail) 

(Succeed) 

(Fail) 

(Succeed) 

In this example, both jobs performed the ENTER FIRST; therefore, incorrect copies were not made and 

,the increment of each job was recorded properly. 

5.05 Monitor 6-54 ' Juner1972 



I 

-601- MaN ITOR CALLS 

The similar problem with a update can be avoided by never using the information returned by the 

LOOKUP: 

Job 1 

LOOKUP A, F 
INPUT A, 

ENTER A, F 
OUTPUT 
CLOSE 

Job 2 

LOOKUP B, F 
INPUTB, 

ENTERB, F (Fail) 
Here any information 
from the LOOKUP and 
INPUT must be discarded. 

6.2.10 File Status (refer to Appendix D) 

The file status of the disk is shown below. 

18 21 24 27 30 33 35 

SET BY USER 

18 

SET BY MONITOR 

Bit 18 - IO.IMP 

Bit 19 - IO.DER 

Bit 20 - IO.DTE 

Bit21 -IO.BKT 

10-0580 

a. INPUT UUO attempted on a read-protected file 

b. INPUT UUO when no LOOKUP was done (or 
super-USETI/USETO previously attempted by 
nonprivileged user) 

c. OUTPUT UUO when no ENTER was done (or 
super-USETI/USETO previously attempted by 
nonprivileged user) 

d. Software-detected checksum error 

e • Software-detec ted redundancy error in SAT b lock or 
RIB, or 

f. Buffered mode I/o attempted after super-USETI/ 
USETO. 

g. OUTPUT UUO attempted on 0 write-locked unit. 

Search error, power supply failure 

Disk or data channel parity error. 
Ch~ksum failure on INPUT. 

a. Quota is exhausted (past overdrawn) 

b. File structure is exhausted 

c . RIB is full 

d. Super-USETI/USETO block is too large for the file 
structure 

(continued on next page) 

6-55 fv4.arch 1973 



~1ON nOR CALLS -602-

I 

Bit 21 - 10.BKT 
'(cont) 

Bit 22 - 10.EOF 

Bit 23 - 10.ACT 

Bit 29 - 10.WHD 

6.2.11 Disk Packs 

e. More than 777777 blocks were read with one super­
USETI/USETO 

f. Block number specified is too low for writing in a 
file that has an append protection code (4). The 
block number must be greater than the current 
highest block number of the file. Not set on a 
USETI or USETO. 

g. A super-USETI or USETO was issued by a non-privileged 
program. 

EOF encountered on INPUT. No special character appears in 
the buffer . 

Device is active 

18 21 24 27 30 33 35 

UNUSED 1IIIIIIIIIIIIIIIIIilllllllllili 
10-0'79 

18 21 24 27 29 30 33 35 

SET 8Y USER I L. _....L._....L._....L.--IIIIIIIIL_....L_~ 
10- 0836 

Write disk pack headers 

A disk pack system combines disk and the DECtape features. Some packs (similar to individual DEC­

tapes) are designed to be private, assignable, and removable. The other packs make up part or all of 

the public disk storage area where system programs and user files are stored. These disk packs belong 

to file structures in the storage pool and cannot be assigned to any single user. The system library and 

shared on-line storage is maintained and swapping storage is assigned within the public disk pack area. 

The only distinction between public and private packs is that private packs are intended to be removed 

from the system during regular operation. Public packs usually stay on-line all the time. However, 

the file structure format for public and private disk packs is identical. 

User programs can exercise much greater control over private packs. For example, a program may 

attempt to position the arms of disk packs in anticipation of future I/o (refer to Paragraph 6.2.9.3). 

This capability is useful to a program that is aware of the contents of a disk and is able to use this 

information to optimize positioning. The program may also specify the position of fj les on the disk by 

using the allocate arguments of the extended LOOKUP, ENTER, and RENAME UUOs. 

Private packs may be accessed by more than one job (multi-access) or restricted to only one job (single 

access). To access a private file structure, the user must type the MOUNT monitor command. If the 

private file structure is already mounted, on-line, and multi-access, the user receives an immediate 

6-56 March 1973 



-603- MON nOR CALLS 
response and may start using the private pack. When the user is finished using the private file struc­

ture, he should type the DISMOUNT monitor command. If no other job is using the file structure, a 

message is typed to the operator informing him that the drives belonging to the file structure are free. 

6.2.11.1 Removable Fi Ie Structures - All file structures are designed as if they could be removed 

from the system; therefore, disk packs are handled the same as other types of disks. 

6.2.11.2 Identification - Disk packs have identifying information written on the home block, a 

block on every unit identifying the file structure to which the unit belongs and its position within the 

file structure. Part of this information is the pack ID, a one- to six-character SIXBITname uniquely 

identifying the disk pack. The MOUNT and OMOUNT programs check that the operator has mounted 

the proper packs by comparing the pack ID in the home block with the information stored in the system 

administration file STRLST .SyS. 

6.2.11.3 IBM Disk Pack Compatibility - The data format of IBM disk packs has variable-length 

sectors and no sector headers. DEC format has fixed-length sectors (128 words) and specially written 

sector headers. Latency optimization is employed to improve system throughput (refer to Paragraph 

7.3). DEC's significantly simpler hardware controller is used without reducing user capabilities. 

To transfer data from a IBM pack system to a DEC pack system, a simple program in a higher-level 

language should be written for both machines. The program then reads the IBM disk pack on the IBM 

computer and writes the files onto magnetic tape. The magnetic tape is then transferred to a DEC 

computer and read by another program, which writes the fil es onto the DEC RPOl or RP02 packs. 

6.3 SPOOLING OF UNIT RECORD Vo ON DISK 

Devices capable of spooling (card reader, line printer, card punch, paper-tape punch, and plotter) 

have an associated bit in the job's .GTSPL word. If this bit is on when the device is ASSIGNed or 

INITed, the device is said to be in spool mode. While in this mode, all I/O for this device is inter­

cepted and written onto the disk rather than onto the device. System spooling programs later do the 

actual I/O transfer to the device. 

Spooling allows more efficient use of the device because users cannot tie it up indefinitely. In 

adclition, since the spooling devices are generally slow and the jobs that are to be spooled are usually 

large, the jobs da not spend unnecessary time in core. 

6-57 



MONITOR CALLS 
6.3.1 Input ~pooling 

-604-

If a LOOKUP is given after the INIT of the card reader, it is ignored and an automatic LOOKUP is . . . . . 
done, using the filename given in the last SET CDR command Clnd the filename extension of .CDR. 

After ev~ry automatic LOOKUP, the name in the input-name counter. GTSPL is incrementec! by 1 so 

that the next <:,utC?matic LOOKUP will use the correct filename. 

6.3.2 Output Spooling 

If an ENTER is done, the filename specified is stored in the RIB in location .RBSPL so that the output 

spooler can' label the output. Therefore, programs should specify a filename if possible. 

If an ENTER is not done, an automatic ENTER is given, using a filename in the general form 

where 

xxxyyy.zzz 

xxx is a three-character name manufactured by the monitor to make t!'1e 
9~haract8!" name unique. 

Y-ty is (1) an appropriate station number Snn if a generic device name is 
INITed or~) a unit number if a specific u~it is INITed. 

zzZ is the generic name of the device;"type (LPT, ~DP, PTP, or PL T) • 
," '. . . 

Output spooling shoul~ not concern the user because a!' requests are queued when the user logs off the 

system. The fi les are ~ve~ to t!'1e output que!Jes before the logged-out quota is computed. 

6-58 



-605- MONITOR CALLS 

CHAPTER 7 
MONITOR ALGORITHMS 

7.1 JOBSCHEDULING 

The number of jobs that may be run simultaneously must be specified in creoting the DECsystem-10 

M>nitor. Up to 127 jobs may be specified. Each user accessing the system is assigned a job number. 

In a multiprogramming system a" jobs reside in core, and the scheduler decides what jobs should run. 

In a swapping system, jobs exist on an external storage device (usua"y disk or drum) as we" as in 

core. The scheduler decides not only what job is to run but also when a job is to be swapped out onto 

the disk (drum) or brought back into core. 

In a swapping system, jobs are retained in queues of varying priorities that reflect the status of the 

jobs at any given moment. Each job number possible in the system resides in only one queue at any 

time. A job may be in one of the following queues: 

a. Run queues - for runnable jobs waiting to execute. (There are three run queues of 
different levels of priorities.) 

b. I/o wait queue - for jobs waiting while doing I/O. 

c. I/o wait satisfied queue - for jobs waiting to run after finishing I/O. 

d. Sharable device wait queue - for jobs waiting to use sharable devices. 

e. TTY wait queue - for jobs waiting for input or output on the user's console. 

f. TTY wait satisfied queue - for jobs that completed a TTY operation and are await­
ing action. 

g. Stop queue - for processes that have been completed or aborted by an error and 
are awaiting a new command for further action. 

h. Nu" queue -.for a" job numbers that ar~ inactive (unassigned). 

Each queue is addressed through a table. The position of a queue address in a table represents the 

priority of the queue with respect to the other queues. Within certain queues, the position of a job 

determine.s its priority with respect to the other jobs in the same queue. For example, if a job is first in 

the queue for a sharable device, it has the highest priority for the device when it becomes available. 

However, if a job is in an I/O wait queue, it remains in the queue until the I/O is completed. 

Therefore, in an I/O wait queue, the job's position has no significance. The status of a job changes 

each time it is placed into a different queue. 

5.04 Monitor 7-1 January 1972 



MONITOR CALLS -606-

Each job, when it is assigned to run, is given a quantum time. When the quantum time expires, the 

job ceases to run and moves to a lower priority run queue. The activities of the job currently running 

may cause it to move out of the run queue and enter one of the wait queues. For example: when a 

currently running j.ob begins input from -a DECtape, it is placed in the I/O wait queue, and the input 

is begun. A second job is set to run wh iI e the input of the fi rst job proCeeds. If the second job then 

decides to access a DECtape for an I/O operation, it is stopped because the DECtape control is busy, 

and it is put in the queue for jobs waiting to access the DECtape control. A third job is set to run. 

The input operation of the first job finishes, making the DECtape control available to the second job. 

The I/O operation of the second job is initiated, and the job is transferred from the device wait queue 

to the I/o wait queue. The first job is transferred from the I/O wait queue to the highest priority run 

queue. This permits the first job to preempt the running of the third job. When the quantum time of 

the first job becomes zero, it is moved into the second run queue, and the third job runs again until 

the second job completes its I/O operations. 

Data transfers also use the scheduler to permit the user to overlap 'computation with data transmission. 

In unbuffered modes, the user supplies an address of a command list containing pointers to relative 

locations in the user area to and from which data is to be transferred. When the transfer is initiated, 

the job is scheduled into an I/O waH queue where it remains until the device signals the scheduler 

that the entire transfer has been completed. 

In buffered modes, each buffer contains a use bit to prevent the user and the device from using the 

same buffer at the same time (refer to Paragraph 4.3). If the user overtakes the device and requires 

the buffer currently being used by the device as his next buffer, the user's job is scheduled into an 

I/O wait queue. When the device finishes u~ing the buffer, the device calls the scheduler to reacti­

vate the job. If the device overtakes the user, the device is stopped at the end of the buffer and is 

restarted when the user finishes·with the buffer. 

Scheduling occurs at each clock tick (1/6Oth or 1/5Oth of a second) or may be forced at monitor level 

between clock ticks if the current job becomes blocked (unrunnable). The asynchronous swapping al­

gorithm is also called at each clock tick and ~as the task of bringing a joQ from disk into core. This 

function depends on 

a. The core shuffling routine, which consolidates unused areas in core to make suffi­
cient room for the incoming job, 

b. The swapper, which c~ates additional room in core by transferring jobs from core 
to disk. 

Therefore, when the scheduler is selecting the next job to be run, the swapper is bringing the ~ext job 

to be run into core. The transfer from disk to core takes place while the central processor continues 

computation for the previous job. 

7-2 



-607:" MON nOR CALLS 
7.2 PROGRAM SWAPPING 

Program swapping is performed by the monitor on one or more units of the system independent of the 

file structures that may also use the units. Swapping space is allocated and deallocated in clusters of 

1 K words {exactly}; this size is the increment size of the memory relocation and protection mechanism. 

Directories are not maintained, and retrieval information is retained in core. Most user segments are 

written onto the swapping units as contiguous units. Swapping time and retrieval information is, there­

fore, minimized. Segments are always read completely from the swapping unit into core with one I/O 

operation. The swapping space on all units appears as a single system file, SWAP.SYS, in directory 

SYS in each file structure. This file is protected from all but privileged programs by the standard file 

protecti on mechan i sm (refer to Paragraph 6.2. 3) • 

The reentrant capability reduces the demands on core memory, swapping space, swapping channel, 

and storage channel; however, to reduce the use of the storage channel, copies of sharable segments 

are kept on the swapping device. This increases the demand for swapping space. To prevent the 

swapping space from being filled by user's files and to keep swapped segments from being fragmented, 

swapping space is preallocated when the file structure is refreshed. The monitor dynamically achieves 

the space-time balance by assuming that there is no shortage of swapping space. Swapping space is 

never used for anything except swapped segments, and the monitor keeps a single copy of as many seg­

ments as possible in this space. (The maximum number of segments that may be kept may be increased 

by individual installations but is always at least as great as the number of jobs plus one.) If a shar­

able segment on the swapping space is currently unused, it is called a dormant segment. An idle seg­

ment is a sharable segment that is not used by users in core; however, at least. one swapped-out user 

must be using the segment or it would be a dormant segment. 

Swapping disregards the grouping of simi lar units into fi Ie structures; therefore, swapping is done on a 

unit basis rather than a file structure basis. The units for swapping are grouped in a sorted order, re­

ferred to as the active swapping list. The total virtual core, which the system can allocate to users, 

is equal to the total swapping space preallocated on all units in the active swapping list. In comput­

ing virtual core, sharable segments count only once, and dormant segments do not count at all. The 

monitor does not allow more virtual core to be granted than the system has capacity to handle. 

When the system is started, the monitor reads the home blocks on all the units that it was generated to 

handle. The monitor determines from the home blocks which units are members of the active swapping 

list. This list may be changed at once-only time. The change does not require refreshing of the file 

structures, as long as swapping space was preallocated on the units when they were refreshed. All of 

the units with swapping space allocated need not appear in the active swapping list. For example: a 

drum and disk pack system should have swapping space allocated on both drum and disk packs. Then, 

if the drum becomes inoperable, the disk packs may be used for swapping without refreshing. 

7-3 



~~ONITOR CALLS -608-
Users cannot proceed when virtual core is exhausted; therefore, ~ILSER is designed to handle a variety 

of disks as swapping media. The system administrator allocates additional swapping space on slower 

disks and virtually eliminates the possibility of exhausting virtual core; therefore, in periods of heavy 

demand, swapping is slower for segments that must be swapped on the slower devices. It is also unde­

sirable to allow dormant segments to take up space on high-speed units. This forces either fragmenta­

tion on fast units or swapping on slow units; therefore, the allocation of swapping space is important 

to overa II systp.m effi c i ency • 

The swapping allocator is responsible for assigning space for the segment the swapper wants to swap 

out. It must decide 

a. Onto which unit to swap the segment. 
b. Whether to fragment the unit if not enough contiguous space is available. 
c. Whether to make room by deleting a dormant segment. 
d. Whether to use a slower unit. 

The units in the active swapping list are divided into swapping classes, usually according to device 

speed. For !implicity, the monitor assumes that all the units of class 0 are first followed by all the 

units of class 1. Swapping classes are defined when the file structures are refreshed and may be 

changed at once-only time. 

When attempting to allocate space to swap out a low or high segment, the monitor performs the follow­

ing: 

Step 

2 

3 

Procedure 

The monitor looks for contiguous space on ·one of the units of the 
first swapping class. 

The monitor looks for noncontiguous space on one of the units in 
the same class. 

The monitor checks whether deleting one or more dormant segments 
would yield enough contiguous or noncontiguous space. 

If all of these measures fail, the monitor repeats the process on the next swapping class in the active 

swapping list. If none of the classes yield enough space, the swapper begins again and deletes 

enough dormant segments to fragment the segment across units and classes. When a deleted segment is 

needed again, it is retrived from the storage device. 

7-4 



-609- ~10N nOR CALLS 
7.3 DEVICE OPTIMIZATION 

7.3.1 Concepts 

Each I/o operation on a unit consists of two steps: positioning and data transferring. To perform I/o, 
the unit must be positioned, unless it is already on a cylinder or is a non-positioning device. To posi­

tion a unit, the controller cannot be performing a data transfer. If the controller is engaged in a data 

transfer, the positioning operation of moving the arm to the desired cylinder cannot beQin until the 

data transfer is complete. 

The controller ensures that the arms have actually moved to the correct cylinder. This check is called 

verification, and the time required is fixed by hardware. If verification fails, the controller interrupts 

the processor, and the software recalibrates the positioner by moving it to a fixed place and beginning 

again. When verification is complete, the controller reads the sector headers to find the proper sector 

on which to perform the operation. This operation is called searching. Finally, the data is transferred 

to or from the desired sectors. To understand the optimization, the transfer operation includes verifi­

cation, searching, and the actual transfer. The time from the initiation of the transfer operation to 

the actual be~inning of the transfer is called the latency time. The channel is busy with the control­

ler for the entire transfer time; therefore, it is important for the software to minimize the latency time 

The FlLSER code, the routines that queue disk requests and make optimization decisions, handles any 

number of channels and controllers and up to eight units for each controller. 1 Optimization is de­

signed to keep: 

a. As many channels as possible performing data transfers at the same time. 

b. As many units positioning on all controllers, which are not already in position for 
a data transfer. 

Several constraints are imposed by the hardware. A channel can handle only one data transfer on one 

control at a time. Furthermore, the control can handle a data transfer on only one of its units at a 

time. However, the other units on the control can be positioning while a data transfer is taking place 

provided the positioning commands were issued prior to the data transfer. Positioning requests for a 

unit on a controller that is busy doing a data transfer for another of its units must be queued unti I the 

data transfer is finished. When a positioning command is given to a unit through a controller, the 

controller is busy for only a few microseconds; therefore, the software can issue a number of position­

ing commands to different units as soon as a data transfer is complete. All units have only positioning 

mechanism that reaches each point; therefore, only one positioning operation can be performed on a 

unit at the same time. All other positioning requests for a unit must be queued. 

1 Disk latency optimization depends on FTDOPT which is normally off in the DECsystem-l040. If 
this switch is off, all requests are handled on a first-come first-served basis. 

5.04 Monitor 7-5 January 1972 



r'10N ITOR CALLS -610-
The software keeps a state code in memory for each active file, unit, controller, and channel, to re­

member the status of the hardware. Reliability is increased-because the software does not depend on 

the status i nformati on of the hardware. The state of a unit is as foil ows: 

SW 

S 

PW 

P 

TW 

T 

Idle; No positions or transfers waiting or being performed. 

Seek Wait; Unit is waiting for control to become idle so that it can in­
itiate positioning (refer to Paragraph 6.2). 

Seek; Unit is positioning in response to a SEEK UUO; no transfer of 
data follows. 

Position Wait; Unit is waiting for control to become idle so that it can 
initiate positioning. 

Position; Unit is positioning; transfer of data follows although not nec­
essari lyon this controller. 

Transfer Wait; Unit is in position and is waiting for the controller/ 
channel to become idle so that it can transfer data. 

Transfer; Unit is transferring; the controller and channel are busy per­
forming the operation. 

Table 7-1 lists the possible states for files, units, controllers, and channels. 

Filet Unit 

I I 
SW 
S 

PW PW 
P P 
TW TW 
T T 

Table 7-1 
Software States 

Controller 

I 

T 

Channel 

I 

T 

t Cannot be in S or SW state because SEEKs are ignored if the 
unit is not idle. 

7.3.2 Queuing Strategy 

When an I/O request for a unit is made by a user program because of an INPUT or OUTPUT UUO, one 

of several things can happen at UUO level before control is returned to the buffer-strategy module in 

UUOCON, which may, in turn, pass control back to the user without rescheduling. If an I/O request 

requires positioning of the unit, either the request is added to the end of the position-wait queue for 

7-6 



-611- MON nOR CALLS 
the unit if the control or unit is busy, or the positioning is initiated immediately. If the request does 

not require positioning, the data is transferred immediately. If the channel is busy, the request is 

added to the end of the transfer-wait queue for the channel. The control gives the processor an inter­

rupt after each phase is completed. Optimization occurs at interrupt level when a position-done or 

transfer-done interrupt occurs. 

7.3.2.1 Position-Done Interrupt Optimization - The following action occurs only if a transfer-done 

interrupt does not occur first. Data transfer is started on the unit unless the channel is busy transfer­

ring data for some other unit or control. If the channel is busy, the request goes to the end of the 

transfer-wait queue for that channel. 

7.3.2.2 Transfer-Done Interrupt Optimization - When a transfer-done interrupt occurs, all the 

position-done interrupts inhibited during the data transfer are processed for the controller, and the re­

quests are placed at the end of the transfer-wait queue for the channel. All units on the controller 

are then scanned. The requests in the position-wait queues on each unit are scanned to see the re­

quest nearest the current cyclinder. Positioning is begun on the unit of the selected request. All re­

quests in the transfer-wait queue for all units on the channel that caused the interrupt are then 

scanned and the latency time is measured. The request with the shortest latency time is selected, and 

the new transfer begins. 

7.3.3 Fairness Considerations 

When the system selects the best task to run, users making requests to distant parts of the disk may not 

be serviced for a long time. The disk software is designed to make a fair decision for a fixed percent­

age of time. Every n decisions the disk software selects the request at the front of the position-wait or 

transfer-wait queue and processes it, because that request has been waiting the longest. The value of 

n is set to 10 (decimal) and may be changed by redefining symbols with MONGEN. 

7.3.4 Channel Command Chaining 

7.3.4.1 Buffered Mode - Disk accesses are reduced by using the chaining feature of the data chan­

nel. Prior to reading a block in buffered mode, the device independent routine checks to see if there 

is another empty buffer, and if the next relative block within the file is a consecutive logical block 

within the unit. If both checks are true, FILSER creates a command list to read two or more consecu­

tive blocks into scattered core buffers. Corresponding decisions are made when writing data in buf­

fered mode, and, if possible, two or more separate buffers are written in one operation. The ~ommand 

chaining decision is not mode when a request is put into a position-wait or transfer-wait queue; 

7-7 



MotH TOR CALLS -612-
instead, it is postponed until the operation is performed, thus increasing the chances that the user 

program will have more buffers available for input or output. The default size of the channel com­

mand list is 20 decimal words, and can be changed by redefining CONMAX with MONGEN. 

7.3.4.2 Unbuffered fv't>de - Unbuffered modes do not use channel chaining, and therefore, read or 

write one command word at a time. Each command word begins at the beginning of a 128-word block. 

If a command word does not contain an even multiple of 128 words, the remaining words of the last 

block are not reod, if reading, and are written with zeroes, if writing. 

7.4 MONITOR ERROR HANDLING 

The monitor detects a number of errors. If a hardware error is detected, the monitor repeats the oper­

ation ten times. If the failure occurs eleven times in a row, it is classified as a hard error. If the op­

eration succeeds after fail ing one to ten times, it is a soft error. 

7.4.1 Hardware Detected Errors 

Hardware detected errors are classified either as device errol'!' ::>r as data errors. A device error indi­

cates a malfunction of the controll er, or channel. A data error indicates that the hardware parity did 

not check or a search for a sector header either did not succeed or had bod parity (the user's data is 

probably bad). 

A device error sets the 10. DER bit in the channel status word, and a data error sets the 10. DTE bit. 

Disk units may have imperfect surfaces; therefore, a special non-timesharing diagnostic program, 

MAP, is provided to initially find all the bad blocks on a specified unit. The logical disk addresses of 

any bad regions of one or more bad blocks are recorded in the bad allocation table (BAT) block on the 

unit. The monitor allocates all storage for files; therefore, it uses the BAT block to avoid allocating 

blocks that have previously proven bad. The MAP program writes two copi es of the BAT block because 

the BAT block might be destroyed. If the MAP program is not used, the monitor discovers the bad re­

gions when it tries to use them and adds this information to the BAT block. However, the first user of 

the bad region loses that part of his data. 

A hard data error usually indicates a bad surface; therefore, the monitor never returns the bad region 

to free storage. This results in the bad region causing an error only once. The bad unit and the logi­

cal disk address are stored in the retrieval information block (RIB) of the file when the file is ClOSEd 

or RESET and the extent of the bad region is determined. The origin and length of the bad region is 

stored in the bad allocation table (BAT) block. 

5.04 Monitor 7-8 January 1972 



-613- r'1ONITOR CALLS 
7.4.2 Software Detected Errors 

The monitor makes a number of software checks on itself. It checks the folded checksum (refer to Ap­

pendix H) computed for the first word of every group and stored in the retrieval pointer. The monitor 

also checks for inconsistencies when comparing locations in the retrieval information block with ex­

pected values (filename, filename extension, proiect-programmer number, special code, logical block 

number). The monitor checks for inconsistencies in the storage allocation table block when comparing 

the number of free clusters expected with the number of zeroes. A checksum error or an inconsistency 

error in the SAT block or RIB normally indicates that the monitor is reading the wrong block. When 

these errors occur, the monitor sets the improper mode error bit (10.1 MP) in the user channel status 

word and returns control to the user program. 

7.5 DIRECTORIES 

I 7.5.1 Order of Filenames 

In 5.02 and earlier monitors, the names of newly created files are appended to the directory if the di­

rectory does not contain more than 64 filenames. If the directory contains more than 64 filenames, a 

second block is used for the new filenames. When filenames are deleted from the first block, entries 

from the second block are not moved into the first. When additional new fil~s are created, theiF ,names 

are added to the end of the first block of the directory instead of the end of the directory. Thus, the 

order of the filenames in the directory may not be according to the date of creation. 

l in 5.03 and later monitors, if FTDUFD = 1, files are always entered in the directory in the order in 

which they are created. In the DECsystem-1040, FTDUFD is normally off indicating that the order of 

filenames is the same as in the 5.02 and earlier monitors. 

7.5.2 Directory Searches 

Table space in core memory is used to reduce directory searching times. The JBTPPB table contains 

pointers to a list of four-word blocks for the user's project-programmer number, one block for each file 

structure on whi ch the user has a UFD. 

Four-word name and access blocks contain copies of LOOKUP information for recently-accessed files 

and may reduce disk accesses to one directory read for a LOOKUP on a recently-active file. Recent 

LOOKUP failures are also kept in core, but are deleted when space is needed. 

7.6 PRIORITY INTERRUPT ROUTINES 

7.6.1 Channel Interrupt Routines 

Each of the seven PI channels has two abolute locations associated with it in memory: 40+2n and 

41+2n, where n is a channel number (1-7). When an interrupt occurs on a channel, control is immedi­

ately transferred to the first of the two associated locations (unless an interrupt on a higher priority 

5.05 Monitor 7-9 
June 1972 



r'1ON ITOR CALLS -614-
channel is being processed}. For fast service of a single device, the first location contains either a 

BLKI or BLKO instruction. For service of more than one device on the same channel, the firSt loca­

tion contains a JSR to location CHnin the appropriate channel interrupt routine. The JSR ensures 

that the current state of the program counter is saved. 

Each channel interrupt routine (mnemonic name, CHANn, where n is the channel number) consists of 

three separate routines: 

CHn: 

SAVCHn: 

XITCHn: 

7.6.2 Interrupt Chains 

The contents of the program counter is saved in location CHn. 
CHn+l contains a JRST to the first device service routine in 
the interrupt chain. 

The routine to save the contents of a specified number of ac­
cumulators. It is called from the device service routines with 
a JSR. 

The routine to restore saved accumulators. Device service 
routines exit to XITCHn with a POP J PDP, if SAVC Hn was 
previously called. . 

Each device routine contains a device interrupt routine DEVINT where DEV is the three-letter mne­

monic for the device concerned. This routine checks to determine whether an interrupt was caused by 

device DEY. The interrupt chain of a given channel is a designation for the logical positioning of 

each device interrupt routine associated with that channel. 

The monitor flow of control on the interrupt level through a chain is illustrated below. Channel 5 is 

used in the example. 

Monitor Routine 

Absolute 
Locations 

CHAN5 

PTPSER 

LPTSER 

Relevant Code 

52/JSR CH5 
53/ 

CH5: 0 
JRST PTPINT 

~ 

PTPI NT: CO N SO PTP, PTPDO N 
JRST LPTINT 

Explanation 

;control transferred here 
ion interrupt 

;contents of PC saved here 
;control, transfers to fi rst 
;Iink in interrupt chain 

;if PDP done bit is 
ion, PTP was cause 
;of interrupt -
;otherwise, go to 
;next device. 

LPTINT: CaNSO LPT , LPTLOV+LPTERR+LPTDON 
JEN @ CH5 ithree possible bits 

;may indicate that 
;LPT caused interrupt 

7-10 



-615- MONITOR CALLS 
When areal-time device is added to the interrupt chain (CONSO skip chain) by a RTTRP UUO (refer 

to Paragraph 3.8.1), the device is added to the front of the chain. After putting a real-time device 

on Channel 5 in single mode (refer to Paragraph 3.8.1), the chain is as follows: 

Monitor Routine 

Absolute 
Locations 

CHAN5 

RTDEV 

PTPSER 

LPTSER 

Relevant Code 

52/JSR CH5 
53/ 

CH5: 0 
JRST RDTINT 

! 

RTDINT: CONSO RTD ,BITS 
JRST PTPINT 
jRST <context switcher and 

dispatch for real-time 
interrupts > 

PTPINT: CONSO PTP ,PTPDON 
JRST LPTINT 

Explanation 

;control transferred here 
;on interrupt 

; contents 'of PC saved here 
;control transfers to first 
;Iink in interrupt chain 

;if PTP done bit is 
;on, PTP was cause 
;of interrupt -
;otherwise, go to 
;next device. 

LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON 
JEN @ CH5 ;three possible bits 

;may indicate that 
;LPT caused interrupt 

After putting a real-time device on channel 5 in normal block mode (refer to Paragraph 3.8.1), the 

chain is as follows: 

Monitor Routine 

Absolute 
Locations 

CHAN5 

RTDEV 

Relevant Code 

52/JSR CH5 
53/ 

CH5: 0 
JRST RTDINT 

! 

RTDINT:CONSO RTD,BITS 
JRST PTPINT 
BLKI RTD, POINTR 
JRST <context switcher> 
JEN @ CH5 

7-11 

Explanation 

;control transferred here 
;on interrupt 

;contents of PC saved here 
;control transfers to first 
;Iink in interrupt chain 

(continued on next page) 



~lOiHTOR CALLS 

Monitor Routine 

PTPSER 

LPTSER 

-616-
Relevant Code 

PTPINT: CONSO PTP,PTPDON 
JRST LPTINT 

Explanation 

;if PTP done bit is 
;on, PTP was cause 
;of interrupt -
; otherwise , go to 
;next device. 

LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON 
JEN @ CH5 ;three possible bits 

;may indicate that 
;LPT caused interrupt. 

After putting a real-time device on channel 6 in fast block mode (refer to Paragraph 3.8.1), the chain 

is as follows: 

Monitor Routine 

Absolute 
Locations 

CHAN6 

Relevant Code 

54/BLKO RTD,POINTR 
55/JSR CH6 

CH6: 0 
JRST <context switcher> 

Explanation 

;control transferred 
; here on interrupt 

;contents of PC saved 
;control transfers to 
;context switcher. 

The exec mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single 

mode, normal block mode, aQd fast block mode. The following examples illustrate the chain when 

used with each of the three modes. 

Monitor Routine 

Absolute 
Locations 

CHAN5 

RTDEV 

Single Mode (Exec Mode) 

Relevant Code 

52/JSR CH5 
53/ 

~ 

CH5: 0 
JRST RDTINT 

~ 

RTDINT: CONSO RTD,BITS 
JRST PTPINT 
JSR TRPADR 
JEN @CH5 

7-12 

Explanation 

;control transferred here 
ion interrupt 

;contents of PC saved here 
;control transfers to first 
;Iink in interrupt chain 

(continued on next page) 



Mo.riitor Routine 

PTPSER 

LPTSER 

Monitor Routine 

Absolute 
LOCations 

CHAN5 

RTDEV 

PTPSER 

LPTSER 

Monitor Routine 

Absolute 
Locations 

-617-
Single Mode (Exec Mode) (Cont) 

Relevant Code 

PTPINT:CONSO PTP ,PTPDON 
JRST LPTINT 

MONiTOR CALLS 

Explanation 

;if PTP done bit is 
ion, PTP was cause 
;of interrupt -
;otherwise, go to 
;next device. 

LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON 
JEN @ CH5 ;three possible bits 

;may indicate that 
;LPT caused interrupt 

Normal Block Mocle (Exec Mode) 

Relevant Code 

52/JSR CH5 
53/ 

CH5: 0 
JRST RTDINT 

I 
, 

RTDI NT :CO N SO RTD, BITS 
JRST PTP.INT 
BlKI RTD ,POINTR 
JSR TRPADR 
JEN @CH5 

PDPINT: coNso PTP ,PTPDON 
JRST LPTINT 

Explanation 

;control transferred here 
ion interrupt 

;contents of PC saved here 
; control transfers to first 
;Iink in interrupt chain 

;if PTP do~e bit is 
;on, PDP was cause 
;of interrupt­
;otherwis~, go to 
;next device. 

LPTINT :CO NSO lPT, LPTLOV+lPTERR+LPTDO N 
JEN @ CH5 ;three possible bits 

;may indicate that 
;lPT caused interrupt. 

Fast Block Mode (Exec Mode) 

Relevant Code 

54/BLKO RTD ,POINTR 
55/JSR CH6 

l 

7-13 

Explartation 

;control transferred here 
ion interrupt 

(continued on next page) 



MON nOR CALLS 

Monitor Routine 

CHAN6 

RTDEV 

-618-

Fast Block Mode (Exec Mode) (Cont) 

Relevent Code 

CH6: 0 
JRST ROll NT 

! 

RTOINT: JSR TRPAOR 
JEN @CH6 

Explanation 

;contents of PC saved here 
; control transfers to first 
;link in interrupt chain 

7.7 MEMORY PARITY ERROR ANALYSIS, REPORTING, AND RECOVERy 1 

. The memory parity error analysis and recovery software allows the machine to run with PARITY STOP 

off, thereby gaining increased CPU speed (1 0% more on the KA 10 processor and 100% more on the 

KilO processor), better error reporting, and improved failsoft recovery. The analysis software considers 

fts goals to be 

1) Never ieopardize the system or the user program by allowing it to continue with bad 
data from memory. 

2) Always maintain the running of the system with the maximum number of users as possible 
as long as there is no possibil ity of violating the integrity of the system or the user 
program. 

In either case, complete information is printed for the operator so that he can reconfigure the memories 

and reload the system when necessary. Additional information is recorded on the disk by DAEMON 

for field service in order that the cause of the error can be located and fixed. 

7.7.1 Description of Analysis 

The error analysis software differentiates between user mode and executive mode when a parity error 

occurs. If the processor is executing in user mode and the user is enabled for parity trapping (refer 

to Paragraph 3.1.3.1), control is transferred to the user's routine. Otherwise, the execution of the 

user's iob is stopped and the user receives the error messages 

?ERROR IN JOB n 
?MEM PAR ERR AT USER PC nnnnnn 

Simultaneously, a request is made for the lowest priority channel routine to sweep through core in 

order to locate all words with bad memory parity, in case there is more than one word. During the 

sweep, all locations with bad parity are rewritten, so that subsequent references usually will not re­

ceive a parity error. After the sweep of core is completed, all iobs (including the current iob) with 

IThis feature depends on FTMEMPAR which is normally off in the OECsystem-1040. 

5.05 Monitor 7-14 June 1972 



I 
-619- MaN ITOR CALLS 

parity errors in their low segments receive the above ERROR IN JOB message. All jobs with errors 

in' their high segments are swapped out if the high segment has the hardware user-mode write protect 

bit set, since a copy exists on the swapping space. In this case recovery occurs for all jobs sharing 

the high segment except for the currently running job. If the high segment is not write protected for 

a job (so that there is no copy on the disk), if the high segment is locked, or if one of the sharing 

job's low segment is locked, all jobs sharing the high segment ere stopped and receive an error message 

since no recovery is possible. In addition, the segment name is cleared so that new users will receive 

a new copy from the file system on a R, RUN, or GET command or a RUN or GETSEG UUO. 

If the processor is in ,executive mode when the error occurs, the analysis procedure depends on the 

value of the PC. Two conditions are recognized as not being harmful: 

1) a parity error during the PI 7 sweep of memory. 

2) a parity error during the storing of data words around the location of a channel-detected 
memory parity error. 

If the PC is at the BlT instruction which moves user core to facilitate core allocation, the bad word 

is determined from the BlT pointer. If the pointer is in the protected part of the iob data area, this 

area is cleared so the monitor will not attempt to use the bad words, since they contain executive 

mode addresses. In either case, the user's iob is stopped and an error message is output to the user. 

In addition, the memory sweep procedure is invoked to find additional words with bad parity. 

If the PC is an executive mode location and there are no Pis in progress, the UUO is run to completion, 

the current user receives an error message, and the memory sweep procedure is invoked. If the sweep 

routine detects bad parity in an address within the monitor or detects no words with bad parity (because 

they have been rewritten on a read-pause-write instruction), the routine prints on the CTY (instead 

of OPR), 

1EXEC PARITY HALT 
1n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CPUn FOR JOBx rprogram] 

and then HALTs. This message is printed without using the interrupt system in order to maximize the 

chances of the ,message being output. Although the operator can attempt to continue the system by 

pushing the CONT console switch, this is not a recommended operator procedure (e.g., the monitor 

may have incorrect data thereby causing more damage). (Refer to MEMPAR in Notebook 8 of the 

DECsystem-l0 Software Notebooks for complete operator instructions on memory parity error recovery.) 

If a PI is in progress when the parity error is detected, a sweep of core is made at the high priority 

APR PI level. If a word with bad parity is discovered in the monitor area or no parity errors are 

found, the monitor prints the above message to the operator and halts. The finding of words without 

bad parity is considered serious because the read-pause-write class instructions rewrite memory before 

the parity interrupt occurs so that the parity error is usually corrected. In this case, the operator re­

ceives the message 

10 MEM PAR ERRORS 

5.06 Monitor 7-15 Ntarch 1973 



-620-
On all recoverable or non-recoverable parity errors, the operator receives on either OPR or CTY a 

message similar to the following: 

?n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CPUn for JOBx [program) 

preceded by 5 bells. This alerts him to potential problems and gives him the necessary information for 

reconfiguring the memories. In addition, the operator is notified of the lobs that have been stopped 

in case they are crucial to the operation of the system. If they are, he can take appropriate action 

to. restart them. 

If the DF10 channel detects a memory parity error while reading for file I/O from memory, the user's 

lob is not stopped and the user does not receive an error message. Instead the error is treated as a 

device error and the 10. DER error bit is set. However, the operator receives the message 

?n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CHANNEL n 

where n is the logical channel number starting with the fastest device as defined by MONGEN. For 

example, the fastest disk unit is on the first channel and the magnetic tape TM10B control is on the last 

channel. 

If the DF10 channel detects a memory parity error while swapping a lob out of core, the user's lob is 

stopped and the user receives the following error message: 

?ERROR IN JOB n 
?SWAP OUT CHN MEM PAR ERR 

The operator receives the message 

?m MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CHANNEL n FOR JOB x [prog] 

If the error is detected in a high segment on the swap out, all lobs using the high segment receive the 

error message. The high segment name is cleared so that new users will receive a new copy of the 

segment from the file system. 

On all parity errors detected by the processors or the channels, DAEMON is awakened to correct the 

information stored by the monito~!f analysis routine. DAEMON writes this information in the hardware 

log file on the disk for the use of field service in diagnosing and solving the problem. 

5.05 Monitor 7-16 June 1972 



-621-

APPENDIX A 
DECTAPE COMPATIBILITY 
BETWEEN DEC COMPUTERS 

r·1ON ITOR CALLS 

The following chart illustrates the ability to read the indicated tapes with a suitable program. In 

general, the standard software of machines of one family will not read tapes written by the standard 

softw~re of machines of a different family. 

The standard tapes of the PDP-l, PDP-4, PDP-:-6, PDP-:7, PDP-9, PDP-10, PDP-:-ll, and PDP-15 

consist of 578 blocks of 128 36-bit words (256 18-bit words). The standard tapes of the PDP-15 and 

the PDP-:-8 family consist of 4096 blocks of 129 12-bit words (43 36-bit words). 

A-l 



» 
~ 

~ by 
Written 

by 

PDP-l 

PDP-4 

PDP-5 

PDP-6 

PDP-7 

PDP-8 

PDP-8/I,L 

PDP-8/E 

LINC-8 & 
Converter 

PDP-9 

PDP-l0 

PDP-ll 

PDP-12 & 
TC12-F 

PDP-15 
-.- ---

PDP-l • PDP-4 PDP-5 PDP-6 PDP-7 PDP-8 PDP-8/I,L PDP-8/E LINC-8 PDP-9 PDP-l0 
550,55D-A 550 552 551 550-A 552, TCOI TC01, TC08 TC08-P, And TC02 TDl0 

And And And And And And And TD8E, Optional And And 
555, TU55, 555, TU55, 555, TU55, 555,TU55 555, TU55, 555, TU55, TU55, TU56 And Converter TU55, TU55jTU56 

TU56 TU56 TU56 TU56 TU56 TU56 TU55, And TU56 
TU56 PNCtape 

Drive 

A Z Z Z Z Z Z Z Z Z Z 

Z A D D A D D D E D D 

Z D A B C A A A E A A 

Z D A A C A A A E A A 

Z A C C A C C C E C C 

Z D A B C A A A E A A 

Z D A B C A A A E A A 

Z D A B C A A A E A A 

Z E E B E E E E A E E 

Z D A A C A A A E A A 

Z D A A C A A A E A A 

Z D A B C A A A E A A 

Z E E B E E E E A E E 

Z D A A C A A A E A A 
._- -

KEY: A Con be done. 

Can be done only by ignoring indicated checksum errors. 

C Can be done with programmed checksum. 

D Con probably be done as in (C) ,except that PDP-4 is too slow for calculating the exclusive-or checksum 
in line; calculations must be done before writing and 'after reading. 

z 

NOTES: 

Program and optional hardware exist to convert to and from LINCtape format. Standard PDP-12 and 
LINC-8 tapes are in LINCtape format which is incompatible. DECtapes must be IOrmatted on another 
machine before writing on PDP-12 or LINC-8. 

No information available. 

1. PDP-8/s cannot use DECtape.Classic> LINC only uses L1NCtape which"is incompatible with DECtape; 

2. The PDP-6 and 10 (and probably other machines) cannot find the first or last black when searching from­
the 'end zone. 

3. The PDP-9 and -15 software writes data in reverse order in blocks which are written while moving 
in the reverse direction. 

PDP-ll PDP-12 
TCll TC12 
And And 

TU56 TC12-F 
TU55, 
TU56 

Z Z 

D E 

A E 

A E 

C E 

A E 

A E 

A E 

E A 

A E 

A E 

A E 

E A 

A E 
-

PDP-15 
TC02, TC15 

And 
TU55, TU56 

Z 

D 

A 

A 

C 

A I 

A 

A 

E 

A 

A 

A 

E 

A 
--------

3: 
C) 
::2 --I 
C) 
::0 

n 
:l> 
r­r­en 

I 
en 
N 
N 

I 



-623- MaN ITOR CALLS 

APPENDIX B-
WRITiNG REENTRANT USER PROGRAMS 

B.l DEFINING VARIABLES AND ARRAYS 

The LOADER simplification makes it someWhat more difficult to define variables and arrays. The easiest 

way to define variables and arrays, so the resulti.,g relocatable binary can be loaded on a one- or two­

segment machine, is to put them all in a separate subprogram as internal global symbols using Block 1 

and Block N pseudo-ops. All other subprograms refer to this data as external global locations. Most 

reentrant programs have at least two subprograms, one for the definition of low segment locations and 

one for instructions anti constants for,th~ high segment. (This last subprogram must have either,a HISEG 

pseudo-op or a TWOSEG pseudo-op followed by Raoc 4OOOO0.) Programs are self-initializing; there­

fore, they clear the low segment when they are started although the monitor clears core when it assigns 

it to a user. 

Block 1 and Block N pseudo-ops cause the LOADER to leave indications in the job data area (LH of 

JOBCOR) so a monitor SAVE command will not write the low segment. This is advantageous in sharable 

programs for two reasons. It reduces the number of files in small DECtape directories (the maximum is 

22 files). Also, Vo is accomplished only on the first user's GET that initializes the high segment, 

but not on any subsequent user's GETs for either the high or low segment. 

B.2 EXAMPl.E OF TWO-SEGMENT REENTRANT PROGRAM 

LOW SEGMENT SUBPROGRAM: 

TITLE LOW - EXAMPLE OF LOW SEGMENT SUB-PkOGRAM 
JOBVER=137 
LOC JOBVER 
3 ;VERSIO~3 

RELOC (1J 

INTERNAL LOWBEGIDATAIDATAIIDATA21TA8LEITABLEI 

LOWBEG: 
DATA: BLOCK 
DATAl: BLOCK 
DATA2: BLOCK 

TARLE: BLOCK 1(1J 
TABLE I: BLOCK 10 
LOt-lEND - .-1 

END 
;LAST LOCATION TO bE CLEARED 

B-1 



r10NITOR CALLS -624-

HIGH SEG~[NT SUBPROGRAM: 

TITLE HIGH - EXAf"rPLE OF HIGH SEGMENT SIJB-PROGRAM 
HISEG JOR TWOSEG 

JRELOC 400000 
EXTERN LOWBEG.LOWEND 
T=I 

BEGIN: SETZM LOWBEG ;CLEAk DATA AREA 
MOVEI T. LOI·JBFG + I 
HRLJ T.LO~JBEr; 

BLT T.LO\OiEND 
iV1GVE T.DATA1 ;COrvPUTE 
ADDI 1. I 
t'COVEt~ T. DATA2 

FND BEGIN ;STARTING ADDRESS 

B.3 CONSTANT DATA 

Some reentrant programs require certain locations in the low segment to contain constant data, which 

does not change during execution. The initialization of this data happens only once after each GET, 

instead of after each START; therefore, programmers are tempted to pJace these constants in the sub­

program that contains the definition of the variable data locations. This action requires the SAVE 

command to write the constants out and the GET co"mmand to load the constants again; therefore, the 

constant data should be moved by the programs from the high segment to the low segment when the rest 

of the low segment is being initialized. The exception is when the amount of code and constants in 

the high segment needed to initialize the low s~ment constants take up too much room in the high 

segment. In this case, it is best to have I/o in the low segment on each GET. A rule to follow in 

deciding between this high segment core space and the low segment GET I/o time is: put the code 

in the high segment if it does not put the high segment over the next lK boundary. 

B.4 SINGLE SOURCE FILE 

A second way of writing single save file reentrant programs is to have a single source file instead of 

two separate ones. This is more convenient, although it involves conditional assembly and, therefore, 

produces two different relocatable binaries. A number of syste!Tl programs have been written this way. 

The idea is to have a conditional switch which is 1 if a reentrant assembly and 0 if a non-reentrant 

assembly. 

B-2 



IlD 
I 

Co) 

DEMO· DEMO ONE SOURCE REENTRANT PROGRAM -V002 t~ACRO 44,1/1.4 14130 ?·APR",71 P-AG£ .!. 
D~~O 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1<'l 
11 
12 
13 
:\4 
15 
16 
17 
18 
19 
20 
:.>1 
22 
23 
24 
25 
26 
27 
28 
?9 
:3iIJ 

000137 
0~0137 00Z00~ 0000212 
0210211110; 

400~H~J' 
4~00(~21 ' 

400 1{i0et' 047000 
4000rAl' 20"~1i'l0 
400002' 402;~~iil 
400003' 251iil00 
40fUi04' ~1"'000:21 
4ki0005' 00Vl002l 
4'" ril Ji1 06' iH"l 00:(1 

00~h101i1 ' 

t.HH""~fil ' 
001\1::100' 
.0el0001' 
0~0201' 00001210 
01:113202' 01Z1e.000 
0kr~203' 21211000 
0002!1:4' 

000000 
40?-007' 
0fH'J00l/l; 
~002f!3~ 
4000~4' 
400005; 
41HHH,6 i 

1/1002f211 ' 
2100202' 
~l/lZ.2~3 ; 

TITLE DEMO ~ DEMO ONE SOURCE R~ENTRANT PROGRAM -Vllll/l2 

LOC <JOBVER-137> 
EXP 01/12 'VERSION NUMBER 
RE:1..0C 

lNTERN JOBVER,PVR~ 

IfNDEf PURE,<PURE==l> 'ASSUME REENTRANT If PUR~ UNDt'lNED 
IFN PURE,<TWOSEG~. ,'TE!.I. LOAOEcRTOf;XFtCT TW.o StCM~NTS 
IFN PVRE,(REI.OC4000illll> 'START 0' HIGH S£II.Mt,:NT RELOCATION 

BEG I RESET 
r·l0VE; 
SETi!M 
ALT 

IFN PURE,<RELOC) 

OAT AB I 
DAHl 
TABLE; 

DATA~: 

BLOCK 
BLOCK 

'RESET ALL 110 
~.CDATAB.,OATA~+1J . 
DAfAB' 'NOW CLEAR DATA REGION· 
0,6ATAE.~ 'UP TO LAST I.OCATION 

1 
tD128 

.SET RELOCATION COUNTER TO LOW SEGMtN~ 

.FIRST LOCATION CLEARED ON S!ARTUP 

31 400007' IFN PURE,<RELOC) 

.END OF DATA AREA 

.BACK TO HI~H SE~MENT. 
32 4000107' LIT 
33 4~~~~7' 000000' 000001' 
34 

NO E~RORS' DETECTrO 

Hl-SEG. BREAK IS 43Z010 
PRnG~AM BREAK IS 0~02J4 

2K CORE USE:) 

4l/l0~00i. ENO BEG 

'PUT L ITE:RAI.S. I N Ii I GH. S(GJ:1ENT . 

I 
en 
1'0.) 
V1 
I 

3: o 
:z -...... 
o 
:::0 

~ r- . 
~ 





APPENDIX C 
CARD CODES 

ASCII 
Character 

NULL 
CTRL-A 
CTRL-B 
CTRL-C 
CTRL-D 
CTRL-E 
CTRL-F 
CTRL-G 
CTRL-H 
TAB 
LF 
VT 
FF 
CR 
CTRL-N 
CTRL-O 
CTRL-P 
CTRL-Q 
CTRL-R 
CTRt.-S 
CTRL-T 
CTRL-U 
CTRL-V 
CTRL-W 
CTRL-X 
CTRL-Y 
CTRL-Z 
ESCAPE 
CTRL-\ 
CTRL-] 
CTRL-t 
CTRL-.. 
SPACE 

Octd 
Code 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 

-627-

Table C-l 
ASCII Card Codes 

Card ASCII 
Punches Character 

12-0-9-8-1 @ 
12-9-1 A 
12-9-2 B 
12-9-3 C 
9-7 0 
0-9-8-5 E' 
0-9-8-6 F 
0-9-8-7 G 
11-9-6 H 
12-9-5 I 
0-9-5 J 
12-9-8-3 K 
12-9-8-4 L 
12-9-8-5 M 
12-9-8-6 N 
12-9-8-7 0 
12-11-9-8-1 P 
11-9-1 Q 
11-9-2 R 
11-9-3 S 
9-8-4 T 
9-8-5 U 
9-2 V 
0-9-6 W 
11-9-8 X 
11-9-8-1 Y 
9-8-7 Z 
0-9-7 ] 

11-9-8-4 \ 
11-9-8-5 ] 

11-9-8-6 tA 
11-9-8-7 .. ,-

Octal 
Code 

100 
101 
102 
103 
104 
105 
106 
107 
110 
111 I 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
1~4 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 
140 

NOTE: The ASCII character ESCAPE (octal 33) is also CTRL- [ on a terminal. 

C-l 

MON ITOR CALLS 

Card 
Punches 

8-4 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 
0-2 
0-3 
0-4 
0-5 
0-6 
0-7 
0-8 
0-9 

12-8-2 
0-8-2 

11-8-2 
11-8-7 
0-8-5 
8-1 



MON ITOR CALLS 

ASCII Octal 
Character Code 

I 41 
II 42 
# 43 
$ 44 
% 45 
& 46 
I 47 
( 50 
) 51 
* 52 
+ 53 
i 54 
- 55 .. 56 
/ 57 
0 60 
1 61 
~ 62 
3 43 
4 64 
5 65 
6 66 
"1 67 
e 70 

9. 71 
: 72 
; 73 
< 74 

75 .. 
> 76 
? 77 

-628-
Table C.,.1 (Cont) 
ASCII Card Codes 

Card ASCII 
Punches Character 

12-8-7 a 
8-7 b 
8-3 c 
11-8-3 d 
0-8-4 e 
12 f 
8-5 9 
12-8-5 h 
11-8-5 i 
-11-8-4 i 
12-8-6 k 
0-8-3 I 
11 m 
12-8-3 n 
0-1 0 

0 p 
1 q 
2 r 
3 s 
4 t 
5 u 
.6 v 
7 w 
8 x 
9 y 
8-2 z 
11-8-6 { 
12-8-4 I 
8-6 } 
0-8-6 -
0-8-7 DEL 

Octal Card 
Code Punches 

141 12-0-1 
142 12-0-2 
143 12-0-3 
144 12,:,,0-4 
145 12-0-5 
146 12-0-6 
147 12-0-7 
150 12-0-8 
151 12-0-9 
152 12-11-1 
153 12-11-2 
154 12-11-3 
155 12-11-4 
156 12-11-5 
157 12,,:,,11-6 
160 12-11-7 
161 12":,, 11-8 
162 12,,:,,11-9 
163 11-0-:2 
164 11-0-3 
165 11';'0-4 
166 11-0-5 
167 11-~6 
170 11-0-7 
171 11-0-8 
172 11-0-9 
173 12-0 
174 12-11 
175 11-0 
176 11-0-1 
177 12-9-7 

!'IOTE: The ASCII characters} and -(octal 175 and 176) are treated by the monitor as 
~LT-MoDE and are often considE)red the same as ESCAPE. . 

C-2 



". 

Character 

SPACE 
I 
II 

# 

$ 
% 
& 
I 

( 
) 

* 
+ 
, -. 
/ 
0 
1 
2 
3 
4' 
5 
6 
7 
8 
9 
: 

i. 
< 
= 
> 
? 

NOTE: 

Octal 
Code 

40 
41 
42 
43 
44 

,45 
-46 
47 
50 

,51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

-629-
Table C-2 

DEC-029 Card Codes 

Card 
Punc;hes Character 

@ 
11-8-2 A 
8-7 B 
8-3 C 
11-8-3 D 
0-8-4 E 
12 F 
8-5 G 
12-8-5 H 
11-8-5 I 
11-8-4 J 
12-8-6 K 
0-8-3 L 
11 M 
12-8-3 N 
0-1 0 
0 P 
1 Q 
2 R 
3 S 
4 T 
5 U 
6 V 
7 W 
8 X 
9 Y 
8-2 Z 
11-8-6 [ 

12-8-4 \ 
8-6 ] 

0-8-6 t 1\ 
0..;8-7 --

Octal 
Code 

100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 

Octal codes,0-37 and 140-177 are the same punches as AS~II. 

C-3 

MaN nOR CALLS 

Card 
Punches 

" 8-4 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 
0-2 
0-3 
0-4 
0-5 
0-6 
0-7 
0-8 
0-9 
12-8-2 
11-8-7 
0-8-2 
12-8-7 
0-8-5 



MONITOR CALLS 

Octal 
Character Code 

SPACE 40 
I 41 .. 42 
II 43 
$ 44 
% 45 
& 46 
I 47 
( 50 
) 51 
* 52 
+ 53 
, 54 - 55 

/ 
56 
57 

0 60 
1 61 
2 62 
3 63 - 4 64 
5 65 
6 66 
7 67 
8 70 
9 71 , 

: 72 
; 73 
< 74 
= 75 
> . 76 
? 77 

-630-

Table C-3 
DEC-026 Card Cades 

Card 
Punches Character 

@. 
12-8-7 A 
0-8-5 B 
0-8-6 C 
11-8-3 0 
0-8-7 E 
11-8-7 F 
8-6 G 
0-8-4 H 
12-8-4 I 
11-8-4 J 
12 K 
0-8-3 l 
11 M 
12-8-3 N 
0-1 a 
0 P 
1 Q 
2 R 
:3 S 
4 T 
5 U 
6 V 
7 W 
8 X 
9 Y 
11-8-2/11-0 Z 
0-8-2 [ 

12-8-6 \ 
8-3 ] 
11 ... 8-6 f/\ 
12-8-2/12-0 --

Octal 
Code 

100 
101 
102 
103 
104 
105 
106 
107 
110 
11'1 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 

NOTE: Octal codes 0-37 and 140-177 are the same punches as ASCII. 

C-4 

Card 
Punches 

8-4 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12,..7 
12-8 
12-9 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11·9 
0-2 
0-3 
0-4 
0-5 
~6 
0-7 
0-8 
0-9 
11-8-5 
8-7 
12-8-5 
8-5 
8-2 



o 
I 

Device Function I 

COP SETSTS 

-GETSTS 

CDR SETSTS 

GETSTS 

DIS SETSTS 
GETSTS 

DSK SETSTS 

~ GETSTS 
n 
::T" 

-0 
;j 

18 19 

Punch 
Error 

No Data 
7-9 Missed 
Punch 

Write Search 
Lock Error 

-

20 21 22 

Data 
when 
EOC 
reached 

Binar~ EOF 
Chec card 
sum EOF 
Error button 

Disk Block End 
Parity No. of 

Error Too File 
Large 

23 

I/O 
Active 

I/O 
Active 

I/O 
Active 

I/O 
Active 

Table 0-1 
Device Status Bits 

24 25 26 27 28 

-

29 

DEC 
029 
Card 
Codes 

Super 
ImagE 

. Mode 

Write 
Head 
ers 

APPENDIX D 
.DEVICE. STATUS BITS 

30 31 32133134135 

User Data Mode 
Word 
Count 

i 
I 

Sync Data Mode 
I 

Input 

Data Mode 

Sync User Data-Mode 
Input Word 

Count 

I' 
en 
\.III ...... 
I 

3: 
<::) 
z --I 
<::) 
::::0 

~ 
r­
r­
U) 



C 
I 
t.) 

~ ., 
n 
~ 

-0 

~ 

Device Function I 

DTA SETSTS 

GETSTS 

LPT SETSTS 

GETSTS 

MTA SETSTS 

GETSTS 

PLT SETSTS 

GETSTS 

PTP SETSTS 

GETSTS 

PTR SETSTS 

GETSTS 

18 19 

Write Data 
Lock Missed 

Write Data 
Lock Missed 
Illegal 
Opera 
tion 

Block 
Incom-
plete 

20 21 22 23 

Parity Block End I/O 
Error No. of Active 

Too File 
Large 

I/O 
Active 

Parity Record End I/O 
Error Too of Active 

Long File 

I/O 
Active 

I/O 
Active 

Check End I/O 
sum of Active 
Error Tape 

Table 0-1 (cont) 
Device Status Bits 

24 25 26 

Write 
Even 
Parity 

Lood End 
Point Point 
Rewind-
ing 

27 28 29 30 

Semi- Non- Sync 
Stand struc- . Input 
ard tured 

~e Dump 
Mode 

Suppress 
Form 
Feeds 

Tape Density No Sync 
. Retry Input 

Sync 
Input 

31 

User 
Word 
Count 

User 
Word 
Count 

User 
Word 
Count 

User 
Word 

. Count 

User 
Word 
Count 

32/33/34/35 

Data Mode 

Data Mode 

Data Mode 

Data Mode 

Data Mode 

Data Mode 

3 
a 
:;;::: -d 
;'1:1 

~ 
r­r­en 

I 
en 
v.J 
tv 
I 



-

Device Func-tio I 18 19 20 21 . 22 23 

PTY SETSTS 
GETSTS Block I/O 

No. Active 
Too 
Large 

TTY SETSTS 

GETSTS TTY Ignore Echo Char- I/O 

Table 0-1 (Cont) 
Device Status Bits 

24 25 26 27 

PTY TTY Monitor 
Wait Re- Mode 

sponse 

Echo 
of $ 
Sup-
press 

28 

Echo 
Sup-
press 

29 30 31 32 ~ 33 I 34 I 35 

Data Mode 

Full Sync User Data Mode 
Char- -Input Word 
acter Count 
Set 

~ ~ I 
? INO~ Jlnter- /1""0111 acter I I ActIVel e3 
w Assla ruot -ure Lost Vol 

Not Inter- Fail acter Active 
Assig rupt -ure Lost 

~ ... 
o 
:r 

-0 

~ 

ned 
for 
image 

-mode 
input 

--

Note 1: SETSTS UUOmay set all bits except Bit 23 and GETSTS UUO may return all bits (18-35); however, the two are separated to show those 
bits normaHy ~set by the user program on INIT f OPEN f or SETSTS as distinct from those normally set by the monitor (GETSTS). 

Note 2: Unused bits should always have the value O. 

Note 3: Refer to the apprapriate device sections in Chapters 5 and 6 for the complete description of each status bit. 

I 

:3 
o == --I o 
;:c 

n 
:J::oo 
r­
r­
(I) 





APPENDIX E 
ERROR CODES 

-635- MON nOR CALLS 

The error codes in Table E-1 are returned in AC on RUN and GETSEG UUOs, in location E + 1 on 

'4-word argumentblo~ks of LOOKUP, ENTER, and RENAME UUOs, and in the right half of location 

E + 3 on extended LOOKUP, ENTER, and RENAME UUOs. The codes are defined in the S.MAC 

monitor file. 

Symbol Code 

ERFNF% 0 

ERIPP% 1 

ERPRT% 2 

ERFBM% 3 

ERAEF% 4 

ERISU% 5 

ERTRN% 6 

ERNSF% 7 

ERNEC% 10 

ERDNA% 11 

ERNSD% 12 

ERILU% 13 

5.04 Monitor. 

Table E-1 
Error Codes 

Explanation 

File not found,i'llegal filename (0, *), filenames do not 
match (UPDATE), or RENAME after a LOOKUP failed. 

, 
UFD does not exist on specified file structures. (Incor-

. rect projeCt-prOgrammer number.) 

Protection failure or directory full on DTA •. 

File being-modified (ENTER, RENAME). 

Already existing filename (RENAME) or different filename 
(ENTER after LOOKUP). 

Illegal sequence of UUOs (RENAME with neither LOOKUP 
nor ENTER, or LOOKUP after ENTER). 

a. Transmission, device, or data error (RUN, GETSEG 
only). 

b. Hardware-detected device or data error detected 
while reading the UFD RIB or UFD data block. 

c. Software-detected data inconsistency error detected 
while reading the UFD RIB or file RIB. 

Not a saved file (RUN, GETSEG only). 

Not enough core (RUN, GETSEG only). 

Device not available (RUN, GETSEG only). 

No such device (RUN, GETSEG only). 

Illegal UUO (GETSEG only). No two-register relocation 
capability. 

(continued on next page) 

E-1 January 1972 



MaN ITOR CALLS 

Symbol Code 

ERNRM% 14 

ERWLK% 15 

ERNET% 16 

ERPOA% 17 

ERBNF% 20 

E~CSD% 21 

ERDNE% 22 

ERSNF% 23 

- ERSLE% 24 

ER~VL% 25 

ERNCE% 26 

ERSNS% 27 

5.04 Monitor 

-636-

Table E-1 (Cont) 
Error Codes 

Explanation 

No room on this file structure or quota exceed~ (over-
drawn quota not considered). 

Write-lock error. Cannpt write on file structure. 

Not enough table space in free core of monitor. 

Partial allocation only. 

Block not free on alloc9ted positio!". 

Cannot supersede an existing directory (ENTER). 

Cannot delete a non~empty directory (RENAME). 

Sub-directory not founi(some SFD in the specified pat~ 
was not found). 

Search list empty (LOOKUP or ENTER was performed on 
generic device DSK and the search list is empty). 

Cannot create a SFD ne~ted deeper than the maximum 
allowed level of nesting. 

No file structure in the job's search list has both the 
no-create bit and thewrite-Iock bit equal to zero and 
has the UFD or SFpspec:ified by the default or explicit 
path (ENTER on generic device DSK only). 

GETSEG from a locked low segment to a high segment 
which is· not a dormant, active, or idle segment. (Seg-
ment noton the sWClPping space.) 

E-2 January 1972 



-637-

APPENDIX F 
COMPARISON OF DISK-LIKE DEVICES 

Device Name 

Manufacturer 

Device Type 
Controller 

Maximum Disks per 
Controller 

Maximum Controllers 
per System 

Hardware Mnemonic 

Software Mnemonic 

Capacity Minimum 
(XI0**6 words) 

Maximum (1 control) 
(XI0**6 words) 

Blocks/Track 

Blocks/Cylinder 

B locks/Uni t 

Rotational 
Speed (rpm) 

Revolution 
Time (msec) 

128-Word Blocks/ 
Revolution 

Transfer Rate fJS word 

Table F-1 
Disk Devices 

Fixed-Head Disk Drum 

Burroughs Bryant 

RD10 RMIOB 
RCI0 RCI0 

4 4 

2 2 

DSK DSK 

FHA, FHB FHA, FHB 

.5 .345 

2 1.38 

20 30 

4000 2700 

4000 2700 

1800 3600 

33 17 

20 30 

13 4.3 

F-l 

MON ITOR CALLS 

Removable Disk Pack(s} 

Memorex, ISS 

RP02 RP03 
RPI0 RPI0 

8 8 

3 3 

DPC DPC 

DPA, DPB, DPA, DPB, 
DPC DPC 

5.2 10.4 

41.4 82.8 

10 10 

200 400 

40000 80000 

2400 2400 

25 25 

10 10 

15 15 

March 1973 



MON nOR CALLS 

Device Name 

Manufacturer 

Device Type 
C ()Iltro I ler 

Seek Time 

Average {msec} 
Minimum '{msec} 
Maximum {msec} 

Swqpping Times (msec) 

1K 
4K 
10K 
25K 

-638-

Table F-1 {Cont} , 
Disk Devices 

Fixed-Head Disk Drum 

Burroughs Bryant 

RD10 RM10B 
RC10 RC10 

0 0 
0 0 
0 0 

25 13 
73 27 
154 54 
358 120 

NOTE 

Removable Disk Pack{s} 

Memorex, ISS 

RP02 RP03 
RP10 RP10 

50 50 
20 20 
80 80 

{includes 30 ms verify} 

84 84 
144 144 
256 264 
589 589 

Although the Bryant drum is a drum in every sen~, its soft-
ware mnemonic is still FHA because it is connected to the 
system through the fixed head disk control. 

F-2 March 1973 



-639- . MON ITOR CALLS 

APPENDIX G 
MAGNET1C TAPE CODES 

Table G-l 
ASCII Codes and BCD Equivalents 

Character Character 
ASCII Symbol BCD ASCII Symbol BCD 

040 blank 20 100 @ 57 
041 I 52 101 A 61 
042 " 17 102 B 62 
043 # 32 103 C 63 
044- $ 53 104- D 64-
045 % 77 105 E 65 
046 & 35 106 F 66 
047 I 14 107 G 67 

050 ( 34 110 H 70 
111 I 71 051 ) 74- 112 J 41 052 * 54 113 K 42 053 + 60 114 L ~ 054- , 33 115 M 44-055 - 40 116 N 45 056 . 73 117 0 46 057 / 21 

060 % 12 120 P 47 
121 Q 50 061 1 01 122 R 51 062 2 02 123 S 22 

063 3 03 124 T 23 064- 4 04 125 U 24 065 5 05 126 V 25 
066 6 06 127 W 26 067 7 07 

070 ~ 10 130 X 27 
131 Y 30 071 9 11 132 Z 31 072 : 15 133 [ 75 

073 ; 56 134 \ 36t 074 < 76 
075 5 13 135 ] 55 

136 t illegal 076 > 16 
077 ? 72 

137 .. 37 

, 
t Code used for all illegal codes. 

G-l 



MON nOR CALLS -640-

When converting from ASCII to BCD, the following is done for ASCII codes 000-037 and 140-177: 

000 ignored • 

001-010 same as ASCII 134. 

011 same as ASCII 040. 

012-014 constitutes end of line. 

015 ignored. 

016-031 same as ASCII 134. 

032 end of file. 

033-037 same as ASCII 134. 

140 same as ASCII 134. 

141-172 same as ASCII 101-132. 

173-176 same as ASCII 134,. 

177 ignored. 

G-2 



-641- MON ITOR CALLS 

APPENDIX H 
FILE RETRIEVAL POINTERS 

Sequential and random file access are handled more efficiently by the monitor irall the information 

describing the file can be kept in core at once. To understand this effect, it is necessary to know how 

the monitor accesses files. 

With each named file, UFD, and MFD, the monitor writes a special block containing necessary infor­

mation needec! to retrieve the data blocks that constitute the file. This block is called a retrieval ' 

information block, or RIB. 

Retrieval pointers in the RIB describe contiguous blocks of file storage space called groups. Each pointer 

occupies one word ond has ~ne ~f three forms: 

a.A group PClinter 

. b. An EOF pointer 

c. A chal1ge of unit pointer. 

H.l A GROUp POINTER 

A group pointer has three fields: 

a. A cluster count· 

b. A folded checksum 

c. A cluster ~clress within a unit. The width of each field may be specified at 
refresh time; therefore, the same code can handle a wider variety of sizes of 
devices. 

The cluster count determines the number of consecutive clusters that can be described by one pointer. 

The folded checksum is computed for the first word of the first block of the group. Its main purpose 
. . 

is to catch hardware or softw~re ~rrors when the wrong block is read ~ The folded checksu,!, is not a 

check on the hardwar~ pority circuitry. The size of the cluster address field depends on the largest 

unit size in the file structure and on the cluster size. A cluster address is converted to a logical block 

address by multiplying by the number of blocks per cluster. 

H-l 



MON nOR CALLS -642-
H.l.l Folded Checksum Algorithm 

This algorithm takes the low order n-bit byte, repeatedly adds it to the upper part of the word, and 

then shifts. The code is: 

LOOP: Tl,T 
T,LOW ORDER N BITS OF Tl 

ADD 
LOB 
LSH 
JUMPN 
DONE 

Tl,-N JRIGHT SHIrT BY N BITS 
Tl, LOOP 

JANSWER IN T 

This scheme elminated the usual overflow problem associated with folded checksums and terminates as 

soon as there are no more bits to add. 

H.2 END-OF-FILE POINTER 

The EOF is indicated by a zero word •. 

H.3 CHANGE OF UNIT POINTER 

A file structure may comprise more than one unit; therefore, the retrieval information block must indi­

cate which unit the logical block is ~n. Because a file can start on one device and move to another, 

a method of indicating a change from one unit to another in the middle of the file is necessary. To 

show this movement, a zero count field indicates that the right half of the word specifies a change in 

unit. A zero count field contains a unit number with respect to the file structure. The first retrieval 

pointer, with respect to the-RIB, always specifies a unit number. Bit 18 is 1 to guarantee that the word 

is non-zero; otherwise it might be confused with an EOF pointer. 

H.4 DEVICE DATA BLOCK 

The monitor keeps a copy of up to 10 retrieval pointers in core at once. Therefore, if a-file is allocated 

in 10 or less contiguous blocks (i .e., described inl0 or less pointers), all of the retrieval information 

can be kept in core and no additional accesses to the RIB are necessary. 

H.S ACCESS BLOCK 

For each active file, the monitor keeps eight words of storage called an access block. These access 

blocks remain dormant in monitor core after a file is closed and are reclaimed only when the core space 

is necessary. Therefore, if a 4-word LOOKUP is done after a file has been active, access to the UFD 

and RIB blocks will not require VO. 

H-2 



-643-

DEC-I0-ULKMA-A-D 

DECsystem-l0 

LINK-I0 

PROGRAMMER'S REFERENCE MANUAL 

This document reflects the software as ·of V.ersion 1. 



LlNK-lO -644-

1st Printing May 1973 

COPYRIGHT @ 1973 by Digital Equipment C;:orporation 

The material in this document is for 
information:al·purposes andis·sUbject to 
change without notice. 

Actual distribution of the software 
described in this specification will be 
subject. to terms and conditions to be 
announced at some future date by Digital 
Equipment corporation. 

DEC assumes no responsibility for the 
use or reliability of its software on 
equipment which is not supplied by DEC. 

The software described in this manual is 
furnished to purchaser under a license 
for use on a single computer system and 
can be copied (with inclusion of DEC's 
copyright notice) only for use in such 
system, except as may otherWise be 
provided in writing by DEC. 



LINK-lO 

Chapter 1 

1.1 
1.1.1 
1.1.2 
1.2 
1.3 
1.4 
1.5 
1.5.1 
1.5.2 

Chapter 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

Chapter 

3.1 
3.2 
3.3 
3.3.1 
3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.3.6 
3.4 

2 

3 

Chapter 4 

-645-

TABLE OF CONTENTS 

INTRODUCTION TO LINK-lO 

Input to LINK-lO 
Relocatable Code 
Symbols and Libraries 
Output From LINK-lO 
Overlay Facility 
Miscellaneous Features 
Initialization of LINK-lO 
Using LINK-lO Automatically 
Using LINK-lO Directly 

AUTOMATIC USE OF LINK-lO 

General Command Format 
COMPIL Switches 
Specifying Disk Areas Other Than 
SAVE and SSAVE System Commands 
COMPIL Examples 
Summary 

USING LINK-lO 

LINK-IO Command Strings 
Changing Defaults 
LINK-lO Switch Algorithms 
Device Switches 
File Dependent Switches 
Output Switches 
Immediate Action Switces 
Delayed Action Switches 

SYS 

Switches that Create Implicit File Specifications 
LINK-IO Switches 

LINK-l~ SWITCHES 

/BACKSPACE 
/COMMON 
/CONTENTS 
/CORE 
/COUNTER 
/CPU 
/DEBUG 
/DEFAULT 
/DEFINE 
/ENTRY 

iii 

LINK-IO 

651 
651 
652 
653 
654 
655 
656 
656 
657 

661 
662 
667 
668 
669 
673 

676 
678 
679 
680 
681 
682 
683 
684 
684 
685 

691 
692 
694 
697 
698 
700 
701 
703 
705 
707 



L1NK-IO .,.646-

LINK-I0 

/J:;RRORLEVEL 708 
/p;STIMATE 709 
/EXCLUDE 711 
/E~CUTE 713 
/F0ROTS 714 
/FQRsE 7i5 
/FRECOR 716 
/00 : 718 
/HAStiSIZE 719 
/INCLUDE 721 
/LOcALS n2 
/WG . 723 
/L0GLEVEL 725 
/MAP 727 
/MAXCO~ 729 
/MPSpRT 731 
/MTAPE 732 
/NOINITIAL 734 
/NOLOCAL 736 
/NOSEARCH 737 
/NOSTART 738 
/NOSYMBOL 739 
/NOSYSLIB 740 
/OTS 742 
/PATCHSIZE 744 
/REQUIRE 746 

.~ 

/REWIND 747 
/RuNCOR 748 
/RUNAME 749 

" /SAVE 750 
/SEARCH 752 
/SEGMENT 753 
/SET 754 
/SEVERITY 755 
/SKIP 756 
/SSAVE 757 
/START 758 
/SYMBOL 759 
/SYMSEG 761 
/SYSLIB 763 
/SYSORT 765 
/TEST 766 
/UNDEFINED 767 
/UNL0AD 768 
/VALUE 769 
/VERBOSITY 770 
/XPN 772 
/ZERO 774 

iv 



-647-

LINK-l 0 

Chapter 5 LINK-I0 MESSAGES 

Chapter 6 LINK-I0EXAMPLES 

Appendix A LINK ITEM TYPES 

A.l i:.iIik Item Types 0-37 
A. 2 i.~nk Item Type 400 FOR~RAN 
A.3 Link Item Type 401 FORTRAN 
A.4 Link Item Types 1000-1777 

Appendix B LOADER AND LINK-10 DIFFERENCES 

GLOSSARY 

v 

LINK-IO 

775 

803 

816 
828 
829 
829 

843 

849' 





-649- LINK-IO 

LINK-lO 

F,OREWORD 

the DECsystem-lO 

aimed at the 

This manual is the referenc~ document on 

Linking Loader, LINK-lO. It is 

intermediate-level applications programmer and contains 

complete documentation on LINK-lO, including descriptions of 

the LINK Item Types generated by the PECsystem-lO 

Translators. 

Chapter 1 is an introduction to LINK-lO and describes the 

two methods of initializing the Linking-Loader. Chapter 2 

discusses the automatic use of LINK-lO through the 

COMPIt-class commands, and Chapter 3 discusses the direct 

use of LINK-lO through the R LINK system command. LINK-lO 

switches are described in alphabetical order in Chapter 4. 

L1NK-lO messages and examples appear in Chapters 5 and 6, 

respectively. The Appendices and Glossary contain 

supplementary information. 

A beginning user of LINK-lO can benefit from this manual by 

reading Chapters land 2, whereas an advanced user would be 

more interested in Chapters ,3 and 4. A user who has been 

employing the LOADER progr~ will find Appendix B a valuable 

aid in the transition to the LINK-lO program. 

vii 





-651- LlNK-10 

LINK-IO 

Input to LINK-l~ 

CHAPTER 1 

INTRODUCTION TO LINK-IO 

LINK-IO, the DECsystem-10 Linking Loader, is the system utility 

program that merges independently-translated modules of a user's 

program into a single module. Its main function is to prepare and 

link this input with other modules required by the user into a form 

that can be executed by the operating system. 

1.1 INPUT TO LINK-IO 

LINK-IO accepts as its primary input the output f~om the DECsystem-10 

translators in order to produce an executable version of the user's 

program. This output, known as object modules, is in the form of 

binary files which contain the user's programs and additional 

information generated by the translators. This additional information 

is necessary for linking separately-translated modules, for debugging, 

and for generating auxilary output such as map, log, .and save files. 

1.1.1 Relocatable Code 

Most object modules contain relocatable code so that· the module's 
, 

position in core can be determined by LINK-IO. Relocatable code is a 

benefit to both the user and the system. The user benefits because he 

is able to code all of his modules without regard to where they will 

be located in core. He need not be concerned with the location where 

one module ends and another one begins. The system benefits because a 

module written in relocatable code can be placed anywhere in core 

memory. When moving the relocatable object modules into the areas of 

1-1 



LINK-IO -652 ... 

LINK';" 1 0 

Input to LINK-l~ 

core memory at which they will be executed, LINK-IO adjusts all 

relocatable addresses in the modules into actual machine locations. 

In reality, LINK-IO places the modules in a user virtual address Space 

(refer to' the Glossary) and the operating system, as it schedules the 

usage of the system, transfers the moduies to 'and from core memory. 

However, fOr simplicity, the user virtual address space is referred to 

as core memory in the remainder of the manual. 

1.1.2 Symbols and Libraries 

In addition to relocating and loading the user's object modules, 

LINK-IO is also responsible for linking these modules with other 

modules required for execution. Linkages among'modules are provided 

through the use of symbols. By including symbols in his programs, the 

user is delaying the assignment of actual values until load time. 

This method of assigning values is advantageous because: 

It allows the user to change only the definition· of the 
symbol instead of changing every occurrence of the value, 
and 

Only the module containing the definition of 
must be retranslated when a change occurs. 
modules using the symbol are bound to it at 
they do not have to be retranslated. 

the symbol 
Since other 
load time, 

Although a user can define and use a symbol entirely within a single 

module, he usually refers to additional symbols that are defined in 

other modules. It is these modules that must be linked to the user's 

program for execution. In most cases, these required modules are 

contained in a library of relocatable binary programs. Modules within 

a library can either be created and translated previously by the user 

1-2 



-653- LINK-IO 

LINK-lO 

Output from LINK-l~ 

or be part of the system's repertoire of programs. For instance, most 

higher-level languages have associated with them a library containing 

commonly-used mathematical, input/output, and data conversion 

routines. The user refers to modules in the library via symbols in 

his program and these symbols are then linked to the proper location 

in the library modules themselves. By linking these symbols and 

loading the required modules, LINK-lO provides communication between 

independently-translated modules and library routines. 

In order to satisfy any undefined symbols, the required system 

libraries are usually searched after all loading specified by the user 

has been performed. However, the user can indicate that libraries be 

searched at a particular point in the loading procedure by specifying 

the appropriate switch to LINK-lO (refer to /SEARCH and /SYSLIB in 

Chapter 4). When LINK-lO processes the switch, the indicated 

libraries are searched and the required modules are loaded. The user 

also has the option of specifying by name which modules he wants (or 

does not want) loaded from a library or of inhibiting the search of 

the library altogether. 

1.2 OUTPUT FROM LINK-lO 

When LINK-lO has performed the tasks of loading the user's object 

modules in core, bringing in and linking any other modules required 

for execution, and adjusting all the addresses, there is in core an 

executable version of the user's program. This executable version is 

the primary output of LINK-lO. Since the loaded program at this point 

reflects the state of the user's core memory, it is usually referred 

1-3 



LINK-IO -654-

LINK-IO 

Overlay Facility 

to as his core image. Having arrived at this state, the user can 

request LINK-IO to either: 

Transfer control. to the core image for immediate 
execution (using the EXECUTE or START system commands, or 
the /DEBUG, /EXECUTE, or /TEST switches in LINK-lO), or 

Output the core image to a device for storage (using the 
SAVE or SSAVE system commands, or the /SAVE or /SSAVE 
switches in LINK-lO) in order to avoid the loading 
procedure in the future. 

If the complete, loaded progtam is saved on a device in core image 

form, it can be brought into core and executed at a later time (using 

the GET and RUN system commands). The loading process does not have 

to be repeated since the results of all of LINK-lO's actions are 

contained in the core image. However, if the user wishes to revise 

the modules that made up his core image, he must once again use 

LINK-IO. 

While the primary output of LINK-IO is the executable version of the 

user's program, the user can request auxilary output from LINK-IO in 

the form of map, log, save, symbol, and expanded core image files (XPN 

files). This additional output is. not automatically generated by 

LINK-IO and the user must include the appropriate switches to obtain 

this output (refer to Chapter 4 for a description of the switches). 

This output is for the user's convenience when debugging his program. 

1.3 OVERLAY FACILITY 

LINK-IO will have an overlay facility to be used when the total core 

required by a program is more than the core available to the user. 

The user then organizes his program so that only some parts of the 

1-4 



LINK-10 

Miscellaneous Features 
~t'" 
:~: .• ,~.\J 

-655- LINK-IO 

program· are required in core at anyone time and the remaining parts 

are transferred in and out of core. During execution, these 

transferred parts are brought into core as required. The part brought 

into core overlays the part currently in that area. Because these 

parts of the program reside in the same area of core at different 

times, the amount of core required for the entire program is reduced. 

1.4 MISCELLANEOUS FEATURES 

LINK-10 has a large number of options in order that the user can gain 

precise control over the loading process. The user can set various 

loading parameters and can control the loading of symbols and modules. 

By setting switches in his input command strings to LINK-10, he can 

specify the core size of LINK-10 modules, the start address of 

modules, the size of the symbol table, the messages that he will see 

on his terminal or in his log file, and the severity l~vel and 

verbosity of the messages. He can control the loading of modules by 

specifying the modules that should be loaded and the files that should 

be searched for symbol definitions. He has control over the number of 

segments to be allowed and the segment into which the symbol table 

will be placed. 

The user has control over file specifications that LINK-10 examines to 

determine device names and filenames. He can accept the LINK-10 

defaults for components in a file specification or he can set his own 

defaults which will be used automatically when he omits a component 

from his command string. He can also position devices, allocate space 

and assign protections to output files, and clear directories of 

DECtapes. 

1-5 



LINK-IO -656-

LINK-IO 

Initialization of LINK-l~ 

Some options available to the user are interactive. In the process of 

producing a core image, LINK-IO attempts to satisfy all requests for 

symbols defined in other modules and allows the' user to interactively 

ask. for a list of undefined symbols during the loading procedure. The 

user then has the opportunity to define them without reloading. 

1.5 INITIALIZATION OF LINK-IO 

LINK-IO is initialized by the user in one of two ways: 

Automatically through the use of the LOAD, EXECUTE, or 
DEBUG system commands. This is the most common usage of 
LINK-IO. 

Directly through the use of the R LINK system command. 
This is recommended for very large and relatively complex 
loading procedures. 

1.5.1 Using LINK-IO Automatically 

LINK-IO is automatically initiated when the user issues one of the 

system commands LOAD, EXECUTE, or DEBUG. These commands are known as 

COMPIL-class commands because they use the COMPIL program to control 

the actions of DECsystem-10 translators and LINK-IO. COMPIL's job is 

to accept the command string typed by the user, interpret it, and 

construct and pass new command strings to various system programs, 

including the translators and LINK-IO. This action taken by COMPIL is 

a convenience to the user since it saves him from typing the command 

strings to LINK-IO. Once the command string to COMPIL is processed, 

the user does not interactively communicate with the translators or 

LINK-IO. LINK-IO processes the appropriate command strings passed to 

1-6 



-657- LINK-IO 

LINK-l 0 

Initialization of LINK-l~ 

it by COMPIL and supplies intelligent defaults for any parameters not 

specified by the user. IfLINK-IO obtains an error condition,. it 

terminates.the load and returns control to the operating system (or 

further instructions. Otherwise, .it. loads the program and, depending 

on the COMPIL-cl,ass conunand used, either exits or starts the loaded 

program. Refer to Chapter 2 for the descriptions .. and use of ·the 

COMPIL-class conunands. 

In general, the extremely fine control of the loading process that is 

provided by manually running LINK-IO is not required for the average 

user because the COMPIL program supplies reasonable defaults to 

LINK-IO. 

1.5.2 Using LINK-IO Directly 

Direct use of LINK-IO is useful for those who are developing large ahd 

complex programs, loading from devices other than disk, manipulating 

symbol tables for complex debugging situations, and performing segment 

manipulations. 

The user runs LINK-IO directly by using the system command R LINK. 

LINK-io responds with an asterisk which indicates that the user can 

type his input as a series of specifications which are to be used in 

the loading process. LINK-IO accepts input until the user specifies 

the exit condition: at which point it finishes all of its tasks and 

exits or begins the program, as specified by the user. 

This method of running LINK-IO gives the user access to its full 

capability. The user does not have to accept LINK-IO's default 

1-7 



LINK-IO -658-

LINK-IO 

Initialization of LINK-l~ 

conditions, but can supply his own set of defaults. 

interactively monitor the loading process by setting 

He can 

internal 

parameters, requesting values of particular items, specifying modules 

and files to be loaded, and controlling the format and contents of 

output files. Refer to Chapter 3 for the description of the LINK-IO 

command string, and Chapter 4 for the switches used when directly 

running LINK-IO. 

1-8 



-659- LINK-IO 

LINK-lO 

Automatic Use of LINK-l, 

CHAPTER 2 

AUTOMATIC USE OF LINK-lO 

The user causes LINK-lO to be run automatically whenever he types the 
.I 

LOAD, EXECUTE, and DEBUG system commands. These commands accept a 

simple command string format and are converted internally to a series 

of more complex command strings that are directly processed by various 

system prQgrams, including language translators and LINK-IO. The 

aforementioned commands are used, to compile, load, and execute 

programs, to obtain output in the form of maps, ,to search files in 

library search mode, and to invoke the various debugging aids. ,The 

following paragraphs describe each of these system commands. 

NOTE 

The information in this chapter is a subset of ,the 
material available on the LOAD," EXECUTE, and DEBUG 
commands. The subset presented here assumes that the 
source files have previously been translated, and thus 
only the switches directly applicable to loading the 
binary files are listed. Complete reference 
documentation Qn the COMPIL-c'lass commands, their valid 
command formats, and all available switches can be 
obtained from the appropriate command descriptions in 
DECsystem-lO OPERATING SYSTEM COMMANDS, DEC-lO-MRDC-D, 
located in the DECsystem-lO SOFTWARE NOTEBOOKS and in 
the DECsystem-lO USERS HANDBOOK, DEC-IO~NGZB-D. 

The LOAD command translates the user-specified source files into 

relocatable object modules (if necessary) and loads these object 

modules to form a core image. This command does not cause execution 

of the resulting core image. After completion of this command, the 

user can either execute his program (START system command) or save the 

core image (SAVE or SSAVE system command) for future execution. 

2-1 



L1NK-IO -660-

LINK-lO 

Automatic Use of LINK-l~ 

Tpe- EXECUTE commmand translates the user-specified source files (if 

necessary), loads the object mOdules into a core image, and, in 

addition, begins execution of the program. The action of this comman4 

is ~e s~e as that of the LOAD command followed by the START system 

cODUJlClnd. 

The DEBUG command tra~slates the user-specified source files (if 

necessary), loads the object modules into a core image, and prepares 

for debugging by additionally loading a system debugging progriun. 

Usually thi~ debugging program is loaded first, fol:J.owed by the user's 

program and other information required by the debugging program (e.g., 

the sympol taple). However,. when COBOL programs are being loaded; 

COBDDT (the COBOL debugging program) is loaded after the user's 

program. Upon completion o! loading, control is transferred to the 

debugging program, rather than the user's program, so that the user 

can check out his program by exami~ing and modifying the contents of 

locations. This examination and mo~ii:!=ication can occur both before 

program execution begins and during execution if the user specifies 

breakpoints in the program at whic:;h execution is to be suspended. 

The debugging program can be COBDDT, MANTIS, or DDT, depending on the 

first source file -in the command string. If the first file is a COBOL 

file, COBDDT (the COBOL debuggi~g program) is loaded. If the first 

file is a FORTRAN source file, MANTIS (the FORTRAN debugging program) 

is loaded. (Note that MANTIS is under the control of an assembly 

conditional switch which is normally off. Therefore, the installation 

must turn this assembly switch on for the loading of MANTIS.) If the 

. 2-2 



-661- LINK-IO 

LINK-10 

General Command Format 

first file is any other file, DDT (the Dynamic Debugging Technique) is 

loaded. When the first file has previously been compiled (i.e., the 

file has an extension of .REL, meaning relocatable binary object 

module), COMPIL does not determine the type of source file from which 

it came so DDT is loaded with the binary files. In this case, if the 

user desires COB DDT or MANTIS, he must explicitly specify this 

debugging program via the appropriate switch (refer to the /COBOL and 

/MANTIS switches in DECsystem-10 OPERATING SYSTEM COMMANDS). 

2.1 GENERAL COMMAND FORMAT 

The LOAD, EXECUTE, and DEBUG system commands have the same general 

command format. They all accept a list of file specifications. 

LOAD output file spec = concatenated input file specs 

EXECUTE output file spec = concatenated input file specs 

DEBUG output file spec = concatenated input file specs 

An input or output file specification consists of a device- name, a 

filename with or without a filename extension, and a directory 

enclosed in square brackets. Only one output file specification can 

be given on the left of each equals sign, but any number of input file 

specifications can occur on the right. Input file specifications are 

separated from each other by commas or plus signs. If commas are 

used, the translator produces separate relocatable object modules for 

each output file. If plus signs are used, the input files separated 

by plus signs will be translated into a single relocatable object 

module. Plus signs must be used when a collection of files must be 

2-3 



LINK-IO -662-

LINK-IO 

COMPIL Switches 

concatenated to produce an acceptable module as input to a translator. 

The sequence of "output file spec = concatenated input file specs" can 

be given repeatedly in a command string by separating each sequence 

with a comma. 

The output file specification and the equals sign can be omitted, in 

which case the object module is placed in the user's default directory 

on the disk with a name derived from the source file and the extension 

.REL. The filename given to the output file depends upon the form of 

the user's input file specifications. If the user has only one input 

file, the output file is given the name of the input file. If the 

user has more than one input file and the files are separa~ed by 

commas, the name of each output file is the name of the corresponding 

input file. If the user has plus signs separating the file 

specifications, the name given to the output file is the name of the 

last input file in the series of files separated by plus signs. 

2.2 COMPIL SWITCHES 

Switches can be included on the LOAD, EXECUTE, and DEBUG command 

strings to direct LINK-lO in its processing. These switches are used 

to generate listings, to create libraries, to search user libraries, 

and to obtain loader maps. Each switch is preceded by a slash and can 

be either temporary or permanent. A temporary switch applies only to 

the file immediately preceding it. Characters (including spaces or 

commas) cannot separate the filename and the switch. A permanent 

switch applies to all files following it until modified by a 

subsequent switch. It is separated from the file it precedes by a 

space or a comma. 

2-4 



-663- LINK-IO 

LINK-lO 

COMPIL Switches 

LINK-lO switches described in Chapter 3 can be passed on the 

COMPIL-class command strings by preceding the switch specification 

with a' character instead of a / character. Following the % 

character is the LINK-lO switch specification preceded and followed by 

a delimiter. The delimiter can be any character~ however, the user 

must be careful that the character he uses does not have a specific 

meaning to the COMPIL program. For example, the @ character indicates 

an indirect command file, and the semicolon causes the remainder of 

the line to be treated as a comment and thus ignored. The recommended 

delimiter is a single or double quote character. The beginning and 

ending delimiter must be· the same character. A LINK-lO switch 

specification consists of the switch name and optionally a keyword and 

a value. The items in the specification are separated by colons. 

(Refer to Chapter 4 for the formats of the individual LINK-lO 

switches.) Note that LOADER switches (those beginning with a % but 

without enclosing delimiters) are illegal when passed to LINK-lO. As 

an aid to users, a warning message is printed if the LINK-lO switch 

delimiter is one that could be interpreted as a LOADER switch 

(e.g.,A-Z,a-z,O-9,&, and -). 

Since the first function of each of these three commands is to 

determine if the source files need translating (i.e., compiling or 

assembling), there are many switches that pertain to the translating 

process. The purpose of this manual is to describe the use of LINK-lO 

and switches pertaining to the translation of the source file are not 

2-5 



LlNK-lO -664-

LINK-IO 

COMPIL Switches 

included. All switches that can be placed on the conunand string are 

described in DECsystem-10 OPERATING SYSTEM COMMANDS. 

/DDT 

/FOROTS 

/FORSE 

NOTE 

Since currently there are two linking-loaders on the 
DECsystem-10, the user must indicate the desired loader 
when using the LOAD, EXECUTE, or DEBUG conunand. At the 
present time, the LOADER program is the default case, 
and the user must include the /LINKswitch to indicate 
that he wishes to use the LINK-IO program. (The setting 
of the LOADER program as the default is a system 
parameter that can be changed by individual 

. installations.) In the future, LINK-IO will become the 
standard default. 

Table 2-1 

COMPIL Switches Pertaining to Loading 

Loads DDT regardless of the extension of the 

first file in the conunand string. This is a 

permanent switch in that it applies to all 

subsequent files regardless of its position 

in the conunand string. 

Loads the file with FOROTS (the new FORTRAN 

object time system) instead of FORSE. This 

switch affects FORTRAN files only. 

Loads the file with FORSE (the old FORTRAN 

object time system) instead of FOROTS. This 

switch affects FORTRAN files only. 

2-6 



LINK-lO 

/LIBRARY 

/LINK 

/LMAP 

/LOADER 

/MAP 

-665-

Table 2-1 (Cont) 

COMPI~ Switches Pertaining to Loading 

The action is 

/SEARCH switch. 

identical to that 

The use of the 

switch is recommended since it 

complement of /NOSEARCH. 

LlNK-lO 

of the 

/SEARCH 

is the 

Causes the files to be loaded by the LINK-IO 

program instead of the LOADER program. If 

used, this switch must be placed before any 

file specifications (either implied or 

explicit) since the COMPIL program may have 

to generate load-control switches. 

Produces a loader map during the loading 

process (same action as /MAP) containing the 

local symbols. 

Causes the file to be loaded by the LOADER 

program instead of the LINK-lO program. 

Since this is the current default action, 

this switch is needed only if the 

installation has specified LINK-lO as the 

default linking-loader. In a future release, 

LINK-lO will become the standard default. 

a load map during 

The map does not 

the loading 

contain local 

Produces 

process. 

symbols. Whep this switch is encountered, a 

map is requested from LINK-lO. After loader 

2-7 



LINK-IO 

LINK-lO 

/NOSEARCH 

/SEARCH 

-666-

Table 2-1 (Cont) 

COMPIL Switches Pertaining to Loading 

the library search of the default system 

libraries, the map is written in the user's 

disk area with the filename specified by the 

user (e.g., /MAP:dev:file.ext[directory]) or 

the default filename (e.g., the name of the 

last program seen with a start address or 

nnnLNK.MAP (where nnn is the user's job 

number) if there is no such program). This 

switch is an exception to the permanent 

switch rule in that it causes only one map to 

be produced even though it may appear as a 

permanent switch. 

Loads all routines of the file whether the 

routines are referenced or not. Since this 

is the default action, this switch is used 

only to turn off library search mode 

(/LIBRARY or jSEARCH). This switch is 

equivalent to the /NOSYSLIB switch 

not 

of 

LINK-lO, which does not search any libraries, 

including the default system libraries. The 

/NOSEARCH default is to search the default 

system libraries. 

Loads the files in library ·search mode. This 

mode causes a module in a special library 

file to be loaded only if one or more of its 

2-8 



-667-

LINK-IO 

Specifying Disk Areas Other Than SYS 

Table 2-1 (Cont) 

COMPIL Switches Pertaining to Loading 

LlNK-lO 

declared. entry symbols satisfies an undefined 

global request. The default system libraries 

are always searched regardless of the state 

of this switch. 

2.3 SPECIFYING DISK AREAS OTHER THAN SYS 

When translating his source files, the user has the option of 

selecting the disk area from which the language translator is 

obtained. The disk areas are [1,3] for OLD, [1,4] for SYS, [1,5] for 

NEW, and the user's area for DSK and are specified by the switches 

/OLD, /SYS, /NEW, and /SELF, respectively. (These four switches are 

described in DECsystem-10 OPERATING SYSTEM COMMANDS.) For example, if 

the user is translating his source files with a FORTRAN compiler that 

is on the OLD disk area of [1,3], he gives the followingconunand 

string: 

COMPILE/OLD FILEA.F4,FILEB.F4,FILEC.F4 

The FORTRAN compiler is then obtained from area [1,3]. 

The first disk area seen in the command string is also the area from 

which LINK-IO is obtained. Thus, in the command string: 

LOAD /LINK /OLD FILEA.F4,FlLEB.F4,FILEC.F4 

not only is the FORTRAN compiler obtained from OLD, but also the 

LINK-IO linking-loader. If LINK-IO is not found on the specified 

area, then the SYS disk area of [1,4] is searched. However, if the 

first disk area seen is the user's area (as indicated by the /SELF 

switch), only the areas specified in the user's job search list, which 

may· include a user library (LIB), are. searched. The searching does 

2-9 



LlNK-lO -668-

LINK-IO 

SAVE and SSAVE System Commands 

not continue onto the NEW, OLD, and SYS areas. Thus, a user who is 

using a copy of a translator in his disk area but who does not have a 

copy of LINK-IO in that a+ea must use two disk area specifications. 

For example, 

LOAD /LINK /SYS /SELF FILEA.FOR,FILEB.FOR,FILEC.FOR 

LINK-lOis obtained from the SYS disk area and the FORTRAN compiler 

from the user's disk area. Since SYS will be searched for LINK-IO on 

all disk specifications other than SELF, the user needs to specify two 

qisk areas only when he is using a translator from his area. 

2.4 SAVE AND SSAVE SYSTEM COMMANDS 

After loading is completed, the loaded program may be written onto an 

output device so that it can be executed at some future date without 

rerunning LINK-IO. The SAVE and SSAVE system commands output the core 

image onto the specified device as one or two files. If the SAVE 

command is used, the program will be nonsharable when it is later 

loaded into core. When the SSAVE command is used, the high segment 

(if any) of the program will be sharable when the program is loaded. 

The general command format of the two commands is the same: 

where 

SAVE dev:file.ext[direct'ory]core 

SSAVE dev:file.ext[directory]core 

dev: is the name of the device on which to write the saved file. 
If omitted, DSK: is assumed. 

file is the name of the saved file. If omitted, the job's 
current name is used. This name is set by the last R,RUN, GET, 
SAVE, or SSAVE system command, the last command which ran a 

2-10 



-669- LINK-IO 

LINK-lO 

COMPIL Examples 

program (e.g., DIRECT), or the last SETNAM 000 • 

• ext is the extension of the low segment file. If omitted, the 
following extensions are assigned: 

If the program has one segment, the extension .SAV is 
assigned. 

If the program has two segments, the low segment file has 
the extension • LOW, and the high segment file has the 
extension .HGH when a SAVE command is used and the extension 
.SHR when a SSAVE command is used. 

[directory] is the area in which to save the file. 
the user's default directory is used. 

If omitted, 

core is the amount of core in which to save the program. If 
omitted, the minimum requ~red is assigned. 

Refer to DECsystem-lO OPERATING SYSTEM 

descriptions on the SAVE and SSAVE commands. 

2.5 COMPIL Examples 

COMMANDS for complete 

In the following example, the user is translating, loading, and 

executing a MACRO program. The /LINK switch requests that the LINK-lO 

linking loader be used instead of the LOADER • 

• EX£CUTi 1~INK SIMP~E,MAC ) 
MACRO. S%t1PI,.E 
~lNI(, I.OADING 
tEX£CUTIONJ 
THIS IS A VERY SIMP~E TWg.SEGMEN' MACRO PROGRAM, 

EXIT 

2-11 



LINK-lO -:-670-

LINK-lO 

COMPIL Examples 

In the example below, the user is compiling, loading, and executing 

three COBOL programs. The /MAP:PROGMP.MAP switch requests the 

generation of a map file with the name PROGMP.MAP. 

,~XEOVTE I~. INK IMApIPRO~MP rl~A"l~Btrl~C) 
COBOLI OBSeBA t~l~~,ca~l 
~OBOL'CBS~88 ~fl~e~C8~J 
COBOl.' 'CBSnC tfl.\.~, CB~l 
Ll~K' LOADING ' 
rEXECUTIONJ 
RUNNlNG OBSQl8A 
RUNNING CaSU8 
RUNNING CaSL'J8C 

~XlT 

The map file is now on the user's disk area. He can print the file 

with the following command: 

,PRlNT P~OGM~,MAP ) 
TOTAL Of 3 ~1.0CKS IN I.,PT REQUEST 

.. 
The following is a listing of the map file generated. 

2-12 



IV 
I 
~ 
IN 

LINK.l~ SYM~O~ MAP OF ~ROGMP PAOt ~ 
f'R.OOU(;~O a,v I.l·NK-l..i'Vt;RSION C;'?) ON hAPR.n AT 81~'U" . . 

SEGMf;NT ST ARTS, AT 0 ENQ~ AT *416 LENGTH a41~ • ~IC 
STARTING A~DR~SSlS ~~5~, LO~ATEO IN PROGRAM CB~~8A 

I.OW 

••••••••••••• 
JOaOAT.INITIAL~SYH90L$ 

l£RO LENGTH MOOVLE 

••••••••••••• 
1.1BOL-STATIC·AREA 

LOW S~GME~T ~TARTS AT 

I cOM~f, ,..4 " 
............... 

1'~ ENOS AT 

COMMON 

12U LENQTIot 

LENGTH '44 

!14~ (OCTAL), '44 CD~CJMAL) 

(DECIMAL) 

CB5(D8A F'ROM OSKlftL.AiR,El..t27,;!J5l CREATED. BY COBOL QN Z.APR.73 AT 8U4ll11J 
LOW SeGMENT ~TARTS AT ~200 ENOS AT ~J'5 LENGTH ~55 (OC'AL~~ ~~9 CD~CIMAI.) 

C8508, U71'1J EN!RY POINT RELOCATA~"C 

••••••••••••• 
C13Sl'lJ8B rROM OSKlflLB RELt27a3;l CR£ATEO BY COBOL ON~~A'R.13 AT 8!2.]1~ 

LQW SEGMENT tTARTS iT 1355 ENOS AT 2040 LENGTH 46~ rOCTAL). 317 (DECIMAL) 

caS2l8B 1464 ENTRY POINT RF;1.0CA TUL[ 

' .. , ..••...•.. 

o 

~ 
H 
t"' 

tzJ 
~ 

~ 
~ 
(I) 
!II 

t"' 
H 

~ 
I 
~ 
o 

I 
0'1 
'-J 
I'--' 

I 

r--:z 
A 
I 
~ 
o 



I\> 
I 

I-' 
~ 

~S$~8C rROM DSKlfZ~C R~~[27t235l CREAT~O ,y COBOL ON ~.APR.13 AT el~5t~~ 
LOW SEGM~NT STARTS 4T a,., tNO! AT 24e7 LEN~T~ 347 (~C~AL); Z3~ CO~CJMAL) 

ceU8c 214.0 ENTRY POl~T "EL.OCATAaI.E 

••••••••••••• 
TRACED PROM S~SI~I.80L+REL.tl,4~ CREATED ON 2~!MAR.13 AT 16'40101 

LOW SEGMENT S ARTS AT 2407 ENOS Ar 2416 L.~R~T~ 7 (OCTAL); 1 (DECIMAL) 

eTRAC. 2U2 EN!RY POINT REL.QcATAe"'~ 
caOOT. 24,.05 EN!RY POINT REIwOCATAB!.£ 
PTn"G, 2414 GI.~aAL SyMBOL RtI.QCATAB~f; 
TRACE, 2407 F;NIRY POINT RtL.OCATASI.E: 
TRPO. 24~2 ENTRY PO 1 NT . RtL.OCATABbf: 
TRPOP. ~41;Z EN!RY POINT REI.OCAT ABl.t 

••••••••••••• 
t~NO 0' LINK-10 MAP or. PROGMPl 

. ". 

0 t"' 

~ 
H 
Z 
~ 

H I 
t"' I-' 

0 
t'.I 
~ 

~ 
I-' 
(1) 
Dl 

r--:z 
A 
1 ....... 

0 

I 
m 
" N 

I 



LINK-10 

Summary 

2.6 SUMMARY 

-673- LINK-IO 

The LOAD, EXECUTE, and DEBUG system commands, along with the switches 

described in Table 2-1, are sufficient for loading and executing most 

programs. The user can load separately-compiled programs and 

debugging programs, obtain maps, search files in a library search 

mode, and execute the program. To produce a saved file of his core 

image, the user can employ the system commands SAVE and SSAVE. More 

complex loading procedures can be performed by directly using LINK-10, 

as described in Chapter 3. 

2-15 



:, 



LINK-10 

Using LINK-l~ 

-675-

CHAPTER 3 

USING LINK-10 

LINK-IO 

The user runs LINK-10 directly by issuing the system command 

R LINK 

LINK-10 responds with an asterisk at which point the user types in his 

command strings. The LINK-10 program interprets all of the input 

typed by the user up to the end of the command string. A command 

string is defined as a series of characters terminated by a carriage 

return-line feed. A carriage return-line feed is generated when the 

user depresses the RETURN key on his terminal. The RETURN key is 

represented in this manual by the symbol). If the user needs to 

continue a command string on another line, he can place a hyphen as 

the last non-blank, non-comment character before the carriage 

return-line feed. Continuation lines are considered part of the 

current command string, and the current 

terminated until a carriage return-line 

string 

feed 

is 

is 

not considered 

seen without a 

preceding hyphen. Comments may be added to any line by preceding the 

comment with a semicolon. Trailing spaces and tabs (including those 

before comments) are always ignored. 

When the command string is terminated, LINK-10 processes the data in 

the command string by performing the actions specified by the user. 

This usually entails setting relevant internal conditions and storing 

information for later use. Each command string is completely scanned 

and processed before LINK-10 accepts a new one. After scanning and 

3-1 



LINK-IO -676-

LINK-IO 

Command Strings 

processing the current command string, LINK-IO returns with another 

asteriSK signifying its readiness. to accept more input. The program 

accepts command string input until the user gives the exit condition 

switch (/GO) indicating that LINK-IO is to finish all loading taSKS. 

At this point control is either returned to the operating system or 

given to the loaded program for execution, depending upon the 

preceding command strings. 

3.1 LINK-IO COMMAND STRINGS 

Command strings to LINK-IO contain a series of input and/or output 

file specifications and non-conflicting switches to direct the loading 

process. The general command string format is as follows: 

*output specifications=input specifications 

Any number of specifications can be included in the command string by 

separating each specification from other specifications with a comma. 

Although the equals sign is not required, it is· recommended that the 
. . " . . ~ 

user include it so that he can distinguish his output specifications 
. . 

from his input ones. If the user does not include an equals sign, he 

must use a comma to separate the specifications. The input and output 

specifications are then distinguished by the type of switch associated 

with the specification, and the specifications can appear in any order 

(e.g., input specifications can precede output specifications). 

An input or output specification consists of a file specification and 

switches appearing before and/or after the file specification. A file 

specification is in the form 

3-2 



-677- LINK-IO 

LINK-10 

Command Strings 

dev:file.ext[directory] 

and the individual switches that can be used in the command string are 

described in Chapter 4. 

When items in a file specification are missing, LINK-10 has a set of 

initial values to be used as defaults. On input specifications, the 

default values assumed for missing items in a file specification are 

as follows: 

Device 
Filename 
Extension 
Directory 

DSK: ' 
A blank filename 
.REL 
The user's default directory 

On output specifications, the default values are as follows: 

Device 

Filename 

Extension 

Directory 

DSK: 

Name of the last program containing a start 
address. If there is no program with a start 
.address,the name nnnLNK, where nnn is the 
user's job number, is used. 

Dependent on the type 
requested via switches. 

of output 

Log file 
Map file 
Saved file 
Symbol file 
Expanded save 
file 

• LOG 
• MAP 
.SHR,.HGH,.SAV,.LOW 
.SYM 

.XPN 

The user's default directory. 

file 

These defaults are applied just prior to initializing the device and 

opening the file, and are used only if the user has not given values 

for items in a file specification. The initial LINK-10 defaults for 

items in a file specification are used only when a value for the item 

3-3 



LlNK-lO -678-

LINK-10 

Changing Defaults 

does not appear in the command string or until the value is seen if it 

is after the beginning of the string. 

If a component of a file specification is given before the filename, 

it remains in effect until ,changed by a value given subsequently by> 

the user for the same component or until the end of the command 

string. For example, a user can specify a device name at the 

beginning of the string and not have to repeat the device name for 

each specification if he is using the same device for all 

specifications in the command string. However, once the device name 
,', 

is changed, the new name is used as the default device for the 

reaminder of the command string. 

As another example, the user can specify an extension and a directory 

to be used by issuing a command string such as 

* ~BIN [10, 7] DSKB:FIL1,DSKC:F,IL2.REL [10, 20] ,DSKA:FIL3 ) 

The extension .BINand the directory [10,7] are used for any 

specifications that do not include an extension or directory. The 

above command string is equivalent to 

*DSKB:FIL1.BIN[10,7],DSKC:FIL2.REL[10,20],DSKA:FIL3.REL[10,7] ) 

3.2 CHANGING DEFAULTS 

',' ' 

The /DEFAULT switch is used to change the initial values that are 

assumed when the user does not include a component of a file 

specification in his command string. The values specified with this 

3-4 



-679- LINK-IO 

LINK-10 

Switch Algorithms 

switch remain in effect for the entire load unless changed by another 

/DEFAULT switch. The form of the /DEFAULT s.witch is as follows: 

where 

components of file specification /DEFAULT:keyword 

components of file specification are the components which 
the User wants as his default components. 

keywor~,is either INPUT or OUTPUT to ,change the default 
components for the input or output specifications, 
respectively. If this argument is omitted, INPUT is 
assUI!led. 

For example, the following specification 

DSKB: .BIN[10,20]/DEFAULT 

changes the values to be used as defaults for the input specifications 

to be DSKB: for the device, .BIN for the extension, and [10,20] for 

the directory. 

NOTE 

B~cause'the extensions for output files depend 
upo~' the types of file being requested, the user' 
cannot change the output extensions. Any attempt 
to do so is ignored. 

3.3 LINK-10 SWITCH ALGORITHMS 

LINK-10 allows the user to request various loading parameters via 

switches in the command string. Switches are used to specify output 
, 
files, to set defaults, to control the loading of programs, to set 

values, to format maps and symbol tables, to request' ,values of 

symbols, and to position devices. Some switches merely change the 

status of LINK-10 by setting internal values; others request immediate 

3-5 



LlNK-lO -68G-

LINK-IO 

Switch Algorithms 

action to be taken. 

LINK-IO has several categories of switches with a specific algorithm 

for the handling of each category. These categories are: 

Device Switches 

File Dependent Switches 

Output Switches 

Inunediate Action Switches 

Delayed Action Switches 

Switches that create implicit file specifications 

3.3.1 Device Switches 

Switches in this category (e.g., /SKIP, /REWIND) affect the device 

within an input or output specification. The switch is in effect 

after the device is initialized and, depending on its position, either 

before or after the file is read or written. If the switch appears 

before the filename, the appropriate action is taken before the file 

is processed, and if it appears after the filename, action is taken 

after the file is processed. Switches in this category apply only to 

the current input or output specification and do not carryover to 

subsequent devices. In other words, once the requested action is 

performed, it is not performed again unless another device switch is 

given. 

For example, the following specification may be given by the user: 

/SKIP:2 MTA1:MYFILE/UNLOAD, 

3-6 



-681- LlNK-10 

LINK-lO 

switch Algorithms 

After the magnetic tape is initialized, LINK-lO skips forward over two 

files (/SKIP:2), reads the file called MYFILE, and after reading the 

file, rewinds and unloads the tape (/UNLOAD). 

3.3.2 File Dependent Switches 

Switches belonging to this category (e.g.,/NOLOCAL, /SEARCH) modify 

the loading or the contents of a file. These switches are either 

temporary or permanent in nature. A temporary switch applies only to 

the file specification immediately preceding it. An intervening comma 

cannot separate the file specification and the switch. A permanent 

switch appears before the file specification and applies to all file 

specifications following it until modified by a subsequent switch or 

until the end of the current command string is reached. (Remember 

that continuation lines are considered part of the current command 

string). This means that permanent file-dependent switches, unlike 

device switches, continue to apply to following specifications (i.e., 

the action requested by the switch is not terminated at the comma 

which separates specifications). 

For example, the following specifications may be issued by the user: 

,/NOLOCAL DTA3:MAINl,MAIN2,MYLIB/SEARCH, 

Two files, MAINl and MAINi, are loaded in their entirety from DTA3 

without their local symbols. The file MYLIB is searched and parts of 

it are loaded only if required (i.e., they are required to satisfy any 

undefined symbol requests)~ if needed, they are also loaded without 

local symbols. 

3-7 



LINK-IO -682-

LINK-lO 

switch Algorithms 

3.3.3 Output switches 

Switches in this category (e.g.,/MAP, /LOG, /SAVE) initialize the 

output devices and create the output files. Each output specification 

must contain one of these switches because LINK-IO does not create 

output files unless explicitly requested to do so. Each switch 

represents a specific type of output file and is used with a file 

specification to indicate the device and filename of the file. Only 

one output switch can be used with each output specification. If the 

switch is the only item appearing in the output specification, the 

device name and filename are taken from the previous specification or 

from the LINK-IO defaults for output. 

For example, if the user desires a saved file and a map file on DSKB: 

and both with the name· OUTPUT, lle can issue the following 

specifications: 

DSKB:OUTPUT/SAVE,/MAP= 

The two files will have the same filename (OUTPUT) but, by default, 

the extensions will be different (refer to Paragraph 3.1). The comma 

separating the two switches is required to indicate that two output 

files are desired. If the user is satisfied with accepting the 

LINK-IO defaults for output specifica,tions, he can give the following 

/SAVE,/MAP= 

3-8 



-683-

LINK-IO 

Switch Algorithms 

NOTE 

Although the /LOG switch is considered an output 
switch, it is handled in a slightly different 
fashion from the remaining output switches. By 
assigning a device the logical name LOG before 
initializing LINK-IO, the user receives the log 
file on the device assigned as LOG, even if he 
does not include the /LOG switch in his command 
string. The filename associated with the log file 
is nnnLNK.LOG, where nnn is the user's job number. 
The /LOG switch can then be used in the LINK-IO 
command string to change the filename of the log 
file. For example, 

.ASSIGN DSKC:LOG:) 

.R LINK) 
*DSKC: MYLOG/LOG ) 

renames the log file on DSKC: from nnnLNK.LOG to, 
MYLOG.LOG. If the logical device is not assigned, 
then the building of the log file begins when the 
/LOG switch is seen. This results in the 
initialization timings not being included in the 
file. 

3.3.4 Immediate Action Switches 

LINK-IO 

Switches in this category (e.g., /UNDEF, /VALUE, /NOINITIAL, /NOSYM) 

are processed by LINK-IO as soon as they are seen. These switches are 

divided into two types: 

Those that request typeout from LINK-IO. 

Those that change the status of the loading procedure. 

Type-out switches (e.g., /UNDEF) request information from LINK-IO and 

are not dependent upon a particular specification. For this reason, 

they can appear anywhere in the command string but are usually on a 

command line by themselves. because the user is interactively 

requesting information to determine if he may have forgotten to 

specify needed parameters. After processing the switch (i.e., at the 

3-9 



LINK-lO -684-

LINK-10 

Switch Algorithms 

end of the command string), LINK-IO returns the requested information 

immediately. Once the information is returned to the user, the switch 

is cleared. 

Status chan!ing switches (e.g.,/NOINITIAL, /NOSYM) are related to the 

entire leadinq procedure and not to an individual specification. They 
'. 

are plaoed in the command string at the point at which the user wants 

the action to be performed. Once the action has been taken, it is in 

effect for the entire loading process and cannot be overridden. For 

example, ~nce the user gives the /NOSYM switch to notify LINK-10 not 

to generate a local symbol table, he cannot, in the same load, give a 

switch te LINK-10 to nullify this action. 

3.3.5 Delayed Action Switches 

switches in this category (e.g., /MAXCOR,/HASHSIZE) are used to change 

eperatiORaI parameters of LINK-IO to the specified values. When the 

swit;ch is seMl, LINK-IO accepts the value but does not use it until it 

is ~eded. For example, there is a preset value for the maximum core. 

LINK-10 ca~ Occupy during loading. Use of the /MAXCOR switch changes 

Uhis valae iMMediately but LINK-10 does not examine the value until it 

Reeds to exptlftd its core size. 

3.3.6 SwitcHes that create Implicit File Specifications 

SWitches in this category (e.g., /OEBUG, /SYSLIB) caUse LINK-10 to 

create one ~r more input file specifications for programs that must be 

loaded along with the user's program and to set various other switches 

related to ~he implicitiy specified file. As an example, the /OEBUG 

3-10 



-685- LINK-IO· 

LINK-lO 

LINK-I", Switches 

switch indicates that a debugging program is to be loaded and that 

subsequent . modules are to be loaded with local symbols, unless 

otherwise specified by the user. If one of these switches appears 
--, 

before the fi,le specification, the program. implied ,by -the switch is 

loaded before the current file. If the switch is after the file 

specification, the program is loaded after the current file. Once the 

progra~m implied by the switch is loaded, the switch is cleared. 

3.4 LINK-lO SWITCHES 

Switches to LINK-lO ,have one of the following forms: 

/switch-

where 

/switch:arg 

/switch:(arg, ••• ,arg) 

/switch:value 

/switch:arg:value 

/switch:(arg:value, ••• ,arg:value) 

/switch is the name of the desired switch. This name can be 
truncated to a unique abbreviation. The first six 
characters of the name are sufficient to ensure 
uniqueness. 

arg 

value 

is a keyword or a symbol name .. 
truncated to a unique abbreviation. 

Keywords can be 

is either a decimal or octal number. An octal value 
can be used with a switch that accepts decimal values 
by preceding the octal value with a number sign (f). 

is the separator between components in a switch 
specification and must be present if more than one item 
is given. 

are used to enclose multiple keywords and/or values to 
a switch. They are required if more than one argument 
appears with the switch. 

3-11 



LINK-IO· -686'-

LINK-10 

LINK-l~ Switches 

NOTE· 

For the first· release .. of LINK~lO,multiple 
keywords cannot be specified in a single switch 
specification. This ·means that the 'user muse 
issue a switch specification for each desired 
keyword . (e~g., /CONTENTS:LOCAL /CONTENTS: 
RELOCATABLE). This restriction will be removed in 

. a la.ter release of LINK-10. 

Each switch specification must be terminated with a space; however, 

spaces cannot appear within a switch specification (i.e., between the 

slash and the end of the value). 

Table 3-1 briefly describes the switches that· can be used On' the 

LINK-10 command string, and Chapter 4 contains the complete 

descriptions of the switches in alphabetical order. 



LINK-IO 

Switch 

/BACKSPACE 

/COMMON 

/CONTENTS 

/CORE 

/COUNTER 

/CPU 

/DATA 

/DEBUG or /D 

/DEFAULT 

/DEFINE 

/ENTRY 

/ERROlUoEVEL 

/ESTINATE 

/EXCLUDE 

/EXECUTE or /E 

-687- LlNK-lO 

Table 3-1 

LINK-10 Switches 

3-l3 

Meaning 

Spaces backwards over the 
specified number of files. 

Allocates a COMMON area. 

Specifies the types o~ symbols 
to be output in a map. 

SpecifiesLINK-10's initial 
low segment size. 

Lists the relocation counters 
and their values. 

Specifies the processor on 
which the program will run. 

Loads defined constant data .• 
This switch is not implemented 
in Version 1. 

Loads and specifies execut'ion 
of a debugging program. 

Changes de;f;ault va'luesfor 
missing components in a file 
specification. 

Assigns values to undefined 
global symbols interactively. 

Lists library search symbols. 

Selectively suppresses 
messages to the terminal. 

Allocates disk space for' an 
output file. 

Inhibits the loading 
specified modules. 

Specifies 
program 
loading. 

execution of 
upon completion 

of 

the 
of 



LINK-IO 

LINK-lO 

Switch 

/FOROTS 

/FORSE 

/FRECOR 

/00 or /G 

/HASHSIZE 

/INCLUDE 

/LOCALS or /L 

/LOG 

/LOGLEVEL· 

/MAP or /M 

/MAXCOR 

/MPSOR'i' 

/MTAPE 

/NOINITIAL 

/NOLOCAL or /N 

/NOSEARCH 

-688-

Table 3-1 (Cont.) 

LINK-lO Switches 

3-14 

Meaning 

Loads FOROTS, if required, 
during default system library 
searching. 

Loads FORSE, if required, 
during default system library 
searching. 

Specifies the amount of free 
core guaranteed after each 
expansion. 

Terminates 
progress. 

Specifies the 

the 

size 
global symbol table. 

loading 

of the 

Forces the loading of 
specified modules from a 
library. 

. Loads with local symbols • 

Causes a log file to be 
generated. 

Suppresses messages to 
file. 

the log 

Causes a map file to be 
generated. 

Specifies LINK-lO's maximum 
low segment core size. 

Sorts the symbol table for 
output to the map file. 

Performs magnetic tape 
functions. 

Clears the initial global 
symbol tables. 

Loads without local symbols. 

Turns off user library search 
mode. 

I 



LINK-10 

Switch 

/NOSTART 

/NOSYMBOL 

/NOSYSLIB 

lOTS 

'/PATCHSIZE 

/REQUIRE 

/REWIND 

/RUNCOR 

/RUNAME 

/SAVE 

/SEARCH or /S 

/SEGMENT 

/SET 

/SEVERITY 

/SKIP 

/SSAVE 

/START 

/SYMBOL 

-689- LINK-IO 

Table 3-1 (Cont.) 

LINK-10 Switches 

3-15 

Meaning 

Ignores starting addresses. 

Inhibits the generation of a 
symbol table in core. 

Prevents a search of the 
default system libraries. 

Indicates the segment for the 
object time system. 

Allocates patch space. 

Generates global requests for 
the specified symbols. 

Rewinds the 
magnetic tape. 

DEC tape or 

Assigns the initial low 
segment core size for the 
program. 

Assigns the program name. 

Causes a saved file to be 
generated. 

Turns on user library search 
mode. 

Specifies the segment in which 
to load the modules. 

Defines the values 
relocation counter. 

of a 

Defines the fatality level of 
errors. 

Spaces forward on a magnetic. 
tape. 

Causes a sharable saved file 
to be generated. 

Specifies the start address of 
a program. 

Causes a symbol file to be 
generated. 



LINK:-IO 

LINK-IO 

Switch 

/SYMSEG 

/SYSLIB 

/SYSORT 

/TEST 

/UNDEFINED or /u 

/UNLOAD 

/VERBOSITY 

/VALUE 

/XPN 

/ZERO 

-690-

Table 3-1 (Cont.) 

LINK-IO Switches 

3-16 

Meaning 

Moves the symbol table ~o the 
specified segment. 

Performs a search of the 
default system libraries. 

Sorts the symbol table for 
output to the symbol file. 

Loads a debugging program. 

Types undefined global symbols 
on the terminal. 

Rewinds and unloads the 
DECtape or magnetic tape. 

Specifies the amount of text 
to be printed for a message. 

Lists the current values of 
the specified global symbols. 

creates or saves the expanded 
core image file. 

Clears the specified DECtape 
directory. 



-691- L1NK-I0 

LINK-lO 

Switches 

CHAPTER 4 

LINK-IO SWITCHES 

/BACKSPACE 

Function 

The /SACKSPACE switch is used to space backwards over the 

specified number of files. This switch has' an effect only on 

tape devices and is ignored for non-tape devices. 

Switch Format 

/BACKSPACE:n 

n is a decimal number representing the number of files to 

backspace over. If n is omitted, n=l is assumed. 

Category of Switch 
------------------
Device Switch (refer to Paragraph 3.3.1) 

. Examples 

,MTAO:/BACK:3, 

Backspace MTAO by three files. 

4-1 



LINK-IO -692-

LINK-lO 

Switches 

/COMMON 

Function 

The /COMMON switch is used to allocate an area of storage of the 

specified size before loading any more code. An array of storage 

(a COMMON area) is reserved into which data can be placed in 

order that it may be shared by several programs and routines. 

Because the FORTRAN language contains a statement that reserves 

space for. a COMMON area, this switch is used to reserve,COMMON 

arrays when loading non-FORTRAN programs or to allocate a 

different size area than given via the COMMON statement in a 

FORTRAN program. However, if this switch is used to allocate a 

larger size area of the same name as that given in the FORTRAN 

program, the switch specification must be given before the 

FORTRAN program is loaded. 

The name of each labeled area of COMMON storage is defined as an 

internal symbol whose value is the address of the first word of 

the COMMON area. These symbols may be used by other programs as 

external symbols. 

Switch Format 

/COMMON: name: n 

Name is the symbolic name of up to six SIXBIT characters of the 

COMMON area. Blank COMMON is designated with the symbolic name 

".COMM.". 

4-2 



-693- LINK-IO 

LINK-lO 

Switches 

n is a decimal number representing the size of the area in words. 

Restrictions 

. Although various modules may redefine COMMON areas of the same 

name, the· size of a COMMON area cannot be increased during the 

loadirtg process. Therefore, the largest definition of a given 

COMMON area must be loaded first. Any attempt toiricrease the 

size of a COMMON area ,by redefinition will result in a fatal 

error. This 'applies ·toboth modules defining COMMON areas and 

the /COMMON switch. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Example's ." .... 

/COMMON:.COMM.:1000 

Allocate blank COMMON to be 1000 words • 

. :' 
...... 
. ' : 

4-3 



LINK-IO -694-

LINK-lO 

Switches 

/CONTENTS 

Function 

The /CONTENTS $witch gives the user control over the contents of 

the map file ~y allqwing him to specify the types of symbols to 

be included in the file. Each syrnbolis marked as to its type by 

the translator that processed the module containing the symbol. 

Some symbols may be of more than one type. For example, a symbol 

may. be both a global symbol and a relocatable symbol. To insure 

the inclusion of such a symbol in the map file, the user must 

specify both the GLOBAL and the RELOCATABLE keywords in the 

/CONTENTS switch. 

Each specification of the /CONTENTS switch is cumulative; 

keywords set by the first specification are no~ automatically 

cleared by the second specification. If the user desires ~o 

clear a keyword set in a previous specification, he must 

explicitly specify its complement. 

NOTE 

This switch does not produce a map file. The user 
must specify the /MAP switch on an output 
specification in order to obtain the file. Unless 
the /MAP is given, the /CONTENTS switch has rio 
meaning and is ignored._ 

Switch Format 

/CONTENTS:keywora 

/CONTENTS:(keyword, • •• , keyword) 

4-4 



-695- LlNK-lO 

LINK-10 

Switches 

Keywords are as follows: 

ABSOLUTE 

ALL 

COMMON 

DEFAULT 

ENTRY 

GLOBAL 

LOCALS 

NOABSOLUTE 

NOCOMMON 

NOENTRY 

NOGLOBAL 

NOLOCAL 

NONE 

include all absolute 
accumulators, and 
NOABSOLUTE • 

symbols 
masks,} • 

(usually flags, 
Complement of 

. ,include all symbols. Complement of NONE. 

" :' : ~ 

include all COMMON symbQls. 
NOCOMMON. 

Complement of 

include the symbols according to LINK-10's default 
setting, that is: COMMON, GLOBp.L, ENTRY, ABSOLUTE, 
RELOCATABLE, NOLOCAL, and NOZERO. This keyword is 
used tQ reset the /CONTENTS switch to the original 
default setting. 

include all entry name symbols. 
NOE:NTRY. 

Complement of 

,include all global symbols. 
ENTRY symbols unless these 
wi th the. NOCOMMON. and 
Complement of NOGLOBAL. 

inqluding r, COMMON and 
symbols are suppressed 
NO~NTRY, keywords. 

'. 
include all local symbols. Comp'lement of NOLOCAL. 

do not include absolute symbols (i.e., turn off 
the condition corresponding to absolute symbols). 
Complement of ABSOLUTE. . .,' 

do not include COMMON symbols. 
CQMMON. 

Complement of 

do not include entry name symbols. Complement of 
ENTRY. 

do not include global symbols including COMMON and 
ENTRY symbols ~nlessth~sesymbol,.sare:requested 
with the COMMON and ENTRY keywords. Complement of 
GLOBAL. 

,', t ,;. 

dq, not include ,local symbols. 
LOCALS. 

Complement of 

do not include any symbols of any kind. However, 
header information is still output in the map. 
Complement of ALL. 

NORELOCATABLE do not include relocatable symbols. Complement of 
RELOCATABLE. 

4-5 



LINK-IO -696-

LINK-lO 

Switches 

NOZERO 

RELOCATABLE 

ZERO 

do not include symbols from zero length 'programs. 
Complement of ZERO. 

include symbols that are relocatable (usually 
addresses). Complement'of NORELOCATABLE. 

include symbols from zero length modules (usually 
parameter files). A zero length module is one 
which ·defines symbols but generates no' code. 
Complement of NOZERO. 

If the ICONTENTS swit~h is not specified, the default setting is 

COMMON, GLOBAL, ENTRY,. RELOCATABLE, ABSOLUTE, NOLOCAL, and 

NOZERO. When the user specifies a keyword, the keyword is either 

added to the default setting or deleted from the default setting. 

For'example, ,if the user ·issues the /CONTENTS:ZERO sWitch, the 

'. condition for symbols in zero length programs is added to the 

default setting. However, the keywords ALL, NONE, and DEFAULT 

reset the default setting to their respective meanings. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/CONTENT:ZERO,/CON:LOCAL, 

Include in the map local symbols and 
length modules, in· addition to the 
LINK-lO's default setting. 

4-6 

symbols from zero 
types of symbols in 



-697-

LINK-IO 

Switches 

/CORE 

Function 

The /CORE switch is used to specify the initial size Qf LINK-lOis 

low segment. Generally, this size is less than <K" equal ta 

MAXCQR (the maximum size of LI.NK-lOls low segment). If the size 

specified in the /CORE swi~ch is gr~a~er than ~COR, the cace 

will be assigned. However, the next time LINK-lO lWaIi1.s ts exp .. RIil 

core, the size will be reduced to MAXCOR. 

Switch Format 

/CORE:n 

ri is a decimal number that represents the initial loW segroeat 

core size for LINK-IO. An octal value can be given by preceding 

it with a number sign (i). N is expressed in units of 1024 words 

or 512 words (a page) by following the number with K or P 

respectively. If K or P is omitted, K (1024 worGs) is asswned. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

/CORE:17K 

Specify 17K words as the initial size of LINK-10 I s low 
segment. 

4-7 



LINK'"' 10 -698-

LINK-lO 

Switches 

/COUNTER 

Function 

The /COUNTER switch is used to output to the terminal the 

relocation counters, their initial and current values, and for 

undefined counters, the length of code depending on them. When a 

relocation counter is not- known, a count of the amount of core 

used by the counter is kept so that loading can be resolved. 

Code depending on the counter is stored on the disk until the 

counter is defined. 

Although LINK-lO is designed to handle an indefinite number of 

relocation counters to provide efficient program construction, 

the first release of LINK-lO only uses two relocation counters, 

the low segment counter (.LOW.) and the high segment counter 

(.HIGH.). These counters are listed in a map file with their 

initial and final values. 

Switch Format 

/COUNTER 

Category of Switch 

Immediate Action Typeout Switch (refer to Paragraph 3.3.4) 

4-8 



-699-

LINK-10 

Switches 

Examples 

/COUNTER 

RELOCATION COUNTER INITIAL VALUE 

• LOW. 0 

.HIGH. 400000 

4-9 

CURRENT VALUE 

140 

400010 

LINK-IO 



LI~IK-IP -700-

+oINK-10 

Switches 

/CPU 

runction 

The /CPU switch is ~sed to indic~te ~e central pro~~ssor on 

which tQe program will run once ~t has been loaded. 

switch Forma1; 
~------~-----
/CPU:keyword 

Keyword is either KA10 or KIlO. If the ~eyword is omi~ted, KA10 

is assumed. If the /CPU sw~tch is omitted, the ma~h~ne on which 

the prog~~ is loaded is assumed. 

Ca~egory of Switch 
----~~-~----------
pelayed ~c~~on Swit~h (~efer to Paragraph 3.3.5) 

Examples 
-.--~--~ 

/CPU:KIlO 

Run the program on the KIlO processor. 

4-10 



-701- LINK-10 

LINK-1Q 

Switches 

/DEBUG 

Function 

The /DEBUG switch is used to load a debugging program and to 

~pecify thatexepution of the load will begin at the normal start 

address of the debugging program instead of the user's program. 

The debugging programs available are DDT, MANTIS, and COBDDT. 

This switch does not cause termination of the loading procedure, 

the /GO switch is needed for termination. The /EXECUTE switch is 

not used for execution when the /DEBUG switch is given. 

The /DEBUG switch turns on the load with local symbols mode and 

causes it to be in effect for the remainder of the load unless 

'overridden by the /NOLOCALS switch. However, since the /NOLOCALS 

switch is file dependent, it is cleared at the end of the command 

string in which it appears and local symbols mode is reinstated. 

Note that the (LOCALS switch is also file dependent; therefore, 

~he use of the /LOCALS switch and the implicit use of the /LOCALS 

switch in the /DEBUG switch context have different results (i.e., 

the /LOCALS switch is cleared at the end of the command string 

and the load with local symbols mode implied by the /DEBUG switch· 

is not). 

The /DEBUG switch does not cause the local symbols of the 

debugging program to be loaded, regardless of the state of the 

/LOCALS switch. 

4-11 



UNK-IO -702-

LINK-10 

Switches 

Switch Format 

/DEBUG:keyword 

Keyword is one of the following: COBDDT, COBOL, DDT,· FORTRAN, 

MACRO, MANTIS. When a'compiler or the assembler is specified, 

the debugging aid associated with that translator is used. For 

example, if MACRO is specified, the loading afDDT is implied. 

If the keyword is omitted,DDT is assumed. 

Category of Switch 
. . ------------------

Creates an implicit file specification (refer to Paragraph 3.3.6) 

Exainples 

,/DEBUG:DDT DTA3:FI~A.MAC, 

4-12 



-703- LINK-IO 

LINK-10 

switches 

/DEFAULT 

Function 

The /DEFAULT switch is used to change LINK-10's initially-assumed 

values for components missing in a file specification. A file 

specification is in the form dev:file.ext[directory]. TQe 

initial defaults for input specifications are 

DSK:.REL [user's default directory] 

and for output specifications are 

D~K:name of main program.ext dependent on type of 

output file [user's default directory]. 

Thus, the user canpot change the extensions of output files, and 

any attempt to 40 so is ignored. 

Values specified via the /DEFAULT switch are in effect for the 

entire loading process or until the user issues another /DEFAULT 

switch. 

Switch Format 

/DEFAULT:keyword 

Keyword is either INPUT or OUTPUT to specify default conditions 

for input and output specifications, respectively. If the 

keyword argument is omitted, INPUT is assumed. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

4-13 



LINK-IO -704-

LINK-10 

Switohes 

Examples 

DSK:MAIN,/DEFAULT .BIN[10,7), 

Load the file· MAIN.REL from the user's default directory of 
the disk and then ohanqe the input defaults to load .BIN 
files from the [10,7) area of the disk. 

4-14 



-705- LINK-IO 

LIN~-lO 

Switches 

/DEFINE 

runction 

The /DEFINE switch is used interactively by the user to assign 

values to undefined global symbols in order to satisfy glpbal 

requests before LINK-10 terminates the load with undefined 

symbols. The us~ can ~ploy the /UNDEF switch to obtain a list 

of the undefined symbqls and then use the /DEFINE switch to 

satisfy the requests for these ~ymbols. 

Switch Formats 

/DEF~NE:symbol:value 

/DEFINE:(symbol:value, ••• ts~l!value) 

Symbol is the name of the symbol to be defined. If the name 

given is one of an already-defi~~d symbol, the user rec~ives an 

error message. 

Value is the decimal number to be ~ssociated with the symbo~. An 

octal value can ~e given by prece4ing it with a number sign (I). 

4-15 



-706-

LINK-10 

switches 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

*/UNDEF) 

1 UNDEFINED SYMBOL 

NOW 400123 

*/DEFINE:NOW:897) 

*/DEFINE:OCT:i1234) 

4-16 



-707- LINK-IO 

LINK-10 

Switches 

/ENTRY 

Function 

The /ENTRY switch is used to type out all library search symbols 

(i.e., entry points) that have been loaded up to the time the 

switch is given. These symbols are recognized by a specific 

condition set in the first word of the symbol by the translator 

that processed the module containing the symbol. The user 

defines symbols as library search symbols with an ENTRY statement 

in a MACRO-10 or BLISS-10 module, with a SUBROUTINE, FUNCTION, or 

ENTRY statement in a FORTRAN module, or with a SUBROUTINE 

statement in a COBOL module. 

This switch is useful for the future overlay facility of LINK-10. 

Switch Format 

/ENTRY 

Category of Switch 

Immediate Action Typeout Switch (refer to Paragraph 3.3.4) 

Examples 

*/ENTRY) 

Library Search Symbols 

SQRT. 3456 

4-17 



L1NK-lO -708-

LINK-IO 

Switches 

/ERRORLEVEL 

Function 

The /ERRORLEVEL switch is used to selectively suppress LINK-IO 

mes!;ages to the user I s terminal. Associa ted with each message is 

a decimal number from 0 to 31 called the meSsage level. Via this 

switch, the user can decide that messages with a message ievel 

less than or equal to a specific number are not to be output to 

his terminal. A user would normally want to suppress informative 

messages rather than error messages. The higher the message 

level, the mote serious the message. Refer to Chapter 5 for the 

message level of each LINK-10 message. 

Swi tch Format 
-------------
/ERRORLEVEL:n 

n is a decimal number from 0 to 30. Messages with a message 

level less than or equal to n will not be output to the terminal. 

Note that a message with a level of 31 cannot be suppressed. If 

this switch, or the value of the switch, is omitted, informative 

messages are suppressed. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/ERRORLEvEL:IO 

4-18 



I 

-709- LINK-IO 

LINK-IO 

switches 

/ESTIMATE 

Function 

The /ESTIMATE switch is used to reserve disk space for an output 

file and mqst be associated with an outp.ut specification. 

Because each occurrence of the switch allocates space for only 

one file, the user must issue an /ESTIMATE switch for each file 

that needs space reserved. 

This switch is not required for space allocation for an output 

file, but its use can both help the user stay within his quota 

allotment and reduce the number of (RIB) pointers associated with 

the file. 

Switch Format 

/ESTIMATE:n 

n is a decimal number representing the estimated number of blocks 

of 128 words of the output file. A warning message is given if 

LINK-IO fails to allocate the requested size. 

If this switch is omitted, or if an insufficient estimate is 

given, space is allocated automatically as needed. 

4-19 



L1NK-IO -710-

LINK-lO 

Switches 

category o~ Switch 

Output Switch (refer to Paragraph 3.3.3) 

Ex~ples 

DSKC:OUTPUT/MAP/ESTIMATE: 50;/SAVE/ESTIMATE: 200, 

Allocate 50 blocks for the map file and 200 blocks for the 
save file. 

;' -

/ 

4-20 



-711- LINK-lO 

LINK-10 

Switches 

/EXCLUDE 

Function 

The /EXCLUDE switch is used to inhibit the loading of certain 

modules in a file when loading the file in the current mode 
, 

(either search or nonsearch mode). This switch is useful when 

the user is searching a library file and definitely knows he does 

not want certan modules, even though his program may reference' 

the names of these modules. For example, if a library file has 

several modules with the same library search symbols (e.g., as in 

dummy routines) and the user wants to load a module other than 

the first one, he can use this switch to prevent the loading of 

the modules not deSired. Another use of the /EXCLUDE.switch is 

to satisfy global symbol definitions during library searching by 

excluding the modules that would cause multiply-defined symbols. 

Switch Formats 

/EXCLUDE:symbol 

/EXCLUDE:(symbol, . . ., symbol) 

Symbol is the name of the module. 

4-21 



-712-

LINK-IO 

Switches 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

,/SEARCH LIBFIL.REL/EXCLUDE:(MODI,MOD2), 

Search the file LIBFIL as a library 
modules MODI and MOD2 from the 
referenced. 

4-22 

but do not load the 
file, even if they are 



-713-

LINK-10 

Switches 

/EXECUTE 

Function 

The /EXECUTE switch is used to specify that the loaded program is 

to be star.ted at the rtormal entry point (i.e., the start address) 

upon completion of loading. THis switch does not cause the 

termination of loading; the /GO switch is needed to terminate 

loading. 

The /EXECbTE ahd /DEBUG switches cannot be used together because 

one switch specifies execution of the user's program (/EXECUTE) 

ahd the other switch specifies execution of the debugging program 

(/DEBUG) • 

Switch Format 
- - --------------

/EXECUTE 

Category of Switch 
------------------
Delayed Action Switch (refer to Paragraph 3.3.5) 

t 

Examples 

/EXE 

4-23 



LINK-IO -714-

LINK-lO 

switches 

/FOROTS 

Function 

The /FOROTS switch is used ~o specify the object .time system 

FOROTS, instead of FORSE, for use with FORTRAN programs. FOROTS 

is then loaded, if required, when LINK-lO searches the default 

system libraries. 

Switch Format 

/FOROTS 

Category of Switch 

Creates an implicit file specification (refer to Paragraph 3.3.6) 

Examples 

,/FOROTS DSK:MAIN,SUBl, 

4-24 



-715- LINK-I0 

LINK-lO 

Switches 

/FORSE 

Function 

The /FORSE switch is used to specify the object time system 

FORSE, instead of FOROTS, for use with FORTRAN programs. FORS.E 

is then loaded, if required, when LINK-lO searches the default 

system libraries. 

Switch Format 

/FORSE 

Category of Switch 

-------------~----
Creates an implicit file specification (refer to Paragraph 3.3.6) 

Examples 

,DSK:MAIN.F4/FORSE, 

4-25 



LINK-10 -716-

LINK-IO 

Switches 

/FRECOR 

Function 

The /FRECOR switch guarantees that the specified amount of free 

core will remain after LINK-IO expands specific areas in its low 

segment. Since LINK~IO's default amount of free core is 2K, 

users do not need this switch when loading most modules. 

However, when the modules being loaded are quite large (e.g., 

monitor modules), a larger amount of FRECOR will result in a 

faster loading process because LINK-lO will not have to move 

areas around in core as often. 

During the loading procedure, LINK-lO has five areas that can be 

expanded beyond their initial sizes. These areas are: the user's 

low segment code area (LC), the user's high segment code area 

(HC), the local symbol table area (LSj, the fixup area (FX), and 

the global symbol table area (GS). Each area has a lower 

boundary, a maximum upper boundary, and an actual upper boundary. 

LINK-lO tries to maintain space between the actual upper boundary 

and the maximum upper boundary at all times. However, as the 

loading procedure progresses, LINK-lO may have to expand an area 

to accomodate the user's input. If the sum of the amount of free 

core between the actual upper boundary and the maximum upper 

boundary for all areas minus the size required for the expansion 

is less than FRECOR, core is expanded to an amount large enough 

to maintain FRECOR. If the required size of the low segment 

becomes greater than MAXCOR (the user specified limit) or CORMAX 

4-26 



-717- LlNK-lO 

LINK-lO 

Switches 

(the system limit) allows, no further expansion is attempted and 

core is obtained from the free. space recovered' by shuffling 

areas. When all of the free space has been obtained, some or all 

of the above-mentioned areas must overflow to the disk. Note 

that free core is not maintained when areas overflow to the disk. 

Switch Format 

/FRECOR:n 

n is a decimal number representing the number of words of free 

core rounded to the next l28-word multiple. If this switch, or 

the value of this switch, is omitted, 2K words is assumed. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/FRECOR:3K 

4-27 



LINK-10 -718-
LINK-lO 

Switches 

/~ 

Function 

The /~ switch is used to terminate the loading process and is 

the only termination switch available. When LINK-lO executes the 

/~ switch, it finishes loading the current specification, 

searches default libraries (if this action has not been 

suppressed with the /NOSYSLIB switch), produces the requested 

output files, and either exits to the monitor or runs the core 

image produced depending upon the switches appearing in the input 

command strings. If the /OEBUG switch has been specified, 

execution begins at the normal start address of the appropriate 

debugging program. If the /EXECUTE or /TEST switch has been 

specified, execution begins at the normal start address of the 

user's program. If one of these switches has not been specified, 

LINK-lO exits to the monitor. 

Switch Format 

/GO 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Example 

/GO 

EXIT 

4-28 



-719- LINK-10 
LINK-l 0 

Switches 

/HASHSIZE 

Function 

The /HASHSIZE switch is used to specify the initial size of the 

global symbol table. LINK-IO uses the lowest prime number in its 

internal list that is greater than or equal to the given value as 

the hashsize for the symbol table. This switch can be employed 

by a user who knows before loading that the number of global 

symbols used by his program is going to be quite large. By 

setting the hashsize of the symbol table to a larger number, the 

user can save LINK-IO time and space that would be used in 

expanding the hash table. When the user receives the message 

REHASHING GLOBAL SYMBOL TABLE on a load, it serves as an 

indication that he should use the /~SHSIZE switch at the 

beginning of subsequent loads of the same programs. Refer to the 

LINK-IO Design Specification for the hashing technique used in 

symbol tables. 

Switch Format 

/HASHSIZE:n 

n is a decimal number representing the estimated hashsize of the 

global symbol table. A recommended hashsize is a number 1/3 

larger than the total number of global symbols in the load. The 

1efault size (initially 127) is an assembly parameter. 

4-29 



LINK-IO -72Q-
LINK-10 

Switches 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examplel;i 

/HAS:1000 

LINK-10 uses the prime n~er 1021. 

4-30 



-721- LINk-10 

LINK-lO 

Switches 

/II~CLuriE 

Function 

. . 

The /INCLUDE switch is used, when loadi~g a file in search mode, 

to force the loading of specified modules in that file whether or 

not the user's program references them. For example, if the user 

does not have a giobal request for a desired module, he can use 

this switch to cause that module to be ioaded. 

Although the /INCLUDE switch is implemented in Version 1, its 

primary use is for the overlay facility in order to call a 

module. 

Switch Format 
-------------
/INCLUDE:symbol 

/INCLUDE:(symbol, ••• , symbol) 

Symbol is the module name of the desired module. 

Category of Switch 
------------------
File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

,SYS:LIB40/INCLUDE:(SIN,COS,TAN), 

Search the library LIB40, but a1ways load the modules SIN, 
cos, and TAN. 

4-31 



LINK-IO -722-
LINK-10 

Switches 

/LOCALS 

Function 

The /LOCALS switch is used to load local symbols with the 

specified programs. Local symbols are not processed by LINK-la, 

but are useful to the user when debugging. 

This switch does not cause local symbols to be saved as part of 

the core image requested by the /SAVE or /SSAVE switch. The 

/SYMSEG switch or an entry in the JOBDAT location .JBDDT is 

required if local symbols are to remain in core. 

Switch Format 

/LOCALS 

Category of Switch 

File Dependent Switch (refer to ~aragraph "3.3.2) 

Examples 

,MYFlLE,/LOCAL MYDATA,MYSUB,MYLIB, 

Load local symbols with the programs MYDATA, MYSUB, and 
MYLIB. 

4-32 



-723- LINK-IO 

LINK-IO 

Switches 

/LOG 

Function 

The /LOG switch is used to specify an output log file into which 

LINK-IO places information that is useful for the user when he is 

debugging his program. This file is a report of LINK-10's 

prOgress in loading the user's program because the actions taken 

by LINK-10 are shown. The times at which these actions took 

place are also indicated. 

This switch is not required to obtain a log file if the user 

assigns a device the logical name LOG before running LINK-10. 

Then all log information will be recorded in a file on- this 

assigned device. The file is named nnnLNK.LOG where nnn is the 

user's job number. In this case, the /LOG switch merely causes 

the file to be renamed to the user's specifications. 

If the user does not assign a device th~ logical name LOG prior 

to running LINK-10, he must use the /LOG switch in order to 

obtain a log file. However, any times and messages output before 

the /LOG switch is seen in the command string will not appear in 

the log file. 

Switch Format 

file specification/LOG 

File specification is in the form dev:file.ext[directory] to 

specify the device and name associated with the log file. The 

4-33 



LINK-IO ~724-

LINK-:-10 

Switches 

default file specification is DSK:name of main program.LOG 

[user's default directory]. The user's terminal may be specified 

as the log dev~ce. 

Cqtegory of switch 
~--~-~-~----------

Outpqt Switcr (refer to Paragraph 3.3.3) 

EX~J?les 
-~-~-~-~ 

DSKa:MYLOG/LOG 
! • 

Crea~e a log file on DSKB: with the name MYLOG. 

4-34 



-725- LINK-IO 
LINK-IO 

Switches 

/LOGLEVEL 

Function 

The /LOGLEVEL switch is used to suppress LINK-IO messages to the 

user's log file. This switch permits the user to set the level 

of messages that are to appear in the log file. Refer to the 

/ERRORLEVEL switch and Chapter 5. 

If the log file is output to the user's terminal (i.e., the log 

device is the user's terminal), the messages output are 

determined by the lower of the arguments specified in the 

/ERRORLEVEL and /LOGLEVEL switches. The user would rarely set 

the log device as the terminal because the /ERRORLEVEL switch 

with a low number allows him to obtain all messages on the 

terminal. 

Switch Fopnat 

/LOGLEVEL: n 

n is a decimal number from 0 to 30. Messages with a message 

level less than or equal to n will not be output to the log file. 

The user cannot suppress messages with a level of 31. If this 

switch, or the value of the switch is omitted, a message level of 

o is assumed (i.e., all messages are output to the log file). 

4-35 



LlNK-lO -726-
LINK-lO 

Switches 

category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/LOGLEVEL: 5 

Do not output any message to the log file with a message 
level less than or equal to 5. 

4-36 



-727- LlNK-lO 

LINK-IO 

Switches 

. /MAP 

Function 

The /MAP switch is used to specify an output map file which 

consists of the types of symbols requested by the user with the 

/CONTENTS switch. The map file is useful to the user when he is 

debugg~ng his program because it lists the symbols used by his 

program along with their values. ~eader information (e.g., 

relocation co~nters with their lengths and starting addresses) is 

also included in the map. 

Switch Format 

file specification/MAP:keyword 

File specification is in the form dev:file.ext [directory] and 

specifies the device and name associated with the map file. The 

default specification is DSK:name of main program.MAP[user's 

default directory]. 

Keyword is one of the following: 

END to produce a map file at the end of loading. 

ERROR to produce a map file of the code loaded if a fatal 
error occurs (i.e.,an er~or from which LINK-IO cannot 
recover). 

NOW to produce a map file at the time this keyword is seen. 
The map contains all of the information up to and including 
the last file loaded. Default libraries will not be searched 
unless specified. This keyword is normally used during 
debugging to determine how the load is progressing. 

If the /MAP switch is not issued by the user, no map file will be 

4-37 



LINK-IO -728- . 

LINK-lO 

Switches 

generated. If the switch is given, but the keyword is omitted, 

the keyword END is assumed. 

Category of Switch 

Output Switch. Also, /MAP:NOW is an immediate action switch. 

Examples 

DSKB :MYMAP /MAP 

Specify a map file on DSKB: with the name MYMAP. 

4-38 



-729- LINK-IO 

LINK-10 

Switches 

/MAXCOR 

Function 

The /MAXCOR switch is used to specify the maximum amount of core 

LINK-10 may use as its low segment while loading. LINK-10 will 

expand to this size if required and then will overflow to the 

disk, rather than expanding in core, when it reaches the maximum 

core size allowed. When LINK-10 must overflow to the disk, it 

writes out part or all of the symbol a~ea, the low code area, 

and/or the high core area in order that loading can continue. If 

the current amount of core used is greater than the size 

specified by the user, the next time LINK-10 requests more core, 

the size will decrease to the amount specified by the user and 

the remaining code will overflow to the disk. If the amount 

spec~fied by the user is le~s than the minimum amount required by 

LIN~-lO, he receives a warning message indicating the amount 

required. He should then respecify the switch with a larger 

~rgument. 

Switch Format 

/MAXCOR:n 

n is a decimal number that represents the maximum low segment 

core size for LINK-10. An octal value can be given by preceeding 

it with a number sign (#). N is expressed in units of 1024 words 

or 512 words (a page) by following the number with K or P 

respectively. If K or P is omitted, K (1024 words) is assumed. 

4-39 



LINK-IO -730-

LINK-10 

Switches 

The default size is all of available user core. The minimum size 

is dependent upon the code already loaded. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/MAXCOR:30K 

Allow LINK-10 to expand its low segment to 30K before 
overflowing to the disk. 

4-40 



-731- LlNK-lO 

LINK-I a 

Switches 

/MPSORT 

Function 

The /MPSORT switch is used to arrange the symbol table for output 

to the map file in the order most convenient to the user. 

$witch Format 

/MPSORT:keyword 

Keyword is one o~ the following: 

UNSORTED to print the symbols in the order in which they are 
placed in the symbol~table. This keyword is the default. 

ALPHABETICAL to arrange the symbol table in alphabetical 
order for each module or for each block in a 
block-structured module. 

NUMERICAL to arrange the symbol table innumerfcal order 
according to the values of the symbols for each module. 

NOTE 
For the first release 
LINK-la, UNSORTED is the 
keyWord impiemented. 
other keywords listed 

of 
only 

The 
above 

are ignored "and a warning 
message is ~utput. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

MYMAP/MAP/MPSORT:UNSORTED 

Specify a map file with the name MYMAP and print the symbols 
in the order in which they appear in the symbol table. 

4-41 



LlNK')O ..,732.., 

LINK-lO 

Switches 

/MTAPE 

Function 

The /MTAPE switch allows the user to perform Il}agnetic tape 

functions such as rewind, backspace, and skip.:J;f this switch is 

given in an input specification, the action is performed 
" 

immeq.iately. However, when the switch is part of an output 

specification, the action requested is not performed until the 

output d~vice, has been initialized~ 

~witch Format 

/MTA.PE:keyword 

Keyword is one of the following: 

MTWAT 

MTREW 

MTEqF 

~T~KR 

M'1;BSR 

M'1;EOT 

MTUNL 

MTBLK 

MTSKF 
" 

MTBf?F 

MTDEC 

~~ ~ait for spacing and. I/O to finish, 

to rewind 1;-hetapeto load point. 

to write an EOF, 

to skip one record. 

to backspace one record~ 

to space to the log~c~l end-of-tape. 

to rewind and unioad the tape. 

to write 3 inches of blank tape. 

to skip one file. 

to backspace one file. 

to initialize 
tape. ' 

fO+ Digital-compatible 9-channel 



LINK-10 

Switches 

MTIND 

-733- LINK-IO 

to initialize for industry-compatible 9-channel 
tape. 

category of Switch 

Device Switch (refer to Paragraph 3.3.1) 

Examples 

MTA~:/MTAPE:MTEOT/MAP 

Output the map file to MTA~: after spacing to the logical end 
of tape (i. e., to the first. free block). 

4-43 



LINK-IO -734-

LINK-lO 

Switches 

·/NOINITIAL 

Function 

The /NOINITIAL switch is used to clear LINK-lO's initial global 

symbol table • This initial global symbol table consists of the 

• JBxxx symbols in JOBOAT. (Refer to OECsystem-lO Monitor Calls 

for a description of JOBOAT.) This switch is normally employed 

when the user is loading LINK-lO itself (in order to get the 

latest copy of JOBOAT), when the USer wants to load a private 

copy of JOB OAT in order to use new values, or when the user is 

loading a program (for the purpose of creating a core image file) 

that will eventual~y run as an exec mode program (e.g., the 

monitor, diagnostics, a bootstrap loader). This switch must 

appear before the first file specification in the command string 

or else the initial LINK~lO global symbol table (JOBO~T) will be 

loaded. If the /NOINITIAL switch is specified, JOB OAT will be 

searched when the default system libraries are searphed. 

Switch Format 

/NOINITIAL 

If this switch is omitted, LINK-lO's internal JOB OAT area symbols 

are used as the initial global symbol table. 

4-44 



-735- LINK-IO 

LINK-lO 

Switches 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

/NOINITIAL,COMMON,COMDEV,COMMOD,TOPSlO/SEARCH/GO 

Load the monitor without LINK-lO's initial global symbol 
table. 

/NOINITIAL,DTBOOT,EDDT/GO 

Load the exec mode program without LINK-lO's initial global 
symbol table. 

4-45 



LINK-IO -736-

LINK-lO 

Switches 

/NOLOCAL 

Function· 

The /NOLOCAL switch is used to load the programs without their 

local symbols. This is1he default action. 

Switch Format 

/NOLOCAL 

Category of Switch 
-------------"-----
File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

/LOCAL FIRST, SECOND, THIRD, FOURTll/tlOLOCAL 

Load the programs FIRST, SECOND, and THIRD with their local 
symbols and load the program FOURTH without its local 
symbols. 

4-46 



.,.737- LINK-IO 

LINK-IO 

Switches 

/NOSEARCH 

Fun9tiqn 

The /NOSEARCH swi tch i~ used to turn off library search mode 

(i.e., to always load the entire indicated file or files whether 

or not the files are required). The files are not searched to 

determine if they are needed. This switch is normally us~d after 

a /SEARCH switch has set library search mode. 

default action. 

Switch Format 

/NOSEARCH 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

This is the 

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC 

The files LIBMAC, LIBCBL, and LIBFOR are searched as 
lipraries. The files PARTA, PARTB, and PARTC are loaded in 
their entirety. 

4-47 



LINK-IO -738-

LINK-lO 

Switches 

/NOSTART 

Function 

The /NOSTART switch indicates to LINK-lO to ignore· all start 

addresses in the binary input programs. The start address for 

the current program is not changed. 

Switch Format 

/NOSTART 

If this switch is omitted and more than one start address is 

encountered, the last one seen is used. 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

MAINl,/NOSTART MAIN2,MAIN3 

Start addresses are. ignored 'in files MAIN2 and MAIN3. 

4-48 



-739- LINK-"lO 

LINK-lO 

Switches 

/NOSYMBOL 

Function 

The /NOSYMBOL switch signals LINK-lO not to construct a table of 

the symbols used by the user's program. This switch affects the 

speed of loading in that LINK-lO is not required to spend time in 

generating a symbol table for the user. If this switch is given, 

the user is not able to obtain output symbol files or output map 

files containing symbol listings. A map file can be 

obtained,however, with header information only. 

Switch Format 

/NOSYMBOL 

category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4)' 

Examples 

/NOSYM 

4-49 



LlNK-lO -740-

LINK-lO 

Switches 

/NOSYSLIB 

Function 

The /NOSYSLIB switeh is uSed to inhibit the searching of one or 

more of the. system libraries upon completi~n of t;:he loading 

process. The· system libraries required by the ·loaded modules are 

usually s~a:J::'ched at the end of the load in order to satisfy 

undefined gl~bal requests. These libraries are LIBOL .for COBOL 

modules, FORLIBfor FORTRAN~lO modules·, LIB40for F40 modules, 

and ALGLIB for ALGOL modules. 

Switch Format 

/NOSYSLIB:keyword 

/NOSYSLIB:(keyword, ••• ,keyword) 

Keyword is one or more of the following: 

ALGOL to suppress the searching 
BCPL to suppress the searching 

by DEC). 
COBOL. to suppress the searching 
FORTRAN to e;uppress the searching 
F40 to suppress the searching 
NELIAC to suppress the searching 

by DEC). 

of ALGLIB. 
of BCPLIB (not supported 

of LIBOL. 
of FORLIB. 
of LIB40. 
of LIBNEL (not supported 

If the keyword is omitted, the searching of all system libraries 

is suppressed. 

4-50 



-741- LlNK-10 

LINK-10 

Switches 

category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/NOSYSLIB:ALGOL/NOSYSLIB:COBOL 

Do not search ALGLIB and LIBOL. 

/NOSYSLIB 

Do not search any system libraries. 

4-51 



LINK-IO \ -742-

LINK-10 

Switches 

lOTS 

Function 

, 
The lOTS switch is used to indicate the segment into which the 

appropriate object time syste~ ,is to be loaded._ 

Switch Format 

IOTS:keyword 

Keyword is one of the following: 

DEFAULT to load the object time system into the segment 

specified by its code. FORTRAN, NELIAC, and ALGOL specify 

the high segment. This keyword is used to reset to normal 

conditions after specifying a lOTS switch with either the 

HIGH or LOW keywords. 

LOW to load the object time system into the low segment. 

HIGH to load the object·time system into the high segment. 

If this switch, or the value of this switch, is omitted, the 

default action is to load the object time system into the high 

segment unless either: 

Code already exists in the high segment and ISEGMENT:HIGH is 
not set, or 

The user has specified the ISEGMENT:LOW switch. 

In these two cases, the object time system is loaded into the low 

seginent. 

4-52 



-743- LINK-IO 

LINK-lO 

switches 

Category of switch 
------------------
Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

FlLA.REL/SYSLIB/OTS:HIGH 

Load the required'object time system into the high segment. 

4-53 



LINK-IO -744-

LINK-10 

Switches 

/PATCHSIZE 

Function 

The /PATCHSIZE switch is used to allocate space between the top 

of the loaded code and the bottom of the symbol table. This 

space is then used for new symbols defined by the user with DDT 

and/or for patching. Note that when the user defines symbols 

with DDT, each symbol will occupy two words. The space is 

allocated in either the high or low segment, depending upon the 

placement of the symbol table as specified with the /SYMSEG 

switch. The default is to place the symbol table in the low 

segment. 

Switch Format 

/PATCHSIZE:n 

n is a decimal number representing the number of words to be 

allocated as patching space. An octal value can be given by 

preceding it with a number sign (#). A global symbol, PAT •• " is 

defined to be equal to the first location in the patching system. 

If this switch, or the value of this switch, is omitted, the 

default allocation is 64 (decimal) or 100 (octal) words. 

4-54 



-745- LINK-IO 

LINK-lO 

Switches 

Category of Switch 
------------------
Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/SYMSEG:HIGH/PATCHSIZE:200 

Load the symbol table into the high segment and allocate 200 

words between the loaded code and the symbol table. 

4-55 



LINK-IO -746-

LINK-IO 

Switches 

/REQUIRE 

Function 

The /REQUIRE switch is used to generate global requests for the 

indicated symbols. Thus, this switch can be used to load library 

modules out of their normal loading sequence or to force the 

loading of modules for overlays. 

The /REQUIRE switch is used to load a module by specifying one or 

more of its library search symbols (entry points), whereas the 

/INCLUDE switch is used to load a module by specifying its name. 

Thus, the /REQUIRE switch is useful when the user knows the 

function he wants loaded (e.g., SQRT), but does not know the name 

of the module containing that function. 

Switch Format 

/REQUIRE : symbol 

/REQUIRE: (symbol, • • ., symbol) 

Symbol is the SIXBIT symbol name for which the user wants a 

global request generated. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

/REQUIRE : NAME 

Generate a global request for the symbol called NAME. 

4-56 



-747- LINK-IO 

LINK-10 

Switches 

/REWIND 

Function 

The /REWINDswitch is used to rewind the current input· or output 

device •. ~he device associated witb this switch must be a DECtape 

,or magnetic tape. If the device is nQt a tape device, the switch 

is igpored. 

Switch Format 

/REWIND 

Category of Switch 

Device Switch (refer to Paragraph 3.3.1) 

Examples 

, /REWIND MTAO:, 

4-57 



LINK-IO -748-

LINK-l 0 

Switches 

/RUNCOR 

Function 

The /RUNCOR switch isoused to specify the amount of 0 core to be 

assigned oto the 0 low segment bf the program when it is executed. 

The effect of this switch is identical to that produced when the 

program is run by the system run commands (R or Rtrin with the 

given core argument. 

Switch Format 

/RUNCOR:n 

n is a decimal number that represents the amourit of core to be 

used as the initial core size for the program when obtained with 

the GET system command. An octal value can be 9iven by 

preceeding it with a number sign (f). N is expressed in units of 

1024 words or 512 words (a page) by following the number with K 

or P respectively. If K or P is omitted, K 0(1024 words) is 

assumed. If n is omitted or is less than the amount required, 

the number of blocks required by the core image area is assumed. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/RUNCOR: SOP 

4-58 



-749- LlNK-lO 

LINK-lO 

Switches 

/RUNAME 

Function 

The /RUNAME switch is used to assign the name to the program that 

is to be used while the program is running. This name is stored 

in a job-associated table in the Monitor and is used by the 

SYSTAT program and the VERSION system command. This switch 

affects high segment programs only. 

Switch Format 

/RUNAME:symbol 

Symbol is the name to be assigned to the program. Only the first 

six characters specified are used. If this switch is omitted, 

the default name is the name of the module with the last start 

address. If there is no module containing a start address, the 

name used is nnnLNK, where nnn is the user's job number. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/RUNAME:PRIV,MYPROG/SSAVE 

Save the file with the name MYPROG (i.e., MYPROG.SHR), but 
the program is run with the name PRIV. 

4-59 



LINK-IO -750-

LINK-lO 

Switches 

/SAVE 

Function 

The /SAVE switch is used to define an output save file which will 

contain the core image generated by LINK-lO. The core image is 

saved as one or two files: a low . segment ~ile and/or a high 

segment file. After the core image is saved on the specified 

output device, it can later be brought into core and executed as 

a non-sharable program (by using the RUN or GET system commands) 

without rerunning LINK-lO. 

Before writing low segment files (i.e., files with extensions 

.SAV or .LOW), LINK-lO compresses the core image by eliminating 

all zero blocks. High segment files are not compressed. This 

action is known as zero-compression and is used to save space on 

the storage device. The resulting zero-compressed file is, in 

essence, identical to the one produced by the SAvE system 

command. 

Switch Format 

file specification/SAVE:n 

File specification is in the form dev:file[directory] and 

specifies the device and name associated with the save file. The 

default specification is: 

DSK:name of main program. [user's default directory) 

4-60 



-751- LINK-10 

LINK-IO 

Switches 

user-supplied extensions are ignored and the extension given to 

the file depends on the number of segments saved. If there is 

only one segment, the extension .SAV is used. If there are two 

segments, the extension .LOW is used for the low segment and .HGH 

for the high segment. 

N is a decimal number that represents the amount of core (sum of 

high and low segments) in which the program is later to be run. 

An octal value can be given by preceding it with a number sign 

(#). N is expressed in units of 1024 words or 512 words (a page) 

by following the number with K or P respectively. If K or P is 

omitted, K (1024 words) is assumed. 

If the /SAVE is not used, a save file will nat be generated. If 

the switch is given but the core argument is omitted, the minimum 

core required by the core image is used. 

Cate~ory of Switch 

Output Switch (refer to Paragraph 3.3.3) 

Examples 

DTA3:MYPROG/SAVE:4K= 

Define a save .file on DTA3: with the name MYPROG. The 
program will be run in 4K. 

4-61 



LlNK-lO -752-

·LINK"lO 

Switches 

/SEARCH 

Function 

The /SEARCH switch is used to turn on library search mode (i.e., 

to search specified files in order to load only those modules of 

the file that are required to satisfy undefined global requests). 

The user gives this .switch to search either library files that he 

may have created or ones that are not part of the required system 

libraries. The /NOSEARCH switch is used to turn off library 

search mode. The required system libraries are still searched 

unless the user has inhibited the searching with the /NOSYSLIB 

switch. 

Switch Format 

/SEARCH 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC 

The files LIBMAC, LIBCBL, and LIBFOR are searched as 
libraries. The files PARTA, PARTB, and PARTC are loaded in 
their entirety. 

4-62 



-753- LlNK-lO 

LINK-lO 

Switches 

/SEGMENT 

Function 

The /SEGMENT switch is used to indicate to LINK-lO the segment 

into which to load the input modules. 

Switch Format 
-------------
/SEGMENT:keyword 

Keyword is one of the following: 

DEFAULT to follow the specifications in .the program. The 
typical case is to load pure code into the high segment and 
impure code into the low segment. This keyword is used to 
rese~ to normal conditions after specifying a/SEGMENT 
switch with either the HIGH or LOW keywords. 

LOW to load code into the low segment. 

HIGH to load code into the high segment, even if the code is 
impure. 

If this switch, or the value of the switch, is omitted, high 

segment code is loaded into the high segment and low segment code 

into the low segment. 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

/SEGMENT:LOW TESTPRG,ANSWER,ROUTIN/SEGMENT:HIGH, 

Load the modules TESTPRG and ANSWER into the low segment and 
the module ROUTIN into the high segment. 

4-63 



L1NK-IO -754-

LINK-lO 

Switches 

/SET 

Function 

The /SET switch is used to set the value of a relocation counter 

to a specified number. Although LINK-lO will handle many 

relocation counters, in the first release only two relocation 

counters are implemented: the counter for the low segment (.LOW.) 

which begins at zero, and the counter for the high segment 

(.HIGH.) which begins at location 400000 or the end. of the low 

segment, whichever is greater. Other counters can be set, but 

they are currently not used by LINK-IO. 

switch Format 

/SET:symbol:n 

Symbol is the name of the relocation counter. 

n is an octal number representing the value of the counter. For 

the first release of LINK-IO, only two relocation counters can 

usefully be given, • LOW. and .HIGH. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

.SET:.LOW.:lOOO,/SET:.HIGH.:400000 

4-64 



-755- LINK-IO 

LINK-l 0 

Switches 

/SEVERITY 

Function 

The /SEVERITYswitch specifies toLINK-lO the level· at which 

messaqes are· to be considered fatal. Associated with each 

messagE! is a decimal number from 0 to 31 called the severity 

level. With this switch, the user can specify that messages with 

a severity level less than or equal to a specific number are not 

to cause Ilis job to be terminated. Any message with a severity 

level above ~he specified number will cause his job to abort. 

Switch Format 

/SEVERI~Y:n 

n is a decimal number from 0 to 30. LINK-l 0 messages with a 

severity level above n will cause a· user's job to be aborted. 

Even· though the highest severity level is ;n, the user cannot 

indicate that a message with this severity· level is to be 

considered non-fatal. If this switch, or the value of the 

switch, is omitted, a fata+ error for a timesharing job is one 

whose severity level is greater than 24 (decimal), and for a 

batch job, one whose ~evel is greater than 16 (decimal). 

Category of Switch 

------------~-----
Deiayed Action Switch (refer to Paragraph 3.3.5) 

Exampies 

/SEVERITY:30 

4-65 



LINK-IO -756-

LINK-10 

Switch~s 

/S~IP 

Function 

The /SKIP switch is used to space forward oyer the specified 

number of input or output file~. This switch is implemepted for 

magnetic tape only and is ignored. if it.isgiv~ for ~y other 

device. 

Switch Format 
------------­; .~ 

ISKIPz~ 

n is a decimal number representing the number of files to skip 

over. 

Category of Switch 
--~-~-~~---~-----~ 

peviceS~itch (refer to Paragraph 3.3.1) 

Example~ 

/SKIP:4 MTA3: 

4-66 



.-757- LINK-IO 

LINK-10 

Switches 

/SSAVE 

Function 

The /SSAVE switch is used to define an putput save file which 

will contain the core image produced by LINK-10. It is similar 

to the /SAVE switch except that the high segment will be sharable 

when it is brought into core and executed. The saved file 

produced by this switch is the same as the one produced by the 

SSAVE system command. Refer to the /SAVE switch. 

Switch Format 

file specification/SSAVE:n 

Arguments are the same as for the /SAVE switch except for the 

following difference: when there are two segments, the extension 

.LOW is assumed for the low segment and .SHR for the high 

segment. 

Category of Switch 

Output Switch (refer to Paragraph 3.3.3) 

Examples 

DTA:SHRPRG/SSAVE, 

Define a sharable save file with the name SHRPRG on the 
user's DECtape. The minimum core required by the core image 
is assigned. 

4-67 



LINK-IO -758-

LINK-lO 

Switches 

/START 

Function 

The /START switch is used to specify the start address of the 

loaded program or to allow a program to specify its own start 

. address. When a start address is specified, all subsequent start 

addresses are ignored. This is the default action. 

Switch Format 

/START:n 

n is either of the following: 

an octal number preceded by a number sign . (t) representing 
the starting address of the program, or 

a SIXBIT global ~ymbol whose value is the start address. 
The global·symbol specified must be defined. 

If n is omitted,LINK-lO does not change the current start 

address put will ~ccept all start addresses from the following 

modules (i.e., the action is to turn off a /NOSTART switch 

setting). 

Category of Switch 

File Dependent Switch (refer to Paragraph 3.3.2) 

Examples 

,MAINPG/START,/NOST~T PROGI,PROG2, 

Use the start address in MAINPG and ignore the start 
addresses in PROGl and PROG2. 

4-68 



-759- LINK-IO 

LINK-10 

Switches 

/SYMBOL 

Function 

~he /SYMBOL switch is used to specify an output symbol file which 

will consist of local symbols (if loaded), information stored in 

the local symbol table, such as ~odule names and lengths, and 

global symbols sorted for DDT. 

Via keywords, the user can specify that the symbol file is to be 

either in radix-50 representation. or in triplet format. These 

two symbol table formats can be distinguished from each other in 

several ways: 

1. The first word of. the radix-50 symbol table is always 

negative. The first word of the triplet symbol table is 

always zero. 

2. The listing of each radix-50 symbol requires two words; 

the first word is the symbol name in radix-50 

representation, and the second word is the value. 

3. The listing of each triplet symbol requires three words: 

the first one contains flags, the second is the symbol 

name in SIXBIT, and the third is the value. 

This switch is useful when DDT is not loaded with the user's 

program because it guarantees that the symbols will be available. 

Note that if the user issues the /NOSYMBOL switch in the command 

string, he is not able to obtain the output symbol file. 

4-69 



LINK-IO -760-

LINK-lO 

Switches 

Switch Format 

file specification/SYMBOL:keyword 

File specification is in the 'form dev:file[directory] and 

specifies the device and name associated with the symbol file. 

The default specification is 

DSK:name of main program .SYM[user's default directory] 

If there is no main program, the filename nnnLNK, where nnn is 

the user's j'ob number, is used ~ 

Keyword is one of the following: 

RADIX-50 to obtain the symbols in radix-50 representation. 

TRIPLET to obtain the symbols in triplet format. 

If the /SYMBOL switch is not issued by the user, no output symbol 

file will be generated. If the keyword is omitted, RADIX-50 is 

assumed. 

category of Switch 

Output Switch (refer to Paragraph 3.3.3) 

Examples 

DSKB:SYMFIL[20,235]/SYMBOL, 

Define a symbol file with the name SYMFIL on the [20,235] 
area of DSKB:. The symbols will be output in the RADIX-50 
format. 

4-70 



-761- LINK-10 

LINK-10 

Switches 

/SYMSEG 

Function 

The /SYMSEG switch causes symbols to be loaded with the program 

and indicates the segment into which the symbol- 'table-is to be 

placed. With this switch, the user insures that hi1?pz:ogram when 

loaded with DDT will run in as much core as is available without 

overwriting the symbol table. Loading DDT or setting the JOBDAT 

location .JBDDT to a non-zero value also causes the symbols to be 

loaded. 

Switch Format 
-------------- -

/SYMSEG:keyword 

Keyword is one of the following: 

DEFAULT to move the symbol table from its current position 
at the top of core to the first free location after the 
patching space. The JOB OAT location .JBFF,whichpoints to 
the first free location, is adjusted to point to the first 
free location after the ~ymbol table. This keyword is used 
to reset to the normal action after invoking the /SYMSEG 
switq~-with either the-HIGH or LOW keywords. 

HI~H to place the symbol table into the high segment. 

LOW to place the symbol table into the low segment. 

If the switch, or the value of the switch, is omitted, the symbol 

table is moved from its current position in the segment to the 

first free location in that segment. The first free location is 

det~rmined after the al19c~tion of space (default allocation is 

64 decimal or 100 octal words) for patching of symbols. A global 

symbol, PAT •• , is defined to be equal to the first location in 

4-71 



LINK-IO -762-

LINK-lO 

Switches 

the patching space. 

Category of Switch . . ----------------- . 

Delayed Action Switch (refer to Paragraph 3.3.5) 

.ElCamples . 

/SYMSEG:HIGH 

4-72 



-763- LINK-IO 

LINK-lO 

Switches 

/SYSLIB 

Function 

The /SYSLIB switch forces the system libraries to be searched in 

order to satisfy any undefined global requests. LINK-lO examines 

the main program first and, depending on the compiler used, 

searches the appropriate library (e.g., an ALGOL main program 

causes ALGLIB to be loaded). Then LINK-lO looks at any remaining 

programs and searches the relevant libraries. 

A system library is not automatically searched unless its 

corresponding compiler-produced code has been loaded. This means 

that a user must explicitly request a system library when he is 

not loading the corresponding compiler-produced code for that 

library. For example, if the user is loading only MACRO-lO 

programs and he wants the LIB40 library searched, he must specify 

it in the switch format; LIB40 is not automatically searched 

unless F40 code has been loaded. 

The normal action taken by LINK-lO is to search all required 

libraries at the end of the loading procedure; however, this 

switch without any keywords causes the libraries to be searched 

at the time the ~witch is given. If keywords are specified on 

the switch, the searcing of the indicated libraries occurs at the 

end of the loading procedure or on a subsequent /SYSLIB switch 

with no arguments, whichever occurs first. 

4-73 



LlNK-lO -764-

L:J:NK-10 

Switches 

Switch Format 

/SYSLIB:keyword 

/SYSLIB:(keyword, • ,keyword) 

Keyword ~s one of the following: 

to search ALGLIB 
to search BCPLIB (not supported by DEC) 
to search LIBOL 
to search FORLIB 

ALGOL 
BCPL 
COBOL 
FORTRAN 
F40 to search LIB40 or FORLIB. The library searched 

depends upon the /FOROTS or /FORSE switch, if 
given, or on the default FORTRAN library, which is 
normally FORLIB, if neither switch is given •. 

NELIAC to ~e~rch LI~NEL (not supportegby DEC) , 

If the keyword is omit~ed, only ~he libr~ries for wpich 

corresponding compiler~produced code has been loaded will be 

searched. 

Category of Switch 

Creates an implicit file specification (refer to Paragraph 3.3.6) 

Examp~es 

!SYSLIB 

4-74 



-765- LINK-IO 

LINK-lO 

Switches 

/SYSORT 

Function 

The /SYSORT switch is used to arrange the symbol table for output 

to the symbol file into the order most convenient to the user. 

Switch Format 

/SYSORT:keyword 

Keyword is one of the following: 

UNSORTED to leave the symbols in the order' in which they are 
placed in the symbol table. This is the default. 

ALPHABETICAL to arrange the symbol tabl~ in alphabetical 
order for each module or for each block in a 
block-structured module. 

NUMERICAL to arrange the symbol table in numerical order for 
each module according to the values of the symbols. 

NOTE 

For the'first release of LINK-lO, 
UNSORTED is the only keyword 
implemented. The other keywords 
described above are accepted but 
LINK-lO's action is the same as 
that taken with the UNSORTED 
keyword. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/SYSORT:UNSORTED 

4-75 



LlNK-lO -766-

LINK-lO 

Switches 

/TEST 

Function 

The /TEST switch is used to load a debugging program and to 

specify execution of the user's program. Thus, it is similar to 

the /DEBUG switch except that it specifies execution of the 

user's program instead of the debugging program. This switch 

does not cause termination of the loading; the /GO switch is 

required to terminate laoding. 

Sw~tch Format 
------------
/TEST:keyword 

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN, 

MACRO, MANTIS. wpen a compiler or the as~em,bler is specified, 

the debugging aid associated with that translator is used (e.g., 

if MACRO is specified, the debugging program DDT is loaded). 

Category of Switch 

Creates an implicit file specification (refer to Paragraph 3.3.6) 

Examples 

,MAINl,/TEST:COBOL DATP~G,DATA,TEST, 

4-76 



. -767- LINK-IO 

LINK-10 

Switches 

/UNDEFINED 

Function 

The /UNDEFINED switch is us~d to type all undefined global 

requests on the user's t~rm~nal. The user can employ this switch 

to deteX1lline the undefined s~ls and then use the /DEFINE 

switch to satisfy the req~ests for these symbols. Thus, the user 

can +nteractively satisfy r~quests before LINK-10 terminates the 

load with undefined stmbols. 

Switch Format . . ; 

------------
/UNDEFINED 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

*/UNDEF) 

1 UNDEfI~D SYMBOL 

NAME 400100 

40P100 is a word in the chain of fixups depending on the 
syinb~l. 

4-77 



LINK-IO -768-

LINK-lO 

Switches 

/UNLOAD 

Function 

The /UNLOAD switch is used to rewind and unload the cur~ent input 

or outpu~ device. The device associated with this switch must be 

a DEC tape or a magnetic tape, the switch is ignored for non-tape 

devices. 

Switch Format 

/UNLOAD 

Category of Switch 

Device Switch, however, the action of this switch is always 
performed after the file is processed regardless of its position 
in the specification (refer to Paragraph 3.3.1) 

Examples 

,/REWIND DTA3:FILNAM/UNLOAD, 

4-78 



-769- L1NK-IO 

LINK-IO 

Switches 

/VALUE 

Function 

The /VALUE switch allows the user to interactively type in the 

names of globa+ symbols in order to find out their current 

values. The output given to the user consists of the requested 

s~ol, its current value, and tts status. The status can be one 

of: DEFINED (i.e., in the sym~l table with its final value), 

UNKNOWN (i.e., not in tile symbol table), UNDEFINED .(i.f:l., in the 

symbol table as undefined), Cq~ON (i4e., in the symbol table and 

defined as COMMON). 

Switch Format 

/VALUE:symbol 

/VALUE: (symbol, • • ., symbol) 

Symbol is the name of the symbol in ASCII. 

Category of Switch 

Immediate Action Switch (refer to Paragraph 3.3.4) 

Examples 

*/VALUE:(TAG1,START») 

TAG 1 

START 

400010 DEFINED 

o UNDEFINED 

The symbol TAGl is defined to be the value 400010, and the 
symbol START is undefined. 

4-79 



LINK-IO -770-

LINK-10 

Switches 

/VERBOSITY 

Function 

The /VERBOSITY switch gives the user control over the amount of 

text transmitted to both his .terminal and his log file whenever 

he receive·s a message from LINK-10. Associated with each message 

isa verbosity indicating the amount of text contained in the 

. message • A verbosity of SHORT indicates that the message 

. consists . only of a 3-letter code (e.g., STC). A message with a 

verbosity of MEDIUM consists of the 3-letter code and one line 

that explains the code (e.g., STC Symbol Table Completed). A 

message with a verbosity of LONG consists of the 3-letter code, 

the one line of explanation, plus a more detailed explanation of 

the message. Thus, the user can specify via this switch the 

amount of explanation output to his terminal and log .file. 

LINK-10 has the following feature to aid users receiving fatal 

messages (i.e., ones preceded by?). If· the· user receives a 

fatal message but has not indicated that he wants to see the 

detailed explanations (i.e., verbosity LONG), he can give the 

CONTINUE system command after he receives the message. LINK-10 

then types out the remainder of the message (if there is more 

information available) on the user's terminal. This additional 

information is not included in the user's lQg file nor is the job 

continuable after the message is output. 

4-80 



-771- L1NK-I0 

LINK-10 

Switches 

Switch Format -

/VERBOSITY:keyword 

Keyword is one of the following: 

SHORT 3-letter code only. 

MEDIUM 3-letter code and a one-line explanation. 

LONG 3-letter code, a one-line explanation, and a 
detailed explanation. 

The default value is MEDIUM if this switch, or the keyword to the 

switch, is omitted. 

If the user specifies a verbosity greater than the one available 

for the message, the specified keyword is ignored for that 

message and only the available text is output. For example, if 

the user specifies MEDIUM as the verbosity but the message only 

has a 3-letter code available (i.e., SHORT), only the 3-letter 

code will be output because there is no additional information 

available for that message. 

Category of Switch 

Delayed Action Switch (refer to Paragraph 3.3.5) 

Examples 

/VER:SHORT 

4-81 



LINK-IO -772-

LINK-IO 

Switches 

/XPN 

Function 

The /XPN switch is used to create or save on the disk' the 

expanded core image file (XPN file) of the low segment. If the 

program has riot been loaded onto the disk, this switch causes the 

file to be created with the name specified by the user. If the 

program has been loaded onto the disk, the file already exists, 

but with the name nnnLLC.TMP where rtnn is the user's job number. 

Since this extension indicates a temporary file, the expanded 

file is normally deleted upon the completion of LINK-IO's 

processing. Thus, in this case, the /XPN switch is used to 

rename the file with the .XPN extension, so that it will not be 

deleted. 

Switch Format 

file specification /XPN 

File specification is in the form dev:file[directory] and 

specifies the device and name to be associated with the expanded 

core image file. The default specification is 

DSK:name of main program.XPN [user' s default directory] 

If there is no main program, the filename nnnLNK, where nnn is 

the user's job number, is used. 

4-82 



-773- LINK-IO 

LINK-lO 

Switches 

Category of Switch 

Output Switch (refer to Paragraph 3.3.3) 

Example 

DSKC:XPNFIL[20,270)/XPN 

Save the expanded core image file on the [20.,270] area of 

DSKC: and with the name XPNFIL. 

4-83 



UNK-IO -774-

LINK-10 

Switches 

/ZERO 

Function 

The /ZERO switch is used to clear the directory of the associated 

DECtape. The directory is always cleared before the file is 

Written, regardless of the switch's position in the currerit 

specification. This switch is ignored for all non-DECtape 

devices. 

Switch Format 
-------------
file specification/ZERO 

File specification is an output specification. 

Category of Switch 

Output Switch (refer to Paragraph 3.3.3) 

Examples 

DTA3:MYPROG/SAVE/ZERO 

4-84 



LINK-lO 

Messages 

-775-

CHAPTER 5 

LINK-lO MESSAGES 

LINK-IO 

The following table of LINK-lO messages consists of four columns: 

CODE, LVL, SEV, and MESSAGE. The leftmost column (CODE) contains a 

3-letter code, which represents a terse, abbreviated form of the 

message. The user can indicate, via the /VERBOSITY:SHORT switch, that 

he desires only this code to be output whenever he receives a LINK-lO 

message. Refer to the /VERBOSITY switch in Chapter 4 for additional 

information. 

The second column of each message (LVL) indicates the message level 

associated with that message. The message level is the factor that 

determines if the message is to be output. Normally, informative 

messages are suppress~d to the user's terminal and all messages are 

output to the log file, if the user has designated one., However, the 

user can override this action with the /ERRORLEVEL and /LOGLEVEL 

switches. These switches accept a decimal number and indicate to 

LINK-10 that messages with a message level less than or equal to the 

specified number are not to be output to the user's terminal 

(/ERRORLEVEL) or to his log file (/LOGLEVEL). Messages with a message 

levei greater than the specified number will be output. The two 

switches are independent if the user's log file is not being output to 

his terminal. That is, he can have one set of messages printed on his 

terminal and another set listed in his log file. When the device for 

the log file is the user's terminal, only one set of messages is 

output. This set is the one generated by the lower argument in either 

5-1 



LlNK-lO -776-

LINK-IO 

Messages 

the /ERRORLEVEL or /LOGLEVEL switch. 

There are currently representations for three message levels: 

%I message level 1 (informative) 

%W message level 10 (warning) 

%F message level 31 (fatal) 

Refer to the /ERRORLEVEL and /LOGLEVEL switches in Chapter 4 for 

addi~ional information. 

The third column (SEV) contains the severity level associated with 

each message. The severity level is the point at which LINK-IO 

considers a message to be fatal (i.e., one which will terminate the 

load). The predefined LINK-IO severity levels can be overridden by 

the user via the /SEVERITY switch. This switch accepts a decimal 

number and indicates to LINK-IO that messages with a severity level 

less than or equal to the specified number are not to be considered 

fatal. Messages with a severity level greater than the specified 

number will cause the load to be terminated. (Note that messages with 

a severity level of 31 are always fatal and that the user cannot 

override the action taken with these messages.) If the user· does not 

give a /SEVERITY switch, or does not give an argument to the switch, a 

severity level of 24 is considered fatal for a timesharing job and a 

severity level of 16 is considered fatal for a batch job. 

5-2 



-777- LINK-IO 

L1NK-IO 

Messages 

currently the representations for the severity levels are as follows: 

%1 ~everi~y lev~i 1. The message is enclosed in square brackets 
(informa ti ve) • 

%w severity ievel 10. The message ~s preceded by a percent sign 
(warning) • 

%E severity levei 30. The message is preceded by a percent sign 
and followed by a .line r~questing the user to re-edit the 
current fiie specification, if he wishes. This optiort is 
available only to a time~sharing user (editing). 

%F severity level 31. The message is preceded by a question 
mark (fatal) • 

Refer to the /smR1TY switch in Chapter 4 for additional information. 

The rightmost column (MESSAGE) contains a more detailed explanation of 

the message than the one appearing in the CODE column. This message, 

along with the three-letter code, is riormally output. However, the 

user can override this action with the /VERBOS1TY switch. Refer to 

the /VERBOSITY switch in Chapter 4 for further information. 

5-3 



LINK-IO 

LINK-lO 

Messages 

CODE LVL SEV 

ANC IF 

AZW IF 

CEF IF 

CLF %I %I 

CMF IF IF 

-778-

MESSAGE 

ADDRESS NOT IN CORE (1) 

LINK-lO expected a particular user address to 
be in core, but it is not there. This is a 
LINK-lO internal error. 

ALLOCATING ZERO WORDS (1) 

LINK-lO's space allocator was called with a 
request for zero words. This is an internal 
error inLINK-lO. 

CORE EXPANSION FAILED (1) 

All attempts to obtain more core, including 
writing files onto disk, have failed. 

CLOSING LOG FILE, CONTINUING ON [file 
specification] 

This message occurs when the user changes the 
device on which the log file is being 
written. The log file is closed on the first 
device and the remainder of the file is 
written on the second device. 

COBOL MODULE MUST BE LOADED FIRST 

The COBOL-produced file must be the first· 
file loaded when loading COBOL modules. 
COBDDT, the COBOL debugging program, or any 
other ·modules, such as a MACRO routine, 
cannot be the first file in the command 
string. The user should begin loading again 
and place the COBOL main program or routine 
as the first file in the command string. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-4 



LINK-l 0 

Messages 

CODE 

CNW IF IF 

CSF II II 

DNS II II 

-779~ LINK-IO 

MESSAGE 

CODE NOT YET WRITTEN AT [label] (1) 

The user attempted a feature that is not yet 
implemented. This· is an internal error in 
LINK-IO. 

CREATING SAV FILE 

LINK-IO is generating the requested save file 
by running the core image through a zero 
compressor routine in order to produce a SAV 
format file. 

DEVICE NOT SPECIFIED FOR /switch 

A device switch, such as /REWIND or 
/BACKSPACE, has been given, but there is no 
device to be associated with it. The switch 
is ignored. This occurs when the user does 
not give a device name in the specification 
containing the switch or has not specified a 
device name in the current line. (Remember 
that devices are cleared at the end of the 
line.) LINK-lO's default device DSK does not 
apply to device switches nor does a device 
specified in a /DEFAULT switch apply. The 
user should respecify the command line and 
include the appropriate device name with the 
switch. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-5 



LlNK-lO 

LINK-lO 

Messages 

CODE LVL SEV 

DRC %W %W 

DSO %F %F 

DUZ %F %F 

EID %F %F 

-780-

MESSAGE 

DECREASING RELOCATION COUNTER [symbol] FROM 
[value]. TO [value] 

The user is reducing the size of an already 
defined relocation counter via th~ ,SET 
switch. The new value is accepted: The user 
should be extremely careful when he does this 
because code previously loaded under the old 
relocation counter may be overwritten. This 
practice of reducing counters is dangerous 
unless the user knows exactly where modules 
are loaded. 

DATA STATEMENT OVERFLOW (1) 

Incorrect code has been generated by the F40 
compiler. 

DECREASING UNDEFINED SYMBOL COUNT BELOW ZERO 
(1) 

On an internal check of 
undefined symbols, LINK-IO 
the counter was negative. 
internal error. 

the counter for 
determined that 

This is an 

ERROR ON INPUT DEVICE STATUS (xxxxxx) FOR 
[file specification] 

A read error has occurred on the input 
device. Use of the device is terminated and 
the file is released. The status. is 
represented by the right half of the file 
status word. Refer to DECsystem-lO Monitor 
Calls for the explanation of the file status 
bits. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-6 



LINK-l 0 

Messages 

CODE LVL SEV 

{:~} EFX 
... EGS. 

IF 

EMS 

ESN IF 

EXP 

-781- LINK-10 

MESSAGE 

. HC {LU ERROR CREATING OVERFLOW FILE FOR AREA LS 
. FX 

. .G 

LINK-l 0 could not make the named file on the 
disk (LC=user's low segment code, HC=user's 
high segment code, LS=local symbol table, 
FX=fixup area, and GS=global symbol table). 
The user could be over quota, or the disk 
could be full or have errors. 

END OF MAP SEGMENT 

Notification that the LINK-IO module LNKMAP 
·has completed the writing of the map file. 
The map is now closed. 

EXTENDED SYMBOL NOT EXPECTED (1) 

The code to handle symbols longer than six 
characters has not been completed. This code 
will be available in a future release. 

EXPANDING LOW SEGMENT TO [n] K 

LINK-IO needs more core and is expanding to 
~he specified amount. In future loads of the 
same programs, the user can run LINK-IO more 
efficiently by requesting th'is amount of core 
at the beginning of the load with the /CORE 
switch. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-7 



LINK-IO 

LINK-lO 

Messages 

CODE LVL SEV 

EXS %1 %1 

FCD %F %F 

FCF %1 %1 

FIA %F %F 

-782-

MESSAGE 

EXIT SEGMENT 

LINK-lO is entering the completion stages of 
the loading process. These stages include 
the creation of save and symbol files and, if 
required, the execution of the core image. 

FORTRAN CONFUSED ABOUT DATA STATEMENTS (1) 

Incorrect code was generated by the F40 
compiler for a data statement in the form 

DATA A(I),I=1,4/l,2,3,4/ 
as opposed to a data statement in the form 

DATA (A(I),I=1,4)/1,2,3,4/ 

FINAL CODE FIXUPS 

LINK-10 is now reading the low and/or high 
segment overflow files backwards in order to 
do all remaining code fixups. .This process 
may cause considerable ,disk overhead. Note 
that the message occurs only if the load was 
too large to fit entirely in core. 

CANNOT MIX KIlO AND KA10 FORTRAN-10 COMPILED 
CODE 

The FORTRAN-10 compiler generates different 
output for the KAlO and the KIlO processors 
(e.g., double precision code) and the user 
cannot load this mixture. He should decide 
which processor he wants to use and then 
recompile the appropriate programs. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-8 



LINK-10 

M~ssages 

CODE LVL SEV 

FIN %I %I 

FON %F 

%F 

%F 

-783- LlNK-lO 

MESSAGE 
-------
LINK-10 FINISHED 

LINK-10 has completed its task of loading the 
user's program and other required programs. 
Control is either returned to the monitor or 
given to the user's program for execution. 

CANNOT MIX F40 AND FORTRAN-10 COMPILED CODE 

Output from the F40 and FORTRAN-10 compilers 
cannot be used together in the same load. 
The user should decide which compiler he 
wants and then recompile the appropriate 
program with that compiler. 

tENTER) ERROR (0) ILLEGAL FILENAME FOR 
\RENAME [file specification] 

One of the following conditions 'occurred: 

1. The filename given was illegal. 

2. When updating a file, the filename 
given did not match the file to be 
updated. 

3. The RENAME UUO following a LOOKUP 
UUO failed. 

{ LOOKUP -) 
GETSEG ERROR (0) FILE WAS NOT FOUND 

The file requested by the user was not found. 
The user should respecify the correct 
filename. 

5-9 



LINK-IO 

LINK-1O 

Messages 

GODE 

rEEl FLE 

.,~::J 

{
FEE} FLE . 
FRE . 

, .GSE 

FRE 

{
FEE} FLE 

.. ~~ . 

{
FEEl 
FLE \ 
FRE) 
,GSE 

LVL SEV 

%F %E 

'%F %E 

%F '%E 

%F %F 

MESSAGE 

{
ENTER "'t 
LOOKUP \ 
RENAME) 
GETSEG 

-784-

ERROR (1) NO DIRECTORY FOR 
PROJECT-PROGRAMMER NUMBER FOR [file 
specification] 

The UFD does not exist on the named file 
structure, or the project-programmer number 
given was incorrect. 

{~~~~p} ERROR (2) PROTECTION FAILURE FOR 
RENAME [file'specification] 
.GETSEG 

The user does not have the correct privileges 
to access the named file. 

ENTER ERROR (2) DIRECTORY FULL 

The directory On the DECtape has no room for 
the file. 

{
ENTER '1 
LOOKUP \ ERROR (3) 
RENAME) FOR [file 
GETSEG 

FILE WAS BEING'MODIFIED 
specification] 

Another user is currently modifying the named 
file. The user should try accessing the file 
later. 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

ERROR (4) RENAME FILENAME 
ALREADY EXISTS FOR [file 
specification] (1) 

The specified filename already exists, or a 
different filename was given on the ENTER UUO 
following a LOOKUP UUO. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-10 



LINK-1O 

Messages 

CODE 

{~~} 
GSE 

{
FEE.} FLE 
FRE 

.GSE 

{
FEE} FLE 
FRE 
GSE 

Lvt SEV 

%F %F 

%F 

%F %F 

MESSAGE 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

-785- LINK-IO 

ERROR (5) ILLEGAL SEQUENCE.OF 
UUOS FOR [file specification] (1) 

The user specified an illegal sequence of 
monitor calls, UUOs, (e.g., a RENAME without 
a preceding LOOKUP or ENTER, or a LOOKUP 
after an ENTER). 

{
ENTER} . LOOKUP 
RENAME 
.GETSEG 

ERROR ( 6) BAD UFD OR BAD RIB 
FOR [file specification] (1) 

One of the following conditions occurred: 

1. Transmission, device, or data error 
occurred while attempting to read 
the UFD or RIB. 

2. A hardware-detected device or data 
error was detected while reading the 
UFD RIB or UFD data block. 

3. 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

A software-detected 
inconsistency error was 
while reading the UFD RIB 
RIB. 

data 
detected 
or file 

ERROR (7) NOT A SAV FILE FOR 
[file specification] (1) 

The named file is not a core image file. 
This message can never occur and is ~ncluded 
only for completeness of the LOOKUP, ENTER, 
and RENAME error codes. 

(1). This message is riot expected to occur. If it· does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-11 



L1NK-IO 

LINK-10 

Messages 

CODE LVL SEV 

{:E} FLE iF %F 
FRE 
GSE 

aE} %F iF 

G1:} iF %F 

GSE 

MESSAGE 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

-786-

ERROR (10) NOT ENOUGH CORE FOR 
[file specification] (1) 

The system cannot supply enough core to use 
as buffers or to read in a program. This 
message can never occur and is included only 
for completeness of the LOOKUP, ENTER, and 
RENAME error codes. 

{ENTER} LOOKUP ERROR (11) DEVICE NOT AVAILABLE FOR 
RENAME [file specification] (1) 
GETSEG . 

The device indicated by the user is currently 
not available. This message can never occur 
and is included only for completeness of the 
LOOKUP, ENTER and RENAME error codes. 

CTER} LOOKUP ERROR (12) NO SUCH DEVICE FOR 
RENAME [file specification] (1) 
GETSEG 

The device specified by the user does not 
exist. This message can never occur and is 
included only for completeness of the LOOKUP, 
ENTER, and RENAME error codes. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-12 



LINK-10 

Messages 

CODE 

{~:} 
GSE 

{~~} 
GSE 

{
FEE} FLE . 
FRE 
GSE 

f!~} 'l.~SE 

LVL SEV 

iF iF 

iF 

-787- LlNK-lO 

MESSAGE 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

ERROR (13) NOT TWO RELOC REG 
CAPABILITY FOR [file specification] 
(1) 

The machine 
relocation 
never occur 
completeness 
error codes. 

does not have a two-register 
capabi~ity. This message can 

and 1S included only for 
of the LOOKUP, ENTER and RENAME 

LOOKup· ERROR (14) NO ROOM OR QUOTA {
ENTER} 
RENAME EXCEEDED FOR [file specification] 
GETSEG 

There is no room on the file structure for 
the named file, or the user's quota on the 
file structure would be exceeded if the file 
were placed on the structure. 

{
ENTER} LOOKUP ERROR (15) WRITE LOCK ERROR 
RENAME FOR [file specification] 
GETSEG 

The user cannot write on the specified device 
because it is write~locked. 

{
ENTER} LOOKUP ERROR (16) NOT ENOUGH MONITOR 
RENAME TABLE SPACE FOR [file specification] 
GETSEG 

There is not enough table space in the 
monitor's (FILSER) 4-word blocks for the 
specified file. The user should try running 
the job at a later time. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-13 



LINK-IO 

LINK-1O 

Messages 

CODE 

rEE} .FLE 
FRE 

, GSE 

{
F.,EE} FLE 
FRE 
GSE 

{
FEE} FLE 

. ~~ 

LVL SEV 

%W %W 

%F %F 

%F %F 

-788-

MESSAGE 

{
ENTER} 
LOOKUP 
RENAME 
,GETSEG ' 

ERROR (17) PARTIAL ALLOCATION 
ONLY FOR [file specificati~n] 

Because of the user's quota or the available 
space on the device, the total number of 
blocks requested could not be allocated and a 
partial allocation was given. 

{
ENTER} 
LOOKUP ERRO.R (20) BLOCK NOT 
~N~ ALLOCATION FOR [file 

FREE ON 
specificatio'n] 

GETSEG· (1) . 

The block required by LINK-10 is not 
available for allocation. This message can 
never occur and is included only for 
completenefls of the LOOKUP, ENTER, and RENAME 
~rror codes. 

{
ENTER} 
LO,OKUP, 
RENAME 
GETSEG 

ERROR (21) CAN'T SUPERSEDE (ENTE~) 
AN EXISTING DIRECTORY FOR [file 
specification] (1) . 

The user attempted to supersede an existing 
directory. This message can never occur and 
is included only for completeness of ~he 
LOOKUP, ENTER, and RENAME error codes. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-14 



LINK-IO 

Messages 

CODE 

G~:}· FRE . 
GSE 

{
FEE} FLE 
FRE 
GSE 

f!~} \.~SE 

LVL· SEV 

%F %F 

%F %F 

?iF %F 

%F %F 

-789- LINK-IO 

MESSAGE 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

ERROR (22) CAN'T DELETE (RENAME) 
A NON-EMPTY DIRECTORY FOR [file 
specification] (1) 

The user attempted to delete a directory that 
was not empty. This message can never occur 
and is included only for completeness of the 
LOOKUP, ENTER, and RENAME error codes. 

{:~~~p}, ERROR (23) SFD NOT FOUND FOR 
RENAME [file specification] 
GETSEG 

The ,required sub-file directory 
specified path was not found. 

in 

{
ENTER} 
LOOKUP 
RENAME 
GETSEG 

ERROR (24) SEARCH LIST EMPTY FOR 
[file specification] 

the 

A LOOKUP and ENTER UUO was performed on 
generic device DSK and the search list is 
empty. 

{
ENTER} 
LOOKUP 
RENAME 
GETSEG 

ERROR (25) SFD NEST LEVEL TOO 
DEEP FOR [file specification] (1) 

An attempt was made to create a subfile 
directory nested deeper than the maximum 
level allowed. This message can never occur 
and is included only for completeness of the 
LOOKUP, ENTER, and RENAME error codes. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-15 



LINK-IO 

LINK-IO 

Messages 

CODE 

CEE} FLE 
FRE 
GSE 

{.FEE} FLE 
FRE 
GSE 

{;:} 
GSE 

LVL SEV 

%F %F 

MESSAGE 

{
ENTERD 

.. LOOKU. P . RENAME 
GETSE 

-790-

ERROR (26) NO-CREATE ON FOR ALL 
SEARCH LIST FOR [file specification) 

No file structure in the job's search list 
has both the no-create bit and the write-lock 
bit equal toz~ro and has the UFp or SFD 
specified by the default or eXplicit path. 

{
ENTER} LOOKUP 
RENAME 
GETSEG 

ERROR (21) SEGMENT NOT ON SWAP 
SPACE FOR [file specification) (1) 

A GETSEG UUO was issued from a locked low 
segment to a high segment which is not a 
dormant, active, or idle segment. This 
message can never occur and is included only 
for completeness of the LOOKUP, ENTER, and 
RENAME error codes. ' '. 

{~~~~D ERROR (nn) UNKNOWN 
RENAME CAUSE FOR [file specification) (1) 
GETSE 

This message indicates that a LOOKUP, ENTER, 
or RENAME error occurred which was larger in 
number than the errors LINK~10 knows about. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-16 



LINK-IO 

Messages 

CODE LVL 

HSL 

HSO %W 

HTL %F 

SEV 

%F 

%W 

%F 

-791- LlNK-10 

MESSAGE 

ATTEMPT TO SET HIGH SEGMENT ORIGIN TOO LOW 

The user is trying to set the beginning of 
the high segment below 400,000 or below the 
end of the low segment, whichever is larger. 
This can be the result of a /SET:.HIGH. 
switch with a value less than 400,000. If 
this is the case, the switch is ignored and 
the user should again specify the /SET:.HIGH. 
switch with a valid argument. This message 
can also occur when the low segment is 
g~eater than 400,000 and a module being 
loaded is requesting the high segment to 
start at 400,000. The user can either give 'a 
/SET switch or retranslate the module. 

ATTEMPT TO CHANGE HIGH SEGMENT ORIGIN FROM 
[value] TO [value] 

The user is attempting to change the starting 
address of the high segment. The specified 
value is ignored. The cause may be that the 
user gave a /SET:.HIGH.: value switch which 
does not agree with the LINK item type 3, or 
that two LINK item type 3's have different 
or1g1ns. The user should recompile the 
incorrect files. 

SYMBOL HASH TABLE TOO LARGE (1) 

The user has more global symbols than can fit 
in the maximum hash table (about 25K in size) 
LINK-10 can generate. possible action is to 
increase the maximum allowable size of the 
hash table. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-17 



LlNK-lO 

LINK-lO 

Messages 

CODE LVL SEV 

Ji:~) 
"~4T 

%F %F 

IBC %F %F 

ICI %F %F 

IDM %F %E 

IFD %F %F 

-792-

MESSAGE 

(
DATA CODE ) 

ILLEGAL F40 SUB-BLOCK . (xxxxxx) (1) 
TABLE ENTRY 

Incorrect code was produced by the F40 
compiler. 

ATTEMPT TO INCREASE SIZE OF BLANK COMMON 

An attempt was, made to expand the blank 
COMMON area. Once a COMMON area is defined, 
the size cannot be expanded. The user should 
load the module with the largest blank COMMON 
area first or specify the larger area with 
the /COMMON· switch before loading either 
module. 

INSUFFICIENT CORE TO INITIALIZE LINK-10 

There is not enough core in the system to 
initialize LINK-lO. 

ILLEGAL DATA MODE FOR DEVICE 

The data mode specified for a device is 
illegal, such as dump mode for the terminal 
(e.g., TTY:/SAVE). The user should respecify 
the correct device. 

INIT FAILURE FOR DEVICE [dev] 

The OPEN or INIT UUO failed for the specified 
device. The device could be in use by 
another user. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-18 



LINK-lO 

Messages 

CODE LVL 

CC} IHC 
IriS iF 
IFX 
IGS 

ILl %F 

lMA 

INS %F 

SEV 

%F 

%F 

-793- LlNK-lO 

MESSAGE 

ERROR INPtl'r'rING AREA {~} - STATUS (xxxxxxi 

An error occurred while reading in the named 
area (LC=user's low segment code, HC=user's 
high segm~nt code, LS=local symbol table, 
FX=fixup area, and GS=global symbol table). 
~he status is represented by the right half 
of the file status word. Refer to 
DECsystem-IO Monitor Calls for the 
explanation of the file status bits. 

ILLEGAL LINK ITEM TYPE (xxxxxx) ON 
[file specification] 

The input file either was generated by a 
translator that LINK-10 does not recognize 
(e.g., a-non-supported translator) or'is not 
in proper binary format (e.g., is an ASCII or 
SAV file). 

INCREMENTAL MAPS NOT YET AVAILABLE 

The INCREMENTAL keyword for the /MAP switch 
is not implemented. ~he switch is ignored. 

I/O DATA BLOCK NOT SET UP (1) 

LINK-IO attempted to do I/O (LOOKUP, ENTER 
UUOs) for a channel that has not been set up. 
This is an internal LINK-10 error. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-19 



LlNK-lO 

LINK-IO 

Messages 

CODE LVL SEV 

IPO %F %F 

ISD %F %F 

ISO %F %F 

ISP %F %F 

IST %F %F 

IVC %F %F 

-794-

MESSAGE 

INVALID POLISH OPERATOR (1) 

An incorrect link item type 11 was seen. 
This is an internal LINK-IO error. 

INCONSISTENT SYMBOL DEFINITION FOR [symbol] 

An already-defined symbol has been given a 
second "partial" definition. The user should 
examine the usage of the named symbol. 

INCORRECT STORE OPERATOR (1) 

An incorrect link item type 11 was seen. 
This is an internal LINK-10 error. 

INCORRECT SYMBOL POINTER (1) 

The current symbol pointer does not point to 
a valid symbol triplet. This can occur if an 
extended symbol does not terminate properly. 
This is an internal LINK-10 error. 

INCONSISTENCY IN SWITCH TABLE (1) 

An internal error occurred in the switch 
tables built by the SCAN module. 

INDEX VALIDATION CHECK FAILED AT [address] 
(1) 

The range checking of LINK-10's internal 
tables and arrays failed. The address output 
is the point in the appropriate LINK-10 
segment at which this occurred. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-20 



LINK-IO 

Message 

CODE LVL SEV 

LOS 

LIM 

LIT %F 

LMN 

MDS %W %W 

MNS 

-795- LINK-IO 

MESSAGE 

LOAD SEGMENT 

Indication that the LINK-IO module LNKLOD has 
started its processing. 

LINK-IO INITIALIZATION 

LINK-IO has begun its processing of the 
user's input. 

LINK ITEM TYPE (xxxxxx) TOO SHORT FOR [file 
specification] 

An error occurred in the named link item. 
This could result from incorrect output 
generated by a translator (e.g., no argument 
is seen on an END block when one is 
required). The user should retranslate the 
module. 

LOADING MODULE [name] 

LINK-IO is in the process of loading the 
named module. 

MULTIPLY-DEFINED GLOBAL SYMBOL 
MODULE [name] DEFINED VALUE = 
VALUE = [value] 

[symbol] IN 
[value], THIS 

The user has given an existing global symbol 
a value different from its original one. The 
second occurrence of the global symbol is in 
the named module. The currently defined 
value is used. The user should change the 
name of the symbol or reassemble one of the 
files with the correct parameters. 

MAP SORTING NOT YET IMPLEMENTED 

Alphabetic and numeric sorting of the map 
file is not yet implemented. The symbols 
appear in the order in which they were placed 
in the symbol table. 

5-21 



LINK-IO 

LIN~-IO 

Messages 

CODE LVL SEV 

\I \I 

~S \I \I 

\W 

~S \W \W 

NCL \W \W 

-796-

MESSAGE 

MOVING LOW SEGMENT TO EXPAND AREA[area] 

This mess~ge indicates that LINK-lO is making 
inefficient use of core. In future loads of 
the same programs, the user should allocate 
more core to LINK-IO at the beginning of the 
load •. Area is one of the 'follow~ng: 
LC=use~'s low segment code, HC=user's high 
segment code, LS=local symbol table, FX=fixup 
~tea, and GS=global symbol table. 

MAP SEGMENT 

Indication that the LINK-lO module LNKMAP has 
begun to write a map file. 

MAXCOR SET TOO SMALL, INCREASING TO nK 

The current value of MAXCOR is too small for 
LINK~IO to operate. In future loads of this 
program, the user can save LIN~-IO time by 
setting MAXCOR to this new expanded si~e at 
the beginning of the load. 

MAXCOR TOO SMALL, AT LEAST nK 'IS REQUIRED 

The user specified the /MAXCOR sw~tch with an 
argument that is below the minimum size 
LINK-fo requires as its low s~gment. The 
~itch is ignored. The minimum size is 
dependent upon ~he code already loaded. The 
user should respecify the switch. 

NOT ENOUGH CORE TO LOAD JOB, SAVED AS (file 
specification] 

The user's program was too large to load into 
core. Thus, LINK-IO created a saved file on 
disk and cleared user ~ore. The user can 
perform a GET o~ RUN operation on the progr~ 
to ~oad it into core. If the core image is 
still ,too big, th~ user can e~ther employ a 
bigger machine or obtain a larger cor~ limit 
(e.g., increase CORMAX). 

5-22 



LINK-lO 

Messages 

CODE 

NCX 

NED 

NYI 

{
OLC} OHC 
OLS 
OFX 
OGS 

LVL SEV 

%W 

%F %E 

%W %W 

%F %F 

-797- LINK-IO 

MESSAGE 

NOT ENOUGH CORE TO LOAD AND EXECUTE JOB, WILL 
RUN FROM [file specification) 

The user's program was too large to load into 
core and LINK-lO created a saved file on 
disk. It automatically executes the program 
by performing a RUN UUO. However, the saved 
file remains on disk and the user must delete 
it, if he wishes. 

NON-EXISTENT DEVICE [dev): 

The user has specified a device that does not 
exist in the systa~. The user can re-edit 
the input files to correct the device name or 
type control-C to abort the load. 

NOT YET IMPLEMENTEr - /switch 

The user issued a switch that is not 
implemented in this version of LINK-lO. 

ERROR OUTPUTTING AREA{'~ -STATUS (xxxxxx) 

An error occurred while writing out the named 
area (LC=user's low segment code, HC=user's 
high segment code, LS=local symbol table , 
FX=fixup area, and GS=global symbol table). 
The status is represented by the right half 
of the file status word. Refer to 
DECsystem-lO Monitor Calls for the 
explanation of the file status bits. 

5-23 



LINK-IO 

LINK-lO 

Messages 

CODE 

{g:} 
OES 
OEX 

OFN 

OMN 

{:~J PLS 
PFX 
PGS 

LVL SEV 

%W %W 

%F %F 

%F 

-798-

MESSAGE 

OUTPUT ERROR ON 
FILE CLOSED. JOB 
[xxxxxx] 

{
LOG }. MAP 
SYMBOL 
XPN . FILE. 

CONTINUING STATUS 

An error has occurred on the output file. 
The output file is closed at the end of the 
last data that was successfully output. The 
status is represented by the right half of 
the file status word. Refer to DECsystem-lO 
Monitor Calls for the explanation of the file 
status bits. 

OLD FORTRAN (F40) MODULE NOT AVAILABLE 

The standard released version of LINK-lO 
includes the LNKF40 module that loads F40 
code. However, the installation has removed 
it by loading a dummy version of LNKF40 and 
thus LINK-IO is unable to handle F40 compiler 
output. The user should request his 
installation to load a version of LINK-IO 
with the real LNKF40 module. 

OBSOLETE MONITOR WILL NOT SUPPORT LINK-IO 

LINK-lO requires a monitor that contains the 
DEVSIZ UUO. 

The job is too large to fit into the allowed 
core and the named area is being moved to 
disk (LC=user low segment code, HC=user high 
segment code, LS=local symbol table, FX=fixup 
area, and GS=global symbol table). 

5-24 



LINK-10 

Messages 

CODE . LVL SEV 

PSF %F %F 

RCF %F %F 

RED 

RGS u 

SIF %F %F 

-799- LINK-IO 

MESSAGE 

POLISH SYMBOL FIXUPS NOT YET IMPLEMENTED 

The requested feature is not yet available. 

RELOCATION COUNTER TABLE FULL 

The relocation counter table is a fixed 
length and cannot be expanded in the current 
version of LINK-10. This restriction will be 
eliminated in a future release. 

REDUCING LOW SEGMENT TO en] K 

LINK-10's internal tables have 
and core has been reclaimed. 
occurs near the end of loading. 

been deleted 
This message 

REHASHING GLOBAL SYMBOL TABLE FROM [old size] 
TO [new size] 

LINK-10 is expanding the global symbol table 
either to the next prime number as requested 
by the user (via /HASHSIZE) or to its next 
expansion of about 50%. In future lo.ads of 
this program, the user can save LINK-10 time 
by setting the hash table to this new 
expanded size at the beginning of the load. 

SYMBOL INSERT FAILURE, NON-ZERO HOLE FOUND 
(1) 

An internal LINK-10 error. LINK-10's hashing 
algorithm failed. A symbol already exists in 
the location in which LINK-10 needs to place 
the new symbol. The error may disappear if 
the user loads. the files in a different 
order. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

5-25 



LlNK-lO 

LINK-10 

Messages 

CODE LVL SEV 

SFU 

SNC iF iF 

SNL 

SOE iF 

SSN u 

~800-

MESSAGE 

SYMBOL TABLE FOULED UP (1) 

An internal LINK-10 inconsistency. LINK-lO 
cannot locate the TITLE triplets in order to 
store the lengths of the control sections. 
The loading process continues. Any maps 
requested by the user will not contain the 
lengths of the control sections. 

SYMBOL [symbol] ALREADY DEFINED, BUT NOT AS 
COMMON 

The user has defined a non-COMMON symbol with 
the same name as a COMMON symbol. The user 
should decide which symbol definition he 
wants. If he uses the COMMON definition, the 
COMMON area should be loaded first. 

SCANNING NEW COMMAND LINE 

LINK-lO has completed the scanning and 
processing of the current command line and is 
ready to accept the input on the next line. 

SAVE FILE OUTPUT ERROR - STATUS (xxxxxx) 

An error has occurred on the save file. The 
file is closed at the end of the last data 
that was successfully output. The status is 
represented by the right half of the file 
status word. Refer to DECsystem-lO Monitor 
Calls for the explanation of the file status 
bits. 

SYMBOL TABLE SORTING NOT YET IMPLEMENTED 

Alphabetic and numeric sorting of 
table is not yet implemented. 
appear in the order in which they 
in the symbol table. 

5-26 

the symbol 
The symbols 
were placed 



J..INK-lQ 

Mes~ages 

CODE LVL SEV 
~~-=-

SST U U 

~TC u 

T13 

TDS \W \W 

TEC 

-801- LlNK-lO 

MESSAGE 
-------
SORTING SYMBOL TABLE 

LINK-lO is arranging the symbol table in the 
order specified by the user via the /SYSORT 
swi~ch,and if required, is converting the 
symbol~ from the new to old format as 
indicated on the /~YMSEG, /SYMBOL, or /DEBUG 
switcq~ 

SYMBOL TABLE COMPLETED 

The syml:>ol table has bee.. sorted and moved 
according to the user's request via the 
/SYMS~O, '/SYMBOL, or /DEBUG switch. 

LVAR (TYP~ 13) CODE NOT IMPLEMENTED 

LINK iteI!l type 13 (LVAR) is Ilot 
i~ LINK-lO nor supported by D~C. 
pseudo-QP in the MACRO-lO lan~uage 
used •. 

TOO :LATE TO DELETE INITIAL SYMBOLS 

implemented 
The TWOSEG 
shopld be 

The /NOINITIAL switch was placed in the 
command stfing after the' first file 
specificati.on. Because this swit~h . was not 
first in the command string, L~NK-lO's 
initi~l s~l table was loaded. 

TRYING TO EXPAND COMMON 

An attempt was made to expand a COMMON area. 
The largest occurrence of the COMMON area of 
agiv~h n~e must be linked ~irst. Once 
defined~ ~he ~ize cannot be expanded although 
new'COMMON areas of different names can be 
defined.' The' user should load the largest 
occurrence ~irst. 

5-27 



LlNK-lO 

LINK-lO 

Messages 

CODE LVL SEV 

TSO 'F 

URC u 

USA ,w ,w 

-802-

MESSAGE 

CANNOT LOAD TWO SEGMENT MODULE INTO ONE 
SEGMENT 

The user attempted to force two segments into 
one 'segment' Vl.a the /SEGMENT switch. 
However, the binary file does not contain the 
necessary information (i.e., the length of 
the high segment) in LINK item type 3. This 
situation is usually caused by a one-pass 
compiler (e.g.,ALGOL). 

UNKNOWN RADIX-50 SYMBOL CODE 

Bits 0-3 of the first word of the link item 
contain an unknown symbol code. Either the 
translator is generating incorrect code or 
the. binary file is bad. The user should 
recompile the file. 

UNDEFINED STARTING ADDRESS 

The user has given a global symbol as the 
start address and the symbol is currently 
undefined. The user should load the module 
that defines the symbol. 

5-28 



-803- LINK-IO 

LINK-IO 

Examples 

CHAPTER 6 

LINK-IO EXAMPLES 

EXAMPLE I Loading and Executing COBOL Programs 

The following files are on the user's disk area: 

,DIRECT) 

n~A CaL. 1 <11155> 61tf'EB.,J aSKS, t27.2J'J 
flkB CBI. 2 (flj55> hF'Ea,,'3 
f' I.e CBI. 1 <1/155> 6.F'EB.t3 
006L.NK I.OG 1 <1/155> 2B"fEa.13 
S UoIPL.E MAC 1 (11'55> 28!!F'Ea,,'J 

TOTAL. Of 6 BLOCKS IN 5 fl~E~ ON QSKB! ~2?,23'] 

In the command string shown below, the user is automatically 
compiling, loading, and executing the programs and generating a map. 
The /CONT:ZERO switch is passed to LINK. 

,EXECUTE II.-INK/MAP 
COBOL. I CBSfljSA 
COBOL.! CBSrilS8 
COBOL.1 C8Sflj8C 
L.INKI ~OAOING 
LEXECUTI ON' 
RUNNING CaSflj8A 
RQNNING caS088 
RUNNING CBSI/l8C 

EXIT 

FIL.A,Fl~B,F1LCX'CONT'lEAO' ) 
tflL.A,CBl.l 
tftI.B1CBL.J 
C F I LC 'I ceu.l 

In the followng command sequences the user is compiling the files and 
then directly loading and executing them through LINK-IO. 

6-1 



LlNK-lO 

LINK-lO 
Examples 

,caM fl~.,rl~Blrl~C ) 
cgeO~1 CSSl8A trILA,ca~J 
COBOLI caSl8S trl~B,qB~J 
coaOhl CSSl8C [rl~C,CB~J 

EXIT 

-804-

,R I..lNK ) 

.rILAlrl~B,flLC,/MAP/C~NT'i~RO/EXECUTE/GO) 
LEXECUTlOfH 
RUNNING CBSil8A 
MUNNING caSl/JeB 
HUNNING CBs"ac 
E.Xn 

EXAMPLE 2 Loading and Executing a MACRO Program 

The user assembles the following MACRO program: 

.COMPILE S!MPLE,MAC ) 
MicRO~ SI~PLE . 

EXIT 

In the following command sequences; the user loads the MACRO program, 
interactively requests a listing of the reloca~ion counters, library 
search symbols, and undefined global symbols, and then executes the 
program. 

,R LINK) 

*~ IMP\.E ) 
*(COUNTER ) 
R~LOCATI0N COUNTER 
,I"OW, 

~~l~~AY ) . 
NO LIBRARY SEARC~ 
*/UNDEr l NE ) 

INIHA!.. VAL.UE 

" 4 "'11I1l 0" 

SYMBOLS C~NtRY POINTS) 

NO UNDEfINED G~OBAL SVMaO~S 
*/EXECUTE/GO ) 

6-2 

CURRENT VALU~ COCTAL.) 
140 

dllJ1!I25 



-805- LINK-IO 

LINK-10 

Examples 

tEXECIJTION, 
THIS IS A VERy SIMPLE TWO.SEGMENT MACRO PROGRAM, 

EXIT 

EXAMPLE 3 Loading COBOL Programs and Creating a Saved File 

In the following example, the user is individually loading each file 
and requesting a listing of undefined global symbols after each file 
is loaded. He also is requesting the searching of the default system 
libraries. After searching has been performed, the user creates a 
saved file and executes the core image. 

,~ LlNK) 

*fILA/V) 

6 UNOEflNED GLOaA~ SYMBOLS 
BTF!AC, 1212 
TRACE, 1271 
TRPo, 3.214 
IRPOP I 1213 
CaSIIISB 1321 
CaOOT, 1260 
*F" I LS/IJ ) 

6 UNDErZNED GLOBAL SYMBOLS 
BTRAC I 1.361 
TrUCE I 1.473 
TRPC t 1.371 
CBSI/.I8C 1615 
TRPOP, 3.370 
CaOOT I 1454 
*f 1 L,C/U ) 

5 UNDEflNEO GLOBAL. SYMBOLS 
STRAC. 2052 
TRACl, 2147 
TRPO I 2~~~ 
TRf'OP I 2053 
CBDOT I 2130 
*/SYSL t a/u ) 

NO UNDEfINED GLOBAL SYMBOLS 

6-3 



L1NK-IO 

LINK-I 0 

Examples 

*F-J~ll$AV/EXECUTE/GO) 
tExECuTJONl 
HUNNING C85(t18A 
~UNNlNG C8S088 
RUNNING CBS(tI8C 

EXIT 

IDJ~ .,SAV ) 

SAV 

Example 4 Loading LINK-IO 

-806-

DSKC! 

The Command File 

INOIN'!lA~ ILOGLEV£Lli ~SKI~lNK/MAP ICONTINOAeS ./RUNAMEI~rNK. 
1~'SH~llEI~000/TEST,ODT/SYMSEGIH,LNKEXO/SCAN,Ht~PER. 
,~NKINl.,/NOSTART ~NKSCN,~NKWLo,LNKrl0,LNKLOO,LNKOLO,~NKNEW,LNKr4m. 
,~NKC~T,LNKCOR,LNKLOG,LNKERR,LNKMAP,LNKXIT.LNKSUB/S[AReH/GO 

Running LINK-IO With the Terminal as the Log Device 

LINKIIU ~OG fT I- 2~.Apr·73 
81'8111 " 1 I..IM LINI(.U 1I'I1'lal.lnttol'l 
'" '8116 1 1 EXP EMUM 11'1; I QW u;rnll'lt 'h 14" 
e!'8U6 1 1 MOV MovTnar~w segment to tlC Plnd 'r,a OV 
8 '8116 1 1 ~MN Loa~ln; mO~~le UDOT 
8 ,aU6 1 1 MOV MovTna low ~.ament to hPlnd a".a GS 
~ ,aU7 1 1 EXP EICP~ndll'l~ JOw SI~""l'It tit 18' 
8 '25 U 7 1 1 MOV MovTnalow s,om'n' to hPand ar,a I.e 
8 ~8U7 1 1 MOV ~ovTnalow a.gmln' to 'xPlnd '1''' I.e 
~ "a U7 1. 1 ~MN LOadl"a mOd~le LNKtXO 
8 ,aU7 " 1 [XP [lCpandl"g JOw s'ame"' h 22f11 
8 '8U' 1 1 MOV Hovlno low seam.n' '0 elllPand tI· .a I.~ 
8 ,aua 1. 1 I,.MN LOadlna mOd~le SCNDC~ 
8 '8Ua 1. 1 ~MN LOadlna mOd~le ,SCAN 
IS '~Ua 1 1 MOV MovTn; row "om,nt to hPlnd ar,a HC 
~ 15a l1a 1 1 MOV MovTno low s.om'nt to Ixl)and are. HC 
8"811a 1 1 MOV H~vTn; 'ow leom,nt to ,,,blnd tr,a H~ 
8158 118 1 1 txP EMDRndll'lalow ~e;"'ll'It ~o UJII 
"158118 1 1 MOV HovTnolow "am,nt to ,~pand ar.a I.' 
81'8118 1 1 MOV MovTna low ~'ament to ,.panel a",a LS 
151,aU8 1 1 ~MN ~oadln; mO~~le .TOUTS 

6-4 



-807- LlNK-lO 

LINK-lO 

Examples 

6,'8118 1. 1 MOV MoyTnolOw •• om.nt '0 IhPand a,u HQ 
8158118 1. 1 I.MN ~oa~lng mOQijlt .CNTPT 
t51,8Ue 1 1 EXP E~Dand'n~ lOW ~tgmt"t ~e :5r1J' 
tI"8U8 1 1 MOV MoyTnglow .tomtnt to titPlnd a, •• I., 
6,'8118 1. 1 I.MN ~oldlng ~odWlt .§AV~ 
8H58U8 1 1 I"MN ~o,dlng mOdijl1 ~~I.P£R 
8158119 1 1 I"MN ~Oldlng mOdijle I.INK 
81'8119 1. 1 MOV MoyT"o low "ament to noand '1'" HC 
01'8119 " 1 EXP EMPlndlnq Jew I.gmt"~ ~e ~"P 
6,'8U9 1. 1 MOV MoyTn; low ~tam.n' '0 e"pand I"" I.S 
8"8U9 1. 1 I.MN ~o.d'ng mOdijlt ~NK$CN 
6158U9 1 1 MOV MoyTno I ow .. om~n' to t"pand al'II He 
6158119 1 1. I"MN ~Oldlng mOQijlt ~NKWI.O 
U,8U9 1. 1. MOV MoyTn; lOW Stgmtnt to ,,,pand ~".a He 
~ '8,2Q1 1 1 EXP E~D"ndlng low ~t~mtnt to ~8" 
IS ,812Q1 1 1 MOV MoyTno ToW •• omtnt to t.Plnd I'" HC 
8 "512111 1. 1 MOV MOyTno loW seament to e.Plnd 1,,11 He 
8 '812Q1 1 1 EXP EICD"ndlno jew segment ~o 42" 
8 ,812Q1 1 1 MOV MovTna low sument to t"Pllnd Ir.' 1.5 
8 '8121 1 1 I.MN ~o.dlng mOd~le ~NKflO 
6 '8121 1 1 MOV HoyTn; low !IIoment to hP,nd ar .. \.S 
fj '8121 " 1 I.MN I.oadlng mCdwle ~NKI.OO 
8 '8121 1 1 MOV MovTno low !Stgmtnt to tlCpand a"., HC 
8 '8121 " 1 EXP EICDlndlnQ JOw segment ~i 46'" 
8 '8121 " 1 MOV Mvlno low Stgmtnt to t.Plnfil Ir.' He: 
8 '8121 1. 1 MOV HoyTnalow stgment to hPlnd .1''' 1.5 
8 '8122 1 1 I.MN ~o.dlng moawle ~NKOI.D 
fj ,8122 1 1 EXP Expanding JOW ,egment h 'rlJP 

• 
• 
• 

8,'8125 " 1 PI.S AI'" ~S ove"flowlng to 05K 
tJ '8128 1 1 MOV MoyTna loW 'tam,n' to ewpand 11'11 I.~ 
8 '8128 ,. 1 I.MN ~Oldlng mooWle ~NKMAP 
8 ,8128 1 1 L.MN ~Oldlna mO~Wle ~NKXlr 
8 ,8129 " 1 I"MN ~o.dlng mOQWII ~NKPRM 
8 '8129 1 " I.MN 1..0,lIln; mCdWle .TSUBS 
8 '8129 1 " I.MN I.Oldlng mOQwle .INSU8 
8 '8129 " 1 I.MN LOldlng moqwle J080AT 
8 '8 PQI 1 " MPS MAP u;"'ln~ 
8 ,813" " 1 MOV HoyT no lOW sl~m.nt to '.Plnd Irea I.~ 
8 '8132 " 1 tMS End of MAP "ament 
8 '8132 " " EX$ EX 1 f segment 
8 '8133 " " SST 50rtl"g s~mbol tab II 
8 '813" " 1 £XP Eltpandlng lOw sagm,l'It to 67111 
8 '8134 " 1 MOV HoyTn; row aegment '0 t.pand "11 HC 
8 :>8134 1 " STIt S~m"'bol tablt completed 
8 58136 1 1 FIN LINK-10 f'nl'~'~ 

tENt! or I.oa rl~f;J 

6-5 



0\ 
I 
0\ 

I.INK-1PJ 1~"'Dal iliaD Of I.INK Y""O", Col3) 
P'odijol~ by I.INK~l~ Y.,I,OI'l (33) 01'1 23.ADr.73.~ a'50'3m 

Ut' 2-

I.~w "Qme"'~ ItaF~' a~ ~ ,ndl .~ '247 '.nlt~ '247 ~ ~, 
HJ,~ ";",.,,,t .taF~1 a~ 400~e~ '",dl at 44,460 ""It~ 4'4.~. ~8P 

Start addr,.' 11 4B'B4'. IOO.~'d J~ D'~Q'a", I.INK . . , •...•...... 
UODT from SYSIOOT,REl.tl.'l Or.atld on 10.Ha,-13 a~ ~I0el~0 

LOW I,g""nt .'art. at ~40 Ind. at 4"'· I,"a,~ 1415 '~ot.I), 2~~7 ~d8c'",al) 

00" 
DonNO 
UA 
5~9 
S~B 
149 
5'B 
I~B 
57B 
ue 
51 
5M 

141/1 
4555 
4420 
44Jl 
4434 
4437 
4442 
444~ 
445~ 

44'~ 
44;!;i 
442' 

.............. 

E;n"~ 
GIOD'I G cDa 
GlObal 
GIUal 
GlObal 
GIODal 
Global 
Gina I 
Global 
GIOhl 
G.IObal 

pol",t 
I~mbol 
Symbol 
Iymbol 
Symbol 
'~mbol 
I~mbol 
symbOl 
'~lIIbol 
'~mbol 
symb.ol 
'~mbol 

R.IO.atabJ 
A'too,'abl 
R,rooa'ab: 
R,rooatabl 
R.rooa,ab) 
Alroo,tabl 
R,roOa,ab) 
Rllooa,abl 
RerOoa'ab] 
RtrOoatabl 
Rllooa'ab) 
R,rOoa'abJ 

~NKE;XO from DSKI~NK£XO,R£I.~11.13~~ c,~at'd on 22 •• p,.'~'~ 91441~0 
H'I~ .e;",'",t ,t.,t,., 40eJ10 I"'dl'~ 488121 I,nlt~ 11 'OO'~1)1 ~ ~d.qllll'l) 

·· .. ··111······ 
~CNg~~ f,~m DSK!$OAN~A~l.t1',~~;J 

l,po·len;~~ mOd~l • ..... , ...... . 
opea,ed on 1.Nov.12~, 'leBI~B 

t:Ij t'4 
>< H 

~ ~ ..... ..... 
ID 0 
III 

1-3 
g 

! 
"'J ... 
..... 
ID 

r--z 
'" I 

~ 

I 
00 
a 
00 

I 



0\ 

• '" 

• S'CA~ 'rom OSK1$-eAN."e;l.t1;,n~l Ol"uUd on . 1.NOy.1~ n iUl011!Ji 
\.ow ugl'llnt. ,hp·tll at· ~'" I"'ds.t '2" ""'Clth 41J (00'.' h ~~2 C~'-Q.'m.,) 
H Ilh l'egl!l4U'It thl't. at """"Ul 1'\C~i at 4(/J42:!~ ,,",t" 42Q101 ceoh I) I Z181a" i_811ft", ) 

E:.'MI 
[,PMO 
E.SVNG 
e;·,svrL. 
E',UKI< 
II' NAM 
·.lI"OON 
.gI"RBF' 
.QATJC· 
.QATl,. 
·.QATlG 
• QA TIM 
·.QATIP 

'''1''13. 
4 QHIJ 1221 
'(II21U 
4(1122114 
4"2"~7 

~l~t· 
."01 EIfII 
.03H' 
."Z-1'u . 
4nUt 
4U1:P" 
'02U~ 
'02Ui 

GIClba, I>-mlto' 
G' Ob" 1>-'"1:10.1 
GI Oba' !I>-mlilo I" 
(;IObIH !I>-mbo' 
GlOb., I>'I'ItItO'·· 
G lObI' lI>,mbo I' 
e;, na'l, lI>,mb.o I 
'G 'U_, '>-mti.o' 

. GI Ob_,· .>-mlil~1 
G , o-b, ,.-' '~mbo I 
G I Ob-.I I>-mb'ol 
G" ClI:).~ '>-mlto I 
G'Ob,1 I>-mbol 

• • • 

Ind.x t~ l"iNK.lm ,~mbO' ml~ 'of I.INK 

N am I PUI N,,,,., Pa9'· N,,,,. 
HF,;I"PER • I.NK':4&rIt u.. I.NI(OI"O 
JQBOAT 14 I"NKf'.J 0 7 I.NI(PRM 
1..1 NK ' 4 I.N.I<'O.D . ij I"Ni($CN-
I.NI<(;OR' 12- I.NI<I.CJ,G 1~ I.NI(WI"O 
I.NI<CST 11 I.Nl<MAfl H I.NI(XIT 
I.Nl<tRR ' U I.NI<NEW . 16 SeNDCI. 
I.NI<E;XO S. 

t£~~ 0' 1.1NK.l~ma~ o~ . 1.1NKl 

FI,lou,ab.l1 
",ron'al).'I . "·'ro.o .... ~J, 
FI.Too •• 'b.l @' 
"t'l'ou .... tI.I t 
"'Tooda~ I, 
FI,Tou"ab:', 
FIt rooa'abJ • 
",TC!u'.ab.lt 
",To·n.hHt . 
A-,Tooatatl.lt 
".l'oo.hb.II' 
lII,loeltab.!'t 

y." 1o" C~3).· 

'I'U N,,,,, 

9 U~DT 
14 .gNTOr , .lNSUi,f 

6 .~AVf; 
s.:s .~CAN 
~ .!OUT~ 

D .... 1" . 

p, .. 
~ 
~ 

14 
~ 
l 
~ 

t'.! t1 
X H 
~ ~ 
'0 • .... .... 
(1) 0 
01 

do 
o 
lO 
I 

I 

::z: 
A 

I ..... 
0, 



LlNK-10 -810-

LINK-IO 

Examples 

Example 5 Loading the Monitor 

The Command File 

INOINITIA~ /~OG~EV~~11 /HASH!70~~ TOPS~0/SAV£. 
I!OPS~3/MAP • I~OCAlS /MAXCO~12~0K-COMMONteO~OEV,COMMOO. 
,!OPS1~/SEARCH /NOSYSlI8RARY /~o 

The Log File 

I"INK-1I/I I.QG , r 1'. 23-AI),,-73 
~1"4U2 1. 1 lIM lINI(-U "" ~ 'a I.' utI 0" 
9l"4U9 " 1 EXP E~pa"dl"g I~w ~agme"t ~o 14" 
~t"4U9 1 1 MOV MovY"O lOw sagme"t to eXI).ncf .,.,. oy 
~104J19 1 1 ~MN lO,~,,,g mod~la gOMMON 
?Ul 4U9 " 1 MOV Mo.vTn; lOw sagmentto eicP,nd .,. .. 1.1: 
?104U9 " 1 EXP E~p,"dl"~ j~w ~egme"t t~ 28' .D 

?U4U 9 1 1 EXP EKpand,"O .Iow segme"t to 32~ 
~U4U9 " 1 MOV MovTng low ~agmant to e.p,"d ,,,,.. I.e 
~104U9 " 1 MOV MovTn; low segmant to eicP,n~ I"" I.Q 
?1",4119 1 1 MV MovTng 'ow uome"tto a.Plnd '1'" I.~ 
~ 104120 " 1 EXP EMp_ndl"O low segma"t to 36' 
~U'4120 1 1 MOV MoyTng row segment to •• p,nd '1'" I.~ 
~104U~ 1 1 EXP EMP~ndl"g jew .agme"t to '~IP 
'?104120 1 1 MOV Mo~Tng low .agmant to e~p.nd It"" L~ 
!104120 " 1 EXP EMPftnd'"g lew segma"t te ... " 
~10412l/l 1 1 MOV MoyT"g low .eam~nt to aiep,"d .. ,,',. 1.5 
?U4U1 1 1 EXP EICpandl"g I ow segme"t t~ '811 .0 

'?U 4U1 1 1 MOV MoyTng low 18gmant to '"I),"d 'I'a. 1.$ 
~U4121 1 1 EXP EXpandl"; low ,agma"t to 5~" 
~104121 1 1 MOV MoyTnglOw sagm.nt to air"ltnd I"ta 1.5 
~U4122 " 1 MOV MovTno low seam~nt ~o ';'PI"\1 area 1.1$ 
~U4122 " 1 ~MN lOading mOQ~le gOMOEV 
?104122 1 1 EXP EKpandl"g JOW .agme"t ~o '6' 
~U4122 " 1 MOV MovTM lOW segment to aicpand ..... I.e 
~ !llJ 4 122 " 1 MOV MovTna I ow ugm~nt to eitpand 11'11' I.e: 
~U4-l22 1 1 MOV MOyTM low uam~nt to eicP,nd 1,.8& I.e: 
9U4123 " 1 EXP Exp~ndl"g low sagm,"t to U" 
~1"4123 " 1 MOV MoyTn; low slgment to lIirPlnd arn 1.5 
~ U 4123 " 1 MOV HovTng low u;ma"t to 1.I),nd ar •• 1.5 
?U4U3 " 1 ~MN lo,dlng ~od~l. ~OMMOD 
~fil4123 " 1 EXP Expa"d,"o JOW .agm,"t to 61" 
!U4123 " 1 MOV MovT"; 'Iow slgmant to 1."lnd Il,.a. I.e: 
9'04123 " 1 EXP EICA"ndl"(l low ~egme"t t r 62' .It 

6-8 



-811- L1NK-IO 

LINK-lO 

Examples 

!ii:l4123 ,. 1 MOV MovTng Tow ,.gm.nt to 'icpand ar·' I.e 
~U4123 ,. 1 EXP ElCD~ndll'l~ lOw ,.g'l!Il'It to 631' 
?U4123 1 1 MOV MovTng low IIgmant to e~land a,." LC 
~U4123 ,. 1 MOV MoyTno low lIoment to ,iepans ara, loP 
'?I1Il4124 1 1 MOV MoyTno low IIgmant to eicP,nd. a,. .. L~ 
~!i:l4124 ,. 1 MOV MoyTna lOw seament to eicP'P'ld ,,.,a loS 
~1"4124 ,. 1 MOV MovTno low seom~nt to exP"nd are' los 
?104(24 ,. 1 MOV MoyTn; low .eom,nt to eicPand a"" loS 
,?!"41 24 1 1 MOV MoyTn; row .agm-nt to 'xpand ar" GS 
~'"4124 1 1 MOV MoyTng ow .eomant to e;,p'P'ld ar.' ~s 
'?U412 4 ,. 1 MOV MQvTno low lIament to e.pant:! a,.a, L~ 
~!1Il4124 1 1 MOV MovTn; loW segment to eicpand ar.a GS 
~U4124 1 1 MOV MQyTno loW segment to eicpand area loS 
~1i:l4124 ,. 1 MOV MoyTno low a.oment to 'MP,nd .,." los 
~1i:l4124 1 1 !'I.S Ar@_ loS ov.,.flowll'lo to OSK 
'? !f11412' 1 1 MOV MovTng low s.gment '0 eicPlnd ar., GS 
~11ll4127 1 1 MOV MovTng low .egm,nt to expand ara, loS 
'?U4127 1 1 MOV MOvTng loW segmant '0 .;'PIP'ld are' loS 
~ U4127 1 1 MOV MovTno 10101 ~.§ment to 'xpand a,. ,II loS 
~1i:l4127 1 1 MOV MovTno low .egmant to axpand .", GS 
~'"4127 1 1 I.to1N I.o,dlng mOd~la ~~BOAT 
'? 1"4127 1 1 MOV MovTng I ow IIgm~nt to ,.panel .. r.' loS 
'? ",4127 1 1 I.MN Loading mOQijle ~ILrNO 

'? 104128 1 1 MOV MovTno 10101 lIomant to eicP'nd ,re' loS 
?1i:l4128 1 1 MOV MovTno 10101 Slamen' to eicpl,nd ., .. L~ 
~U4128 1 1 MOV MovTng low lIom,nt to eicpanel a .. aa GS 

• • • 

?11Il4156 1 1 MOV MovTno fow .agment to IlCPand ..,. .. loS 
?11ll4157 1 1 MOV MoyTnO TOW SlOmant to aicP,nd anI' I.~ 
?!i:l4157 1 1 MOV MoyTno low .eament to expand area loS 
~!1Il41'7 1 1 I.MN LOading mOd~la ONCE 
?U4157 1 1 MOV MoyTno row .egmant to e.p,nG a"a 1.5 
~U4"7 1 1 MOV MQyTno low IIgmant to ,icpand ,,,,, I.e 
~U4157 1 1 MOV MoyTng low •• gment to eicpand .,. a, I.e 
,?U41'7 1 1 MOV MovTnarow •• gment to . axpand .,.e. L~ 
?U4158 1 1 MOY MoyTno lOW segment to expand a,..a GS 
911/l4158 1 1 MOV MovTng low IIgmant to e~pand .,.,. L~ 
? 1IIl4l58 1 1 MOV MoyTno low uQm.nt tD expand 11'11' ,,"5 
~1IIl4l58 1 1 MOV Ml)vT ng low IIgmant to aicpand .,. .. I.~ 
?10 4158 1 1 reF rlnal Qore 'llC~Ds 
~!1Il5l1'J2 ,. 1 MPS MAP seg",en~ 

'?U5102 1 1 MOV MoyTn; rDW segment to expand arll loS 
?lIIl'U8 1 1 E"IS El'ld Df MA~ a.gmlnt 
~1IIl5l29 1 1 EXS e: X n' segmlnt 
~!1Il5131 1 1 SST sorting a~mbol tab Ie 
'?U5l3' 1 1 STC S~m"'bl)l tal;>le Ql)mplated 
?I1Il5l37 1 1 CSF" Cr"tlna SAY flj8 
? U5l51 1 1 FIN I.lN~.10 flnlahed 

rENO OF' I.QO F"ILE;J 

6-9 



r-
>-4 

:z 
A. 

LINK-10 sy~oo! map of TOPS1~ ve~slo~ (~053!) ~aoe ~ trl t"' I 

P~odvced ~y ~INK.~~ verSion (33) 0" 23-A~r.73 a~ 9'~~!02 x H ...... 
~ z C) 

ll<: 

L,ow ~eg~'n~ starts at '" ,ndse., 132776 I enot'" H277~ ~ YtP '0 I 
I-' I-' 

sta~t address fs 10~~3~, !ooa,ed 1~ orogra~ SYS1Nl CD 0 
m 

••••••••••••• 
COMMON 'rom OSKICOMMQN,R;~~11,13~~ oreated on 12-0eo-12 at 1~14010a 

I,.Qw segm'n' ,ta~ts a~ 14~ end~ at 1357 !enath 1217 (~~tal), 3727 (~eol~.I) 

A 21 GIODal sym~ol NOI'I-R'!Ot;a~ab.le SIJIIPr,Sled 
Ail', NOe 710210 GlObal sYmbol NOl'lwReloc.,ab!e SIJDOress,d 
A021VER ~"534 G obll symbol Non.RerOoa~lb]' SIJ~P"'$s'd 
AU5fDS 21 G!obal symbol Non.Re!OQ,'abje Sw~presl.d 
ABSTAB 4U G!oDa! sYmbol NOI'I.R.loea~ab.l' 
AOVEVM 502~ GIOb.l symbol NOI'I.RerOo,'abje SW~p~.~.ed 
AI. " G!Ob. symbol No~"Rel oo.~ab.!' SW-eip·resud 1-3 
AI.I.JSP 502~ GIODa symbol Non.R8foc~'ab.l. Sw~pre.s.d ::r 
ANYRUN 5U. G obe. symDO'1 Non.Re!Ooatatj·e sWeore.sed CD 

I 

API/IBCK 65221 G Oba symbol Non.R.ro~a~.bj~ :s:: 00 
0'\ I» ...... 
I AP0CHL, 5514 G oba Symbol Ncn.Refool'abje S~Dpr •••• d '0 N 

I-' AP0CHN . ~ Goh symbol No~.A.roo.~abl' sweor •• sed I 
0 'zJ 

AP01NT 65UJ G aba 'ymbol Non.Re roolhbj. .... 
I-' AP0JEN 5~0~ G Oba .~mbol No~.R.rO~.'.bj~ S~~pr~jle~ CD 

AP"NU~ '~35'~ GOb. '~m~ol No~.R.rO~.tabJe SIJ~pre~.e~ 
AP0POP '<14' G oba l~mbO! No~_R_ro~.~abJe SlJd~!,sl.d 
AP0RET 5~1i" GOb. I~mbol NO~.RerOoa~~~Je S~4p.8.le~ 
AP0 RS T 63355~ G ol)a s~mbol NO"~RerOO'~abj, SlJdDr_jle~ 
AP"SAC '~2' G 01)" S~mbO! Non.R'foO."bJ~ Sij~pr.~~e~ 
AP0~AV 5510 GOD .. symbol No~.Re IQO"·hbJ' SIIDP,.eiaed 
APR0SN ~421 G!oba s~mbol NOI'I.Relooatab.le SIlI!iD~.jsed 
APRl,SN " GIOI).! sYmbol Non.RerOoa.abje SIJ~D~'SS'~ 
APR$N ~ .. ". GlOb.! symbo'l Non_RefOoa'abJ8 SIJ~Dl'eis.d 
APR$TS 4~2' c;! ogal s~mb~ I NOt'l.R_rOo.,.b.le 
A$SCON 4"0~"~ GlObal l~mbOI NonwR.roo.,abje SIJ~pr.aled 
A~SPRG 20000" GIOI)I! '~m&ol NO".R8!O~".b.l' SIII!i~r,sl.d 
A!JAVAL, 71421 Glot)a! Symbol NOt'l.R.rOo.~abJ8 
AVQ 4 G!otla! symbol NO~_R.I ooatab,,-
AYUSE'R . "l.,~ G I ol)&! s~mb·o I No~.R-81 OO.~.b.le 
AVAl.TB 71421 G !.O'b&! symbo! NOI'!.Re!oo .. 'ab.le 



AVTSMQ 713~ GOb" Symbol No~.R'lo~I'.bj' Sij~pp •• sed t'.l t"' 
>< H 8ATMAX 44" G oba symDO NQ~.R'lou'ab.le 
~ 

z 
BATMIN 44'~ G oba Iymbo NOr'l.R'lo~'hb.I' ~ 

I 
BATNUM 45"~ GObi Symbo NO~.R'loU'.bj' I-' I-' 

CD 0 
8IGHO~ 24U G Oba ,ymtio NO~ .. R.loo.hbl' IJI 

81STDV 135' G Oba symbo NO!'!,,'" IOOIl,.b.1 e 
81.1<$PI( ~ G oba Symlto NOr'l.Rlloo.'abje Sij~ppelsld 
BI"KSPP ~ Gob. lymbO NOr'l.Reloo"ab.le Sij~Dp,.s.d 
8NXMTS 4717 G oba Iymtio NOI'I.Relouhtl.le 
BQOTWD 22 GOb. Iymbo NOI'I.RlrOoa"b.le 
800TXT 51ZJ1ZJ~ GObi Iym~o NOr'l.R,I'OOlhb.l1 
BTHN 

" 
GOb" lymbO No!'!.Reloo.~abj, S~~PPIII.d 

BVTTAB 13IZJiI GOb. Iymbo NOr'l.RIl'oo~'abjl 
CIZJOPN fc' G oba lIymDO NOr'l.R,roo~'abJ' S~~pp ••• ed 
CIIII"HN 1, GObi Symbo NOI'I.Reloo"abJI Sij~pp'll.d 

• • • 
I 

00 
0\ 

I-' 
VJ I I I-' Index to ~lNK.tlZJ symbol ~aP of TO~S~~ y,pllC~1'! ('11l534) I:IUI 84 I-' 

Name Page Nam. pa,e Nal'ft' PUI Na,,,, PIl,1 

80"n NT 55 DTASRN 6~ ME, CON 66 R~M!)I.X 6fS 
C "SER 55 (OOT- 79 MTxSER 66 RHR'" 69 
CORSRX 55 e:~BOAT 47 ONeE '2 sgHEOt 69 
CI"OC K1 56 ERRCON 63 ONeMOO IS" SCNSEM 7111 
COMCON 58 F'HXKON '4 PA'CH 78 S~GCON H 
COMOEV 21 F'llo[NO 47 P,"UER 67 S"U'SEH 7; 
COMMO!) 32 rn.l O '" PTF'SER 61 S~SCIolK Bill 
COMMON 1 rll,,~I.lO 5~ PTRSE;R lI7 S~$l~l .11l 
CORE1 61 I(A~QCK 65 F'TYStR 61 TMfIIUUQ " OATMAN 6~ KASlR 64 REPSTR 81 UUOCON " OP)(KON 54 ('PTStH 6' 
t~nd of ~INK"10 ml~ of TO~S10' 

I -:z 
A 
I 

I-' 
0 





-815- LlNK-10 

LINK-l 0 

Item Types 

APPENDIX A 

LINK Item Types 

Input to LINK-lO is in the form of relocatable binary (.REL) files. 

Each .REL file is composed of link items of varying lengths. Each 

lirik item contains a specific type of information for LINK-lO. The 

first word of these items is a header word containing, in the left 

half, an octal code for the item type and, in the right half, usually 

the number of words in the item. For item types 0-37, the count of 

words does not include overhead words (i.e., relocation words); for 

item types 1000-1777, the count does include these words. The format 

of the remaining words depends upon the individual link item. The 

link items are as follows: 

Link Item Type 

0-37 

40-77 

100-377 

400 

401 

402-777 

1000-1777 

2000-3777 

4000-777777 

Use 

Reserved for DEC 

Reserved for customers 

Reserved for DEC 

FORTRAN-IV (F40) marker block 

FORTRAN-IV (F40) with MANTIS information 

Reserved for customers 

Reserved for DEC (not used in the first 
release of LINK-lO) 

Reserved for customers 

Reserved to avoid conflict with ASCII 
text 

A-I 



LINK-10 -816-

LINK-10 

Item Types ~-37 

A.l Link Item Types 0-37 

Link items in this range are the LOADER program block types and all 

have an identical format. The first word of the item, the header 

word, contains the item type in the left half and the count of data 

words in the right half. Following the header word is a relocation 

word containing up to 18 2-bit bytes which specify the relocation bits 

for the 18 words or less that follow. The relocation bits are 

left-justified and have the following meanings: 

Byte Value 

o 

1 

2 

3 

Meaning 

Do not relocate 

Relocate right half of word 

Relocate left half of word 

Relocate both halves of word 

Following the relocation word are up to 18 words of the item. I~ 

there are more than 18 words in the item, there is another word of 

relocation bytes for the next 18 words. The relocation words are not 

included in the count of data words appearing in the left half of the 

header word. Thus, an item with a word count of 23 decimal would be 

as follows: 

A-2 



-817- L1NK-I0 

LINK-l 0 

Item Types fK-37 

link item type code , , 23 
18 relocat1on bytes 

wword i word 18 ' 
2 word 17 

Iftl I~rcword 

18 words 

5 relocation bytes fI:rd 1 :2 PZg:t:11 5 l_mT 
5 words 

A.l.l Link Item Type 0 

This item t~pe is ignored by LINK-lO and therefore can be used to 

store information not required by it. Totally null words look like 

, this item type. 

A.l.2 Link Item Type 1 CODE 

This item type contains code and data. The first data word specifies 

the beginning address into which the item is to be loaded. The 

remaining words of the, item are loaded into contiguous locations 

starting at that address~ ,All words, includirig the load address, are 

relocated as specified by the relocation bytes. 

If bit 0 of the first data word is 1, the word is assumed to be a 

Radix-50 symbol. The load address is then the value of this symbol 

plus the next word. Thus, in this case, there is one less actual data 

word 'than ismdicated by the count in the header word. 

A-3 



LINK-10 -818-

LINK-10 

Item Types ~-37 

A.l.3 Link Item Type 2 SYMBOLS 

This item type consists of symbols, with each symbol occupying two 

words. The first word of each symbol contains 4 bits of code (bits 

0-3) and 32 bits of the Radix-50 representation of the symbol (bits 

4-35). The second word is the value of the symbol. 

The code bits are as follows: 

00 This symbol is a program name. It is entered- into the 
symbol table by a link item type 6, not an item type 2. 
(This code should never happen.) 

04 This symbol isa global definition. Its value is -available 
to other programs. Two global symbols with the same name 
but different values-cause an error message. 

10 - This symbol is a local symbol and is not loaded unless the 
user requests the loading of local symbols. Local symbols 
of the same name can occur in diffe,rent modules 'without 
causng an error, even though the values may be different. 

14 This symbol is a block name and is used by tr~slators that 
are block structured. This symbol is not loaded unless ,the 
user requests loading of local symbols. 

44 

50 

60 

Same as code 04, with the addition that the global symbol is 
suppressed to DDT typeout. 

Same as code 10, with the addition that the local symbol is 
suppressed to DDT typeout. 

This symbol is a global_request. 

If bit 0 of the second word in the pair is 0, then bits 
18-35 contain the address of the first word in a chain of 
requests for the global. In each request, the right half of 
the secqnd word contains the address ~f the next request. 
The chain is terminated when the right half of the second 
word con~ains zero. 

If bit 0 of the second word in the pair ,is 1, the request 
involves additive global process1ng. When bit 2 of this 
word is 0, bits 18-35 contain an address of a word of code. 
The right half of the value of the symbol requested is added 
to the left or right half of this word of code according to 
the following rule: 

If bit 1 of the second word in the pair is 1, the add 

A-4 



-819- LlNK-10 

LINK-IO 

Item Types ~-37 

is to the left half. 
If bit 1 of the second word is 0, the add is to the 
right half. 

The result is stored back into the word of code. (Note that 
there is no full word add; that result must be accomplished 
by a left and a right add.) 

When bit 2 of the second word is 1, bits 3-35 contain the 
Radix-50 representation of a second symbol, whose value 
depends upon the global being requested. The second symbol 
must be the last symbol defined before the global request or 
else it will be treated as a local symbol and no action will 
occur, unless local symbols are being loaded. When the 
value of the requested global is determined, it is added to 
the right half of the value of the second symbol if bit 1 of 
the second word is 0, or to the left half if bit 1 is 1. 
Since the actual value of the symbol is not determined until 
the definition of the global upon which it depends, the code 
bits of the symbol indicate that the value of the symbol 
will change and cannot be used to satisfy requests until the 
symbol is fully defined. 

A.I.4 Link Item Type 3 HISEG 

This item type indicates to LINK-IO that code is to be loaded into the 

high segment. This item type has either one or two data words. The 

right half of the first data word is the initial address in the high 

segment (usually 400000). When the left half of the data word is 

zero, subsequent CODE items are assumed to have been produced by the 

HISEG pseudo-op in MACRO-IO. This means that the addresses are 

relative to zero but are to be placed into the high segment. When the 

left half of the first data word is negative (i.e., greater than the 

right half) , subsequent CODE items have been generated by the TWOSEG 

pseudo-op in MACRO-lO. This requires that addresses greater than the 

right half be placed into the high segment and addresses less than the 

right half be placed into the low segment. The left half is 

interpreted as the high segment break (i.e., the first free location 

A-5 



LINK-IO -820-

LINK-IO 

Item Types 16-37 

after the high segment) with the maximum length of the high segment 

being the difference between the left and right halves of the word. 

One-pass translators that cannot determine the high segment break 

should set the left half of the data word equal to the right half. 

If there is a second qata word (e.g., as in FORTRAN-IO), the right 

half of this word is the low s~gment origin (usually 0) and the left 

half is the low segment program break. 

A.l~5 Link Item Type 4 ENTRY 

This item type is the entry item and must be the first item in a .REL 

file if the .REL file is to be loaded in a library search. It 

con~ists ot a list of Raqix-50 symbols which are separated every 18 

words by a relocation word of zeroes. When LINK-l 0 is in library 

search mode, each global symbol ~n the list is checked against the 

undefined global requests for the load. If one or more matches occur, 

~he following module is load~d. If a match does not occur~ the module 

is ignor~d. If LINK-lO is not in library search mode, t~is checking 

of undef~ned global requests is not performed. 

The entry items are s~ored. If the module is not loaded, these items 

are igno+.ed. If the module ~s loaded, the entry items are scanned 

again apq the entry point bit is turned on for the corresponding 

s~l ip the symbol table. 

A.l.G LINK Item Type 5 END 

This item type is the end item and is the last link item in the .REL 

A-6 



-821- LlNK-10 

LINK-10 

Item Types ~-37 

file. It contains two words whose meanings depend on whether the file 

contains two segments or one. If the file has two segments, the first 

word is the high segment break and the second word is the low segment 

break. If the file has only one segment, the first word is the first 

free, location above the program (this word is relocatable) and the 

second word is the highest absolute address seen, if higher than 

location 13..7. 

A.l.7 Link Item Type 6 NAME 

This item is the name ~tem and must appear before any type 2 link item 

(SYMBOL), The item has one or two data words. The first word is the 

program name in Radix-50 symbol format. The second word, if it 

appears, contains in bits 6-17 a code for the translator that produced 

the binary file, and in the right half the length of blank COMMON. 

(FORTRAN programs use both named and blank COMMON. COBOL uses blank 

COMMON to indicate the length of LIBOL's static area. Thus, the 

length has meaning for FORTRAN and COBOL programs.) The octal codes 

(bits 6-17) for the various translators are as follows: 

Octal 
Code 

o 
1 
2 
3 
4 
5 
6 
7 
10 
11 
12 

Translator 

UNKNOWN 
F40 
COBOL 
ALGOL-60 
NELIAC 
PL/l 
BLISS-10 
SAIL 
FORTRAN-10 
MACRO 
FAIL 

A-7 



LINK-IO -822-

LINK-10 

Item Types fI-37 

Bits 0-5 of the second word indicate the processor on which the 

program will execute. If the value of these bits is 0, the program 

will execute on either processorJ if the.value is 1, the program will 

execute onlycn the KA10 processorJ and. if the value is 2, the program 

will execute only on the KIlO processor. Remaining values are 

reserved for the future. 

A.l.B Link Item Type 7 START ADDRESS 

This item type contains in the right half of the data word the address 

at which execution of the program is to begin. The start address for 

.a relocatable program ma~ be relocated by means of the relocation 

bits. The last link item of this type encountered by LINK-10 is the 

one used, unless LINK-10 is ignoring start addresses (indicated by th~ 

user via switches). If the program is not to specify a start address, 

no item of this type should be included. 

A.l.9 Link Item Type lQ INTERNAL REQUEST 

This item type is provided 

internal symbols are used 

for one-pass language translators when 

before they are defined. The item type 

consists of a series of data words where each word represents one 

request. Each data word has a value in the right half and a pointer 

to the last request in the chain of requests for that value in the 

left half. Each quantity may be relocatable. The symbols are chained 

in a manner similar to the global requests which have bit Oin the 

second word of each pair equal to zero (i.e., the value is substituted 

in the right half of each location in the chain).. However, if a data 

A-B 



-823- LlNK-lO 

LINK-10 

Item Types /6-37 

word is -1, then the next data word indicates a chained request to the 

left half of the word specified rather than the right half. 

A.l.10 Link Item Type 11 POLISH 

This item type is provided for Polish fixups involving arithmetic and 

logical operations on relocatable or externally-defined quantities. 

Each item contains only one Polish string. The data words in each 

item are a series of half-words consisting of operators and operands 

followed by store operators and store addresses.· The operatofs and 

operands are as follows: 

o 
1 
2 

3 
4 
5 
6 
7 

10 
11 
12 
13 
14 

The next half word is an operand. 
The next two half-words form a 36-bit operand. 

. The next two half-words form a Rqdix-50 symbol which is 
a global request. The operand is the value of the 
global. 
Add. 
Subtract. 
Multiply. 
Divide. 
r.ogical AND. 
Logical OR. 
Left shift. 
Logical XOR. 
One.' s complement (not).· 
Two's complement (negative). 

The store operators are as follows: 

18 bit value 

-1 
-2 
-3 

Right half chained fixup (777777). 
Left half ch~ined fixup (777776). 
Full word chained £ixup (777775). The entire word 
pointed to is replaced and the old right half points to 
the next full word. . 

The half word following the store operator is used as the address of 

the first element in the chain. 

A-9 



LINK-IO -824-

LINK-I 0 

Item Types f6-37 

A.l.ll Link Item Type 12 LINK 

Data words in this item type occur in pairs. The first word of the 

pair is a link number and the second word is an. address. There are 20 

(octal) links numbered from I to 20. When LINK-IO is initialized, the 

value of each link is set to zero. Each time a specific link is seen, 

the current value of the link is stored in the address specified by 

the second word of the word pair, and the specified address becomes 

the new value of the link. If the number of the link seen is 

negative, the address is saved as the end of the link. At the end of 

loading, the current value for each link is stored in the address 

indicated by the end of each ~ink. If the end of the link is 0, no 

storing is done. 

A.l.12 Link Item Type 13 LVAR 

This item type is used in LVAR fixups and is not currently handled by 

LINK-IO. It is not supported by DEC and is not needed because the 

TWOSEG pseudo-op is superior. The first data word is the location of 

a variable area in the low segment. Th~ second data word is the 

length of the area needed. The low segment relocation counter is 

incremented by the area needed. Data words after the first two data 

words occur in pairs. If bit 2 of the first word of the pair is zero, 

then the second .word contains, in its left. half, the address of a 

fixup chain, and in the right. half, the· relative location in the 

variable area to use for this fixup. The chaining occurs with the 

right half of the words if bit 0 of the first word is 0; otherwise, 

chaining occurs with the left half of the words. 

A-IO 



-825- LlNK-lO 

LINK-10 

Item Types fif-37 

If bit 2 of the first word of the pair is one, then the pair is used 

tQ make a symbol table fixup. The right half of the first word is the 

value of the fixup. The second word is the Radix-50 representation 

for the symbol. 

A.loU Link Item Type 14 INDEX 

This item type is produced by FUDGE2 to identify an index to LINK-10. 

~he index is a list of all entry points (Link item type 4) in a 

library .REL file with pointers to the beginning of the individual 

modules. The index is 200 octal words long and if there are more 

entries in the library than will fit in 200 words, other item types 14 

are created to contain the remainder of the entries. Each index is 

divided into sub-items of various lengths. The sub-items do not 

include the relocation word normally found in entry items of a 

~ibrary. Each sub-item has a header word with the word count in the 

right half and the link item type 4 in the left half. Following this 

header is the list of Radix-50 entry symbols. After the list of 

entries, there is a pointer to the individual module within the 

library file. The right half of the pointer is the block number of 

the module, and the left half is the word count within the block for 

the start of the module. The last word of the index item type 

contains a -1 in the left half to signal the end of the index item and 

the block number of the next index item in the r~ght half. If LINK-10 

is not in library search mode, index items are ignored. 

A-ll 



L1NK-IO -826-

LINK-10 

Item Types ~-37 

A.l.14 Link Item Type 15 ALGOL 

This item type is the special ALGOL OWN item. The first data word is 

the length of the OWN area to be allocated in the low segment. The 

remaining words are chained with the right half of the OWN fixups. 

A.l.1S Link Item Type 16 REQUEST LOAD 

This item type is produced by the SAIL compiler and is used to request 

the loading of programs. Thus, a .REL file can request libraries and 

other files to be loaded, thereby -keeping the command string to 

LINK-10 simple. LINK-10 maintains a table for the names of libraries 

to be loaded and another table for the names of standard reloca.table 

binary files to be loaded. When a new file is requested by link item 

type 16 or 17, LINK-10 searches the appropriate table to verify that 

the file has not already been specified. If it has not been· 

specified, an entry is made in the appropriate table. After all files 

in the LINK-10 command string have been loaded, the files specified in 

the two tables are loaded. The relocatable binary files are loaded 

first; the libraries are loaded last. 

The data words in this link item type appear in triplets. The first 

word contains the filename in SIXBIT (the extension of .REL is 

assumed). The second word is the UFD number in binary, and the third 

word is the SIXBIT name of the device containing the file. 

A.l.16 Link Item Type 17 REQUEST LIBRARY 

This item type is the same as item type 16 except that the specified 

A-12 



-827- LINK-IO 

LINK-IO 

Item Types ,-37 

files are loaded only if they are needed to satisfy global requests. 

That is, the files are loaded in library search mode. The data words 

are identical to those in item type 16. 

A.l.17 Link Item Type 20 COMMON ALLOCATION 

Th+8 item type is used to allocate named COMMON areas. The relocation 

word must be present, but the bits should be zero. The data words are 

grouped in pairs, where the first word contains the Radix-50 symbol 

for the name of the _COMMON area and the second word contains the 

length of the area required by this program. 

This item type causes LINK-IO to search for the specified COMMON area 

to determine if it has been previously loaded. If it has, the length 

given in this item type must be less than or equal to the length 

already allocated. Thus, the first program that defines a COMMON area 

also defines the maximum size of that COMMON area. No subsequent 

program can expand this particular area, although COMMON areas of 

different names can be defined. 

If the specified COMMON area has not been loaded, the symbol name is 

given the current low segment relocation value, and the length of the 

area is added to the low segment relocation counter. 

A.l.lS Link Item Type 21 SPARSE DATA 

This item type is used to load data into arrays when link item type 1 

is inefficient for this purpose. The data words are grouped in 

sub-items and each sub-item is treated in the same manner as link item 

A-13 



QNK-I0 -828-

LINK-IO 

Item Type 400 

t¥J?e 1. The first word of each sub-item contains in the left palf a 

count of the numb~r of data words in the sub-item, and in the right 

half the beginning address into which the d~ta words are to be loaded~ 

The remaining words of each sub-item are the qata words. 

If bit 0 of the first word of a sub-item is 1, the first word is 

assumed to ~e a Radix';"SO symbol. The left half of the second word is 

the count of da~a words and the right half contains an offset. The 

load address is then the value of the symbol plus the offset .. 

A.l.19 Link Item Types 22-36 

These item types are not yet defined and return an error message if 

used. 

A.l.20 Link Item Type 37 DEBUG 

Thi$ item type is used for the debugging symbol table for COBDDT (the 

COBOL debugging Pfogram). If debugging is requested in local symbol 

mode, the data from this item type is loaded in the same manner as the 

data from link item type 1. If local symbols are not required, this 

item type is ignored. 

A.2 Link Item Type 100 F~RT~ (F40) 

This item type is output by the old one-pass FORTRAN-IV complier 

It does not contain a word count, relocation words, or data 

words. It contains only the one word indicating the item type code. 

A-14 



-829- LINK-IO 

LINK-lO 

Item Type 401 

A.3 Link Item Type 401 FORTRAN (F40) 

This item type is similar to link item type 400 and in addition it 

indicates that the file contains MANTIS debugging information. 

A.4 Link Item Types 1000-1777 

Link items in this range do not have identical formats. There is a 

general pattern in that the first word of each item contains an item 

type number in the left half and a word count in the right half. 

However, unlike link item types 0-37, the word count of item types 

1000-1777 is a count of all following words including overhead words 

(relocation words). The structure of the relocation words depends 

upon the link item; there may be any number of relocation bits from 1 

to 18 per half or full word. Link items that do not need relocation 

do not have relocation words. These item types are not used in the 

first release of LINK-IO. 

A.4.l Link Item Type 1000 

This item type is ignored by LINK-IO and thus can be used to store 

information not required by it. 

A.4.2 Link Item Type 1001 ENTRY 

This 'item type is the simple entry item and consists of a list of 

SIXBIT symbols. Each data word contains one lef~-adjusted symbol 

which can be a maximum of six characters in length. There are no 

relocation words, thus distinguishing this item type from item type 4. 

However, the two item types are used in the same manner. 

A-IS 



L1NK-IO -830-

LINK-10 

Item Types 1000-1777 

A.4.3 Link Item Type 1002 LONG ENTRY 

This item type contains one extended symbol (i.e., the symbol contains 

more than six characters) in SIXBIT, which is tested to determine if 

it is required as an entry point. This link item type is used in the 

same manner as link item type 1001. 

A.4.4 Link Item Type 1003 NAME 

This item ~ype contains information about the file and the translator 

that produced it. The information in 'this item is stored in the 

symbol table and can be output on a map listing. 

rhe data words occur in triplets. The left half of the first word of 

each triplet contains flag bits for that triplet and the right half is, 

unused. The first triplet of data (the' primary triplet) contains the 

program name in SIXBIT in the second word. This program name is taken 

from the TITLE statement in a MACRO-10 program. If the program name 

is longer than six characters, one or more triplets follow containing 

the remaining characters of the name. Triplets following the program 

name are identified by the flag bits in the first word of each 

triplet. The triplet after the name triplets contains the low segment 

relocation counter in the second word and the high segment relocation 

counter in the third word. The next triplet has, in the second word, 

the SIXBIT name of the translator that produced the file and in the 

third word, the version number of the translator. This version number 

is taken from location 137. The following triplet contains the 

c'ompilation date and time obtained from the LOOKUP UUO block in the 

A-16 



-831- LINK-10 

LINK-IO 

Item Types 1000-1777 

second word, and in the third word, a default code for the translator 

used, in case LINK-IO could not determine the translator from the 

information in the previous triplet. The default translator codes are 

listed in Paragraph A.l.7. The next triplet contains in the second 

word, the name of the device on which the source file is stored, and 

in the third word, the SIXBIT filename of the source file. The 

information in the next triplet is the source filename extension in 

the second word and the ~ame of the UFD containing the source file in 

the third word. The next triplet contains sub-file directory 

information. The following triplet contains the version number of the 

source file as obtained by the translator that processed the file. 

The information in the last triplet is interpreted as ASCII text an~ 

is stored in the format in which it is given. 

More than one NAME link item may be seen per module for programs made 

from several source files. The program and compiler name triplets 

must be the same in the the NAME link items, but 'the source filename 

and any remaining triplets can be different. 

A.4.5 Link Item Type 1004 RELOCATION 

This item type consists of groups of words (usually pairs) without any 

relocation words. The first data word of the item type contains the 

total number of relocation groups in the item in order that sufficient 

space can be allocated. The first word of each relocation group has a 

relocation level in the left half and the count of the number of words 

i~ the relocation counter name in the right half. The remaining words 

in each group are the relocation counters. The relocation level is 

A-17 



LINK-IO -832-

LINK-l 0 

Item Types 1000-1777 

the position in the table of relocation counters, such that for any 

word needing relocation, the value of the relocation byte will receive 

the correct constant for addition. 

If a relocation counter is not yet defined (or a complex Polish 

expression not yet resolved), it must be placed in the undefined 

table, and its slot in the relocation tables is marked as undefined. 

All code referring to the undefined counter is stored in the fixup 

area or on the disk. In other words, if the locatio~ into which code 

is to be loaded is not yet defined, all the code under the relocation 

counter must be placed in the fixup table or on the disk. . Link . item 

type 1004 can appear anywhere and must be used whenever a new 

relocation counter is used. The standard name for the low segment 

relocation counter is • LOW. and the standard for the high segment 

counter is .HIGH.. These counters normally occupy positions 1 and 2 

in the table of relocation counters. 

A.4.6 Link Item Type 1005 

This item type is undefined and reserved for future definition. 

A.4.7 Link Item Type 1006 START 

This item type contains the start addresses for the program. It 

consists of a relocation word with 4-bit bytes for full word 

relocation, followed by the list of relocatable start addresses in 

order of their use. These addresses are used or ignored depending on 

the switches given by the user. Currently, only one start address per 

program is recognized. 

A-IS 



-833- LINK-IO 

LINK-10 

Item Types 1000-1777 

A.4.8 Link Item Type 1007 START 

additional start addresses or external This item type is used for 

symbolic start addresses. 

words; for each start address. 

The link item is divided into groups of 

The first word of each group contains 

tlag bits in the left half and the count of the number of words in the 

group in the right half. Currently, bit 0 is th~ only flag bit. If 

this bit is 1, a Polish expression follows, if it is 0, a symbol 

follows. This item type does not include re~ocation words. 

A.4.9 Link Item Types 1010-1017 CODE 

The link items in the range 1010-1017 are similar except for the size 

of the relocation byte. The most general case uses 18 bits per half 

word, but this method consumes too much space for simple programs. 

Item type 1010 has a byte size of 2 bits, thereby allowing three 

relocation counters and absolute code. . Relocation occurs only on the 

right half of the word and is positive, the left half ~s considered 

absolute. Since in most programs the code consists of constants in 

the left half (op-codes, indexes, ACs) and relocatable addresses or 

constants in the right half, this item type should be sufficient for 

most programs. 

Item type 1011 also has 2-bit bytes but has relocation for the left 

half as well as the right hal~ ()f the wo.rd. This item type allows 

three relocation counters plus absolute code. Link item type 1011 is 

used mainly for table generation. 

A-19 



LlNK-lO -834-

LINK-10 

Item Types 1000-1777 

Item type 1012 allows relocation only for the right half of the word 

(similar to item type 1010) but has a byte size of 4 bits, giving 

allowances for 15 relocation counters. 

Item type 1013 allows relocation for both the left and right halves of 

the word (similar to item type 1011) but uses a 4-bit byte size. 

Item types 1014-1016 are reserved for future use. 

Item type 1017 has 18 bits of relocation per half word. 

A.4.l0 Link Item Types 1020-1027 SYMBOL 

All symbols are in triplet format. The link items in the range 

1020-1027 differ only in the size of the relocation b-te. This byte 

is the same as the byte size for the corresponding CODE item. For 

example, symbol type 1020 and code type 1010 use 2-bit bytes, symbol 

type 1022 and code type 1012 use 4-bit bytes, and so forth. The 

relocation word applies .only to the third word of the triplet (the 

symbol value). Thus, for example, in the case of symbol type 1020, 

each relocation word is followed by up to 18 triplets rather than 18 

words. 

A.4.1l Link Item Type 1030 POLISH 

This item type is provided for Polish fixups and consists of operators 

and operands, including store operators· and store operands in 

pre-fixup form. Each item contains only one Polish string, but may 

contain many different store pointers. Operators are stored one per 

half word, and symbols are stored in contiguous half words. Store 

A-20 



-835- LINK-IO 

LINK-10 

Item Types 1000-1777 

pointers are ~n the form of either an address in a halfword or a byte 

pointer in a full word. Associated with store pointers are store 

operators that shift the value to the correct field and store 

operator. The store operator may also point to a symbol that is to be 

stored in the symbol table. 

The operators and operands are as follows: 

o 
1 
2 

3 

4 

5 
6 

7 

10-77 
100 
10l. 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 

The next half word is an operand. 
The next two half words form a 36-bit operand. 
The next two half words form a 36-bit symbol which is a 
global request. The operand is the value of the global. 
The next half word is the count of half words in an extended 
symbol. The subsequent half words are the symbol. 
The next half word is a numeric relocation counter for the 
program. 
The next two half words are a symbolic relocation counter. 
The next half word is a count of the number of half words in 
an extended symbolic relocation counter. The following 
halfwords are the relocation counter. 
The next two half words are a byte pointer to code already 
loaded. 
Reserved for future use. 
Add 
Subtract 
Multiply 
Divide 
Logical AND 
Logical OR 
Left Shift (LSH) 
Logical XOR 
One's complement (not) 
Two's complement (negate) 
Get contents (MOVE) 
Reserved for future use 

The store operators are as follows: 

18 Bit Value 

-1 
-2 
-3 
-4 

Right half chained fixup (777777). 
Left half chained fixup (777776). 
Full word chained fixup (777775). 
The next two half words are a byte pointer 

A-21 



LINK-IO -:-836-

LINK-IO 

Item Types 1000-1777 

(777774) • 
-5 The next tw~ half words ,are an instruction plus an 

address (ANDM,XORM) (777773). 
-6 The next two half wards are a symbol and the value 

is stored in the half words (777772). 
-7 The next half word is the-count of the number of 

half words in an extended symbol. The half words 
followi~g are the exterided symbol and the value is 
stored in these half words. (777771). 

-10 The next half word is a numeric relocation counter 
(777770) • 

-11 The next two half words are a symbolic relocation 
counter (777767). 

-12 The next half word is a count of the number of 
half words in an extended symbolic relocation 
counter. The following half words are the counter 
(777766) • 

-13 Reserved for future use. 

The store operators obtain their arguments from a stack; the first 

word is usually the value and the second is the memory address. 

Addresses can be built using other Polish operators. For chained 

fixups, the half word preceding the store operator is used as the 

address of the first element in the chain. 

A.4.12 Link Item Type 1031 POLISH 

This item type is similar to item type' 1030 except that Polish 

notation in post-fixup form is used. The operators and operands are 

the same. 

A.4.13 Link Item Types 1032-1033 

These item types are reserved for future use. 

A.4.14 Link Item Types 1034-1037 CONDITIONAL 

There are three kinds of conditonal loading item types: the Begin 

A-22 



-837- LINK-IO 

LINK-IO 

Item Types 1000-1777 

conditional, the End conditional, and the Else conditional. The Begin 

conditional has a unique number assigned by the translator which is 

matched with the unique number in the End and Else conditional's. It 

also contains a conditional operand and operator. The End conditional 

cancels the conditional loading, updates the relocation counters, and 

generates the next implicit relocation counter, if it is not 

explicitly defined by the user, so that following code can be loaded. 

The Else conditional is the inverse of the condition in the Begin 

conditional in that code is loaded if the ~ondition is false. The 

three kinds of condition items can be nested. 

A.4.14.1 The Begin Conditional - Link Item Type 1034 - This item type 

has four relocation bits per half word thereby allowing 15 possible 

relocation counters. The first data word contains the unique 

conditional number. If a number. is not specified, zero is assumed and 

LINK-IO matches the Begin with the first End or Else conditional at 

that level. The second data word contains the conditional operator in 

the left half and the conditional operand in the right half. The 

remaining words contain the rest of the operand. 

The conditional operators are coded as follows: 

0 null 
1 if zero 
2 if greater than zero 
3 if greater than or equal to zero 
4 if less than zero 
5 if less than or equal to zero 
6 if not equal to zero 
7 if defined 

10 if not defined 
11 if global 
12 if local 

A-23 



LINK"'lO -838-

LINK-10 

Item Types 1000-1777 

The operand is either a .symbol or a Polish expression. If the operand 

cannot be evaluated, the words are stored on the disk. The operands 

are: 

100 The next two half words contain a SIXBIT symbol. 
101 The next half word is a count of the number of 

half words in,an extended symbol. The following 
words· contain the SIXBIT symbol. 

102 A pre-fixup Polish expression follows (refer to 
Par~graph A.4.ll). 

103 A post-fixup Polish expression follows (refer to 
Paragraph A.4.12). 

If the condition is met, all code up to an End or Else conditional is 

lqaded. When the condition is not met, the code is not loaded. 

A.4.l4.2 The Begin Conditional - Link Item Type 1035- This item 

type is similar to Link Item Type 1034 except that it has half word 

relocation per half word. 

A.4.l4.3 The Else Conditional - Link Item Type 1036 - This item type 

contains no relocation words and has one data word containing a unique 

number matching the one in the Begin conditional. If the condition in 

the Begin conditional is true, the code in the current Else 

conditional'to its matching End conditional or to the next matching 

Else conditional is ignored. If the condition is not true, the code 

is loaded. 

A.4.l4.4 The End Conditional - Link Item Type 1037 - This item type 

also has no relocation words. The first data word is a unique number 

matching the one in the Begin conditional. If the condition in the 

Begin conditional is false and no Else conditional is seen, the End 

A-24 



-839- LINK-IO 

LINK-10 

Item Types 1000-1777 

conditional is ignored. However, if code was loaded, the End 

conditional is read. The item type contains one data word for each 

relocation counter used in the same order as specified in the last 

re+ocation setting link item. The data words are the highest value of 

the relocation counter used in the conditionally-loaded code. These 

values are added to the current values, and to the accumulation of 

such values, until the final END item type of the REL file. 

A.4.l5 Link Item Type 1040 END 

This link item marks the end of a link module. It does not contain 

relocation words but does contain a list of all relocation counters 

used and their final values. Any conditional code that was loaded 

plus other overhead items, such as the ALGOL item, are added to the 

final values~ The resulting values are then added to the current 

values of the relocation counters to obtain the value for the next 

module. The .beginning and ending addresses are stored in the symbol 

table in order that DDT has the range of the program and that they can 

be output in a map listing. 

A.4.l6 Link Item Type 1041 Special FORTRAN-10 Block 

This link item defines a call to a special once-only routine that is 

to be executed by LINK~lO after all code has been loaded. 

A.4.l7 Link Item Type 1042 Program Request 

This link item requests the loading of .REL files required for this 

program. It is similar to link item type l6~ however, there are no 

A-25 



LINK-IO -840-

LINK-lO 

Item Types 1000-1777 

relocation words. This item replaces the need for library searches 

and is useful when loading real and dummy routines because it 

specifies filenames rather than modules names. 

The data appears in groups of four or more words. Each group contains 

the following words: 

Narne of the device in SIXBIT containing the file. 

Name of the file in SIXBIT. 

Extension of the file in SIXBIT in the left half, and the length 

of the directory in the right half. 

UFD in octal. 

Remaining words in the group are sub-file directory name~ in SIXBIT. 

The requests are stored until the end of loading and are loaded before 

the default libraries and requested libraries (link item type 1043). 

Any number of files can be requested. 

A.4.l8 Link Item Type 1043 Library Request 

This item type requests the searching of libraries, either in search 

mode for 
, 

all unresolved entries or for particular modules. The data 

is identical to that in item type 1042.-

A.4.l9 Link Item Types 1044-1047 

These item types are reserved for future use. 

A-26 



-841- LINK-10 

LINK-IO 

Item Types 1000-1777 

A.4.20 Link Item Type 1050 Global Data 

This item type contains data that is common to many programs (i.e., 

constants, argument lists, literals in MARCO-IO language). The global 

data item consists of two other link items: the relocation setting 

item (type 1004) and a code item (types 1010-1017). Tne initial 

global data item has no relocation words. The first data word is the 

header of the relocation item and only the relocation actually used 

should appear in this word1 all other entires should be zero. The 

nex~ data words are the data for the relocation item. Following these 

data words is a code item with relocation bits and data which may be 

relocatable or absolute. LINK-10 collects all the global data blocks, 

compares them, and keeps only one copy of those with the same data and 

relocation. The global data items are loaded at the end of loading or 

immediately after a /DATA switch is seen. These items should reduce 

the size of loaded programs because of pooling of literais. 

A.4.2l Link Item Types Greater Than 3777 ASCII 

These items are recognized by the first seven bits being non-zero 

(i.e., an ASCII character). There is no word count in the item~ 

Termination of the item occurs at a null byte. These items are 

generated by translators and contain ASCII commands similar to those 

typed on the user's terminal. Thus they are similar to an indirect 

file. ASCII items allow the overlay structure to be embedded in the 

file to simplify the maintaining of large overlay programs. 

A-27 





LINK-IO 

LINK-10 

LOADER and LINK-l.O Differences 

APPENDIX B 

LOADER AND LINK-10 DIFFERENCES 

This appendix is intended as an aid for users who have been employing 

the LOADER program and who are now converting to the LINK-10 program. 

Both programs are linking loaders. Both have the same basic functions 

of loading and relocating user's object code modules and resolving 

references among the modules. But LINK-10 is not just an updated 

version of LOADER. It is a completely new, more sophisticated, and 

more flexible piece of software. This appendix itemizes the 

differences between the two programs in order to facilitate conversion 

to LINK-10. 

LOADER 

The default output device is 
TTY. 

The default name of the MAP 
file is MAP.MAP. 

Command files are specified 
in the form 

* file @ 
The default extension of 
the command file is .TMP. 

Input and output specifications 
are separated by a back-arrow 
(+) • Thus, an output file 
is defined as being on the 

B-1 

LINK-lO 

The.default output device is 
DSK. 

The default name of the MAP 
file is the name of the last 
program. with a start address. 
If there is no program with a 
start address, the default name 
is nnnLNK.MAP, where nnn is 
the user's job number. 

Command files are specified 
in the form 

* @ file 
The default extension of 
the command file is .CCL. 

Input and output specifications 
may be separated by an equals 
sign (~), but this is not 
required. An output file is 



LINK-IO 

LINK-IO 

LOADER and LINK-IO Differences 

left side of the back-arrow. 

The only output file 
produced by LOADER is 
a map file. 

Exit conditions are /G, 
al trnode, and tZ. 

Line terminators 

-844-

(e.g. <carriage return, line feed» 
are treated in the same way 
as commas (i.e., they terminate the 
specification). File dependent 
switches remain in effect until 
overridden by a subsequent switch 
or until the end of the load. 
The most recently specified 
source device remains the default 
until a new device is specified 
or until the end of the load. 
Defaults carry across lines. 

To load local symbols for 
FILEl and FILE2 and 
then load DBT, the following 
sequence could be used: 

*/s 
*FILEl,FILE2 
*/W/D$ 

To search FILEA and FILEB 
in library search mode, the 
sequence: 

*/L 
* FILEA,FILEB 

B-2 

specified by g1v1ng a file 
specification followed by 
output switch. 

LINK-IO can be instructed 
to produce map, save, log, 
symbol, and XPN files. 

The only exit condition is 
/GO. 

LINK-IO has a line oriented 
scanner. All file-dependent 
switches are turned off at the 
end of the lin~ to which 

an 

they belong. The most recently 
specified source device remains 
the default until a new device 
is specified or until the,. end 
of a line is reached. Standard 
defaults are restored at the 
beginning of each line. In 
general, it is best to ~lace all 
the commands for loading a 
program on a single line. A 
hyphen is used as the line 
continuation character. 

To load local symbols for 
FILEI and FILE2 arid then 
to load DDT, the following 
sequence is used: 

*/LOCALS FILE1,FILE2, 
*/TEST /00 

Note that if the /LOCALS switch 
had appeared on.a line by 
itself, it would have had no 
effect. 

To search FILEA and FILEB 
in library search mode, the 
sequence is: 

*/SEARCH FILEA,FILEB 
The sequence 



LINK-lO 

LOADER and LINK-lO Differences 

could be used. 

When performing a search of 
the default libraries at the 
end of the load, LOADER 
makes one pass through all 
required libraries. In 
addition, LIB40 is always 
searched. 

The /D and /T switches 
load with local symbols. 
This mode remains in effect 
until it is turned off with 
the/W switch, and remains 
off until another switch 
which loads local symbols 
is given. 

-845-

*/SEARCH 
*FILEA,FILEB 

LINK-IO 

does not cause FILEA and FILEB 
to be searched. Instead, they 
are loaded in their entirety. 

LINK-lO performs multiple passes 
through all required libraries 
until no undefined symbols 
remain or until no additional 
routines have been loaded. In 
addition, LIB40 is not 
automatically searched unless it 
is required by an F40 program. 
Thus, when loading MACRO 
programs which utilize routines 
in LIB40, the user must 
explicitly request that LIB40 be 
searched. Also, JOBDAT.REL is 
not searched unless the 
/NOINITIAL switch is used. 
LINK-lO automatically 
initializes its global symbol 
table to include JOBDAT symbols. 

The /TEST and /DEBUG switches 
instruct LINK-lO to load all 
subsequent files with their 
local symbols. The /NOLOCAL 
switch can be used to suppress 
the loading of local symbols. 
However, since the /NOLOCAL 
switch is file dependent, it is 
cleared at the end of the line 
and load with local symbols mode 
is reinstated. 

The following table lists each LOADER switch and the LINK-lO switch 

which performs the nearest equivalent action. Note that there is not 

always a one-to-one correspondence between the action performed by the 

LOADER switch and by the LINK-lO switch. Refer to Chapter 4 of the 

LINK-IO Programmer's Reference Manual for the complete descriptions of 

the LINK-IO switches. 

B-3 



L1NK-IO 

LINK-lO 

LOADER and LINK-IO Differences 

LOADER 

/1,. 

/B 

/IB 

/z;innnB 

/C 

/0 

/E 

/F 

/IF 

/2F 

/G 

/nnnG 

/H 

/IH 

/nnnnH 

/-H 

/1 

/J 

InK 

/-K 

/L 

/M 

/IM 

-846-

LINK-lO 

/CONTENT:ZERO 

/SYMSEG:LOW 

/SYMSEG:HIGH 

/PATCHSIZE:nnnn 

No equivalent switch. LINK-IO does 
not support the old CHAIN facility. 

/TEST:DDT or /TEST:MACRO 

/EXECUTE 

/SYSLIB 

/FORSE 

/FOROTS 

/GO 

/START:nnn 

/SEGMENT:LOW 

/SEGMENT:HIGH 

/SET:.HIGH.:nnnn 

/SEGMENT:DEFAULT 

/NOSTART 

/START 

/RUNCOR:n 

No equivalent switch. Use /RUNCOR. 

/SEARCH 

/MAP:END 

/MAP:END/CONTENT:LOCALS 

B-4 



LINK-lO 

LOADER and LINK-lO Differences 

/N 

/nnnO 

/p 

/0 

/R 

/s 

/T 

/U 

/v 

I-v 
/W 

/X 

/Y 

/Z 

-847- LINK-IO 

/NOSEARCH 

/SET: • LOW • :nnn 

/NOSYSLIB 

/SYSLIB at the end of t.he command 
string. 

No equivalent switch. LINK-lO does 
not support the old CHAIN facility. 

/LOCALS 

/DEBUG:DDT or /DEBUG:MACRO 

/UNDEFINED 

/OTS:HIGH 

/OTS:LOW 

/NOLOCALS 

/CONTENT:NOZERO 

/REWIND 

/RUN:LINK 

B-S 





-849- LlNK-lO 

LINk-10 

Glossary 

GLOSSARY 

Absoiute Address 

A fixed location in user virtual address space which canriot be 

reiocated. For example, the high-speed accumulators on the 

DECsystem-10 occupy locations 0 through 17 (octal) in the user's 

virtual address space. All modules that reference the 

accumulators must reference these locations. Thus the addresses 

o through 17 (octal) are absolute addresses. 

Absolute Module 

A module whose location counters are set to absolute addresses 

only. 

Address Binding 

The assignment of virtual address space to the physical address 

space in computer memory. This is automatically performed by the 

DECsystem-10 monitor and is completely invisible to user 

programs. 

Assemble 

To prepare a machine-language module from a symbolic-language 

module by substituting the actual numeric operation codes for 

symbolic operation codes, and absolute or relocatable addresses 

for symbolic addresses. 

Glossary-l 



LINK-IO -850-

LINK-10 

Glossary 

Assembler 

A program which accepts symbolic assembly code and translates it 

into machine instructions. 

supplied by DEC. 

Base Address 

MACRO-10 is the standard assembler 

An address used as a basis for computing the value of some other 

address. This computation is usually of the form 

final address = base address (+ or -) offset. 

Clear 

To erase the contents of a location by replacing the contents 

with blanks or zeroes. 

COMMON Area 

A section in a program's address space which is set aside for 

common use by many modules. COMMON is usually set up by modules 

written in the FORTRAN language. It is used by 

independently-compiled modules to share the same data locations. 

Control Section 

A unit of code (instructions and/or data) that is considered an 

entity and that can be relocated separately at load time without 

destroying the logic of the program. Control is passed properly 

from one Control Section to another regardless of their relative 

positions in user virtual address space. A Control Section is 

Glossary-2 



LINK-10 

Glossary 

-851- LINK-I0 

identified by a relocation counter and thus is the smallest unit 

of code that can be relocated separately. 

Default Directory 

The directory in which the Monitor searches 

specification has not been given by the user. 

if a directory 

Typically, this is 

the UFO corresponding to the user's logged-in project-programmer 

number but it may another UFO or a SFD (sub-file directory). 

Directory 

A file which contains the names and pointers to other files on 

the device. The MFD, UFOs, and SFDs are directory files. The 

MFD is the directory containing all the UFOs. The UFO is the 

directory containing the files existing in a given 

project-programmer number area. The SFD is a direc~ory pointed 

to by a UFO or a higher-level SFD. The SF Os exist as files under 

the UFO. 

External Symbol 

A global symbol which is referenced in one module but defined in 

another module. The EXTERN· statement in MACRO-10 is used to 

declare ~ symbol external. A subroutine name referenced in a 

CALL statement in a FORTRAN module is automatically declared 

external. 

Glossary-3 



LINK-IO -852-

LINK-IO 

Glossary 

File 

An ordered collection of 36-bit words comprising computer 

instructions and/or data. A file is stored on a device, such as 

~isk or magnetic tape, and can be of any length, limited only by 

the avai~able space on the device and the user's maximum space 

allotment on that device. 

File Specification 

A list of identifiers which uniquely specify a particular file. 

A complete file specification consists of; the name of the device 

on which the file is stored, the name of the file including its 

extension, and the name of the directory in which the file is 

contained. 

FUDGE 2 

GET 

A system utility program used to update libraries containing one 

Qr more modules and to manipulate modules within these libraries. 

To transfer a saved program from a file on a device into core 

memory using a bootstrap program or the Monitor. The GET command 

places a program into memory. The RUN command performs the same 

operation and, in addition, starts the program. The GET 

~peration differs from the LOAD operation (refer to LOAD). 

Glossary-4 



-853-

LINK-IO 

Glossary 

GLOB 

A system utility program used to read libraries and to generate 

an alphabetical cross-referenced list of all the global symbols 

encountered. When a program is composed of 

communicate via global symbols, it is 

alphabetical list of all global symbols with 

many modules which 

useful to have an 

the names of the 

modules in which they are defined and referenced. 

Global Request 

A request to LINK-IO to link a global symbol to a module. 

Global Symbol 

A symbol that is accessible to modules other than the one in 

which it is defined. The value of a global symbol is placed in 

LINK-IO's global symbol table when the module containing the 

symbol definition is loaded. 

High Segment 

That portion of the user's addressing space, usually beginning at 

relative location 400000, which generally is used to contain pure 

code that can be shared by other users. This segment is usually 

write-protected in order to preserve the data. The user can 

place information into a high segment with the TWOSEG pseudo-op 

in MACRO-IO. Higher-level language, such as COBOL and FORTRN, 

also have provisions for loading pure code in the high segment. 

Glossary-5 



L1NK-IO -854-

LINK-10 

Glossary 

Initialize 

To set counters, switches, or addresses to zero or other starting 

values at prescribed points in the execution Qf a computer 

routine. 

Internal Symbol 

A global symbol located in the module in which it is defined. In 

a MACRO-10 program, a symbol is declared internal with the INTERN 

or ENTRY pseudo-op. These pseudo-ops generate a global 

definition which is used to satisfy all global requests for the 

symbol. In FORTRAN programs, internal symbols are generated ~o 

match the names of SUBROUTINEs, FUNTIqNS, apd ENTRYs. An 

internal symbol is similar to a libr~ry search symbol, however, 

it will not cause a module to be linked in search mode. 
, " 

Job Data Area (JOBDAT) 

Label 

The first 140 octal locations of a user's address space. This 

area p~ovides storage for certain data items used by bo~h the 

Monitor and the user's program. Refer to the DECs¥~t~-lO 

Monitor Calls Manual. 

A symbolic name used to identify a location in a program. 

Glossary-6 



LINK-IO 

Glossary 

Library 

-855- LINK-IO 

A relocatable binary file containing one or more modules which 

may be loaded in Library Search Mode. FUDGE2 is a system utility 

program which enables users to merge and edit a collection of 

relocatable binary modules into a library file. PIP can also be 

used to merge relocatable binary modules into a library, but it 

has no facilities for editing libraries. 

Liprary Search Mode 

The mode in which a module (one of many in a library.) is loaded 

only if one or more of its declared entry points satisfy an 

unresolved global request. 

Library Search Symbol (Entry Symbol) 

A list of symbols that are matched again!lt unresolved symbols in 

order to load the appropriate modules. This list is used only in 

library search mode. A library searqh symbol is defined by an 

ENTRY statement in .MACRO-IO and BLISS-IO and a SUBROUTINE, 

FUNCTION, or ENTRY statement, in FORTRAN. 

Linker 

A program that combines many input modules into a single module 

for loading purposes. Thus, it allows for independent 

compilations of -modules. Typically, it satisfies global 

references and may combine control sections. 

Glossary-7 



LINK-IO -856-

LINK-lO 

Glossary 

Link 

To combine independently-translated modules into one module in 

which all relocation of addresses has been performed relative to 

that module and all external references to symbols have been 

resolved based on the definition of internal symbols. 

Linking Loader 

Load 

A program that provides automatic loading, relocation, and 

linking of compiler and assembler generated object modules. 

To produce a core image and/or a saved file fro~ one or more 

relocatable binary files (REL files) by transforming relocatable 

addresses to absolute addresses. This operation is not to be 

confused with the GET operation, which initializes a core image 

from a saved file (refer to GET). 

Local Symbol 

A symbol known only to the module in which it is defined. 

Because it is not accessible to other modules, the same symbol 

name with different values can appear in more than one module. 

These modules can be loaded and executed together without 

conflict. Local symbols are primarily used when debugging 

modules 1 symbol conflicts between different modules are resolved 

by mechanisms in the debugging program. 

Glossary-B 



LINK-10 

Glossary 

Low Segment 

-857- UNK-IO 

The segment of user virtual address space beginning at zero. The 

length of the low segment is stored in location .JBREL of the Job 

Data Area. When writing two-segment programs,. it is advisable to 

place data locations and impure code in the low segment. 

Main Program 

The module containing the address at which object program 

execution normally begins. 

Module 

The smallest entity that can be loaded by LINK-10. It is 

composed of a collection of control sections. In MACRO-10, the 

code between the TITLE and END statements represents a module. 

In FORTRAN, the code between the first statement and the END 

statem~nt is a module. In COBOL, the code between the 

IDENTIFICATION DIVISION statement and the last statement is a 

module. 

Module Origin 

The first location in user virtual address space of the module. 

Object Module 

The primary output of an assembler or compiler, which can be 

linked with other object. modules and loaded into a runnable 

program. This output is composed of the relocatable machine 

Glossary-9 



LINK-IO -8S&-

LINK-10 

Glossary 

language code for the translated module (i.e., link items), 

relocation information, and the corresponding symbol table 

listing the definition and use of symbols within the module. 

Object Time System 

The collection of modules that supports the compiled code for a 

particular language. This collection usually includes I/O and 

trap-handling routines. 

Offset 

The number of locations relative to zero that a Control Section 

must be moved before it can be executed. 

Operating System 

The collection of modules that automatically permits continuous 

job processing by scheduling and controlling the operation of 

user and system programs, performing I/O, and allocating 

resources for efficient use of the hardware. 

Physical Address Space 

A set of memory locations where information can actually be 

stored (i.e., core memory) for the purpose of program execution. 

Program 

A collection of routines which have been linked and loaded to 

produce a saved file or a core image. These routines typically 

Glossary-10 



LINK-lO 

Glossary 

-859- LINK-IO 

consist of a main program and a set of subroutine which may have 

come from a library. 

Pure Code 

Code which is 

Therefore, it 

of a program. 

RELFile 

never modified in the process of execution. 

is possible to let many users share the same copy 

One or more relocatable object modules composed of link items 

(refer to Appendix A). 

Relocatable Address 

An address within a module which is specified as an offset from 

the first location in that module. 

Relocatable Control Section 

A control section whos addresses have been specified relative to 

zero. Thus, the control section can be placed into any area of 

core memory for execution. 

Relocation Counter 

The number assigned by LINK-lO as the beginning address of a 

Control Section. This number is assigned in the process of 

Glossary-ll 



LINK-IO -860-

LINK-lO 

Glossary 

loading specific Control Sections into a saved file or a core 

image and is transformed from a relocatable quantity to an 

absolute quantity. 

Relocation Factor 

The contents of the relocation counter for a control section. 

This number is added to every relocatable reference within the 

Control Section. The relocation factor is determined from the 

relocatable base address for the control section (usually 0 and 

400000) and the actual address in user virtual address space at 

which the module is being loaded. 

Routine 

A set of instructions and data for performing one or more 

specific functions. 

Segment 

An absolute Control Section. 

Source Language' Program 

The original, untranslated version of a program written in a 

higher-level language (e.g., FORTAN, COBOL, MACRO). Source 

programs, when translated, produce Object modules as their 

primary output. A program may exist as a source program, an 

object module, and a runnable core image. 

Glossary-l2 



LINK-lO 

Glossary 

Symbol 

-861- LINK-10 

Any identifier (composed of SIXBIT characters) used to represent 

a value that mayor may not be known at the time of its original 

use in a source language program. Symbols can appear in source 

language statements as labels, addresses, operators, and 

operands. 

Symbol Binding 

To resolve references in one module to symbols which are defined 

(i.e., are assigned a value) in another module. 

Symbol Table 

A table containing entrie for each symbol defined or used within 

a module. 

Translate 

To compile or assemble a source program into a machine language 

program, usually in the form of a (relocatable) object module. 

User Virtual Address Space 

A set of memory addresses within the range of 0 to 256K words. 

These addresses are mapped into physical core addresses by the 

paging or relocation-protection hardware when a program is 

executed. On a KAlO processor, the range of addresses is limited 

by the amount of physical core available to a given user. 

Glossary-13 



LlNK-lQ -86i-

LINK-lO 

Glossa~y 

User's Program 

All of the code running uder control of the Monitor in a user 

virtual address space of its own. 

Zero Length Module 

A module containing symbol definitions but no instruction or data 

words (e.g., JOBDAT). Note that the word "length" in this 

context refers to the program length of the module after ioading. 

Glossary-14 



_ -863-
OEC-10-COOE-O 

DDT-10 
PROGRAMMER'S REFERENCE MANUAL' 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



DDT -864-
1st Printing January 1968 
2nd Printing (Rev) April 1969 
3rd Printing (Rev) June 1969 
4th Printing (Rev) November 1969 
5th Printing (Rev) August 1970 

Copyright © 1968, 1969, 1970 by Digital Equipment Corporation 

The material in this manual is ,for informa­
tion purposes and is subject to change with­
out notice. 

The following are trademarks of Digital Equipment 
Corporation, Maynard, Massachusetts: 

DEC 
FLIP CHIP 
DIGITAL 

PDP 
FOCAL 
COMPUTER LAB 



-865- DDT 
CONTENTS 

Page 

CHAPTER 1 
INTRODUCTION 

1.1 Loading Procedure 869 

1.2 Learning to Use DDT 869 

CHAPTER 2 
BASIC DDT COMMANDS. 

2.1 Examining Storage Words 871 

2.2 Type-Out Modes 871 

2.3 Modifying Storage Words 872 

2.4 Type-In Modes 873 

2.5 Symbols 873 

2.6 Expressi ons 874 

2.7 Breakpoints 874 

2.7.1 Setting Breakpoints 875 

2.7 .2 Breakpoint Restrictions 875 

2.7.3 Breakpoint Type-Outs 875 

2.7.4 Removing and Reassigning Breakpoints 876 

2.7.5 Proceeding From a Breakpoint 876 

2.8 Starting the Program 876 

2.9 Deleting Typing Errors 876 

2.10 Error Messages 877 

2.11 Summary 877 

CHAPTER 3 
DDT COMMANDS 

3.1 Exami ni ng the Contents of a Program Storage Word 879 

3.2 Changing the Contents of a Word 880 

3.3 Inserting a Change, and Examining the Contents of 
the Last Typed Address 881 

3.4 Starting the Program 883 

3.5 One-Time Typeouts 883 

3.5.1 Type-Out Numeric 883 

3.5.2 Type-out Symbolic 883 

3.5.3 Type-Out in Current Mode 883 

iii 



DDT -866-
CONTENTS (Cont) 

Page 

3.6 Symbols 883 

3.7 Typing In 884 

3.7.1 Typing In Symbolic Instructions 885 

3.7.2 Typing In Numbers 885 

3.7.3 Typing In Text Characters 885 

3.7.4 Arithmetic Expressions 886 

3.8 Delete 886 

3.9 Error Messages 886 

3.10 Upper and Lower Case (Teletype Model 37) 'I 887 

CHAPTER 4 
MORE DDT-10 COMMANDS 

4.1 Changing the Output Radix 889 

4.2 Type-Out Modes 889 

4.2.1 Primary Type-out Modes 890 

4.3 Breakpoi nts 891 

4.3.1 Setting Breakpoints 891 

4.3.2 Removing Breakpoints 891 

4.3.3 Restrictions for Breakpoints 892 

4.3.4 Restarting After a Breakpoint Stop 892 

4.3.5 Automatic Restarts from Breakpoints 892 

4.3.6 Checking Breakpoint Status 893 

4.3.7 Conditional Breakpoints 893 

4.3.7.1 Using the Proceed Counter 894 r ... ", ,-.. 4.3.7.2 Using the Conditional Break Instruction 894 , 
.. ,~ ': . 

, " 

'< ." 
4.3.8 Entering DDT from a Breakpoint 895 

4.4 Searches 895 

4.5 Miscellaneous Commands 897 

CHAPTER 5 
SYMBOLS AND DDT ASSEMBLY 

5.1 Defining Symbols 899 

5.2 Deleting Symbols 900 

5.3 DDT Assembly 900 

iv 



.-867- DDT 
CONTENTS (Cont) 

-1 
Page 

5.4 Field Separators 901 

5.5 Expression Evaluation 902 

5.6 Special Symbols 902 

5.6.1 Order of Symbol Table Search 902 

5.6.2 Order of Symbol Table Search for Symbol Education 903 

5.7 Special Symbols 903 

5.8 Binary Value Interpretation 903 

CHAPTER 6 
PAPER TAPE 

6.1 Paper Tape Control 905 

APPENDIX A 
SUMMARY OF DDT FUNCTIONS 

A.1 Type-out Modes 907 

A.2 Address Modes 907 

A.3 Radix Change 907 

A.4 Prevailing vs. Temporary Modes 907 

A.5 Storage Words 908 

A.6 Related Storage Word 90S 

A;7 ,one-Time Only Typeouts 909 

A.S Typing In 909 

A.9 Symbols 910 

A.10 Special DDT Symbols 910 

A.11 Arithmetic Operators 911 

A.12 Field Delimiters in Symbolic Type-Ins 911 

A.13 Breakpoints 911 

A.14 Conditional Breakpoints 912 

A.15 Starting the Program 912 

A.16 Searching 912 

A.17 Unused Functions 913 

A.1S Zeroi ng Memory 913 

A.19 Special Characters 913 

A.20 Paper Tape Commands 914 

v 



DDT -868-
CONTENTS (Cont) 

Page 

APPENDIX B 
EXECUTIVE MODE DEBUGGING (EDDT) 915 

APPENDIX C 
STORAGE MAP FOR USER MODE DDT 917 

APPENDIX 0 
OPERATING ENVIRONMENT 

0.1 Entering and Leaving DDT 919 

0.2 Loading and Saving DDT 920 

0.3 Explanation 921 

ILLUSTRA TIO Ns 

6-1 RIM 1 OB Block Format 906 

TABLES 

3-1 Special Character Functions 882 

:", ,', 

vi 



-869-
CHAPTER 1 

INTRODUCTION 

DDT 

qDT-l0 (for Dynamic DFbugging Technique)* is used for on-line checkout and testing of 

MACRO-l0 and FORTRAN programs arid on-line program composition in all PDP-l0 software systems. 

After the user's source program has been assembled or compiled, the user's binary object 

program (with its symbol table) may be loaded along with DDT. DDT occupies about 2K of core. 

By typing commands to DDT, the user may set breakpoints where DDT will suspend execution 

of his program and await further commands. This allows the user to check out his program section by 

section. Either before starting execution or during breakpoint stops, the user may examine and modify 

the contents of any location. Insertions and deletions may be done in symbolic source language or in 

various numeric and text modes at the user's option. DDT also performs searches, gives conditional 

dumps, and calls user-coded debugging subroutines at breakpoints. 

Symbolic on-line debugging with DDT provides a means for rapid checkout of new programs. 

If a bug is detected, the programmer makes changes quickly and easily and may then immediately exe­

cute the corrected section of his program. 

1.1 LOADING PROCEDURE 

The user loads the program to be debugged and DDT with the linking Loader. (The /D 
switch commands the Loader to load DDT.) To transfer control to DDT, the user types the monitor 

command, 

DDT ~ 

After DDT responds by skipping two lines, the user may begin typing commands to DDT. 

1.2 LEARNING TO USE DDT 

This manual is designed to make DDT easy to use. A survey was made of several program­

mers who use DDT frequently, and it was learned that most debugging is done with a limited set of 

commands. These basic commands are described in the next chapter. When learning DDT, it is re­

commended that the reader concentrate on learning to use the commands in Chapter 2. If more de­

tailed information is required, skip ahead to later chapters. 

1-1 



DDT -870-

After reading Chapter 2, practice debugging, using the basic commands. This may be all 

that will ever be needed. Read the following chapters which describe the entire·command set in detail; 

this should be read when the basic commands are understood. 

After leami~g the system, the Summary of Commands, listed by function in Appendix A, will 

be useful for quickly finding any DDT command. 

1-2 



-871- DDT 

CHAPTER 2 

BASIC DDT COMMANDS 

The DDT commands most frequently used by programm s are described in this chapter. Many 

programs are debugged successfully using only these basic commands. 

This chapter introduces the main features of DDT to the uninitiated user. Later chapters 

describe in detail these basic commands, less frequently used commands and other more complex options. 

2.1 EXAMINING STORAGE WORDS 

By using DDT, a programmer may examine the contents of any storage word by typing the 

address of the desired word followed immediately by a slash (/). For example, to type out the con­

tents of a location whose symbolic address is CAT, the user types, 

CATI 

DDT now types out rhe contents (preceded and followed by tabs) on the same line 1• 

CATI MOVEM AC~DOG+21 

The word labeled CAT is now considered to be opened, and DDT has set its location pointer 

to point to this address. 

2.2 TYPE-OUT MODES 

The preceding example showed DDT typing out the contents of location CAT as a symbolic 

instruction with its address field also relative to a symbol. This is the type-out mode in which DDT is 

initialized. It is also initialized to type all numbers in the octal radix. The user may ask DDT to re­

type the preceding quantity as a number in the current radix by typing an equal sign (=). For example2, 

CATI MOVEM AC~DOG+21 = 202400~~6736 

DDT has numerous commands which reset the type-out mode permanently, temporarily, or 

for only one typeout. The modes that can be selected include numeric constants, floating point numbers, 

ASCII and SIXBIT text modes, and half-word format. Absolute or relative addressing and different 

radixes may similarly be selected. For example, to change the current type-out mode to ASCII text, 
3 

the user types the command 

$T 

lIn this manual information typed out by DDT is underlined to distinguish DDT output 
2from user-typed input. 
The two commas indicate that 202400 is in the left half of CAT, and 6736 is in the 

3right half. 
The Teletype keys ALTMODE (ALT), PREFIX (PREAX), or ESCAPE (ESC) eire all 
equivalent and echo as $. 

2-1 



DDT -872-

or, to change the current type-out mode to half-word format, he types 

$H 

or, to select decimal numbers in his typeouts, he types 

$10R 

Using these commands (and others described in Chapter 3), a programmer may examine any 

location in the mode most appropriate to the information stored there. A semicolon (;) commands 

DDT to retype the preceding quantity in the current mode. Combining this command with a mode 

change giv~s results such as the following: 

CATI MOVEM AC~DOG+21 $10R; MOVEM AC~DOG+l1 

or CATI MOVEM AC~DOG+21 $H; 202400 .. ~DOG+21 

or TEXTI ANDM 1 .. 342212(10) $T; ABCDE 

2.3 MODIFYING STORAGE WORDS 

Once a word has been opened, its contents may be changed by typing the desired new con­

tents immediately following the typeout produced by DDT. A carriage return will command DDT to 

make the indicated modification and close the word. For example, 

CATI MOVEM AC~DOG+21 MOVNM AC2 .. DOG+21 j 

The carriage return simply closes the previously examined register without opening another 1 

The line feed (') may also be used to close a word after examining (and optionally modifying) it. The 

line feed commands DDT to (1) echo a carriage return, (2) close the current word (making a modi­

fication if one was typed), (3) add one to DDT's location pointer, and (4) type out the new pointer 

value and the contents of that address. Thus, if a line feed had been used in the previous example, 

the result would be: 

CATI MOVEM AC .. DOG+21 MOVNM AC2~DOG+2I+ 

CAT+ll AOBJN XR6~LOOPS 

location CAT+1 is now open and may be modified if desired. 

The vertical arrow (t ) is similar to the line feed command except that the location counter 

is decremented by one. Therefore, if the user continued the previous example by typing t the result 

would be 

CAT+ll AOBJN XR6 .. LOOPSt 

CATI MOVNM AC2~DOG+21 

1The carriage return command has the odditional property of causing temporary 
type-out modes to revert to permanent mode. 

2-2 



I 

-873- DDT 

Location CAT is thus displayed and shows the result of the modification made in the previous 

example. 

The tab ( -l) and backslash (\) both ·close the current registe~ and open the address last 

typed (whether typed by DDT or the user). However, tab sets DDT's location pointer ( • ) to this new 

address while backslash leaves it unaltered. A more complex example may clarify the usefulness of 

these commands. 

CAT+ll AOBJN XR6'LOOP5~· 

LOOP51 

LOOP5+ll 

CAMGE AC2,TABL(XR6> CAMG AC2,TABL+l(XR6>\ SETZI 0=40l000,,0~ 

JUMPL AC3,FAULT JUMPL AC2,FAULT--! 

FAULT I JRST 4,FAULT 

2.4 TYPE-IN MODES 

The examples in the preceding section showed modifications made as symbolic instructions in 

a form identical to MACRO-lO machine language. It is also poSsible to enter various numbers and 

forms of text. 

Octal values may be typed in as octal integers with no decimal point. To be interpreted as a 

decimal number, an integer must be followed by a decimal point. Numeric strings with numbers follow­

ing the decimal point imply decimal floating-point numbers. The E-notation may also be used on 

floating-point numbers. Some examples are: 

Octal: 1234 77m7777777 -6 

Decimal integers: 6789. 99999999. -25. 

Floating-point numbers: 78.1 0.249876E-10 -4.00E+20 

Incorrect formats: 76E+2 76.E+2 (instead wrrte 76.0E+2) 

o 
O. 

0.0 

To enter ASCII text (up to five characters, left justified in a word); type a double quote ( ") 

followed by any printing character to serve as a delimiter, then type the one to flveASCII characters 

and repeat the delimiter. For example: 

OO/ABCDEI 

"ABCDA 

(/ is the delimiter) 

(A is the delimiter) 

Note that the mode of a quantity typed in is determined by the user's input format and is 

unaffected by any type-out mode settings. 

2.5 SYMBOLS 

The user's symbol tables are loaded by the Linking Loader when it loads programs and DDT. 

However, initially DDT is set to treat only global symbols (created by INTERNAL and ENTRY pseudo­

ops in MACRO-10) as being defined. This means that only globol symbols will be used for relative 

Version 34 DDT 2-3 June 1973 



DDT -874-
address typeoutsand, likewise, only these globals can be referenced when typing in symbolic modifica­

tions. In order to make the local symbols within a particular program available to DDT, the user types 

the program name (this comes from the MACRO-lO TITLE statement or the FORTRAN IV SUBROUTINE or 

FUNCTION statement) followed by AlTMODE and a colon ($:). For example, the command 

ARCTAN$ : 

will unlock the local symbols in the program named ARCTAN. This provision in DDT permits the user to 

debug several related subroutines simultaneously and reference the local symbol table of each indepen­

dently without fear of multiply-defined local symbols. If the user's program is not titled, the command 

MAIN .$: will unlock the local symbol table. 

NOTE 

DDT is not quite so stringent on the use of local sym­
bols as indicated above (see Section 5.6). However, 
the user is advised to unlock symbols with $: until he 
is fairly familiar with DDT. 

The user may also insert symbols into the symbol table. To insert a symbol with a particular 

value, type the value, followed by a left angle bracket «), the symbol, and a colon (:). Some exam-

pies are 707 <CONS :27 <5: 12.1E+<NUMB: ADR+12<ADRX: 

To assign a symbol with a value equal to DDT's location pointer, simply type the symbol fol­

lowed by a colon. For example, 

XREf+41 JRST @ TABL(3) BRNCH: 

will cause BRNCH to be defined with the value XFER+4. 

2.6 EXPRESSIONS 

DDT permits the user to combine symbols and numeric quantities into expressions by using the 

following characters to indicate arithmetic operators. 

+ The plus sign. indicates .2's complement addition 

The minus sign indicates 2's complement subtraction 

* The asterisk indicates integer multiplication 

The single quote or apostrophe indicates integer division (remainder discarded)-­
slash cannot be used to indicate division since it has another use in DDT. 

As usual in arithmetic expressions, the evaluation proceeds from left to right wtth multiplica­

tion and division performed before addition and subtraction. 

2.7 BREAKPOINTS 

The breakpoint facility in DDT provides a means of suspending program operation at any de­

sired point to examine partial results and thus debug a program section by section. The simpler facts 

2-4 



-875- DDT 

about breakpoints are presented next; the use and control of conditional breakpoints is deferred to Para­

graph 4.2. 

2.7.1 Setting Breakpoints 

The programmer can automatically stop his program at strategic points by setting as many as 

eight breakpoints. Breakpoints may be set before the debugging run is started, or during another break­

poi nt stop. To set a breakpoi nt, the programmer types the symbolic or absol ute address of the word at 

the location point in which he wants the program to stop, followed by $B. For example, to stop when 

location 6004 is reached, he types, 

6004$8 

Breakpoint numbers are normally assigned by DDT in sequence from 1 to 8. The user may in­

stead assign breakpoint numbers himself when he sets a breakpoint by typing, 

$N8 

when n is the breakpoint number (1~n~8), for example, 

CAT+3$48 00G+l$78 6004$88 

When the programmer sets up a breakpoint he may request that the contents of a specified 

word be typed out when the breakpoint is reached. To do this, the address of the word to be examined 

is inserted, followed by two commas, before the breakpoint address. Some examples are 

00G~~CAT$38 AC1~~LOOP+2$8 X~~6004$8B 

2.7.2 Breakpoi nt Restri cti ons 

The locations where breakpoints are set may not 

a. be modified by the program 
b. be used as data or literals 
c. be used as part of an indirect addressing chain 
d. contain the user mode monitor command INIT 
e. be accumulator o. 

2.7.3 Breakpoint Type-Outs 

When the breakpoint location is reached, DDT suspends program execution without executing 

the instruction at the breakpoint location. DDT then types the breakpoint number and the Program 

Counter value at the time the breakpoint is reached (this value will differ from the typed-in breakpoint 

address if the breakpoint is executed by an XCT instruction elsewhere in the program). The format of ' 

this typeout is as shown in the following examples: 

$48 » CAT+3 $78 » OOG+l $88 » 6004 

If the user requested that a specified address be examined at that breakpoint, it will be 

opened; for example, 

$38 » CAT DOGI SOJGE 3#GOAT+6 

2-5 



DDT 
2.7.4 

-876-

Removing and Reassigning Breakpoints 

The user may remove a breakpoint by typing, 

0$N8 

where n is the number of the breakpoint to be removed. For example, 

0$28 

removes the second breakpoint. All assigned breakpoints are removed by typing 

$8 

The user may reassign a breakpoint without formally removing it. Thus, if he has set breakpoint No.2 

at location ADR (via the command ADR$2B) he may reassign No.2 to LOC+6 by typing LOC+6$2B. 

2.7.5 Proceeding From a Breakpoint 

Program execution may be resumed (in sequence) following a breakpoint stop by typing the 

proceed command, $P. 

If the user does not wish to stop until the nth time that this breakpoint is encountered he 

types, 

N$P 

Then this breakpoint will be possed n-1 times before a break occurs. 

2.8 STARTING THE PROGRAM 

The program is started by typi ng 

$G 

This starts the program at the previously specified starting address in location JOBSA. (Typically this 

is the address from the MACRO-10 END statement.) The programmer may start at any other location 

by typing that address followed by $G. For example, 

4000$G 

starts the program at the instruction stored at location 4000. BEGIN$G starts the program at the sym­

bolic location BEGIN .. 

. The start command may also be used to restart from a breakpoint stop when it is not d~ired 

to continue in sequence from the point where program execution was suspended. 

2.9 DELETING TYPING ERRORS 

Any partially typed command may be deleted by pressing the RUB OUT key. This causes 

DDT to ignore any preceding (unexecuted) partial comm(Jnd, and DDT types XXX. The correct com­

mand may then be retyped. 

2-6 



-877- DDT 
2.10 ERROR MESSAGES 

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back. 

If an illegal DDT command is typed, or a location qutside the user's assigned memory area is referenced 

? is typed back. 

2. 11 SUMMARY 

As was said in the beginning, these basic commands are sufficient for debugging many 

programs. Complete descriptions of all DDT commands are explained in the following chapters. 

2-7 





-879-

CHAPTER 3 

DDT COMMANDS 

DDT 

When DDT is initialized, it is set to type out in the symbolic instruction format with relative 

addr~sses, and to type out numbers in octal radix. 

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD 

To type out the contents of a storage word, the programmer types the address, followed imme­

diately by a slash (/). For example, to examine the contents of a word whose symbolic address is ADR, 

the user types, 

ADRI 

DDT types out the contents on the same line. In this manual, information typed out by DDT is under­

lined. 

ADRI MOVE A .. CCI 

The word labeled ADR is now considered to be opened, and DDT continues to point to this address. 

The point, or period, character (.) represents DDT's location pointer, and may be used to type out its 

contents, as in the following command. 

of MOVE A .. CC 1 

Since we did not change the contents, they are the same, but we used the location pointer to re­

examine the currently opened word. Similarly, the programmer may use the period (.) as an arithmetic 

expression component, such as 

.+51 SOJGE 2 .. ADR+3 

DDT's location pointer is set to a new value by the / command when immediately preceded by an ad­

dress. For example, 

2011 J!.. 

sets the location pointer to 201. If the user types / without typing an address, the contents of the loca­

tion addressed in the last typeout are typed. 

6671 MOVE 1 .. 6 1 0 

.1 MOVE I .. 6 

Location 667 contains the instruction MOVE 1,6. The second slash displays the contents of Accumu­

lator 6, which is zero. This does not change the location pointer, which is still pointing to location 667. 

ADRI MOVE A .. CCI 1 ADD 2 .. SUM+1 

It should also be noted that the spaces, which occur after DDT completes the typing of the con­

tents of ADR, are automatically produced by DDT, not the user. 

3-1 



DDT -880-

The left square bracket (01 has the same effect as the slash, (the address immediately 

preceding the [will be opened). However, [forces the typeout to be in numbers of the current radix. 

ADR [ 11 < OCTAL) 

ADRl 9. (DECIMAL) 

The right bracket (]) 1 has the same effect as the 'slash except that it forces the typeout to be in sym­

bolic instructions. 

ADR+23 J MOVE 15,LIST+2 

The exclamation point (I) works like the slash except that it suppresses type out of contents 

of locations until either I, [, or] is typed by the user. The LINE FEED (l) commands DDT to type 

out the contents of ADR+ 1 • 

ADR! MOVE AC,555t (1) 

ADR+11 J 

ADRI MOVE AC,555 

(2 ) 

<3 ) 

Thus, in step (1) of the example the contents of ADR are not typed out, but the address is opened to 

modification and MOVE AC,555 has been typed in by the user. 

Step (2) of the example shows that the location pointer has been incremented by one and the 

contents of ADR+l are not typed out. This is because the exclamation point is still in effect and will 

continue to take effect until I, [, or] is typed in by the user. In this case, the slash terminates the 

effect of the exclamation point. 

Step (3) shows that the modification (MOVE AC,555) of ADR typed in Step (1) has been 

accomplished. 

3.2 CHANGING THE CONTENTS OF A WORD 

After a word is opened, its contents can be changed by typing the new contents following 

the type out by DDT, followed by a carriage return. For example, 

ADR/. MOVE A .. CG 1 MOVE A .. CC2), 

The carriage return closes the open word, but does not move the location pointer. A LINE FEED (l) 

command could also be used to make this modification. A LINE FEED causes a carriage return, adds 

IOn Teletype Models 33 and 35 the left square bracket (0 is produced by holding the SHIFT key down 
and striking the K key. The right square bracket (]), is produced by holding the SHIFT key down and 
striking the M key. 

3-2 



-881- DDT 
one to DDT's location counter (moves the pointer), types out the resulting address and the contents of 

the new address. Thus, if we conclude our last example with a LINE FEED 

ADRI MOVE A#CCI MOVE A#CC2' 

AOR+11 ADD 3#CC3 

ADR+l is now open, and may be modified by the user. 

the vertical arrow (t)1 works similariy , except that one is subtracted from the location 

pointer. The open word is closed (modified if ~ change is given) and the new address and con!ents are 

typed out. 

ADR+11 

ADRI 

ADD 3#CC3t 

MOVE A#CC2 

Since the vertical arrow subtracts one from the pointer, the resulting address is ADR, and 

the contents now show the change made in the previous example. 

3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF THE LAST TYPED 
ADDRESS 

The horizontal tab (-I) causes a carriage-return line feed, then sets the location pointer to 

the last address typed (the new address if a modification was made) of the instruction in the register 

just closed. Then DDT types this "lew address, followed by a slash and the contents of that location, 

as shown below. 

ADRSI JRST ADR 1 JRST ADR-I 

ADRI 

CC21 

MOVEM B#CC2 ...j 

666 

The backslash (\:J2 opens the word at the last address typed and types out the contents. 

However, backslash does not change the location pointer. The backslash closes the previously opened 

word c:ind cal,lses it to be modified if a new quantity has been typed in. 

~DR/. MOVE A#CC2 JRST X\ MOVE AC#3 

The use of the backslash accomplishes two things. First it changes ADR by replacing i.ts contents with 

JRST X. Second, the backslash ca!Jses DDT to type out the contents of X, namely, MOVE AC,3. The 

location pointer continues to point to ADR, but now location X is,open and may be modified if desired. 

1 t is produced by SHIFT-N on Teletype Models 33 and 35. The backspace key may be used instead of 
t on Teletype Model 37. 

2\is produced by SHIFT-L on Teletype Models 33 and 35. 

3-3 



DDT -882-
If the line-feed control character and the vertical arrow were used in conjunction with the 

backs I ash, the resu Its wou Id be as follows. 

ADRI MOVEM BICC2> MOVE AICC1\ 105776 ~ 

ADR+l1 MOVE AIC t 
ADRI MOVE AICCI \ 105776 

The following is a summary in table form of these special control characters and their cor­

responding functions. For example, the chart shows that the forward slash (/) will examine the con­

tents of an address, type out in the current mode, open the address, change the location pointer to the 

address just opened, but it does not cause a new quantity to be inserted in that address. 

Table 3-1 
Special Character Functions 

Change Insert New 
Command Type Out 

Mode 
Address Location Qty If New 

Character Contents Opened 
Pointer 

Qty Has Been 
Typed 

/ Yes Current 

} Ye, 
[ Yes Numeric 

Yes 
1 

No 
] Yes Symbolic 

I No None 

\ Yes 
2 

Current Yes No Yes 

TAB (-I) Yes 
2 

Current Yes Yes Yes 

t or backspace Yes2 Current Yes Yes (.-1) Yes 

line-feed (l) Yes2 Current Yes Yes (.+1) Yes 

Carriage No None No No Yes 
return () (closes) 

A ? typed by DDT when examining a location indicates that the address of the location is 

outside the user's assigned memory area. A? typed when depositing indicates that the location cannot 

be wdttEln in, because it is either outside the assigned memory area or inside a write-protected memory 

segment. 

~If a user-typed quantity preceded. 
If I has not suppressed typeout. 

3-4 



3.4 STARTING THE PROGRAM 

. The program is started by typing 

$G 

-883- DDT 

This starts the program with the instruction beginning at the user's previously specified starting address 

taken from location JOBSA. The programmer may start at any other instruction by typing the address of 

that instruction followed by $G. For example, 

4000$G OR ADR+S$G 

starts the program at the instruction stored at location 4000 or, in the second part, at the symbolic 

address ADR+5. The start command may also be used to restart from breakpoints when the uSer does not 

wish to proceed to the next instruction. 

3.5 ONE-TIME TYPEOUTS 

These commands cause a single typeout of the opened word in the mode indicated. 

3.5.1 Type Out Numeric 

Although DDT is initialized to type out in symbolic mode, it is often useful to change to 

numeric typeout. When the programmer types the equal sign (=), the last expression typed is retyped by 

DDT in the current radix (initially octal). This is useful when a symbolic typeout is meaningless. Since 

this usually indicates that numeric data is stored in that word, the user can verify this by typing = and 

checking the value. 

3.5.2 Type Out Symbolic 

If a typeout is numeric! and the user wants to examine it in symboli~ mode, he types the left 

arrow (+). The last typed quantity is retyped as a symbolic instruction. The address mode is determined 

by $A or $R. 

3.5.3 Type Out in Current Mode 

To retype a typeout in the current mode, the user types a semicolon (;). This may be used} 

for example, if the user has changed the typeout mode; For example, 

TEXTI ANDM 1#342212 (10) $T; ABCDE 

3.6 SYMBOLS 

Before DDT commands can be used to reference local symbols in the program Symbol Table, the 

user should type the program name as specified in the MACRO-lO TITLE statement, or the FORTRAN IV 

3-5 



DDT -884-
SUBROUTINE or FUNCTION statement, followed by an AlTMODE and a colon. For example, 

MA IN$: 

makes the local symbols in the program called MAIN available. Since the user can.debug several re­

lated subroutines simultaneously, reference to several independent symbol tables is permitted, each of 

which may use the same local symbols with differenl values. DDT allows the user to reference unique 

local symbols in other programs without respecifying the program name with $: (see Section 5.6.2). 

However, to access p local symbol that is used in several programs, the user must specify the program 

name to remove the ambiguity. Global symbols, such as those specified in MACRO-IO INTERNAL 

statements, may always be referenced. 

The user may insert (or redefine) a symbol in the symbol table by typing the symbol, followed 

by a colon. The symbol will have a value equal to the address of the location pointer (.). 

XI ADD1 3~N TAG: 

causes TAG to be defined with the same value as X, All user defined symbols are global. 

The user may also directly assign a value to a symbol by typing the value, a left angle 

bracket «) and the symbol, terminated by a colon. This is the equivalent of a MACRO-10 direct as­

signment statement. Some examples are, 

707<CONS: 12.1E+2<NUM8: 
27<X: 101<MIL: 

3.7 TYPING IN 

To change or modify the contents of a word, the user may type symbolic instructions, num­

bers, and text characters. Type-ins are interpreted by DDT in context. That is, DDT tests the data typed 

in to determine whether it is to be interpreted as an instruction, a number (octal or decimal), or text. 

Typeout mode settings, such as $S, $C, and $nR, do not affect typed input. 

The user may type the following: 

a. Symbolic Instructions 

b. Numbers 

(l) Octal integers 
(2) Fixed-point decimal integers 
(3) Floating-point decimal mixed numbers 

c. Text 

(I) Up to five PDP-10 ASCII characters, left justified in a word 
(2) Up to six SIXBIT characters, left justified in a word 
(3) A single PDP-IO ASCII character, right justified in a word 
(4) A single SIXBIT character, right justified in a word 

d. Symbols 

Anything that is not a number or text is interpreted by DDT as a symbol. 

3-6 



-885- DDT 

3.7.t Typing In Symbolic Instructions 

In general, a symbolic instructiQn is written for insertion by DDT, in the same way the in:­

struction is written os a MACRO-tO source program statement. For e>e;ample, 

XI ~ ADD AC1,DATE 

where a space terminates the operation field, and a comma terminates the accumulator field. For 

example: (1) In DDT, the operation code determines the interpretation of the accumulator field. If 

an I/O instruction is used, DDT inserts the I/O device number in the correct place, and (2) indirect 

and indexed addresses are written, as in MACRO-tO statements, where @ precedes the address to set 

the indirect bit, and the index register specified follows in parentheses. 

X/0 ADD 4,@NUM(17) 

To type in two tS-bit halfwords, the left and right expressions are separated by two commas. 

For example, 

XI 0 A"B 

This is similar to the MACRO-tO statement 

XWD A,B 

3.7.2 Typing In Numbers 

A typed-in number is interpreted by DDT as octal if it does not contain a decimal point. 

The following examples are octal type-ins: 

1234 -10101 

772 777777777777 

Fixed-point decimal integers must contain a decimal point with no digits following. 

1234. -99. 877. 

Floating-point numbers may be written in two formats. With a decimal point and a digit following the 

decimal point: 

101.1 1234.5· 999.0 -2 .• 71828 

Or as in MACRO.;.tO, with E indicating exponentiation: 

12.0E+2 77.0E+5 12.34E2 31.4159E-l 

3.7.3 Typing In Text Characters 

To type in up to five poP-to ASCII characters, left justified in an opened word, the user 

types a quotati6n mark, followed by any printing delimiting character, then the text characters, and 

terminated by the delimiting character. The following examples are legal: 

"/TEXTI "ABCDEI'A 

3-7 

In these cases, / and A are 
the delimiting characters 



DDT -886-
To type in up to six SIX BIT characters, left justified in an opened word, the user types ALTMODE quo­

tation mark ($"), followed by any delimiting character, then the text characters, and terminated by re­

peating the delimiting character. Lower case letters are converted to upper case. Characters outside 

the SIXBIT set are illegal, and DDT types a question mark. The two examples below are SIXBIT type ins • 

$"/DIVIDE/ $"EXXXXXXE 

To type in a single PDP-lO ASCII character, right justified in an opened word, the user types 

a quotation mark, followed by a single ASCII text character, then by an ALTMODE. 

:"Q$ "/$ "?$ 

To type in a single SIXBIT character, right justified in an opened word, the user types an 

ALTMODE, followed by a quotation mark, a single SIXBIT text character and terminated by an ALT­

MODE. 
$"Q$ $"M$ $"$$ 

3.7.4 Arithmetic Expressions 

Numbers and symbols may be combined into expressions using the following characters to in-

di cate arithmeti c operati ons. 

+ The plus sign means 2's complement integer addition. 

- The minus sign means 2's complement integer subtraction. 

* The asterisk means integer multiplication. 

The single quote means integer division with any remainder discarded. (The slash has 
another functi on • ) 

Symbols and numbers are combined by +, -, *, 'to form expressions. Examples: 

3.8 DELETE ---

6+2 
S'2.51+8ASE 
2*3+1 

Any partially typed command may be deleted by pressing the RUB OUT or DELete key. This 

causes DDT to ignore any preceding (unexecuted) partial command and DDT types XXX. The correct 

command may then be retyped. 

3.9 ERROR MESSAGES 

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back. 

If an illegal DDT command is typed, ? is typed back. Examining or depositing into a location outside 

the user's assigned memory area causes DDT to type a ? Depositing in a write-protected high memory 

segment also results in a ? typeout. 

3-8 



-887- DDT 

3.10 UPPER AND LOWER CASE (TELETYPE MODEL 37) 

DDT will accE:pf alphabetic input in either upper or lower cas~. Lower case letters !;Ire in­

ternally converted t9 upper case, except when inputting text where they are taken literally as explained 

in Section 3.7.3. 

DDT output is in upper case, except for text which is taken literally. 

3-9 





-889- DDT 

CHAPTER 4 

MORE DDT-IO COMMANDS 

This chapter describes other type-out modes, conditional breakpoints, searches and addition­

al features. Commands are available to change modes from the initial settings so that numeric data can 

be typed out in a radix chosen by the user, in floating-point format, in RADIX50 format, as halfwords 

(two addresses) and as bytes of any size. The contents of a storage word may also be typed out as 7-bit 

PDP-lO ASCII text, or SIXBIT text characters. (See MACRO-lO Manual, Appendix E.) 

Searches can be made in any part of the program for any word, not-word (inequality), or ef­

fective address. The user specifies the instruction or data to be searched for and the limits of the 

search. 

Breakpoints can be set conditionally, so that a program stop occurs if the condition is satis­

fied. In addition, a counter can be set up allowing the user to specify the number of times a breakpoint 

is passed before a program stop occurs. 

4.1 CHANGING THE OUTPUT RADIX 

Any radix (~2) may be set by typing $nR, wheren is the radix for the next typeout only, and 

n is interpreted by DDT as a decimal value. The radix is permanently changed when the double ALT­

MODE is used in the command $$nR. To change the type-out radix permanently to decimal, the user 

types, 

$$10R 

When the output radix is decimal, DDT follows all numbers with a point. 

4.2 TYPE-OUT MODES 

When DDT-IO is loaded, the type-out modes are initialized to produce symbolic instructions 

with addresses relative to symbolic locations. For numeric typeouts, the radix is initially set to octal. 

These modes may be changed by the user. The durati on, or lasting effect of a type-out mode 

change is also set by the user. Prevailing modes, which are semipermanent, are preceded by two ALT­

MODEs. Temporary modes are preceded by a single ALTMODE. In addition, some mode changes ef­

fect only one typeout, such as the equal sign, which causes DDT to retype the last typed quantity in 

numeric mode. 

In general, prevailingmodes are changed by replacing them with another prevailing mode or 

by reinitializing the system. Temporary modes remain in effect until the user types a carriage return 

() ), or re-enters DDT. One-time modes apply only to a single typeout. 

4-1 



DDT 
4.2.1 Primary Type-out Modes 

$S (OR $$S) 

$A (OR $$A) 

$R (OR $$R) 

$C (OR SSC) 

SF' (OR SSF') 

$T (OR SST) 

$6T (OR $$6T> 

$5T (OR $$5T) 

SH (OR S$H) 

$NO (OR $$NO) 

-890-

Type out symbolic instructions. The address part interpretation 
is set by $R or $A. 

$S ADRI ADD AC1#TABLE+3 

Type out the address parts of symbolic instructions, and both 
addresses when the .mode is halfword, as absolute numbers in the 
current radfx. 

SA ADRI ADD 4002 

Type out addresses as relative addresses. 

Type out constants, i.e., as numbers in the current radix. 

$C ABLEI 254111##4050 

If the output radix is octal and the left half is not 0, the word 
will be divided into halves separated by commas. 

Type out the contents of storage words as floating-point numbers. 

$F' X/ 0.17516230E-45 

Unnormalized numbers are typed out as signed decimal integers. 

Type out as 7-bit ASCII text characters. left-justified charac­
ters are assumed unless the leftmost character is null. If the 
leftmost character is null, then right-justified characters are 
assumed. 

$T REX/ABCDE 

Type out as SIXBIT text characters. 

$6T HEX/ ABCDEF' 

Type out symbols in radix 50 mode. (See MACRO-10 Manual, 
Appendix 6.) 

$5T 13774/ 4 CREF' • 40003##261550 

This command causes the typeout to be in halfwords, the left 
half separated from the right half by double commas. The ad­
dress mode interpretation is determined by $R or$A. 

$A $H Z/ 4503##4502 

$R $H Z./ TABL+"l4# #TABL+q 

Type out in n-bit bytes, where n is decimal. (Use the letter 0, 
not zero). 

S60 BYTS/ 22#23# 1# 73# 51# 46 

As in all DDT typeouts, leading zeros are suppressed. 

4-2 



J 

-891- DDT 

4.3 BREAKPOINTS 

4.3.1 Setting Breakpoints 

The programmer can automatically stop his program at strategic points by setting up to eight 

breakpoints. -~reakpoints may be set before the debugging run is started, or during another breakpoint 

stop. To set a breakpoint, the programmer types the symbolic or absolute address of the word at the 

location whi ch he wants the program to stop, followed by $B. For example, to stop when location 

4002 is reached, he types, 

4002$8 

If all eight breakpoints are in use, DDT will type a question mark. The user may assign breakpoint 

numbers when- he sets a breakpoi nt by typi ng ADR $nB, where n is the breakpoi nt number (1 <h <8) • For 

example, 

SYM$38 ADR$78 

If n is not entered DDT will assign 1 through 8 in sequence. In the previous example, when 

AD~ is reached, DDT types, 

$78 » ADR 

indicating that the break has occurred at location ADR, and breakpoint No.7 was encountered. The 

break always occurs before the instruction at the breakpoint address is executed. 

If the instruction at the breakpoint location is executed by an XCT instruction, the typeout 

will show the address of the XCT instruction, not the location of the breakpoint. The program stops at 

eaeh bteakpoint address, and the programmer can then type other commands to examine and debug his 

program. 

When the programmer sets a breakpoint, he may request that the contents of a word be typed 

out when a breakpoint is reached. To do this, the address of the word to be examined is inserted, 

followed by two commas,before the breakpoint address. 

X,,4002$28 

When address 4002 is reached, DDT types out, 

$28»4002 XI ADD AC,Y+2 

where A~D AC, Y+2 is the contents of X. Location X is left open at this point. Location 0 may not 

be typed out in this way because a zero argument implies no typeout. 

4.3.2 Removing Breakpoints 

The user may remove a breakpoint by typing, 

0$N8 

4-3 



DDT -892-
where n is the number of the breakpoint to be removed. Therefore, 

0$28 

removes the second breakpoint. All assigned breakpoints are removed by typing 

$8 

The user may reassign a breakpoint. If he has set breakpoint No.2 at location ADR (ADR$2B), he may 

reassign No.2 to ADR+1 by typing ADR+1$2B. 

4.3.3 

4.3.4 

Restr i ct ions for Break po i nts 

Breakpoints may not be set on instructions that are 

a. Modified by the program 

b • Used as data or I itera Is 

c. Used as part of an indirect addressing chain 

d. The user mode monitor command, I NIT 

A breakpoint at any other monitor command will operate correctly, except that if 
the monitor c~mmand is in error, the monitor wi II type out an error and the Program 
Counter, but the Program Counter will be internal to DDT and meaningless to the 
user. 

e. A breakpoint may not be assigned to accumulator O. 

Restarting After a Breakpoi.,t Stop 

To resume the program after stopping at a breakpoint, the user types the proceed command, 

$P 

The program is restarted by executing the instruction at the location where the break occurred. If the 

,-!ser types n$P, this breakpoint wi II be passed n-1 times before a break can occur; the break will occur 

!he nth time. If n is not specified, it is assumed to be one. If the user proceeqs by typing $$P (or 

n$$P), the program will proceed automatically when the program breaks again. If DDT encounters an 

XCT loop or the monitor command INIT when proceeding, a question mark will be typed. 
• ,.,! 

Alternatively, the user may restart at any location by typing the st~rt command, 

ADR$G 

where ADR is any program address, or $G, which restarts at the previously specified starting address in 

location JOBSA. 

4.3.5 Automatic Restarts from Breakpoints 

If the user requests DDT to type out the contents of a word and then continue pr~ram execu­

tion without stopping, he types two ALTMODES when specifying the brecikpoint adqre~s. 

AC~ ~ADR$$8 

4-4 



-893- DDT 
When ADR is encountered, the contents of AC are typed out and program execution contin­

ues. To get out of the automatic proceed mode, type any Teletype key during the typeout, and then re­

move the breakpoint or reassign it with a single ALTMODE. It may be necessary to use t C and DDT) 

to get back to DDT to remove or reassign the breakpoint. 

4.3.6 Checking Breakpoint Status 

The user may determine the status of a breakpoint by examining locations $nB, $nB+ 1, and 

$nB+2. 

$nB contains the address of the breakpoint in the right half and the address of the location to 

be examined in the left half. If both halves equal zero, the breakpoint is not in use. 

$nB+1 contains the conditional breakpoint instruction. (See Paragraph 4.3.7.) 

$nB+2 contains the proceed count. 

4.3.7 Conditional Breakpoints 

Breakpoints may be set up conditionally in two ways. The user may provide his own instruc­

tion or subroutine to determine whether or not to stop, or he may set a proceed counter which must be 

equal to or less than zero in order for a break to occur. 

When a breakpoint location is reached, DDT enters its breakpoint analysis routine consisting 

of five instructions. 

SKIPE 

XCT 

SOSG 

~ST 

$NB+l 

$NB+l 

$NB+2 

break routine 

JRST proceed routine 

; Is the conditional break instruction O? 

; No, execute conditional break instruction 

; Decrement and test the proceed counter 

If the contents of $nB+1 are zero (indicating that there is no conditional instruction), the 

proceed counter at $nB+2 is decremented and tested. If it is less than or equal to zero, a break occurs; 

if it is greater than zero the execution of the user's program proceeds with the instruction where the 

break occurred. 

If the conditional break instruction is not zero, it is executed. If the instruction (or the 

closed subroutine) does not cause a program counter skip, the proceed counter is decremented and tested 

as above. If a program counter skip does occur, a break occurs. If the conditional instruction is a call 

to a closed subroutine which returns skipping over two instructions, execution of the user's program pro­

ceeds. 

4-5 



DDT -894-

If the user wishes a break to occur based only on the conditiona I instruction, he should set 

the proceed counter to a large positive number so that the proceed counter will never reach zero. 

4.3.7.1 Using the Proceed Counter - If the user wishes to proceed past a breakpoint a specified 

number of times, and then stop, he inserts the number of passes in $nB+2, which contains the proceed 

count. 

The proceed counter may be set in two ways. The first way is by direct insertion. For 

example, 

$ N8 +2 1 J2. 20 

sets the counter to 20. The second method is as follows. After stopping at a breakpoint, the proceed 

count may be set (or reset) by typing the count before the proceed command: 

20$P 

($P will proceed from the interrupted instruction sequence even if the breakpoint has been removed or 

reassigned .) 

4.3.7.2 Using the Conditional Break Instruc.tion - The user inserts a cond,itional instruction, or a call 

to a closed subroutine at $nB+ 1. For example, 

$38+11 ~ CAIGE ACC,15j 

or 

$48+11 .iL JSA 16, TEST ~ 

When the breakpoint is reached, this instruction or subroutine is executed. If the instruction does not 

skip or the subroutine returns to the next sequential location, the proceed counter is decremented and 

tested, as explained in Paragraph 4.2.7. If the instruction skips or the subroutine returns skipping over 

one instruction, the program breaks. If the subroutine causes a double skip return, the program pro­

ceeds with the instruction at the breakpoint address. 

Examples of Conditional Breakp ints 

If address 6700 is reached and DDT's No. 4 breakpoint registers are as follows: 

$481 AC1,,6100 

$48+11 

~48+21 

ACl contains 100, and DDT types 

CAIE AC1,100 

200 

$48>6100 AC1, 100 

Since ACl contains 100, the compare instruction skips and the program breaks. If ACl did not contain 

100, $48+2 would be decremented by one and the user's program would continue running. 

4-6 



-895- DDT 

If the conditional break instruction transfers to a subroutine which, after the subroutine is 

executed, returns to the call ing location +3, a break wi II ~ occur regardless of the proceed counter. 

Example: If the internal DDT breakpoint registers ($2B and $2B+1) have the following contents, a break 

would not occur unless accumulator 3 contains 100. 

$281 ADR 

$28+11 JSR TEST 
(contains PC when JSR to subroutine 

TESTI 0 TEST is made) 

TEST+11 ADS TEST 

TEST+21 CAIE 3~100 

TEST+31 ADS TEST 

TEST+41 JRST @ TEST 

The subroutine TEST causes a double skip (the return is to the third instruction after the call) in DDT if 

accumulator 3 does not equal 100 •. A break will never occur at address ADR (regardless of the proceed 

counter) unless accumulator 3 contains 100. 

4.3.8 Entering DDT from a Breakpoint 

When a break occurs, the state of the user's program is saved, the JSR breakpoint instructions 

are removed, and the programmer's original instructions are restored to the breakpoint locations. DDT 

types out the number of the breakpoint and a symbol indicating the reason for the break, > for the con­

ditional break instruction, »for the proceed counter and the address in the user's program where the 

break occurred. 

Example: If address ADR is reached in the user's program and DDT's breakpoint registers contain: 

$281 ADR 

$28+11 0 

$28+21 

DDT stops the program and types, 

$28»ADR 

4.4 SEARCHES 

o (proceed counter contains zero) 

There are three types of searches: the word search, the not-word search, and the effective 

address search. 

Searches can be done between limits. The format of the search command is, 

a<b >c$ { W~ 

4-7 

Word search 

Not-word search 

Effective address search 



DDT 

where: 

-896-

a Is the lawer limit of the search; 0 is assumed if this argument and its delimiter are not. 
present. 

b Is the upper limit of the search. The lawer numbered end of the symbol table is assumed 
if this argument and its delimiter are not present. 

c Is the quantity searched for. 

The effective address search (E) will find and type out all locations where the effective 

address, following all indirect and index-register chains to a maximum depth of 6410 levels, equals 

the address being searched for. 

Examples: 
4511<5000>X$E 

INPUT <5000>100$E 

Examples of DDT output, when searching for X in the above examDle, are as follaws. 

45111 SETZM X 

41211 MOVE 2 .. X 

50001 MOVE 3 .. @ 4121 
(indirectly addresses X through 
address 4721) 

The word search eN) and the not-word search (N) compare each storage word with the word 

being searched for in those bit positions where the mask, located at $M, has ones. The mask word con­

tains all ones unless otherwise set by the user. If the comparison shows an equality, the word search 

types out the address and the contents of the register; if the comparison results in an inequality, the 

word search will type out nothing. The not-word search types nothing if an equality is reached. It 

types the contents of the register when the comparison is an inequality. 

Examples: 
INPT<INPT+10>NUM$W 

INPT<INPT+10>0SN 

$MI This command types out the contents of the mask register, which is then 
open. The contents of the mask register are ordinarily all ones unless 
changed by the user. 

N$M Inserts n into the mask register. 

0$M F'IRST<LAST>0$W lists a block of locations by setting the MASK to 
zero then performing a word search for zero. 

4-8 June 1973 



-897-
4.5 MISCELLANEOUS COMMANDS 

$Q This command represents the value of the last quantity typed. 

ADR/100 ... 200 $Q ~ puts back in ADR the quantity 100,200. 
$Qt-l~ puts back inADR the quantity l00,2Ol. 
$0/ displays the contents of location 200. 
$Qt 1/di sp lays the contents of locatio!" 201. 

$V This command reverses the two halves of the word and then 
represents the value of the last quantity typed. ,. 

ADR/100 ~ ~200 $V~ puts back in ADR the quantity 200,100. 
$V+l) puts back in ADR tht; quantity 20P, 10l. 
$V / d!splays the contents of location 100. 
$V+1/displays the contents of location 101. 

inst$X This command causes the instruction inst to be executed. 

JRST ADR$X starts the user's program at ADR. 

F'IRST<LAST$$Z This command zeros the memory locations between the indicated FIRST 
and LAST address inclusively. If the first address is not present, location 0 
is assumed. If the lasf address is not present, the location before the low­
numbered end of the symbol table is assumed. Locations 20~ 137, DDT, 
and the symbol table are not zeroed. 

$Y This command causes a command file to be read and executed. In user mode, 
the default name for the command file is DSK: PATCH. DDT. The command 
string $"/NAME/$Y causes the file DSK:NAME.DDT to be interpreted. 
In exec mode, the command reads a command file from the paper tape reader. 

When DDT is reading a command file, rubouts and the character immediately 
following a carriage return (assumed to be a linefeed) are ignored. Any 
sequence of DOT commands including $X, $G is legal. 

The? error message is given if (1) a lookup failure occurs on the command 
file, or (2) this command is not implemented. 

DDT 

Revision 1 DDT 4-9 February 1971 





-899- DDT 
CHAPTER 5 

SYMBOLS AND DDT ASSEMBLY 

A symbol is defined in DDT as a string of up to six letters and numbers including the special 

characters period ( • ), percent sign (%), and dollar sign ($). Characters after the sixth are ignored. 

A symbol must contain at least one letter. If a symbol contains numerals and only one letter, that letter 

must not be a B, 0, or an E. These letters are reserved for binary-shifted and floating-point numbers. 

Certain symbols can be referenced in one program from another. These symbols are called 

"global". Those which can only be referenced from within the same program are called "local" or "in­

ternal". Any symbol which has been defined as global by MACRO-l0 (using the INTERNAL or ENTRY 

statements) will be considered as global by DDT-l0 when it is referenced. FORTRAN subroutine entry 

points and COMMON block names are globals. All symbols which the user defines via DDT are defined 

or redefined as global symbols. 

The user may want to reference a local symbol within a particular program. In order to do 

this he should first type the program name followed by $:. Thus, if a user wishes to use a symbol local 

to program MI N, he types the command, 

MIN$: 

This command unlocks the symbol table associated with MIN. DDT allows the user to reference unique 

local symbols in other programs without respecifying the program name with $: (see Section 5.6.2). 

However, to access a local symbol that is used in several programs, the user must specify the program 

name to remove the ambiguity. The program name is that specified in the MACRO-l0 TITLE statement. 

In FORTRAN, the program name is either MAIN., the name from the SUBROUTINE or FUNCTION 

statement I or OAT. for BLOCK OAT A subprograms. 

5.1 DEFINING SYMBOLS 

There are two ways to assign a value to a symbol. 

NUMERIC VALUE < SYMBOL: 

TAG: 

This command puts SYMBOL into DDT-l0's symbol 
table with a value equal to the specified NUMERIC 
VALUE. SYMBOL is any legal symbol defined or 
undefined. 

Example: 

305<XVAR: 

XVAR has now been defined to have the value 305. 

This command puts TAG into DDT-l0's symbol table 
with a value equal to the address of the location 
pointer. 

5-1 



DDT -900-
Example: 

4001 ADD 21 12012 X: 

This puts the symbolic tag X into DDT-lO's symbol 
table and sets X equal to 400, the address of the 
last register opened. 

5.2 DELETING SYMBOLS 

There are times when the user will want to restrict or eliminate the use of a certain few de­

fined symbols. The following three ways give the user of DDT-1O these capabilities. 

SYMBOL $$K SYMBOL is killed (removed) in the user's symbol table. SYMBOL can 
no longer be used for input or output. 

SYMBOL $K 

$0 

5.3 DDT ASSEMBLY 

Example: 

X$$K 

This command removes the symbol X from the symbol table. 

This command prevents DDT from using this symbol for typeout; it can 
still be used for typei n • For exampl e, the user may have set the same 
numeric value to several different symbols. However, he does not wish 
certain symbol (s) to be typed out as addresses or accumulators. 

XI MOVE JI SAV J$K ~ MOVE NI SAV N$K ~ MOVE ACISAV 

Since the user does not wish J to be typed out as an accumulator, he 
types in J$K, followed by a left arrow to type out the contents of X 
again and MOVE N,SAV is typed out. He then repeats the above pro­
cess until the desired result, namely AC, is typed out. Any further 
symbolic typeouts with the same number in the accumulator field of the 
instruction will type out as AC. 

The last symbol typed out by DDT has $K performed on it. The value of 
the last quantity output is then retyped automatically. For example, 

AI MOVE ACILOC $D MOVE ACIABC+l 

When improvising a program on-line to the PDP-lO on a Teletype, the user will want to use 

symbols in ~is instructions in making up the program. In this and in other situations, undefined symbols 

may be used by following the symbol with the number sign (#). The symbol will be remembered by DDT 

from then on. Until the symbol is specifically defined by the use ,of a colon, the value of the symbol is 

taken to be zero. Successive use of the undefined symbol causes DDT to type out #. Appending # to 

all subsequent uses of the symbol enables, the user to readily identify undefined (not yet defined by a 

colon) symbols. When an undefined symbol is finally defined, all previously tagged (#) occurrences of 

the symbol wi! I be filled in. 

5-2 



-901- DDT 

Example: 

MOVE 2 .. VALUE# 

VALUE is now remembered by DDT and may be used further without the user appending the fl. If subse­

quent instructions are given involving VALUE, DDT appends a /I automatically to that symbol. Thus 

VALUE will always appear as VALUE followed by the # (until VALUE is defined). 

Example: 

START! MOVE 2 .. VALUE#~ (user types the #) 

START+l ! ADD I 2.. 50 ~ 

START+2! MOVEM 2 .. VALUE~ 

# (DDT types #) 

START+3! 

START+4! 

JRST VALUE+! It (DDT types # after the plus sign be­
cause only at that point does DDT 
realize the symbol VALUE is complete.) 

Undefined symbols can be used only in operations involving addition or subtraction. The undefined 

symbols may be used only in the address field. 

Example: 

MOVEI 2 .. 3*UNDEr# 

This is an illegal operation - multiplication with a symbolic tag (UNDEF) which has not pre­

viously been defined. 

The question mark (?) is a command to DDT to list all undefined symbols that have been used 

in DDT up to that point in the program. 

Example: 
? 

VALUE 

UNDEr 

5.4 FIELD SEPARATORS 

The storage word is considered by DDT to consist of three fields: the 36-bit wholewordfield; 

the accumulator or Vo device field; and the address field. Expressions are combined into these three 

fields by two operators: 

Space The space adds the expression immediately preceding it (normally an op 
code) into the storage word being formed. It also sets a flag so that the 
expression going into the address field is truncated to the rightmost 18 
bits. 

5-3 



DDT 
Single Comma 

Double Comma 

-902-
The comma does three things: the left half of the expression is 
added into the storage word; the right half is shifted left 23 bits 
(into the accumulator field) and added into the storage word. If 
the leftmost three bits of the storage word are ones, the comma 
shifts the right half expression left one more,place (I/O instruc­
tions thus shift device numbers into the device field). The com­
ma also sets the flag to truncate addresses to 18 bits. 

Double commas are used to separate the left and right halves of 
a word with contents expressed in halfword mode. 

The address field expression is terminated by any word termination command or character. 

5.5 EXPRESSION EVALUATION 

Parentheses are used to denote an index field or to interchange the left and right halves of 

the expression inside the parentheses. DDT handles this by the following generalized procedure. 

A left parenthesis stores the status of the storage-word assembler on the pushdown list and re­

initializes the assembler to form a new storage word. A right parenthesis terminates the storage word 

and swaps its two halves to form the result inside the parentheses. This result is treated in one of two 

ways: 

a. If +, -, " or * immediately precede the left parenthesis, the expression is treated as 
a term in the larger expression being assembled and therefore may be truncated to.18 bits if part of the 
address field. 

b. If +, -, " or * did not immediately precede the left parenthesis, this swapped quantity 
is added into the storage word. 

Parentheses may be nested to form subexpressions, to specify the left half of an expression, or 

to swap the left half of an expression into the right half. 

5.6 SYMBOL EVALUATION 

5.6.1 Order of Symbol Table Search 

DDT references two symbol tables: (1) a built-in operation table containing the machine 

language instructions and monitor UUos (e.g., MOVE, JRST, and INIT) and (2) a symbol table con­

structed by LOADER during the loading process, containing all the use~-defined symbols. When a user 

types into DDT a symbol, which must be converted into a binary value, DDT has two places to loak for 

the symbol. If the expression (see Section 5.5) constructed has a zero value (the normal case when 

typing in the operation code of an instr!,ction such as the JRST part of a JRST ADDRESS instruction), 

DDT loaks for the symbol first in its internal operation table, and then, if the symbol is not found, in 

the LOADER constructed symbol table. If the expression constructed is non-zero, DDT searches the 

LOADER constructed table first, and then the internal operation table. This method of searching the 

5-4 



-903- DDT 
tables allows instructions such as JRST JRST to work correctly (the first JRST is an operation code, and 

the second JRST is a user-defined address location). 

5.6.2 Order of Symbol Table Search for Symbol Evaluation 

When DDT searches the tOADER constructed symbol table to evaluate a symbol typed in, it 

begins the search by looking thrQugh the symbols specified by <program name>$: (see Section 2.5). 

DDT searches the table in the following order: 

1. Looks for the symbol as a local or global symbol in the currently unlocked (by $:) pro-
gram symbols. 

2. Looks for the symbol as a global symbol anywhere in the symbol table. 

3. Looks for the symbol as a I~al symbol in the symbol table of one and only one program. 

4. Looks for the symbol os a local symbol that appears, in the symbol table of more than one 
program, but with the same value in each table. (If the symbol appears with different 
values in different tables, it will not be recognized as defined because there is no way 
to resolve the ambiguity.) 

5. If all the above fail, the symbol is undefined unless it appears in the internal operation 
table of the DDT. 

Fortunately, the searching is accomplished with a single pass aver the symbol table. 

If one of the several identical local symbols (in step 4) is redefined, it becomes a global, 

and the symbol is then found at either step 1. or step 2. 

This procedure relaxes the requirement of Sections 2.5, 3.6, and the beginning of Chapter 5 

on the use of $: to unlock local symbols. 

5.7 SPECIAL SYMBOLS 

The @ sign sets the indirect bit in the storage word being formed. 

Example: 

MOVE AC .@X 

5.8 BINARY VALUE INTERPRETATION 

When DDT is typing the symbolic equivalent of a binary word or address, it looks for the sym­

bol with a value that best matches the binary. DDT looks through the symbol values in the following 

order: 

1. Searches the symbols of the currently unlocked (by $:) program for a local or global sym­
bol with a value that exactly matches the binary to be interpreted. 

2. Searches for a global symbol outside the currently unlocked program with a value that 
exactly matches the binary to be interpreted. 

5-5 



DDT -904-
3. Searches all the other local symbol tables for one or more entries with values that match 

the binary to be interpreted. If more than one symbolic equivalent is found, the DDT 
does not use any of them but goes on to step 4. If exactly one symbolic equivalent is 
found (this includes the case of the same symbol with the same value in more than one 
local symbol table), then this symbol is used. However, the symbol has a # appended to 
it to warA the user that this symbol might have a different value in some other local sym­
bol table., 

4. Searches the currently unlocked program symbols for a local symbol, and searches the 
entire symbol table for a global symbol, with the value closest to but less than the binary 
to be interpreted. The closest symbol is then used for typeout if it is not more than 64 
smaller than the binary being interpreted. 

If a usable symbol is not found in any of the above steps, the binary is typed out as an integer in the 

current output radix. 

The purpose of this complicated procedure is to output the best symbol without forcing the 

user to continually respecify the program symbol table names by using $:. 

5-6 



6.1 PAPER TAP.E CONTROL 

-905-

CHAPTER 6 

PAPER TAPE 1 

DDT 

The following commands are used in paper tape control: 

$L this cqmJ'l,1cnd causes DDT to punch a RIM10B loader on paper 
tape RIM lOB loader. (See MACRO-10 Manual, Chapter 6.) 
Thus, if the user wishes to punch out a program on paper tape he 
gives a $L command first in order to get a loader punched on the 
same tape as the program. Later when the user wishes to read in 
the program from the paper tape, the hardware READ-IN feature 
wililood the RIM10B loader into the accumulatOrs and then the 

FIRST<LAST @ 2 

FIRST<LAST $ @ 

ADR$J 

program will be loaded by the RIM 1 OB I~der. (See Figure 6-1 .) 

This.comrT:land punches out checksummed blocks in RIM10B format 
on ~per tape from consecutive locations between FIRST and 
LAst address inclusively. For example,tryis command will punch 
out a program existing in core memory in its present state of 
check-out for later use. 

Example: 

4000 <20000 @ 
This command is similar to the preceding command, except that 
locations whose contents are zero are riot punched out whenever 
more than two consecutive zeroes are detected. 

This command punches a 2-word block that causes a transfer to 
address ADR after the preceding program has been loaded from 
paper tape. If ADR is not present, a JRST 4, DDT is punched as 
the first word. 

The following succession of steps will punch a program on paper tape ready to be used as an 

independent entity. 

a. $L 

b. 5000 <20000 @ 2 

c. 6000$J (Transfer to addreSs 6000 after program is loaded.) 

~ ~per tape functions are not available in the timesharing user mode version of DDT. 
AP is a single control key on the Teletype, and is identical to t R (control-R). 

6-1 



DDT 

Typed In: 

$L 

FIRST ADDRESS < 
LAST ADDRESs(TAPE) 

SA$J 

-906-

------.-r--
tape feed 

RIM lOB 
LOADER 

tape feed 

-WC I FA-l 
~ 

DATA 
BLOCK ---------

CHECKSUM 

tape feed 

DATA 
BLOCK 

· 

· 
· 

DATA 
BLOCK 

tape feed 

JRST SA 

0 

tape feed 
~-

Figure 6-1 RIM10B Block Format 

6-2 

Beginning of Tape 

Checksum includes pointer word 
WC = word count 

transfer block 
SA = starting address 



-907-
APPENDIX A 

SUMMARY OF DDT FUNCTIONS 

A.l TYPE-oUT MODES 

The following are used to set the type-out mode: 

Type 

Symboli c instruct ions $S 

Numeric, in current radix $C 

Floating point $1' 

7 -bit ASCII text $T 

SIXBn text $6T 

RADIX50 $5T 

Halfwords, two addresses $H 

Sample Out~ut(s} 

ADD 4" TAG+l 
ADD 4" 4002 

69. 
105 

0.125E-3 

PQRSt 

TSRQPO 

4 DDTEND 

il002~,,~005 
X+l."X+iI 

Bytes (of n bits each) $NO $80 COULD, YIELD 
0,,14,,237.123,0 

A.2 ADDRESS MODES 

DDT 

The following are used to set the address made for typeout of symbolic instructions and half­

words (see examples above): 

Rela'tive to symbolic address 

Absolute numeric address 

A.3 RADIX CHANGE 

$R 

$A 

TAG"1 

4005 

The following is used to change the radix of numeric type-outs 

$NR $2R COULD YIELD to n (for n~2): 
110101100000010000000000011100101100 

A.4 PREVAILING VS.- TEMPORARY MODES 

The following are used in prevailing vs. temporary modes: 

To set a temporary type-out or 
address mode or a temporary 
radix as shown in the commands 
above, type $ 

A-l 

$C ( 
$10R 

June 1973 



DDT 

To set a prevailing type-out 
or address mode on a prevail­
ing radix, in the commands 
above, substitute 

To terminate temporary modes 
an~reyert to prevailing modes, 
type a carriage return 

Initial pr~vailing (and tempo­
rary) modes are 

A.5 STORAGE WORDS 

-908 ... 

$$ 

) 

$$5 

$$R 

$$8R 

The following are used to examine storage words: 

To open and examine the con-
tehts of any address in current 
type-out mode 

To open a word, but inhibit the 
type out of ,contents 

t () open and exami ne a word as 
a number in the current radix 

To open and examine a word as 
. ,. d' symbol ici n~tl'tJdi on 

To retype the last quantity typed 
(particularly used after changing 
the current type-out'mode) 

A.6 RELATED StORAGE WORD 

adr/ 

adr! 

adr[ 

adr] , 

Sample Output(s) 

$$C 
$$10R 

LOCI 25~020"DDTEND 

LOC! 

LOC] JRST @DDTEND ' . 

$60; ~5,40,20i00,3~,54 

$6T j 5.%0 <L 

The following are used .to exam.i.ne related storage words: 

To close the current open word 
(making any modification typed 
in) and to open the fbllowing re­
lated words, examining them in 
the current type-out mode: 

To examine ADR+l 

To examine ADR-l 

l (Ii ne feed) . 

t (or bac~spacei 
on the Teletype 
Model 37) 

A-2 



-909-

To examine the contents of the location 
specified by the address of the last 
quantity typed, and to set the location 
pointer to this address ..., (TAB) 

To examine the contents of address of 
last quantity typed, but not change the 
location pointer \ (backslash) 

To close the currently open word, with-
out opening a new word, and revert to 
permanent type-out modes ) (carriage return) 

A.7 ONE-TIME ONLY TYPEOUTS 

The following typeouts occur only one time: 

To repeat the last typeout as a number 
in the current radix 

To repeat the last typeout as a symbolic 
instruction (the address part is deter­
mined by $A or $R) 

To type out, in the current type-out 
mode, the contents of the location spe­
cified by the address in the open in­
struction word, and to open that loca­
tion, but not move the location pointer 

To type out, as a number, the contents 
of the location specified by the open 
instruction word and to open that loca­
tion, but not move the location pointer 

To type out, as a symbolic instruction, 
the contents of the location specified by 
the open instruction word, and to open 
that word, but not move the location 
pointer 

A.8 TYPING IN 

I 

[ 

] 

DDT 

Sample Output(s) 

Current type-out modes do not affect typing in; instead, the following are performed: 

To type in a symbolic instruction 

To type in half words, separate the left 
arid right halves by two commas 

To type in octal values 

To type in a fixed-point decimal in­
teger 

A-3 

ADD ACll@DATE(17) 

40211403 

1234 

99. 



DDT -910':' 

Type Sample Output(s) 

To type in a floating-point number 101 .11 

77.0E+2 
To type in up to five 7-bit PDP-lO 
ASCII characters, left justified, delim-
ited by any printing character "/ABCOEI (/ is delimiter) 

To type in one PDP-10 ASCII character, 
right justified "A$ ($ must be ALTMODE) 

To type in up to six SIX BIT characters, 
left justified, delimited by any printing 
character $"ABCOEF"GA (A is delimiter) 

To type in one SIXBIT character, right 
justified $"Q$ ($ must be AL TMODE) 

A.9 SYMBOLS 

The following are DDT symbols: 

To permit reference to local symbols 
within a program titled name name$: MAIN.$: 

To insert or redefi ne a symbol in the 
symbol table and give it the value n n<symbol: 14<TABL3 : 

To insert or redefine a symbol in the 
symbol table, and give it a value equal 
to the location pointer ( • ) symbol: SYM: 

To delete a symbol from the symbol 
table symbol$$K LPCTUK 

To kill a symbol for typeouts (but still 
permit it to be used for typing in) symbol$K TS ITS$K 

To perform $K on the last symbol typed 
out and then to retype the last quantity $0 

To declare a symbol whose value is to 
symbol* be defined later JkST AJAX# 

To type out a list of all undefined sym-
bols (which were created by *) ? 

A.10 SPECIAL DDT SYMBOLS 

The following are special DDT symbols: 

To represent the address of the location 
pointer • (point) 

To represent the last quantity typed $Q 

A-4 



-911-
Type Sample Output(s) 

To represent the last quantity typed, $V 
halves reversed 

To read and execute a command file $Y 

To represent the indirect address bit @ 

I To represent the address of the search $M 
mask register 

To represent the address of the saved $1 
flags, etc. (see Appendix D) 

To represent the pointers associated $nB 
with the nth breakpoint 

A.ll ARITHMETIC OPERATORS 

The following arithmetic operators are permitted in forming expressions: 

Two's complement addition 

Two's complement subtractiQn 

Integer multiplication 

Integer division (remainder discarded) 

A.12 FIELD DELIMITERS IN SYMBOLIC TYPE-INS 

The following are field delimiters: 

To delimit op-code name 

To delimit accumulator field 

To delimit two halfwords 

To delimit index register 

To indicate indirect addressing 

A.13 BREAKPOINTS 

The following are used for breakpoints: 

Version 34 DDT 

To set a specific breakpoint n(l<n<8) 

To set the next unused breakpoint 

To set a breakpoint with automatic pro­
ceed 

To set a breakpoint which will automat­
ically open and examine a specified ad­
dress, x 

A-5 

+ 

* 
, (apostrophe) 

one or more spaces ..IRST SUBRTE 

, (comma) 

left"right 

( ) 
@ 

adr$nB 

adr$B 

adr$$nB 
adr$$B 

x"adr$nB 
x"adr$B 
x"adr$$nB 
x"adr$$B 

-6 .... BEGIN-l 

CAR$8B 

303$B 

CARU8B 
303$$B 

AC3 .... Z+6$SB 
AC4 .... ABLE$B 
AC3 .... Z+6$$SB 
AC4 .... ABLE$$B 

June 1973 

DDT 



DDT 

To remove a spec i fj c breakpoi nt 

To remove all breakpoints 

-912-

To check the status of breakpoint n 

To proceed from a breakpoi nt 

To set the proceed count and proceed 

To proceed from a breakpoint and 
thereafter proceed automatically 

A.I4- CONDITIONAL BREAKPOINTS 

.!le! 
O$nB 

$8 

$nB/ 

$P 

n$P 

$$p 
n$$P 

The following are used for conditional breakpoints: 

To insert a conditional instruction 
(INST), or call a conditional routine, 
when breakpoint n is reached 

If the conditional instruction does not 
cause a skip, the proceed counter is 
decremented and checked. If the pro­
ceed count $0, a break occurs 

If the conditional instruction or subrou­
tine causes one skip, a break occurs. 

If the conditional instruction or subrou­
tine causes two skips, execution of the 
program proceeds. 

A.IS STARTING THE PROGRAM 

$nB+l/ 
$28+1/Q 

The following commands are used to start the program: 

To start at the starting address in JOBSA 5G 

To start, or continue, at a specified ad­
dress 

To execute an instructi~n 

A.16 SEARCHING 

The following commands are used for searching: 

To set a lower limit (a), an upper limit 
(b), a word to be searched for (c), and 
search for that word 

A-6 

adr$G 

inst$X 

a<b>c$W 

Sample Output{s) 

0588 

58 

5P 

2SSP 

UP 
2SUP 

INST 
CAIE 3 .. 100 

5G 

LOC5G 

JRST 2 .. @J080PC5X 
returns to program after 
t C and DDT commands 

200<2S0>05W 



A.17 

I 
A.18 

-913-

Type 

To set limits and search for a hot-word a<b>c$N 

To set limits and search for an effective 
~ddress a<b>c$E 

To examine the mask used in searches 
(initially contains all ones) $M/ 

To insert another quantity n in the mask n$M 

UNUSED FUNCTIO NS 

The following is unused: 

$U 

ZEROING ,MEMORY 

The following are used for zeroing memory: 

To zero memory, except DDT, loca-
tions 20-137, and the symbol table $$Z 

To zero memory locations FIRST through 
LAST inclusive FIRST<LAST $$t 

A.19 SPECIAL CHARACTERS 

The following special characters are used in DDT typeouts: 

Revision 1 DDT 

Breakpoi nt stops 

Break caused by conditional break 
instruction > 

Break because proceed counter ~ 0 

Undefined symbol cannot be assembled 

Half-word type-outs 

Unnormalized floating-point number 

To indicate an integer is decimal. The 

» 
U 

left "right 

*1 ; 234E+27 

detimal point is printed $10R 77=63. 

Illegal command ? 

If all eight breakpoints have been as-
signed ? 

RUBOUT echo XXX 

A-7 

Sample Output(s) 

3S1<731>0$N 

40 i <471 >LOC +6$E 

$MI -I 

777000777777$M 

401~;402 

# 1 .234E:+27 

DDT 

February 1971 



DDT -914-
A.20 PAPER TAPE COMMANDS 

The following commands are available only in EDDT: 

I 

Version 34 DDT 

To punch a RIMH)B loader 

To punch checksummed data blocks 
whel'e ADR 1 is the first, and ADR2 is 
the last location of the data 

To punch data as above, except that 
more than two consecutive locations 
containing zeros are not punched. 

To punch a one-word block to cause a 
transfer to adr after the preceding pro':' 
gram has been loaded from paper tape 

A-8 

Type 

$L 

ADRI <ADR2 @ 

AJ2B..l.. < ADR2 $ ® 
(~is tR) . 

adr$J 

Sample Output(s) 

June 1973 



-915- DDT 
APPENDIX B 

EXECUTIVE MODE DEBUGGING (EDDT) 

A special version of DDT, called EDDT, is available for debugging programs in the executive 

mode of the PDP-l0. EDDT also runs in user mode under the monitor and performs the same debugging 

functions as user-mode DDT. EDDT requires somewhat more memory space than DDT; therefore, it is 

normally used only with hardware diagnostics and the monitor. All of the paper tape commands are 

available in EDDT (those in DDT are marked by an asterisk in Chapter 5). The paper tape I/o routines 

in EDDT are optional at assembly time. 

EDDT is used to debug monitor progroms, diagnostic programs, and other executive (or priv­

ileged) programs. EDDT performs its own I/O on a Teletype and controls the Priority Interrupt system. 

It does not check JOBREl for boundary limits as DDT does. 

I In EDDT the symbol table pointer is in location 36 and the undefined-symbol table pointer is 

in location 32. If the NXM STOP switch is ON, the machine will hang up if nonexistent memory is 

referenced. If this happens, EDDT may be restarted by pressing START, or the CONTINUE switch may 

be pressed. 

I Stand-alone programs should initialize EDDT by placing the contents of • JBSYM (116) into 

location 36, and .JBUSY (117) into location 32 •. 

The first address of EDDT is DDT; the last is DDTEND. 

The $$Z command will not zero locations 20 through 37. (In the user mode version, $$Z 

does not zero locations 20 through 137. See Section 4.5.) 

Version 34 DDT B-1 June 1973 





-917-

APPENDIX C 

STORAGE MAP FOR USER MODE DDT 

See Figure C-l. The permanent symbol table, which contains all PDP-l0 instructions and 

monitor UUOs, is an integral part of DDT. 

DDT 

If the user's symbol table is overwritten DDT can still interpret all instructions and UUOs. It 

will not interpret I/O device mnemonics, internal $ symbols ($M, $1, $lB through $8B), DDT and 

DDTEND or the following: 

JOV 

JEN 

HALT 

o t--------I 

User 
Area 
(low 
seg­
ment) 

400000 

CIO 

~-DDT--~ 

User's Symbol Table 

high segment 
(optional) 

JOBREL (points to highest location in user area) 
JOBDDT (XWD DDTEND, DDT) 
JOBSYM (XWD - WC, 1st address of symbol table) 

1st address is DDT 

Last address is DDTEND 

1st address of symbol table 

Highest location in low segment 

Figure C-l Storage Map for User Mode DDT 

C-l June 1973 





-919-
APPENDIX D 

OPERATING ENVIRONMENT 

D.l ENTERING AND LEAVING DDT 

When control is transferred to DDT, the state of the machine is saved inside DDT: 

a. The accumulators are saved. 

DDT 

b.1 The status of the priority interrupt system (the result of a CONI PI, $1) is stored in the 

right half of register $1. 

c. The central processor flags are saved in the left half of register $1. 

d.1 The PI channels are turned off (by a CONO PI, @$I+I) if they have a bit in register 

$1+1. 
I 

e. The Teletype PI channel is saved in the right half of register $1+2. The Teletype buffer 

is saved in the left half of $1+2 but can never be restored. The character in the output buffer will have 

been typed on the Teletype. 

f. If DDT was entered via tc tc and the monitor DDT command, the. old program counter 

word is saved in location JOBOPC. 

When execution of a program is restarted, the following happens: 

a. The accumulators are restored. 

b.1 Those PI channels which were on (when DDT was entered) and which have a bit equal to 

I in register $1+1 are turned on. 

(C($I)RAC($l+l)R) V2000"PI SYSTEM 

(logical AND (A), logical OR (V» 
I 

c. The Teletype PI channel is restored.· 

o .. HI DONE .. TTl BUSY .. HO BUSY 

HO done is set to I if either HO busy or HO done was on when DDT was entered. Otherwise 

o .. HO done. 

d. The processor flags are restored from the left half of register $1. 

e. To return to a program interrupted by tC, the user types: 

JRST 2 .. @ JOBOPC$X to restore the PC and flags. 

1 Functions not available in the timesharing user mode. 

D-l 



DDT -920-
D.2 LOADING AND SAVING DDT 

Load and save DDT .SAV in 2K of core in the following manner: 

Instructi ons 

(1) Load DDT. 

(2) Enter DDT. 

(3) Type out, in ha I fword mode, the contents 
of JOBSYM. 

(4) Open register 6, and put (JOBSYM)RH . 
into left half of 6; put ((JOBSYM)RH 
AND2 1m) + 2000 into right half of 6. 

(5) Perform a block transfer stopping at 3m. 

(6) Open JOBSYM; leave the left half as is 
and change the right half to 
((JOBSY~)RH AND2 1777) + 2000. 

(7) Zero memory, except for DDT. 

(8) Start over at 140 to initialize the new 
symbol table. 

(9) Open JOBSA and put DDTEND in the 
left half and DDT in the right half. 

(10) Change back to symbol type-out mode. 

(11) Return to monitor. 

(12) Reduce core to 2K • 

(13) Reenter DDT. 

(14) Check that JOBREL is 2K. 

(15) Return to monitor. 

(16) Save DDT. 

(17) Check start address. 

1 ALTMODE is indicated by $. 

2 Logical AND. 

!oR LOADER 
*DSI<:ODT$ 
LOADER 
EXIT 

!£.. 
!.ST 140 

1 
Example 

$$H JOBSYM/ ~IJ2115666 

61 5666113666 

BLT 613777$X 

JOBSYM/ -112115666 -112113666 

$$Z 

140$G 

JOBSA! DDTENDIIDDT 

$$S 

te 
,!.CORE 2 

!oDDT 

JOBREL/ 3777 

tC 

,!.SAVE DSI< DDT 

,!.START 
./ ll11 

D-2 Version 34 DDT 



-921- DDT 

0.3 EXPLANATION 

The DDT saved file must be saved in 2K (minimum amount of core needed). Also, a starting 

address must be set up for DDT as location 140. To get DDT into 2K, the DDT symbol table must be 

moved down to the upper end of the first 2K of core. Any unused locations in DDT should be set to 

zero ($$Z) and JOBSYM should be set to the new location of the start of the DDT symbol table. Before . , . 

saving t~e resulting file, a CORE 2 request should Ice given to the monitor to ensure that DDT is saved as 

a 2K core image. 

0-3 





-923-

UTILITIES 

This section of the handbook includes documentation on the following software: 

CREF 
FILCOM 
FUDGE2 
GLOB 

Version 47 
Version 20 
Version 15 
Version 5A 

These utilities are used by system programmers 

1. To obtain cross-referenced listings for all operand-type symbols, user-defined symbols, 
and/or op codes and pseudo-op codes. 

2. To compare two versions of a fi Ie and then output any differences. 

3. To update files containing relocatable binary programs and manipulate programs 
within program files. 

4. To obtain an alphabetical cross-reference listing of all global symbols encountered. 

With the exception of the CREF writeup, the uti lities have been reproduced from the DECsystem-l0 

Operating System Commands manual (DEC-IO-MRDC-D). 





I 

-925- CREF 

CROSS-REFERENCE LISTING (CREF) 

CRE F produces a sequence-numbered assembly listing followed by one to three tables, one showing 

cross references for all operand-type symbols (labels, assignments, etc.), another showing cross refer­

ences for all user-defined operators (macro calls, OPDEFs etc.), and another (if the proper switch is 

specified) showing the cross references for all op codes and pseudo-op codes (MOVE, XALL, etc.). 

A number sign (#) appears on the definition line of all symbols. The inpu"t to CREF is a modified as­

sembly listing file created during a MACRO-IO assembly or FORTRAN IV compilation when the IC 
switch is specified in the command string. 

CREF provides an invaluable aid for program debugging and modification. 

1.0 REQUIREMENTS 

Minimum Core: 

Additional Core: 

Equipment: 

2.0 INITIALIZATION 

.;.R CREF) 

3.0 COMMANDS 

3. I Command Formats 

2K pure, I K impure 

Takes advantage of any additional core available, as necessary. 

One input device (normally disk) which contains the modified assembly 
listing file; one output device (normally the line printer) for the listing. 

Loads the Cross-Reference Listing program into core. 

The program is ready to receive a command. 

NOTE 

If CREF cannot initialize the terminal, it exits. 

a. output-dev:filename. ext[proj, prog]=input-dev:fi Ie I. ext[proj ,prog] , file2. ext, ••• 

b. progname I 

Version 47 CREF CREF- I June 1973 



CREF 
output-dev:fi lename. ext 

input-dev:fi lename. ext 

I 

[proj , prog] 

= 

prognamel 

Version 47 CREF 

-926-
The device on which the assembly listing and cross­
reference tables are to be printed. If no output fi Ie 
name is specified, the default file name is the same 
as that specified for the first input file, but with the 
extension. LST. In such a case, the default device 
is LPT. However, if an output fi Ie name is specified, 
the default output device is DSK. 

The device on which the modified assembly listing 
was written during MACRO-I 0 assembly. DSK: is 
assumed if the device is not specified. When look­
ing for the input file, CREF tries the following de­
fault extensions in the order listed: .CRF, .LST, 
.IMP, or a null extension. A missing input file 
name is given the name CREF. If the input fi Ie ex­
tension is • CRF or • LST and the Ip switch is not in­
cluded in the command string, the input fi Ie is de­
leted after the output file is successfully closed. 

Multiple input files can be specified to be combined 
into a single CREF listing by separating the input 
fi les with commas. Switches affecting the entire 
listing (/K, 1M, 10, and IS) must be specified 
before the terminator for the first input file. 
Switches affecting the positioning of an input file 
are specified with each fi Ie. 

The ?CANNOT FIND FILE •.. message will be 
printed for each occurrence of a missing fi Ie. If 
the missing file is not part of a COMPIL-class 

command file (that is, if it was typed in directly), 
the command will be aborted, a 1I0wi ng the user to 
retype the command string. However, if the miss­
ing file is part of a COMPIL-class command file, 
processing will continue for the rest of the existing 
files in the command string. (Refer to section 4.0 
of this document.) Note that if any fi Ie is in fact 
missing, no input file will be deleted. 

The disk area on which the files are to be placed 
(output) or the disk area on which the source files 
reside (input). If omitted, the default is the user's 
disk area. 

The output device and the input device are separ­
ated by an equal sign. If the equal sign is omitted, 
output defaults occur as described above. Any 
fi les specified by the user are for input. 

The user can request CREF to run a system program 
by typing the program name followed by an ex­
clamation point. 

CREF-2 June 1973 



Examples of Commands: 

• R MACkO) 

"'PTP: .. /C=DTAI :TXCALC) 
THfRE ARE NO EKHORS 

PROGRAM BREAK IS 003771 

7K CORE 
*tC :J: eREI') 

"!.) 

.:ttC 

.!. 

.R C.R EF' 
io UTF'l L= F'I Ll , F'I 12 , F'I L.3 

.!,LI NK! 

.!. F'l Ll ,F'I 12 , F'I '-3/ G 
U NK: LOA OI NG 
EX! T 
.!. 

3.2 Switches 

-927- CREF 

Load the MACRO-l0 Assembler into core • 

Assemble the program TXCALC from DTA1; writes 
the object program coding on the paper tape punch; 
writes a modified assembly listing on DSK: (assumed) 
and assigns it the filename CREF. LSI. 

Return to the monitor. 

Load CR EF into core. 

Select the default assumptions of: 

output-dev: LPT: 
input-ciev: DSK: 
input filename. ext CREF.CRF(. LST,. TMP) 
outputfi lename. ext CREF. LST 

Equivalent to the command string 

LPT :CREF. LST=DSK :CREF. CRF 

Return to the monitor • 

Make single merged cross-reference file for three 
program files. 

Run LINKlO • 

Switches are used to specify such options as magnetic tape control and list selection. All switches 

are preceded by a slash (/); 

Examples of Switches: 

• R CREI' 

*/M=t"'TA 1 : IW 

*DTA5:SAVEI/Z= 

Version 47 CREF 

Load CREF into core • 

Rewind MTAl and process the first file, listing 
only the cross references for operand-type symbols 
{labels, assignmentS, etc.}. 

Process the file named CREF. LST in th!! user's area 
of disk; write the program listing and operand-type 
cross ~eferences on DTA5 ·and call the fi Ie SAVE 1 • 

Return to monitor. 

CREF-3 June 1973 



I 

CREF 

Switch 

A 

B 

H 

K 

M 

o 

P 

R 

S 

T 

W 

Z 

4.0 MONITOR COMMANDS 

-928-
CREF Switch Options 

Meaning 

Advance magnetic tape reel by one file. /A may be 
repeated. 

Backspace magnetic tape reel by one fi Ie. /B may 
be repeated. 

Print help for running CREF. 

Kill listing of references to basic symbols (labels, 
assignments, etc.). 

Suppress listing of references to user-defined operators 
(Macro calls, OPDEFs, etc.). 

Allow listing of references to machine and pseudo­
operation codes (MOVE, XALL, etc.). 

Preserve an input file with the extension. CRF or 
.LST, which is normally deleted. 

Request the line number at which the listing is to 
Restart. CREF prints: 

RESTART LISTING AT LINE: 

at which time the user types the line number followed 
by a carriage return. (Such action might be necessary 
if the line printer ran out of paper, or jammed, etc.) 

Suppress,program listing (list only the selected tables). 

Skip to logical end of magnetic Tape. 

ReWind magnetic tape. 

Zero the DECtape directory (DECtape must be output 
only). 

CREF-format listing files generated by COMPILE, LOAD, EXECUTE, and DEBUG commands (using 

the /CREF switch) can be printed on the line printer by typing 

.:.CREF) 

The CREF command will print out all listing files that are specified in the COMPIL-class command 

I file, nnnCRE. TMP (where nnn is the user's job number). It VIill also transfer control to a system pro­

gram if its name is present in the form "progname I". After completion of this operation, nnnCRE. TMP 

is deleted to prevent the listing files from being listed again by the next CREF command. 

The CREF files may also be listed by an R CREF command and a response of "filename" to each 

asterisk (*) typed by CREF. It is important to note that, if the user uses the R CREF command to list 

files created by the monitor's COMPIL-class commands, the names of the files to be listed must be 

typed in response to the asterisks. 

Version 47 CREF CREF-4 June 1973 



I 

-929- CREF 
S.O DIAGNOSTIC MESSAGES 

CREF Diagnostic Messages 

Message 

?dev NOT AVAILABLE 

?CANNOT ENTER FILE, n dev: 
file. ext 

?CANNOT FIND FILE, n dev: 
file. ext 

?COMMAND ERROR--TVPE /H 
FOR HELP 

?COMMAND FILE INPUT ERROR, 
n dev :file. ext 

?DATA ER:ROR DEVICE dev: 

IMPROPER INPUT DATA, 
CONTINUING 

?INPUT BUFFERS TOO BIG 

?INPUT ERROR, n dev:file.ext 

?INSUFFICIENT CORE 

?OUTPUT ERROR, n dev:fjle.ext 

Version 47 CREF 

Meaning 

Device is assigned to another job. 

DTAor DSKdirectory is full; file cannot be en­
tered; n indicates the cause ofthe failure and is 
obtained from the ENTER directory block. 

The file cannot be found on the device 
specified; n indicates the cause of the 
failure and is obtained from the LOOKUP 
directory block. 

Error in last command string entered. 

1. Device name, file name, or 
extension consisted of non­
alphanumeric characters. 

2. The project-programmer num­
ber was not in standard for­
mat (i.e., it was not octal 
numbers in the form [proi, 
prog] ). 

3. An undefined switch was 
specified, switches in 
parentheses were not separ­
ated by commas, or the 
closing parenthesis was 
missing. 

4. The /Z switch was used on 
the input side of the command 
string. 

Disk data error while reading nnnCRE. TMP; 
n is a six-digit (or less) octal number rep­
resenting the file status word returned from 
the GETSTS UUO. 

READ or WRITE error. 

Input data not in CREF format. Output 
I isting continues. 

The monitor set up input buffers longer 
than 2038 , This is not a user error. and 
hopefully will never occur. 

READ error has occurred on the device. 

Additional core is required for execution 
but none is available from monitor. 

WRITE error has occurred on the device. 

CREF-S June 1973 





I 

-931- FILCOM 

Function 

The FILCOM program is used to compare two versions of a file and to output any differences. 
Generally, this comparison is line by line for ASCII files or word by word for binary files. 
FILCOM determines the type of comparison to use by examining either the switches specified 
in the command string or the extensions of the files. Switches always take precedence over 
fi I e extensions. 

Command Format 

.!. R FILCOM) 
~output dev:file.ext [directory] = input dev1:file.ext [directory], 

input dev2:file.ext [directory) 

output dev: 

input dev: 

= the device on which the differences are to be output. 

= the device on which an input file resides. 

Defaults 

1. If the entire output specification is omitted, the output d'evice is assumed to be TIY. 
However, the equal sign must be given to separate the input and output specifications of 
the command string. 

2. If an output filename is specified, the default output device is DSK. 

3. If the output filename is omitted, the second input filename is·used, unless it is null. In 
this case', the filename FILCOM is used. 

4. If the output extension is omitted, . SCM is used on a source compare and . BCM is used 
on a binary compare. 

5. If the [directory] is omitted (input or output side), the user's default directory is assumed. 

6. If an input device is omitted, it is assumed to be DSK. 

7. If the filename and/or extension of the second input file is omitted, it is taken from the 
first input fi Ie. 

8. A dot following the filename of the second input is necessary to explicitly indicate a null 
extension, if the extension of the first input file is not null. For example, to compare 
FILE.MAC and FILE. (i.e., with null extension), use the following command string: 

.R FILCOM) 
*=FILE.MAC, FILE.) 

Version 20 FILCOM 2-81 November 1972 



I 

I 

FILCOM -932-

Command Fonnat (cont) 

9. The second input file specification cannot be null unless a binary compare is being per­
formed. In a binary compare, if the first input fi Ie is not followed by a comma and a 
second input file descriptor, the input file is compared to a zero file and is output in its 
entirety. This gives the user a method of listing a binary file~ Refer to Example 4. 

Switches 

The following switches can appear in the command string, depending on whether a source com­
pare or a binary source compare is being perfonned. 

Bi nary Compare 

/H Type list of switches available (help text from device SYS:). 

/nl 

/Q 

Specify the lower limit for a partial binary canpare (n is an octal number). 
This switch, when used with the /nU switch, allows a binary file to be 
compared only within the specified limits. 

When the files are different, print the message ?FILES ARE DIFFERENT, 
but do not list the differences. This switch is usefu I when BATCH control 
fj les want to test for differences but do not want the log fi Ie fj lied with 
these di fferences. 

/nU Specify the upper limit for a partial binary compare (n is an octal number). 
This switch, when used with the /nl switch, allows a binary file to be 
compared only within the specified limits. 

/W Compare files in binary mode without expanding the files first (refer to 
Appendix D). This switch is used to compare two binary files with ASCII 
extensions. 

/X Expand SAV files before comparing them in binary mode. This actionre­
moves differences resulting from zero compression (refer to Appendix D). 

/A 

Source Compare 

Compare fi les in ASCII mode. This switch is used to force a source com­
pare on two ASCII files. 

/B Compare blank lines. Without this switch, blank lines are ignored. 

/C Ignore comments (all text on a line following a semicolon) and spacing 
(spaces and tabs). This swi tch does not cause a line consisting entirely of 
a comment to become a blank line, which is nonnally ignored. 

/H Type list of switches available (help text from device SYS:). 

(continued on next page) 

Version 20 FILCOM 2-82 November 1972 



I 
I 

-933- FILCOM 

Command Format (cont) 

Source Compare (cont) 

/nL Specify the number of lines that determine a m~tch (n. ,is an octal number). 

/Q 

/S 
/U 

A match,means that ri successive lines in each input file have been found 
identical. When a match is found, all differences qc:cIJrring before the 
match and aft~r the previous match are output. In addition, the first line 
of thlil current match is output after the differences to aid in locating the 
place within each file at which the differences occurred. The default 
value for n is 3. 

Print the message ?FILES ARE DIFFERENT, when the files are different, 
but do not list the difference~. 

Ignore spaces and tabs. 

Compare in update mode. This means that the output file consists of the 
second input file with vertical bars. (or back slashes for 64-character 
printers) next to the lines that differ from the first input file. This feature 
is useful when updating a document because.the changes made to the latest 
edition are flagged with change bars in the left margin. The latest edition 
of the document is the second input file. 

If switches are not specified in the command string, th-e files-are compared in the mode implied 
by the extension. The following extensions are recognized as binary orid eause g binary com­
pare if one or both of the input files have one of the extensions • 

• BAC 
.BIN 
.BUG 
• CAL 
.CHN 
.DAE 
.DCR 
.DMP 

.HGH 

.LOW 

.MSB 

.OVR 
, ~QUE 

.QUF 

.REL 

.RIM 

.RMT 

.RTB 
• SAY 
.SFD 
.SHR 
.SVE 
.SYS 
.UFD 
.XPN 

Binary flies are compared word by word starting at word 0 except for the following two cases: 

1. Files with extensions .SHR and .HGH are assumed to be high segment files. Since 
the word count starts at 400000, upper and lower limits, if used, must be greater 
than (or equal to in the case of the lower limit) 400000. 

2. Files with extensions • SAY , .LOW, and .SYE are assumed to be compressed core 
image fi les and are expanded before comparing. 

Yersion 20 j:ILCOM 2-83 November 1972 



FILCOM -934-

Command Format (cont) 

Conflicts are resolved by switches or defaults. If a conflict arises in the absence of switches, 
the files are assumed to be ordinary binary files. 

Output 

In most cases, headers consisting of the device, filename, extension, and creation date of 
each input file are listed before the differences are 'Output. However, headers do not appear 
on output from the /U switch (update mode on source compare). 

Source compare output - After the headers are listed, the following notation appears in the 
left column of the output 

n}m 

where 

n is the number of the input file, and 
m is the page number ofthe input file (see examples). 

The right column lists the differences occurring between matches in the input files-. Following 
the I!st d differences, a line identi cal to each fi Ie is output for reference purposes. 

The output frrn the /U switch differs from the above-described output in that the output file 
created is the scond input file with vertical bars in the left column next to the lines that are 
different from tie first input file. 

Binary compareoutput - When a difference is encountered between the two input files, a line 
in the followin{ format appears on the .output device: 

octal loc. first file-word second fi I e-word XOR of both words 

If the exclusive CR (XOR) of the two words differs only in the right half, the third word output 
is the absolutMalue of the difference of the two right halves. This usually indicates an ad­
dresstlut changed. 

If one input file is shorter than the other, after the end of file is encountered on the shorter 
file, the remainder of the longer file is output. 

Version 20 FILCOM 2-84 November 1972 



-935- FIU!OM"" " 

Characteristics 

The R FILCOM command: 

Places the terminal in user mode. 
Runs the FILCOM program, thereby destroying the user's core image. 

Associated Messages 

12K CORE NEEDED AND NOT AVAILABLE 

FILCOM needs 2K of core to initialize VO devices and this core is not available 
from the monitor. 

?BUFFER CAPACITY EXCEEDED AND NO CORE AVAILABLE 

The buffer is not large enough to handle the number of lines required for looking 
ahead for matches, and additional core is not available. 

?COMMAND ERROR 

One of the following errors occured in the last command string typed. 

1) There is no separator ( .. or =) between the output and input specifica-
~m. " 

2) The input specification is completely null. 

3) The two input files are not separated by a comma. 

4) A file descriptor consists of characters other than alphanumeric charac­
ters. 

5) FILCOM does not recognize the specified switch. 

6) The project-programmer number is not in standard format, i. e., 
[proj ,prog] • 

7) The value of the specified switch is not octal. 

8) The first input file is followed by a comma but the second input file is 
null. 

?DEVICE dev: NOT AVAILABLE 

Device is assigned to another job or does not exist. 

?FILE n NOT IN SAV FORMAT 

The user indicated via the IX switch that the file is to be expanded but the sp~cified 
file is not in compressed file format. N is either 1 or 2 indicating the first file or the 
second fi Ie. 

Version 20 FILCOM 2-85 November )972 



I 

FILCOM -936-

Associated Messages (Cont) 

?FIlE n READ ERROR 

An error has occurred on either the first or second input device. 

%FIlES ARE DIFFERENT 

The two input files specified in the command string are different (i.e., the two files 
are not two versions of the same file but are two different files). 

?INPUT ERROR - file.ext FILE NOT FOUND 

The specified file could not be found on the input device. 

NO DIFFERENCES ENCOUNTERED 

No differences were found between the two input files. 

?OUTPUT DEVICE ERROR 

An error has occurred on the output devi ce. 

?OUTPUT INITIALIZATION ERROR 

The output device cannot be initialized for one of the following reasons: 

1) The device does not exist or is assigned to another job. 

2) The device is not an output device. 

3) The file cannot be placed on the output device. 

V~rsion 20 FILCOM 2-86 November 1972 



I 

-937- FIlCOM 

Examples 

1. The user has the f9l1owing two ASCII files on disk: 

First File 

FILE A 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

First File 

N 
o 
P 
Q 
R 
5 
T 
U 
V 
W 
>< 
Y 
Z 

Second File 

FIl.E 8 

A 
R 
C 
G 
H 
I 
J 
1 
2 
3 

Second File 

N 
o 
P 
Q 
R 
5 
T 
1.I 
V 
4 
5 
W 
X 
Y 
Z 

page 1 

T 
page 2 

To compare the two file. and output the differences on the terminal, the following sequence 
is used: 

Version 20 FILCOM 

.R F I LeO,.,) 

!=F"I LEA # F I LEB) 

Run the FIL CO M program. 

Compare the two files on disk and output the dif­
ferences on the terminal. By default, three consec­
utive identical lines determine a match. 

2-87 



FILCOM 

Examples (cont) 

h d ..... ~ FIl.E I) DSK:f ILEA 
ea ers~FILF 2) DSK:FTl.f~ 

-938-

CkEATED: 1456 17-JAN-1972 
CHEATED: 145n 17-JAN-1972 »1 AfILE A> line I) 

identical <**** 
in both 2)1 fILE B . 

First difference 

files 2) A 

************** 

line 

\>1 
\) 

I ) 
~ }>--.. 4----- Second difference 

°d ° 1<1) I entlca **** 
in both 9)1 G 

files ************** 
1>1 K 
1 ) l. 
1 ) t>'. 

line <!~:* identical 2)1 1 
in both 2) 9 
files 9) 3 

9)2 N 

N Third difference 

************** 
(.j 

identical **** 
line <1)2 
° both 2)2 
In 2) 
files 2) 

~ )~ ....... ---- Fourth difference 

w 
************** t L This column indicates the page number of the file. 

This column indicates either the first file or the second file. 

Version 20 FILCOM 2-88 



-939- FILCOM 

Examples (cont) 

To compare the two files and output the differences on the line printer, the following commands 
are used • Note that in this example the number of successive lines that determines 0 match has 
been set to 4 with the /4L switch • 

.!oR FILCOrt:) 
!Lf'T : /4 L = F I L E 1\ , ~- J L F r::) 

Version 20 FILCOM 

FILE 1) DS~:FILFA 
FILE 2) DSK:FILFH 

1>1 
J) 

1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 

**** 
2) 1 
2) 

D 
E 
F 
G 

2) B 
2) C 
2) G 

A 

************** 
1 ) 1 K 
1 ) L 
1 ) I'" 
1>2 N 

**** 
2)1 1 
2) 2 
2) 3 
2)2 N 

************** 
1)2 W 

**** 
2)2 4 
2) 5 
2) W 

** * * * * * * * * * * * * 

CkEATED: 1456 17-JAN-1972 
CREATED: 1456 17-JAN-1972 

These lines are listed as being different because 
the /4L switch specifies that 4 consecutive lines 
must be found identical in the two files before they 
are considered as a match. 

(continued on next page) 

2-89 



FILCOM -940-

Examples (cont) 

To compare the two files so that the second input tile is output with vertical bars in the left 
column next to the lines that differ from the first input file, use the following command se­
quence. 

!f< FILCOflll) 
~LPT : III =F I LFA.o F Il FF) 

FILE B 

A 
B 
C 
G 
H 
I The lines with vertical bars indicate the differences 
J between the two files. 
1 
2 
3 
N 
o 
P 
Q 

R 
S 
T 
1I 
V 
4 
5 
\oJ 
'X 
Y 
1. 

The lines with vertical bars indicate the differences 
between the two files. 

2. To compare two binary files on the disk and output the differences on the terminal, use 
the following command sequence. 

Version 20 FILCOM 

~R FILCOM) 
!TTY:·DSK:DIAL.REL.oDIAL2) 
FILE 1) DSK:DIAL.REL CREATED: 0000 23-DEC-1971 
FILE 2) DSK:DIAL2.REL CREATED: 0000 12-AUG-1971 

(1100000 
00011102 
00001113 
000004 

000004 000001 
000000 054716 
1100006 000001 
000000 00000"" 

2-90 

000004 000060 
000311 372712 
017573 510354 
017573 513216 

000057 
000311 326004 
017575 510355 
017573 513216 

(continued on next page) 



-941- FILCOM 

Examples (cont) 

3. To compare two high segment files, the command sequence below is used. Note that the 
locations begin at 400000. 

!.R F'ILCOM) 
TAblE .SHI\) !TTY:·S~S:TAPLf.SHK# 

F'IlE 1) SYS:TABlE.SHH CREATED: 2020 
F'IlE 2) DS~:TABlE.SHR CREATED: 1829 

40"-1000 001611 400010 001630 401151 
400003 006615 000000 015024 407670 
400004 005600 000070 00470"-1 000113 
400005 545741 444562 554143 625700 
400010 63401210 0012112100 26121740 403516 
400011 47401210 00000121 .2121012100 414036 
40121012 402000 00121156 202000 000720 
40012113 200040 406354 2010l:'0 013121472 

4. To list a binary file, use the following command sequence. 

!oR F' I lC OM) 
!TTY:.SYS:DOT.REl) 
01211211300 01210004 000001 
000001 000000 0001300 
0121012102 000000 054716 
000003 000006 000001 
000004 00012100 000000 
000005 000007 517716 
000006 000001 000002 
000007 01210000 000000 

24-JAN-1912 
30-NOV-1911 

000021 001141 
013651 4117610 
001 litH::) 000163 
~J1 16"-12 26126~ 
454140 4113516 
674000 414036 
600000 000676 
01i11040 406726 

Note that the following sequence will not work because of the terminating comma. 

!TTY:.SYS:DOT.REl#) 

?COMMAND ERROR 

Version 20 FILCOM 2-91 



FILCOM -942-

Examples (cont) 

5. To compare two binary files between locations 150-160 (octal). 

.R "I lC OM) . 
!TTY: II 501/1 60lJ"S YS : S YSTAT. SAV I S YS : S YSDPY .SAV) 
FILE I ) SYS:SYSTAT.SAV CREATED: 121818 30-NOV-1971 
l'IlE 2) SYS :SYSDPY .SAV CREATED: 1642 29-NOV-1971 

1210015121 2121040121 01210137 2121074121 003217 000340 003320 
00121 i 51 2612174121 01214226 412145121121 01214242 664240 121121012164 
000152 26074121 1211214253 661500 012121210121 401240 ftl06253 
00121153 200040 00501 I 260740 01212723 06071210 007732 
00121154 2612174121 004063 212112104121 01214243 06121700 12100220 
000155 21211041 777777 2121212140 121133241 12103131211 774536 
1210121156 12147040 12112112112142 2121004121 1211214241 2470121121 1210421213 
00121157 254000 000174 25112140 1211214142 12105040 00412136 
000 i 6(JJ 47601210 006774 211040 01210144 667040 01216630 

6. To compare two .SAV files. Note that the files are expanded before the comparison. 

!oR l'I lC OM) 
!.TTY:"S YS :TRY l.~ SAV IS YS: TR Y .SAV) 
l'IlE 1) SYS :TRYI .SAV CHEATED: 212143 eJ5-JAN-1972 
l'IlE 2) SYS:TRY.SAV CREATED: 121818 3121-NOV-1971 

1300114 00401210 0121014121 0001211210 0121121121121121 0041210121 12100141-) 
00121 1 16 777536 005536 00121121121121 0001211210 777536 1211215536 
1211210117 1211210121121121 01215536 12101210121121 0000121121 01215536 
000120 12112160121121 0121121140 007222 1211210140 1211211222 000000 
01210121 121121121121121121 12106000 12100000 12107222 1211211222 
1210013121 1211000121 012112101215 1211210000 012101211210 010000 001312105 
12100133 01213727 1211215777 006643 1211217777 131215164 002~0fi! 

12100137 1210341210 0001217121 0467130 121121121004 1214531210 00121074 
01301413 2641313121 001454 04700121 0001210121 2231211313 0fq1454 
1211210141 26121040 001773 21000413 00512175 06121121013 121104706 
01210142 2012413 121101447 4020130 01216644 6121324121 007203 
0121121143 54224121 0101634 25112140 12107221 713200 101216415 
130121144 260040 01212774 41331211210 010012115 66304121 002761 
1210121145 6211211210 000010 476000 006715 25700121 0106705 
12112110146 2010240 01335134 2121137413 1013661216 12113121500 10053102 
000141 2512410 1001012112 1051140 00512176 21210300 0135064 
100015121 ilI2I2000 1003613 200400 000137 602400 003724 
0001 5~ 2011040 0103730 26074121 0104226 061'700 007516 
01210152 20121260 01213632 260740 004253 12160520 1307461 
00121153 3212413 12100]64 201210413 130512111 1212130 005175 

Version 20 FIlCOM 2-92 



I 

I 

I 

I 

Function 

-943- FUDGE2 

The FUDGE2 program is used to update files containing one or more reloctable binary 
modules and to manipulate the individual modules within these files. Relocatable binary 
modules are output by MACRO-lO, FORTRAN-la, COBOL, ALGOL, and BLISS-10. A 
module can be a complete program or only a set of subroutines. One reason for collect­
ing a group of relocatable modules into one file is to enable LINK-10 or LOADER to use 
the file as a library (refer to the LINK-lO or LOADER documentation). Three files are 
used in the updating process: 

1. A master fi Ie conta in i ng the fi Ie to be updated. 
2. A transaction file containing the modules to be used when updating. 
3. An output fi Ie containing the updated file. 

All three files can be on the same device if the device is DSK. The two input files can be 
on the same DE Ctape • 

The desired function of FUDGE2 is specified by a command code at the end of the command 
string. Only one command code can be specified in each command string. Switches can 
also be used to position a magnetic tape and to zero a DECtape directory (zeroing a DECtape 
directory is equivalent to deleting all the files on the tape). 

WARNING 

For execution to occur, the command string must be term­
inated with an ALTmode, represented in this manual by a 
dollar sign ($), instead of the usual carriage return-line 
feed. 

Command format 

.R FUDGE2) 
!output dev:file. ext=master dev:file.ext <modules>, transaction dev:file.ext <modules> 

(command)$ 

output dev: 

master dev: 

transaction dev: 

file. ext 

Version 15 FUDGE 2 

= the device on which the updated file is written. If omitted, 
DSK is assumed. 

=the device containing the file to be updated. If omitted, the 
default is DSK. A comma is used to separate the master file 
and the transaction file. 

= the device containing the modules to be used in the updating 
process. When more than one file is transferred from mag­
netic tape or paper tape, a colon must follow the device 
name for each file. For example, 

MT A: :: Transfer 3 files 

If the device is omitted, DSK is assumed. 

=the filename CI"Id extension of each fi Ie. Filenames must be 
specified for directory devices, but the extension can be omit­
ted. If the extension is not given, it is assumed to be • REL 
unless the /L switch appears in the command string. In this 
case, the output extension .LST is assumed. 

2-101 April 1973 



FUDGE2 

Command Format (cont) 

file.ext (cont) 

I <modules> 

(command) 

Version 15 FUDGE2 

-944-

Project-programmer numbers appearing after a filename apply 
to that file only. If the project-programmer number appears 
before the filename, it applies to all subsequent files until 
another device is specified. 

The protection code of the master fi Ie is given to the output 
file. 

The asterisk convention can be used with the input files (refer 
to Paragraph 1.4.204). 

=Names of modules (on DSK or DTA only) to be used in the up­
dating process. They are grouped within angle brackets in the 
same order as they appear in the file and are separated by 
commas. When manipulating all the modules within a file, 
only the fi lename need be specified. Module names cannot 
appear for the output fi Ie. 

=Code for the function to be performed. This code can be 
either preceded by a slash or enclosed in parentheses and must 
appear at the end of the command string. Each command results 
in the updated fi Ie being output to the output device. The 
command codes are as.follows: 

A Append the specified modules in the transaction file(s) 
to the master file. . 

C Compress the master file by deleting local symbols. 
These symbols are included in relocatable binary modules 
primarily because of their usefulness in debugging pro­
cedures. large libraries of debugged routines, such 
as LIBOl, fr~quently have the local symbols deleted in 
order to save d!sk space and reduce the amount of I/O 
required during the loading process. 

D Delete tha speCified modules from the master file. 

E Extract the specified fi les and/or modules from the input 
files. The entire file is extracted if module names are 
not specified. 

H Type the commands and· switches available (help text 
from device SYS:). 

Insert modules from the specified transaction fi les into 
the master fi Ie. The modules from the transaction fi les 
are inserted immediately before the specified modules 
in the master file. A comma is used to separate the 
transaction files. 

(continued on next page) 

2-102 April 1973 



I 

-945- FUDGE2 

Command Format (cont) 

(command) (cont) L List the names and lengths of all relocatable modules 
within a fi Ie. The length is in one of two forms: 

low sc3gment break, high segment break or 
program break, absolute break 

The length of FORTRAN modules is not output. 

The default filename for spooled output is the name of 
the master fi Ie. 

R Replace the specified modules in the master file with 
the specified modules in the transaction fi Ie. The 
number of replacing modules must be the same as the 
number of modules to replace. 

S List all the entry points within a module. These entry 
points are listed across the page. The default filename 
for spooled output is the name of the master fi Ie. 

X Write index blocks into a library file on DECtape or 
disk. Indexes cannot be written on magnetic tape. 
Index blocks are used in a direct access library search 
(refer to the LOADER documentation). This command 
implies a C command. 

The method of numbering the blocks within a file is different on DECtape ond disk. This can cause 
prob'lems with indexed library files that are created on one device and loaded from the other. The 
index in an indexed library contains the name of each module in the library along with the block 
number within the library file of the beginning of that module. On disk, the blocks of a file are 
numbered relative to the beginning of the file; thus, an index references the same blacks properly no 
matter where the file is placed on the disk. However, on a DECtape, the block numbers are estab­
lished relative to the beginning of the tape. Therefore, the area of the tape on which the file resides 
determines the block numbers that will be used in the index. When the LOADER references on indexed 
library on a device different from the one on which it was created, the block numbers in the index may 
no longer point to the correct location within the library. This problem can also arise when loading an 
indexed file that was created at one location on a DECtape and then was transferred to a different 
location on that tape or to another tape. To transfer indexed files to other devices and then to load 
them from that device, the ind~x blocks should be de leted before transferring and recreated on the 
new device. Any FUDGE2 command which generates a new binary file deletes the index blocks and 
causes a warning message to be output. The IX switch writes the index blocks. 

Version 15 FUDGE 2 

NOTE 

An indexed library created on the disk will work properly no 
matter how many times it is transferred to and from other 
devices, such as DECtape and magnetic tape, as long as the 
library is restored to the disk for use by the LOADER or 
LINK-10. 

(continued on next page) 

2-103 April 1973 



I 

FUDGE2 -946-

Command Format {cont} 

Comments are included on the FUDGE2 command string by preceding the comment with a 
semicolon. All characters after the semicolon, except for the ALTmode, are ignored until 
the next line feed, vertical tab, or form feed character is read. 

File directories can be manipulated and magnetic tapes positioned by including switches in 
the command string. These switches can appear anywhere in the command string and are 
preceded by a slash or enclosed in parentheses. The following switches are available: 

/B' Backspace a magnetic tape one file. 

/K Advance a magneti c tape one file. 

IT Skip to the logical end of tape on a magnetic tape. 

/W Rewind a magnetic tape. 

/Z Clear the directory of the output DECtape. 

Characteri sti cs 

The R FUDGE2 command: 

Places the terminal in user mode. 
Runs the FUDGE2 program, thereby destroying the user's core image. 

Associ ated Messages 

?CANNOT DO I/O AS REQUESTED 

Input {or output} cannot be.performed on one of the devices specified for input {out­
put}. For example, input may have been requested for a device that can only do out­
put. 

?COMMAND SWITCH REQUIRED 

The given command string requires a FUDGE2 command code. 

?DEVICE ERROR ON OUTPUT DEVICE 

A write error has occurred on the output file. 

?DIRECTORY FULL ON OUTPUT DEVICE 

There is no room in the file directory on the output device to add the updated file 
{non-disk devices only}. 

Version 15 FUDGE2 2-104 April 1973 



-947- FUDGE2 

Associated Messages (Cont) 

?ENTER FAILURE n 

The output filename is null; n is the error code for an illegal filename (non-disk 
devices only). 

?ENTER FAILURE 

The ENTER to write the disk file failed. This message is followed by a line 
explaining the reason for failure. 

?ENTRY BLOCK TOO LARGE, PROGRAM name 

The entry block of the named program is too large for the FUDGE2 entry table, 
which allows for 1 00 entry names. FUDGE2can be reassembled with a larger table. 

?FUDGE2 SYNTAX ERROR 

An illegal command string was entered; for example, the left arrow was omitted or a 
program name,was specified for the output file. 

?ILLEGAL BLOCK TYPE dev:file.ext 

The block type used is not in the range 0-77. 

?ILLEGAL DATA MODE FOR dev 

The data mode specified for a device in the user's program is illegal, such as dump 
mode for the terminal. 

?(O)ILLEGAL FILENAME 

A filename of zero was specified. 

?INPUT ERROR ON DEVICE dev~ STATUS (nnnnnn) 

A data or devi ce error occurred on input. 

? IS AN ILLEGAL (CHARACTER) 
x SWITCH 

An illegal character or switch was encountered in the command string. 

?LOOKUP FAILURE 

The LOOKUP to read the disk file failed. This message is followed by a line explain­
ing the reason for' failure. 

Version 15 FUDGE2 2-105 April 1973 



FUDGE2 -948-

Associated Messages (Cont) 

?dev:file.ext <> NO PROGRAM NAME SPECIFIED 

The swHch (/D or /R) used in the command string requires that a program name be 
given. 

?dev NOT AVAILABLE 

The specified device does not exist or is assigned to another user. 

?NOT ENOUGH ARGUMENTS 

An insufficient number of fi les of one type has been specified. 

?dev file.ext program NOT FOUND 

The fi Ie or the program was not found on the device or in the fi Ie specified. If a pro­
gram name is printed, this message may indicate that the program names in the com­
mand string appear in a sequence different from their sequence within the file. There­
fore, the program may actually exist but was missed because of the incorrect sequence 
in the command string. 

?PROGRAM ERROR WHILE RESETTING MASTER DEVICE 

FUDGE2 cannot find the master device or cannot find the program on the master device. 

?TOO MANY FILENAMES OR PROGRAM NAMES 

More than 40 program names or filenames were specified in the command string. The 
user should separate the job into several segments. 

?TRANSMISSION ERROR ON INPUT DEVICE dev 

A transmission error has occurred while reading data from the specified device. 

?UNEQUAL NUMBER OF MASTER AND TRANSACTION PROGRAMS 

On a replace request, the number of master programs (or files) does not equal the 
number of transaction programs (or files). 

WARNING NO INDEX ON OUTPUT FILE-CONTINUING 

The user has changed the structure of the indexed library file when deleting, append­
ing, or inserting, thereby invalidating the index. The index has been removed from 
the new file. Reindexing is required. 

Version 15 FUDGE2 2-106 



Examples 

.R FUDGE2) 
~LPT:=OTAI :LIB40CL)$ 

-949- FUDGE2 

List all relocatable modules from the file LIB40 
.REL, located on DTA1, on the line printer. 

*DSK:L IB4BB=DTA2 :LIB4AA -<:EXP .3;EXP .3C >, 

mAl :F4<EXP.3A,EXP.3B>OO$ Replace modules EXP.3and EXP.3C located in 
file LIB4M.REL on DTA2, with modules EXP.3A 
and EXP.3B in File F4.REL on DTA1; write out the 
new LIB4M file on disk and call it LIB4BB.REL. 

*DTA I : NF I LE=DS K : MF I LE <M I , fo',2, 1v.3, M4 >, 

- Insert into MFILE the modules TAl and TA2 from 
DTA3 :TF ILEA <TA I, TA2 >, TFILEA, and TB 1 and TB2 from TFILEB. Create 
DTA4 : TF I LEB <TB I , TB2 > / I $ NFILE with the following order: 

TAl, Ml, TA2, M2, TB1, M3, TB2, M4 

Insertion is on a one-to-one basis. If there are more 
modules to be inserted than specified modules before 
which they are to be inserted, the extra files are 
ignored. 

,!DTAI :NFILE=DSK:MFILE<MI ,M2,M3,~4>, 
DTA3:TFILEA, 
DT A 4 : T I' I L E B /I $ 

However, in this example (where TFILEA. REL and 
TFILEB. REL contain the modules TAl and TA2 and 
TBI and TB2, respectively) create an NFILE.REL 
with the following order: 

TA I, TA2,Ml, TB1, TB2,M2,M3,M4 

,!DTA2:TF::STA=MTAI :CWK),MTA2: :CZAH 

Clear the directory of DTA2; rewind MTAI and ad­
vance the tape one file; append the first two pro­
gram files from MTA2 to the second file on MTAI 
and write out the resultant file on DTA2, calling it 
TESTA.REL. 

!.OUTPlIT=L IRARY ,DTA 1 :L IBARY<F I LEY,F ILEZ>/A$ 

Append the modules FILEY and FILEZ contained in 
the file LIBARY. REL on DT A 1 to the end of the file 
LIBARY. REL on disk. Write the new file on disk 
and call it OUTPUT. REL. 

*NEWF IL=OLDF' IL<TEST ,SllE:<lkC ,lVlILT I>,RASF] L<P,,"OG, 
ROUTIN,ANSI .. JEk>.SlI8FIL<MATH>CE)$ Extract the specified modules from the files 

OLDFlL, BASFIL, and SUBFlL and create a new 
output file called NEWFIL. The order of the 
modules in NEWFIL is as follows: TEST, SUBTRC, 
MULTI, PROG, ROUTIN, ANSWER, MATH. 

(continued on next page) 

Version 15 FUDGE2 2-107 



FUDGE2 -950-

~~ (cont) 

*I"fWF40 =DTI\2 :OLDF4v) <SU8TLEIDATF ILlkOUT I NE >/D$ 

- Delete the modules SUBTLE, DATFIL, and ROUTNE 
from the file OLDF40. REl on DTA2 and create a 
new output fi Ie NEWF40. REl on disk containing 
the remainder of file OlDF40. 

*NOIDX.REL=IDX.RFLCA)$ 

Version 15 F UDGE2 

Delete index blocks from the file IDX.REL and 
write the remainder of the fi Ie on the output fi Ie 
NOIDX. REL. The Append command (A) generates 
a new binary fi Ie and therefore removes the index 
blocks. . 

Return to the monitor. 

2-100 



-951- GLOB 

Function 

The GLOB program reads multiple binary program files and produces an alphabetical cross­
referenced list of all the global symbols (symbols accessible to other programs) encountered. 
This program also searches files in library search mode, checking for globals, if the program 
file was loaded by the LOADER in library search mode (refer to the LOADER documentation). 

The GLOB program has two phases of operation; the first phase is to scan the input files and 
build an internal symbol table, and the second, to produce output based on the symbol table. 
Because of these phases, the user can input commands to GLOB in one of two ways. The first 
way is to specify one command string containing both the output and input specifications. 
(This is the command string format most system programs accept.) The second is to separate 
the command string into a series of input commands and output commands. 

Command Formats 

1. R GLOB 

outdev:file.ext [directory] = input dev:file.ext [directory], file.ext, ... ,dev:file.ext 
[d i rectory] CD 

2. R GLOB 

followed by one or more input commands in the form 

dev:file.ext [directory],file.ext [directory], ... ,dev:file.ext [directory], ••• ) 

and then one or more output commands in the form 

outdev:file.ext [directory] =CD 
When the user separates his input to GLOB into input commands and output commands (Com­
mand Format #2), the input commands contain only input specifi cations and the output com­
mands, only output specifications. Each output command causes a listing to be generated; 
any number of listings can be printed from the symbol table generated from the current input 
fi les as long as no input commands occur after the first output command. When an input com­
mand is encountered after output has been generated, the current symbol table is destroyed 
and a new one begun. 

Defaults 

1. If the device is omitted, it is assumed to be DSK. However, if the entire output specifi­
cation is omitted, the output device is TlY. 

(continued on next page) 

Version 5A GLOB 2-107 April 1973 



I 

, 
I 

GLOB -952-

Command Format (cont) 

Defaults (cont) 

2. If the output filename is omitted, it is the name of the last input file on the line 
(Command Format #1) or is GLOB if the line contains only output commands 
(Command Format #2). The input filenames are required. 

3. If the output extension is omitted, .GLB is used. If the input extension is omitted, it 
is assumed to be • REL unless the null extension is explicitly specified by.a dot following 
the filename. 

4. If the project-programmer number [proj, prog) is omitted, the user's default directory is 
used. 

5. An ALTmode terminates the command input and signals GLOB to output the cross-referenced 
listing. In other words, a listing is not output until GLOB encounters an ALTmode. The 
ALTmode appears at the end of the command string shown in Command Format #f or at the 
end of each output command shown in Command Format #2. 

Switches 

Switches control the types of global listings to be output. Each switch can be preceded by a 
slash, or several switches can be enclosed in parentheses. Only the most recently specified 
switch (except for L, M, P, Q, and X, which are qlways in effect) is in effect at any given 
time. If no switches are specified, all global symbols are output. The following switches are 
available. 

/A Output all global symbols. This is the default if no switches are specified. 

/E 
/F 
/H 

List only erroneous (multiple defined or undefined) symbols. 

List nonrelocatable (fixed) symbols only. 

List the switches available (help text) from SYS:GLOB.HLP. 

/L Scan programs only if they contain globals previously defined and not yet 
satisfied (library search mode). 

/M Turn off library search mode scanning resulting from a /L switch. 

/N List only symbols which are never referenced. 

/p List all routines that define a symbol to have the same value. The routine 
that ~efines the symbol first is listed followed by a plus (+) sign. Subse­
quent routines that define the symbol are listed preceded by a plus sign. 

/Q Suppress the listing of subsequent definers that result from the /p switch. 

(continued on next page) 

Version 5A GLOB 2-108 April 1973 



-953- GLOB 

Command Fonnat (cont) 

Switches (cont) 

Characteri sti cs 

IR List only relocatable symbols. 

Is List symbols with non-conflicting values that are defined in more than one 
program. 

Ix Do not print listing header when output device is not the terminal, and 
include listing header when it is the terminal. Without this switch, the 
header is printed on all devices except the terminal. The listing header is 
in the following format: 

FlAGS SYMBOL OCTAL VALUE DEFINED IN REFERENCED IN 

Symbols listed are in alphabetical order according to their ASCII code 
values. The octal value is followed by a prime (') if the symbol is relo­
eatable. The value is then relative to the beginning of the program in 
which the symbol is defined. Flags preceding the symbol are shown 
below. 

M Multiply defined symbol (all values are shown). 

N Never referred to (i.e., was not declared external in any of 
the binary programs). 

S Multiply specified symbol (i .e., defined in more than one 
program but with non-conflicting values). The name of the 
first program in which the symbol was encountered is followed 
by a plus sign. 

U Undefined symbol. 

The R GLOB command: 

Places the terminal in user mode. 
Runs the GLOB program ,thereby destroying the user's core image. 

Associated Messages 

?COMMAND SYNTAX ERROR 
TYPE/H FOR HELP 

An illegal command string was entered. 

?DESTINATION DEVICE ERROR 

An I/O error occurred on the output device. 

Version 5A GLOB 2-109 



I 

GLOB -954-

Associated Messages (cont) 

Examples 

?ENTER ERROR n 
?DIRECTORY FULL 

No additional fi les can be added to the directory of the output device; n is the disk 
error code. 

?ILLEGAL SWITCH 

A non-recognizable switch was used in the command string. 

?LOOKUP ERROR n 
?file.ext FILE NOT FOUND 

The named file cannot be found in the directory on the specified device. 

?dev NOT AVAILABLE 

The requested device does not exist or is assigned to another job. 

?TABLE OVERFLOW - CORE UUO FAILED TRYING TO EXPAND TO xxx 

The GLOB program requested additional core from the monitor, but none was 
available. 

,!R GLOB) Run the GLOB program. 

!LPT:=MAINIDTA2:SUB40ISUB50 ® All global symbols in the programs MAIN (on DSK), 
SUMO, and SUB50 (on DTA2) are listed on the line 
printer. Along with the symbol is listed its value, 
the program in which it is defined, all programs in 
which it is referenced, and any error flags. 

~TA4:BATCH.RELIDATA.DTA6:NUMBEH.RELICLASS) 

!DSK:MATH.RELILIBARY.) The programs to be scanned are BATCH.REL, 
DATA.REL on DTA4; NUMBER.REL, ClASS.REl 
on DTA6; and MATH.REL, LIBARY.null on DSK. 

*LPT :=/F ® 
!!,SK :SYMBOL=/H ® 

!TTY: =/E ® 
U EXTSYM SUBRTF.: 

~tC 

Version 5A GLOB 

list only nonrelocatable symbols on the line printer. 

list only relocatable symbols in the file named 
SY MBOL in the user's default directory. 

Print all erroneous symbols on the terminal. EXTSYM 
is an undefined symbol appearing in the program 
SUBRTE. 

Return to monitor mode. 

2-110 



-955- INDEX 

INDEX 

A, 24, (SYSTEM REF.) 
A+l, 24, (SYSTEM REF.) 
Absolute address, 360, (MONITOR 

CALLS) 
Absolute address mode, 205, 277, 

(MACRO) 
Absolute binary programs, 288, 

(MACRO) 
Absolute symbols, 695, (LINK-10) 
AC, 24, (SYSTEM REF.) 
Access block, 559, 642, (MONITOR 

CALLS) 
Access protection, 554, (MONITOR 

CALLS) 
Access time, 13, (SYSTEM REF.) 
Accumulators, 360, (MONITOR CALLS) 
Accumulators, 7, (SYSTEM REF.) 
Action switches, (LINK-10) 

Delayed, 684, 695, 700, 708, 
713, 717, 720, 726, 730, 
731, 741, 743, 745, 748, 
749, 755 762, 765, 771 

Immediate, 693, 697, 698, 703, 
706, 718, 735, 739, 746, 754, 
769 

ACTIVATE UUO, 378, (MONITOR CALLS) 
Active search list, 562, (MONITOR 

CALLS) 
Active swapping list, 607, 

(MONITOR CALLS) 
ADD, 49, (SYSTEM REF.) 
Address assignments, 223, (MACRO) 
Address break, 102, (SYSTEM REF.) 
Addressing, 7, (SYSTEM REF.) 
Addressing by monitor, 550, 

(MONITOR CALLS) 
Address, (LINK-10) 

ignoring start, 738 
specifying start, 758 
start, 666, 677, 689, 713, 738, 

758 
Address mapping, 361, (MONITOR 

CALLS) 
Address mode, relocatable or 

absolute, 227, (MACRO) 
Addresses, symbolic, 212, (MACRO) 

elements, 280 
operands, 212 
operators, 211 

ALGLIB, 740, (LINK-10) 
Algorithms, switch, 679, (LINK-10) 
Algorithms, 605, (MONITOR CALLS) 
Algorithms, 179, (SYSTEM REF.) 

fixed point, 150 
addition, 150 
division, 183 
multiplication, 181 
subtraction, 181 

Algorithms, (Cont.) 
floating point, 185 

addition, 186 
division, 188 
double precision division, 190 
multiplication, 188 
scaling, 188 
subtracting, 186 

Allocating COMMON, 692, (LINK-IO) 
Allocating core, 360, 401, (MONITOR 

CALLS) 
Allocating disk space, 709, (LINK-IO) 
Allocating patching space, 744, 

(LINK-10) 
Altering a monitor location, 417, 

(MONITOR CALLS) 
AND, 42, (SYSTEM REF.) 
ANDCA, 42, (SYSTEM REF.) 
ANDCB, 43, (SYSTEM REF.) 
ANDCM, 42, (SYSTEM REF.) 
Angle brackets «», 213, 261, 266, 

327, (MACRO) 
coding, 252 

AOBJN, 63, (SYSTEM REF.) 
AOBJP, 63, (SYSTEM REF.) 
AOJ, 66, (SYSTEM REF.) 
AOS, 67, (SYSTEM REF.) 
Appending a file, 586, (MONITOR CALLS) 
APR, 95, 101, 105, (SYSTEM REF.) 
APRENB UUO, 373, 387, (MONITOR CALLS) 
APR trapping, 387, (MONITOR CALLS) 
AR, 6, (SYSTEM REF.) 
Area, (LINK-IO) 

COMMON, 692 
DSK disk, 667 
NEW disk, 667 
OLD disk, 667 
SYS disk, 667 
expanding, 716 

Arithmetic operations,' 219, (MACRO) 
Arithmetic shifting, 53, 163, 

(SYSTEM REF.) 
Arithmetic testing, 63, 163, 

(SYSTEM REF.) 
Arranging symbol table, 765, (LINK-IO) 
ARRAY pseudo-op, 242, (MACRO) 
AS,S, (SYSTEM REF.) 
ASCII, 6-bit, 240, (MACRO) 
ASCII, 7-bit, 240, (MACRO) 
ASCII interpretation, 268, (MACRO) 
ASCII card codes, 627, (MONITOR CALLS) 
ASCII statement, 240, (MACRO) 
ASCIZ statement, 240, (MACRO) 
ASH, 53, (SYSTEM REF.) 
ASHC, 54, (SYSTEM REF.) 
Assembler control statements, 253, 

(MACRO) 
Assembler interpretation, 327, (MACRO) 
Assembler, MACRO, 205, (MACRO) 

Index-l 



INDEX -956-

Assembly, 900, (DDT) 
Assembly listing, 205, 283, (MACRO) 
Assigning values, 705, (LINK-lO) 
Assignment delay, 652, (LINK-lO) 
Assignment statements, direct, 215, 

(MACRO) 
Assignments, 215, (MACRO) 
Assignments, address, 223, (MACRO) 
ASUPPRESS pseudo-op, 248, (MACRO) 
ATTACH UUO, 379, (MONITOR CALLS) 
@(at) character, 207, 224, (MACRO) 
Automatically, Using LINK-lO, 656, 

659, (LINK-lO) 
Auxiliary output, 651,654, (LINK-lO) 

B (binary radix), 218, (MACRO) 
Back Slash ('), 268, 328, (MACRO) 
/BACKSPACE, 686, 691. (LINK-lO) 
Backspacing tapes, 691, (LINK-lO) 
Bad address subtable, 439 (MONITOR 

CALLS) 
Bad allocation table, 612 (MONITOR 

CALLS) 
BCD (binary coded decimal) code, 

639, (MONI':r'OR CALLS) 
Binary files, 651, (LINK-lO) 
Binary files, loading, 360, 

(MONITOR CALLS) 
Binary progr~ output, 284, 285, 

(MACRO) 
Binary shifting, 221, (MACRO) 
Binary value interpretation, 903, 

(DDT) 
Bit assignments, in-out, 195, 

(SYSTEM REF.) 
Blank character, 331, (MACRO) 
Blank COMMON, 692, (LINK-lO) 
Blank field, 233, (MACRO) 
BLIST, 36, (SYSTEM REF.) 
BLKI, 92, (SYSTEM REF.) 
BLKO, 92, (SYSTEM REF.) 
Block 10, 92, (SYSTEM REF.) 
Block allocation, DECtape, 540, 

(MONITOR CALLS) 
Block mode, 444, (MONITOR CALLS) 
BLOCK statements, 243, (MACRO) 
Block transfer, 32, (SYSTEM REF.) 
Block transfer instructions, 239, 

(MACRO) 
Block types, 290, 291, 292, (MACRO) 
BLT, 32, (SYSTEM REF.) 
Boolean functions, 39, 159, (SYSTEM 

REF. ) 
BR, 7, (SYSTEM REF.) 
Brackets, angle, see angle brackets 
Breakpoints, 874, 891, 911, (DDT) 

checking status, 893, 912 
conditional, 893, 912 
proceeding from, 876, 892, 894, 

912 

Breakpoints (Cont.) 
reassigning and removing, 876, 

891, 912 
restrictions, 875; 892 
setting, 875, 891, 911 
type outs, 875, 907, 909 

Buffer, 466, (MONITOR CALLS) 
Buffered data mode, 465, 476, 

(MONITOR CALLS) 
Buffer header, 465, (MONITOR CALLS) 
Buffer initialization, 468, (MONITOR 

CALLS) 
Buffer ring, 467, (MONITOR CALLS) 
Buffer ring header block, 466, 

(MONITOR CALLS) 
Busy, 93, (SYSTEM REF.) 
Byte interrupt, 77, (SYSTEM REF.) 
Byte manipulation, 37, 160, (SYSTEM 

REF.) 
Byte manipulation, 237, 238, (MACRO) 
Byte pointer, 37, (SYSTEM REF.) 
Byte pointer, 225, (MACRO) 

CAl, 64, (SYSTEM REF.) 
CALL and CALLI operations, 371, 

(MONITOR CALLS) 
table of, 372 

CAM, 65, (SYSTEM REF.) 
Card codes, ·627, (MONITOR CALLS) 
Card codes, 172, (SYSTEM REF.) 
Card punch, 494, (MONITOR CALLS) 
Card reader, 496, (MONITOR CALLS) 
Carries, 48, (SYSTEM REF.) 
Carriage return, 332, (MACRO) 
Carry 0, 77, (SYSTEM REF.) 
Carry 1, 77, (SYSTEM REF.) 
CDB constants table, 433 (MONITOR 

CALLS) 
CDB variables table, 434, (MONITOR 

CALLS) 
Central processor specification, 700, 

(LINK-lO) 
Central processor flags, 387, (MONITOR 

CALLS) 
Change of unit pointer, 642, (MONITOR 

CALLS) 
Changing defaults, 678, 703, (LINK-lO) 
Changing local radix, 235 (MACRO) 
Changing magnetic tape modes, 509, 

(MONITOR CALLS) 
Changing switches, (LINK-10) 

status, 684 
Changing the logical station, 412, 

(MONITOR CALLS) 
Channel command chaining, 611, 

(MONITOR CALLS) 
Channel interrupt routines, 613, 

(MONITOR CALLS) 
Character handling, 327, (MACRO) 
Character set, radix 50, 210, (MACRO) 

Index-2 



-957- INDEX 

Characters, summary of special, 
315 through 3-17, (MACRO) 

Checking file access, 588, (MONITOR 
CALLS) 

CHGPPN UUO, .378, (MONITOR CALLS) 
CHKACC UUO, 379, 588, (MONITOR 

CALLS) 
tc intercept, 389, (MONITOR CALLS) 
CLEAR, 30, (SYSTEM REF.) 
Clearing DECtapes, 774, (LINK-IO) 
Clearing directory, 774, (LINK-IO) 
Clearing initial symbol table, 

734, (LINK-10) 
Clearing the write-protect bit, 

403, (MONITOR CALLS) 
CLK, 113, (SYSTEM REF.) 
Clock, (SYS TEM . REF. ) 

flag, 102 
line frequency, 102 
real time DKIO, 113 

operation, 116 
CLOCK function, 443, (MONITOR CALLS) 
CLOSE UUO, 371, 481, (MONITOR CALLS) 
Cluster count, 641, (MONITOR CALLS) 
.Clusters, 550, 607, (MONITOR CALLS) 
COBDDT, 701 (LINK-10) 
COBOL programs, (LINK-IO) 

loading, 803, 805 
Code, (LINK-IO) 

impure, 753 
pure, 753 
relocatable, 651 

Colon~ double (::),246 (MACRO) 
Colon (:) as label terminator 

210, 246, (MACRO) 
• COMM., 692, (LINK-10) 
Comma usage, 328, (MACRO) 
Commands,' (LINK-lO) 

COMPIL-class, 656 
DEBUG, 656, 660 
EXECUTE, 654, 656, 660 
GET, 654, 748 
LOAD, 656, 659 
R LINK, 656, 657, 675 
RUN, 654 
SAVE, 659, 668 
SSAVE, 659, 668 
START, 654, 659 

Command file, 404 (MONITOR CALLS) 
Command format, (LINK-lO) 

'COMPIL-class, 660 
Command strings, 676, 681, (LINK-10) 
Comment, 208, 213, (MACRO) 
Comments, 675 (LINK-lO) 
COMMENT statement, 251, (MACRO) 
/COMMON, 68~, 692, (LINK-lO) 
COMMON, (LINK-10) 

allocating, 692 
blank, 692 

COMMON area, 692, (LINK-lO) 
COMMON symbols, 695, (LINK-lO) 

Comparing files, (UTILITY) 
FILCOM, 931 

Comparison of disk-like devices, 
637, (MONITOR CALLS) 

COMPIL program, 656, (LINK-lO) 
/COMPIL switch, 257, (MACRO) 
COMPIL switches, 662, 664, (LINK-IO) 
COMPIL-class command, 656, (LINK-lO) 

format, 660 
Complement, 8, (SYSTEM REF.) 
Compressed file pointer, 552, 

(MONITOR CALLS) 
Concatenation, 263, 329, (MACRO) 
Conditional assembly, 252, (MACRO) 
Conditional break instruction, 894, 

912, (DDT) 
Conditions in, 93, (SYSTEM REF.) 

see status 
Conditions out, 93, (SYSTEM REF.) 

clock, 114 
interrupt, 98 
processor, 98 

Configuration information, (MONITOR 
CALLS) 

LIGHTS, 442 
SWITCH, 442 

Configuration table, 423, (MONITOR 
CALLS) 

CONI, 89, (SYSTEM REF.) 
CONO, 90, (SYSTEM REF.) 
CONSO, 92, (SYSTEM REF.) 
Console, 95, (SYSTEM REF.) 
Console operator panel, 106, (SYSTEM 

REF.) . 
Constants table, 433, (MONITOR CALLS) 
CONSZ, 91, (SYSTEM REF.) 
/CONTENTS, 687, 694, (LINK-10) 
Contents of map file, 694, (LINK-10) 
Continuation lines, 675, 681, 

(LINK-lO) 
Continued MFD, 551, (MONITOR CALLS) 
Continued SFD, 552, (MONITOR CALLS) 
Continued UFD, 552, (MONITOR CALLS) 
Control left arrow (CTRL+), 209 (MACRO) 
/CORE, 687, 697, (LINK-lO) 
Core, (LINK-IO) 

free, 716 
Core allocation resource, 397, 

(MONITOR CALLS) 
Core allocation unit, 360, (MONITOR 

CALLS) 
Core control, 393, (MONITOR CALLS) 

CORE, 401 
definitions, 393 
LOCK, 394 
SETUWP, 403 
UNLOK.,397 

Core image, 654, 659, 668, 750, 757, 
(LINK-lO) 

Core image file, (LINK-10) 
expanded, 690, 772 

Core memory, 652, (LINK-10) 

Index-3 



INDEX -958-

Core storage, 360, (MONITOR CALLS) 
CORE UUO, 372, 401, (MONITOR CALLS) 
CORMAX, 394, (MONITOR CALLS) 
CORMAX, 716, (LINK-IO) 
CORMIN, 393, (MONITOR CALLS) 
/COUNTER, 687, 698, (LINK-IO) 
Counters, Relocation, 686, 689, 

698, 754, (LINK-IO) 
CPA, 101, (SYSTEM REF.) 
/CPU, 687, 700, (LINK-IO) 
Created symbols, 262, (MACRO) 
Creating a file,' 563, (MONITOR 

CALLS) 
Creating a saved file, 80S, 

(LINK-IO) 
Creating XPN file, 772, (LINK-IO) 
CREF command, 928, (UTILITY) 
CREF program, 925, (UTILITY) 
Cross-referenced listings (UTILITY) 

CREF, 925 
GLOB, 951 

CTLJOB UUO, 378, 520, (MONITOR 
CALLS) 

D (decimal radix), 218, (MACRO) 
/D, 687, (LINK-IO) 
DAEFIN UUO, 379, (MONITOR CALLS) 
DAEMON UUO, 379, 442, (MONITOR 

CALLS) 
/DATA, 687, (LINK-IO) 
Data channel, 463, (MONITOR CALLS) 
Data error, 612, (MONITGR CALLS) 
DATAl, 91, (SYSTEM REF.) 
DATAO, 91, (SYSTEM REF.) 
Data modes, 464, (MONITOR CALLS) 

card punch, 494 
card reader, 497 
DECtape, 536 
disk, 549 
display, 499 
line printer, 502 
magnetic tape, 503 
paper-tape punch, 512 
paper-tape reader, 513 
plotter, 515 
terminal, 522 

Data transmission, 474, (MONITOR 
CALLS) 

DATE UUO, 373, 415, (MONITOR CALLS) 
.DCORE function, 442, (MONITOR 

CALLS) 
DDT, 660, 664, 701, (LINK-IO) 
/DDT, 664, (LINK-IO) 
DDTGT UUO, 372, (MONITOR CALLS) 
DDTIN UUO, 372, 525, (MONITOR CALLS) 
DDTOUT UUO, 372, 525, (MONITOR 

CALLS) 
DDTRL UUO, 372, (MONITOR CALLS) 

DDT submode, 524, (MONITOR CALLS) 
DEACTIVATE UUO, 378, (MONITOR CALLS) 
Dead reckoning, 548, (MONITOR CALLS) 
/DEBUG, 684, 687, 701, (LINK-IO) 
DEBUG command, 656, 660, (LINK-IO) 
Debugging, 654, 722, 72 3, 72 7 , 

(LINK-IO) 
Debugging program, 660, 686, 690, 

(LINK-IO) 
loading a, 701, 766 

DEC statement, 234, (MACRO) 
Decimal numbers,(MACRO) 

fixed pOint, 222 
floating point, 222 

Decimal print routine, 87,(SYSTEM 
REF. ) 

DECsystem-1040, 368, (MONITOR CALLS) 
DECtape, 536, (MONITOR CALLS) 

block allocation, 540 
directory format, 537 
file format, 539 
format, 536 
I/O programming, 540 

DECtape compatibility, 621, (MONITOR 
CALLS) 

DECtapes, clearing, 774, (LINK-IO) 
DEC-029 card codes, 624, (MONITOR 

CALLS) 
DEC-026 card codes, 630 (MONITOR 

CALLS) 
/Default,678, 687, 703, (LINK-IO) 
Default values, (LINK-IO) 

initial, 677, 678, 686 
Defaults, (LINK-IO) 

changing, 678, 703 
input, 677 
output, 677 

/DEFINE, 687, 705 (LINK-IO) 
Defined operator, 214, (MACRO) 
DEFINE operator, 259, (MACRO) 
Defining save file, 757, (LINK-IO) 
Defining symbol file, 759, (LINK-IO) 
Definition of macros, 259, (MACRO) 
Delay, (LINK-lO) 

assignment, 652 
Delayed action switches, 684, 695, 

700, 708, 713, 717, 720, 726, 
730, 731, 741, 743, 745, 748, 
749, 755, 762, 765, 771, (LINK-IO) 

Deleted symbols, 217, (MACRO) 
Delimiter, 663, (LINK-IO) 
Delimiters, (MACRO) 

=:, 216 
parentheses, 237 

DEPHASE statement, 229, (MACRO) 
Determining buffer sizes, 490 (MONITOR 

CALLS) 
Determining properties of devices, 

489, (MONITOR CALLS) 
Determining two-segment capability, 

403, (MONITOR CALLS) 

Index-4 



-959- INDEX 

DEVCHR UUO, 372, 488, (MONITOR 
CALLS) 

DEVGEN UUO, 378, (MONITOR CALLS) 
Device errors, 388, 586, (~ONITOR 

CALLS) 
Device information, 487, (MONITOR 

CALLS) 
DEVCHR, 488 
DEVNAM, 491 
DEVSIZ, 490 
DEVSTS, 487 
DEVTYP, 489 
WHERE, 491 

Device initialization, 463, (MONITOR 
CALLS) 

Device name, 660, 677, (LINK-10) 
Device name, 463, (MONITOR CALLS) 
Device optimization, 609, (MONITOR 

CALLS) 
Device reassignment, 483, (MONITOR 

CALLS) 
Devices, 493, 535, (MONITOR CALLS) 

card punch, 494 
card reader, 496 
DECtape, 536 
disk, 549 
display, 499 
line printer, 502 
magnetic tape, 503 
paper-tape pUnch, 512 
paper-tape reader, 513 
plotter, -515 
pseudo-TTY, 516 
terminal, 521 

Device selection, 462, (MONITOR 
CALLS) 

Device $tatus bits, 631, (MONITOR 
CALLS.) _ 

Device switches, 680, 691, 733, 747, 
756, 768, (LINK-10) 

Device termination, 483, (MONITOR 
CALLS) 

DEVLNM UUO, 380, 484, (MONITOR 
CALLS) 

DEVNAM UUO, 378, 491, (MONITOR 
CALLS) 

DEVPPN UUO, 377, 593, (MONITOR 
CALLS) 

DEVSIZ UUO, 379, 490, (MONITOR 
, CALLS) 

DEVSTS UUO, 377, 487, (MONITOR 
CALLS) 

DEVTYP UUO; 377, 489, (MONITOR 
CALLS) 

DFN, 59 , (SYSTEM REF.) 
Diagnostic messages (UTILITY) 

CREF, 929 
FILCOM, 935 
FUDGE2, 946 
GLOB, 953 

Differences, (LINK-10) 
LOADER and LINK-10, 843 

Direct addressing, 11, (SYSTEM REF.) 

Directory algorithms, 613, (MONITOR 
CALLS) 

Direct assignment statements, 215, 
(MACRO) 

Directly, (LINK-10) 
using LINK-10, 657, 675 

Directory, 660, 677, (LINK-10) 
clearing, 774 

Directory devices, 463, 535, (MONITOR 
CALLS) 

Directory path, 552, 577, 580, 
(MONITOR CALLS) 

Disk, 549, (MONITOR CALLS) 
access protection, 554 
file directories, 551 
file structure names, 560 
job search list, 562 
packs, 602 
quotas, 559 
IiItatu~, 601 
structure of files, 549 
~ser,programming, 563 
UUQs, 577 

Disk area, (LINK-10) 
DSK, 667 
NEW, 667 
OLD, 677 
SYS, 667 

Disk file organization, 551, 553, 
(MONITOR CALLS) 

Disk overflow, 729 (LINK-10) 
Disk packs, 602, (MONITOR CALLS) 
Disk parameters, 429, (MONITOR CALLS) 
Disk priority, 599, (MONITOR CALLS) 
Disk quotas, 391, 412, 559, (MONITOR 

CALLS) 
Disk space, (LINK-10) 

allocating, __ 709 
Disk ~it offline, 390, (MONITOR 

CALLS) 
DISK.UUO, 381, 599, (MONITOR CALLS) 
Disk writing, types of, 563, (MONITOR 

CALLS) , 
Dismissing an interrupt, 97, (SYSTEM 

REF. ) 
Dismissing a real-time interrupt, 449, 

(MONITOR CALLS) 
Display, 499, (MONITOR CALLS) 
DIV, 51, (SYSTEM REF.) 
DK10, -113, (SYSTEM REF.) 
Done, 93, (SYSTEM REF.) 
Dormant segment, 607, (MONITOR CALLS) 
Double colon (::),246, (MACRO) 
Double eq~al sign ==, 217, (MACRO) 
Double pound sign (tt), 247, (MACRO) 
Double precision floating point, 89, 

(SYSTEM REF.) 
DPB, 38, (SYSTEM REF.) 
DS, 5, (SYSTEM REF.) 
DSK disk area, 667, (LINK-IO) 
DSKCHR UUO, 376, 597, (MONITOR CALLS)­
Dump mode, 464, 475, (MONITOR CALLS) 

Index-5 



INDEX -960-

Dummy symbols, 264, (MACRO) 
DVRST.UUO, 381, (MONITOR CALLS) 
DVURS.UUO, 381, (MONITOR CALLS) 

E, 11, 23, (SYSTEM REF.) 
IE, 687, (LINK-IO) 
Effective address calculation, 11, 

(SYSTEM REF.) 
End block type 5, 287, (MACRO) 
END statements, 243, 290, (MACRO) 
End-of-file card, 494, 497, (MONITOR 

CALLS) 
ENTER, 371, 471, (MONITOR CALLS) 

DECtape, 542 
disk, 565, 571 
error codes, 635 

IENTRY, 687, 706, (LI~K-IO) 
Entry block type 4, 287, (MACRO) 
Entry name symbols, 695, (LINK-10) 
Entry points, 706, 713, 746, 

(LINK-IO) . 
ENTRY statement, 706, (LINK-IO) 
ENTRY statement, 247, (MACRO) 
Entry symbols, 667, (LINK-10) 
Environmental information, 414, 

(MONITOR CALLS) 
configuration, 442 
job status, 416 
monitor, 416 
timing, 414 

EOF, magnetic tape, 503, 504, 
(MONITOR CALLS) 

Equal signs == (double), 217, 
(MACRO) 

EQV, 45,. (SYSTEM REF.) 
Error codes, 635, (MONITOR CALLS) 

naming conventions, 384 
Error code printing, 284, (MACRO) 
Error codes, single-letter, 269 

through 274, (MACRO) 
Error intercepting, 388, (MONITOR 

CALLS) 
IERRORLEVEL, 687, 708, 775, 

(LINK-lO) 
Error messages, 275 through 281, 

(MACRO) . 
Error messages, 877, 886, (DDT) 
Error messages, (UTILITY) 

CREF, 929 
FILCOM, 935 
FUDGE2, 946 
GLOB, 953 

Error recovery, RUN, 405, (MONITOR 
CALLS) 

Errors, total number, 284, (MACRO) 
Ersatz devices, 593, (MONITOR CALLS) 
IESTIMATE, 687, 709, (LINK-10) 
Evaluation of expression, 214 219 

(MACRO) , , 

Evaluation of statement, 214, (MACRO) 
Examining storage words, 871, 879, 

908, (DDT) 
Examining the monitor, 416, (MONITOR 

CALLS) 
Examples, 669, 803, (LINK-IO) 
Examples (MONITOR CALLS) 

tc intercept, 389, 390 
device initializationi 473 
dump output, 475 
expanding core, 403 
file reading, 485, 486 
file writing, 485, 486 
GETTAB subtables, 436 
inputting one character, 476 
outputting one character, 478 
paper-tape input, 534 
pointer list, display, 500 
reading search list, 591 
reading UFD, 595 
real-time trapping, 449, 454 
SFD's, 581 
terminating a file, 483 
testing high segments ,409 
TRPSET, 456 
user generated buffers, 469 
writing reentrant programs, 623 

Examples, (UTILITIES) 
FILCOM, 937 
FUDGE2, 949 
GLOB, 954 

Excess-128 code, 9, (SYSTEM REF.) 
EXCH, 31, (SYSTEM REF.) 
Exceeded time limit, 391, (MONITOR 

CALLS) 
IEXCLUDE, 687, 711, (LINK-lO) 
Exec mode program, 734, (LINK-IO) 
Executable version, 651, 653, 654 

(LINK-IO) , 
IEXECUTE, 687, 713, (LINK-IO) 
EXECUTE command, 654, 656, 660 

(LINK-IO)' 
Execution, (LINK-IO) 

specifying, 701, 713, 718, 766 
Execution control, 385, (MONITOR CALLS) 

starting, 385 
stopping, 385 
suspending, 391 
trapping, 387 

Executive mode, 368, (MONITOR CALLS) 
Executive mode debugging, (EDDT), 915 

(DDT) , 
Executive mode trapping, RTTRP 453 
E~austed disk quota, 391, 412; 

(MONITOR CALLS) 
Exit condition switch, 676, (LINK-IO) 
.EXIT UUO, 373, 386, (MONITOR CALLS) 
Expanded core image file, 690, 772 

(LINK-IO) , 
Expanding areas, 716, (LINK-IO) 
Expanding core, 402 (MONITOR CALLS) 

Index-6 



-961- INDEX 

Experimental SYS, 579, (MONITOR 
CALLS) 

Expressions, 874, (DDT) 
Expressions, 207, MACRO) 

evaluation of, 214, 219 
nesting of, 220 

Expression evaluation, 902, (DDT) 
Expressions, nesting of, 220, (MACRO) 

literals, 225 
macros, 265 

Extended arguments for LOOKUP,ENTER, 
RENAME, 571, (MONITOR CALLS) 

Extended instruction statements, 
256, (MACRO) 

Extended RIB's 585, (MONITOR CALLS) 
Extension, (LINK-lO) 

filename, 660, 677 
EXTERN statement, 246, (MACRO) 
External symbols, 692, (LINK-lO) 

F (fixed point decimal fractions), 
218, (MACRO) 

FAD, 60, (SYSTEM REF.) 
FADR, 57, (SYSTEM REF.) 
Fast block mode, 444, (MONITOR CALLS) 
Fast memory, 7, (SYSTEM REF.) 
Fatality of messages, (LINK-lO) 

specifying, 755 
FDV, 62, (SYSTEM REF.) 
FDVR, 58, (SYSTEM REF.) 
Feature table, 439, (MONITOR CALLS) 
Feature test switches, 368, 439, 

(MONITOR CALLS) 
Fields, 214, (MACRO) 

blank, 253 
Field separators, 901, 911, (DDT) 
FILCOM program, 931, (UTILITY) 
File, (LINK'rlO) 

creating a saved, 805 
creating XPN, 772 
defining save, 757 
defining symbol, 759 
expanded core image, 690, 772 
log, 683, 688, 72 3, 72 5 
map, 688, 727, 731 
save, 689, 750, 757 
saving XPN, 772 
specifying log, 723 
specifying map, 727 
symbol, 689, 690, 759 
XPN, 772 

File dependent switches, 681, 
712, 721, 722, 736, 737, 738, 
752, 753, 758 

File directories, 551 (MONITOR CALLS) 
File format, (MONITOR CALLS) 

DECtape, 539 
disk, 554 

Filename, 660, 677, (LINK-lO) 
Filename extension, 660, 677, 

(LINK-lO) 

File reading, example, 485, (MONITOR 
CALLS) 

File retrieval pointers, 641, (MONITOR 
CALLS) 

Files, (LINK-lO) 
binary, 651 
output, 677, 679, 682, 703, 718 

Files, 461, 552, (MONITOR CALLS) 
File selection, 470, (MONITOR CALLS) 
File specification, 660, 676, 703, 

(LINK-lO) 
File specification switches, (LINK-lO) 

implicit, 702, 714, 715, 764, 766 
File status, 464, 479, (MONITOR CALLS) 

card punch, 496 
card reader, 498 
DECtape, 547 
disk, 601 
display, 501 
line printer, 502 
magnetic tape, 511 
paper-tape punch, 513 
paper-tape reader, 514 
plotter, 516 
pseudo-TTY, 518 
terminal, 533 

File status checking, 480, (MONITOR 
CALLS) 

File status setting, 480', (MONITOR 
CALLS) 

File structure names, 560, (MONITOR 
CALLS) 

File termination, 481, (MONITOR CALLS) 
File writing, example, 485, (MONITOR 

CALLS) 
FILSER, 549, 609, (MONITOR CALLS) 
Fixed point arithmetic, 48, 160, 

(SYSTEM REF.) 
Fixed point decimal numbers, 222, 

(MACRO) 
Fixed point numbers, 8, (SYSTEM REF.) 

double length; 48 
Flag restoration, 81, (SYSTEM REF.) 
Flags, 76, (SYSTEM REF.) . 
Floating overflow, 77, 102, (SYSTEM 

REF. ) 
Floating point arithmetic, 54, 160, 

(SYSTEM REF.) 
Floating point decimal numbers, 222, 

(MACRO) 
Floating point numbers, 9, (SYSTEM 

REF. ) 
double length, 10 
double precision, 89 

FMP, 62, (SYSTEM REF.) 
FMPR, 58, (SYSTEM REF.) 
Folded checksum, 641, (MONITOR CALLS) 
FORLIB, 740, (LINK-lO) 
Format, (LINK-lO) 

. COMPIL-class command, 660 
triplet, 759 

Index-7 



INDEX -962-

Formats, 193, (SYSTEM REF.) 
Format for macro calls, 261, ~CRO) 
Format of instruction word, 206, 

(MACRO) 
Format, primary instruction, 207, 

(MACRO) 
/FOROTS, 664, 688, 714, (LINK-10) 
FOROTS, (LINK-10) 

loading, 714 
/FORSE, 664, 688, 715, (LINK-10) 
FORSE, (LINK-10) 

loading, 715 
Forward tapes, (LINK-10) 

spacing, 756 
FRCUUO UUO, 379, (MONITO~ CALLS) 
FRECHN UUO, 377, (MONITOR CALLS) 
/FRECOR, 688, 716, (LINK-10) 
Free core, 716, (LINK-10) 
FSB, 61, (SYSTEM REF.) 
FSBR,. 57, (SYSTEM REF.) 
FSC, 56, (SYSTEM REF.) 
FUDGE2 program, 737, (UTILITY) 
Full file structure, 391, 412, 

(MONITOR CALL.,; 
Full word data transmission, 31, 161, 

(SYSTEM REF.) 
FUNCTION statement, 706, (LINK-10) 
Functions, (LINK-10) 

performing magnetic tape, 732 

/G, 688, (LINK-10) 
.Genera1 form of statements, 206, 

(MACRO) 
GET command, 654, 748, (LINK-10) 
GETCHR UUO, 372, (MONITOR CALLS) 
GETLIN UUO, 374, 529, (MONITOR CALLS) 
GETPPN UUO, 374, 416, (MONITOR CALLS) 
GETSEG UUO, 375, 407, (MONITOR CALLS) 
GETSTS UUO, 370, 480, (MONITOR CALLS) 
GETTAB tables, 419, (MONITOR CALLS) 

.GTADR, 419 

.GTCM2, 421 

.GTCNF, 419, 423 

.GTCNO, 420 
• GTCOM, 420 
• GTCOR, 420 
.GTCRS, 421 
• GTC,C , 422, 433 
.GTC2C, 422 
.GTC3C, 422 
.GTC4C, 422 
.GTC5C, 422 
.GTC,V, 422, 434 
.GTC1V, 422 
.GTC2V, 422 
.GTC3V, 422 
.GTC4V, 422 
.GTC5V, 422 
.GTDBS, 420 
• GTDEV, 420 

Index-8 

.GTFET, 422, 439 

.GTISC, 421 

.GTKCT, 419 

.GTLDV, 419, 429 

.GTLIM, 421 

.GTLOC, 420 

.GTNMl, 420 

.GTNM2, 420 

.GTNSW, 419, 427 

.GTODP, 419, 429 

.GTOSC, 421 
• GTPPN, 419 
.GTPRG, 419 
.GTPRV, 419, 423 
.GTQJB, 421 
.GTQQQ, 421 
.GTRCT, 420 
.GTRSP, 421 
.GTRTD, 420 
.GTSDT, 419, 429 
.GTSGN, 419 
.GTSLF, 420, 431 
.GTSPL, 420, 432 
.GTSPS, 422 
.GTSSC, 421 
.GTSTS, 419 
.GTSWP, 419 
.GTSYS, 421 
• GTTDB, 420 
.GTTIM, 419 
• GTTMP, 420 
.GTTRQ, 421 
• GTTTY:, 419 
• GTWCH , 420, 432 
.GTWCT, 420 
.GTWHY, 421 
.GTWSN, 420, 431 
naming of, 383 
subtables, 436 

GETTAB UUO, 375, 417, (MONITOR CALLS) 
GLOB program, 951, (UTILITY) 
Global requests, 667,746, (LINK-lO) 

undefined, 752, 763, 767 
Global symbol table, 688, (LINK-lO) 

initial, 734 
Global symbols, 694, 695, 769, 

(LINK-lO) 
typing in, 769 
undefined, 705 

Global symbols, listing of, 951, 
(GLOB) 

Global symbols, 216, (MACRO) 
G1oba1s, (LINK-10) 

typing undefined, 767 
/GO, 688, 718, (LINK-10) 
GOBSTR UUO, 378, 591, (MONITOR CALLS) 
Group pointer, 641, (MONITOR CALLS) 
Guidelines for locking jobs, 396, 

(MONITOR CALLS) 



-963- INDEX 

Half word data transmission, 24, 
161, (SYSTEM REF.) 

HALT, 386, (MONITOR CALLS) 
HALT, 81, (SYSTEM REF.) 
Hard error, 6li, (MONITOR CALLS) 
Hardware detected errors, 612, 

(MONITOR CALLS) 
Hash table, 719, (LINK-lO) 
/HASHSIZE, 688, 719, (LINK-lO) 
Hashsize, (LINK-lO) 

recommended, 719 
Header card, 494, 496, (MONITOR 

CALLS) 
Hardware read-in format, 288, 

(MACRO) 
HIBER UUO, 378, 391, 517, 

(MONITOR CALLS) 
.HIGH., 698, 754, (LINK-lO) 
High priority queues, 457, 

(MONITOR CALLS) 
High segment table, 419, (MONITOR 

CALLS) 
HISEG pseudo-op, 232, (MACRO) 
HLL, 25, (SYSTEM REF.) 
HLLE, 26, (SYSTEM REF.) 
HLLO, 26, (SYSTEM REF.) 
HLLZ, 25, (SYSTEM REF.) 
HLR, 29, (SYSTEM REF.) 
HLRE, 30, (SYSTEM REF.) 
HLRO, 30, (SYSTEM REF.) 
HLRZ, 30, (SYSTEM REF.) 
HPQ UUO, 378. 457, (MONITOR CALLS) 
HRL, 26, (SYSTEM REF.) 
tiRLE, 27, (SYSTEM REF.) 
HRLO, 27, (SYSTEM REF.) 
HRLZ, 27, (SYSTEM REF.) 
HRR, 28, (SYSTEM REF.) 
HRRE, 29, (SYSTEM REF.) 
HRRO, 29, (SYSTEM REF.) 
HRRZ, 28, (SYSTEM REF.) 
Hyphen, 675, (LI~K-lO) 

I,ll, (SYSTEM REF.) 
IBP, 38, (SYSTEM REF.) 
IBUF, 465, (MONITOR CALLS) 
IOIV, 51, (SYSTEM REF.) 
Idle segment, 607, (MONITOR CALLS) 
IOPB, 38, (SYSTEM REF.) 
IF statement, 252, 253, (MACRO) 
Ignoring start address, 738, 

(LINK-lO) 
ILOB, 38, (SYSTEM REF.) 
Illegal in'structions, 385, (MONITOR 

CALLS) 
Illegal operation codes, 383, 

(MONITOR CALLS) 
Image, (LINK-lO) 

core, 659, 668, 750, 757 
Image file, (LINK-lO) 

expanded core, 690, 772 

Immediate action switches, 693, 697, 
698, 703, 718, 735, 739, 746, 
754, 769, (LINK-lO) 

Implicit file specifications switches, 
684, 702, 714, 715, 764, 766, 
(LINK-lO) 

Impure code, 753, (LINK-lO) 
Impure segment, 359, (MONITOR CALLS) 
IMUL, 50, (SYSTEM REF.) 
INBUF UUO, 370, 468, (MONITOR CALLS) 
/INCLUOE, 688, 721, (LINK-lO) 
Index registers, 7, (SYSTEM REF.) 
Indexing, 207, 244, (MACRO) 
Indicator panels, 182, (SYSTEM REF.) 
Indicators, 106, (SYSTEM REF.) 
Indirect addressing, 11, (SYSTEM REF.) 
Indirect addressing, 224, (MACRO) 
Inhibiting loading of modules, 711, 

(LINK-lO) 
Inhibiting searching, 740, (LINK-IO) 
Initial conditions, 93, (SYSTEM REF.) 
Initial default values, 677, 678, 686, 

(LINK-lO) 
Initial file status, 464, (MONITOR 

. CALLS) 
Initial global symbol table, 734, 

(LINK-lO) 
Initial low segment size, 697, (LINK-IO) 
Initial symbol table, (LINK-lO) 

clearing, 734 
size, 719 

Initialization of LINK-lO, 656 (LINK-lO) 
Initializing devices, 464, (MONITOR 

CALLS) 
Initializing the high segment, 407, 

(MONITOR CALLS) 
INIT UUO, 369, 463, (MONITOR CALLS) 
In-out, 82, 163, (SYSTEM REF.) 
In-out bit assignments, 180, (SYSTEM 

REF. ) 
In-out devices, 156, 180, (SYSTEM REF.) 
Input, buffered, 476, (MONITOR CALLS) 
Input defaults, 677, (LINK-lO) 
Input specifications, 676, 703, 

(LINK-lO) 
Input-output, 82, 163, (SYSTEM REF.) 

. Input spooling, 604, (MONITOR CALLS) 
Input to LINK-lO, 651, (LINK-lO) 
Input UUO, 370, 474, (MONITOR CALLS) 
Instruction format, 10, (SYSTEM REF.) 
Instruction times, 23, (SYSTEM REF.) 
Instruction word format, 206, (MACRO) 
Instructions, 157, (SYSTEM REF.) 

arithmetic testing, 63, 163 
Boolean functions, 40, 159 
byte, 38, 160 
fixed point, 49, 160 
floating point, 56, 160 

without rounding, 59 
with rounding, 57 

full word, 31, 161 
half word, 25, 161 

Index-9 



INDEX -964-

Instructions (Cont.) 
in-out, 90, 16;3 
jump, 78, 163 
logic, 40, 159 
logical testing, 70, 165 
move, 33, 161 
pushdown, 35, 84, 163 
rotate, 47, 163 
shift, 47, 53, 163 

INTEGER pseudo-op, 242, (MACRO) 
Interactive options, 656, 6~3, 

(LINK-10) 
Intercept,+C, 389, (MONITOR CALLS) 
Internal request, block type 10, 

288, (MACRO) 
Internal symbols, 692, (LINK-10) 
INTERN statement, 247, (MACRO) 
Inter-program communication, 412, 

(MONITOR CALLS) 
Interrupt, 95, (SYSTEM REF.) 
Interrupt chains, 614, (MONITOR 

CALLS) 
Interrupt level use of RTTRP, 447, 

(MONITOR CALLS) 
Interrupt requests, 96, (SYSTEM REF.) 
Introduction to LINK-IO, 651, 

(LINK-IO) 
10,82, (SYSTEM REF.) 
I/O error messages, 278, (MACRO) 
I/O monitor facilities, .209, (MACRO) 
I/O organization, 461, (MONITOR 

CALLS) 
I/O programming, 461, (MONITOR CALLS) 

DECtape, 540 
disk, 563 

I/O transfer words, 239, (MACRO) 
lOR, 43, (SYSTEM REF.) 
IOWD, 475 (MONITOR CALLS) 
IOWD statement, 239, (MACRO) 
IR, 6, (SYSTEM REF.) 
Item types, (LINK-IO) 

LINK, 815 

JACCT bit, 404, (MONITOR CALLS) 
.JB4l, 362, (MONITOR CALLS) 
.JBAPR, 363, (MONITOR CALLS) 
.JBBLT, 362, (MONITOR CALLS) 
.JBCN6, 362, (MONITOR CALLS) 
.JBCHN, 364, (MONITOR CALLS) 
.JBCNI, 363, (MONITOR CALLS) 
.JBCOR, 364, (MONITOR CALLS) 
.JBCST, 364, (MONITOR CALLS) 
.JBDA, 364, (MONITOR CALLS) 
.JBDDT, 362, (MONITOR CALLS) 
.JBERR, 362, (MONITOR CALLS) 
.JBFF, 363, (MONITOR CALLS) 
.JBH4l, 365, (MONITOR CALLS) 
.JBHCR, 365, (MONITOR CALLS) 
.JBHDA"365, (MONITOR CALLS) 
.JBHNM, 365, (MONITOR CALLS) 
.JBHRL, 362, (MONITOR CALLS) 
.JBHRN, 365, (MONITOR CALLS) 

.JBHSA, 365, (MONITOR CALLS) 

.JBHSM, 365, (MONITOR CALLS) 

.JBHVR, 365, (MONITOR CALLS) 

.JBINT, 364, 388, (MONITOR CALLS) 

.JBOPC, 363, (MONITOR CALLS) 

.JBOPS, 364, (MONITOR CALLS) 

.JBPFI, 362, (MONITOR CALLS) 

.JBREL, 362, (MONITOR CALLS) 

.JBREN, 363, (MONITOR CALLS) 

.JBSA, 363, (MONITOR CALLS) 

.JBSET.UUO, 380, (MONITOR CALLS) 

.JBSYM, 363, (MONITOR CALLS) 

.JBTPC, 363, (MONITOR CALLS) 

.JBUSY, 363, (MONITOR CALLS) 

.JBUUO, .362, (MONITOR CALLS) 

.JBVER, 364, (MONITOR CALLS) 
JCRY, 79, (SYSTEM REF.) 
JCRYO, 79, (SYSTEM REF.) 
JCRY1, 79, (SYSTEM REF.) 
JEN, 81, (SYSTEM REF.) 
JFCL, 79, (SYSTEM REF.) 
JFFO, 78, (SYSTEM REF.) 
JFOV, 79, (SYSTEM REF.) 
Jiffy, 415, 419, (MONITOR CALLS) 
JLOG bit, 404, (MONITOR CALLS) 
Job, 605, (MONITOR CALLS) 
JOBDAT, 360, 362, (MONITOR CALLS) 
Job data area, 360, 362, (MONITOR 

CALLS) 
vestigial, 365 

JOBDAT, 722, (LINK-IO) 
Job's current name, 668, (LINK-IO) 
Job I/O initialization, 461, (MONITOR 

CALLS) 
JOBPEK UUO, 379, (MONITOR CALLS) 
Job privilege table, 423, (MONITOR 

CALLS) 
Job search list, 562, (MONITOR CALLS) 
Job state codes, 431, (MONITOR CALLS) 
Job status information, (MONITOR CALLS) 

GETPPN, 416 
OTHUSR, 416 
PJOB, 416 
RUNTIME, 416 

JOBSTR UUO, 376,590, (MONITOR CALLS) 
JOBSTS UUO, 377, 519, (MONITOR CALLS) 
JOV, 79, (SYSTEM REF.) 
JRA, 83, (SYSTEM, REF.) 
JRST, 80, (SYSTEM REF.) 
JRST 4, 386, (MONITOR CALLS) 
JRSTF, 81, (SYSTEM REF.) 
JSA, 83, (SYSTEM REF.) 
JSP, 80, (SYSTEM REF.) 
JSR, 79, (SYSTEM REF.) 
JUMP, 65, (SYSTEM REF.) 

Key, (LINK-IO) 
RETURN, 675 

Keys, 109, (SYSTEM REF.) 
KT10 Option, 360, (MONITOR CALLS) 

Index-10 



-965- INDEX 
/L, 688, (LINK-10) 
tL (qualifier), 218, (MACRO) 
Label field, 214, (MACRO) 
Label of statement, 206, (MACRO) 
Labels, 209, 210, 215, (MACRO) 
LALL statement, 250, (MACRO) 
Language, MACRO-10 statements, 206, 

(MACRO) 
La.tency time, 609, (MONITOR CALLS) 
LOB, 38, (SYSTEM REF.) 
Left arrow shifting, 222, (MACRO) 
Level, (LINK-10) 

message, 708, 775 
severity, 755, 776 

LIB40, 740, (LINK-lO) 
LIBOL, 740, (LINK-10) 
Library, (LINK-10) 

modules, 653 
search, 653, 666, 763 
search mode, 666, 688, 689, 737, 

752 
search symbols, 686, 706, 746 
suppression of search mode, 737 
system, 653, 666, 667, 689, 690, 

740, 752, 763 
system search, 718 
user, 667 

/LIBRARY, 665, (LINK-10) 
Library subroutines, 248, (MACRO) 
LIGHTS UUO, 372, 442, (MONITOR CALLS) 
Line of program, 213, (MACRO) 
Line printer, 502, (MONITOR CALLS) 
Line printer listings r 250, (MACRO) 
Lines, (LINK-10) 

continuation, 675, 681 
LINK block, 257, (MACRO) 

formats, 284, 285 
/LINK, 665, (LINK-10) 
LINK item types, 815, (LINK-10) 
LINK-10, (LINK-10) 

command strings, 676 
differences between LOADER and,843 
initialization of, 656 
input to, 651 
introduction to, 651 
loading, 806 
messages, 775 
message suppression, 708, 725 
output from, 653 
switch algorithms, 679 
switches, 663, 685, 686, 691 

Linking loader, 284, (MACRO) 
Linking modules, 652, (LINK-10) 
Linking subroutines, 246, (MACRO) 
Linking symbols, 653, (MACRO) 
List, (LINK-10) 

search, 667 
LIST statement, 250, (MACRO) 
Listing control statements, 250, 

(MACRO) 
Listing relocation counters, 698, 

(LINK-10) 
Literals, 255, (MACRO) 

nested, 255 

LIT statements, 244, (MACRO) 
/LMAP, 665, (LINK-10) 
LOAD command, 656, 659, (LINK-10) 
LOADER and LINK-10, (LINK-10) 

differences, 843 
LOADER switches, 663, 846, (LINK-10) 
Loading, 806, (LINK-10) 

COBOL programs, 803, 805 
debugging program, 701,766 
FOROTS, 714 
FORSE, 715 
inhibition of module loading, 711 
local symbols, 722 
MACRO programs, 804 
monitor, 811 
object time system, 742 
specified fuodules, 721 
symbols, 761 
termination, 718 

Loading (MONITOR CALLS) 
binary files, 360 
core area, 360 

Loading procedure, 869, 920, (DDT) 
Local symbol mode, 701, (LINK-10) 
Local symbols, 665,688, 695, 701, 

736, 759 
loading, 722 

Local symbols, 216, (MACRO) 
/LOCALS, 688, 722, (LINK-10) 
LOCATE UUO, 378, 412, (MONITOR CALLS) 
Location counter, 224, (MACRO) 
LOC pseudo-op, 227, (MACRO) 
Lock UUO, 377, 394, (MONITOR CALLS) 
Locking jobs, 394, 398, (MONITOR 

CALLS) 
Logged-in quota, 555, (MONITOR CALLS) 
Logged-out quota, 555, (MONITOR CALLS) 
/LOG, 683, 688, 723, (LINK-lO) 
LOG, (LINK-10) 

logical name, 683, 723 
Log file, 683, 688, 723, 725, (LINK-10) 
Logic, 39, 159, (SYSTEM REF.) 
Logical device names, suppression of, 

382, (MONITOR CALLS) 
Logical operations, 219, (MACRO) 
Logical shifting, 46, 163, (SYSTEM REF.) 
Logical station, 412, (MONITOR CALLS) 
Logical testing and modification, 63, 

165, (SYSTEM REF.) 
Logical unit names, 560 (MONITOR CALLS) 
LOGIN UUO, 373, (MONITOR CALLS) 
/LOGLEVEL, 688, 725, 775, (LINK-10) 
LOGOUT UUO, 373, (MONITOR CALLS) 
LOOKUP UUO, 371, 470, (MONITOR CALLS) 

DECtape, 541 
disk, 567, 571 
error codes, 635 

Lookup errors, 277, 278, (MACRO) 
Low segment size, (LINK-10) 

ini tial, 697 
maximum, 729 

• LOW. , 698, 754, (LINK-10) 
LSH, 47, (SYSTEM REF.) 
LSHC, 47, (SYSTEM REF.) 

Index-ll 



INDEX -966-

/M, 688, (LINK-lO) 
MA, 6, (SYSTEM REF.) 
Machine instruction formats, 206, 

(MACRO) 
Machine mnemonics, summary, 309, 

(MACRO) 
Macros, definition of, 259, ~CRO) 
MACRO, (MACRO) 

calls, 260, 261 
capabilities, 205 
instruction, 256 
name, 211 
nesting and redefinition, 266 
program examples, 295 
statements, 209 
table, 213 

MACRO program, loading, 804, (LINK-lO) 
Magnetic tape, 503, (MONITOR CALLS) 

codes, 639 
format, 504 
9-channel, 507 
use of MTAPE, 506 
UUOs, 505 

Magnetic tape functions, 732, 
(LINK-lO) 

Manipulating file strucures, 588, 
(MONITOR CALLS) 

MANTIS, 660, 701, (LINK-lO) 
Map, 666, 671, 679, (LINK-lO) 
/MAP, 665,688,694,727, (LINK-lO) 
Map file, 688, 727, 731, (LINK-lO) 

contents, 694 
MAP program, 672, (MONITOR CALLS) 
Mapping, 359, 360, (MONITOR CALLS) 
Margin check panel, 107, (SYSTEM 

REF.) . 
Masks, naming of, 383, (MONITOR 

CALLS) 
Master file directory, 551 (MONITOR 

CALLS) 
MATRIX subroutine, 247, 248, (MACRO) 
MAXCOR, 697, 716, (LINK-lO) 
/MAXCOR, 688, 729, (LINK-lO) 
Maximum low segment size, 729, 

(LINK-lO) 
Meddling, 404, 409, (MONITOR CALLS) 
Memory, (LINK-lO) 

core, 652 
Memory, 12, (SYSTEM REF.) 

access time, 13 
allocation, 13 
protection, 102, 103 
stop, 108 

Memory parity error recovery, 618, 
(MONITOR CALLS) 

Memory protection and relocation, 
359, (MONITOR CALLS) 

Memory protection register, 360, 
(MONITOR CALLS) 

Memory relocation register, 359, 
(MONITOR CALLS) 

Message level, 708, 775, (LINK-lO) 

Messages, 775, (LINK-IO) 
specifying fatality of, 755 
supressing, 708, 725 

METER.UUO, 380, 458, (MONI~OR CALLS) 
MFD, 551, (MONITOR CALLS) . 
MI, 6, (SYSTEM REF.) 
Miscellaneous commands, 897, (DDT) 
Miscellaneous features, 655, (LINK-10) 
Mnemonics, 14, 147, (SYSTEM REF.) 

alphabetic, 152 
derivation, 148 
device, 156 
numeric, 149 

Mnemonics, summary of machine, 309, 
(MACRO) 

Mnemonic table, 213, (MACRO) 
Mode, (LINK-lO) 

library search, 688, 689, 737, 752 
local symbol, 701 
search, 721 
supressing library search, 737 

Modes, 23, (SYSTEM REF.) 
arithmetic testing, 64 
fixed point, 49 
floating point, 56, 60 
half word, 25 
logic, 39 
logical testing, 69 
move, 33 

Modifying shared segments, 409, 
(MONITOR CALLS) 

Modifying storage words, 872, 880, 
(DDT) 

Modules, (LINK-lO) 
inhibiting loading of, 711 
library, 653 
linking, 652 
loading specified, 721 
object, 651, 659 

Monitor, (LINK-lO) 
loading the, 811 

Monitor commands, 233, (~CRO) 
summary, 307, 308 

Monitor error handling, 612, (MONITOR 
CALLS) 

Monitor examination, (MONITOR CALLS) 
GETTAB,417 
PEEK, 416 
POKE, 417 
SPY, 416 . 

Monitor generated buffers, 468, 
(MONITOR CALLS) . 

Monitor I/O facilities, 209, (MACRO) 
Monitor programming, 105, (SYSTEM 

REF. ) 
Monitor symbols, naming of, 383, 

(MONITOR CALLS) 
Monitor UUOs, 369 (MONITOR CALLS) 

restrictions in reentrant programs, 
382 

MONRT., 386, (MONITOR CALLS)" 
MOVE, 33, (SYSTEM REF.) 

Index-12 



-967- INDEX 

MOVM, 34, (SYSTEM REF.) 
MOVS, 33, (SYSTEM REF.) 
/MPSORT, 688, 731, (LINK-10) 
MQ, 7, (SYSTEM REF.) 
MSTlME UUO, 373, 415, (MONITOR CALLS) 
/MTAPE, 688, 732, (LINK-10) 
MTAPE UUO, 371, 505, 546, (MONITOR 

CALLS) 
MTCHR.UUO, 380, 507, (MONITOR CALLS) 
MUL, 50, (SYSTEM REF.) 
Multiprogram assemblies, 244, (MACRO) 

/N, 688, (LINK-10) 
Name, (LINK-10) 

device, 660, 677 
program, 749 

Name block, type 6, 287, (MACRO) 
Naming of monitor symbols, 383, 

(MONITOR CALLS) 
Naming programs, 230, (MACRO) 
Nesting of, (MACRO) 

expressions, 220 
literals, 225 
macros, 266 

Nested subroutines, 84, (SYSTEM REF .. ) 
/NEW, 667, (LINK-10) 
NEW disk area, 667, (LINK-10) 
Nine"channel magtape, 507, (MONITOR 

CALLS) 
/NOINITIAL, 688, 734, (LINK-10) 
/NOLOC~, 688, 736, (LINK-10) 
Nondirectory devices, 462, 493, 

(MONITOR CALLS) 
Nonexistent Memory, 102, (SYSTEM REF.) 
Non-I/O UUOs, 385, (MONITOR CALLS) 
Nonsharable, 668, (LINK-10) 
Non-standard I/O, DECtape, 547, 

(MONITOR CALLS) 
Nonswapping data table, 427, 

(MONITOR CALLS) 
No-ops, 76, (SYSTEM REF.) 
Normal block mode, 444, (MONITOR 

CALLS) 
/NOSEARCH, 666, 688, 737, (LINK-10) 
/NOSTART, 689, 738, (LINK-10) 
NOSYM statement, 250, (MACRO) 
/NOSYMBOL, 689, 739, (LINK-10) 
/NOSYSLIB, 689, 740, (LINK-10) 
Null arguments, 264, (MACRO) 
Number, (LINK-10) 

prime, 719 
Numbers, naming of, 383, (MONITOR 

CALLS) 
Number sign (#) usage, 242,(MACRO) 
Number system, 8, (SYSTEM REF.) 

fixed point, 8 
floating point, 9 

Numeric terms, 220, (MACRO) 

o (octal radix), 218, (MACRO) 
Object modules, 651, 659, (LINK-10) 
Object time system, OTS, 742, 

(LINK-10) 
OBUF, 465, (MONITOR CALLS) 
Octal codes, summary, 309, (MACRO) 
Octal-to-decimal conversion, 87, 

(SYSTEM REF.) 
OCT statement, 234, (MACRO) 
Off-line disk unit, 390, (MONITOR 

CALLS) 
Offset, 363, (MONITOR CALLS) 
10LD, 667, (LINK-10) 
OLD disk area, 667, (LINK-10) 
Once-only disk parameters, 429, 

(MONITOR CALLS) 
One-segment machine, 286, 287, (MACRO) 
Ones complement, 8, (SYSTEM REF.) 
Op-code table, 213, (MACRO) 
OPDEF statement, 254, (MACRO) 
OPEN UUO, 370, 463,' (MONITOR CALLS) 
Operand field, 214, (MACRO) 
Operands, 212, (MACRO) 

in primary statements, 206 
Operating environment, 919, (DDT) 
Operating instructions, 331, (MACRO) 
Operating keys, 109, (SYSTEM REF.) 
Operating switches, 111, (SYSTEM REF.) 
Operation, (SYSTEM REF.) 

clock, 116 
processor, 106 

Operator, defined, 214, (MACRO) 
Operator field, 214, (MACRO) 
Operators, 211, (MACRO) 

arithmetic, 219 
logical, 219 
unary, 222 

Optimization, 583, (MONITOR CALLS) 
Options, (LINK-10) 

interactive, 683 
OR, 43, (SYSTEM REF.) 
ORCA, 43, (SYSTEM REF.) 
ORCB, 44, (SYSTEM REF.) 
ORCM, 44, (SYSTEM REF.) 
OTHUSR UUO, 379, 416, (MONITOR 

CALLS) 
lOTS, 689, 742, (LINK-10) 
OUTBUF UUO, 370, 468, (MONITOR CALLS) 
output, 653 , (LINK-10) 

auxiliary, 651, 654 
defaults, 677 
files, 677, 679, 682, 703, 716 
specification, 676, 703 
switches, 682, 710, 724, 728, 751, 

757, 760, 773, 774 
Output, 283, (MACRO) 
Output, (MONITOR CALLS) 

buffered, 477 
spooling, 604 
unit selection, 561 

Index-13 



•... 

INDEX -968-

OUTPUT UUO, 371, 474, (MONITOR CALLS) 
OUT UUO, 370, 474, (MONITOR 'CALLS) 
Overdrawn amount, 555, (MONITOR 

CALLS) 
Overflow, 48, 55, 77, 102, (SYSTEM, 

REF. ) 
Overflow, (LINK-IO) 

disk, 729 
Overlay facility, 654, 706, (LINK-lO) 
Owner of files, 555, (MONITOR CALLS) 

Page mapped, 359, (MONITOR CALLS) 
PAGE statement, 250, (MACRO) 
Paper-tape control, 905, 914, (DDT) 
Paper-tape input/output at TTY, 534, 

(MONITOR CALLS) 
Paper-tape punch, 512, (MONITOR 

CALLS) 
Paper-tape reader, 513, (MONITOR 

CALLS) 
Parentheses delimiters, 237, (MACRO) 
parity subtable, 438, (MONITOR 

CALLS) 
PASS2 statements, 245, (MACRO) 
Passive search list, 562, (MONITOR 

CALLS) 
PAT •• , 744, 761, (LINK ... IO) 
Patching space, 689, (LINK-IO) 

allocation, 744, 
/PATCHSIZE, 689, 744, (LINK-IO) 
PATH.UUO, 380, 577, (MONITOR 

CALLS) 
PC,S, (SYSTEM REF.) 
PC word, 76, (SYSTEM REF.) 
PEEK UUO, 374, 416, (MONITOR CALLS) 
Percent sign (%) symbol, 262, 

(MACRO) 
Performing magnetic tape functions, 

732, (LINK-IO) 
Period (.) symbol, see point symbol 
Permanent switches, 662, 681, 

(LINK-IO) 
PHASE statement, 299 (MACRO) 
Physical address, 360, (MONITOR 

CALLS) 
Physical controller names, 560, 

(MONITOR CALLS) 
Physical-only bit (UU.PHS), 382, 

462, (MONITOR CALLS) 
Physical-only I/O, 382, 462, 

(MONITOR CALLS) 
Physical unit names, 560, (MONITOR 

CALLS) 
PI, 95, 98, (SYSTEM REF.) 
PION, 108, (SYSTEM REF.) 
PJOB UUO, 374, 416, (MONITOR 

CALLS) 
Plotter, 515, (MONITOR CALLS) 
POINT statement, 237, (MACRO) 
Point (.) symbol, 224, (MACRO) 

Po in ter, (SYSTEM REF.) 
byte, 37 
IO block, 92 

points, (LINK-IO) 
entry, 706, 713, 746 

POKE.UUO, 380, 417, (MONITOR 
CALLS) 

POP, 35, (SYSTEM REF.) 
POPJ, 85,(SYSTEM REF.) 
Position-done interrupt, 611, 

(MONITOR CALLS) 
pound sign, double (##), 247, 

(MACRO) . 
Preserved files, 556, (MONITOR CALLS) 
PRGEND pseudo-op, 244, (MACRO) 
primary instruction format, 207, 

(MACRO) 
primary statement operands, 206, 

(MACRO) 
Prime number, 719, (LINK-IO) 
PRINTX MESSAGE statement, 251, (MACRO) 
Priority interrupt, 95, (SYSTEM REF.) 
Priority interrupt routines, 613, 

(MONITOR CALLS) 
Privilege word (.GTPRV), 423, 

(MONITOR CALLS) 
Proceed counter, 894, 912, (DDT) 
Processing of statement, 213, (MACRO) 
Processor conditions, 100, (SYSTEM 

REF. ) 
Processor, (MONITOR CALLS) 

constants table, 433 
flags, 387 
modes, 367 
variable table, 434 

Program (MACRO) 
break, 284 
line, 213 
listing, 249 
listing output, 283 
origin, 231 
subtitles, 231 

Program and profile identification, 
410, (MONITOR CALLS) 

LOCATE, 412 
'SETNAM, 410 

SETUUO, 410 
Program control, 76, 163, (SYSTEM 

REF. ) 
Program examples, 293, (MACRO) 
Programmed operator, 223, (MACRO) 
Programmed operators, 368, (MONITOR 

CALLS) 
tables, 369, 372 

Programming conventions, 14, 
(SYSTEM REF.) 

Program name, 749, (LINK-IO) 
Programs, (LINK-IO) 

COMPIL, 656 
debugging, 660, 686, 690, 701, 766 
exec mode, 734 

Index-14 



-969- INDEX 

Programs (Cont.) 
loading COBOL, 803, 805 
loading debugging, 701, 766 
loading MACRO, 804 

Program Stop, 108, (SYSTEM REF.) 
Program version number, 364, 

(MONITOR CALLS) 
'Project-programmer number word, 419, 

(MONITOR CALLS) 
Protection, 103, (SYSTEM REF.) 
Protection, 554, (MONITOR CALLS) 
Protection address, 359, (MONITOR 

CALLS) 
Protection and relocation, 359, 

(MONITOR CALLS) 
pseudo-operation code, 211, (MACRO) 
Pseudo-ops, 227, (MACRO) 

summary, 311, 312 
Pseudo-TTY, 516, (MONITOR CALLS) 
Pure code, 753, (LINK-10) 
Pure segment, 359, (MONITOR CALLS) 
PURGE statement, 245, (MACRO) 
PUSH, 35, (SYSTEM REF.) 
Pushdown list, 34, 163, (SYSTEM REF.) 

defined, 35 
subroutines, 85 

Pushdown overflow, 102, (SYSTEM 
REF. ) 

PUSHJ, 84, (SYSTEM REF.) 

Qualifier tL, 218, (MACRO) 
Quan'tum time, 606, (MONITOR CALLS) 
Queuing strategy, 610, (MONITOR 

CALLS) 
Quotas, disk, 391, 412, 559, 

(MONITOR CALLS) 
Quotation mark, single ('), 249, 

264, (MACRO) 

R LINK command, 656, 657, 675 
(LINK-10) 

Radix changing, 889, 907, (DDT) 
Radix changing, 218, 235, (MACRO) 
Radix 50 character set, 210, (MACRO) 
Radix 50 representation, 325, 

(MACRO) 
Radix 50 representation, 759, 

(LINK-10) 
RADIX statements, 233, 236, (MACRO) 
Read in, 109, (SYSTEM REF.) 
Reading directory paths, 577, 

(MONITOR CALLS) 
Readin mode, 94, (SYSTEM REF.) 
Real-time programming, 444, 

(MONITOR CALLS) 
HPQ, 457 
RTTRP, 444 
TRPSET, 455 
UJEN, 457 

Real-time trapping, 444, (MONITOR 
CALLS) 

data block, 446 
dismissing interrupt, 449 
examples, 449, 454 
exec mode, 453 
interrupt level use, 447 
removing devices, 449 
restrictions, 448 
returns, 447 

REASSI UUO, 373, 484, (MONITOR CALLS) 
Recommended hashsize, 719, (LINK-10) 
Redefinition of macros, 266, (MACRO) 
Reentrant program, 359, (MONITOR CALLS) 
Relative address, 360, (MONITOR CALLS) 
RELEAS UUO, 371, 483, (MONITOR CALLS) 
RELOC pseudo-op, 227, (MACRO) 
Relocatability of an expression, 279, 

(MACRO) 
Re10catable address mode, 227, (MACRO) 
Re10catable code, 651, (LINK-10) 
Re10catable object program, 279, 

(MACRO) 
Relocatab1e symbols, 694, 6~5, 

(LINK-10) 
Relocation, 103, (SYSTEM REF.) 
Relocation address, 359, (MONITOR 

CALLS) 
Relocation and protection word, 419, 

(MONITOR CALLS) 
Relocation counters, 686, 689, 698, 

754, (LINK-10) 
listing, 698 

REMAP UUO, 375, 408, (MONITOR CALLS) 
REMARK COMMENTS statement, 251, 

(MACRO) 
Remembering arguments on RUN, 405, 

(MONITOR CALLS) 
Removing devices from PI channel, 449, 

(MONITOR CALLS) 
RENAME UUO, 370, 472, (MONITOR CALLS) 

DECtape, 543 
di sk , 568, 571 
error codes, 635 

REPEAT statement, 253, (MACRO) 
Representation, 759, (LINK-10) 
Requests, global, 667, 746, (LINK-10) 

undefined, 752, 763, 767 
/REQUIRE, 689, 746, (LINK-10) 
RESDV.UUO, 381, 483, (MONITOR CALLS) 
Reserving a single location, 242, 

(MACRO) 
RESET UUO, 370, 461, 587, (MONITOR 

CALLS) 
Response subtable, 436, (MONITOR 

CALLS) 
Restore, 81, (SYSTEM REF.) 
Restricted devices, 462, (MONITOR 

CALLS) 
Restrictions on monitor UUO's, 382, 

(MONITOR CALLS) 
Restrictions on real-time trapping, 

448, (MONITOR CALLS) 

Index-15 



INDEX -970-

Retrieval information block, 554, 
(MONITOR CALLS) 

Retrieval pointers, 641, (MONITOR 
CALLS) 

RETURN key, 675, (LINK-lO) 
Reverse slash ('), 267, (MACRO) 
/REWIND, 689, 747, (LINK-lO) 
Rewinding tapes, 747, 768, (LINK-lO) 
RIB, 554, (MONI'l'OR CALLS) 
RIM format, 290, (MACRO) 
RIMIO format, 289, (MACRO) 
RIMIOB format, 292, (MACRO) 
Ring buffers, 466, (MONITOR CALLS) 
ROT, 47, (SYSTEM REF.) 
Rotate, 46, 163, (SYSTEM REF.) 
ROTC, 48, (SYSTEM REF.) 
Rounding, 56 (SYSTEM REF.) 
RSW, 95, (SYSTEM REF.) 
RTTRP UUO, 379, 444, (MONITOR CALLS) 
RUN, 107, (SYSTEM REF.) 
RUN command, 654, (LINK-lO) 
/RUNAME, 689, 749, (LINK-lO) 
/RUNCOR, 689, 748, (LINK-lO) 
RUNTIM UUO, 374, 416, (MONITOR CALLS) 
RUN UUO, 374, 403, (MONITOR CALLS) 

IS, 689, (LINK-lO) 
SALL statement, 250, (MACRO) 
SAT blocks, 550, (MONITOR CALLS) 
/SAVE, 689, 750, (LINK-lO) 
SAVE command, '659, 668, (LINK-lO) 
Save file, 689, 750, (LINK-lO) 

creating, 805 
defining, 757 

Saving XPN file, 772, (LINK-lO) 
Scaling, 55, (SYSTEM REF.) 
Scan switch, 577, (MONITOR CALLS) 
Scheduling, 605, (MONITOR CALLS) 
Searches, 895, 912, (DDT) 
/SEARCH, 666, 689, 752, (LINK-lO) 
Search list, job, 562, (MONITOR 

CALLS) 
Search list, 667, (LINK-lO) 
Search mode, 721, (LINK-lO) 

library, 666, 688, 689, 737, 752 
surpressing library, 737 

SEARCH name, 258, (MACRO) 
SEARCH pseudo-op, 258, (MACRO) 
Search symbols, (LINK-lO) 

library, 686, 706, 746 
Searching, (LINK-lO) 

inhibiting, 740 
system library, 718 

Searching, 609, (MONITOR CALLS) 
Searching libraries, 763, (LINK-lO) 
SEEK UUO, 337, 587, (MONITOR CALLS) 
Segment control, 403, (MONITOR 

CALLS) 
GETSEG, 407 
modifying shared segments, 409 
REMAP, 408 

Segment Control (Cont.) 
RUN, 403 
testing, 408 

/SEGMENT, 689, 753, (LINK-lO) 
Segment size, (LINK-lO) 

initial low, 697 
maximum low, 729 

Segments, 359, (MONITOR CALLS) 
/SELF, 667, (LINK-lO) 
Semicolon (;) as terminator, 212, 

328, (MACRO) 
Semi-standard I/O, DECtape, 547, 

(MONITOR CALLS) 
Sequence of operations, RUN, 406, 

(MONITOR CALLS) 
/SET, 689, 754, (LINK-lO) 
SETA, 40, (SYSTEM REF.) 
SETCA, 41, (SYSTEM REF.) 
SETCM, 41, (SYSTEM REF.) 
SET DDT UUO, 372, 385, (MONITOR 

CALLS) 
SETM, 41, (SYSTEM REF.) 
SETNAM UUO, 375, 410, (MONITOR CALLS) 
SETO, 40, (SYSTEM REF.) 
SETPOV UUO, 374, (MONITOR CALLS) 
SETSTS UUO, 370, 480, (MONITOR CALLS) 
Setting directory paths, 577, 

(MONITOR CALLS) 
Setting disk priority, 599, 

(MONITOR CALLS) 
Setting job parameters, 410, 

(MONITOR CALLS) 
Setting logical names, 484, (MONITOR 

CALLS) 
Setting write-up bit, 403, (MONITOR 

CALLS) 
SETUUO, 378, 410, (MONITOR CALLS) 
SETUWP UUO, 375, 403, (MONITOR 

CALLS) 
SETZ, 40, (SYSTEM REF.) 
/SEVERITY, 689, 775, 776, (LINK-lO) 
Severity levels, 775, 776, (LINK-lO) 
SFD, 551, (MONITOR CALLS) 
SFD privileges, 556, (MONITOR CALLS) 
Sharable, 668, 757, (LINK-IO) 
Shift, 163, (SYSTEM REF.) 

arithmetic, 53 
logical, 46 

Shifting, binary, 221, (MACRO) 
Simultaneous access, 560, (MONITOR 

CALLS) 
Simultaneous supersede/update, 600, 

(MONITOR CALLS) 
Single mode, 444, (MONITOR CALLS) 
Single quote mark ('), 263, (MACROO 
SIXBIT statement, 240, (MACRO) 
Size, (LINK-lO) 

initial low segment, 697 
initial symbol table, 719' 
maximum low segment, 729 

/SKIP, 689, 756, (LINK-lO) 
SKIP, 66, (SYSTEM REF.) 
SLEEP UUO, 374, 391, (MONITOR CALLS 

Index-16 



-971- INDEX 

Soft error, 612, (MONITOR CALLS) 
Software detected errors, 613, 

(MONITOR CALLS) 
SOJ, 67, (SYSTEM REF.) 
Sorting symbol table, 731, (LINK-IO) 
'sos, 68, (SYSTEM REF.) 
Space, (LINK-10) 

allocating disk, 709 
allocating patching, 744 
patching, 689 

Spacing forward tapes, 756, (LINK-10) 
Special symbols, 903, 910, (DDT) 
Specification, (LINK-IO) 

file, 660, 676, 703 
switch, 663, 686 

Specification switches, (LINK-IO) 
implicit file, 702, 714, 715, 

764, 766 
Specifications, Input/Output, 676, 

703, (LINK-10) 
Specified modules, loading of, 721, 

(LINK-IO) 
Specifying, (LINK-IO) 

central processor, 700 
disk areas, 667 
execution, 701, 713, 718, 766 
fatality of messages, 755 
free core, 716 
log file, 723 
map file, 727 
start address, 758 

Spool bits, 411, 432, (MONITOR CALLS) 
Spooling, 603, (MONITOR CALLS) 
Spy UUO, 375, 416, (MONITOR CALLS) 
Square bracket (l), used as termina-

tor, 226,(MACRO) 
SQUOZE mnemonic, 236, (MACRO) 
/SSAVE, 689, 757, (LINK-IO) 
SSAVE command, 659, 668, (LINK-IO) 
Standard listing operations, 250, 

(MACRO) 
/START, 689, 758, (LINK-IO) 
Start address, 666, 677, 689, 713, 

(LINK-IO) 
ignoring, 738 
specifying, 758 

START command, 654, 659, (LINK-IO) 
Starting address, block type 7, 288, 

(MACRO) 
Starting a program, 385, (MONITOR 

CALLS): .. 
Starting the program, 876, 883, 912, 

(DDT) 
State codes, 431, (MONITOR CALLS) 
Statement, 209, (MACRO) 

elements, 206 
evaluation, 214 
formats, 249 
label, 206 
processing, 213 
general form of, 206 
operands in primary, 206 

Statement, (LINK-10) 
entry, 706, 746 
function, 706 
subroutine, 706 

STATO UUO, 370, 480, (MONITOR CALLS) 
Status changing switches, 684, 

(LINK-IO) 
Status, 93, (SYSTEM REF.) 

clock, 114 
interrupt, 99 
processor, 101 

Status checking and setting, 479, 
480, (MONITOR CALLS) 

Status word, 419, (MONITOR CALLS) 
STATZ UUO, 370, 480, (MONITOR 

CALLS) 
Stopping a program, 385, (MONITOR 

CALLS) 
storage allocation, 319, (MACRO) 
storage allocation table, 550, 

(MONITOR CALLS) 
Storage map for user mode, 917, (DDT) 
storage, reserving, 242, (MACRO) 
Storage words, (DDT) 

examining, 871, 879, 908 
modifying, 872, 880 

String, (LINK-IO) 
command, 675, 676, 681 

Structure of disk files, 549, 
(MONITOR CALLS) 

STRUUO, 376, 588, (MONITOR CALLS) 
SUB, 49, (SYSTEM REF.) 
Sub-file directories, 551, 577, 

(MONITOR CALLS) 
Subroutines, 82, (SYSTEM REF.) 
SUBROUTINE statement, 706, (LINK-IO) 
Subtables, GETTAB, 436, (MONITOR 

CALLS) 
SUBTTL pseudo-op, 231, (MACRO) 
Suffix ##, 216, (MACRO) 
Suffixes K, M, and G, 219, (MACRO) 
Superseding a file, 563, (MONITOR 

CALLS) 
Superseding a sharable program, 409, 

(MONITOR CALLS) 
Super-USETI/USETO, 587, (MONITOR 

CALLS) 
Suppression of logical device 

names, 382, (MONITOR CALLS) 
SUPPRESS pseudo-op, 248, (MACRO) 
Suppression of, (LINK-IO) 

library search mode, 737 
messages, 708, 725, 
symbol table, 739 

Suspending, 391, (MONITOR CALLS) 
Swapping, 607, (MONITOR CALLS) 
Swapping classes, 608, (MONITOR CALLS) 
Swapping data table, 429, (MONITOR 

CALLS) 
Swapping parameter word, 419, (MONITOR 

CALLS) 

Index-17 



INDEX -972-

Switch, (LINK-IO) 
exit condition, 676 

Switch algorithms, 679, (LINK-IO) 
Switch options, summary, 335, (MACRO) 
Switch specification, 663, 686, 

(LINK-IO) 
switches, Ill, (SYSTEM REF.) 
Switches, (LINK-IO) 

COMPIL, 662, 664 
delayed action, 684, 695, 700, 

708, 713, 717, 720, 726, 
730,731,741,743,745, 
748, 749, 755, 762, 765, 771 

device, 680, 691, 733, 747, 756, 
768 

file dependent, 681, 712, 721, 722, 
736, 737, 738, 752, 753, 
758 

immediate action, 693, 697, 698, 
703, 706, 718, 735, 739, 746, 
754, 769 

implicit file specification, 684, 
702, 714, 715, 764, 766 

LINK-IO, 663, 685, 686, 691 
LOADER, 663, 846 
output, 682, 710, 724, 728, 751, 

757, 760, 773, 774 
permanent, 662, 681 
status changing, 684 
temporary, 662, 681 
type-out, 683 

SWITCH UUO, 373, 442, (MONITOR CALLS) 
/SYMBOL, 689, 759, (LINK-IO) 
Symbol:! (suppressed local symbol), 

218, (MACRO) 
Symbol;:! (suppressed internal 

symbol), 218 (MACRO) 
Symbol delimiter, 210, (MACRO) 
Symbol evaluation, 902, (DDT) 
Symbol expression, 248, (MACRO) 
Symbol file, 689, 690, (LINK-IO) 

defining, 759 
Symbolic, (MACRO) 

addresses, 210, 212 
elements, 280 

operands, 212 
operators, 211 

Symbols, 873, 883, (DDT) 
defining, 899, 910 
deleting, 900, 910 

Symbols, 652, (LINK-IO) 
absolute, 695 
COMMON, 695 
entry, 695 
entryname, 695 
external, 692 
global, 694, 695, 769 
internal, 692 
library search, 686, 706, 746 
linking, 653 
loading, 761 

Symbols, (Cont.) 
local, 665, 688, 695, 701, 722, 

736, 759 
relocatable, 694, 695 
typing in global, 769 
undefined, 656, 681, 767 
undefined global, 705 
zero length, 695 

Symbols, 209, (MACRO) 
block type 2, 286 
block type 3, 286 
generated, 262 
global, 216 
local, 216 

Symbol table, 660, 679, 761, (LINK-IO) 
arranging, 765 
clearing initial, 734 
global, 688 
initial global, 734 
initial size, 719 
sorting, 731 
suppressing, 739 , 

/SYMSEG, 690, 761, (LINK-IO) 
Synchronization of buffered I/O 

478, (MONITOR CALLS) 
SYN statement, 255, (MACRO) 
SYS device, 554, (MONITOR CALLS) 
SYS disk area, 667, (LINK-IO) 
/SYSLIB, 690, 763, (LINK-IO) 
/SYSORT, 690, 765, (LINK-IO) 
SYSPHY UUO, 376, 593, (MONITOR CALLS) 
SYSSTR UUO, 376, 592, (MONITOR CALLS) 
System, Object Time (OTS) , (LINK-IO) 

loading, 742 
System ,libraries, 653, 666, 667, 689 

690, 740, 752, 763 
searching, 718 

System library, 554, (MONITOR CALLS) 

Table, (LINK-IO) 
arranging symbol, 765 
clearing initial symbol, 734 
global symbol, 688 
hash, 719 
initial global symbol, 734 
size of initial symbol, 719 
sorting symbol, 731 
suppressing symbol, 739 
symbol, 660, 679, 731, 761, 765 

Tape functions, (LINK-IO) 
performing magnetic, 732 

TAPE statement, 251, (MACRO) 
Tapes, (LINK-IO) 

backspacing, 691 
rewinding, 747 768 
spacing forward, 756 
unloading, 768 

TDC, 73, (SYSTEM REF.) 

Index-18 



-973- INDEX 

TON, 72, (SYSTEM REF.) 
TOO, 73, (SYSTEM REF.) 
TDZ, 73, (SYSTEM REF.) 
Temporary files, 405, 412, (MONITOR 

CALLS) 
Temporary switches, 662, 681, 

(LINK-lO) 
Terminating loading, 718, (LINK-lO) 
Terminals, 521, (MONITOR CALLS) 
Terminator, (MACRO) 

colon (:), 210 
right square bracket (l), 226 
semicolon (;), 212 

Terms, numeric, 220, (MACRO) 
/TEST, 690, 766, (LINK-lO) 
Testing of sharable segments, 408, 

(MONITOR CALLS) 
Test instructions, (SYSTEM REF.) 

arithmetic, 63, 163 
logical, 70, 165 

Text codes, summary, 323, (MACRO) 
Text input, 240, (MACRO) 
Time limit exceeded, 391, (MONITOR 

CALLS) 
TIMER UUO, 373, 415, (MONITOR CALLS) 
Time sharing, 103, (SYSTEM REF.) 
Timing, 23, 178, (SYSTEM REF.) 

clock, '115 
interrupt, 99 

Timing information, 414, (MONITOR 
CALLS) 

DATE, 415 
MSTIME, 415 
TIMER, 415 

TITLE pseudo-op, 230, (MACRO 
TLC, 72, (SYSTEM REF.) 
TLN, 71, (SYSTEM REF.) 
TLO, 72, (SYSTEM REF.) 
TLZ, 71, (SYSTEM REF.) 
TMPCOR UUO, 375, 412, (MONITOR 

CALLS) 
Total user core, 393, (MONITOR 

CALLS) 
Transfer-done interrupt, 611, 

(MONITOR CALLS) 
Transferring program control, 403, 

(MONITOR CALLS) 
Trapping, 387, (MONITOR CALLS) 
Traps, 13, (SYSTEM REF.) 
TRC, 70, (SYSTEM REF.) 
Triplet form~t, 759, (LINK-10) 
TRMNO. UUO, 381, 529, (MONITOR 

CALLS) 
TRMOP. UUO,38l, 530, (MONITOR 

CALLS) 
TRN, 70, (SYSTEM REF.) 
TRO, 71, (SYSTEM REF.) 
TRPJEN UUO, 374, (MONITOR CALLS) 
TRPSET UUO, 374, 455, (MONITOR 

CALLS) 
TRZ, 70, (SYSTEM REF.) 

TSC, 74, (SYSTEM REF.) 
TSN, 74, (SYSTEM REF.) 
TSO, 75, (SYSTEM REF.) 
TSZ, 74, (SYSTEM REF.) 
TTCALL UUO, 370, 525, (MONITOR CALLS) 
Type-in modes, 873, 909, (DDT) 
Type-out modes, 871, 883, 889, 907, 

(DDT) 
Type-out switches, 683, (LINK-10) 
Typing errors, 876, 886, (DDT) 
Typing in, 884, 909, (DDT) 

arithmetic expressions, 886, 911 
numbers, 885, 909 
symbolic instructions, 885, 909 
text characters, 885, 910 

Typing, (LINK-10) 
global symbols, 769 
library search symbols, 706 
undefined globals, 767 

Two half-words of data, entering, 
239, (MACRO) 

Twos complement, 8, (SYSTEM REF.) 
Two-segment machine, 286, (MACRO) 
TWOSEG pseudo-op, 232, 286, (MACRO) 

/U, 690, (LINK-10) 
UFA, 59, (SYSTEM REF.) 
UFO, 551, (MONITOR CALLS) 
UFO privileges, 556, (MONITOR CALLS) 
UGETF UUO, 371, 545, (MONITOR CALLS) 
UJEN UUO, 371, 457, (MONITOR CALLS) 
Unary operators" 222, (MACRO) 
Unbuffered data modes, 465, 475, 

(MONITOR CALLS) 
/UNDEFINED, 690, 767, (LINK-10) 
Undefined, (LINK-lO) 

global requests, 752, 763, 767 
global symbols, 705, 
typing of globals, 767 
undefined symbols, 656, 681, 767 

Unimplemented op codes, 383, 385, 
(MONITOR CALLS) 

Unimplemented operations, 86, (SYSTEM 
REF. ) 

Unit of core allocation, 360, (MONITOR 
CALLS) 

Unit selection on output, 561, 
(MONITOR CALLS) 

Unit state codes, 610, (MONITOR CALLS) 
Universal date-time standard, 415, 

(MONITOR CALLS) 
Universal I/O index, 530, (MONITOR 

CALLS) 
UNIVERSAL name, 257, (MACRO) 
UNIVERSAL pseudo-op, 257, (MACRO) 
.UNIV symbol, 258, (MACRO) 
/UNLOAD, 690, 768, (LINK-10) 
Unloading tapes, 768, (LINK-10) 
Unlocking jobs, 397, (MONITOR CALLS) 
UNLOK.UUO, 381, 397, (MONITOR CALLS) 

Index-19 



INDEX 

unrestricted devices, 462, (MONITOR 
CALLS) 

Updating a file, 564, (MONITOR CALLS 
Upper and lower case, 887, (DDT) 
Use of MTAPE operator, 506, (MONITOR 

CALLS) 
User, 77, (SYSTEM REF.) 
User address mapping, 361, (MONITOR 

CALLS) 
User core storage, 360, (MONITOR 

CALLS) 
User-de fined operator, 245, (MACRO) 
User-defined symbols, 215, (MACRO) 
User file directories, 551, (MONITOR 

CALLS) 
User generated buffers, 469, 

(MONITOR CALLS) 
User in-out, 78, 102, (SYSTEM REF.) 
User I/O mode, 367, (MONITOR CALLS) 
User library, 667, (LINK-I0) 
User mode, 359, 367, (MONITOR CALLS) 
User mode, 108, (SYSTEM REF.) 
User programming, 104, (SYSTEM REF.) 
User programming, introduction, 367, 

(MONITOR CALLS) 
User programming, disk, 563, 

(MONITOR CALLS) 
User program name word, 419, 

(MONITOR CALLS) 
User symbol table, 213, (MACRO) 
User UUOs, 369, (MONITOR CALLS) 
User virtual address space, 652, 

(LINK-lO) 
USETI UUO, 371, 545, 584, (MONITOR 

CALLS) 
USETO UUO, 371, 545, 584, (MONITOR 

CALLS) 
Using, (LINK-I0) 

automatically, 656, 659 
directly, 657, 675 

UTPCLR, 373, 546, (MONITOR CALLS) 
UUO, 91, (SYSTEM REF.) 
UUOs, 368, (MONITOR CALLS) 

APRENB, 387 
CHKACC, 588 
CLOSE, 481 
CORE, 401 
CTLJOB, 520 
DAEMON, 442 
DATE, 415 
DDTIN, 525 
DDTOUT, 525 
DEVCHR, 488 
DEVLNM, 484 
DEVNAM, 491 
DEVPPN, 593 
DEVSIZ, 490 
DEVSTS, 487 
DEVTYP, 489 
DISK., 599 
DSKCHR, 597 

-974-

UUOs, (Cont.) 
ENTER, 471, 542, 565 
EXIT, 386 
GETLIN, 529 
GETPPN, 416 
GETSEG, 407 
GETSTS, 480 
GETTAB, 417 
GOBSTR, 591 
HIBER, 391 
HPQ, 457 
IN, 474 
INBUF, 468 
INIT, 465 
INPUT, 474 
JOBSTR, 590 
JOBSTS, 519 
LIGHTS, 442 
LOCATE, 412 
LOCK, 394 
LOOKUP, 541, 567, 470 
METER., 458 
MSTIME, 415 
MTAPE, 505, 546 
MTCHR., 507 
OPEN, 463 
OTHUSR, 416 
OUT, 474 
OUTBUF, 468 
OUTPUT, 474 
PATH., 577 
PEEK, 416 
PJOB, 416 
POKE., 417 
REASSIGN, 484 
RELEASE, 483 
REMAP, 408 
RENAME, 472, 543, 568 
RESDV., 483 
RESET, 461, 587 
RTTRP, 444 
RUN, 403 
RUNTIM, 416 
SEEK, 587 
SETDDT, 385 
SETNAM, 410 
SETSTS, 480 
SETUUO, 410 
SETUWP, 403 
SLEEP, 391 
SPY, 416 
STATO, 480 
STATZ, 480 
STRUUO, 588 
SWITCH, 442 
S'lSPHY, 593 
SYSSTR, 592 
TIMER, 415 
TMPCOR, 412 
TRMNO., 529 
TRMOP., 530 

Index-20 



UUOs, (Cont.) 
TRPSET, 455 
TTCALL, 525 
UGETF, 545 
UJEN, 457 
UNLOK, 397 
USETI, 545, 584 
USETO, 545, 584 
UTPCLR, 546 
WAIT, 478 
WAKE, 392 
WHERE, 491 

UU.PHS, 382, 462, (MONITOR CALLS) 

/VALUE, 769, (LINK-lO) 
Values, (LINK-lO) 

assigning, 705 
initial default, 677, 678, 686 

VAR statements, 243, (MACRO) 
Variables tables, 434, (MONITOR 

CALLS) 
Verbosity, 770, 771, (LINK-lO) 
/VERBOSITY, 690, 770, 775, 777, 

(LINK-lO) 

-975-

Verification, 609, (MONITOR CALLS) 
Version number, 364, (MONITOR 

CALLS) 
Vestigial job data area, 365, 

(MONITOR CALLS) 
Virtual address, 360, (MONITOR 

CALLS) 

WAIT UUO, 372, 478, (MONITOR CALLS) 
Wake-enable bits, 392, (MONITOR 

CALLS) 
WAKE UUO, 378, 392, (MONITOR CALLS) 
WATcH bits, 411, 432, (MONITOR 

CALLS) 
WHERE UUO, 377, 491, (MONITOR CALLS) 
Word format, 193, (SYSTEM REF.) 
write protect bit, 403, 409, 

(SYSTEM REF.) 
Writing reentrant user programs, 623, 

(MONITOR CALLS) 

X, 11, (SYSTEM REF.) 
XALL statement, 250, (MACRO 
XCT, 78, (SYSTEM REF.) 
XLIST statement, 250, (MACRO) 
XOR, 44, (SYSTEM REF.) 
/XPN, 690, 772, (LINK-lO) 

INDEX 

XPN file, creating and saving, 772, 
(LINK-IO) 

XPUNGE pseudo-op statement, 245, 
(MACRO) 

XWD, 475, (MONITOR CALLS) 
XWD statement, 239, (MACRO) 

Y, II, (SYSTEM REF.) 

Z statement, 236, (MACRO) 
/ZERO, 690, 774, (LINK-IO) 
Zero length symbols, 695, (LINK-lO) 
Zero-compression, 750, (LINK-IO) 
Zero word, 236, (MACRO) 

Index-2l 









DIGITAL EQUIPMENT CORPORATION ~D~DDmD WORLD-WIDE SALES AND SERVICE 

MAIN OFFICE AND PLANT 
146 Msin Street , Maynsrd. Massachusetts , U .S .A. 01754 · Telephone: From Metropolitan Boston: 646-8600 · Elsewhere: (617)-897·5' " 

TWX: 710-347-0212 Cable: DIGITAL MAYN Telex: 9.f-8457 

NORTHEAST 
REG IONAL OFFICE 
275 Wyman Street, Waltham, Massachusetts 02154 
Te lephone : (617)-000-0320/0330 TWX: 710-324-6919 
WALTHAM 
15 Lunda Street. Waltham, Mas sachusetts 02154 
Te lephone : (617).891 . \O30 TWX: 710-324-6919 
CAMBRIDGE/ BOSTON 
899 Ma in Street . Cambridge. M assachus et:s 02139 
Telephone . (611)-491 ·6130 TWX : 710-320-1167 
ROCHESTER 
130 A liens Creek Road . Rochester. New York 14618 
Telephone: (716)-461 .1700 TWX - 71 0-253-3078 
CONNECTICUT 
240 Pomeroy Ave . M er iden , Conn 06450 
Te lephone ' {203p37-B441 17466 TWX . 71 0- 461 ·0054 

MID·ATLANTIC - SOUTHEAST 
REGIONAL OFFICE · 
U S Rou te I , Princet on. New lersey 08540 
Telephone: (609)-452-2940 TWX. 510-685-2338 
NEW YORK 
95 Cedar l ane . Englewood . New Jersey 07631 
Telephone : (201)-871-4984, (212)-594-6955, (212)·736·0447 
TWX: 710-991-9721 
NEW JERSEY 
1259 Route 46. Parsippany. New Jersey 07054 
Telephone : (201)-335-3300 TWX 710·987-8319 

PRINCETON 
U.S. Route 1 
Princeton. New Jersey 08540 
Telephone : (609) 452-2940 TWX : 510-685-2338 

LONG ISLAND 
1 Hunti ngton Quadrang le 
SUite I S07 Huntmgton Stati on, New York 11746 
Telephone : (516)-694-4131 . (212)-895-8095 
PHILADELPHIA 
Stati on Square Three . Pao li . Pennsylvania 19301 
Telephone : (215)-647.4900 / 4410 Te lex: 51 0·668·6395 

WASHINGTON 
Ellecutive Bui ld ing 
6811 Kenilworth Ave .. Riverdale . Mary land 20840 
Te lephone : (301)-779-1600/752-8797 TWK 710-826·9662 
DURHAM/ CHAPEL HILL 
27Q.4 Chapel Hill Boulevard 
Durham . North Carol ina 27707 
Te lephone ' (919)·489-3347 TWX: 510-927-0912 
ORLANDO 
Suite 130, 7001 Lake Ellenor Drive , Orl ando. Florida 32809 
Telephone: (305)-851044SO TWX: 810-8SQ-0U!O 
ATL ANTA 
2815 Cleorvlew Place, Suite 100. 
Atlanta. Georg ia 30340 
Te lephone : (40-4)-451-3734/373513736 TWX: 810-757-4223 

EUROPEAN HEADQUARTERS 
Digital EqUipment Corporat ion Internaltonal Europe 
81 Route de r A i re 
121 1 Geneva 26. SWit zerl and 
Tel ephone ' 42 79 SO Telell 22 683 

FRANCE 
EquIpment Digital S.A .R.L 

PARIS 
327 Rue de Charenton , 75 Parl a 12 EWf, France 
Te lephone: 344-76-07 Te l e;!!; : 21339 

GRENOBLE 
10 rue Auguste Ravler , F-38 Grenob le. France 
Telephone : (76) f!7 87 32 Telex : 32 882 F (Code 212) 

GERMANY 
Dig ital Equipment GmbH 

MUNICH 
8 Muenchen 13, Wal lenstelnpleu 2 
Telephone: 0011-35031 Telex: 52 .... 226 

COLOGNE 
5 Koeln , B ismarckstrasae 7, 
Telephone : 0221-522181 Telex: 888·2269 
Telegram: Fl ip Chip Koe ln 

FRANKFURT 
6078 Neu-Isenburg 2 
Am Forsthaus Gravenbruch 5-7 
Telephone : 06102-5526 TeleK: 41 -76-82 

HANNOVER 
3 Hannover, Podblelsklstresae 102 
Telephone: 0511-69-7()"'95 Telex: 922·952 

AUSTRIA 
Digital Equipment Corporat ion Ges.m.b.H 
VIENNA 
Marlah llferstra8se 136, 1150 Vlenns 15, Auetr la 
Telephone: 85 51 86 

UNITED KINGDOM 
Dlglte l Equipment Co., ltd. 

U.K . HEADQUARTERS 
Arkwright Road, Readi ng. Berks . 
Telephone : 0734-583555 Telex: 84321 

READING 
The Evening Post Bui lding. Tessa AOBd 
Read in9 , Berks . 

BIRMINGHAM 
29/ 31 , Birmingham Road. Sullon Coldfield , Warwicks 
Telephone. (0044) 21-355 5S01 Telell 337 060 

MANCHESTER 
13 Upper Prec inct, Wa lkden. Msnchester M28 SAZ 
Te lephone ' 061 ·790-8411 TeleK. 668666 

LONDON 
Bil ton House , Uxbridge Road , Ealing . London W .5. 
Teleph one : 01 -579-2334 Telex: 22311 

EDINBURGH 
Shie l House , Craigsh l ll , livi ngston, 
West l oth ian, Scotland 
Telephone : 32705 / Telex: 721113 

NETHERLANDS 
THE HAGUE 
Digita l Equipment N.V . 
SIr Winston Churchd ll aan 370 
AiJswljkfThe Hague, NetherlBndl 
Telephone : 070-995-160 Telex: 32533 

BELGIUM 
BRUSSELS 
D igita l Equipment N .V./S.A . 
100 Aue D 'Arion 
1040 Brussels, Belgium 
Telephone: 02-139256 Telex: 25297 

UNITED STATES 
MID.ATLANTIC - SOUTHEAST (conL) 
KNOXVILLE 
6311 K ingston Pike , Suite 21 E 
Kno;.:;vl lie , Tennessee 37919 
Telephone : (615)-588-6571 TVVX: 81()...S8J.{l123 

CENTRAL 
REGIONAL OFFICE: 
1850 Frontage Aoad . Northbrook, illinoi s 60062 
Te lephone~ (312)-498-2500 TWX: 910-686...()655 

PITTSBURGH 
400 Penn Center Boule vard 
Pittsbu rgh . Pennsy lva nia 15235 
Telephone : (412)-243-9404 TWX 710- 797-3657 

CHI C AGO 
1850 Frontage ROAd . Northbrook. Ill mo is 60062 
Telephone : (3 \ 2)-4198-2500 TWX: 910-686-0655 

ANN ARBOR 
230 Huron View Boulevard . Ann Arbor , Mlchlgsn 48103 
Telephone : (31 3)·761 -1150 TWX: 81()"'223-6053 

IND IANAPOLIS 
21 Beachway Drive - Suite G 
Ind ianapolis . Ind iana 46224 
Te!ephone: (317)-243-8341 TWX. 810-341 -3436 

M INNEAPOLIS 
Suite I I I . 8030 Ceda r Avenue South, 
Minneapol is, Minnesota 55420 
Telephone: (612)·854-656'2-3-4-5 TWX· 91 Q-.576-2818 

CLEVELAND 
Park H i ll Bldg .. 35104 Euclid Ave 
Wil loughby. Oh io 44Q9.4 
Telepho ne: (216)·946·8464 TWX: 810-427-2608 

ST. LOUIS 
SUite 110. 11 5 Progresa Pky ., Maryland Heights , 
Missouri 63043 
Telephone: (314}-878-4310 TWX: 910-764-0831 

DAYTON 
3101 Kettering B lvd . Daylon. Ohio 45439 
Telephone; (513)-299-7377 TWX: 810·459-1676 

MILWAUKEE 
6531 W . Capitol Drive , M ilwaukee , W isconsin 53222 
Telephone: (414}-463-9110 TWX: 910-262-1199 

DALLAS 
8855 North Stem mons Freeway 
Dsllas . TeKas 75247 
Telephone: (21 4)·638-4880 TWX: 910-861--4000 

HOUSTON 
3417 Milam Street . Suire A. Houston. Texas 17002 
Te lephone: (713)-524-2961 TWX: 910-881 -1651 

INTERNATIONAL 
SWEDEN 
D igItal Equipment Aktlebolag 

STOCKHOLM 
Vretenvagen 2. S-171 &4 Solne , Swe den 
Telephone: 98 1390 Telex: 17050 
Cab le: Dlgllal Stockholm 

NORWAY 
D igital EqUipment 

OSLO 
c l o FIrma Servic e 
W aldenmarthranesgate B4-B-86 
O slo 1. Norway 
Telephone. 37 19 85. 37 02 30 Tele;.:; 166 43 

DENMARK 
DigItal Equ ipment Corporation 

COPENHAGEN 
Veaterbrogade 140, 1620 Copenhagen V 

SWITZERLAND 
Dig ita l Equ ipment Corporal Ion S .A . 

GENEV A 
61 Aoute de I" A lfe 
1211 Geneva 26. SWitzerland 
Telephone. 42 79 SO Telex 22663 
ZURICH 
Scheuchzerstrasse 21 
CH -0006 Zunch. SWitzerland 
Telephone . 01/ 60 35 66 Te le;!!; 56059 

ITALY 
D igita l Equipment S .p.A . 

M ILAN 
Corso Garibaldi 49, 20121 Milano. Italy 
Telephone: 872 748 694 3M Telu: 33615 

SPAIN 
M ADRID 
Ataio Ingenieros S .A .• Enrlgue l arreta 12, Madrid 18 
Te lephone : 21535 43 / Te leK: 27249 

BARCELONA 

Ats io Ingenieros S .A .• Ganduxer 76, Bsrce lona 6 
Telephone : 221 44 66 
Digital Equ ipment Corporation ltd. 

AUSTRALIA 
D igital Equipment Australia Pty. Ltd. 
SYDNEY 
P.O . Box 491 , Crows Nest 
N .S .W . Austral ia J065 
Te lephone: 439-2566 Telex: AA207~ 
Cabl e: Digital , Sydney 

M ELBOURNE 

60 Park Street, South Melbourne. Victor ia, 3205 
Telephone: 696-1 42 Telex : AA40616 

PERTH 

643 Murrey Street 
West Perth. Western Auetra ll a 6005 
Telephone : 214-993 Telex: A.A92 140 

BRISBANE 

13) Mer lvele Street. South Brisbane 
Queeneland. Aua\Ta l la 4101 
Telephone 444-047 Telex: AA40616 

AD ELAIDE 

6 Montrose Avenue 
Norwood, South Austra li a 5067 
Te lephone: 631 -339 Telex: A.A82825 

CENTRAL (conL) 
NEW ORLEANS 
3100 Ridgelake Drive , Suite 108 
MetaIri e. LOU ISI an a 7(x)()2 
Te lephone 504·837-0257 

WEST 
REGIONA L OFFICE 
310 Soquel Way, Sunnyvale, Ca l ifornia 94086 
Telephone : (408)·735-9200 
ANAHEIM 
801 E. Ball Road , Anaheim. Cs l flornl a 92805 
Telephone : (71 4}-776-6932/8730 TWX, 910-591-1 189 
WEST LOS ANGELES 
1510 Coiner Ave nue, l os A ngele" Cal/foms 9:XT2S 
Telephone : (213}-479·3791 /431 8 TWX: 9 1 0-342~ 

SAN DIEGO 
3444 Hancock Street 
San D iego, California 92110 
Telephone: {714}-298-0591, 0593 TWX: 910-335-1 230 
SAN FRANCISCO 
1400 Terre Bella 
Mountain V iew, Ca lifornia 94040 
Telephone: (415}-964-6200 TWX: 91 0-373-1266 
PALO ALTO 
560 San Ant oniO Rd ., Pa lo Alto , CalifornIa 94306 
Te lephone: (415)·969-6200 TWX; 910-373-1266 
OAKLAND 
78SO Edgewater Dr ive 
Oakland. Ca l ifornia 94621 
Telephone : (415)-635-5453/78X) TWX: 910-366-7238 
ALBUQUERQUE 
6303 Indian Schoo l Road , N .E. 
A lbuquerque, N.M. 671 10 
Telephone: (S05}-296-5411/5428 TWX: 910-9E5-061 4 
DENVER 
23:>5 South Colorsdo Blvd., Suite #5 
Denver, Co lorado 8:)222 
Telephone : (303)-757·3332/ 758- 1656/758- 1659 
TWX: 910-931-2650 
SEATTLE 
1521 13)th N.E., Bellevue, Waah lngton 98(X)5 
Telephone : (206)-454--..0s8/455-5404 TWX: 910-443-2300 
SALT LAKE CITY 
431 South 3rd East. Sel t Lake City . Uteh 84111 
Telephone : (801)·328-9838 TWX: 910-925-5834 
PHOENIX 
4356 Ea st Broadway Road 
Phoen iK. Arizona 85040 
Telephone: (602) 268-3488 TWX: 910-950-4691 
PORTlAND 
Suite 168 
5319 S.W . Canyon Court, Portland, Ore. 97221 
Telephone: (503) 297·3761/3765 

NEW ZEALAND 
D igital Equipment Corporat ion Ltd . 
AUCKLAND 
Hil ton House . 430 Queen Street. Box 2411 A , 
Auckland , New Zealand 
Te lephone; 75-533 

CANADA 
DIgital Equipment of Canada. ltd. 

CANADIAN HEADQUARTERS 
I SO Aosamond Street . Carleton Place , O ntar io 
Te lephone : (613)-257-2615 TWX: 61()...56I -t6S1 

OTTAWA 
120 Holland Street, Ottawa 3, Ontorlo KIY OX7 
Telephone (613)-725-2193 TWX: 610·562-8907 

TORONTO 
230 Lakeshore Road East . Port Credit, Ontsr lo 
Te lephone : (416)-274-1241 TWX: 6 10-492·4306 

MONTREAL 
9675 Cote de lIesse Road 
Dorval . Quebec . Canada 760 
Telephone 51 4·636-9393 TWX: 610-422-4124 

EDMONTON 
5531 • 103 Sireet 
Edmonton . Alberta . Canada 
Te lephone : (403)-434-9333 TWX: 61()...831 ·2248 

VANCOUVER 
Digital Equ ipment of Canada. ltd . 
2210 West 12th Avenue 
Vancouver 9, British Co lumbia . Canada 
Telephone: (604)-736-5616 TWX : 61 ()...929-2C()6 

ARGENTINA 
BUENOS AIRES 
Coasin S .A . 
Virrey del P,no 4071. Buenos Aires 
Te lephone. 52-3185 Telex : 012-2284 

VENEZUELA 
CARACAS 
Colialn S.A . (Sales only) 
Apartado 50939 
Sa l ana Grande No. I . Caracas 
Telephone : 72·9637 Cab le. INSTRUVEN 

CHILE 
SANTIAGO 
Coss in Chl la lIda. (sa les only) 
Casills 14588, Correo 15. Santiago 
Telephone: 39671 3 Cab ie: COACHll 

IAPAN 
TOKYO 
Alkal Trading Co., ltd. (sales on ly) 
Kozato-Kslkan Bldg. 
No . 18-14. N ieh lah lmbashl 1-chome 
Mlnato-Ku, Tokyo, Japan 
Te lephone : 591 5246 Telex : 781 -"1208 
Digital Equipment Corporetlon Internatlonel 
Kowa BuildIng No. 17. Second Floor 
2·7 N lahl -Azabu l -Chome 
M lnalo·Ku , Tokyo, Japan 
Telephone: 404-5894/6 Telex: TK-6428 

PHILIPPINES 
Stanford Computer Corporation 
P.O . Box 1608 
416 Dasmarin e. St. , Mani la 
Telephone: 49-68-96 Telex : 742-0352 

INDIA 
H.S. Sonewale Mg D irector (Sa les On ly) 
HINDITAON SERVI CES PUT LTD . 
001 A Nepean Sea Aoed 
Bombay, Indle 



handbook series 


	A_Page_001.tif
	A_Page_002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142.tif
	DECsystem-10 Assemblly Language 16 (greyscale)_Page_1.tif
	DECsystem-10 Assemblly Language 16 (greyscale)_Page_2.tif
	DECsystem-10 Assemblly Language 16 (greyscale)_Page_3.tif
	A146.tif
	A147.tif
	A148.tif
	A149.tif
	A150.tif
	A151.tif
	A152.tif
	A153.tif
	A154.tif
	A155.tif
	A156.tif
	A157.tif
	A158.tif
	A159.tif
	A160.tif
	A161.tif
	A162.tif
	A163.tif
	A164.tif
	A165.tif
	A166.tif
	A167.tif
	A168.tif
	A169.tif
	A170.tif
	A171.tif
	A172.tif
	A173.tif
	A174.tif
	A175.tif
	A176.tif
	A177.tif
	A178.tif
	A179.tif
	A180.tif
	A181.tif
	A182.tif
	A183.tif
	A184.tif
	A185.tif
	A186.tif
	A187.tif
	A188.tif
	A189.tif
	A190.tif
	A191.tif
	A192.tif
	A193.tif
	A194.tif
	A195.tif
	A196.tif
	A197.tif
	A198.tif
	A199.tif
	A200.tif
	A201.tif
	A202.tif
	A203.tif
	A204.tif
	A205.tif
	A206.tif
	A207.tif
	A208.tif
	A209.tif
	A210.tif
	A211.tif
	A212.tif
	A213.tif
	A214.tif
	A215.tif
	A216.tif
	A217.tif
	A218.tif
	A219.tif
	A220.tif
	A221.tif
	A222.tif
	A223.tif
	A224.tif
	A225.tif
	A226.tif
	A227.tif
	A228.tif
	A229.tif
	A230.tif
	A231.tif
	A232.tif
	A233.tif
	A234.tif
	A235.tif
	A236.tif
	A237.tif
	A238.tif
	A239.tif
	A240.tif
	A241.tif
	A242.tif
	A243.tif
	A244.tif
	A245.tif
	A246.tif
	A247.tif
	A248.tif
	A249.tif
	A250.tif
	A251.tif
	A252.tif
	A253.tif
	A254.tif
	A255.tif
	A256.tif
	A257.tif
	A258.tif
	A259.tif
	A260.tif
	A261.tif
	A262.tif
	A263.tif
	A264.tif
	A265.tif
	A266.tif
	A267.tif
	A268.tif
	A269.tif
	A270.tif
	A271.tif
	A272.tif
	A273.tif
	A274.tif
	A275.tif
	A276.tif
	A277.tif
	A278.tif
	A279.tif
	A280.tif
	A281.tif
	A282.tif
	A283.tif
	A284.tif
	A285.tif
	A286.tif
	A287.tif
	A288.tif
	A289.tif
	A290.tif
	A291.tif
	A292.tif
	A293.tif
	A294.tif
	A295.tif
	A296.tif
	A297.tif
	A298.tif
	A299.tif
	A300.tif
	A301.tif
	A302.tif
	A303.tif
	A304.tif
	A305.tif
	A306.tif
	A307.tif
	A308.tif
	A309.tif
	A310.tif
	A311.tif
	A312.tif
	A313.tif
	A314.tif
	A315.tif
	A316.tif
	A317.tif
	A318.tif
	A319.tif
	A320.tif
	A321.tif
	A322.tif
	A323.tif
	A324.tif
	A325.tif
	A326.tif
	A327.tif
	A328.tif
	A329.tif
	A330.tif
	A331.tif
	A332.tif
	A333.tif
	A334.tif
	A335.tif
	A336.tif
	A337.tif
	A338.tif
	A339.tif
	A340.tif
	A341.tif
	A342.tif
	A343.tif
	A344.tif
	A345.tif
	A346.tif
	A347.tif
	A348.tif
	A349.tif
	A350.tif
	A351.tif
	A352.tif
	A353.tif
	A354.tif
	A355.tif
	A356.tif
	A357.tif
	A358.tif
	A359.tif
	A360.tif
	A361.tif
	A362.tif
	A363.tif
	A364.tif
	A365.tif
	A366.tif
	A367.tif
	A368.tif
	A369.tif
	A370.tif
	A371.tif
	A372.tif
	A373.tif
	A374.tif
	A375.tif
	A376.tif
	A377.tif
	A378.tif
	A379.tif
	A380.tif
	A381.tif
	A382.tif
	A383.tif
	A384.tif
	A385.tif
	A386.tif
	A387.tif
	A388.tif
	A389.tif
	A390.tif
	A391.tif
	A392.tif
	A393.tif
	A394.tif
	A395.tif
	A396.tif
	A397.tif
	A398.tif
	A399.tif
	A400.tif
	A401.tif
	A402.tif
	A403.tif
	A404.tif
	A405.tif
	A406.tif
	A407.tif
	A408.tif
	A409.tif
	A410.tif
	A411.tif
	A412.tif
	A413.tif
	A414.tif
	A415.tif
	A416.tif
	A417.tif
	A418.tif
	A419.tif
	A420.tif
	A421.tif
	A422.tif
	A423.tif
	A424.tif
	A425.tif
	A426.tif
	A427.tif
	A428.tif
	A429.tif
	A430.tif
	A431.tif
	A432.tif
	A433.tif
	A434.tif
	A435.tif
	A436.tif
	A437.tif
	A438.tif
	A439.tif
	A440.tif
	A441.tif
	A442.tif
	A443.tif
	A444.tif
	A445.tif
	A446.tif
	A447.tif
	A448.tif
	A449.tif
	A450.tif
	A451.tif
	A452.tif
	A453.tif
	A454.tif
	A455.tif
	A456.tif
	A457.tif
	A458.tif
	A459.tif
	A460.tif
	A461.tif
	A462.tif
	A463.tif
	A464.tif
	A465.tif
	A466.tif
	A467.tif
	A468.tif
	A469.tif
	A470.tif
	A471.tif
	A472.tif
	A473.tif
	A474.tif
	A475.tif
	A476.tif
	A477.tif
	A478.tif
	A479.tif
	A480.tif
	A481.tif
	A482.tif
	A483.tif
	A484.tif
	A485.tif
	A486.tif
	A487.tif
	A488.tif
	A489.tif
	A490.tif
	A491.tif
	A492.tif
	A493.tif
	A494.tif
	A495.tif
	A496.tif
	A497.tif
	A498.tif
	A499.tif
	A500.tif
	A501.tif
	A502.tif
	A503.tif
	A504.tif
	A505.tif
	A506.tif
	A507.tif
	A508.tif
	A509.tif
	A510.tif
	A511.tif
	A512.tif
	A513.tif
	A514.tif
	A515.tif
	A516.tif
	A517.tif
	A518.tif
	A519.tif
	A520.tif
	A521.tif
	A522.tif
	A523.tif
	A524.tif
	A525.tif
	A526.tif
	A527.tif
	A528.tif
	A529.tif
	A530.tif
	A531.tif
	A532.tif
	A533.tif
	A534.tif
	A535.tif
	A536.tif
	A537.tif
	A538.tif
	A539.tif
	A540.tif
	A541.tif
	A542.tif
	A543.tif
	A544.tif
	A545.tif
	A546.tif
	A547.tif
	A548.tif
	A549.tif
	A550.tif
	A551.tif
	A552.tif
	A553.tif
	A554.tif
	A555.tif
	A556.tif
	A557.tif
	A558.tif
	A559.tif
	A560.tif
	A561.tif
	A562.tif
	A563.tif
	A564.tif
	A565.tif
	A566.tif
	A567.tif
	A568.tif
	A569.tif
	A570.tif
	A571.tif
	A572.tif
	A573.tif
	A574.tif
	A575.tif
	A576.tif
	A577.tif
	A578.tif
	A579.tif
	A580.tif
	A581.tif
	A582.tif
	A583.tif
	A584.tif
	A585.tif
	A586.tif
	A587.tif
	A588.tif
	A589.tif
	A590.tif
	A591.tif
	A592.tif
	A593.tif
	A594.tif
	A595.tif
	A596.tif
	A597.tif
	A598.tif
	A599.tif
	A600.tif
	A601.tif
	A602.tif
	A603.tif
	A604.tif
	A605.tif
	A606.tif
	A607.tif
	A608.tif
	A609.tif
	A610.tif
	A611.tif
	A612.tif
	A613.tif
	A614.tif
	A615.tif
	A616.tif
	A617.tif
	A618.tif
	A619.tif
	A620.tif
	A621.tif
	A622.tif
	A623.tif
	A624.tif
	A625.tif
	A626.tif
	A627.tif
	A628.tif
	A629.tif
	A630.tif
	A631.tif
	A632.tif
	A633.tif
	A634.tif
	A635.tif
	A636.tif
	A637.tif
	A638.tif
	A639.tif
	A640.tif
	A641.tif
	A642.tif
	A643.tif
	A644.tif
	A645.tif
	A646.tif
	A647.tif
	A648.tif
	A649.tif
	A650.tif
	A651.tif
	A652.tif
	A653.tif
	A654.tif
	A655.tif
	A656.tif
	A657.tif
	A658.tif
	A659.tif
	A660.tif
	A661.tif
	A662.tif
	A663.tif
	A664.tif
	A665.tif
	A666.tif
	A667.tif
	A668.tif
	A669.tif
	A670.tif
	A671.tif
	A672.tif
	A673.tif
	A674.tif
	A675.tif
	A676.tif
	A677.tif
	A678.tif
	A679.tif
	A680.tif
	A681.tif
	A682.tif
	A683.tif
	A684.tif
	A685.tif
	A686.tif
	A687.tif
	A688.tif
	A689.tif
	A690.tif
	A691.tif
	A692.tif
	A693.tif
	A694.tif
	A695.tif
	A696.tif
	A697.tif
	A698.tif
	A699.tif
	A700.tif
	A701.tif
	A702.tif
	A703.tif
	A704.tif
	A705.tif
	A706.tif
	A707.tif
	A708.tif
	A709.tif
	A710.tif
	A711.tif
	A712.tif
	A713.tif
	A714.tif
	A715.tif
	A716.tif
	A717.tif
	A718.tif
	A719.tif
	A720.tif
	A721.tif
	A722.tif
	A723.tif
	A724.tif
	A725.tif
	A726.tif
	A727.tif
	A728.tif
	A729.tif
	A730.tif
	A731.tif
	A732.tif
	A733.tif
	A734.tif
	A735.tif
	A736.tif
	A737.tif
	A738.tif
	A739.tif
	A740.tif
	A741.tif
	A742.tif
	A743.tif
	A744.tif
	A745.tif
	A746.tif
	A747.tif
	A748.tif
	A749.tif
	A750.tif
	A751.tif
	A752.tif
	A753.tif
	A754.tif
	A755.tif
	A756.tif
	A757.tif
	A758.tif
	A759.tif
	A760.tif
	A761.tif
	A762.tif
	A763.tif
	A764.tif
	A765.tif
	A766.tif
	A767.tif
	A768.tif
	A769.tif
	A770.tif
	A771.tif
	A772.tif
	A773.tif
	A774.tif
	A775.tif
	A776.tif
	A777.tif
	A778.tif
	A779.tif
	A780.tif
	A781.tif
	A782.tif
	A783.tif
	A784.tif
	A785.tif
	A786.tif
	A787.tif
	A788.tif
	A789.tif
	A790.tif
	A791.tif
	A792.tif
	A793.tif
	A794.tif
	A795.tif
	A796.tif
	A797.tif
	A798.tif
	A799.tif
	A800.tif
	A801.tif
	A802.tif
	A803.tif
	A804.tif
	A805.tif
	A806.tif
	A807.tif
	A808.tif
	A809.tif
	A810.tif
	A811.tif
	A812.tif
	A813.tif
	A814.tif
	A815.tif
	A816.tif
	A817.tif
	A818.tif
	A819.tif
	A820.tif
	A821.tif
	A822.tif
	A823.tif
	A824.tif
	A825.tif
	A826.tif
	A827.tif
	A828.tif
	A829.tif
	A830.tif
	A831.tif
	A832.tif
	A833.tif
	A834.tif
	A835.tif
	A836.tif
	A837.tif
	A838.tif
	A839.tif
	A840.tif
	A841.tif
	A842.tif
	A843.tif
	A844.tif
	A845.tif
	A846.tif
	A847.tif
	A848.tif
	A849.tif
	A850.tif
	A851.tif
	A852.tif
	A853.tif
	A854.tif
	A855.tif
	A856.tif
	A857.tif
	A858.tif
	A859.tif
	A860.tif
	A861.tif
	A862.tif
	A863.tif
	A864.tif
	A865.tif
	A866.tif
	A867.tif
	A868.tif
	A869.tif
	A870.tif
	A871.tif
	A872.tif
	A873.tif
	A874.tif
	A875.tif
	A876.tif
	A877.tif
	A878.tif
	A879.tif
	A880.tif
	A881.tif
	A882.tif
	A883.tif
	A884.tif
	A885.tif
	A886.tif
	A887.tif
	A888.tif
	A889.tif
	A890.tif
	A891.tif
	A892.tif
	A893.tif
	A894.tif
	A895.tif
	A896.tif
	A897.tif
	A898.tif
	A899.tif
	A900.tif
	A901.tif
	A902.tif
	A903.tif
	A904.tif
	A905.tif
	A906.tif
	A907.tif
	A908.tif
	A909.tif
	A910.tif
	A911.tif
	A912.tif
	A913.tif
	A914.tif
	A915.tif
	A916.tif
	A917.tif
	A918.tif
	A919.tif
	A920.tif
	A921.tif
	A922.tif
	A923.tif
	A924.tif
	A925.tif
	A926.tif
	A927.tif
	A928.tif
	A929.tif
	A930.tif
	A931.tif
	A932.tif
	A933.tif
	A934.tif
	A935.tif
	A936.tif
	A937.tif
	A938.tif
	A939.tif
	A940.tif
	A941.tif
	A942.tif
	A943.tif
	A944.tif
	A945.tif
	A946.tif
	A947.tif
	A948.tif
	A949.tif
	A950.tif
	A951.tif
	A952.tif
	A953.tif
	A954.tif
	A955.tif
	A956.tif
	A957.tif
	A958.tif
	A959.tif
	A960.tif
	A961.tif
	A962.tif
	A963.tif
	A964.tif
	A965.tif
	A966.tif
	A967.tif
	A968.tif
	A969.tif
	A970.tif
	A971.tif
	A972.tif
	A973.tif
	A974.tif
	A975.tif
	A976.tif
	A977.tif
	A978.tif
	A979.tif
	A980.tif
	A981.tif
	A982.tif
	A983.tif
	A984.tif
	A985.tif
	A986.tif
	A_Page_987.tif
	A_Page_988.tif

