
VAX/VMS
System Services

Reference Manual
Order No. AA-D018A-TE

I I I I :555555YJ I I I
I I

I

August 1978

This manual describes the VAX!VMS system services.
It provides coding conventions, examples of how to
use system services, and detailed reference information
on the arguments required by each system service.

VAX/VMS
System Services

Reference Manual
Order No. AA-D018A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX!VMS V01

SOFTWARE VERSION: VAX!VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this doc~ment.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet

DECsystem-10
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

6/79-14 -

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-11
ITPS-10
SBI

I
/

)

.i'l<." , .

)

)

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION TO SYSTEM SERVICES

1.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND
PROTECTION

L 2 SUMMARY OF VAX/VMS SYSTEM SERVICES

CHAPTER 2

2.1
2.2

CHAPTER 3

CHAPTER

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

CALLING THE SYSTEM SERVICES

MACRO CODING
FORTRAN CODING

HOW TO USE SYSTEM SERVICES

EVENT FLAG SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES
LOGICAL NAME SERVICES
INPUT/OUTPUT SERVICES
PROCESS CONTROL SERVICES
TIMER AND TIME CONVERSION SERVICES
CONDITION HANDLING SERVICES
MEMORY MANAGEMENT SERVICES

SYSTEM SERVICE DESCRIPTIONS

$ADJSTK - ADJUST OUTER MODE STACK POINTER
$ADJWSL - ADJUST WORKING SET LIMIT
$ALLOC - ALLOCATE DEVICE
$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER
$A~CTIM - CONVERT BINARY TIME TO ASCII STR~NG
$A~SIGN - ASSIGN I/O CHANNEL
$BlNTIM - CONVERT ASCII STRING TO BINARY TIME
$aRDCST - BROADCAST
$CANCEL - CANCEL I/O ON CHANNEL
$CANEXH - CANCEL EXIT HANDLER
$CANTIM ..,. CANCEL TIMER REQUEST
$CANWAK -\CANCEL WAKEUP
$CLREF - CLEAR EVENT FLAG
$CMEXEC - CHANGE TO EXECUTIVE MODE
$CMKRNL - CHANGE TO KERNEL MODE
$CNTREG - CONTRACT PROGRAM/CONTROL REGION
$CRELOG - CREATE LOGICAL NAME
$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL
$CREPRC - CREATE PROCESS
$CRETVA - CREATE VIRTUAL ADDRESS SPACE
$CRMPSC - CREATE AND MAP SECTION
$DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER
$DALLOC - DEALLOCATE DEVICE
$DASSGN - DEASSIGN I/O CHANNEL

iii

Page

vii

1-1

1-1
1-3

2-1

2-2
2-14

3-1

3-4
3-10
3-15
3-21
3-37
3-56
3-63
3-77

4-1

4-3
4-5
4-6
4-8
4-10
4-12
4-15
4-17
4-19
4-21
4-22
4-23
4-25
4-26
4-27
4-28
4-30
4-32
4-35
4-44
4-46
4-52
4-53
4-55

4.25
4.26

4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

4.45
4.46
4.47
4.48
4.49

4.50
4.51
4.52
4~53

4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4 •. 63
4.64
4.65
4.66

4.67
4.68
4.69
4.70
4.71
4.72
4.73.
4.74
4.75
4.76

CONTENTS (Cont.)

$DCLAST - DECLARE AST
$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY
MODE HANDLER
$DCLEXH - DECLARE EXIT HANDLER
$DELLOG - DELETE LOGICAL NAME
$DELMBX - DELETE MAILBOX
$DELPRC - DELETE PROCESS'
$DELTVA - DELETE VIRTUAL ADDRESS SPACE
$DGBLSC - DELETE GLOBAL SECTION
$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER
$EXIT - EXIT
$EXPREG - EXPAND PROGRAM/CONTROL REGION
$FAO - FORMATTED ASCII OUTPUT
$FORCEX - FORCE EXIT
$GETCHN - GET I/O CHANNEL INFORMATION
$GETDEV - GET I/O DEVICE INFORMATION
$GETJPI - GET JOB/PROCESS INFORMATION
$GETMSG - GET MESSAGE
$GETTIM - GET TIME
$HIBER - HIBERNATE
$INPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT
FLAG
$LCKPAG - LOCK PAGES IN MEMORY
$LKWSET - LOCK PAGES IN WORKING SET
$MGBLSC - MAP GLOBAL SECTION
$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME
$OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR
EVENT FLAG
$PURGWS - PURGE WORKING SET
$PUTMSG - PUT MESSAGE
$QIO - QUEUE I/O REQUEST
$QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT
FLAG
$READEF - READ EVENT FLAGS
$RESUME - RESUME PROCESS
$SCHDWK - SCHEDULE WAKEUP
$SETAST - SET AST ENABLE
$SETEF - SET EVENT FLAG
$SETEXV - SET EXCEPTION VECTOR
$SETIMR - SET TIMER
$SETPRA - SET POWER RECOVERY AST
$SETPRI - SET PRIORITY
$SETPRN - SET PROCESS NAME
$SETPRT - SET PROTECTION ON PAGES
$SETRWM - SET RESOURCE WAIT MODE
$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION
MODE
$SETSWM - SET PROCESS SWAP MODE
$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER
$SNDERR - SEND MESSAGE TO ERROR LOGGER
$SNDOPR - SEND MESSAGE TO OPERATOR
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER
$SUSPND - SUSPEND PROCESS
$TRNLOG - TRANSLATE LOGICAL NAME
$ULKPAG - UNLOCK PAGES FROM MEMORY
$ULWSET - UNLOCK PAGES FROM WORKING SET
$UNWIND - UNWIND CALL STACK

iv

Page

4-57

4-58
4-60
4-62
4-64
4-66
4-68
4-70
4-72
4-73
4-74
4-76
4-90
4-92
4-95
4-97
4-102
4-104
4-105

4-106
4-107
4-109
4-111
4-114

4-116
4-117
4-118
4-i24

4-127
4-128
4-129
4-131
4-133
4-134
4-135
4-137
4-139
4-140
4-142
4-143
4-145

4-146
4-147
4-148
4-153
4-154
4-159
4-169
4-171
4-173
4-175
4-177

~." ..•. ' .. > V-:·",,",

)

)

!
)

"-.J~t . " r.~
~:'':-'.:>

)

(;J

)

4.77
4.78
4.79
4.80
4.81

APPENDIX ,A

APPENDIX

APPENDIX

INDEX

FIGURE

A.l
A.2

A.3

A.4

A.5
A.6

A.7

B

C

C.l
C.2
C.3

1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12

3-l3
3-14
3-15
3-16'
3-17
3-18
3-19

CONTENTS (Con t.)

$UPDSEC - UPDATE SECTION FILE ON DISK
$WAITFR - WAIT FOR SINGLE EVENT FLAG
$WAKE - WAKE
$WFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS
$WFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

SYSTEM SYMBOLIC DEFINITION MACROS

USING SYSTEM SYMBOLS
$IODEF MACRO - SYMBOLIC 'AMES FOR I/O FUNCTION
CODES
$MSGDEF MACRO- SYMBOLIC NAMES FOR SYSTEM
MAILBOX MESSAGES
$PRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR
REGISTERS
$PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS
$PSLDEFMACRO - PROCESSOR STATUS LONGWORD SYMBOL
DEFINITIONS
$SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM STATUS
CODES

PROGRAM EXAMPLES

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

MACRO FORMS
FORTRAN FORMS
SYSTEM SERVICE MACROS

Page

4-179
4-182
4-183
4-185
4-186

A-l

A-2

A-6

A-7
A-7

A-8

A-8

B-1

C-l

C-l
C-2
C-3

Index-l

FIGURES

How to Use This Book
FORTRAN Interpretation of MACRO Examples
Using Local Event Flags
Example of a Common Event Flag Cluster
Example of an AST
The AST Service Routine
Logical Name Table Entries
Synchronizing I/O Completion
Example of Terminal Input and Output
Device Allocation and Channel Assignment
Example of Using Formatted ASCII Output Program
Mailbox Creation and I/O
Defining Input and Output Streams for a
Subprocess
Process Hibernation
Example of an Exit Handler
Image Exit and Process Deletion
Using a Termination Mailbox
Timer Requests
Search of Stack for Condition Handler
Argument List and Arrays Passed to Condition
Handler

v

viii
3-2
3-6
3-9
3-11
3-14
3-17
3-23
3-26
3-29
3-32
3-34

3-39
3-46
3-50
3-52
3-54
3-59
3-66

3-67

FIGURE

T~BLE

3-20
3-21
3-22
3-23
3-24
4-1

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
2-1
3-1
3-2
3-3
3-4
3-5
3-6
4-1
4-2
4-3

4-4
4;-5
4-6
4-7

CONTENTS (Con t •)

FIGURES (Cont.)

Example of Condition Handling Routines
Unwinding the Call Stack
Layout of Process Viitua1 Address Space
Creating and Mapping a Private Section
Creating and. Mapping a Global Section
Format of Numeric Time Buffer

TABLES

Event Flag Services
AST (Asynchronous System Trap) Services
Logical Name Services
Input/Output Services
Process Control Services
Timer and Time Conversion Services
Condition Handling Services
Memory Management Services
Change Mode Services
FORTRAN Arguments for System Services
Summary of Event Flag and Cluster Numbers
Default Device Names for I/O Services
Process Identification
Process Hibernation and Suspension
Summary of Exception Conditions
Sample Virtual Address Arrays
Arguments for the $CRMPSC System Service
Summary of FAO Directives
How FAO Determines Output Field Lengths and
Fill Characters .
Item Codes for Job/Process Information
Format of Accounting Log File Records
Request Types for Symbiont Manager Messages
Options for Symbiont Manager Messages

vi

Page

3-72
3-75
3-78
3-86
3-88
4-114

1-6
1-7
1-7
1-8
1-10
1-12
1-13
1-14
1-15
2-17
3-5
3-31
3-43
3-45
3";;70
3-80
4-49
4-80

4 ... 82
4-100
4-151
4-163
4-165

(

i

(

< .. {.~ ..•
/"

(

(

r .• ~··'
I :~~'~'R ,
, .
~---

)

)

)

PREFACE

This manual provides users of the VAX/VMS operating system with
detailed usage and reference information on the system services.

VAX/VMS system services can be used only in programs written in
languages that produce native code for the VAX-ll/780 hardware. These
languages are:

VAX-II FORTRAN IV-PLUS
VAX-ll MACRO

INTENDED AUDIENCE

This manual is intended for system and application programmers who are
already familiar with VAX/VMS system concepts. For an overview of the
operating system and an introduction to some of the concepts used in
system services, see the VAX/VMS Summary Description.

STRUCTURE OF THIS DOCUMENT

This manual is organized into four chapters and three appendixes, as
follows:

•

•

Chapter 1 contains introductory information: it presents
overviews of the various categories of system services, and
summarizes the services in each category.

Chapter 2 describes the conventions used to code calls to
system services. It discusses the macro forms for coding in
VAX-II MACRO, and tells how to call the services from a
program written in VAX-II FORTRAN IV-PLUS.

• Chapter 3 contains usage information intended to guide new
users in understanding how the system services work and how
to use them.

• Chapter 4 provides detailed reference information on each
system service. The descriptions are presented in
alphabetical order, for ease of reference.

• Appendix A lists the system-provided macro instructions that
define symbolic names for frequently used system constants.

vii

• Appendix B contains sample programs that use various system
services.

• Appendix C summarizes the system-service formats,
reference.

See Figure 1 for an illustration ofchow to use this book.

Read Chapter 1 for an overview
of all services; decide which
service(s) you want to use.

Do you
understand the

rules and conventions
for coding calls to
system services?

more information
about how a service or

group of services
works?

Read the section'of Chapter 3
that gives usage information
and examples of the services.

To code a call to a system
service, read the reference
description of the service
in Chapter 4.

No

No

Read Chapter 2 for
coding conventions
and examples.

Figure 1 How to Use This Book

viii

for easy 1
/

)

)

)

)

)

)

ASSOCIATED DOCUMENTS

The following documents are prerequisite for

• All Users:

VAX/VMS Summary Description

• MACRO Programmers:

VAX-ll MACRO Language Reference Manual
VAX-II MACRO User's Guide

• FORTRAN Programmers:

VAX-Il FORTRAN IV-PLUS Language Reference Manual
VAX-Il FORTRAN IV-PLUS User's Guide

The following documents, which are referred to in this manual, may
also be useful:

• VAX/VMS Command Language User's Guide

• Introduction to VAX-ll Record Management Services

• VAX-ll Record Management Services Reference Manual

• VAX/VMS I/O User's Guide

• DECnet-VAX User's Guide

For a complete list of VAX-ll documents, including descriptions of
each, see the VAX-Il Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following syntactical conventions are used in this manual:

•

•

Brackets ([]) in system service descriptions
optional arguments.

indicate

Horizontal ellipses (...) indicate: (1) when shown in the
format of a system service call, that additional optional
arguments have been omitted; (2) when shown in an example,
that additional arguments required by a service but not
pertinent to the example are not shown.

• Vertical ellipses in coding examples indicate that lines of
code not pertinent to the example are not shown. For
example:

• Uppercase letters in a system service
that must be entered as shown;
variable data.

ix

format show keywords
lowercase letters show

)

)

}
./

)

)

CHAPTER 1

INTRODUCTION TO SYSTEM SERVICES

System services are procedures that
to control resources available
communication among processes; and
functions, such as the coordination

the VAX/VMS operating system uses
to processes; to provide for

to perform basic operating system
of input/output operations.

Although most system services are used primarily by the operating
system itself on behalf of logged-in users, many are available for
general use and provide techniques that can be used in application
programs. For example, when you log into/~he system, the Create
Process system service is called to create a p,tocess on your behalf.
You may, in turn, code a program that calls the Create Process system
service to create a subprocess.

1.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND PROTECTION

Many system services are available and suitable for application
programs, but the use of some services must be restricted to protect:

• The performance of the system

• The integrity of user processes

For example, because the creation of permanent mailboxes uses system
dynamic memory, the unrestricted use of permanent mailboxes could
decrease the amount of memory available to other users. Therefore,
the ability to create permanent mailboxes is controlled: a user must
be specifically assigned the privilege to use the Create Mailbox
system service to create a permanent mailbox.

The various controls and restrictions applied to system service usage
are described below. The tables in Section 1.2 that summarize the
system services note any restrictions on the use of specific services.

1.1.1 User Privileges and Resource Quotas

The system manager~ who maintains the user authorization file for the
system, grants privileges to use protected system services. The user
authorization file contains, in addition to profile information on
each user, a list of specific user privileges and resource quotas.

When you log into the system, the privileges and quotas you have been
assigned are associated with the process created on your behalf.
These privileges and quotas are applied to every image that the
process executes.

1-1

INTRODUCTION TO SYSTEM SERVICES

When an image issues a call to a
privilege, the privilege list
the specific privilege required,
system service; otherwise, a
returned.

system service that is protected by
is checked. If you have been granted
the image is allowed to execute the
status code indicating an error is

When a system service that uses a resource controlled by a quota is
called, the process's quota for that resource is checked. If the
process ha~ exceeded its quota, or if it has no quota allotment, an
error status code may be returned. In some cases, the process may be
placed in a wait ~tate until the resource becomes availabla; see
Section 2.1.5.4, "Special Return Conditions."

1.1.2 Control by Group Association

Some system services provide techniques for coordinating and
synchronizing the execution of different processes. These services
require ~ooperating processes to be in the same group; that is, the
group fields in the user identification codes (UICs) for the processes
must match.

For example, event flags are used to post the occurrence of events in
a program and can be shared among cooperating processes. However, the
processes that share a cluster of event flags must be in the same
group.

1.1.3 Protection by Access Mode

A process·can· execute at ·any one of four access modes: user,
supervisor, executive, or kernel. The access modes determine a
process's ability to access pages of virtual memory. Each page has a
protection code associated with it, specifying the type of access -­
read, write, or no access -- allowed for each mode. The VAX-ll/780
Architecture Handbook provides additional information on access modes.

For the most part, user-written programs execute in user mode; system
programs executing at the user's request (system services, for
example) may execute at one of the other three, more privileged,
access modes.

In some system service calls, the access mode of the caller is
checked. For example, when a process tries to cancel timer requests,
it can cancel only those requests that were issued from the same or
less privileged access modes. For example, a process executing in
user mode cannot cancel a timer request made from supervisor,
executive, or kernel mode, which are more privileged access modes.

1-2

)

)

)

)

)

)

)

INTRODUCTION TO SYSTEM SERVICES

1.2 SUMMARY OF VAX!VMS SYSTEM SERVICES

The following sections summarize
functional groups, with tables
each group. Each table lists:

the VAX/VMS system services in
listing the services that belong in

• The full name of the service and the short, macro name by
which it is alphabetized in this book.

• The functions performed by the service, with distinctions
based on privilege (where applicable).

• Restrictions on the use of the service, if any. This column
is keyed as follows:

None

xxx privilege

yyy quota

Access mode

indicates that no restriction is placed on
the use of the service for this function.

indicates the specific user privilege that is
required to use the service for the requested
function.

indicates the specific resource quota that is
required to use the service for the requested
function.

indicates that this service uses the access
mode of the caller to determine whether the
caller can execute the function requested.

UIC protection indicates that this service may restrict
access based on the caller's UIC.

For detailed information about a restriction applied to any
specific service, see that service's description in Chapter
4.

Chapter 3 provides additional information, including examples, on the
services listed in Tables 1-1 through 1-8.

1.2.1 Event Flag Services

A process can use event flags to synchronize sequences of operations
in ,a program. Event flag services clear, set, and read event flags,
and place a process in a wait state pending the setting of an event
flag or flags.

Table 1-1 lists the event flag services.

1.2.2 AST (Asynchronous System Trap) Services

Process execution can be interrupted by events (such as I/O
completion) for the execution of designated subroutines. These
software interrupts are called asynchronous system traps (ASTs)
because they occur asynchronously to process execution. System
services are provided so that a process can control the handling of
ASTs.

Table 1-2 lists the AST services~

1-3

INTRODUCTION TO SYSTEM SERVICES

1.2.3 Logical Name Services

Logical name services provide a generalized technique for maintaining
and accessing character string logical name and equivalence name
pairs. Logical names can ptovide~device-independence for system and
application program input and output operations.

Table 1-3 lists the logical name services.

1.2.4 Input/Output Services

I/O services perform input and output operations directly, rather than
through the file handling services of the VAX-II Record Management
Services (RMS). I/O services:

• Perform logical and virtual input/output operations

• Format output lines convertirig binary numeric values to ASCII
strings and substituting variable.data in ASCII strings

• Create mailboxes for interprocess communication

• Perform network operations

• Queue messages to system processes

Table 1-4 lists the I/O
additional information
covered in this manual:

services.
on aspects

The
of

following manuals provide
input/output operations not

• Introduction to VAX-II Record Management Services

• VAX-II Record Management Services Reference Manual

• VAX/VMS I/O User's Guide

• DECnet~VAX User's Guide

1.2.5 Process Control Services

Process control services allow you to create, delete, and control the
execution of processes.

Table 1-5 lists the process control services.

1.2.6 Timer and Time Conversion Services

Timer services schedule program events for a particular time of day,
or for after a specified interval of time has elapsed. The time
conversion services provide a way to obtain and format binary time
values for use with the timer services.

Table 1-6 lists the timer and time conversion ser~ices.

1-4

)

)

)

)

)

)

)

INTRODUCTION TO SYSTEM SERVICES

1.2.1 Condition Handling Services

Condition handlers are procedures that can be designated to receive
control when a hardware or software exception condition occurs during
image execution. Condition handling services designate condition
handlers for special purposes.

Table 1-7 lists the condition handling services.

1.2.8 Memory Management Services

Memory management services provide ways to use the virtual address
space available to a program. Included are services that:

• Allow an image to increase or decrease the amount of virtual
memory available

• Control the paging and swapping of virtual memory

• Create and access in memory files that contain shareable code
or data

Table 1-8 lists the memory management services.

1.2.9 Change Mode Services

Change mode services alter the access mode of a process to a more
privileged mode to execute particular routines. These services are
used primarily by the operating system.

Table 1-9 lists the change mode services.

1-5

INTRODUCTION TO SYSTEM SERVICES

Table 1-1
Event Flag Services

Service Name Function(s) Restriction(s)l

Associate Common Creates a temporary common event flag TQELM quota
Event Flag Cluster cluster

($ASCEFC)
Creates a permanent common event flag PRMCEB privilege
cluster

Establishes association with an existing Group association
common event flag cluster

Disassociate Common Cancels association_ with a common event None
Event Flag Cluster flag cluster

($DACEFC)

Delete Common Event Marks a permanent common event flag PRMCEB privilege
Flag Cluster cluster for deletion Group association

($DLCEFC)

Set Event Flag Turns on an event flag in a process-local None
(SSETEF) event flag cluster

Turns on an event flag in a common event Group association
flag cluster

Clear . .Even t Flag Turns off an event flag in a process-local None
(SCLREF) event flag cluster

Turns off an event flag in a common event Group association
flag cluster

Read Event Flags Returns the status of all event flags in None
($READEF) a process-local event flag cluster

Returns the status of all event flags in Group association
a common event flag cluster

wait for Single Places the current process in a wait state None
Event Flag pending the setting of an event flag in a

($WAITFR) process-local event flag cluster

Places the current process in a wait state Group association
pending the setting of an event flag in a
common event flag cluster

Wait for Logical OR Places the current process in a wait state None
of Event Flags pending the setting of any one of a speci-

($WFLOR) fied set of flags in a process-local event
flag cluster

Places the current process in a wait state Group association
pending the setting of any one of a speci-
fied set of flags in a common event
flag cluster)

wait for Places the current process in a wait state None
Logical AND pending the setting of all specified
of Event Flags flags in a process-local event flag

(~WFLAND) cluster

Places the current process in a wait Group association
state pending the setting of all specified
flags in a common event flag cluster

1 For an explanation of the terms used in tpis column, see Page 1-3.

1-6

)

INTRODUCTION TO SYSTEM SERVICES

Table 1-2
AST (Asynchronous System Trap) Services

Service Name Function(s)

Set AST Enable Enables or disables the delivery of ASTs
($SETAST)

Declare AST Queues an AST for delivery
($DCLAST)

Set Power Recovery Establishes AST routine to receive control
AST ($SETPRA) following power recovery cond i tion

1
For an explanation of the terms used in this column, see Page 1-3.

Service Name

Create Logical
Name ($CRELOG)

Delete Logical Name
($DELLOG)

Translate Logical
Name ($TRNLOG)

Places

Table 1-3
Logical Name Services

Function(s)

logical name/equivalence name
pair in process logical name table

Places logical name/equivalence name
pair in group logical name table

Places logical name/equivalence name
pair in system logical name table

Removes logical name/equivalence name
pair from process logical name table

Removes logical name/equivalence name
pair from group logical name table

Removes logical name/equivalence name
pair from system logical name table

Searches logical name tables for a specified
logical name and return its equivalence
name when the first match is found

1
For an explanation of the terms used in this column, see Page 1-3.

1-7

Restriction(s)l

None

ASTLM quota
Access mode

ASTLM quota

Restriction(s)l

Access mode

GRPNAM privilege
Group association

SYSNAM privilege

None

GRPNAM pr i v ilege
Group association

SYSNAM pr i vilege

None

Service Name

Assign I/O Channel
($ASSIGN)

Deassign
I/O Channel

($DASSGN)

Queue I/O Request
($QIO)

Queue I/O Request
and Wait for Event
Flag ($QIOW)

$INPUT

$OUTPUT

Formatted ASCII
Output ($FAO)

Formatted ASCII
Output with List
Parameter ($F;AOL)

Allocate Device
($ALLOC)

Deallocate Device
($DALLOC)

Get I/O Channel
Information

($GETCHN)

Get I/O Device
Information

($GETDEV)

Cancel I/O
on Channel

($CANCEL)

INTRODUCTION TO SYSTEM SERVICES

Table 1-4
Input/Output Services

Function(s)

Establishes a path for an I/O request

Establishes a path for network operations

Releases linkage for an I/O path

Releases a path from the network

Initiates an input or output operation

Initiates an input or output operation and
causes the process to wait until it is
complete before continuing execution

Initiates virtual input operation and waits
for completion

Initiates virtual output operation and waits
for completion

Performs ASCII string substitution,
and converts numeric data to ASCII
representation and substitutes in
output

Reserves a device for exclusive use by a-
process and its subprocesses

Reserves a spooled device for exclusive use

Relinquishes exclusive use of a device

Provides information about a device to which
an I/O channel has been assigned

Provides information about a physical device

Cancels pending I/O requests on a channel

1 For an explanation of the terms used in this column, see Page 1-3.

Restriction(s)l

None

NETMBX privilege

Access mode

NETMBX privilege

Access mode 2

Access mode2

Ac.cess mode 2

Access mode 2

None

None

ALLSPOOL privilege

Access mode

Access mode

None

Access mode

2 D~pending on the specific nature of the input or output re·quest, the service may
require the PHY 10, LOG 10, or MOUNT privileges, or quotas for buffered I/O (BIOLM),
direct I/O (DIOLM), buffer-space (BYTLM), or AST limit (ASTLM).

1-8

\
i

)

)

Service Name

Create Mailbox
and Assign
Channel

($CREMBX)

Delete Mailbox
($DELMBX)

Broadcast
($BRDCST)

Send Message to
Accounting Manager

($SNDACC)

Send Message to
Symbiont Manager

($SNDSMB)

Send Message to
Operator

($SNDOPR)

Send Message to
Error Logger

($SNDERR)

Get Message
($GETMSG)

Put Message
($PUTMSG)

INTRODUCTION TO SYSTEM SERVICES

Table 1-4 (Cant.)
Input/Output Services

Function(s)

Creates a temporary mailbox

Creates a permanent mailbox

Marks a permanent mailbox for deletion

Sends a high-priority message to an
assigned terminal

Sends a high-priority message to a
nonassigned terminal or to all
terminals

Controls accounting log file activity

Wr i tes an arbitrary message to the
accounting log file

Requests symbiont manager to initialize,
modify, or delete a printer or
batch job queue, or a device queue

Hequests symbiont manager to delete or
change characteristics of a queued file

Writes a message to designated operator(s)
terminal(s)

Enables or disables an operator's terminal,
sends a reply to a user request or initializes
the operator's log file

Writes arbitrary data to the system error
log file

Returns text of system error message from
message file

Writes a message to the current output and
error devices

1 For an explanation of the terms used in this column, see Page 1-3.

1-9

Restriction(s)l

BYTLM/Quota
TMPMBX privilege

PRMMBX pr ivilege

PRMMBX privilege
Access mode

None

OPER privilege

OPER privilege

None

OPER privilege

Group association

None

OPER pr i vilege

BUGCHK privilege

None

None

Service Name

Create· Process
($CREPRC)

Delete Process
($DELPRC)

Suspend Process
($SUSPND)

Resume Process
($RESUME)

INTRODUCTION TO SYSTEM SERVICES

Table 1-5
Process Control Services

Function(s)

Creates a subprocess

Creates a detached process

Deletes the current process or a subprocess

Deletes anothe~ process in the same
group

Deletes any process in the system

Makes the current process or a subprocess
nonexecutable and unable to receive ASTs
until a subsequent resume or delete request

Makes another process in the same group
nonexecutable and unable to receive ASTs
until a subsequent resume or delete request

Makes any process in the system nonexecutable
and non interruptible until a subsequent
resume or delete request

Restores executabili ty of a suspended subprocess

Restores executabil i ty of a suspended proc·ess in
the same group

Restores executability of any suspended process
in the system

Hibernate ($HIBER) Makes the current process dormant but able to
receive ASTs until a subsequent wakeup
request

Wake ($WAKE)

Schedule Wakeup
($SCHDWK)

Cancel wakeup
($CANWAK)

Exit ($EXIT)

Force Exit
($FORCEX)

Declare Exit
Handler

($DCLEXH)

Cancel Exit
Handler

($CANEXH)

Set Process Name
($SETPRN)

Restores executability of the current
process or a hibernating subprocess

Restores executability of a hibernating process
in the same group

Restores executability of any hibernating
process in the system

Wakes a process after a specified time
interval or at a specific time 2

Cancels a scheduled wakeup request 2

Terminates execution of an image and
returns to command interpreter

Causes image exit for the current process
or a subprocess

Causes image exit for a process in the same
group

Causes image exit for any process in the
system

Designates a routine to receive control
when image exits

Cancels a previously established exit handling
routine

Establ ishes a text name str ing t·o be used
to identify the current process

Restriction(s)l

PRCLM quota

DETACH privilege

None

GROUP privilege
Group association

WORLD privilege

None

GROUP privilege
Group association

WORLD privilege

None

GROUP privilege
Group association

WORLD pr i vilege

None

None

GROUP privilege
Group association

WORLD privilege

None

None

GROUP privilege
Group association

WORLD privilege

None

Access mode

None

1

2

For an explanation of the terms used in this column, see Page 1-3.

Functions performed by these services are listed in detail in Table 1-6.

1-10

)

)

/
,/

)

)

Service Name

Set Priority
($SETPRI)

Set Resource Wait
Mode ($SETRWM)

Get Job/Process
Information

($GETJPI)

INTRODUCTION TO SYSTEM SERVICES

Increases

Table 1-5 (Cont.)
Process Contro~ Services

Function(s)

the execution prlority for
any process

Changes the execution priority for the current
process or a subprocess

Changes the execution priority for a process
in the SOlme group

Changes the execution priority for any
process in the system

Requests wait, or that control be returned
immediately, when ol system service call
cannot be executed because a system
resource is not available

Returns information about the current
process

Returns information about the current context
of other processes in the same group

Returns information about any other process in
the system

1 For an explanation of the terms used in this column, see Page 1-3.

1-11

RestrictiOn(s)l

ALTPRI privilege

None

GROUP privilege
Group association

WORLD privilege

None

None

GROUP privilege
Group association

WORLD privilege

Service Name

Get Time
($GETTIM)

INTRODUCTION TO SYSTEM SERVICES

Table 1-6
Timer and Time Conversion Services

Function(s)

Returns the date and time in system
format

Convert Binary Time Converts a ~ate and time from system
to Numeric Time format to numeric integer values

($NUMTIM)

Convert Binary Time Converts a date and time from system
to ASCII String format to an ASCII string

($ASCTIM)

Convert ASCII
String to Binary
Time ($BINTIM)

Converts a date and time in an ASCII
string to the system date and time
format

Set Timer ($SETIMR) Requests setting of an event flag or
queueing of an AST based on an absolute
or delta time value

Cancel Timer
Request .

($CANTIM)

Schedule wakeup
($SCHDWK)

Cancel wakeup
($CANWAK)

Cancels previously issued timer requests

Schedules a wakeup for the current process
or a hibernating subprocess

Schedules a wakeup for a hibernating
process in the same group

Schedules a wakeup for any hibernating
process in the system

Cancels a scheduled wakeup request for
the current process or a hibernating
subprocess

Cancels a scheduled wakeup request
for a hibernating process
in the same group

Cancels a scheduled wakeup request
for any hibernating process in
the system

1 For an explanation of the terms used in this column, see Page 1-3.

Restrtction(s) 1

None

None

None

None

TQELM quota 2

·Access mode

ASTLM quota

GROUP privilege
ASTLM quota
Group association

WORLD pr ivilege
ASTLM quota

None

GROUP privilege'
Group association

WORLD privilege

2 Setting an event flag in a common event flag cluster requires association based on group
number; a timer request with an AST requires ASTLM quota.

1-12

\

)

)

)

)
/

\

SYSTEM SERVICE DESCRIPTIONS

$SETPRT

4.64 $SETPRT - SET PROTECTION ON PAGES

The Set Protection On Pages system service allows an image running 'in
a process to change the protection ori a page or range of pages.

Macro Format:

$SETPRT inadr, [retadr] , [acmode] ,prot, [prvprt]

High-Level Language Format:

inadr

SYS$SETPRT{inadr , [retadr] , [acmode] ,prot, [prvprt])

address of a 2-longword array containing the starting and ending
virtual addresses of the pages on which protection is to be
changed. If the starting and ending virtual addresses are the
same, a single page is changed. Only the virtual page number
portion of the virtual address is used~ the low-order 9 bits are
ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages that had their protection changed.

acmode

prot

access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to change the protection.

new protection specified in bits 0 through 3 in the format of the
hardware page prot~ction. The high-order 28 bits are ignored.
Symbolic names defining the protection codes are listed in
Appendix A, Section A.5 "$PRTDEF - Hardware Protection Code
Definitions."

If the protection is specified as 0, the protection defaults to
kernel read-only.

prvprt
address of a byte to receive the protection previously assigned
to the last page whose protection was changed. This argument is
useful only when protection for a single page is being changed.

4-143

Return Status:

SS$ NORMAL

SYSTEM SERVICE DESCRIPTIONS
$SETPRT - SET PROTECTION ON PAGES

- Service successfully completed.

1. The input address array cannot be read, or the output address
array or the byte to receive the previous protection cannot
be written, by the caller.

2. An attempt was made to change the protection of a nonexistent
page.

SS$_EXQUOTA
The process exceeded its paging file quota while changing a page
in a read-only private section to a read/write page.

SS$ IVPROTECT
- The specified protection code has a numeric value of 1 or is

greater than 15.

SS$ LENVIO
~ A page in the specified range is beyond the end of the program or

control region. .

SS$_NOPRIV
A page in the specified range is in the system address space.

SS$ PAGOWNVIO
- Page owner violation. An attempt was made to change

protection on a page owned by a more privileged access mode.

Privilege Restrictions:

the

For pages in global sections, the new protection can alter only
the accessibility of the page for modes less privileged than the
owner of the page.

Resources Required/Returned:

If a process changes any
read-only to read/write,
file quota (PGFLQUOTA)~

pages in a private section from
the service USes the process's paging

If an error occurs while changing page protection, the return
array, if requested, indicates the pages that were successfully
changed before the error occurred. If no pages have been
affected, both longwords in the return address array contain a
-1.

4-144

)

)

)

)

)

)

Service Name

Set Exception
Vector

($SETEXV)

Set System Service
Failure Exception
Mode ($SETSFM)

Unwind from
Condition Handler.
Frame ($UNWIND)

Declare Change
Mode or
Compatibil i ty
Mode Handler

($DCLCMH)

INTRODUCTION TO SYSTEM SERVICES

Table 1-7
Condition Handling Services

Function(s)

Defines condition handlers to
receive control in case of hardware-
or software-detected exception conditions

Requests or disables generation of a software
exception condition when a system service
call returns an error or severe error

Deletes a specified number of call frames
from the call stack following a
nonrecoverable exception condition

Designates a routine to receive control
when change mode to user instructions
are encountered

Designates -a routine to receive control
when change mode to supervisor
instructions are encountered

Designates a routine to receive control
when compatibility mode exceptions
occur

1 For an explanation of the terms used in this column, see Page 1-3.

1-13

Restriction(s)l

Access mode

None

None

Access mode

Access mode

None

INTRODUCTION TO SYSTEM SERVICES

Table 1-8
Memory Management Services

Service Name Function(s) Restriction(s)l

Expand program/ Adds pages at the end of the program or None
Control Region control region

($EXPREG)

Contract Program/ Deletes pages-from the end of the program or None
Control Region control region

($CNTREG)

Create virtual Adds pages to the virtual address space None
Address Space available to an image

($CRETVA)

Delete Virtual Makes a range of virtual addresses None
Address Space unavailable to an image

($DELTVA)

Create and Map Identifies a disk file as a private section Access mode
Section and establishes correspondence between virtual

($CRMPSC) blocks in the file and the process's virtual
address space

Identifies a disk file containing shareable Access mode
code or data as a temporary global section
and establishes correspondence between virtual
blocks in the file and the process's virtual
address space

Identifies a disk file containing shareable PRMGBL privilege
code or data as a permanent global section Access mode
and establishes correspondence between virtual
blocks in the file and the process's virtual
address space

Identifies a disk file containing shareable SYSGBL privilege
code or data as a system global section and Access mode
establishes correspondence between virtual
blocks in the file and the process's virtual
address space

Update Section File Writes modified pages of a private or Access mode
on Disk global section into the section

($UPDSEC) file

Map Global Section Establishes correspondence between a global UIC protection
($MGBLSC) section and a process's virtual address

space

Delete Global Marks a permanent global section for deletion PRMGBL privilege
Section ($DGBLSC)

Marks a system global section for deletion SYSGBL privilege
Access mode)

Lock Pages- in Specifies that particular pages cannot be Access mode
working Set paged out of the process's working set

($LKWSET)

Unlock Pages from Allows previously locked pages to be paged Access mode
working Set out of working set

($ULWSET)

Purge working Removes all pages within a specified range None
Set ($PURGWS) from the current working set

Lock Page in Memory Specif ies that particular pages may not be User privilege
($LCKPAG) swapped out of memory Access mode

1 For an explanation of the terms used in this column, see Page 1-3.

1-14

1
/

)

'\
J

Service Name

Unlock Page in
Memory ($ULKPAG)

Adjust Working Set
Limit ($ADJWSL)

Set Protection on
Pages ($SETPRT)

Set Process Swap
Mode ($SE'rSWM)

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 (Cant.)
Memory Management Services

Function(s)

Allows previously locked pages to be swapped
out of memory

Changes maximum number of pages that the
current process can have in its working set

Controls access to a range of virtual
addresses

Controls whether or not the current process
can be swapped out of the balance set

1 For an explanation of the terms used in this column, see Page 1~3.

Service Name

Change to Executive
Mode ($CMEXEC)

Change to Kernel
Mode ($CMKRNL)

Adjust Outer Mode
Stack Pointer

($ADJSTK)

Executes
mode

Executes
mode

Modifies

a

a

Table 1-9
Change Mode Services

Function(s)

specified routine in executive

specified routine in kernel

the current stack pointer for a
less privileged access mode

1 For an explanation of terms used in this column, see Page 1-3.

1-15

Restriction(s)l

User privilege
Access mode

WSQUOTA quota

Access mode

PSWAPM privilege

Restriction(s)l

CMEXEC privilege
Access mode

CMKRNL privilege
Access mode

Access mode

)

,j

)

)

)

CHAPTER 2

CALLING THE SYSTEM SERVICES

System service procedures are called using the standard VAX-ll/780
procedure calling conventions. The programming languages that
generate VAX-ll/780 native mode instructions provide mechanisms for
coding the procedure calls. These languages, and supporting
documentation, are listed in the Preface.

When you code a system service call, you must supply whatever
arguments the service requires.

When the service completes execution, it
calling program with a return status code.
the status code to determine the success or
call, so it can alter the flow of execution,

returns control
The caller should
failure of the
if necessary.

to the
analyze
service

This chapter provides all the information you need to code calls to
system services.

If you are a VAX-II MACRO programmer, you should read Section 2.1 for
details on how to code the macro instructions that generate system
service calls.

If you are a VAX-II FORTRAN IV-PLUS programmer, you should read
Section 2.2 for details on how to code subroutine CALL statements or
function references.

Each of these sections also discusses conventions for coding arguments
and methods of checking the successful completion of a system service.

2-1

CALLING THE SYSTEM SERVICES

2.1 MACRO CODING

System service macros generate argument lists and CALL instructions to
call system services. These macros are located in the system library
STARLET.MLB; this library is searched automatically for unresolved
references when you assemble a source program.

Knowledge of MACRO rules for assembly language coding is required for
understanding the material presented in this section. The VAX-II
MACRO Language Reference Manual and the VAX-II MACRO User's Guide
contain the necessary prerequisite information.

2.1.1 Argument Lists

You can determine the arguments required by a system service from the
service description in Chapter 4. The "Macro Format" for each system
service indica~es the positional dependencies and keyword names of
each argument as shown in the following sample:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE
and that it requires four arguments, ordered as shown and with keyword
names ARGA, ARGB, ARGC, and ARGO. The argument list for this service
must have the format:

31 8 7 o

0 I 4

arga

argb

argc

argd

All arguments are longwords. The first longword in the list must
always contain, in its low-order byte, the number of arguments in the
remainder of the list. The remaining three bytes must be zeros.

Many arguments to system services are optional; these are indicated
in the macro formats by brackets. For example, if the second and
third arguments of $SERVICE are optional, tha macro format would
appear as:

$SERVICE arga ,[argb] ,[argc] ,argd

If you omit an optional argument in a system service macro
instruction, the macro supplies a default value for the argument.

There are two generic macro forms for coding calls to system services:

$name G
$name:::s

2-2

J

-)

)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

The form of the macro to use depends on how the argument list for the
system service is constructed:

1. The $name G form requires you to construct an argument list
elsewhere-in the program and specify the address of this list
as an argument to the system service. (A macro is provided
to create an argument list for each system service.) with
this form, you can use the same argument list, with
modifications if necessary, for more than one invocation of
the macro.

2. The $name S form requires you to supply the arguments to the
system service in the macro instruction. The macro generates
code to push the argument list onto the call stack during
program execution. With this form, you can use registers to
contain or to point to arguments so you can write re-entrant
programs.

The $name G macro form generates a CALLG instruction; the $name s
macro form generates a CALLS instruction. The services are called
according to the standard procedure calling conventions. System
services save all registers except RO and Rl, and restore the saved
registers before returning control to the caller.

The following sections describe how to code system service calls using
each of these macro forms.

2.1.2 $name_G Form

The $name_G macro form requires a single operand:

label
address of the argument list.

You can use the $name macro to create the argument list.
of the $name macro is:

The format

label: $name argl, ... , argn

label

$name

symbolic address of the generated argument list. This is the
label given as an argument in the $"name_G macro form.

the service macro name.

argl, ••• ,argn
arguments to be placed in successive longwords in the argument
list.

2.1.2.1 Specifying Arguments with the $name Macro - When you use the
$name macro to construct an argument list for a system service, you
can specify the arguments in any of three ways:

1. By using keywords to describe the arguments. A keyword must
be followed by an equal sign (=) and then by the value of the
argument.

2-3

CALLING THE SYSTEM SERVICES
MACRO CODING

2. In positional order, with omitted
commas in the argument positions.
optional trailing arguments.

arguments indicated by
You can omit commas for

3. Using both positional dependence and keyword names (you must
list positional arguments first).

For example, $SERVICE may have the format:

$SERVICE arga ,[argb] ,[argc] ,argd

Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and
ARGD require you to code addresses.

The two following examples show valid ways of coding a $name macro to
construct an argument list for a later call to $SERVICE.

I Example 1: Using Keywords I

LIST: $SERVICE

IExamPle 2: Specifying Arguments in positional orderl

LIST: $SERVICE l",MYARGD

The argument list generat~d in both cases is:

LIST: • LONG
• LONG
• LONG
• LONG
• LONG

4
:1 .

o
o
MYMWD

Note that all arguments, whether
keyword, must be expressions
generate .LONG data directives.

coded in positional order or by
that the assembler can evaluate to

2.1.2.2 Example of $name and $name G Macro Calls - This example shows
how you can code a call to the Read Event Flags ($READEF) system
service using an argument list created by $name. .

As shown in Chapter 4, the macro format of the $READEF system service
is:

$READEF efn ,state

The EFN argument must specify the number of an event flag cluster, and
the STATE argument must supply the address of a longword to receive
the contents of the cluster.

These arguments might be specified using the $name macro form as
follows:

READLST: $READEF EFN=l,STATE=TESTFLAG ;ARGUMENT LIST FOR $READEF

This $READEF macro generates the code:

READL..ST: • LONG
• LONG
• LONG

2
1.
TESTFI ... AG

2-4

~ARGUMENT LIST FOR $READEF

)

)

.)

)

--)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

To execute the $READEF macro now requires only the line:

$READEF_G READLST

The macro generates the following code to call the Read Event Flags
system service:

CALLG READLST,@tSYSSREADEF

SYS$READEF is the name of a vector to the entry point of the Read
Event Flags system service. The linker automatically resolves the
entry point addresses for all system services.

2.1.2.3 Symbolic Names for Argument List Offsets - The $name G macro
form (used with the $name macro) is especially useful for: -

• Coding calls to system services that have long argument lists

• Services that may be called repeatedly during the execution
of a single program, with the same, or essentially the same,
argument list

When you use this form, you can refer to arguments in the list
symbolically. Each argument in an argument list has an offset from
the beginning of the list; a symbolic name is defined for the numeric
offset of each argument. If you use the symbolic names to refer to
the arguments in a list, you do not have to remember the numeric
offset (which is based on the position of the argument shown in the
macro format). There are two additional advantages to referring to
arguments by their symbolic names:

1. Your code is more readable.

2. If an argument list for a system service changes with a later
release of a system, the symbols will not change.

The offset names for all system service argument lists are formed by
concatenating the service macro name with $ and the keyword name of
the argument, as follows: -

nameS_keyword

where name is the macro name for the system service and keyword is the
keyword argument.

Similarly, the number of arguments required by a particular macro is
defined symbolically as:

Symbolic names for argument list offsets are defined automatically
whenever you use the $name form of the macro for a particular system
service.

For example, the $READEF macro defines the following values:

Symbolic Name

READEF$ NARGS
READEF$-EFN
READEF$::STATE

Value

Number of arguments in the list (2)
Offset of EFN argument (4)
Offset of STATE argument (8)

2-5

CALLING THE SYSTEM SERVICES
MACRO CODING

Thus, the $READEF macro can be coded to build an argument list for a
$READEF system service call as follows:

READlST: SREADEF EFN=l~STATE=TESTl

Later, the program may want to use a different value for the STATE
argument in calling the service. The following lines show how this
can be accomplished.

MOVAl TEST2,READlST+READEFS_STATE
$READEF_G READlST

The MOVAL instruction replaces the address TESTI in the $READEF
argument list with the address TEST2j the $READEF_G macro calls the
system service with the modified list.

2.1.2.4 The $nameDEF Macro - You can also define symbolic names for
system service argument lists using the $nameDEF macro. This macro
does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

SQIODEF

This macro defines the symbol QIO$ NARGS and symbolic names for the
$QIO argument list offsets. -

You may need to use the $nameDEF macro if you code an argument list to
a system service without using the $name macro form, or if a program
refers to an argument list in a separately assembled module.

2.1.3 The $name_S Form

The format of $name_S macro call is:

$name_S argl, •.• , argn

The macro generates code to push the arguments on the stack in reverse
order. The actual instructions used to place the arguments on the
stack are determined as follows:

1. If the system service requires a value for an argument,
either a PUSHL instruction or a MOVZWL to -(SP) instruction
is generated.

2. If the system service requires an address for an argument, a
PUSHAB, PUSHAW, PUSHAL, or PUSHAQ instruction is generated,
depending on the context.

The'macro then generates a call to the system service in the format:

CALLS #n,@#SYS$name

where n is the number of arguments on the stack.

2-6

)

)

)

)

--)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.3.1 Specifying Arguments with the $name S Macro - When you use
the $name S macro to construct an argument list for a system service,
you can specify arguments in any of three ways:

1. By using keywords to describ~. the arguments. All keywords
must be followed by an equal sign (=) and then by the value
of the argument.

2. In positional order, with omitted
commas in the argument positions.
optional trailing arguments.

arguments indicated by
You can omit commas for

3. By using both positional dependence and keyword
(positional arguments must be listed first).

For example, $SERVICE might have the format:

$SERVICE arga , [argb] , [argc] ,argd

names

Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require you to code numeric values and that ARGC and
ARGD require you to code addresses.

The two following examples show valid ways of coding the $name_S macro
form to call $SERVICE.

I Example 1: Using Keywords I
MYARGD:

.BLKW t

Example 2: Specifying Arguments in positional Order

MYARGD: .LONG 4

The argument list is pushed on the stack as follows:

PUSHAW
PUSHL.
PUSHL.
PUSHI ...

MYARGD
:ft:()
:ft:O
:ft:t

Note that all arguments, whether coded positionally or with keywords,
must be valid assembler expressions, since they are used as source
operands in instructions. Contrast this with the arguments for the

,$name argument list, which the assembler uses for data-generating
directives.

2-7

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1.3.2 Example of $name S Macro Call - Since a $name S macro
constructs the argument lIst at execution time, addresses and values
can be supplied using register addressfng modes. The $READEF macro
used in the example of the $name G form can be coded as follows using
the $name_S form: -

SREADEF_S EFN=tl,STATE=(Rl0)

where RIO contains the .address of the longword to receive the status
of the flags.

This macro instruction is expanded as follows:

PUSHAL
PUSHI ...
CALLS

(RlO)
U
t2,l11tSYSSREADEF

2.1.4 Conventions for Coding Arguments to System Services

The arguments must be specified according to the macro assembler rules
for operand coding and addressing.

The way to specify a particular argument depends on:

• Whether the system service requires an address or a value as
the argument. In Chapter 4, the descriptions of the argumerits
following a system service macro format always state whether
the argument is an address or a value.

• The form of the system service macro being used. The
expansions of the $nameand $name S macros in the examples in
the preceding sections showed the code generated by each macro
form.

If you are in doubt as to whether you have coded a value or an address
argument correctly, you can assemble the program with the .LIST MEB
directive to check the macro expansion. See the VAX-II MACRO Language
Reference Manual for more details.

Arguments that are optional to system services always have default
values, regardless of whether they are value or address arguments. In
almost every case, an optional argument defaults to O.

When an argument is optional, the description of the argument always
describes what action the service takes when the default value is
used.

Address arguments may be optional when the system service returns
information; if the program does not require the information, you can
omit the optional argument.

2-8

I
/

)

)

)

)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

2.1~4.1 Conventions for Coding Character String Arguments
system services require ASCII text name strings as arguments or
ASCII text name strings. Character strings are identified to
servic~s by specifying the address of a quadword character
descriptor that has the format:

31 16 15 0

0

I
length

I
address

length
is a word specifying the length of the string (in bytes).

address
is a longword containing the address of the string.

- Many
return
system
string

When a service returns a character string, you must supply the address
of a quadword character string descriptor that describes the length
and address of an output buffer into which the string is to be
written. Optionally, you can supply the address of a word (16 bits)
to receive the actual length of the string returned~

Example of Coding a Character String Descriptor: The Translate
Logical Name ($TRNLOG) system service uses character string
descriptors for both input and output: it accepts a logical name for
input and returns the equivalence name, if any, for the logical name.
The following example shows how these descriptors might be coded to
translate the logical name CYGNUS.

CYGNI.JSDESC:
.LONG
.LONG

1.0$: .ASCII
20$:
NAMEDESC:

• LONG
• LONG

:50!~: • BLKB
4()$:
NAMEI ... ENGTH:

.BI ... KW

20$-1.()$
1.0$
/CYGNUS/

40$···3()$
30$
63

;DESCRIPTOR FOR CYGNUS LOGICAL NAME
;LENGTH OF THE STRING
;ADDRESS OF THE STRING
;THE STRING

;DESCRIPTOR FOR TRANSLATED OUTPUT
;LENGTH OF THE BUFFER
;ADDRESS OF THE BUFFER
; THE BUFFEF~

;RECEIVE OUTPUT L.ENGTH HERE

$TRNL.OG_S LOGNAM=CYGNUSDESC,RSL.L.EN=NAMEL.ENGTH,­
F~SI ... BUF::::NAMEDESC

The input string for this service call is defined at the label
CYGNUSDESC. The output string that is returned from the service will
be written into the 63-byte buf~er defined in the descriptor at the
label NAMEDESC. The actual length of "the returned string will be
written in the word at the label NAMELENGTH.

When an output buffer is provided for a character string, and the
string returned is longer than the buffer, the string returned is
truncated, and the service returns a status code indicating that fact.
(Status codes returned by system services are discussed in Section
2.1.5.)

2-9

CALLING THE SYSTEM SERVICES ~
MACRO CODING

A Macro to Create Character String Descriptors: Because many system
services use character string descriptors, you may want to write a
macro to create them. The following example shows such a macro:

.MACRO DESCRIPTOR TEXT,1LABELI,?LABEL2
.LONG LABEl2-LABEll
.LONG LABELl

LABELl: .ASCII fTEXTf
LABEL2:
.ENDM DESCRIPTOR

If this macro were used in the example above to create the character
string descriptor for the input name CYGNUS, it might be coded as
follows:

CYGNUSDESC: DESCRIPTOR <CYGNUS>

Note that this macro, named DESCRIPTOR, is used in the examples in
Chapter 3 whenever a character string descriptor is required for
input.

2.1.4.2 Conventions for Coding Numeric Values - Many system services
accept numeric values for particular arguments. In some cases, the
services check only the low-order portion of the longword argument
they are passed. These cases are:

• Indicators. Indicators can only have values
System services check only the low-order
arguments.

of
bit

o
of

or 1.
these

• Event flag numbers. Event flag numbers can have values of 0
through 255. System services check only the low-order byte
of these arguments.

• Access modes. Access modes can have values of 0 through 3.
System services check only the low-order 2 bits of these
arguments.

When you code any of the above types of argument, the high-order
portion of the argument should be zeros.

Note that many system services use access modes to protect system
resources, and thus employ a special convention for interpreting
access mode arguments (keyword ACMODE). You can specify an access
mode using a numeric value or a symbolic name. The access modes,
their numeric values, and symbolic names are:

Access Numeric Symbolic
Mode Value Name

Kernel 0 PSL$C KERNEL
Executive 1 PSL$C-EXEC
Supervisor 2 PSL$C-SUPER
User 3 PSL$C=USER

The symbolic names are defined in the $PSLDEF macro.

2-10

)

)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

When you specify an access mode the actual mode used is determined
after the service has compared the specified access mode with the
access mode from which the service was called. If the modes are
different, the less privileged access mode is always used. Because
this operation results in an access mode with a higher numeric value
(when the access mode of the caller is different from the specified
access mode), the access modes are said to be maximized.

Since much of the code you write will execute in user mode, you can
omit the access mode argument. The argument value defaults to 0, and
when this value is compared with the current execution mode, the mode
with the higher value, 3 for user mode, is used.

2.1.5 Status Codes Returned from System Services

When a system service finishes execution, a numeric status value is
always returned in general register RO. Successful completion is
indicated by a status code with the low-order bit set. The low-order
three bits, taken together, represent the severity of the error.
Severity code values are: .

Value Meaning

a Warning
1 Success
2 Error
3 Informational
4 Severe or fatal error
5-7 Reserved

The remaining bits in the low-order word classify the particular
return condition. The high-order word indicates that a syst~m service
issued this status code.

Each numeric status code has a unique symbolic name in the format:

where code is a mnemonic describing the return condition. For
example, a successful return is indicated by

An example of an error return status code is:

This status code indicates that an access violation occurred because a
service could not read an input field or write an output field.

You can obtain the symbolic definitions for status codes at assembly
time by coding the system macro $SSDEF. Use the symbolic names for
system status codes to check return conditions, because the numeric
values for status codes may change with a later release of the system.

2.1.5.1 ,Information Provided by Status Codes - Status codes returned
by system services may provide information, that is, they do not
always just indicate whether or not the service completed
successfully. SS$ NORMAL is the usual status code indicating success,
but others are defIned. For example, the status code SS$_BUFFEROVF,

2-11

CALLING THE SYSTEM SERVICES
MACRO CODING

which is returned when a character string returned by a service is
longer than the buffer provided to receive it, is a success code.
This status code, however, gives the program additional information.

Warning returns, and some error returns, indicate that the service may
have performed some part, but not all, of the requested function.

The possible status codes that each service can return are described
with the individual service descriptions in Chapter 4. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions.

2.1.5.2 Testing Return Status Codes - To test for successful
completion following a system service call, the program can test the
low-order bit of RO and branch to an error checking routine if this
bit is not set, as follows:

BI ... BC 1:;:0. errlabel ;ERROR IF LOW BIT CLEAR

The error checking routine may check for specific values or for
specific sever i ty levels. For example, the following instruction
checks for an illegal event flag number error condition:

CMF'W tSSS I LI ... EFC. RO ;IS EVENT FLAG NUMBER ILLEGAL?

Note that return status codes are always longword values; however,
since the high-order words of all status codes returned by system
services are always the same, you need only check the low-order word.

2.1.5.3 System Messages Generated by Status Codes - When you execute
a program with the DCL command RUN, the command interpreter uses the
contents of RO ~o issue a descriptive message if the program completes
with a nonsuccessful status.

The following example shows a simple error checking procedure:

SREADEF_S EFN=#64.STATE=TEST
BSBW ERROR

ERROR: BLBC RO.l0$
RSB

:LOS: r~ET

;CHECK REGISTER 0
;SUCCESS. RETURN
;EXIT WITH RO STATUS

Following a system service call, the BSBW instruction calls the
subroutine ERROR. The subroutine checks the low-order bit in register
o and if the bit is clear, branches to a RET instruction that causes
the program to exit with the status of RO preserved. Otherwise, the
subroutine issues an RSB to return to the main program.

If the event flag cluster requested in this call to $READEF is not
currently available to the process, the program exits and the command
interpreter displays the message:

%SYSTEM-F-UNASEFC~ unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the status code
SS$_UNASEFC.

2-12

--)

)

)

)

)

)

CALLING THE SYSTEM SERVICES
MACRO CODING

2.~.5.4 Special Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

• Resource wait mode

• System service failure exception mode

If you change the default setting for either of these modes in a
program, the program must handle the special return conditions that
result. The next two sections discuss considerations for using these
modes.

Resource wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource is not available, the
process is placed in a wait state until the resource becomes
available. Then, the service completes execution. This m6de is
called resource wait mode.

However, in a time-critical environment, it may not be practical or
desirable for a program to wait: in these cases, you can choose to
disable resource wait mode, so that when a required resource is
unavailable, control returns i~mediately to the calling program with
an error status code. You can disable (and re-enable) resource wait
mode with the Set Resource wait Mode ($SETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. In some instances, the program may be able to continue
execution and retry the service call later. In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failure Exception Mode: When an error occurs during
the execution of a system service, control normally returns to the
next instruction in the calling program, which can check the return
status code in RO to determine the success or failure of the service
call.

To det~ct and respond to system service call failures, you can use the
condition handling mechanism of VAX/VMS to ,respond to system service
failures. Then, when an error occurs, a software exception condition
is generated, and control is passed to a condition handling routine.

This mode is called system service failure exception mode, and can be
enabled (and disabled) with the Set System Service Failure Exception
Mode ($SETSFM) system service. For example:

'SETSFM~S ENBFLG~tl

This call enables the generation of exceptions when errors or severe
errors occur dur ing execution of a system ,service (exceptions are not
generated for warning returns).

If you code a program to execute with this mode enabled, you can code
a condition handling routine. Information on condition handlers is
provided in Section 3.7, "Condition Handling Services." If no
user-specified routine is available when an e~ception occurs, and the
program was run with the DCL command RUN, the default condition
handler causes the program to exit and displays descriptive
information about the exception condition.

2-13

CALLING THE SYSTEM SERVICES

2.2 FORTRAN CODING

If you are a VAX-ll FORTRAN IV-PLUS programmer, you can code calls to
system services using either of two FORTRAN language constructs:

• A subroutine CALL statement

• A function reference

The method you choose depends on whether you want the program to check
the return status value following the completion of the system
service. If you use a function reference, you can have the program
check for specific values on return from the service to determine the
success or failure of the request.

The use of each of these methods is discussed in this section.

Knowledge of VAX-ll FORTRAN IV-PLUS rules for FORTRAN language coding
. is required for understanding the material presented in this section.
The VAX-ll FORTRAN IV-PLUS Language Reference Manual and the VAX-ll
FORTRAN IV-PLUS User's Guide contain the necessary prerequisite
information.

2.2.1 The Format for Calling System Services

You can determine the arguments required by a system service from the
service description in Chapter 4. The "High Level Language Format" in
each system service description indicates the service name and the
positional dependencies of its arguments. For example:

SYS$SERVICE (arga ,argb ,argc ,argd ,arge)

This sample format indicates that the name of the service is $SERVICE,
and that its procedure name is SYS$SERVICE. SYS$SERVICE is the name
of a vector to the procedure that executes the service; the entry
point addresses for all system services are automatically resolved by
the linker.

The format also indicates that $SERVICE requires five arguments. You
must code the arguments in parentheses following the procedure name;
use commas to separate the arguments.

Many arguments to system services are optional; these are indicated
in the format by brackets ([]). For example, if the third and fifth
arguments of $SERVICE are optional, the format would appear as:

SYS$SERVICE (arga ,argb , [argc] ,argd , [arge])

If you omit an optional argument, you must j"Qs:)'.lJd,g, a C<::>lTIlTta to indicate
the absence of the argument. For example'~'" if fEe' forma'i:"'" of $SERVICE
~s as shown above, and you choose to omit the optional arguments, you
could code either of the following:

I SUBFWUT I NE CALL

or

:i.ntese T' va r :i. ab 1 e=SYS$nalTJe (ar<.~a. a T'~.!b, , a T'~.,!d.) I FUNCTION REFERENCE

Note that a comma is required to indicate the absence of each optional
trailing argument.

When you omit an optional argument, the compiler supplies a default
value of O.

2-14

)

)

)

)

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2.1.1 Example of a Subroutine CALL - The following example shows
how the Read Event Flags ($READEF) system service might be called from
a FORTRAN program.

The format of the$READEF system service as shown in Chapter 4 is:

SYS$READEF (efn ,state)

The EFN argument must specify the number of an event flag and the
STATE argument must supply the address of a variable to receive the
status of the flags in the cluster.

These arguments might be specified in a subroutine CALL statement as
follows:

INTEGER*4 TSTFI...G I RECEIVE STATUS FROM READEF

CALI... SYSSREADEF(%VAI...(l).TSTFI...G) ! CALI... READ EVENT FLAGS

This statement requests that the status of the event flags in event
flag cluster 0 be returned in the variable TSTFLG.

The use of the %VAL built-in function, and the declaration of TSTFLG
as INTEGER*4 are programming considerations for coding arguments to
system services in a FORTRAN program. These considerations are
discussed in Section 2.2.2, "Conventions for Coding Arguments to
System Services".

2.2.1.2 Example of a Function Reference - When you use a function
reference, you can assign the return status value from the system
service to an INTEGER*4 variable. You muS't""also declare the service
name as INTEGER*4 so the function value re'turneo w1Il be in the
et>rrect format.

Using the same arguments of the $READEF system service as shown in the
preceding example, a function reference might be coded as follows:

INTEGER*4 TSTFI...G.SYSSREADEFvICODE ! OUTPUT AND STATUS OF READEF

ICODE = SYSSREADEF(%VAI...(l),TSTFI...G) ! READ THE FLAGS

~gain, the variable TSTFLG is declared to receive the status of flags
1n the cluster. The system service function SYS$READEF is declared as
an INTEGER*4 function (external reference).

For additional examples of function references, see Section 2.2.3,
"Status Codes Returned from System Services."

2-15

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2.2 Conventions for Coding Arguments to System Services

Arguments that are expressed as variables or constants must be
declared or specified according to the VAX-II FORTRAN IV-PLUS syntax
rules.

The way to specify a particular argument depends on:

• Whether the service requires an address or a value as the
argument

• The data type of the argument (if the service requires the
address of the argument)

The descriptions of the arguments following the system service format
always state whether an address is required. If the description does
not say "address," you must provide a value.

The argument descriptions contain terms that may not be familiar to
you as a FORTRAN programmer. Table 2-1 lists the terms that are used
in Chapter 4 to describe arguments and illustrates how these arguments
can be coded in a FORTRAN program.

The following sections provide additional details on value and address
arguments.

2-16

'\

)

)

)

Argument
Type

byte
value

byte
address

word
value

word
address

longword
value

longword
address

quadword
(64-bit value)

2-longword array

character string
descriptor

entry mask or
routine

CALLING THE SYSTEM SERVICES
FORTRAN CODING

Table 2-1
FORTRAN Arguments for System Services

Valid Specifications and Declarations (Examples)

Constant Variable Expression

SYS$name(%VAL(lO)) BYTE ABC BYTE ABC
- or - - or -

LOGICAL"'l ABC LOGICAL*l ABC

SYS$name(%VAL(ABC)) SYS$name(%VAL(ABC+lO))

SYS$name(lO) BYTE ABC SYS$name(ABC+IO)
- or - - or -

LOGICAL*l ABC LOGICAL*l ABC

SYS$name(ABC) SYS$name(ABC+lO)

SYS$name(%VAL(l234)) INTEGER*2 DEF INTEGER*2 DEF
- or - - or -

LOGICAL*2 DEF LOGICAL*2 DEF

SYS$name(%VAL(DEF)) SYS$name(%VAL(DEF+l234))

SYS$name(l234) INTEGER*2 DEF INTEGER*2 DEF
- or - - or -

LOGICAL*2 DEF LOGICAL*2 DEF

SYS$name(DEF) SYS$name(DEF+l234)

SYS$name(%VAL(l234)) INTEGER*4 GHI INTEGER*4 GHI
- or - - or -

LOGICAL*4 GHI LOGICAL*4 GHI

SYS~name(%VAL(GHI)) SYS$name(%VAL(GHI+l234))

SYS$name(40000) INTEGER*4 GHI INTEGER*4 GHI
- or - - or -

LOGICAL*4 GHI LOGICAL*4 GHI

SYS$name (GHI) SYS$name(GHI+40000)

INTEGER*4 JKL(2)
---- ----

SYS$name(JKL)

SYS$name ('ALPHA') CHARACTER*l5 NAME CHARACTER*l5 NAME

SYS$name(NAME) SYS$name(NAME//' .DAT')

EXTERNAL PROGA
---- ----

SYS$name(PROGA)

SUBROUTINE PROGA

Note: For input arguments, you can use constants, variables, or expressions.
For output arguments, you must use variables.

2-17

\

CALLING THE SYSTEM SERVICES
FORTRAN CODING

2.2 . .2.1 Value Arguments - All value arguments must be indicated by
enclosing the value expression within the built-in function %VAL, in
the format:

% VAL (value_expression)

Values can be exp~essed as constants, variables, or expressions l as in
the following examples:

Argument Meaning

%VAL(1234) Constant value

INTEGER*4 ABC Declare variable

Use current value of variable %VAL(ABC)

%VAL(ABC+l234) Use current value of variable plus constant

Some arguments are designated in the service descriptions as:

• Indicators

• Access modes

Indicators are arguments that can have only one of two values, 0 or 1.
You can specify these arguments as byte, word, or longword values;
however, system services check only the low-order bit of the argument.

Access modes are used by the operating system to provide memory
protection; they can have the following values:

Access
Mode Value

The

Kernel
Executive
Supervisor
User

values can be

o
1
2
3

specified as byte, word, or longword
however, system services check only the low-order 2 bits
arguments. You can omit the access mode argument when you
system service call. For more details on how system
interpret this argument, see Section 2.1.4.2, "Conventions for
Numeric Values. "

values;
of these

code a
services

Coding

2.2.2.2 Address Arguments - System services may require addresses to
refer to either input values or output variables. When you code
address arguments, you must consider how the argument is used (for
input or output) and the data type (that is, the length of the
argument) that is required. Table 2-1 summarizes the data types that
system services can require and gives examples of valid coding.

2.2.2.3 Input Address Arguments - For input address arguments that
refer to byte, word, or longword values, you can supply either
constant values, variable names, or expressions in the system service
call.

2-18

)

)

)

}
/

CALLING THE SYSTEM SERVICES
FORTRAN CODJ;NG

In all cases, if you supply a variable
variable data type must be equal
required, as follows:

name for the argument, the
to or larger than the data type

• If a byte is required, use BYTE, INTEGER*2, or INTEGER*4

• If a word is required, use INTEGER*2 or INTEGER*4

• If a longword is required, use INTEGER*4

If the address refers to a quadword (64-bit) or 2-longword array, you
must declare a properly dimensioned array.

When a service requires the "address of an entry mask," or the
"address of a routine," you must declare an external procedure. For
example:

EXTERNAL PROGA

This statement defines the procedure PROGA for an input argument to a i
system service.

2.2.2.4 Output Address Arguments - For output addres~ arguments, you
must declare a variable to receive the value returned, so that storage
is allocated for the output.

When a value is returned, you must declare a variable of the required
length to receive the value. For example, the Get Tim~ ($GETTIM)
system service returns a quadword binary time value. You can code a
call to this service as follows:

INTEGER*4 SYSTIM(2)

CALL SYS$GETTIM(SYSTIM)

2.2.2.5 Conventions for Coding Character String Arguments - Many
system services require ASCII text name strings as input arguments or
return ASCII stringsL For these arguments, the description of the
argument in Chapter 4 refers to a "character string descriptor."

When a system service requires the address of a character string
descriptor for an input argument, you can code either a character
constant in the system service call or you can provide the name of a
variable that has been declared as CHARACTER. The VAX-II FORTRAN
IV-PLUS compiler automatically generates the character string
descriptor required for the argument.

When a ststem ~ervice requires the address of a character string
descrip~or to return a character sbring, you must provide the name of
a varia~le that has been declared as CHARACTER to receive the string.
Optionally, you can supply the name of an INTEGER*2 variable to
receive'the length of the string returned. ,

2-19

CALLING THE SYSTEM SERVICES
FORTRAN .cODING

Example of Coding Character String Arguments: The Translate Logical
Name ($TRNLOG) system service requires the addresses of character
string descriptors for both input and output arguments: it accepts a
logical name for input and returns the equivalence name, if any, of
the logical name. These argumehts might be coded as follows to
translate the logical name CYGNUS.

CHARACTER*63 CYGNAM
INTEGER*2 CYGLEN .

'BUFFER DESCRIPTOR FOR TRANSLATE
'GET LENGTH HFF~E

CALL SYS$TRNLOG('CYGNUS',CYGLEN,CYGNAM",) !TRANSLATE CYGNUS

In the above example, the input logical name, CYGNUS, is coded as a
character constant in the system service call. When the $TRNLOG
system service completes, it places the equivalence name string in the
character variable CYGNAM, and places the length (the number of
characters in the equivalence name string) in the variable CYGLEN.

2.2.2.6 Default Values for Optional Arguments - Arguments that are
optional to system services always default to 0, regardless of whether
they are value or address arguments.

When an argument is optional, its description ~lways indicates what
action the service takes when the default value is used. Address
arguments are often optional when the system service returns
information; if the program does not require the information, you can
omit the optional argument.

Remember that you must always indicate the absence of an optional
argument by entering a comma.

2.2.3 Status Codes Returned from System Services

When you code a system service call using a function call statement, a
status code from the system service is returned as an INTEGER*4
function value. The low-order bit of this longword indicates
successful or nonsuccessful completion of the service.

The low-order three bits, taken together, represent the severity of
the error. Severity code values are:

Value Severity Level

o Warning
I Success
2 Error
3 Informational
4 Severe, or fatal, Error
5-7 Reserved

The remaining bits classify the particular return condition, and the
operating system component that is~ued the status code.

2-20

i ' y

)

,)

)

)

)

CALLING THE SYSTEM SERVICES
FORTRAN CODING

Each numeric status code has a symbolic name in the format:

SS$_code

where code is a mnemonic describing the return condition.
example, a successful return is indicated by:

For

An example of an error status code is:

SS$_ACCVIO

This status code indicates that a service could not read an input
argument or write an output argument.

2.2.3.1 Information Provided by Status Codes - Status codes returned
by system services may provide information; that is, they do not
always just indicate whether or not the service completed
successfully. SS$ NORMAL is the usual status code indicating success,
but others ure defIned. For example, the status code SS$_BUFFEROVF,
which is returned when a character string returned by a service is
longer than the buffer provided to receive it, is a successful code.
This status code, however, gives the program more information than
that provided by SS$_NORMAL.

Warning returns, and some error returns, indicate that the service may
have performed some part, but not all, of the requested function.

The possible status codes that each service can return are described
with the individual service descriptions in Chapter 4. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions.

2.2.3.2 Testing Return Status Codes - When you code a call to a
system service using a function reference, you can follow the service
call with a logical test on the function value defined for the service
call, where TRUE indicates successful completion. For example, a
$READEF statement may be coded:

INTEGER*4 SYS$READEF.TSTFLG.I
I =SYS$READEF(%VAL(l).TSTFLG)
IF (.NOT. I) GO TO 90000

! TO TEST READEF SUCCESS
! CALL READEF AS FUNCTION
I [:FWOI;: IF FALSE

In the above example, the variable I is tested following the call to
the $READEF system service. If a nonsuccessful status code is
returned, the program branches; otherwise, it continues execution.

These statements may also be combined, for example:

INTEGER*4 SY~;$READEF, TSTFLG I TO TEST F~EI!:)DEF f;UCCESS

IF (.NOT. SYSSREADEF(%VAL(l),TSTFLG» GOTO 90000
I ERROR IF READEF FAILS

@TT

~'I' IT 3"
2-21

CALLING THE SYSTEM SERVICES
FORTRAN CODING

You can also code calls to services that check for particular errors
following the function reference; or, you may want to provide a GOTO
statement (as in the above examples) to branch to a procedure that
checks for specific errors.

The following example illustrates a program checking for a particular
error return from the $READEF system service:

INTEBER*4 SYS$READEF,TSTFLG,ICODE

ICODE = SYS$READEF(%VAL(2),TSTFLG)
IF (ICbDE .EO. SS$_ILLEFC) GOTO 90000

The symbolic definitions £or system status codes are maintained in the
default system library, STARLET.MLB. If your program is going to test
for these specific return values, you must create an INCLUDE file to
define the symbol names as parameters.

Use these symbolic names whenever you code tests for return status
values, since the numeric values may change with a later release of
the system.

Appendix A "System Symbolic Definition Macros" describes how to obtain
the numeric values for system symbols. For more information on
INCLUDE files containing system symbols, see the VAX-II FORTRAN
IV-PLUS User's Guide.

2.2.3.3 Special Return Condition~ - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

• Resource wait mode

• System service failure exception mode

If you choose to change the default setting for eithet of these modes,
your program must handle the special return conditions that result.

Resource Wait Mode: Many system services require certain' system
resources for execution. These resources include system dynamic
memory and process quotas for I/O operations. Normally, when a system
service is called and a required resource is not available, the
program is placed in a wait state until the resource becomes
available. Then, the service completes execution. This mode is
called resource wait mode.

However, in a time-critical environment, it may not be practical or
desirable for a program to wait: in these cases, you can choose to
disable, resource wait mode, so that when such a condition occurs,
control returns immediately to the calling program with an error
status code. You can disable (and re-enable) resource wait mode with
the Set Resource wait Mode ($SETRWM) system service.

2-22

}
" '

)

)

)

)

CALLING THE SYSTEM SERVICES
FORTRAN CODING

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. In some instances, the program may be able to continue
execution and retry the service call later. In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failu&e Exception Mode: System service failure
exception mode determines whether control is returned to the caller in
the normal manner following an error in a system service call, or
whether an exception condition is generated. System service failure
~xception mode is ~isabled by default~ the calling program receives
control following an error. It is recommended that FORTRAN programs
do not enable system service failure exception mode.

2-23

-)

)

\

)

)

)

)

)

CHAPTER 3

HOW TO USE SYSTEM SERVICES

This chapter presents background and usage information on:

• • • • • • •
•

Event flag services
AST (Asynchronous System Trap) services
Logical name services
Input/output services
Process control services
Timer and time conversion services
Condition handling services
Memory management services

Whenever possible, coding examples (using VAX-II MACRO) are given to
familiarize you with the system services and their arguments. The
examples do not show complete programming sequences; rather, they
show only the code and/or arguments that are pertinent to a particular
discussion.

In some of the more complex examples, explanatory text is keyed to the
example using a special numeric symbol, for example ••

The examples are coded using VAX-II MACRO. If you are a FORTRAN
programmer, see Figure 3-1 for an explanation of how to interpret the
MACRO examples.

3-1

Notes:

•
•
•
•
•

•

HOW TO USE SYSTEM SERVICES

In the MACRO example, a routine name and entry mask show
beginning of executable code in a routine or subroutine;
FORTRAN, the routine and its entry mask are defined by
SUBROUTINE statement.

the
in

the

The MACRO examples define input character string arguments
with a DESCRIPTOR macro. This is not necessary in FORTRAN;
you can code an input character string directly in the system
service call.

These three MACRO directives declare a 63-byte buffer for an
output character string. In FORTRAN, the CHARACTER*63
declaration is all that is necessary.

The MACRO directive .BLKW reserves
value. This is equivalent to

a word for
the FORTRAN

an output
INTEGER*2

declaration.

A MACRO programmer calls a system service by a macro name,
which does not have the "SYS" portion of the procedure name.
A macro name for a system service call has an S or G
suffix. Note the following differences between-MACRO and
FORTP~N in the manner of coding arguments:

a. MACRO arguments are not placed in parentheses.

b. MACRO arguments in the. examples are specified with a
keyword name preceding the actual argument. These names
correspond to the names of the arguments shown in
lowercase in the system service formats in Chapter 4.
FORTRAN arguments must be coded in the positional order
shown in Chapter 4.

c.

d.

No indication is given when an optional argument
omitted in a MACRO argument list that uses keywords;
must code a comma when you omit an optional argument
FORTRAN.

is
you

in

The MACRO programmer uses a number sign character
indicate a literal value for an argument.
equivalent to the %VAL functi·on in FORTRAN.

(#) to
This is

The MACRO examples show a check for an error return from a
system service with the BSBW instruction; this is equivalent
to a FALSE logical test following a function reference in
FORTRAN.

Figure 3-1 FORTRAN Interpretation of MACRO Examples

3-2

)

)

)

)

\

HOW TO USE SYSTEM SERVICES

IMACRO Example I • CYGDES: DESCRIPTOR <CYGNUS>
NAMDES: .LONG 2()$-:l.()$

10$:
.LONG l()t.
.BLKB 63

20$:
NAMLEN: .BLKW :1.8

;DESCRIPTOR FOR CYGNUS STRING
;DESCRIPTOR FOR OUTPUT BUFFER

;OUTPOt BUFFER (63 BYTES)

;WORD TO RECEIVE LENGTH

ORION: : •
• WORD 0 ;ENTRY MASK FOR START OF ROUTINE

8$ TRNLOG_S LOGNAM::CYGDES, RSLLEN=NAMLEN, RSLBUF=NAMDES,··
TABLE=tl ;TRANSLATE FROM GROUP TABLE

OBSBW ERfWR ; CHECK FOR ERROR

.END

I FORTRAN Equivalent I
SUBROUTINE ORION.

•
CHARACTER*63 NAMDES.
lNTEGER*2 NAML.EN8
INTEGER*4 SY~$TRNLOG

!PROCEDURE IJRION

!OUTPUT B~FFER DESCRIPTOR
!WORD TO RECEIVE LENGTH
!DEFINE SYSTEM SERVICE FUNCTION

• 8ICODE :: SYS$TRNLOG ('CYGNUS' ,NAMLEN, NAMDES, "VAL< 1) ,) o IF (. NOT. ICODE) GOTO 9()OOO ! BF~ANCH IF ERROR

END

Figure 3-1 (Cont.) FORTRAN Interpretation of MACRO Examples

3-3

HOW TO USE SYSTEM SERVICES

3.1 EVENT FLAG SERVICES

Event fl~gs are status posting bits maintained by VAX/VMS for general
programml.ng use. Some system services set an event flag to indi.cate
the completion or the dccurrence of an event: the calling program can
test the flag. For example, the Queue I/O Request ($QIO) system
service sets an event flag when the requested input or output
operation completes.

Programs can u~e event flags to perform a variety of signaling
functions:

• Setting or clearing specific flags

• Testing the current status of flags

• Placing the current process in a wait state pending the
setting of a specific flag or a group of flags

Moreover, event flags can be used in common by more than one process,
as long as the ~ooperating processes are in the same group. Thus, if
you have developed an application that requires the concurrent
execution of several processes, you can use event flags to establish
communication among them and to synchronize their activity.

3.1.1 Event Flag Numbers and Event Flag Clusters

Each even~ flag has a unique decimal number; event flag arguments in
system service calls refer to these numbers. For example, if you
specify event flag 1 when you code a $QIO system service, then event
flag number 1 is set when the I/O operation completes.

To allow manipulation of groups of event flags, the flags are ordered
in clusters, with 32 flags in each cluster, numbered from right to
left, corresponding to bits 0 through 31 in a longword. The clusters
are al~o numbered. The range of event flag numbers encompasses the
flags in all clusters: event flag 0 is the first flag in cluster 0,
event flag 32 is the first flag in cluster 1, and so on.

There are two types of cluster:

1. A local event flag cluster can only be used internally by a
single process. Local clusters are automatically available
to each process.

2. A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can refer to a
common event flag cluster, it must explicitly "associate"
with the cluster. Association is described in Section 3.1.4,
"Common Event Flag Clusters."

The ranges of event flag numbers and the clusters to which they belong
are summarized in Table 3-1.

3.1.1.1 Specifying Event Flag and Event Flag Cluster Numbers - The
same system services manipulate flags in both local and common event
flag clusters. Since the event flag number implies the cluster
number, you do not have to specify the cluster number when you code a
system service call that refers to an event flag.

3-4

/

)

)

)

)

\

HOW TO USE SYSTEM SE.RVICES
EVENT FLAG SERVICES

Table 3-1
Summary of Event Flag and Cluster Numbers

Cluster Event
Number Flag Numbers Description Restriction

0 0-31 Process-local event Event flags 24
1 32-63 flag clusters for through 31 are

general use reserved for
system use

2 64-95 Assignable common Must be associated
3 96-127 event flag cluster before use

When a system service requires an event flag cluster number as an
argument, you need only specify the number of any event flag that is
in the cluster. Thus, to read the event flags in cluster 1, you could
specify any number in the range 32 through 63.

3.1.2 Examples of Event Flag Services

Local event flags are most commonly used with other system services.
For example, with the Set Timer· ($SETIMR) system service you can
request that an event flag be set at a specific time of day, or after
a specific interval of time has passed. If you want to place a
process in a wait state for a specified period of time, you could code
an event flag number for the $SETIMR service, and then use the wait
for Single Event Flag ($WAITFR) system service, as follows:

TIME: .BLKO 1 ;WILL CONTAIN TIME INTERVAL TO WAIT

$SETIMR_S EFN~t33,DAYTIM=TIME ;SET THE TIMER
SWAITFR_S EFN=t33 ;WAIT UNTIL TIMER EXPIRES

In this example, the DAYTIM argument refers to a time value. Details
on how to obtain a time value in the proper format for input to this
service are contained in Section 3.6, "Timer and Time Conversion
Services."

3.1.2.1 Event Flag waits - Three system services place the process in
a wait state pending the setting of an event flag:

• The wait for
places the
been set.

Single
process

Event Flag ($WAITFR) system service
in a wait state until a single flag has

• The Wait for Logical OR of Event Flags ($WFLOR) system
service places the process in a wait state until anyone of a
specified group of event flags has been set.

• The Wait for Logical AND of Event Flags ($WFLAND) places the
process in a wait state until all of a specified group of.
flags have been set.

3-5

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

Anothe! system service that accepts an event flag number as an
argument is the Queue I/O Request ($QIO) system service. Figure 3-2
shows a program that issues two $QIO system service calls, and uses
the $WFLAND system service to wait until both I/O operations complete
before it continues execution.

$QIO_S EFN=.1, •••
eBSBW ERROR

$QIO_S EFN=t2, •••
BSBW EFmOR

;lSSUE FIRST QUEUE 110 REQUEST
;CHECK FOR ERROR
;ISSUE SECOND 110 REQUEST
; CHECK FOR EFmCm

• $WFLAND_S EFN=t 1, MASK=tr'BO 11 0
BSBW ERROF~

;WAIT UNTIL BOTH COMPLETE
; CHECK FOR EF~FWR

Notes:

e

•

";CONTINUE EXECUTION

The event flag argument is specified in each $QIO request.
Both of these event flags are in cluster o •

After both I/O requests are successfully queued, the program
calls the wait for Logical AND of Event Flags ($WFLAND)
system service to wait until the I/O operations are
completed. In this service call, the EFN argument"
corresponds to a cluster number: the cluster that contains
event flag 1, that is, cluster O. The MASK argument
specifies which flags in the cluster are to be waited for:
flags I and 2. .

Figure 3-2 Using Local Event Flags

3.1.3 Setting and Clearing Event Flags

The $SETIMR and $QIO system services clear the event flag specified in
the system service call before they queue the timer or I/O request.
This ensures the integrity of the event flag with respect to the
process. If you are using event flags in local clusters for other
purposes, take care to verify the state of a flag before you use it.

The Set Event Flag ($SETEF) and Clear Event Flag
services set and clear specific event flags.
following system service call clears event flag 32:

SCLREF_S EFN=t32

($CLREF) system
For example, the

The $SETEF and $CLREF services return successful status codes that
indicate whether the flag specified was set or clear when the service
was called. The caller can thus verify the previous state of the
flag, if necessary. The codes returned are SS$_WASSET and SS$_WASCLR.

E~ent flags in common event flag clusters are all initially clear when
the cluster is created. The next section describes the creation of
common event flag clusters.

3-6

. ,I

)

)

)

)

)

\

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

3.1.4 Common Event Flag Clusters

Before any processes can use event flags in a common event flag
cluster, the cluster must be created: the Associate Common Event Flag
Cluster ($ASCEFC) system service creates ~ common event flag cluster.
Once a cluster has been created, other processes in the same group can
call $ASCEFC to establish their association with the cluster, so they
can access flags in it.

When a common event flag cluster is created, it must be identified by
a 1- to IS-character name string. All processes that associate with
the cluster must use the same name to refer to the cluster; the
$ASCEFC system service establishes the correspondence between the
cluster name and the cluster number that a process assigns to it.

The following example shows how a process might create a common event
flag cluster named COMMON CLUSTER and assign it a cluster number of 2:

CLUSTER:
DESCRIPTOR <COMMON CLUSTER> ;CLUSTER NAME

$ASCEFC_S EFN-t65,NAME=CLUSTER ;CREATE CLUSTER 2

Subsequently, other processes in the same group may associate with
this cluster. Those processes must use the same character string name
to refer to the cluster; but the cluster numbers they assign do not
have to be the same.

Common event flag clusters are either temporary
PERM argument to the $ASCEFC system service
cluster is temporary or permanent.

Temporary clusters:

or permanent. The
defines whether the

• Require an element of the creating process's quota for timer
queue entries (TQELM quota) .

• Are deleted when all processes associated with the cluster
have disassociated. Disassociation can be performed
explicitly, with the Disassociate Common Event Flag Cluster
($DACEFC) system service, or implicitly, when the image
exits.

Permanent clusters:

• Require the creating process to have the PRMCEB
privilege.

user

• Continue to exist until they are explicitly marked for
deletion with the Delete Common Event Flag Cluster ($DLCEFC)
system service.

If cboperating processes that are going to use a common event flag
cluster all have the requisite privilege or quota to create a cluster,
the first process to call the $ASCEFC system service creates the
cluster.

3-7

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

3.1.5 Disassociating and Deleting Common Event Flag Clusters

When a process no longer needs access to a common event flag cluster,
it issues the Disassociate Common Event Flag Cluster ($DACEFC) system
service. When all processes associated with a temporary cluster have
issued a $DACEFC system service, the system deletes the cluster. If a
process does not explicitly disassociate itself from a cluster, the
system performs an implicit disassociation when the image that called
$ASCEFC exits.

Permanent
with the
After the
until all

clusters, however, must be explicitly marked for deletion
Delete Common Event Flag Cluster ($DLCEFC) system service.

cluster has been marked for deletion, it is not deleted
processes associated with it have been disassociated.

3.1.6 Example of Using a Common Event Flag Cluster

Figure 3-3 shows an example of four cooperating processes that share a
common event flag cluster. The processes named ORION, CYGNUS, LYRA,
and PEGASUS are in the same group.

Notes on Figure 3-3:

•
•

•

•
•
•
•

Assume for this example that ORION is the
issue the $ASCEFC system service, and
creator of the cluster. Since this is
cluster, all event flags in it are O.

first process to
therefore is the
a newly created

The argument NAME in the $ASCEFC system service call is a
pointer to the descriptor CNAME for the name to be assigned
to the cluster: in this example, the cluster is named COMMON
CLUSTER. This service call associates the name COMMON
CLUSTER with cluster 2, containing event flags 64 through 95.
Cooperating processes CYGNUS, LYRA, and PEGASUS must use the
same character string name to refer to this cluster.

The continuation of process ORION depends on work done by
processes CYGNUS, LYRA, and PEGASUS. The wait For Logical
AND of Event Flags ($WFLAND) system service call speci~ies a
mask indicating the event flags that must be set before
Process ORION can continue. The mask in this example, ftXE is
the hexadecimal equivalent of binary 1110: it indicates that
the second, third, and fourth flags in the cluster must be
set.

Process CYGNUS executes, associates with the cluster,
event flag 65, and disassociates.

sets

Process LYRA associates with the cluster, but instead of
referring to it as cluster 2, it refers to it as cluster 3
(with event flags in the range 96 through 127). Thus, when
process LYRA sets flag 99, it is setting the fourth bit in
COMMON CLUSTER.

Process PEGASUS associates with the
event flag set by process LYRA,
itself.

cluster, waits for an
and sets an event flag

When all three event flags are set, Process ORION continues
execution and calls the $DACEFC system service. Since ORION
did not specify the PERM argument when it created the
cluster, COMMON CLUSTER is deleted.

3-8

)

)

)

\)

)

)

)

HOW TO USE SYSTEM SERVICES
EVENT FLAG SERVICES

\ Process ORION \

CNAME: DESCRIPTOR <COMMON CLUSTER> ;CLUSTER NAME

• • OtASCEFC_S EFN==t64,NAME=CNAME ;CREATE COMMON CLUSTER
BSBW ERROR ;CHECK FOR ERROR

•
• $WFLAND_S EFN:=t64, MASK=t~XE

BSBW EFmOR
• $DACEFC_S EFN==t64

\ Proces.s CYGNUS I

;WAIT FOR FLAGS 1,2,3
;CHECK FOR ERROR
;DISASSOCIATE CLUSTER

ORION_FLAGS: DESCRIPTOR <COMMON CLUSTER> ;CLUSTER NAME

$ASCEFC_S EFN~t64,NAME=ORION_FLAGS
OBSBW EI;:ROF~ ;CHECK FOR ERROR

$SETEF_S EFN=t65 ;SET EVENT FLAG 1
BSBW ERROR ;CHECK FOR ERROR
tDACEFC_S EFN=t64 ;DISASSOCIATE

I Process LYRA \

SHARE: DESCRIPTOR <COMMON CLUSTER> ;CLUSTER NAME

• $ASCEFC._S EFN::=:J:96, NAME:::SHARE ;ASSOCIATE WITH CLUSTER 3
;CHECK FOR ERROR BSBW EF~FWR

$SETEF_S EFN=:J:99
BSBW ERROR
$DACEFC_S EFN=t96

\ Process PEGASUS \

;SET FLAG 3
;CHECK FOR ERROR
;DISASSOCIATE

CLUSTER: DESCRIPTOR <COMMON CLUSTER> ;CLUSTER NAME

tASCEFC_S EFN=:J:64,NAME=CLUSTER ;ASSOCIATE WITH CLUSTER eBSBW ERROl;: ; CHECK FO~ ERROR
$WAITFR_S EFN=t65 ;WAIT FOR FLAG 1
BSBW ERROR 9CHECK FOR ERROR

;CONTINUE

tSETEF_S EFN=t66
BSBW ERROR
tDACEFC_S EFN~*64

;SET FLAG 2
; CHECK FOR EF~r';:OR

;DISASSOCIATE

Figure 3-3 Example of a Common Event Flag Cluster

3-9

HOW TO USE SYSTEM SERVICES

3.2 AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

Some system services allow a process to request that it be interrupted
when a particular event occurs. Since the interrupt occurs
asynchronously (out of sequence) with respect to the proc~ss's
executi~n, the interrupt mechanism is called an asynchronous system
trap (AST). The trap provides a transfer of control to a
user-specified routine that handles the event.

The system services that use the AST mechanism accept as an argument
the addtess of an AST service routin~, that is, a routine to be given
control when the event occurs.

These services are:

• Queue I/O Request ($QIO)

• Set Timer ($SETIMR)

• Set Power Recovery AST ($SETPRA)

• Update Section File on Disk ($UPDSEC)

For example, if you code a Set Timer [$SETIMR) system service, you can
specify the address of a routine to be executed when a time interval
expires, or at a particular time of day. The service sets the timer
and returns; the program image continues executing. When the
requested timer event occurs, the system "delivers" an AST by
intetrupting the process and calling the specified routine.

The following sections describe in more detail how ASTs work and how
to use them.

3.2.1 Example of an AST

Figure 3-4 shows a typical program that calls the $SETIMR system
service with a request for an AST when a timer event occurs.

Notes on Figure 3-4:

•

•
•

The call to the $SETIMR system service requests an AST at
12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time format. For details on how
this is done, see Section 3.6, "Timer and Time Conversion
Seivices." The ASTADR argument refers to TIMEAST, the address
of the AST service routine.

When the call to the system service completes, the process
continues execution.

T~e timer expires at 12:00 and notifies the system. The
system interrupts execution of the process and gives control
to the AST service routine.

The user routine TIMEAST handles the interrupt. When the AST
routine completes, it issues a RET instruction to return
control to the program. The program resumes execution at the

. point at which it was interrupted. .

3-10

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

NOON: .BLKQ
LIBRA: • WORD

-•
.

1
o

;WILL CONTAIN 12:00 SYSTEM TIME
;ENTRY MASK FOR LIBRA

O$SETIMR_S DAYTIM::=NOON,ASTADR=TIMEAST ;SET TIMER
BSBW ERROR ;CHECK FOR ERROR

..
TIMEAST:

.WORD

• RET
.END

o

LIBRA

Timer I •
Interrupt

;ENTRY MASK FOR AST ROUTINE
;HANDLE TIMER REQUEST

;DoNE

Figure 3-4 Example of an AST

3.2.2 Access Modes for AST Execution

Each request for an AST is qualified by the access mode from which the
AST is requested. Thus, if an image executing in user mode requests
notification of an event by means of an AST, the AST service routine
executes in user mode.

Since the AST~ you use will almost always execute in user mode, you do
not need to be concerned with access modes. However, you should be
aware of some system considerations for AST delivery. These
considerations are described in Section 3.2.6, "AST Delivery."

3.2.3 ASTs and Process wait States

A process that is in a wait state can be interrupted for the delivery
of an AST and the execution of an AST service routine. When the AST
service routine completes execution, the process is returned to the
wait state, if the condition that caused the wait is still in ef£ect.

The following wait states may be interrupted:

• Event flag waits

• Hibernation

• Resource waits and page faults

3.2.3.1 Event Flag Waits - If a process is waiting for an event flag
and is interrupted by an AST, the wait state is restored following
execution of the AST service routine. If the flag is set during the
execution of the AST service routine (for example, by completion of an
I/O operation) then the process continues execution when the AST
service routine completes.

Event flags are described in detail in Section 3.1, "Event Flag
Services."

3-11

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

3.2.3.2 Hibernation - A process can place itself in a wait state with
the Hibernate ($HIBER) system service. This wait state can be
interrupted for the delivery of an AST. When the AST service routine
completes execution, the process continues hibernation. The process
can, however, "wake" itself in the AST service routine or be awakened
by another process or as the result of a timer scheduled wakeup
request. Then, it continues execution when the AST service routine
completes.

Process suspension is another form of wait; however, a suspended
process cannot be interrupted by an AST. Process hibernation and
suspension are described in Section 3.5, "Process Contrdl Services."

3.2.3.3 Resource waits and Page Faults - When a process
an image, the system can place the process in a wait
required resource becomes available, or until a page in
address space is paged into memory. These waits, which
transparent to the process, can also be interrupted for
of an AST. .

3.2.4 How ASTs Are Declared

is executing
state until a
its virtual

are generally
the delivery

Most ASTs occur as the result of the completion of an asynchronous
event initiated by a system service, for example, a $QIO or $SETIMR
request, when the process requests n~tification by means of an AST.

There is also a system service that creates ASTs: the Declare AST
($DCLAST) system service. with this service, a process can declare an
AST only for the same or for a less privileged access mode.

You may_ ~ind occasional use for the $DCLAST system service in your
programmlng applications; you may also find the $DCLAST service
useful when you want to test an AST service routine.

3.2.5 The AST Service Routine

An AST service routine must be a separate routine. The system calls
the AST with a CALLG instruction; the routine must return using a RET
instruction. If the service routine modifies any registers other than
RO or Rl, it must set the appropriate bits in the entry mask so that
the contents of those registers are saved.

Since it is impossible to know when the AST service routine will begin
executing, you must take care, when you code the AST service routine,
that the service routine does not modify any data or instru~tions used
by the main procedure.

3-12

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

On entry to the AST service routine, the Argument Pointer register
(AP) points to an argument list that has the format:

31 B 7 o

0

I
5

A~~~~M

RO

R1

PC

~L

The registers RO and Rl, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so
that it can identify the event that caused the AST. When you code a
call to a system service requesting an AST, or when you code a $DCLAST
system service, you can supply a value for the AST parameter. If you
do not specify a value, it defaults to O.

Figure 3-5 illustrates an AST service routine. In this
ASTS are created by the $DCLAST system service:
delivered to the process immediately, so that the service
called following each $DCLAST system service call.

3.2.6 AST Delivery

example, the
the ASTs are

routine is

When an AST occurs, the system may not be able to deliver the
interrupt to the process immediately. An AST cannot be delivered if
any of the following conditions exist:

1. All AST service routine is currently executing at the same or
at a more privileged access mode.

ASTs are implicitly disabled when an AST service routine
executes, so that one AST routine cannot be interrupted by
another AST routine declared for the same access mode. It
can, however, be interrupted by an AST declared for a more
privileged access mode.

2. AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the
Set AST Enable ($SETAST) system service. This service may be
useful when a program is executing a sequence of instructions
that should not be interrupted for the execution of an AST
routine.

3-13

HOW TO USE SYSTEM SERVICES
AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

3. The process is executing at an access mode more privileged
than that for which the AST is declared.

For example, if a user mode AST is declared as
a system service, but the program is currently
higher access mode (because of another system
for example), the AST is not delivered until
once again executing in user mode.

the result of
executing at ·a
service call,
the program is

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the condition(s) disabling delivery are removed •. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST i~ queued for an access mode, the
ASTs are delivered in the order in which they are queued.

PEGASUS: .WORD 0 ;ENTRY MASK.

$DCLAST_S ASTADR=ASTRTN,ASTPRM=tl ;AST WITH PARM=1

•
$DCLAST_S ASTADR=ASTRTN,ASTPRM=t2 ;AST WITH PARM==2

RET
ASTRTN: • WORD ()

:I=:l.,4(AP)
:LO$
:U:2,4.<AP)
20$

;RETLJRN CONTROL
;ENTRY MASK

.C~PL
BE:QI..

;CHECK AST PARAMETER 1
;IF 1 GOTO 10$

Notes:

•
•

CMPL
BEl~L

•
RET

RET

.END PEGASUS

;CHECK FOR PARM=2
;IF 2 GO TO 20$

;HANDLE FIRST AST

;RETLJRN
;HANDLE SECOND AST

; F~ETLJRN

The program PEGASUS calls the Declare AST system service
twice to queue ASTs. Both ASTs specify the AST service
routine, ASTRTN. However, a different parameter is passed
for each call •

The first action that this AST routine takes is to check the
AST parameter, so that it can determine if the AST being
delivered is the first or second one declared. The value of
the AST parameter determines the flow of execution.

Figure 3-5 The AST Service Routine

3-14

)

)

-)

)

)

\

HOW TO USE SYSTEM SERVICES

3.3 LOGICAL NAME SERVICES

The VAX/VMS logical name services provide a technique for manipulating
and substituting character string names. Logical names are commonly
used to specify devices or files for input or output operations. You
can code programs with logical, or symbolic, names to refer to
physical devices or files, and then establish an equivalence, or
actual, name by issuing the ASSIGN command from the command stream
before program execution. When the program executes, a reference to
the logical name results in the substitution of the equivalence name.

This section describes how to use system services to establish logical
names for general application purposes. For specific details on
logical name usage for I/O system services, see Section 3.4,
"Input/Output Services" in this manual, and the discussion of logical
names in the VAX/VMS Command Language User's Guide.

3.3.1 Logical Names and Equivalence Names

Logical name and equivalence name strings can have a maximum of 63
characters. You can establish logical name and equivalence name
pairs:

1. At the command level, with the ALLOCATE, ASSIGN, DEFINE, or
MOUNT commands

2. In a program, with the Create Logical Name ($CRELOG) and
Create Mailbox and Assign Channel ($CREMBX) system services

For example, you could use the symbolic name TERMINAL to refer to an
output terminal in a program. For a particular run of the program,
you could use the ASSIGN command to establish the equivalence name
TTA2: .

To perform an assignment in a program, you must provide character
string descriptors for the name strings and use the $CRELOG system
service as shown in the following example. In either case, the result
is the same: the logical name TERMINAL is equated to the physical
device name TTA2:.

TERMINAL: DESCRIPTOR (TERMINAL>
TTNAME: DESCRIPTOR (TTA2:>

;DESCRIPTOR FOR LOGICAL NAME
;DESCRIPTOR FOR EQUIVALENCE

$CRELOG_S TBLFLG=12,LOGNAM=TERMINAL,EQLNAM=TTNAME

The TBLFLG argument in this example indicates the logical name table
number, in this case, the process logical name table. Logical name
tables and logical name table numbers are ~iscussed in the following
sections.

3-15

(

BOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

3.3.2 Logical Name Tables

Logical name and equivalence name pairs are maintained in three
logical name tables:

• Process

• Group

• System

A process logical name table contains names used exclusively by the
process. A process logical name table exists for each p~ocess in the
system. Some entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. For example, logical names created at the command level are
supervisor mode entries.

~he group logical name table contains names that cooperating processes
1n the same group can use. The GRPNAM privilege is required to place
a name in the group logical name table.

The system logical name table contains names that all processes in the
system can access. This table includes the default names for all
system-assigned logical names. The SYSNAM privilege is required to
place a name in the system logical name table.

Figure 3-6 illustrates some sample logical name table entries.

Notes on Figure 3-6:

•
•
•
•
•
•

This process logical name table equates
TERMINAL to the specific terminal TTA2:.
are equated to disk file specifications:
were created from supervisor mode.

the logical name
INFILE and OUTFILE

these logical names

The group logical name table shows entries qualified by group
numbers; only processes that have the indicated group number
can access these entries.

In Group 100, the logical name TERMINAL is equated to the
terminal TTAl:. Individual processes in Group 100 that want
to refer to the logical name TERMINAL do not have to
individually assign it an equivalence name.

Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in group 200 can use these logical names for
in~ut or output operations.

In Group 300, the logical name TERMINAL is equated to the
physical device name TTA3:. Note that there are two entries
for TERMINAL in the group logical name table. These are
discrete entries, since they are qualified by the number of
the group to which they belong.

The system logical name table contains the default physical
device names for all processes in the system. SYS$LIBRARY
and SYS$SYSTEM provide logical names for all users to refer
to the device(s) containing system files.

3-16

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

Logical Name Table for Process A (Group Number = 200) ..

Logical Name

TERMINAL ------)

INFILE ------)

OUTFILE ------)

IGroup Logical Name Tablel_

Logical Name

• TERMINAL ------)

.MAILBOX -----..,.)

DISPLAY ------)

• TERMINAL ------)

I System Logical Name Table'.

Logical Name

SYS$LIBRARY ------)

SYS$SYSTEM ------)

Equivalence Name Access Mode

TTA2: User

DMl: [HIGGINS]TEST.DAT Supervisor

DMl: [HIGGINS]TEST.OUT Supervisor

Equivalence Name Group Number

TTAl: 100

MB3: 200

TERMINAL 200

TTA3: 300

Equivalence Name

DBAO: [SYSLIB]

DBAO: [SYSTEM]

Figure 3-6 Logical Name Table Entries

3.3.2.1 Logical Name Table Numbers - Each logical name table has a
number associated with it. To place an entry in a logical name table,
specify a logical name table number with the TBLFLG argument to the
$CRELOG system service. The logical name table numbers are as
follows:

Table Number

Process 2
Group 1
System 0

The TBLFLG argument defaults to a value of 0, that is, the system
logical name table.

3.3.2.2 Duplication of Logical Names - The process logical name table
can contain entries for the same logical name at different access
modes. The group logical name table can contain entries for the same
logical name, as long as the group numbers are different.

3-17

BOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

In all other cases, there can be only one entry for a particular
logical name in a logical name table. For example, if the logical
name TERMINAL is equated to TTA2: in the process table as shown in
the figure, and the process subsequently equates the logical name
TERMINAL to TTA3: the equivalence of TERMINAL to TTA2: is replaced
by the new equivalence name. The successful return status code
SS$_SUPERSEDE indicates that a new entry replaced an old one.

Any number of logical names can have the same equivalence name.

3.3.3 Logical Name Translation

When you refer to a logical name for a physical device in an I/O
service, the service performs logical name translation automatically.
In many cases, a program must perform the logical name translation to
obtain the equivalence name for a logical name. The Translate Logical
Name ($TRNLOG) system service searches the logical name tables for a
specified logical name and returns the equivalence name.

By default, the process, group, and system tables are all searched, in
that order, and the first match found is returned. Thus if identical
logical names exist in the process and group tables, the process table
entry is found first, and the group table is not searched. When the
process logical name table is searched, the entries are searched in
order of access mode, with user mode entries matched first, supervisor
second, and so on.

The following example shows a call to the $TRNLOG system service to
translate the logical name TERMINAL.

TLOGDESC: DESCRIPTOR <TERMINAL> ;DESCRIPTOR" FOR INPUT LOGNAM
TEOLDESC: ;BUFFER DESCRIPTOR FOR EQLNAME

10$:
20$:
TLEN:

.LONG 20-10 ;LENGTH

.LONG 10$;ADDRESS OF BUFFER

.BLKB 64 ;BUFFER OF 64 BYTES
;END OF BUFFER

.BLKW 1 ;RECEIVE EOLNAM LENGTH HERE

$TRNLOG_S LOGNAM=TLOGDESC,RSLLEN=TLEN,RSLBUF=TEOLDESC

If the logical name table entries are as shown in
call to the $TRNLOG system service results in the
logical name TERMINAL. The equivalence name string
in the output buffer described by TEQLDESC.
equivalence name string is written into the word at

Figure 3-6, this
translation of the
TTA2: is placed
The length of the
TLEN.

Note that the call to $TRNLOG might be coded as follows:

$TRNLOG_S LOGNAM=TLOGDESC,RSLLEN=TEQLDESC,RSLBUF=TEOLDESC

Then, the output equivalence name string length
first word~of the character string descriptor.
then be used as input to another system service.

is' written into
This descriptor

the
can

3.3.3.1 Bypassing Logical Name Tables - To disable the search of a
particular logical name table, you can code the optional argument
DSBMSK to the $TRNLOG system service. This argument is a mask that
disables the search of one or more logical name tables. The format of
the mask is described in the discussion of the $TRNLOG system service
in Chapter 4.

3-18

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

3.3.3.2 Logical Name and Equivalence Name Format Conventions - The
operating system uses special conventions fbr logical name/equivalence
name assignments and translation. These conventions are generally
transparent to user programs; howey~r, you should be aware of the
programming considerations involved.

If a logical name string is preceded with an underscore character (),
$TRNLOG will not translate the logical name. Instead, it returns the
status code SS$ NOTRAN, strips the underscore from the logical name
string, then -writes the string into the result buffer. This
convention permits bypassing logical name translation in I/O services
when physical device name strings are specified.

At login, the system creates default logical name table entries for
process permanent files. The equivalence names for these entries, for
example, SYS$INPUT and SYS$OUTPUT, are preceded with a 4-byte header
that contains the following:

Byte (s)

a
1
2-3

Contents

~XIB (Escape character)
~XOO

RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of
your program applications .must translate system-assigned logical
names, the program must be prepared to check for the existence of this
header and then to use only the desired part of the equivalence
string.

For an example of how to do this, see Figure 3-8 in Section 3.4.7,
"Complete Terminal I/O Example."

3.3.4 Recursive Translation

When a translate request is made for a logical name string, the
$TRNLOG system service searches the logical name tables only once. If
you structure a logical name table or tables suCh that logical name
equivalencies are several levels deep (that is, that an equivalence
name is entered in the table as a logical name with another equivalence
name, and so on), you may require recursive logical name. translation.
Note that Figure 3-6 illustrates recursive entries: the logical name
DISPLAY is equated to the string TERMINAL in the group table, and the
name TERMINAL is equated to the device name string TTA2: in the
process table. The $TRNLOG system service must be used twice to
complete the translation of the logical name DISPLAY.

You can code a program loop so that the output string from the $TRNLOG
service is reused as the input string, and check for the status code
SS$ NOTRAN following the call to the service. SS$ NOTRAN indicates
that no logical name was found,and that the input string has been
written into the output buffer.

3.3.5 Deleting Logical Names

The Delete Logical Name ($DELLOG) system service deletes entries from
a logical name table. When you code a call to the $DELLOG system
service, you can specify a single logical name to delete, or you can

3-19

specify
table.
process
mode:

HOW TO USE SYSTEM SERVICES
LOGICAL NAME SERVICES

that you want to delete all logical names from a particular
For example, the following call deletes all names from the
logical name table that wer~ entered in the table from user

SDELLOG_S TBLFLG=t2

Logical names that were placed in the process logical name table from
an image running in user mode are automatically deleted at image exit.
Entries made from the command stream are placed in the table by the
command interpreter; these are supervisor mode entries, and are not
deleted at image exit.

3-20

.1

)

)

)

)

)

HOW TO USE SYSTEM SERVICES

3.4 INPUT/OUTPUT SERVICES

There are two methods you can use to perform input/output operations
under VAX/VMS:

• VAX-II Record Management Services (RMS)

• I/O system services

VAX-II RMS provides a set
device-independent functions,
modification.

of
such

macros for general-purpose,
as data storage, retrieval, and

The I/O system services permit you to use the I/O resources of the
operating system directly in a device~dependent manner. I/O services
also provide some specialized functions not available in RMS. Using
I/O services requires more knowledge on your part, but can result in
more efficient input/output operations.

This section provides general information on how to use the I/O
services, including:

• Assigning channels

• Queuing I/O requests

• Allocating devices

• Using mailboxes

Examples are provided to show you how to
simple functions, for example, terminal
If you plan to write device-dependent I/O
I/O User's Guide.

use the I/O services for
input and output operations.
routines, see the VAX/VMS

3.4.1 Assigning Channels

Before any input or output operation can be
a channel must be assigned to the device to
process and the device. The Assign I/O
service establishes this path.

done to a physical device,
provide a path between the
Channel ($ASSIGN) system

When you code a call to the $ASSIGN service, you must supply the name
of the device, which may be a physical device name or a logical name,
and the address of a word to receive the channel number. The service
returns a channel number, and you use this channel number when you
code an input or an output request.

For example, the following lines assign an I/O channel to the device
TTA2. The channel number is returned in the word at TTCHAN.

TTNAME: DESCRIPTOR <TTA2:>
TTCHAN: • BU\t...1 1

;TERMINAL DESCRIPTOR
;TERMINAL CHANNEL NUMBER

SASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

To assign a channel to the current default input or output device, you
must first translate the logical name SYS$INPUT or SYS$OUTPUT with the
Translate Logical Name ($TRNLOG) system service. Then, specify the
equivalence name returned as the DEVNAM argument to the $ASSIGN system

3-21

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

service. This technique requires you to interpret header information
preceding the equivalence name string for these devices. For an
example of this technique, see Figure 3-8 later in this section.

For more details on how $ASSIGN and other I/O services handle logical
names, see Section 3.4.10 "Logical Names and Physical Device Names."

3.4.2 Queuing I/O Requests

All input and output operations in VAX/VMS are initiated with the
Queue I/O Request ($QIO) system service. $QIO queues the request and
returns; while the operating system processes the request, the
program that issued the request can continue execution.

Required arguments to the $QIO service include the channel number
assigned to the device on which the I/O is to be done, and a function
code (expressed symbolically) that indicates the specific operation to
be performed. Depending on the function code, one to six additional
parameters may be required.

For example, the IO$_WRITEVBLK and 10$ READVBLK function codes are
device-independent codes used to read and write single records or
virtual blocks. These function codes are suitable for simple terminal
I/O. They require parameters indicating the address of an input or
output buffer and the buffer length. A call to $QIO to write a line
to a terminal might appear as:

$QIO_8 CHAN=TTCHAN,FUNC=tIOS_WRITEVBLK,­
Pl=BUFADDR,P2=BUFLEN

Function codes are defined for all supported device types, and most of
the codes are device dependent, that is, they perform functions that
are specific to a particular device. The $IODEF macro defines
symbolic names for these function codes. The codes are summarized in
Appendix A, "System Symbolic Definition Macros;" for details on all
function codes and an explanation of the parameters required by each,
see the VAX/VMS I/O User's Guide.

3.4.3 Synchronizing I/O Completion

The $QIO system service returns control to the calling program as soon
as the I/O request is queued; the status code returned in RO
indicates whether or not the request was queued successfully. To
ensure proper synchronization of the I/O operation with respect to the
program, the program must:

1. Test for the completion of the I/O operation

2. Test whether the I/O operation itself completed successfully

Optional arguments to the $QIO service provide techniques for
synchronizing I/O completion. There are three methods you can use to
test for the completion of an I/O request:

• Specify the number of an event flag to be set when the I/O
completes

• Specify the address of an AST routine to be executed when the
I/O completes

3-22

)

)

)

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

• Specify the address of an I/O status block in which the
system can place the return status when the I/O completes

Examples of using these three techniques are shown in Figure 3-7.

I Example 1: Event Flags"l.

$QIO_S EFN=tl, •••
8BSBW ERFWR

$QIO_S EFN=t2, •••
BSBW ERROR

iISSUE 1ST 1/0 REQUEST
iQUEUED SUCCESSFULLY?
iISSUE 2ND 1/0 REQUEST
iQUEUED SUCCESSFULLY?
;WAIT TIL BOTH DONE • :II=WFLAND ... S EFN==:J:O, MASK:=::J:~Bl10

Notes on Example 1:

•
8

•

When you code an event flag number as an argument,
clears the event flag when it queues the I/O request.
the I/O completes, the flag is set.

In this example, the program issues two I/O requests.
different event flag is specified for each request.

$QIO
When

A

The Wait for Logical AND of Event Flags ($WFLAND) system
service places the process in a wait state until both I/O
operations are complete. The EFN argument indicates that the
event flags are both in cluster 0; the MASK argument
indicates the flags that are to be waited for.

I Example 2: An AST Routine I.
8$QIO ... S ••• ,ASTADR==TTAST, ASTPF~M=:J::I., • •• ; I/O WITH AST

BSBW ERROR iQUEUED SUCCESSFULLY?
;CONTINUE

TTASr: • WORD O. iAST SERVICE ROUTINE ENTRY MASK
;HANDLE 1/0 COMPLETION

RET iEND OF SERVICE ROUTINE

Notes on Example 2:

o

•
•

When you code the ASTADRargument to the $QIO system service,
the system interrupts the process when the I/O .completes and
passes control to the specified AST service ~outine.

The $QIO system service call specifies the address of the AST
routine, TTAST, and a parameter to pass as an argument to the
AST service routine. When $QIO returns control, the process
continues execution.

When the I/O completes, the routine TTAST is called,
responds to the I/O completion.

and it

When this routine is finished executing, control returns to
the process at the point at which it was interrupted.

Figure 3-7 Synchronizing I/O Completion

3-23

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

I Example 3: The I/O Status BloCklct

THOSB: • BUm 18 ~I/O STATUS BLOCK

:1.0$:

.$(~j:O __ s • + +' IOSB==TTIOSlh + + +

BSBW EF<ROR

TSTW TTIOSBG
BEQL. 10!~

CMPW TTIOSB,#SS._NORMAL
BNEl~ I (LEF~R

jISSUE I/O REQUEST
jQUEUED SUCCESSFULLY?
jCONTINUE

JIS I/O DONE YET?
jNO, L.OOP TIL DONE
; I/O SUCCESSFUL'!,
;NO, ERf<OR
;YES, HANDLE IT

Notes on Example 3:

ct

8

•
G

An I/O status block is a quadword structure that
uses to post the status of an I/O operation.
area must be defined in your program.

the system
The quadword

TTIOSB definesl:ne I/O status block for this I/O operation.
The IOSB argument in the $QIO system service refers to this
quadword .

$QIO clears the quadword when it queues the
When the request is successfully queued,
continues execution.

I/O request.
the program

The process polls the I/O status block. If the low-order
word still contains 0, the I/O operation has not yet
completed. In this example, the program loops until the
request is complete.

Figure 3-7 (Cont.) Synchronizing I/O Completion

3.4.4 I/O Completion Status

When an I/O operation completes, the system posts the completion
status in the I/O status block, if one is specified. The completion
status indicates whether or not the operation actually completed
successfully, the number of bytes that were transferred, and
additional device-dependent return information.

The format of the information written in the IOSB is:

31 16 15 o

count I status

device~dependent information

3-24

)

)

),

)

)

)

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

The first word contains a system status code indicating the success or
failure of the operation. The status codes used are the same as for
all returns from system services; for example, SS$_NORMAL indicates
successful completion.

The second word contains the number of bytes actually transferred in
the I/O operation.

The second longword contains device-dependent return information.

To ensure successful I/O completion and the integrity of data
transfers, the IOSB should be checked following I/O requests,
particularly for device-dependent I/O functions. For complete details
on how to use the I/O status block, see the VAX/VMS I/O User's Guide.

3.4.5 Simplified Forms of the $QIO Macro

The $QIOW macro combines the functions of the $QIO and the Wait for
Single Event Flag ($WAITFR) system services. $QIOW has the same
arguments as the $QIO macro. It queues the I/O request, and then
places the program in a wait state until the I/O is complete.

The $INPUT and $OUTPUT macros are a subset of the $QIOW macro: they
use only the function codes to read and write virtual blocks or
records (10$ READVBLK and 10$ WRITEVBLK, respectively). These macros
provide an -efficient and easy way to specify I/O for terminals,
mailboxes, line printers, and interprocess network transfers.

When you code a $INPUT or $OUTPUT macro, you must specify the channel
on which the I/O is to be performed and the length and address of the
input or output buffer. Optionally you can specify an event flag to
be set when the I/O is complete and the address of an I/O status
block. For example:

.INPUT CHAN=TTCHAN.LENGTH=INLEN,BUFFER=INBUF,EFN=tl,IOBB=TTIOBB

or

.OUTPUT CHAN=TTCHAN.LENGTH=OUTLEN,BUFFER=OUTBUF,EFN=t2.IOSB=TTIOSB

3.4.6 Deassigning I/O Channels

When a process no longer needs access to an I/O device, it should
release the channel assigned to the device by issuing the Deassign I/O
Channel ($DASSGN) system service. For example:

$DASSGN_S CHAN=TTCHAN

This s~rvice call releases the terminal channel assignment acquired in
the $ASSIGN example shown earlier. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

3-25

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.7 Complete Terminal I/O Example

Figure 3-8 shows a complete sequence of input and output operations
uSIng the $INPUT and $OUTPUT macros to read and write lines to the
current default SYS$INPUT device. Note that if the program containing
these lines is executed interactively, the input/output is to the
current terminal.

TTNAME: DESCR IPTOR <SYSH NPLJT>. ;DESCRIPTOR FOR TERMINAL NAME

TTCHAN: .BLKW 1 ;RECEIVE CHANNEL NUMBER HERE

TTIOSB: .BLKW 1. ;FIRST WORD OF IOSB, STATUS
TTIOLEN:

.BLKW

.BLKL
1
1

9SECOND WORD, GET LENGTH
9SECOND LONG WORD OF IOSB

OUTLEN: .BLKL 1 ;LENGTH OF STRING TO OUTPUT
;BLJFFER TO READ INPUT INBUF: • BLKB 80 •

DEVDESC: ;DESCRIPTOR
;BUFFER LENGTH
9ADDRESS OF BUFFER

NLEN: .LONG 6~5
NADDR: .LONG NAME
NAME: .BLKB 6:3

•
O$TRNLOG .. S LOGNAM=-"TTNAME, RSLL.EN:::NLEN, F~SLBUF::DEVDESC

CMPB NAME,*~X1B ;DOES NAME BEGIN WITH ESCAPE?
BNEQ 10$;NO, SKIP
SUBL t4,NLEN ;OTHERWISE, SUBTRACT 4 FROM LENGTH
ADDL t4,NADDR ;ADD 4 TO ADDRESS

10$: • $ASS!GN._S DEVNAM:::DEVDESC, CHAN=TTCHAN ; ASS I GN CHANNEL.
BSBW Er';:ROR

.$INPUT
BSBW

OCMPW
BNEQ

CHAN=TTCHAN,LENGTH==t80,BUFFER=INBUF,IOSB=TTIOSB
EF~ROF~

TTIOSB,tSS$_NORMAL
IO_.ERF<

9I10 SLJCCESSFUL?
;ERROR IF NOT •••

OMOVZWL TT I OL.EN, OUTI..EN ;GET LENGTH OUT OF IOSB

O$OUTPLJT
BSBW
CMPW

"BNEQ

CHAN=TTCHAN,LENGTH=OLJTLEN,BUFTER=INBUF,IOSB==TTIOSB
ERROR
TTIOSB,#SS$_NORMAL ;SLJCCESSFLJL?
IO_ERR 9BRANCH IF NOT

CD $DASSGN ... S CHAN==TTCHAN 9DONE, DEASSIGN CHANNEL.
BSBW EI~ROR

Figure 3-8 Example of Terminal Input and Output

Notes on Fi~ure 3-8:

•
•

TTNAME is a character string descriptor for the logical
device SYS$INPUT and TTCHAN is a word to receive the channel
number assigned to it •

The IOSB for the I/O operations is structured
program can easily check for the completion
first word) and the length of the input string
the second word).

3-26

so that the
status (in the
returned (in

\

>

)

)

)

)

)

•
o

•
•
•
•
•

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

The string will be read into the buffer INBUF; the longword
OUT LEN will contain the length of the string for the output
operation.

The Translate Logical Name ($TRNLOG) system service
translates the logical name SYS$INPUT. On return from
$TRNLOG, the equivalence name is checked for a 4-byte header
beginning with an escape character. (This header is present
in all process permanent files; see Section 3.3.3.2,
"Logical Name and Equivalence Name Format Conventions.")

If this header is present, the program modifies the
descriptor for the device name returned, so it can be used as
input to $ASSIGN.

$ASSIGN assigns a channel and writes the channel
TTCHAN.

number at

If the $ASSIGN service completes successfully, the $INPUT
macro reads a line from the terminal, and requests that the
completion status be posted in the I/O status block defined
at TTIOSB.

The process waits until the I/O is complete, then checks the
first word in the I/O status block for a successful return.
If not successful, the program takes an error path.

Next, the length of the string read is moved into the
longword at OUTLEN. This is necessary because the $OUTPUT
macro requires a longword argument, and the length field of
the I/O status block is only a word long. The $OUTPUT macro
writes the line just read to the terminal.

~he program performs error checks: first, it ensures that the
$OUTPUT macro successfully queued the I/O request; then,
when the request is completed, it ensures that the I/O was
successful.

When all I/O operations on
channel is deassigned.

the channel are finished, the

3.4.8 Canceling I/O Requests

If a process must cancel an I/O request that has been queued but not
yet completed, it can issue the Cancel I/O On Channel ($CANCEL) system
service. All pending I/O requests issued by the process on that
channel are canceled.

For example, the $CANCEL system service can be called as follows:

ICANCEL_S CHAN~TTCHAN

In this example, the $CANCEL system service initiates the cancellation
of all pending I/O requests to the channel whose number is located at
TTCHAN.

The $CANCEL system service returns after initiating the cancellation
of the I/O requests. If the call to $QIO specified an event flag, AST
service routine, or I/O status block, the system sets the flag,
delivers the AST, or posts the I/O status block as appropriate when
the cancellation is actually completed.

3-27

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.9 Device Allocation

Many I/O devices are shareable; that is, more than one process you
access the device at a time. Each process, by issuing a $ASSIGN
service, is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that
data is not affected by other processes. To reserve a device for
exclusive use you must allocate it.

Device allocation is normally accomplished from the command stream,
with the ALLOCATE command. A process can also allocate a device by
calling the Allocate Device ($ALLOC) system service. When a device
has been allocated by a process, only the process that allocated the
device and any subprocesses it creates can assign channels to the
device.

When you code the $ALLOC system service, you must provide a device
name. The device name specified can be:

• A physical device name, for example, the tape drive MTB3:

• A logical name, for ex~mple, TAPE

• A generic device name, for example, MT:

If you specify a physical device name, $ALLOC attempts to allocate the
specified device.

If you specify a logical name, $ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical
name.

If you specify a
device type,
number -- $ALLOC
specified type.
generic names is

generic device name -- that is, if you specify a
but do not specify a controller and/or unit
attempts to allocate any device available of the

More information on the allocation of devices by
provided in Section 3.4.10.1.

When you specify logical names or generic device names, you must
provide fielqs for the $ALLOC system service to return the name and
the length of the physical device that is actually allocated, so you
can provide this name as input to the $ASSIGN system service.

Figure 3-9 illustrates the allocation of a tape device specified by
the logical name TAPE.

Notes on Figure 3-9:

• The $ALLOC system service call requests allocation of a
device corresponding to the logical name TAPE, defined by the
character string descriptor LOGDEV. The argument DEVDESC
refers to the buffer provided to receive the physical device
name of the device actually allocated, and its length.
$ALLOC translates the logical name TAPE and returns the
equivalence name string into the buffer at DEVDESC. It
writes the length of the string in the first word of DEVDESC.

The $ASSIGN command uses the character string returned by the
$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

3-28

)

'\
!

)
!

\
j

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

LOGDEV: DESCRIPTOR <TAPE> ;LOGICAL NAME FOR TAPE
;DESCRIPTOR FOR PHYSICAL NAME
;LENGTH OF BUFFER

DEVDESC:
.LONG
.LONG

20$,-10$
:LO$;ADDRESS OF BUFFER

:LO$: .BL.KB 64 ;GET PHYSICAL NAME RETURNED
2()$:
TAPECHAN:

.BLKW :L ;CHANNEL. FOR TAPE I/O

.
• SALLOC ... S DEVNAM=LOGDEV, PHYL.E!iI::::DEVDESC, PHYBUF=DEVDESC

BSBW EFmOF~
• $ASS I GN ... S DEVNAM::::DEVDESC, CHAN::: TAPE CHAN ; ASS I GN CHANNEL

BSBW ERROR
;CONTINUE WITH I/O

SDASSGN_S CHAN=TAPECHAN ;DEASSIGN CHANNEL.
• BSBW EF~ROF~

$DALLOC_S DEVNAM=DEVDESC ;DEALLOCATE TAPE

Figure 3-9 Device Allocation and Channel Assignment

• When I/O operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC
deal locates the device. The channel must
before the device can be deallocated.

system service
be deassigned

3.4.9.1 Implicit Allocation- Devices that cannot be shared by more
than one process, for example, terminals and line printers, do not
have to be explicitly allocated. Since they are nonshareable, they
are implicitly allocated by the $ASSIGN system service when $ASSIGN is
called to assign a channel to the device.

3.4.9.2 Deallocation - When the program is finished using an
allocated device~ it should release the device with the Deallocate
Device ($DALLOC) system service, to make it available for other
processes as in this example:

SDALLOC_S DEVNAM=DEVDESC

The syste~ automatically deal locates de~lce~ allocated by an image at
image exi t.

3.4.10 Logical Names and Physical Device Names

When a device name is specified as input to an I/O system service, it
can be a physical device name or a logical name. When an underscore
character () precedes a device name string, it indicates that the
string is a-physical device name string. For example:

TTNAME: DESCRIPTOR <_TTB3:>

3-29

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Any string that does not begin with an underscore is considered a
logical name, even though it may be a physical device name. The
$ASSIGN, $DASSGN, $ALLOC, and $DALLOC system services call the
Translate Logical Name ($TRNLOG) system service to search the logical
name tables. The $TRNLOG service searches the process, group, and
system tables, in that order, and if it locates an entry is found for
the specified logical name, the I/O request is performed for the
device specified in the equivalence name string. The search is not
recursive.

If $TRNLOG does not locate an entry for the logical name, the I/O
service treats the name that is specified as a physical device
name. When you code the name of an actual physical device in a call
to one of these services, code the underscore character to bypass the
logical name translation.

When the $ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is
prefaced with an underscore character. When this name is used for the
subsequent $ASSIGN system service, the $ASSIGN service does not
attempt to translate the device name.

If you use logical names in I/O service calls, you must be sure to
establish a valid device name equivalence before program execution.
You can do this by issuing an ASSIGN command from the command stream.
Or, the program can establish the equivalence name before the I/O
service call with the Create Logical Name ($CRELOG) system service.

For details on how to create and use logical names, see Section 3.3,
"Logical Name Services."

3.4.10.1 Device. Name Defaults - If, after logical name translation, a
device name string in an I/O system service call does not fully
specify the device name (that is, device, controller, and unit), the
service either provides default values for nonspecified fields, or
provides values based on device availability.

The following rules apply:

1. The $ASSIGN, $DASSGN, and $DALLOC system services apply
default values as shown in Table 3-2.

2. The $ALLOC system service treats the device name as a generic
device name and attempts to find a device that satisfies the
components of the device name that are specified, as shown in
Table 3-2.

3-30

)

)

:~

')

)

HOW TO USE SYST.EM SERVICES
INPUT/OUTPUT SERVICES

Table 3-2
Default Device Names for I/O Services

Final Device
Name
Specification

DD:

DDC:

DDN:

DDAN:

Key:

DD: is the
C: is the
e: is any
N: is the
n: is any

Device Name
Defaults for
$ASSIGN, $DASSGN,
and $DALLOC

DDAO: (unit 0
on controller A)

DDCO: (unit 0
on controller
specified)

DDAN: (unit
spec if ied on
controller A)

DDAN:

Generic Device
Names Used
by $ALLOC

DDen: (any available device of
the specified type)

DDCn: (any available unit on
the specified controller)

DDeN: (device of specified
type and unit on any available
controller)

DDAN:

device type specified
controller specified
controller
unit number specified
unit number

3.4.11 Obtaining Information About Physical Devices

In cases where a generic (that is, nonspecific) device name is used in
an I/O service, the program may need to find out what device has
actually been used. The Get I/O Channel Information ($GETCHN) system
service provides specific information about the physical device to
which a channel has been assigned. The Get I/O Device Information
($GETDEV) system service returns information about a device that is
identified by its device name. The information returned includes the
unit number of the device, as well as additional device
characteristics.

When you code the $GETCHN or $GETDEV service, you must provide the
address of a buffer or buffers into which the system writes the
information. The format of the buffer, and additional details about
these services are given in Chapter 4. Details on the device-specific
information these services return is given in the VAX/VMS I/O User's
Guide.

3.4.12 Formatting Output Strings

When you are preparing output strings for a program, you may need to
insert variable information into a string prior to output, or you may
need to convert a numeric value to an ASCII string. The Formatted
ASCII Output ($FAO) system service performs these functions.

3-31

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Input to the $FAO service consists of:

1. A control string that contains the fixed text portion of the
output and formatting directives. The directives indicate
the position within the string where substitutions are to be
made, and describe the data type and length of the input
values that are to be substituted or converted.

2. An output buffer to contain the string after conversions and
substitutions have been made.

3. An optional argument indicating a word to receive the final
length of the formatted output string.

4. Parameters that provide arguments for the directive.

Figure 3-10 shows a call to the $FAO system service to format an
output string for a $OUTPUT macro. Accompanying notes briefly discuss
the input and output requirements of FAO. Complete details on how to
use FAO, with additional examples, are provided in the description of
the $FAO system service in Chapter 4.

OFAOSTR: [lESCRIPTor~ <FIL.E !AS DOES NOT EXIST> ;FAO CONTROL STRING

8FAODESC: .LONG FAOLEN--FAOBLJF
.LONG FADBLJF

FAOBLJF: .BL.KB 80

;DESCRIPTOR FOR FAD OUTPUT
;ADDRESS OF BUFFER
;OUTPUT· BUFFER

FAOLEN: .LONG 0 ;RECEIVE LENGTH OF FAD OUTPUT STRING

eFILESPEC: DESCR:rPTOI~ <DMA1 :MYFILE.DAT> ;DESCFUPTOF~ FOF~ FAD PARAMETER

•
O$FAO_.S CTF~BTF~::FAOSTI~, OUTLEN:::FAOLEN, DUTBLJF=FADDESC,-·

P1~*FILESPEC ;PARAMETER FOR FAD
BSBW EF~ROI~

8!1i(lUTPUT ••• ,BUFFER=FAOBUF, LENGTH=FAOLEN
BBBW EI:mOR

Figure ~-10 Example of Using Formatted ASCII Output Program

Notes on Figure 3-10:

o

•
e

FAOSTR provides the FAO control string. !AS is an example of
an FAO directive: it requires an input parameter that
specifies the address of a character string descriptor. When
FAO is called to format this control string, !AS will be
sUbstituted with the string whose address is specified .

FAODESC is a character string descriptor for the output
buffer; $FAO will write the string into the buffer, and will
write the length of the final formatted string in the
low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the $OUTPUT macro.)

FILESPEC is a character string descriptor defining an input
string for the FAO directive !AS.

3-32

)

)

)

)

•
•

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

The call to $FAO specifies the control .string, the output
buffer and length fields, and the parameter PI, which is the
address of the string descriptor for the string to be
substituted .

When $FAO completes successfully, $OUTPUT writes
string:

FILE DMA1:MYFILE.DAT DOES NOT EXIST

the output

3.4.13 Mailboxes

Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using RMS
or I/O services. When a mailbox is create~, a channel is assigned to
it for use by the creating process. Other processes can then assign
channels to the mailbox using the $ASSIGN system service.

The Create Mailbox and Assign Channel ($CREMBX) system service creates
the mailbox. The $CREMBX system service identifies a mailbox by a
user-specified logical name and assigns it an equivalence name. The
equivalence name is a physical device name in the format MBn: where n
is a unit number.

When another process assigns a channel to the mailbox with the $ASSIGN
system service, it can identify the mailbox by its logical name.
$ASSIGN automatically translates the logical name. The process can
obtain the MBn: name by translating the logical name (with the
$TRNLOG system service), or it can call the Get I/O Channel
Information ($GETCHN) system service to obtain the unit number and the
physical device name.

Mailboxes are either temporary or permanent; user privileges are
required to create either type. $CREMBX enters the logical name and
equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equivalence
name for a permanent mailbox in the system logical name table.

Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system service.

Figure 3-11 shows an example of processes communicating by means of a
mailbox. The accompanying notes explain some of the arguments that
the $CREMBX system service requires.

3-33

Iprocess ORION I

MBLOGNAM: bESCRIPTOR
MBUFFER:

128

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

<GROUP100_MAILBOX> 9MAILBOX LOGICAL NAME
jINPUT BUFFER FOR MAILBOX READS
;BUFFER OF 128 BYTES .BLKB

MBUFLEN: • LONG
MBXCHAN:.BLKW
MBXIOSB:.BLKW
MBLEN: • BLKW

MBUFLEN-MBUFFER
1

9BUFFER LENGTH
jMAILBOX CHANNEL NUMBER
JIOSB FIRST WORD (STATUS)
JIOSB 2ND WORD (LENGTH)
jREMAINDER OF IOSB
9LONGWORD TO GET LENGTH

1
1

.BLKL. 1
OUTLEN: .BLKL 1

ORION: .WORD -M<R2,R3,R4> jENTRY MASK
$CREMBX_S PRMFLG::::tO,CHAN::::MBXCHAN,MAXMSG==MBUFLEN--O

BUFOUO=t384,PROMSK=t-XOOOO,LOGNAM=MBLOGNAM
BSBW ERROR
$OIO_S CHAN==MBXCHAN,FUNC=tIO$_READVBLK,IOSB==MBXIOSB,-e

ASTADR~MBXAST,P1·MBUFFER,P2::::MBUFLEN

BSBW ERROR

RET
MBXASr: • WORD 0. j AST ROUTINE ENTRY MASK

CMPW MBXIOSB,tSS$_NORMAL. ;1/0 SUCCESSFUL.?
BNEO ASTERR ;BRANCH IF NOT
MOVZWL MBLEN,OUTLEN ;MAKE LENGTH A LONGWORD
$OUTPUT ••• ,BUFFER=MBUFFER,LENGTH==OUTLEN, •••
BSBW ERRO.R

RET

I Process CYGNUS I
MAILBOX: DESCRIPTOR <GROUP100_MAILBOX> ;MAILBOX LOGICAL NAME
MAILCHAN: jMAILBOX CHANNEL NUMBER

.BU(W 1 .
OUTBUF: .BlKB 128
(JUTLEN: • BU(L 1

9BUFFER FOR OUTPUT MSG DATA
jWILL CONTAIN LENGTH OF MSG

CYGNUS: .WORD -M<R2,R3,R4> jENTRY MASK
• !~ASBIGN._.S DEVNAM:l"~MAILBOX, CHAN==MAILCHAN ; ASSIGN CHANNEL

BSBW ERROI~
$OUTPUT CHAN~MAILCHAN,BUFFER~OUTBUF,LENGTH::::OUTLEN, •••
BSBW Er·mOR

RET

Figure 3-11 Mailbox Creation and I/O

3-34

)

)

)

)
/

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

Notes on Figure 3-11:

•

•
•
•

Process ORION creates the mailbox and
number at MBXCHAN.

receives the channel

This PRMFLG argument indicates that the mailbox is a
temporary mailbox. The logical name is entered in the group
logical name table.

The MAXMSG argumen~ limits the size of messages that the
mailbox can rece~ve. Note that the size indicated in this
example is the same size as the buffer (MBUFFER) provided for
the $QIO request. A buffer for mailbox I/O must be at least
as large as the size specified in the MAXMSG. argument.

When a process creates a temporary mailbox, the
system memory that is allocated for buffering
subtracted from the process's buffer quota. Use
argument to specify how much of the process quota
be used for mailbox message buffering.

amount of
messages is
the BUFQUO
you want to

Mailboxes are protected devices. By specifying a protection
mask with the PROMSK argument, you can restrict access to the
mailbox. (In this example, all bits in the mask are clear,
indicating unlimited read and write access.)

After creating the mailbox, Process ORION issues a $QIO
system service, requesting notification of the completion of
I/O (that is, the reception of a message) by means of an AST
interrupt (the AST service routine is at MBXAST). The
process can continue executing.

When a message is sent to the mailbo~, the AST is delivered,
and ORION responds to the message. ORION gets the length of
the message from the first word of the I/O status block at
MBXIOSB and places it in the longword OUTLEN so it can pass
the length to $OUTPUT.

Process CYGNUS assigns a channel to the mailbox, specifying
the logical name th~ process ORION gave the mailbox. The
$OUTPUT form ot the $QIO system service writes a message from
the output buffer provided at OUTBUF.

3-35

HOW TO USE SYSTEM SERVICES
INPUT/OUTPUT SERVICES

3.4.13.1 System Mailboxes - The system uses mailboxes for
communication among system processes. All system mailbox messages
contain, in the first word of the message, a constant that identifies
the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the format:

MSG$_sender

The remainder of the message contains variable information, depending
on the system component that is sending the message.

The format of the variable information for each message type is
doctimented with the system function that uses the mailbox.

3.4.13.2 Mailboxes for Process Termination Messages - When a process
creates another process, it can specify the unit number of a mailbox
as an argument to the Create Process ($CREPRC) system service. When
the created process)s deleted, the system sends a message to the
specified termination mailbox. An example of how to create and use a
termination mailbOx is provided in Section 3.5.7.2, "Termination
Mailboxes."

3.4.13.3 Mailboxes for System Processes - There are a group of I/O
services that are used internally by system processes to communicate
various kinds of information. These services are:

• Send Message to Accounting Manager ($SNDACC)

• Send Message to Operator ($SNDOPR)

• Send Message to Symbiont Manager . ($SNDSMB)

Details on the formats of the messages apd the information they
provide are given in the individual discussions of these services in
Chapter 4.

3-36

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES

3.5 PROCESS CONTROL SERVICES

A process is the primary execution agent in VAX/VMS. When you log
into the system, the system creates a process for the execution of
program images. When you issue the DCL command RUN, you can request
the RUN command to create another process to execute an image.

You can also code a program that creates another process to execute a
particular image.

Process control services provide techniques for controlling a process
or group of processes.

'Included in this section are discussions of:

• Subprocesses and detached proc~sses

• The execution context of a process

• Process creation

• Interprocess control and communication

• Process hibernation and suspension

• Image exit and exit handlers

• Process deletion and termin~tion messages

3.5.1 Subprocesses and Detached Processes

subpr.ocess
and must

is fully
for you when

A process is either a subprocess or a detached process. A
receives a portion of its creator's resource quotas,
terminate before the creator. A detached process
independent; for example, the process the system creates
you log iri is a detached process.

The Create Process ($GREPRC) system service creates both subprocesses
and detached processes. The ability to create subprocesses is
controlled by the PRCLM quota. The ability to create detached
processes is controlled by the DETACH privilege~

3.5.2 The Execution Context of a Process

The execution context of a process defines a;process to the system.
It includes:

• The image that the process is executing

• The input and output streams for the image executing in a
process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to a
process

When the system creates a detached process as the result of a login,
it uses the system authorization file to determine the process's
execution context.

3-37

BOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

For example, when you log into the system:

• The process created for you executes the image known as login.

• The terminal you are using is established as the input,
output, and error stream for images that the process executes.

• Your disk and directory defaults are taken from the user
authorization file.

• The resource quotas and privileges you have been granted by
the system manager are associated with the created process.

When you code the $CREPRC system service to create a process, you
define the context by specifying arguments to the service.

3.5.3 Process Creation

The following sections show examples of process creation and describe
how the arguments you code to the $CREPRC system service define the
context of the process.

3.5.3.1 Defining an Image for a Subprocess to Execute - When you code
the $CREPRC system service, use the IMAGE argument to provide the
process with the name of a program image to execute. For example, the
following lines create a subprocess to execute the program image in
the file named LIBRA.EXE.

PROGNAME: DESCRIPTOR <LIBRA) ;IMAGE TO EXECUTE

$CREPRC_S IMAGE=PROGNAME ;CREATE PROCESS TO EXECUTE LIBRA

In this example, only a file name is specified; the service uses
current disk and directory defaults, performs logical name
translation, uses the default file type of EXE, and locates the most
recent version of the image file. When the subprocess completes
execution of the image, the subprocess is deleted. Process deletion
is described in Section 3.5.7.

3.5.3.2 Input, Output, and Error Devices for Subprocesses - When you
code the $CREPRC system service you can provide equivalence names for.
the logical names SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. These logical
name/equivalence name pairs are placed in the process logical name
table for the created. process.

3-38

)

)

-~)

)

)

-)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Figure 3-12 shows an example of defining input, output, and error
devices for a subprocess. The notes indicate how these devices are
used.

INSTREAM: DESCRIPTOR <SUB_MAIL_BOX>
OUTSTREAM: DESCRIPTOR <COMPUTE.OUT>
PROGNAME: DESCRIPTOR <COMPUTE.EXE>

;INPUT STREAM
;OUTPUT STREAM
;IMAGE NAME

Notes:

•

•
•

o
SCREPRC_S IMAGE~PROGNAME,INPUT=INSTREAM, - ;CREATE PROCESS

OUTPUT=OUTSTREAM,ERROR=OUTSTREAM • •
The INPUT argument equates the equivalence name SUB MAIL BOX
to the logical name SYS$INPUT. This logical name may
represent a mailbox that the calling process previously
created with the Create Mailbox and Assign Channel ($CREMBX)
system service. Any input the subprocess reads from the
logical device SYS$INPUT will be read from the mailbox.

The OUTPUT argument equates the equivalence name
to the logical name SYS$OUTPUT. All messages
writes to the logical device SYS$OUTPUT will be
this file.

COMPUTE.OUT
the program
written to

The ERROR argument equates the equivalence name COMPUTE.OUT
to the logical name SYS$ERROR. All system-generated error
messages will be written into this file. Since this is the
same file as that used for program output, the file
effectively contains a complete record of all output produced
during the execution of the program image.

Figure 3-12 Defining Input and Output Streams for a Subprocess

The $CREPRC system service does not provide default equivalence names
for these logical names; if none are specified, entries in the group
or system logical name tables, if any, may provide equivalences. If,
while the subprocess executes, it reads or writes to one of these
logical devices and no equivalence name exists, an error condition
results.

You can code a program that creates a subprocess to share the logical
input, output, or error devices of the creating process. The
following steps are required:

• Use the Translate Logical Name ($TRNLOG) system service to
obtain the current equivalence name for the logical name.

• Check whether the equivalence name returned contains system
header information (a 4-byte field beginning with an escape
character); if the logical name table entry was created by
the command interpreter, it will contain this header. If
there is a header, adjust the length of the string returned
and the address of the string returned by modifying these
fields in the character string descriptor of the resultant
name string.

3-39

•

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Specify the address of this descriptor
INPUT, OUTPUT, or ERROR arguments to
service.

when
the

you code the
$CREPRC system

This procedure is illustrated in the example below.

NDESC:
NLEN: • LONG 63
NADDR: .LONG NAME
NAME: • ElLKB 63
INPUT: DESCRIPTOR <SYS'INPUT>

;DESCRIPTOR FOR RESULT
;LENGTH OF STRING RETURNED
;ADti~ESS OF STRING
;DEVICE NAME STRING RETURNED
;LOGICAL DEVICE NAME

STRNLOG_S LOGNAM~INPUT,RSLLEN=NLEN,RSLElUF=NDESC
BSElW ERROR ;BRANCH IF ERROR
CMPEl NAME,t-XIEl ;FIRST ElYTE AN ESCAPE?
ElNEQ lOS ;NO, DON'T ADJUST
SUElL t4,NLEN ;SUBTRACT 4 FROM LENGTH
ADDL t4,NADDR ;ADD 4 TO ADDRESS

10.: .CREPRC_S ••• ,INPUT=NDESC,OUTPUT=NDESC, •••

When the subprocess executes, the logical names SYS$INPUT and
SYS$OUTPUT are equated to the device name of the creating process's
logical input device.

The subprocess can then use RMS to open the file for reading and/or
writing. Or, the subprocess can use the Assign I/O Channel ($ASSIGN)
system service to assign an I/O channel to this device for
input/output operations by specifying the device name as the logical
name SYS$OUTPUT. For example:

OUTPUT: DESCRIPTOR <SYSSOUTPUT>
OUTCHAN: .ElLKW 1

;LOGICAL NAME DESCRIPTOR
;CHANNEL NUMElER OF OUTPUT DEVICE

SASSIGN_S DEVNAM=OUTPUT,CHAN=OUTCHAN

Logical name translation is described in more detail in Section 3.3,
"Logical Name Services." For more information on channel assignment
for I/O operations, see Section 3.4, "Input/Output Services."

3.5.3.3 Disk and Directory Defaults for Created Processes - When you
use the $CREPRC system service to create a process .to execute an
image, the system locates the image file within the context of the
created process. The created process inherits the current default
device and directory of its creator.

If you explicitly specify a
specification of the image
equivalence names, then those
of the created process.

device and/or directory in the file
file or the input, output or error

files can be located within the context

T~ere is no way to define an alternative default device and/or
directory at process creation. The created process can, however,
define an equivalence for the logical device SYS$DISK by calling the
Create Logical Name ($CRELOG) system service. If the process is a
subprocess, you can define an equivalence name in the group logical
name table. The created process can also set its own default
directory by calling the RMS Default Directory control routine. For
details on how to call this routine, see the VAX-II Record Management
Services Reference Manual.

3-40

----'\
}

)

)

)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.3.4 Controlling Resources of Created Processes - Ordinarily, when
you create a subprocess, you need only assign it an image to execute
and, optionally, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR devices. The
system provides default values for the process's privileges, resource
quotas, execution modes, and priority. In some cases, you may want to
specifically define these values. The arguments to the $CREPRC system
service that control these characteristics are listed below, with
considerations for their use. For details, see the argument
descriptions of $CREPRC in Chapter 4.

1. PRVADR - this argument defines the privilege list Eorthe
created process. Normally, "any process you create will have
the same privileges that have been assigned to you by the
system manager. In some circumstances, you may need to
create a process that has a special privilege: but you must
have the user privilege SETPRV to provide a subprocess with a
privilege you do not have.

2. QUOTA - this argument defines the q~ota list for a
sub~rocess. Since a subprocess recelves a portion of its
creator's quotas for timer queue entries, I/O buffers, and so
on, you may want to control how much of each quota you want
assigned to the subprocess. If you do not code this
'argument, the system defines default quotas for the
subprocess.

3. STSFLG - the status flag is a set of bits that control some
execution characteristics of the create~ process, including
resource wait mode and process swap mode.

'Q

4. BASPRI - this argument sets the base execution priority for
the created process. If not specified, it defaults to 2. If
you want a subprocess to have a higher priority than its
creator, you must have the user privilege ALTPRI to raise the
pr iori ty level.

3.5.3.5 Detached Processes - The creation of a detached process is
primarily a system function; the DETACH privilege controls the
ability to create a detached process. The UIC argument to the $CREPRC
system service defines whether a process is a subprocess or a detached
process; it provides the created process with a user identification
code (UIC). If you omit the Ule argument, the $CREPRC system service
creates a subprocess that executes with your UIC.

3.5.4 Interprocess Control and Communication

Processes can be wholly independent, or they can be cooperative. You
may develop an application that requires the concurrent execution of
many programs. The following sections discuss the things you· may
consider when you develop such applications.

3.5.4.1 Restrictions on Process Creation and Control - There are
three levels of process control privilege:

1. The creator of a subprocess can always issue
functions for that subprocess.

3-41

control

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

2. The GROUP privilege is required to issue process control
functions for other processes executing in the same group.

3. The WORLD privilege is required to issue process control
functions for any process in the system.

Additional privileges are required to perform some specific functions,
for example, to set a process's base priority to a higher level than
that of the requestor.

3.5.4.2 Process Identification - In the examples shown in the
preceding sections, the subprocesses are not identified: once
created, the subprocesses execute according to the image name or the
input stream specified, and are deleted when they complete execution.
In many cases, however, you may want to be able to control the
execution of a subprocess after it has been created. Or, detached
processes that execute in the same group may want to communicate with
one another or issue control functions. In these cases, the processes
must be identified.

There are two levels of process identification:

1. Process identification number (PID). The system assigns this
unique 32-bit number to a process when it is created. If you
provide the PIDADR argument to the $CREPRC system service,
the system returns the process identification at the location
specified. You can then use the process identification
number in subsequent process control services ..

2. Process name. A process name is a 1- to IS-character text
name string. You can assign a name to a process by coding
the PRCNAM argument when you create it. You can then use
this name to refer to the process in other system service
calls.

For example, you might code a $CREPRC system service as follows:

ORION: DESCRIPTOR (ORION)
()RIONID!

.LONG ()

SCREPRC_S PRCNAM~ORION,PIDADR=ORIONID, •••

;PROCESS NAME

;PROCESS ID RETURNED

The service returns the process identification in the longword at
ORIONID. Now, you can use eithei the process name (ORION) or the
process identification (ORIONID) to refer to this process in other
system service calls.

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name to

CYGNUS as follows:

CYGNUS: DESCRIPTOR (CYGNUS> ;NAME DESCRIPTOR

SSETPRN_S PRCNAM=CYGNUS

3-42

)

")

)

)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Most of the process control services accept either the PRCNAM or
PIOAOR arguments, or both. The process identification provides a more
efficient means of identifying a process. Since it is only a longword
in length, a system service can examine it more qtiickly.

When the PIOAOR argument is coded and the specified address contains a
0, the services return the process identification. Thus, you can
obtain the process identification for a process by issuing any control
function, as long as you know the process name.

If neither argument is specified, the service is performed for the
calling process. For a summary of the possible combinations of these
arguments and an explanation of how the services interpret them, see
Table 3-3.

Is A Is A
Process Process 10
Name Address
Specified? Specified?

no no

no yes

no yes

yes no

yes yes

yes yes

Table 3-3
Process Identification

Process 10
Address Resultant Action by Services
Contains:

-- The process identification of
the calling process is used.
The process identification is
not returned.

zero The process identification of
the calling process is used
and returned.

process id The process identification. is
used and returned.

-- The process name is used. The
proceSs identification is not
returned.

zero The process name is used and
the process identifi~ation is
returned.

process id The process identification is
used and returned.

Process Naming within Groups: Process names are always qualified by
their group number. The system maintains a table of all process
names, and when a PRCNAM argument is specified in a process control
service, the service searches for the process name specified and for a
match on the group number, and fails if the specified process name
does not have the same group number. This is true even if the calling
process has world control privilege: to execute a process control
service for a process that is not a subprocess and not in the caller's
group, the.requesting process must use a process identification.

3-43

Obtaining
Information
information
about the
Chapter 4.

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Information about Processes: The Get Job/Process
($GETJPI) system service allows a process to obtain

about itself or another process. For complete details
$GETJPI system service, see the service description in

Techniques for Interprocess Communication: There are several ways
that processes can co~unicate:

• Common event flag clusters

• Logical name tables

• Mailboxes

• Global sections

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters .to signal the occurrence or
completion of particular activities. For details on event flags,
event flag clusters, and an example of cooperating processes in the
same group using a common event flag, see Secton 3.1, "Event Flag
Services."

Logical Name Tables: Processes executing in the same group can use
the group logical name table to provide member processes with
equivalence names for logical names. At least one member of the group
must have the user privilege to place names in the group logical name
table. For details on logical names and logical name tables, see
Section 3.3, "Logical Name Services."

Mailboxes: Mailboxes can be used as virtual input/output devices to
pass information, messages, or data among processes. For details on
how to create and use mailboxes, with an example of cooperating
processes using a mailbox, see Section 3.4, "Input/Output Services."
Mailboxes may also be used to provide a creating process with a way to
determine when and under what condition a created subprocess was
deleted. See Section 3.5.7.2 for an example of a termination mailbox.

Global Sections: Global sections are disk files containing shareable
code or data. Through the use of memory management services, these
files can be mapped to the virtual address space of more than one
process. _ In the case of a data file, cooperating processes can
synchronize reading and writing the data in physical memory~ as the
data is updated,· system paging results in the updated data being
written directly .back into the disk file. Global sections are
described in more detail in Section 3.8.6, "Sections."

3-44

\,
/

)

)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.5 Process Hibernation and Suspension

There are two ways to temporarily halt the execution of a process:
hibernation, performed by the Hibernate ($HIBER) system service, and
suspension, performed by the Suspend Process ($SUSPND) system service.
The process can continue execution normally only after a corresponding
Wake ($WAKE) system service, if it is hibernating; or after a Resume
Process ($RESUME) system service, if it is suspended.

Process hibernation and suspension are compared in Table 3-4.

Table 3-4
Process Hibernation and Suspension

Hibernation

Can only hibernate
self

Reversed by $WAKE
system service

Interruptible; can
receive ASTs

Can wake self

Can schedule wakeup
at an absolute time
or at a fixed time
interval

Hibernate/wake
complete quickly;
require li ttle
system overhead

Suspension

Can suspend self or another
process, depending on privilege

Reversed by $RESUME system service

Noninterruptible; cannot receive
ASTs

Cannot resume self

Cannot schedule resumption

Requires syst~m dynamic memory

3.5.5.1 Process Hibernation - The hibernate/wake mechanism
an efficient way to prepare an image for execution and then
in a wait state until it is needed. When the wake request is
the image is reactivated with little delay or system overhead.

provides
place it

issued,

For example, if you create a subprocess that must execute the same
function repeatedly, but must execute immediately when it is needed,
you could use the $HIBER and $WAKE system services as shown in Figure
3-13 •

There is a variation of the $WAKE system service that schedules a
wakeup . for a hibernating process at a fixed time or at an elapsed
(delta) time interval. This is the Schedule Wakeup ($SCHDWK) system
service. Using the $SCHDWK service, a process can schedule a wakeup
for itself before issuing a $HIBER call. For an example of how to use
the $SCHDWK system service, see Section 3.6, "Timer and Time
Conversion Services."

3-45

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

IProGess GEMINI I

ORION: DESCRIPTOR <ORION>
FASTCOMP: DESCRIPTOR <COMPUTE.EXE>

•

;SUBPROCESS NAME
;IMAGE

OfCREPRC_S PRCNAM::::ORION, IMAGE==FASTCOMP, • •• ; CREATE ORION
BSBW ERROR ; CONTINUE

.!~W~KE_S PRCNAM::::ORION
BSBW ERRm~

$WAKE_S PRCNAM=ORION
BSBW EI~FWR

I Process ORION I

FASTCDMP:

Notes:

.WORD O.
$HIBER_.S

BSBW ERROR

BF~W 1()$

; WAI<E OFUON

;:WAKE ORION AGAIN

;:ENTRY MASK
;SL.EEP

;: PEf'<FOf'<M •••

;:BACK TO SL.EEP

• Process GEMINI creates the process ORION,
image name FASTCOMP.

specifying

• The image FASTCOMP is
$HIBER system service.

initialized, and ORION issues

the

the

• At an appropriate time, GEMINI iss,ues a $WAKE request for
ORION. ORION continues execution following the $HIBER
service call. When it finishes its job, ORION loops back to
repeat the $HIBER call and to wait for another wakeup.

Figure 3-13 Process Hibernation

Hibernating processes can be interrupted by Asynchronous System Traps
(ASTs), as long as AST delivery is enabled. The process can issue a
$WAKE for itself in the AST service routine, and continue execution
following the execution of the AST service routine. For a description
of ASTs, and how to use them, see Section 3.2, "AST (Asynchronous
System Trap) Services."

3-46

)

--)

)

)

-)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.5.2 Alternate Methods of Hibernation - Two additional techniques
you can use to cause a process to hibernate are:

• Code the STSFLG argument for the $CREPRC system service,
setting the bit that reque~ts $CREPRC to place the created
process in a state of hibernation as soon as it is
initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifiers of the
RUN command when you execute the image from the command
stream.

When you use the first method, the creating program image can control,
the system services described here and in Section 3.6, when to wake
the created process.

When you use the RUN command, the qualifiers listed above control when
the process will be awakened.

If the image to be executed does not, itself, call the $HIBER system
service, the image is placed in a state of hibernation whenever it
issues a RET instruction. Each time it is reawakened, it begins
executing at its entry point. If the image does call $HIBER, then it
begins executing at either the point following the call to $HIBER or
at its entry point (if it issues a RET instruction) each time it is
awakened.

If wakeup requests are scheduled at time intervals, the image can be
terminated with the Delete Process ($DELPRC) or Force Exit ($FORCEX)
system services, or from the command level, with the STOP command.
The $DELPRC and $FORCEX system services are described later in this
section. The RUN and STOP commands are described in the VAX/VMS
Command Language User's Guide.

These techniques allow you to code programs that can be executed a
single time, on request, or cyclically, depending on a particular set
of circumstances. Note that the program must ensure the integrity of
data areas that are modified during its execution, as well as the
status of opened files.

3.5.5.3 Suspension - Using the Suspend Process ($SUSPND) system
service, a process can place itself or another process into a wait
state similar to hibernation. Suspension, however, is a more
pronounced state of hibernation. A suspended process cannot be
interrupted by ASTs, and can resume execution only after another
process issues a Resume Process ($RESUME) system service for it. If
ASTs were queued for the process while it was suspended, they are
delivered when the process resumes execution.

3.5.6 Image Exit

When the image executing in a process completes normally, the
operating system performs a variety of image rundown functions. If
the image was executed by the command interpreter, image rundown
prepares the process for the execution of another image. If the image
was not executed by the command interpreter -- for example, if it was
executed by a subprocess -- the rundown readies the process for
deletion.

3-47

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

These exit activities are also initiated when an image completes
abnormally, as a result of any of the following:

1. Specific error conditions caused by improper specifications
when a process was created. For example, if an invalid
device name is specified for SYS$INPUT, SYS$OUTPUT, or
SYS$ERROR logical names, or if an invalid or nonexistent
image name is specified, the error condition is noted within
the context of the createdp~ocess.

2. An exception condition during execution of the image. When
an exception condition occurs, any user-specified condition
handlers receive control to handle the exception. If not, a
system-declared condition handler receives control, and it
initiates exit activities for the image. Condition handling
is described in Section 3.7, "Condition Handling Services."

3. A Force Exit ($FORCEX) system service issued on behalf of the
process by another process.

3.5.6.1 Image
image rundown
obtained while
below.

Rundown Activities - The operating system performs
functions that release system resources that a process

executing in user mode. These activities are listed

• Exit handlers declared from user mode, if any, are called, and
the exit control blocks are released. (Exit handlers are
described in Section 3.5.6.3.)

• Common event flag clusters are disassociated.

• User mode ASTs that are queued but have not been delivered are
deleted, and ftSTs are enabled for user mode.

• I/O channels are deassigned and any outstanding I/O requests
on the channels are canceled.

• All devices allocated to the process at user mode are
deallocated.

•

•

Timer-scheduled requests, including wakeup requests, are
canceled.

Logical names in the process logical name table entered in
user mode are deleted (logical names entered. from the command
stream in supervisormode-are- not deleted).

• Exception vectors declared in user mode, compatibility mode
handlers, and change mode to user handlers are reset.

• System service failure exception mode is disabled.

• Memory pages occupied by the image are deleted and the
process's working set size limit is readjusted to its default
value.

3.5.6.2 The $Exit System Service - To initiate the rundown activities
described above, the system calls the Exit ($EXIT) system service on
behalf of the process. In some cases, a process can call $EXIT to
terminate the image itself, for example, if an unrecoverable error
occurs. This is not, however, recommended programming practice.

3-48

j

)

)

~
I

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

The $EXIT system service accepts a status code as an argument. If you
use $EXIT to terminate image execution, you can use this status code
argument to pass information about the completion of the image. If an
image does not call.$EXIT, the current value in RO is passed as the
status code when the system calls $EXIT.

Thjs status code is used as follows:

• The command interpreter uses the status code
error message when it receives control
rundown.

to display an
following image

• If the image has declared an exit handler, the status code is
written in the address specified in the exit control block.

• If the process was created by another process, and the creator
has specified a mailbox to receive a termination message, the
status code is written in the termination message when the
process is deleted.

The use of exit handlers and termination messages requires additional
coding considerations. These considerations are discussed in greater
detail below.

3.5.6.3 Exit Handlers -
image-specific cleanup
image uses system memory
that the data is not
error condition.

Exit handlers are routines that can perform
or rundown operations. For example, if an
to buffer data, an exit handler can ensure
lost when the image exits as the result of an

To establish an exit handling routine, you must set up an exit control
block, and specify the address of the control block on the Declare
Exit Handler ($DCLEXH) system service. Exit handlers are called using
standard calling conventions~ you can provide arguments to the exit
handler in the exit control block. The first argument in the control
block argument list must specify thQ address of a long~ord f6r the
system to write the status code from $EXIT.

If an image declares more than one exit handler, the control blocks
are linked together on a last-in, first-out basis. After an exit
handler has been called and returns control, the control block is
removed from the list. Exit control blocks can also be removed prior
to image exit with the Cancel Exit Handler ($CANEXH) system service.

~xit handlers can also be declared from system routines executing in
~upervisor or executive modes. These exit handlers are also linked
together, and receive control after exit handlers declared from user
mode have been executed.

3-49

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Figure 3-14 shows. an example of an exit handling routine .

EXITBLOCK:
.LONG
.LONG
.LONG
.LONG

• o
EXITRTN
1
STATUS
1

;EXIT CONTROL BLOCK
;SYSTEM USES THIS FOR POINTER
;ADDRESS OF EXIT HANDLER
;NUMBER OF ARGS FOR HANDLER
;ADDRESS TO RECEIVE STATUS CODE
;STATUS CODE FROM $EXIT STATUS: • BLKL

PEGASUS: .WORD ~M<R2,R3> ;ENTRY MASK FOR PEGASUS
;DECLARE EXIT HANDLER $DCLEXH_S DEBBI .. K==EX I TBLOCKG

BSBW ERROF~

RET
EXITRTN:

;END OF MAIN ROUTINE
; EX IT HANDLER

•• WORD
CMPL
BEQL

~M<R2>

STATUS,tSS$_NORMAL
:LO$

;ENTRY MASK
;NORMAL EXIT?
;YES, FINISH
;NO, CLEAN UP

10$: RET ;FINISHED

Notes:

•
G

•

3.5.6.4
provides
process.
executing

EXITBLOCK is the exit control block for the exit handler
EXITRTN. The third longword indicates the number of
arguments to be passed; in this example, only one argument
is passed. This is the address of a longword for the sy!tem
to store the return status code; this argument must b~
provided in an exit control block.

The $DCLEXH system service call designates the address of the
exi t control block, thus declar ing . EXITRTN as an exit
handler .

EXITRTN checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error
condition.

Figure 3-14 Example of an Exit Handler

Forced Exit - The Force Exit ($FORCEX) system service
a way for a process to initiate image rundown for another
For example, the following call to $FORCEX causes the image
in the process CYGNUS to exit:

CYGNUS: DESCFHPTOR <CYGNUS> ;PROCESS NAME

SFORtEX_S PRCNAM=CYGNUS

The $FORCEX system service uses the AST mechanism to cause the image
to exit. If the process CYGNUS has disabled AST delivery, the image
cannot be forced to exit until CYGNUS reenables the delivery of ASTs.
AST delivery, and how it is disabled and reenabled, is described in
Section 3.2.

3-50

\

)

)

)

--',
f

,/

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.7 Process Deletion

Process deletion completely removes a process from the system.
Deletion occurs as a result of any of the following conditions:

• The command stream contains a
end-of-file.

• An image specified by $CREPRC exits.

LOGOUT command

• A process issues a STOP command or executes an image
calls the Delete Process ($DELPRC) system service.

or an

that

When the system is called to delete a process as a result of any of
the above conditions, it first locates all subprocesses, searching
hierarchically. Then, beginning with the lowest process in the
hierarchy, and completing with the topmost process, each of the
following are performed:

• The image executing in the process is run down. System
resources are released, and, if this is a subprocess, quotas
are returned to the creator of the process. The image rundown
that occurs during process deletion is the same as that
described in Section 3.5.6.1. When a process is deleted,
however" the rundown releases all system resources, including
those acquired from access modes other than user mode.

• Resource quotas are released to the creating process, if it is
a subprocess.

• If the creating process specified a termination mailbox, 'a
message indicating that the process is being deleted is sent
to the mailbox. For detached processes created by the system,
the termination message is sent to the system job controller.

• The control region of the process's virtual address space is
deleted. (The control region consists of memory allocated and
used by the system on behalf of the process.)

• All system-maintained information about the
deleted.

process is

Figure 3-15 illustrates the flow of events from image exit through
process deletion.

3-51

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Image exit

Any
exit handlers

for user
mode?

Yes

Call them, In LI FO order,
using argument list in exit
control block

Is
process using
the command

interpreter?

Yes

Call the exit handler
declared by the
command interpreter*

Return to command
interpreter to execute

the next image

*This exit handler is declared

from supervisor mode and is
located during the normal
search for exit handlers.

No

No Call the Delete Process
($DELPRC) system service
to delete the process

Did
creator specify

a termination
mailbox?

Yes

Send a termination message
to the mailbox specified by
the process's creator

No

Figure 3-15 Image Exit and Process Deletion

3-52

)

)

)

)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

3.5.7.1 The Delete Process System Service - A process can delete
itself or another process at any time, depending on the restrictions
outlined in Section 3.5.4.1. The Delete Process ($DELPRC) system
service deletes a process. For example, if a process has created a
subprocess named CYGNUS, it can delete CYGNUS as shown below:

CYGNUS: DESCFUF'TOR <CYGNUS>

tDELPRC_S PRCNAM=CYGNUS

Since a subprocess is automatically deleted when the image it is
executing terminates (or when the command stream for the command
interpreter reaches end-of-file), you do not normally need to issue
the $DELPRC system service explicitly.

As an alternative to deleting a process, you can use the Force Exit
($FORCEX) system service to force the exit of the image executing in a
process. If the $FORCEX system service is used, any exit handlers
that ~ke declared for the image are executed during the image rundown.
Thus, if the process is USing the command interpreter, it is not
deleted, but Can run another image. Moreover, since the $FORCEX
system service uses the AST mechanism, the exit cannot be .performed if
the process being forced to exit has disabled the delivery of ASTs.

3.5.7.2 Termination Mailboxes - A termination mailbox provides a
process with a way of determining when, and under what conditions, a
process that it has created is being deleted~ The Create Process
($CREPRC) system service accepts the unit number of a mailbox as an
argument. When the created pr~cess ia deleted, the mailbox receives a
termination message.

The first word of the termination message contains the symbolic
constant, MSG$ DELPROC, which indicates. that it is a termination
message. The remainder of the message contains system accounting
information used by the job controller, and is in fact identical to
the first part of the accounting record sent to the system accounting
log file. .The complete format of the termination message is provided
with the description of the $CREPRC system service in Chapter 4.

The creating process can, if necessary~ deter~ine the process
identification of the .process being deleted from the I/O status block
posted when the message is received in the mailbox. The second
longword of the IOSB contains the process identification of the
process that is being deleted.

Figure 3-16 illustrates a complete sequence of process
a termination mailbox. The Create Mailbox and
($CREMBX) and Queue I/O Request ($QIO) system services
i~9reater detail in Section 3.4.

3-53

creation, with
Assign Channel

are described

EXCHAN:
.BLKW

EXITBUF:
.LONG
.LONG

BBUF: .BLKB
ENDBUF:

EXITMSG: • BLKB
MBXIOSB:.BLKW
MBLEN: • BLKW
MBPID: .BLKL
LYRAPID:

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

1

ENDBUF-BBUF
BBUF
DIB$K_LENGTH

ACC$K_TERMLEN
1
1
1.

;GET CHANNEL NO. OF MAILBOX
;DESCRIPTOR FOR MAILBOX INFO
;LENGTH OF BUFFER
;ADDRESS OF BUFFER
;BUFFER

;BUFFER FOR MAILBOX MESSAGE
;QUADWORD liD STATUS BLOCK
; LENGTH OF 110
;RECEIVES PID OF PROCESS DELETED

.LONG 0
LYREXE: DESCRIPTOR <LYRA.EXE>

;GET PID OF SUBPROCESS
;NAME OF IMAGE FOR SUBPROCESS

«t$CREMBX_S CHAN=EXCHAN,MAXMSG=t120,PROMSK=tO,BUFQUO=t240
;CREATE MAILBOX

BSBW ERROR
8$GETCHN_S CHAN=EXCHAN,PRIBUF==EXITBUF

;GET MAILBOX INFO
BSBW ERROR

8'CREPRC_S IMAGE=LYREXE,PIDADR=l.YRAPID, -
, ••• ,- ;CREATE SUBPROCESS
MBXUNT==BBUF+DIB$W_UNIT ;SPECIFY TERMINATION MAILBOX

BSBW ERROR
O$QIO_S CHAN=EXCHAN, FUNC=tIO$_F~EADVBLK, --

;QIO TO MAILBOX
ASTADR=EXITAST,IOSB=MBXIOSB,Pl=EXITMSG,P2=ACC$K_TERMLEN

BSBW EF~ROR

RET
EXITAST:

• .WORD
CMPW
BNEQ
CMPW
BNEl~

CMPL
BNEQ
CMPL
BEQL

RET

;CONTINUE EXECUTION

;AST ROUTINE FOR TERMINATION MSG
o ;ENTRY MASK
MBXIOSB,tSS$_NORMAL ;1/0 SUCCESSFUL?
20$;BRANCH IF NOT
EXITMSG+ACC$W_MSGTYP,tMSG$_DELPROC ;IS IT A TERMINATION MSG?
20$;NO, SOME THING ELSE
LYRAPID,MBPID ;IS IT LYRA?
20$;NO, SOMEBODY ELSE
EXITMSG+ACC$L_FINALSTS,tSS$_NORMAl. ;DELETED NORMALLY?
10$;YES, RETURN

;NO, RESPOND TO ERROR IN LYRA

;AST ROUTINE FINISHED
;HANDLE ALL OTHER CONDITIONS

Figure 3-16 Using a Termination Mailbox

3-54

\ ,

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
PROCESS CONTROL SERVICES

Notes on Figure 3-16:

•
•
•
•

•

The Create Mailbox and Assign Channel ($CREMBX) system
service creates the mailbox, and returns the channel number
at EXCHAN.

The Get I/O Channel Information ($GETCHN)
returns information about the mailbox.
returned in the buffer can be referred to
offsets defined in the $DIBDEF macro.

system service
The information

by the symbolic

The Create Process ($CREPRC) system service creates a process
to execute the image LYRA.EXE, and returns the process
identification at LYRAPID. The MBXUNT argument refers to the
unit number of the mailbox, obtained from the buffer BBUF by
using the symbolic offset DIB$W_UNIT.

The Queue I/O Request queues a read request to the mailbox,
specifying an AST service routine to receive control when the
mailbox receives a message and the address of a buffer to
receive the message. The information in the message can be
accessed by the symbolic offsets defined in the $ACCDEF
macro. The process continues executing.

When a message is received in the mailbox, the AST service
routine, EXITAST, receives control. Since this mailbox can
be used for other interprocess communication, the AST routine
checks: 1) for successful completion of the I/O operation by
examining the first word in the IOSB, 2) that the message
received is a termination message by examining the message
type field in the termination message at the offset
ACC$W MSGTYPE, 3) the process identification of the process
that has been deleted by examining the second longword of the
IOSB, and 4) the completion status of the process by
examining the status field in the termination mes.age at the
offset ACC$L_FINALSTS.

In this example, the AST service routine performs special
action when the subprocess is deleted. All other messages or
error conditions cause a branch to the label 20$.

3-55

HOW TO USE SYSTEM SERVICES

3.6 TIMER AND TIME CONVERSION SERVICES

Many applications require the scheduling of program activities based
on clock time. In VAX/VMS, an image can schedule events for a
specific time of day, or after a specified time interval. Timer
services:

• Schedule the setting of an event flag or the queueing of an
asynchronous system trap (AST) for the current process, and
cancel a pending request that has not yet been honored.

• Schedule a wakeup request
cancel a pending wakeup
honored.

for a hibernating
request that has

process, and
not yet been

The timer services require you to specify the time in a unique 64-bit
format. Time conversion services:

• Obtain the current date and time in an ASCII string or in
system format

• Convert an ASCII string into the system time format

• Convert a system time value into an ASCII string

• Convert the time from system format to integer values

This section describes the system time format and the services that
use it, with examples of scheduling program activities us~ng the timer
services.

3.6.1 The System Time Format

VAX/VMS maintains the current date and time (using a 24-hour clock) in
64-bit format. The time value is a binary number in 100-nanosecond
units offse~ from the system base date and time, which is 00:00
o'clock, November 17, 1858.1 All time values passed to system services
must also be in 64-bit format. A time value can be expressed as:

• An absolute time which is a specific date and time of' day.
Absolute times are always positive values.

• A delta time which is a future offset (number of
minutes, seconds, and so on) from the current time.
times are always expressed as negative values.

hours,
Delta

You can also specify the address of a time value as 0; in this case
the system will always supply the current date and time by default.

3.6.2 The Current Date and Time

The Convert Binary Time to ASCII String ($ASCTIM)
converts a time in system format to an ASCII string
string in a 24-byte buffer. If you want to obtain the
ASCII, code the $ASCTIM system service as follows:

system service
and returns the
current time in

1 This is the Smithsonian base date and time for the astronomical
calendar.

3-56

)

)

'.'. ------") !!<

)

)

HOW TO USE SYSTEM 'SERVICES
TIMER AND TIME CONVERSION SERVICES

ATIMENOW:
.LONG
.LONG

10$: .BLKB
20$:

20-10
10$
24

;DESCRIPTOR FOR ASCII TIME
;LENGTH OF BUFFER
;ADDRESS OF BUFFER
;24 BYTES RETURNED

$ASCTIM_S TIMBUF=ATIMENOW,- ;GET CURRENT TIME
TIMLEN=ATIMENOIoJ

The string returned by the service in the buffer ATIMENOW has, the
format:

dd-mmm-yyyy hh:mm:ss.cc

whete dd is the day of the month, mmm is the month (a 3-character
alphabetic abbreviation), yyyy is the year, and hh:mm:ss.cc is the
time in hours, minutes, seconds, and hundredths of seconds. The
TIMLEN argument requests the system to place the length of the string
returned in the first word of the descriptor.

The current time can also be obtained in system format with the Get
Time ($GETTIM) system service, which places the time in a quadword
buffer. For example:

TIME: .BLKQ 1 ;BUFFEH FOR TIME

$GETTIM_S TIMADR=TIME ;GET TIME

This call to $GETTIM returns the current date and time system format
in the quadword buffer TIME.

3.6.3 Obtaining an Absolute Time in System Format

The converse of the $ASCTIM system service is the Convert ASCII String
to Binary Time ($BINTIM) system service. You provide the service with
the time in the ASCII format shown above, and the service converts the
string to a time value in 64-bit format. You· can then use this
returned value as input to a timer scheduling service.

When you code the ASCII string buffer, you can omit any of the fields,
and the service uses the current date or_time value for the field.
Thus, if you want a timer request to be date independent, you co~ld
format the input buffer for the $BINTIM service as shown below. The
two hyphens that are normally embedded in the date field must be
included; at, least one blank must precede the time field.

ANOON: DESCHIPTOR (-- 12:00:00.00>
BNOON: • BtKG 1

..

;ASCII 12 NOON
;BUFFER FOR BINARY 12
;NOON

$BINTIM_S TIMBUF=ANOON,TIMADR=BNOON ;CONVERT TIME

When the $BINTIM service completes,. a 64-bit time value represent'ing
li noon today" is returned in the quadword at BNOON.

3-57

I

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

3.6.4 -Obtaining a Delta Time in System Format

The $BINTIM system service also converts ASCII strings to delta time
values to be used as input to timer services. The buffer for delta
time ASCII strings has the format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0
if you are coding a "today" delta time.

The following example shows how to use the $BINTIM service to obtain a
delta time in system format.

ATENMIN: DESCRIPTOR (0 00:10:00.00>
BTENMIN:

.BLKQ 1

;ASCII TEN MINUTES

;BUFFER FOR BINARY TEN
;MINUTES

$BINTIM_S TIMBUF=ATENMIN,TIMADR=BTENMIN ;CONVERT TIME

You can also specify approximate delta time values at assembly time,
using two MACRO .LONG directives to represent a time value in terms of
100-nanosecond units. The arithmetic is based on the formula:

1 second = 10 million * 100 nanoseconds

For example, the following statement defines a delta time value of 5
seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ;FIVE SECONDS

The value 10 million is expressed as 10*1000*1000 for readability.
Note that the delta time value is negative.

If you use this notation, however, you are limited to the maximum
number of 100-nanosecond units that can be expressed in a longword.
In terms of time values, this is somewhat more than 7 minutes.

3.6.5 Timer Requests

Timer requests made with the Set Timer ($SETIMR) system service are
queued, that is, ~hey are ordered for processing according to their
expiration times. The TQELM quota controls the number of entries a
process can have pending in this timer queue.

When you code the $SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the
request processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires.
If you do not specify an event flag, the system sets event
flag o.

• The address of an AST service routine to be executed when the
time expires.

Optionally, you can specify a request identification for the timer
request. You can use this identification to cancel the request, if
necessary. The request identification is passed to the AST service

3-58

i

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

routine, if one is specified, as the AST parameter so the AST service
routine can identify the timer request.

Figure 3-17 shows examples of timer requests using event flags and
ASTs. Event flags and event flag servi'ces are described in more
detail in Section 3.1, "Event Flag Services." ASTs are described in
more detail in Section 3.2, "AST (Asynchronous System Trap) Services."

IExamPle 1: Setting an Event Flag I

WAITIME:
.LONG ;30 SECOND WAIT TIME

•
• $SETIMR_S EFN=t4, DAYTI M=WAI TIME ;SET TIMER

BSBW EF~ROR

G$WAITFR._S EFN=t4
BSBW ERROR

;WAIT 30 SECONDS

Notes on Example 1:

• The call to $SETIMR requests that event flag 4 be set
seconds (expressed in the quadword WAITIME).

in 30

G The wait for Single
places the process
set. When the timer
continues execution.

Event Flag ($WAITFR) system service
in a wait state until the event flag is

expires, the flag is set and the process

Figure 3-17 Timer Requests

3-59

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

IExamPle 2! Using an AST Service Routinel

ANOON: DESCRIPTOR (-- 12:00:00.00>
BNOON: .BLKQ 1

;ASCII NOON
;BINARY NOON

O$BINTIM._S TIM~UF::::ANOON, TIMADR==BNOON ; CONVERT TIME
BSBW ERROR

• $SETIMR._S DAYTIM:::BNOON, ASTADR==ASTSEF~V, REO IDT=t12
BSBW ERROF~

ASTSERV: tt
.WORD 0 ;ENTRY MASK
CMPl t12,4(AP)
BEQl 10$

10$:

RET

;CHECK AST PARAMETER
;GO TO NOON ROUTINE

;SERVICE NOON REQUEST

Notes on Example 2:

o The call to $BINTIM converts the ASCII string representing
12:00 noon to system format. The value returned in BNOON is
used as input to the $SETIMR system service .

•
tt

The AST routine specified in the $SETIMR request will be
called when the timer expires, that is, at 12:00 noon. The
REQIDT argument identifies the timer request. The process
continues execution: when the timer expires, it is
interrupted by the delivery of the AST. Note that if the
current time of day is past noon, the timer expires
immediately.

This AST service routine checks the parameter passed by the
REQIDT argument and determines, in this example, that it must
service the 12:00 noon timer request. When the AST service
routine completes, the process continues execution at the
point of interruption.

Figure 3-17 (Cont.) Timer Requests

3.6.5.1 Canceling Timer Requests - The Cancel Timer Request ($CANTIM)
system service cancels timer requests that have not yet been
processed. The entries are removed from the timer queue.
Cancellation is based on the request identification given in the timer
request. For example, to cancel the request illustrated in Example 2
of Figure 3-17, you would code:

If you assign the same identification to more than one timer request,
all requests with that identification are canceled. If you do not
specify the REQIDT argument, all your requests are canceled.

3-6.0

)

)

,

1

)

)

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

3.6.6 Scheduled Wakeups

Figure 3-17 showeb a process placing itself in a wait state for a
period of time using the $SETIMR and $WAITFR services. Another way
for a process to make itself inactive is by hibernating. A process
hibernates by issuing the Hibernate ($HIBER) system service;
hibernation is reversed by a wakeup request, which can be effected
immediately with the $WAKE system service, or scheduled with the
Schedule Wakeup ($SCHDWK) system service.

The following example shows a process scheduling a wakeup for itself
prior to hibernating:

ATENSEC:DESCRIPTOR <0 00:00:10.00> ;10 SECOND WAIT TIME
BTENSEC:

• BLK(~ 1 ;BINARY TEN SECONDS

$BINTIM_S TIMBUF=ATENSEC,TIMADR=BTENSEC ;CONVERT TIME
$SCHDWK_S DAYTIM=BTENSEC ;SCHEDULE WAKE
$HIBER_S ;SLEEP TEN SECONDS

Hibernation and wakeup are described in more detail in Section 3.5,
"Process Control Services." Note that a suitably privileged process
can wake or schedule a wakeup for another process; thus, cooperating
processes can synchr6nize activity using hibernation and scheduled
wakeups. Moreover, when you code a $SCHDWK system service, you can
specify that the wakeup request be repeated at fixed time intervals.

3.6.6.1 Canceling Scheduled Wakeups - Scheduled wakeup requests that
are pending but have not yet been processed can be canceled with the
Cancel Wakeup ($CANWAK) system service.

The following example shows the scheduling of wakeup requests for a
process, CYGNUS, and the subsequent cancellation of the wakeups. The
$SCHDWK system service in this example specifies a delta time of one
minute and an interval time of one minute; the wakeup is repeated
every minute until the requests are canceled.

CYGNUS: DESCRIPTOR <CYGNUS>
INTERVAL:

.LONG

; PFWCESS NAME
; DEL TA TIME
;ONE MINUTE

$SCHDWK_S PRCNAM=CYGNUS,DAYTIM=INTERVAL,REPTIM=INTERVAL

$CANWAK_S PRCNAM=CYGNUS ;CANCEL WAKE UPS

3.6.7 Numeric and ASCII Time

The Convert Binary Time to Numeric Time ($NUMTIM) system service
converts a time in the system format into binary integer values. The
service returns each of the components of the time (year, month, day,
hour, and so on) into a separate word of a seven-word buffer. The
$NUMTIM system service and the format of the information returned are
described in Chapter 4.

3-61

HOW TO USE SYSTEM SERVICES
TIMER AND TIME CONVERSION SERVICES

When you need the time formatted into ASCII for inclusion in an output
string, you can Use the $ASCTIM system service. The $ASCTIM service
accepts as an argument the address of a quadword that contains the
time in system format and returns the date and time in ASCII format.

If you want to include the date and time in a character string that
contains additional data, you can format the output string with the
Formatted ASCII Output ($FAO) system service. The $FAO system service
converts binary values to ASCII representations, and substitutes the
results in character strings according to directives supplied in an
input control string. Among these directives are !%T and !%D, which
convert a quadword time value to an ASCII string and substitute the
result in' an output string. For examples of how to do this, see the
discussion of $FAO in Chapter 4.

3-62

)

)

)

)

)

HOW TO USE SYSTEM SERVICES

3.7 CONDITION HANDLING SERVICES

Exceptions
interrupt
things as
opcode or

are hardware- or software-detected conditions that
the execution of an image. Exceptions are caused by such

ar i thmetic overflow' or underflo'w conditions, or reserved
operand faults.

Condition handlers are procedures that are given control when an
exception condition occurs. If you determine that a program needs to
be informed of particular exception conditions so that it can perform
corrective action, you may want to code a condition handling routine.
This routine, or condition handler, then receives control' when any
type of exception occurs.

If an exception occurs, and no condition handler exists, the default
condition handler established by the command interpreter is given
control. This handler issues a descriptive message and performs an
exit on behalf of the image that incurred the exception.

This. section describes how the condition handling mechanism in VAX/VMS
works, and explains how to write a condition handler.

3.7.1 Types of Exception

Exception conditions can be generated by:

• Hardware

• Software

• System service failures

Hardware-generated exceptions always result in conditions that require
special action if program execution is to continue. A list of
hardware exceptions is given in Table 3-5.

Some software routines can generate exception conditions; these may
be warning or error conditions. (These software conditions are
documented with the descriptions of any software that cause them.)

Software exceptions can also occur when an error or severe error
status is returned from a call to a system service. You can choose to
handle error returns from system services by using the condition
handling mechanism rather than other error checking methods. If you
want exceptions generated by service failures, you must enable system
service failure exception mode with the Set System Service Failure
Mode ($SETSFM) system service. For example:

$SETSFM_S ENBFLG=tl

System service failure exception mode is initially disabled, and may
. be ~nabled or disabled at any time during the execution of an image.

3-63

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.1.1 Change Mode and Compatibility Mode Handlers - There are two
types of hardware exception that can be handled in a special way,
bypassing the normal condition handling mechanism described in this
chapter. These are:

• Traps caused by change mode to user or change mode to
supervisor instructions

• Compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service to establish procedures to receive control
when one of these conditions occurs. The $DCLCMH system service is
described in Chapter 4.

3.7.2 How to Specify Condition Handlers

You can establish condition handlers to receive control in the event
of an exception in two ways:

1. By specifying the address of the entry mask of a condition
handler in the first longword of a procedure call frame

2. By establishing exception vectors with. the Set Exception
Vector ($SETEXV) system service

The first of these methods is the most common way to specify a
condition handler for a particular image. It is also the most
efficient way in terms of declaration. You only have to use a single
move address instruction to place the address of the condition handler
in the longword pointed to by the current frame pointer (FP) • For
example:

MOVAL.. HANDLER, (FP)

Each procedure on the call stack can declare a condition handler.

The $SETEXV system service allows you to specify
primary exception vector, a secondary exception
chance exception vector. Vectors may be specified
mode. The primary exception vector is reserved for

addresses for a
vector, and a last

for ~ach access
the debugger.

An address of 0, in the first longword of a procedure call frame, or
in an exception vector, indicates that no condition handler exists for
the respective vector or call frame.

3.7.3 The Exception Dispatcher

When an exception condition occurs, control is passed to the operating
system's exception dispatching routine. The exception dispatcher

3-64

)
/

)

)

)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

searches for a condition handling routine using the following search
order:

1. The primary exception vector for the access mode at which the
program was executing when the exception occurred.

2. The secondary exception vector for the access mode at which
the program was executing when the exception occurred.

3. The condition handler address specified in the procedure call
stack of the access mode at which the program was executing
when the exception occurred. Call frames on the stack are
scanned backwards, using the saved frame pointer in each call
frame to refer to the previous call frame.

4. The last chance exception vector for the access mode at which
the program was executing when the exception occurred.

The search is terminated when the dispatcher finds a condition
handler. If the dispatcher cannot find a user-specified condition
handler, it calls the default condition handler established by the
command interpreter, if the image was initiated by the command
interpreter. The default handler issues a message and either
continues program execution or performs an exit on behalf of the
process, depending on whether the condition was a warning or an error
condition, respectively.

The search can also be terminated when the dispatcher detects a saved
frame pointer containing a 0 (that is, it reaches the end of the
stack), or when an access violation occurs. In these cases, the
system performs an exit for the process, with the return status code
SS$ NOHANDLER indicating "absence of condition handler" (for a o frame
pointer) or SS$_ACCVIO indicating "bad stack" (for an access
violation).

Figure 3-18 illu~trates the exception dispatcher's search of the call
stack for an exception handler.

3-65

Procedure

C

Procedure

B

Procedure

A

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

0

FP

i
0

FP

i
HANDLERA

FP

...... 1---- Condition
Occurs

.. Condition
Handler Found

Figure 3-18 Search of Stack for Condition Handler

Notes on Figure 3-18:

1. The illustration of the call stack indicates the calling
sequence: Procedure A called Procedure B, and Procedure B
called Procedure C. Procedure A established a condition
handler.

2. An exception condition occurs while Procedure C is executing.
The exception dispatcher searches for a condition handler.

3. After checking for a condition handler declared in the
exception vectors (assume that none has been specified for
this process), the dispatcher looks at the first longword of
Procedure C's call frame. A value of a indicates that no
condition handler has been specified. The dispatcher locates
the call frame for Procedure B by using the frame pointer
(FP) in Procedure C's call frame. Again, it finds no
condition handler, and locates Procedure A's call frame.

4. The dispatcher locates and gives control to HANDLERA.

3-66

)

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.4 The Argument List Passed to a Condition Handler

When the dispatcher finds a condition handler, it passes control to it
using a CALLG instruction. The argument list passed to the condition
handler is constructed on the stack and c6hsists of the addresses of
two argument arrays, as illustrated in Figure 3-19; these arguments
are described in detail in Sections 3.7.4.1 and 3.7.4.2.

Signal Array

I n

condition name

first signal argument

Argument List
additional arguments for

condition handler,

I 2 if any

address of signal array PC

address of mechanism array PSL

Mechanism Array

establisher frame

depth

RO

R1

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are:

Symbolic Offset

CHF$L_SIGARGLST
CH F$L_MCHARGLST

CHF$L_SIG_ ARGS
CHF$L_SIG_~JAME

CHF$L_SIG_ARG1

CHF$L_MCH_ARGS
CH F$L_MCH_FRAME
CHF$L_MCH_DEPTH
CHF$L_MCH_SAVRO
CHF$L_MCH_SAVR1

Value

Address of Signal array
Address of mechanism array

Number of signal arguments
Condition name
First signal-specific argument

Number of mechanism arguments
Establisher frame address
Frame depth of establisher
Saved register 0
Saved register 1

I 4

Figure 3-19 Argument List and Arrays Passed to Condition Handler

3-67

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.4.1 Signal Array Arguments - The signal array contains values
describing the exception condition.
These are:

1. Condition name -- the symbolic value assigned to the specific
exception condition. The possible conditions, and their
symbolic definitions, are listed in Table 3-5.

2. Additional arguments -- specific information relating to the
condition. Table 3-5 also shows the additional arguments
provided with each exception condition.

3. PC -- the program counter at the time of
Depending on the type of exception (fault or
be the address of the instruction that caused
or the following instruction, respectively.

the exception.
trap), this can
the exception,

4. PSL -- the processor status longword at the time of the
exception.

3.7.4.2 Mechanism Array Arguments - The mechanism array describes the
context in which the condition occurred. The arguments supplied are:

1. Establisher frame -- the frame pointer (FP) register image of
the call frame that established the condition handler. This
is the address of the longword containing the condition
handler address. For example, if the call stack is as shown
in Figure 3-18, this argument points to the call frame for
Procedure A.

This value can be used to display local variables in the
procedure that established the condition handler, if the
variables are at known offsets from the FP of the procedure.

L. Depth -- the frame number of the procedure that established
the condition handler, relative to the frame of the procedure
that incurred the exception. The depth is determined as
follows:

Depth

-3

Meaning

Condition handler was established in the last
chance exception vector

-2 Condition handler was established in the primary
exception vector

-1 Condition handler was established in the secondary
exception vector

o Condition handler was established by the frame
that was active when the exception occurred

1. Condition handler was established by the caller of
the frame that was active when the exception
occurred

2 Condition handler was established by the caller of
the caller of the frame that was active when the
exception occurred

and so on.

3-68

~)

)

)

~)

)

)

)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

For example, if the call stack is as shown in Figure 3-18,
the depth argument passed to HANDLERA would have a value of
2.

The condition handler can use this argument to determine
whether it wants to handle the condition. For example, the
handler may not want to handle the condition if the condition
did not occur in the establisher frame.

3. RO -- the contents of register 0 when the exception condition
occurred.

4. Rl -- the contents of register 1 when the exception condition
occurred.

3.7.5 Courses of Action for the Condition Handler

After the condition handling routine determines the nature of the
exception, it can take one of the following courses of action:

1. Continue

2.

3.

The condition handler mayor may not be able to fix the
problem but the program can continue execution. The handler
places the return status value SS$ CONTINUE in RO and issues
a RET instruction to return control to the dispatcher. The
exception dispatcher returns control to the procedure that
incurred the exception, at the instruction that caused the
exception. If the exception was a fault, the instruction
that caused it is reexecuted; if the exception was a trap,
control is returned at the instruction following the one that
caused it. (In the case of a trap, the instruction causing
the trap can sometimes be re-executed by subtracting the
length of the instruction from the PC in the signal array.)

Resignal

The handler cannot fix the problem, or this condition is one
that it does not handle. It places the return status value
SS$ RESIGNAL in RO and issues a RET instruction to return
control to the exception dispatcher. The dispatcher resumes
its search for a condition handler, using the search order
described above~ If it finds another condition handler, it
passes control to that routine.

Unwind

The condition handler cannot fix the problem, and execution
cannot continue using the current flow. The handler issues
the Unwind Call Stack ($UNWIND) system service to unwind the
call stack. Call frames may then be removed from the stack
and the flow of execution modified, depending on the arguments
to the $UNWIND service.

Examples of these three situations are shown in the following
sections.

3-69

Condition
Name/Type

SS$_ACCVIO
(Fault)

SS$_ARTRES
(Trap)

SS$_ASTFLT
(Fault)

SS$_BREAK
(Fault)

SS$ CMODSUPR - (Trap)

SS$ CMODUSER - (Trap)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Table 3-5
Summary of Exception Conditions

Explanation Additional Arguments

Access violation l. Reason for access violation. This is a
mask with the format:

Bit 0 = type of access violation
0 = page table entry protection

code did not permit intended
access

1 = POLR, PlLR, or SLR length
violation

Bit 1 = page table entry reference
0 = specified virtual address

not accessible
1 = associated page table entry

not accessible
Bit 2 = intended access

o = read
1 = modify

2. Virtual address to which access was
attempted

Reserved arithmetic trap None

Stack invalid during l. Stack pointer value when fault occurred
attempt to deliver an 2. AST parameter of failed AST
AST 3. Program counter (PC) at AST delivery

interrupt
4. Processor status longword

delivery interruptl
(PSL) at AST

5. Program counter (PC) to which AST would
have been delivered l

6. Processor status longword (PSL) to which
AST would have been delivered l

Breakpoint instruction None.
encountered

Change mode to supervisor Change mode code. The possible values are
instruction encountered2 -32768 through 32767.

Change mode to user 2 Change mode code. The possible values are
instruction encountered -32768 through 32767.

1 The PC and PSL normally included in the signal ar~ay are not included in this argument list.
The stack pointer of the access mode receiving.this exception is reset to its initial value.

2 If a change mode handler has been declared for user or supervisor modes with the Declare
Change Mode or Compatibility Mode Handler ($DCLCMH) system service, that routine receives
control when the associated trap occurs.

3-70

)

)

)

\
)

)

)

)
/

Condition
Name/Type

SS$ COMPAT - (Fault)

SS$ DECOVF - (Trap)

SS$ FLTDIV - (Trap)

SS$ FLTOVF - (Trap)

SS$ FLTUND - (Trap)

SS$INTDIV - (Trap)

SS$ INTOVF - (Trap)

SS$ OPCCUS - (Fault)

SS$ OPCDEC - (Fault)

SS$ PAGRDERR - (Fault)

SS$ RADRMOD - (Fault)

SS$ ROPRAND - (Fault)

SS$ SSFAIL - (Fault)

SS$ SUBRNG -
SS$ TBIT - (Fault)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Table 3-5 (Cont.)
Summary of Exception Conditions

Explanation Additional Arguments

Compatibility mode Type of compatibili ty exception. The possible
exception. This exc.eption values are:
condition can only occur
when executing in

3
0 = Reserved instruction execution

compatibility mode. I = BPT instruction executed
2 = IOT instruction executed
3 = EMT instruction executed
4 = TRAP instruction executed
5 = Illegal instruction executed
6 = Odd address fault
7 = TBIT trap

Decimal overflow None

Floating/decimal divide by zero None

Floating overflow None

Floating underflow None

Integer divide by zero None

Integer overflow None

Opcode reserved to customer None
fault

Opcode reserved to Digital None
fault

Read error occurred during l. Translation not valid reason. This is
an attempt to read a faulted a mask with the format:
page from disk

Bit 0 = 0
Bit I = page table entry reference

0 = specified virtual address
not valid

I = associated page table entry
not valid

Bit 2 = intended access
0 = read
I = modify

Attempt to use a reserved None
addressing mode

Attempt to use a reserved None
operand

System service failure (when Status return from system service (RO)
system service failure (The same.value is in RO of the
exception mode is enabled) mechanism array)

Subscript range trap None

Trace bit is pending following None
an instruction

3 If a compatibility mode
Compatibility Mode Handler
fault occurs.

handler has been declared with the Declare Change Mode or
($DCLCMH) system service, that routine receives control when this

3-71

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.6 Example of Condition Handling Routines Continuing and Resignaling

Figure 3-20 shows two procedures, A and B, that have declared
condition handlers. The notes describe the sequence of events that
would occur if a call to a system service failed during the execution
of Procedure B.

PGMA::

•

.WORD
MOVAL

o
HANDLERAy(FP).

$SETSFM_S ENBFlG=tl

CALLG

HANDLERA:

10$:

.WORD ~M<R2>

MOVL CHF$L_SIGARGLST(AP),R4

BNEQ 10$

• MOVZWL iSS$_CONTINUE,RO
RET

MOVZWL tSS$_RESIGNAL,RO
RET

PGMB: : • WORD
MOVAL

~M<R2,R3,R4>

HANDLERB,(FP).

;ENTRY MASK
;DECLARE CONDITION
;HANDLER
;ENABLE SSFAIL
;EXCEPTIONS
;CALL PROCEDURE B

jENTRY MASK
;OF HANDLERA
;GET ADDR OF SIGNAL
;ARGS
;SYSTEM SERVICE
;FAILURE?
jNO - GO RESIGNAL
jHANDLE SSFAIL
jEXCEPTION
;SIGNAL CONTINUE
jRETURN TO EXCEPTION
; DISPATCHER
;SIGNAL RESIGNAL
jRETURN TO DISPATCHER

;ENTRY MASK
jDECLARE CONDITION
jHANDLER

~ S~stem service failure occurs"

• ·0
HANDLERB:

• WORD

MOVL

CMPL
BNEQ

.

'~M<R2, R3, R4>

iSS$_BREAK,CHF$L_SIG_NAMECR4)
10$

MOVZWL tSS$_CONTINUE,RO
RET
MOVZWL tSS!LRESIGNAL, FWO
RET

jENTRY MASK
;OF HANDLERB
JGET AD DR OF SIGNAL
jARGS
jBREAKPOINT FAULT?
;NO, GO RESIGNAL
jYES, HANDLE EXCEPTION

;SIGNAl CONTINUE
;RETURN TO DISPATCHER
;SIGNAL RESIGNAL
jRETURN TO DISPATCHER

Figure 3-20 Example of Condition Handling Routines

3-72

)

)

)

.. ""
J

)

)

)

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Notes on Figure 3-20:

•
• •
•
•
•
•
•
•

Procedure A executes and establishes condition handler
HANDLERA. HANDLERA is set up to respond to exceptions caused
by failures in system service calls.

During its execution, Procedure A calls Procedure B.

Procedure B establishes condition handler HANDLERB. HANDLERB
is set up to respond to breakpoint faults.

While Procedure B is executing, an exception condition occurs
caused by a system service failure.

The exception dispatcher searches the exception vectors for a
condition handler (assume there are none defined), and then
searches the call stack. HANDLERB is called with the
condition SS$_SSFAIL.

Since HANDLERB only handles breakpoint faults, it place~ the
return value SS$ RESIGNAL in RO and returns control to the
exception dispatcher.

~he exception dispatcher resumes its search for
~andler and calls HANDLERA.

a condition

HANDLERA handles the system service failure exception,
corrects the condition, and the return value SS$ CONTINUE in
RO, and returns control to the exception dispatcher.

The dispatcher returns control to Procedure B, and execution
of Procedure B resumes at the instructi6n following the
system service failure.

3-73

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.7 Unwinding the Call Stack

The third course of action a condition handler can take is to unwind
the procedure call stack. The unwind operation is complex, and should
only be used when control must be restored to an earlier procedure in
the calling sequence. Moreover, use of the $UNWIND system service
requires the calling condition handler to be aware of the calling
sequence and of the exact point to which control is to return.

The $UNWIND system service accepts two optional arguments:

1. The depth to which the unwind is to occur. If the depth is
1, the call stack is unwound to the caller of the procedure
that caused the exception condition. If the depth is 2, the
unwind is to the caller's caller, and so on.

2. The address of a location to receive control when the unwind
is complete, that is, a return PC to replace the current PC
in the call frame of the procedure that will receive control
when all specified frames have been removed from the stack.

If no arguments are supplied to the $UNWIND service, the unwind is
performed to the caller of the procedure that established the
condition handler that is issuing the $UNWIND service. Control is
returned to the address specified in the return PC for that procedure.
Note that this is the default and normal case for unwinding.

Figure 3-21 illustrates an unwind situation and describes some of the
possible results.

During the actual unwinding of the call stack, the unwind routine
examines each frame in the call stack to see if a condition handler
has been declared. If a handler has been declared, the unwind routine
calls the handler with the code SS$ UNWIND in the condition name
argument of the signal array. When a condition handler is called with
this condition, it can perform any procedure-specific cleanup
operations required. After the handler returns, the call frame is
removed from the stack.

Thus, in Figure 3-21, HANDLERS may be called a second time, during the
unwind operation. Note that HANDLERS does not have to be able to
specifically interpret the SS$ UNWIND condition; the RET instruction
merely returns control to the unwind procedure, which does not check
any status values.

3-74

)

)

)

)

)

Notes:

1.

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

Procedure
D

Procedure
C

Procedure
B

Procedure
A

The procedure call
exception vectors
exception condition
D.

0

FP

i
0

FP

i
HANDLERB

FP

i
0

FP

stack is as shown. Assume that no
are declared for the process and that the
occurs during the execution of Procedure

2. Since neither Procedure D nor Procedure C has established a
condition handler, HANDLERB receives control.

3. If HANDLERB issues the $UNWIND system service with no
arguments, the call frames for B, C, and D are removed from
the stack (along with the call frame for HANDLERB itself),
and control returns to Procedure A. Procedure A receives
control at the point following its call to Procedure B.

4. If HANDLERB issues the $UNWIND system service specifying a
depth of 2, call frames for C and D are removed, and control
returns to Procedure B.

Figure 3-21 Unwinding the Call Stack

3-75

HOW TO USE SYSTEM SERVICES
CONDITION HANDLING SERVICES

3.7.8 Multiple Exception Conditions

It is possible for a second exception condition to occur while a
condition handler or a procedure that it has called is still
executing. In this case, when the exception dispatcher searches for a
condition handler, it skips the frames that were searched to locate
the first handler.

The search for a second handler terminates in the same manner as the
initial search, as described in Section 3.7.3.

If the $UNWIND system service is issued by the second active condition
handler t the depth of the unwind is determined according to the same
rules followed in the exception dispatcher's search of the stack: all
frames that were searched for the first condition handler are skipped.

If an exception occurs during the execution of a handler established
in the primary or secondary exception vector, that handler must handle
the additional condition.

3-76

)

)

)

)

)

HOW TO USE SYSTEM SERVICES

3.8 MEMORY MANAGEMENT SERVICES

The VAX/VMS memory management routines map and control the
relationship between physical memory and a process's virtual address
space. These activities are, for the most part, transparent to you,
as a user, and to your programs. However, you can in some cases, make
a program more efficient by explicitly controlling its virtual memory
usage. Memory management services allow you to:

• Increase or decrease the virtual address space available in a
process's program or control region

• Control the process's working set size and the swapping of
pages between physical memory and the paging device

• Define disk files containing data or shareable images and map
the file into the process's virtual address space

This section discusses the services that provide these capabilities.
However, before you use any of these services, you should have an
understanding of the VAX-II memory structure and memory management
routines. Where pertinent, virtual memory concepts related to the use
of particular services are discussed in this section. For more
background information, see the VAX/VMS Summary Description.

3.8.1 Increasing Virtual Address Space

The virtual address space of a process is divided into two regions:

1. The program (PO) region contains the image currently being
executed.

2. The control (PI) region contains the information maintained
by the system on behalf of the process. It also contains the
user stack, which is located at the lower-addressed end of
the control region.

Figure 3-22 illustrates the layout of a process's virtual memory. The
initial size of a process's virtual address space depends on the size
of the image being executed.

To facilitate memory protection and mapping, the virtual address space
is subdivided into S12-byte units called pages. Using memory
management services, a process can add a specified number of pages to
the end of either the program region or the control region. Adding
pages to the program region provides the process with additional space
for image execution; for example, for the dynamic creation of tables
or data areas. Adding pages to the control region increases the size
of the user stack. (The user stack can also be expanded when the
image is linked.)

The maximum size to which a process can increase its address space is
controlled by an entry in the system authorization file for the user.

3-77

Virtual
Address

00000000

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

I
I

PROGRAM REGION
(PO)

di recti on of
growth

r

I
length- __ - - - L - -

3FFFFFFF r---------------------------------~
40000000

7FFFFFFF

CONTROL REGION
(P1)

length- - - - - -.- - -

I
r

direction of
growth

I
I

Figure 3-22 Layout pf Process Virtual Address Space

"3.8.2 InCreasing and Decreasing Virtual Address Space

The Expand Program/Control Region ($EXPREG) system service adds pages
to the end of either the program or control region, and optionally
returns the range of virtual addresses of the new pages. For example,
if you want to add four pages to a process's program region, you can
code a call to the $EXPREG system service as follows:

BEGSF'ACE:
.BLKL ;RETURN START AND END OF NEW PAGES

SEXPREG_S PAGCNT~t4,RETADR=BEGSPACE,REGION=+O ;GET 4 PAGES

To add the same number of pages to the control region, you would
specify REGION=#I.

When pagea that have been added at the end of a region are no longer
needed, they can be deleted with the Contract Program/Control Region
($CNTREG) system service. As for the $EXPREG service, you code the
number of pages you want deleted and the region:

$CNTREG_S F'AGCNT=+4,REGION=tO

Note that the REGION argument for both the $EXPREG and $CNTREG
services is optional; if not specified, the pages are added to or
deleted from the program region, by default.

3-78

)

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The $EXPREG and $CNTREG services can only add or delete pages from the
end of a particular region. When you need to add or delete pages that
are not at the end of these regions, you can use the Create Virtual
Address Space ($CRETVA) and Delete'Virtual Address Space ($DELTVA)
system services. For example, if you have used the $EXPREG service
twice to add pages to the program region, and want to delete the first
range of pages, but not the second, you could use the $DELTVA system
service as shown in the following sequence:

BEGSPACEA: .BLKL
BEGSPACEB: .BLKL

2
2

;START AND END OF FIRST AREA
;START AND END OF SECOND AREA

SEXPREG_S PAGCNT=t4,RETADR=BEGSPACEA,REGION=tO ;FOUR PAGES
BSBW EmWR

SEXPREG_S PAGCNT=t3,RETADR=BEGSPACEB,REGION=tO ;THREE PAGES
BBBW ErmOR

SDELTVA_S INADR=BEGSPACEA ;DELETE FIRST 4 PAGES
BSBW EI:;:ROR

In the above example, the first call to $EXPREG adds four pages to the
program region; the virtual addresses of the pages are returned in
the 2-longword array at BEGSPACEA. The second call adds three pages,
and returns the addresses at BEGSPACEB. The call to $DELTVA deletes
the first four pages that were added.

3.B.2.l Input Address Arrays and Return
$EXPREG system service adds pages to a
normal direction of growth for the region.
if requested, indicates the order in which

Address Arrays - When the
region, it adds them in the
The return address array,

the pages were added:

• If the program region is expanded, the starting virtual
address is lower than the ending virtual address.

• If the control region is expanded, the starting virtual
address is higher than the ending virtual address.

Conversely, the direction of contraction with the $CNTREG system
service is from a higher to a lower address in the program region and
from a lower to a higher address in the control region.

The addresses returned indicate the first byte in the first page added
or deleted and the last byte in the last page added or deleted.

When input address arrays are specified for the Create or Delete
Virtual Address Space system services ($CRETVA and $DELTVA,
'respectively), these services add or delete pages beginning with the
address specified in the first longword and ending with the address
specified in the second longword. '

3-79

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The order in which the pages are added or deleted does not have to be
in the normal direction of growth for the region. Moreover, since
these services only add or delete whole pages, they ignore the
low-order 9 bits of the specified virtual address (the low-order 9
bits contain the byte address) ~ The virtual addresses· returned do
indicate the byte addresses.

Table 3-6 shows some sample virtual addresses that ~ight be specified
as input to $CRETVA or $DELTVA and shows the ret~rn address arrays, if
all pages are successfull~ added or deleted.

Table 3-6
Sample Virtual Address Arrays

Input Array Output Array Number of
Start End Region Start End Pages

1010 1670 PO 1000 17FF 6

1450 1451 PO 1400 15FF 1

1450 1450 PO 1400 15FF 1

7FFECOIO 7FFECOIO PI 7FFECIFF 7FFECOOO 1

Note that if the input virtual addresses are the same, a single page
is added or deleted. The return address array indicates that the page
was added or deleted in the normal direction of growth for the region.

3.8.3 Page Ownership and Page Protection

Each page in a process's virtual address space is owned by a
particular access mode. The owner is the access mode that created the
page. For example, pages in the program region initially provided for
the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the
control region, except for the pages containing the user stack, are
normally owned by more privileged access modes.

Only the owner of a page can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code,
the type of access th?t each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is
expressed as a code that indicates the specific type of access (none,
read-only, read, or write) for each of the four access modes (kernel,
executive, supervisor, user). Only the owner access mode or a more
privileged access mode can change the protection for a page.

When an image attempts to access a page that is protected against the
access attempted, a hardware exception, called an access violation,
occurs. When an image calls a system service, the service determines
whether an access violation would occur when the image attempted to
read or write a page it is not privileged to access. If so, the
service returns the status code SS$ ACCVIO.

3-80

)

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Since the memory management services add, delete, or modify a single
page at a time; one or more pages can be successfully affected before
an access violation is detected. If the RETADR argument is specified
in the service call, the service returns the addresses of pages
actually affected before the ~rror. If no pages are affected, that
is, if an access violation would occur on the first page specified,
the service returns a -1 in both longwords of the return address
array.

If the RETADR argument is not specified, no information is returned.

3.8.4 Working Set Paging

When a process is executing an image, a subset of its pages resides in
physical memory; these pages are called the process's working set.
The working set includes pages in both the program region and the
control region.

When the image refers to a page that is not in memory, a hardware
fault occurs, and the page is brought into memory, replacing an
existing page in the working set. If the page that is gOlng to be
replaced has been modified during the execution of the image, that
page is written onto a secondary storage device, called the paging
device. When this page is needed again, it is brought back into
memory, again replacing a current page from the working set. This
exchange of pages between physical memory and secondary storage is
called paging.

The paging of a process's working set is transparent to the process.
However, if a program is very large, or if pages in the program image
that aie heavily used are being paged in and out frequently, the
overhead required for paging may decrease the program's efficiency.
Some system services allow a process, within limits, to counteract
these potential problems:

• The Adjust Working Set Limit ($ADJWSL) system service
increases the maximum number of pages that a process can have
in its working set.

• The Purge working Set ($PURGWS) system service removes page
from the working set.

• The Lock stem service makes
gible for paging.

The initial size of a process's working set is defined by the
process's working set default (WSDEFAULT) quota. Since some programs
may have larger memory requirements than others, a program can call
the $ADJWSL system service to dynamically increase the process's
~orking set limit. When the additional pages are no longer needed in
the working set, the program can call the $ADJWSL service to decrease
the working set limit. Or, it can call the $PURGWS system service to
remove pages no longer in use from the working ~et.

When the system pages a process's working set, the pages in the
working set are paged on a first-in, first-out basis. Under some
circumstances; an image may not want certain pages to be paged out at
all; then, it can lock them in the working set. As long as the
process's working set is in memory, these pages cannot be paged out
until they are explicitly unlocked with the Unlock Pages in Working
Set ($ULWSET) system service.

3-81

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

3.8.5 Process Swapping

The operating system balances the needs of all the processes that are
currently executing, providing each with the system resources it
requires on an as-needed basis. The memory management routines
balance the process's memory requirements. Thus, the sum of the
working sets for all processes that are currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive -- for
example to wait for an I/O request or to hibernate -- the entire
working set may be removed from memory to provide space for another
process's working set to be brought in for execution. This removal of
a proces~'s working set is called swapping. When a process is swapped
out of the balance set, all of the pages of its working set (modified
and unmodified pages) are swapped, including any pages that were ~
locked. in the working set.

It is possible for a high-priority process to lock its entire working
set in the balance set. Whil~ pages can still be paged in and out of
the working set, the process remains in memory even when it is
inactive. To lock itself in the balance set, the process issues the
Set Process Swap Mode ($SETSWM) system service. For example:

$SETSWM_S SWPFLG-tl

This call to $SETSWM disables process swap mode. Swap mode can also
be disabled by setting the appropriate bit in the STSFLG argument to
the Create Process ($CREPRC) system service. A user privilege is
required, however, to alter process swap mode.

Another way that lock pages in memory is with the Lock
Pages in Memor ystem service. When a page is locked in
memory with this erv e page remains in memory even when the
remainder of the process's working set is swapped out of the balance
set. This system service has limited applicability, but may be useful
in special circumstances, for example, for routines that perform I/O
operations to slow devices or graphics devices.

Pages locked in memory can be unlocked with the Unlock Pages in Memory
($ULKPAG) system service. The user privilege PSWAPM is required to
issue both of these services.

3.8.6 Sections

Sections are disk files or .portions of disk files containing data or
code that can be brought into memory and made available to a process
for manipulation and execution. Sections are either private or
shared:

• Private sections are accessible only by the process that
creates them; a process can define a disk data file as a
section, map it into its virtual address space; and
manipulate it.

• Global sections can be shared by more than one process. One
copy of the global section resides in physical memory, and
each process sharing it refers to the same copy. A global
section can contain shareable code or data that can be read,
or read and written, by more than one process. Global
sections are either temporary or permanent, and can be
defined for use within a group or on a system-wide basis.

3-82

)

~)

)

j

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

When pages in sections are paged out of memory during image execution,
they are written back into the section file, rather than onto
secondary storage, as is the normal case.

The use of sections involves two distinct operations:

1. The creation of a section defines a disk file as a section
and informs the system what portions of the file contain the
section.

2. The mapping of a section makes the section available to a
process and establishes the correspondence between virtual
blocks in the file and specific addresses in the process's
virtual address space.

The Create and Map Section ($CRMPSC) system service creates and/or
maps a private section or a global section. Since a private section
is used only by a single process, creation and mapping are
simultaneous operations. In the case of a global section, one process
can create a permanent global section and not map it; other processes
can map to it. A process can also create and map a global section in
one operation.

The following sections describe creating, mapping, and using sections.
In each case, considerations that are common to both private sections
and global sections are described first, followed by additional notes
and requirements for the use of global sections.

3.8.6.1 Creating Sections - The steps involved in section creation
are:

1. Opening or creating the disk file containing the section

2. Defining which virtual blocks in the file comprise the
section

3. Defining the characteristics of the section

3.8.6.2 Opening the Disk File - Before a file can be used as a
section, it must be opened using RMS.

The following example shows the file access block (FAB) , OPEN macro,
and channel specification on the $CRMPSC system service to open an
existing file for reading:

SECFAB: IFAB FNM=(SECTION.TST),FOP=UFO ;FILE ACCESS BLOCK

.OPEN FAB=SECFAB
SCRMPSC_S CHAN=SECFABfFABSL_STV".,

The file options (FOP) parameter indicates that the file is to be
opened for user I/O; this option is required so thatRMS assigns the
channel using the access mode of the caller. RMS returns the channel
number on which the file is accessed in the offset FAB$L STV; this
channel number is specified as input to the $CRMPSC system service
(CHAN argument). The same channel number can be used for multiple
create and map section operations. It can also be used tb read and
write virtual blocks to the section file with the Queue I/O Request
($QIO) system service.

3-83

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The file may be a new file that is to be created while it is in use as
a section. In this case, use the $CREATE macro to open the file. If
you are creating a new file, the file access block (FAB) for the file
must specify an allocation quantity (ALQ parameter).

$CREATE can also be used to open an existing file; if the file does
not exist, it will be created. The following example shows the
required fields in the FAB for the conditional creation of a file:

GBLFAB: 'FAB FNM=<GLDBAL.TST),ALR=4,FAC=PUT,­
FOP=<UFO,CIF,DBT)

'CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if
the file does not currently exist. The CBT (contiguous-best-try)
option requests that if possible, the file be contiguous. Although it
is not required that section files be contiguous, better performance
can result if they are.

3.8.6.3 Defining the Section Extents - Once the file is successfully
opened, the $CRMPSC system service can create a section from the
entire file, or from only certain portions of it. The following
arguments to $CRMPSC define the extents of the file that comprise the
section:

•

•

PAGCNT (page count). This argument is required;
indicates the number of virtual blocks in the file.
blocks correspond to pages in the section.

it
These

VBN (virtual block number). This argument defines the number
of the virtual block in the file that is the beginning of the
section. It is an optional argument; if not specified, it
defaults to 1; that is, the first virtual block in the file
is the beginning of the section.

3.8.6.4 Defining the Section Characteristics - The FLAGS argument to
the $CRMPSC system service defines the following section
characteristics:

• Whether it is a private section or a global section
default is to create a private section)

(the

• How the pages of the section are to be treated when they are
copied into physical memory or when a process refers to them.
The pages in a section can be:

--read/write or read-only

--created as demand-zero pages or as copy-on-reference pages,
depending on how the processes are going to use the section
and whether the file contains any data (see Section 3.8.6.8,
"Section Paging").

3-84

)

)

)

\
f

". ,)

)

)

)

3.8.6.5 Defining
global section,
argument) so that
mapping it.

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Global Section Characteristics - If the section is a
it must be assigned a character string name (GSDNAM
other processes can identify it when they are

The FLAGS argument specifies the type of global section:

• Group temporary (the default)
• Group permanent
• System temporary
• System permanent

Group global sections can be shared only by processes executing with
the same group number. The name of a group global section is
implicitly qualified by the group number of the process that created
it. When other processes map to it, their group numbers must match.

A temporary global section is automatically deleted when no processes
are mapped to it.

Permanent global sections remain in existence even when no processes
mapped to them. They must be explicitly marked for deletion with the
Delete Global Section ($DGBLSC) system service.

The user privilege.s PRMGBL and SYSGBL are required to create permanent
group global sections, or system global· sections (temporary or
permanent), respectively.

A system global ~ection can be made available to all processes in the
system.

Optionally, a process creating a global section can specify a file
protection mask (PROT argument), restricting all access or a type of
access (read, write, extend, delete) to other processes.

3.8.6.6 Mapping Sections - When you code the $CRMPSC system service
to create and/or map a section, you must provide the service with a
range of virtual addresses (INADR argument) into which the section is
to be mapped.

If you know specifically which pages the section should be mapped
into, you provide these addresses in a 2-10ngword array. For example,
to map a private section of 10 pages into virtual pages 10 through 19
of the program region, specify the input address array as follows:

MAPFMNGE:
.LONG ~X140()

.LONG ~X230()

;ADDRESS (HEX) OF PAGE 10
;ADDRESS (HEX) OF PAGE 19

.The addresses specified do not have to be currently in the process's
virtual address space. The $CRMPSC system service calls the Create
Virtual Address Space ($CRETVA) system service to create the required
virtual address space before mapping the secion. If you code the
RETADR argument, the ser~ice returns the range of addresses actually
mapped.

You do not need to know explicit addresses to provide an input address
range. If you want the section mapped into the current end. of the
program region, you can use the $EXPREG system service to add the
pages at the end of the program region and use the return address
array from $EXPREG as input to the $CRMPSC system service.

3-85

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

You can also obtain the address of the next available page in the
region by calling the Get Job/Process Information ($GETJPI) system
service. The $GETJPI service returns an address you can use for the
starting address in the'range. You then provide a very high address
in the program region as the ending address: $CRMPSC creates only as
many pages as necessary to map the section, and returns the addresses
mapped in the return address array. The following example shows' such
a sequence:

GETUADR:.WORD
.WORD
.LONG
.LONG
.LONG

MAPRANGE:
.BU'L
.LONG

RETRANGE:

4
JPI$_FREPOUA
MAP RANGE
o
o

1
~X1FFFFFFF

;LENGTH OF BUFFER
; ITEM HlENTIFIEH
;ADDRESS OF BUFFER
;NOT NEEDED
;END OF JPI LIST
;FIRST FREE PO PAGE

; VERY LARGE A,DDRESS
;GET RETURN ADDRESS RANGE

.BLKL 2

$GETJPI_S ITMLST=GETVADR ;FIND FIHST FREE PAGE
$CRMPSC_S INADR=MAPRANGE,RETADR=RETRANGE, •••

The item code JPI$ FREPOVA is defined in the $JPIDEF macro. For
complete details on how to use the $GETJPI system service, see the
service description in Chapter 4.

Once a section has been successfully mapped, the image can refer to
the pages using a base register and predefined symbolic offset nameS
or labels defining offsets of an absolute program sedtion or
structure.

Figure 3-23 shows an example of creating and mapping a process
section.

SECFAB: $FAB

MAPRANGE:
.LONG
.LONG

RETRANGE:
.BLKL

ENDRANGE:
.BLKL

.$~PEN
BSBW

FNM=(SECTION.TST),FOP=UFO,FAC=PUT

~X1400

~X2300

1

1

FAB=SECFAB
EI~HOR

;FIRST PAGE
;LAST PAGE

9FIHST PAGE MAPPED

;LAST PAGE MAPPED

;OPEN SECTION FILE

8$CRMPSC._S INADR==MAPRANGE,·· ; INPUTADDf<ESS ARRAY
RETADR=RETRANGE,- ;OUTPUT ARRAY
PAGCNT=t4,- ;MAP FOUR PAGES

BSBW
GMOUL

eFLAGS::::tSEC$M .. WIH ;READ/WRITE SECTION
CHAN=SECFAB+FAB$L_STV ;CHANNEL NUMBER
ERROF<
RETF~ANGE , F~6 ;POINT TO START OF SECTION

Figure 3-23 Creating and Mapping a Private Section

3-86

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

Notes on Figure 3-23:

•
•
•
•

The OPEN macro opens the section file
access block SECFAB.

defined in the file

The $CRMPSC system services uses the addresses specified at
MAPRANGE to specify an input range of addresses into which
the section will be mapped. The PAGCNT argument requests
that only four pages of the file be mapped.

The FLAGS argument requests that the pages in the section be
read/write. The symbolic flag definitions for this argument
are defined in the $SECDEF macro. Note that the file access
field (FAC parameter) in the FAB also indicates that the file
is to be opened for writing.

When $CRMPSC completes, the addresses of the
were mapped are returned in the output
RETRANGE. The address of the beginning of
placed in register 6, which serves as
section.

four pages that
address array at
the section is
a pointer to the

3.8.6.7 Mapping Global Sections - A process that creates a global
section can map to it when it creates it. Then, other processes can
map it by calling the Map Global Section ($MGBLSC) system service.

When a process maps a global section, it must specify the global
section name assigned to the section when it was created, whether it
is a group or system global section, and whether it desires read-only
or read/write access. The process may also specify:

•

•

A version identification (IDENT argument), indicating the
version number of the global section (When multiple verisons
exist) and whether more recent versons are acceptable to the
process.

A relative page number (RELPAG argument), specifying the page
number, relative to the beginning of the section, to begin
mapping the section. In this way, processes can use only
portions of a section. Additionally, a process can map a
piece of a section into a particular address range and
subsequently map a different piece of the section into the
same virtual addresses.

Cooperating processes can both issue a $CRMPSC system service to
create and map the same global section. The first process to call
the service actually creates the global section; subsequent attempts
to create and map the section result only in mapping the section for
the caller. The successful return status code SS$ CREATED indicates
that the section did not already exist when the $CRMPSC system service
was called. If the section did exist, the status code SS$_NORMAL is
returned.

Figure 3-24 shows an example of the creation of a global section, and
a second process mapping the section.

3-87

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

I Process ORION I

GBLCLUSTEF~ : ;COMMON EVENT FLAG CLUSTER NAME
DESCRIPTOR <GLOBAL_CLUSTER>

GBLSET ::: 65 ;FLAG NUMBER TO ASSOCIATE AND SET
GBLWAIT =: 66 ;FLAG NUMBER TO WAIT FOR

GLOBALSEC: 9GLOBAL SECTION NAME
DESCRIPTOR <GL6BAL_SECTION>

GBLFAG: $FAB FNM=(GLOBAL.TST>,FOP=<UFO,CIF,CBT>,­
ALQ:=:4, FAC=:PUT

•
O$ASCEFC_S EFN:::tGBLSET, NAME:::GBLCLUSTER

BSBW ERROR
8$CRMPSC._S GSDNAM:::GLOEIALSEC,-· ;CREATE GLOBAL SECTION

FLAGS=+SEC$M_WRT!SEC$M_GBL, •••
BSBW ERROR
$SETEF_S EFN=tGBLSET ;SET COMMON EvENT FLAG

I Process CYGNUS I
CLUSTER: DESCRIPTOR (GLOBAL_CLUSTER> 9CLUSTER NAME
GBLSET =: 6~5
GBLWAIT =: 66

SECTION: DESCRIPTOR <GLOBAL_SECTION> ;SECTION NAME

.$~SCEFC S EFN::::J:GBLSET, NAME:=CLUSTER
BSBW ERROF~
$WAITFR_S EFN=:J:GBLSET
BSBW EF~f<OR
$MGBLSC_S INADR=MAPRANGE,RETADR=RETRANGE,­

FLAGS=:J:SEC$M_GBL,- 9GLOBAL SECTION
GSDNAM=SECTION ;SECTION NAME

BSBW . ERROf<

Figure 3-24 Creating and Mapping a Global Section

Notes on Figure 3-24:

•
8

The processes ORI.ON and CYGNUS are in the same group. Each
process first associates with a common event flag cluster
named GLOBAL CLUSTER to use common event flags to synchronize
their use of-the section.

ORION creates the global section named GLOBAL_SECTION,
specifying flags that indicate that it is a global section
(SEC$M GBL) and that it is read/write. Input and output
address arrays, the page count parameter and the channel
number arguments are not shown: procedures for coding them
are the same as shown in Figure 3-23.

3-88

)

)

)

)

)

•
HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

The process CYGNUS associates 'with the common event flag
cluster and waits for the flag defined as GBLSET. ORION sets
this flag when it has completed creating the section. To map
the section, CYGNUS specifies the input and output address
arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped is
always the same as that specified by the creator of the
section.

3.8.6.8 Section Paging - The first time that an image executing in a
process refers to a page that was created during the mapping of a
section, the page is copied into physical memory. The address of the
page in the process's virtual address space is mapped to the physical
page. During the execution of the image, normal paging can occur:
however, pages in sections are not written onto secondary storage
devices when they are paged out, as is the normal case. Rather, if
they have been modified, they are written back into the section file
on disk. The next time a page fault occurs for the page, the page is
brought back from the section file.

In the case of global sections, more than one process can be mapped to
the same physical pages. These pages are paged out, and written back
to the disk file defined as the section, only when no processes are
currently mapped to them.

If the pages in a section are defined as demand-zero pages or
copy-on-reference pages when the section was created, the pages are
treated differently.

If the call to $CRMPSC requested that pages in the section be treated
as demand-zero pages, these pages are initialized to zeros when they
are first brought into physical memory. If the file is either a new
file that is being created as a section or a file that is being
completely rewritten, demand-zero pages provide a convenient way of
initializing the pages.

If the call to $CRMPSC requested that pages in the section be
copy-on-reference pages, each process that maps to the section
receives its own copy of the section, on a page-by-page basis from the
file, as it refers to them. These pages are never written back into
the section file.

3.8.6.9 Reading and Writing Data Sections - Read/write sections
provide a way for a process, or cooperating processes, to manipulate
data files in virtual memory.

The sharing of global sections may involve application-dependent
synchronization techniques. For example, one process can create and
map to a global section in read/write status: other processes can map
to it in read-only status, and interpret data written by the first
process. Or, two or more processes can write to the section
concurrently. (In this case, the application program must provide the
necessary synchronization and protection.)

When a file that has been mapped as a section is written back to disk,
its version number is not incremented but the revision number is. A
full direc~ory listing indicates the revision number of the file and
the date and time that the file was last updated.

3-89

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

When the file has been updated, the process or processes can release,
or "unmap, the section. The section is theri written back into the disk
file defined as a section.

3.8.6.10 Releasing and Deleting Sections - A process unmapsa section
by deleting the virtual addresses in its own virtual address space to
which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this
address range can be used as input to the Delete Virtual Address Space
($DELTVA) system service. For example:

$DELTVA_S INADR~RETRANGE

When a process unmaps a private section, the section is deleted; that
is, all control information maintained by the system is deleted. A
temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not
del~ted until they are specifically marked for deletion with the
Delete Global Section ($DGBLSC) system service; then, they are
deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the
section file, but rather cancels the process's association with the
file. Moreover, when a process deletes pages mapped to a read/write
section and no other processes are mapped to it, all modified pages
are written back into the section file.

When all processes mapped to a section have deleted the pages into
which the section was mapped from their virtual address space, the
charinelcan be deassigned. The process that created the section can
deassign the channel (with the Deassign I/O Channel system service),
for example:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

3.8.6.11 Checkpointing Sections - Since read/write sections are
normally not updated on disk until the physical pages they occupy are
paged out, or until all processes referring to the section have
unmapped it, a process may have to ensure that all modified pages have
been successfully written back into the section file.

The Update Section File on Disk ($UPDSEC) system service writes the
modified pages in a section into the disk file. The $UPDSEC system
service is described in Chapter 4.

3.8.6.12 Image Sections - Global sections can contain shareable code.
An image file that is going to be defined as a section must contain
position-independent code.

The operating system uses global sections to implement shareable code
as follows:'

1. The objerit module containing code to be shared is linked to
produce a shareable image. The shareable image is not, in
itself, executable. It contains a series of sections, called
image sections.

3-90

)

)

)

)

)

)

HOW TO USE SYSTEM SERVICES
MEMORY MANAGEMENT SERVICES

2. A user links private object modules with the shareable image
to produce an executable image. Only image section descriptor
records from the shareable image file are bound with the
image sections from the user's .. code.

3. The system manager uses the INSTALL command to create a
permanent global section from the shareable image file making
the image sections available for sharing.

4. When the user runs the executable image, the system
automatically maps the global sections created by the INSTALL
command into the virtual address space of the user's process.

For details on how to create and identify shareable images, and how to
link them with private object modules, see the VAX-II Linker Reference
Manual. For information on installing shareable images and making
them available for sharing as global sections, see the VAX/VMS System
Manager's Guide.

3-91

)

)

)

()

)

)

)

CHAPTER 4

SYSTEM SERVICE DESCRIPTIONS

This chapter describes each
services are presented in
names.

of the VAX/VMS system services. The
alphabetical order, by their abbreviated

Each system service description consists of the following categories,
·as applicable:

Macro Format:

Shows the macro name, with all keyword arguments
positional order. Spaces between arguments are
readability, and are not part of the macro syntax.

listed in
present for

High-Level Language Format:

Shows the procedure name and a generalized format for calling the
service from a high-level language, with all arguments listed in
positional order. Spaces between arguments are present for
readability, and are not part of the statement syntax.

arguments •••

Describes each of the arguments.

Return Status:

Lists the possible return status codes from the service with
explanation of the return condition. The successful returns
listed first, in alphabetical order, followed by warning
severe error return status codes also in alphabetical order.
status codes are severe errors, unless otherwise indicated.

an
are
and
All

Three severe errors may occur for all services and are not listed
with each service description. These are:

SS$ ACCVIO
- The argument list cannot be read by the caller.

SS$ INSFARG
- Not enough arguments were supplied to the service.

SS$ ILLSER
- An invalid system service was called.

4-1

SYSTEM SERVICE DESCRIPTIONS

Privilege Restrictions:

Notes any user privileges required to execute the service or to
request a particular function of the service, or any access mode
restrictions applied to the service.

Resources Required/Returned:

Lists any system resources or process quotas used by the service,
or returned to a process as a result of service execution.

Notes:

Contain the 'fine print' of the service description. All
important information pertaining to the service that is not
covered in one of the other headings is given here, as well as
references to related services or additional information.

4.,...2 .

)

)

\

!

)

)

SYSTEM SERVICE DESCRIPTIONS

$ADJSTK

4.1 $ADJSTK - ADJUST OUTER MODE STACK POINTER

The Adjust Outer Mode Stack Pointei system service modifies the stack
pointer for a less privileged access mode. This service is used by
the operating system to modify a stack pointer for a less privileged
access mode after placing arguments on the stack.

Macro Format:

$ADJSTK [acmode] ,[adjust] ,newadr

High-Level Language Format:

SYS$ADJSTK([acmode] ,[adjust] ,newadr)

acmode
access mode for which the stack pointer is to be adjusted.

adjust
signed adjustment value. The contents of the longword addressed
by the NEWADR argument are adjusted by the amount specified in
the low-order 16 bits of this argument. The result is loaded
into the stack pointer for the specified access mode.

If not specified, or specified as 0, the stack pointer is loaded
with the address specified by the NEWADR argument.

newadr
address of a longword to receive the updated value. If the
longword contains a nonzero value, then that value is updated by
the ADJUST argument value and the result is loaded into the stack
pointer.

If the longword contains a 0, the current value of the stack
pointer is updated by the ADJUST argument value.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The longword to store the updated stack pointer or a portion of

the new stack segment cannot be written by the caller.

SS$_NOPRIV
The specified access mode is equal to or more privileged than the
calling access mode.

4-3

SYSTEM SERVICE DESCRIPTIONS
$ADJSTK - ADJUST OUTER MODE STACK POINTER

Combinations of zero and nonzero values for the ADJUST argument
and the NEWADR longword provide the following results:

If the ADJUST And the longword The stack
argument addressed by pointer
specifies: NEWADR contains: is:

0 0 not changed

0 an address loaded with the
address specified

a value 0 adjusted by the
specified value

a value an address loaded with the
specified address,
adjusted by the
specified value

In all cases, the updated stack pointer value is written into the
longword addressed by NEWADR.

4-4

)

)

)

C)
/

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$ADJWSL

4.2 $ADJWSL - ADJUST WORKING SET LIMIT

The Adjust Working Set Li,mit system service changes the current limit
of a process's working set size by a specified number of pages. This
servic~ allows a process to control the number of pages resident in
physical memory for the execution of the current image.

Macro Format:

$ADJWSL [pagcntJ ,[wsetlmJ

High-Level Language Format:

SYS$ADJWSL ([pagcntJ ,[wsetlm])

pagcnt
number of pages to adjust the current maximum working set size.
A positive value increases the maximum working set size; a
negative value decreases it. If not specified, or specified as
0, the current working set size limit is returned in the address
specified by the WSETLM argument, if that argument is coded~

wsetlm
address of a longword to receive the new working set size limit
or the current working set size limit, if the PAGCNT argument is
not specified.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The longword to receive the new working set size limit cannot be

written by the caller.

Resources Required/Returned:

Note:

The initial value of a process's working set size is controlled
by the working set default quota (WSDEFAULT). The maximum value
to which it may be increased is controlled by the working set
limit quota (WSQUOTA).

If a program attempts to adjust the working set size beyond the
system-defined upper and lower limits, no error condition is
returned. The working set size is adjusted to the maximum or
ml.n).mum size allowed; the caller can check the new working set
size to verify the change.

For more details on memory management concepts and additional service~
that help a process control paging and swapping, see Section 3.8,
"Memory Management Services."

4-5

SYSTEM SERVICE DESCRIPTIONS

$ALLOe

4.3 $ALLOC - ALLOCATE DEVICE

The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assign channels to it until the image that called $ALLOC
exits or explicitly deallocates the device with the Deallocate Device
($DALLOC) system service.

Macro Format:

$ALLOC devnam, [phylen] ,[phybuf] ,[acmode]

High-Level Language Format:

SYS$ALLOC (devnam ,[phylen], [phybuf] ,[acmode])

devnam
address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character In the string is an
underline character (}, the name is considered a physical device
name. Otherwise, a sIngle level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

phylen
address of a word to receive the length of the allocated device
name string.

phybuf
address of a character string descriptor
to receive the physical device name
device. The first character in the
underline character (_).

acmode

pointing to the buffer
string of the allocated

string returned is an

access mode to be associated with the allocated device. The
specified access mode is maximized with the access mode of th~
caller. Only equal or more privileged access modes can
deallocate the device.

Return Status:

SS$ NORMAL
. - Service successfully completed.

SS$ BUFFEROVF
- Service successfully completed. The physical name returned

overflowed the buffer provided, and has been truncated.

SS$_ACCVIO
The device name string or string descriptor or physical name
buffer descriptor cannot be read, or the physical name buffer
cannot be written, by the caller.

4-6

)

\
)

J

)

)

)

)

SS$DEVALLOC

SYSTEM SERVICE DESCRIPTIONS
$ALLOC - ALLOCATE DEVICE

- Warning. The device is already allocated to another process.
Or, an attempt to allocate an unmounted shareable device failed
because other processes had channels assigned to the device.

SS$_DEVMOUNT
The specified
allocated; or,

SS$_IVDEVNAM

device is currently mounted
the device is a mailbox.

and cannot be

No device name string was specified or the device name string
contains invalid characters.

SS$_IVLOGNAM
The device name string has a length of 0, or has more than 63
characters.

SS$_NONLOCAL
Warning. The device is on a remote node.

SS$ NOPRIV
- An attempt was made to allocate a spooled device and the

requesting process does not have the required privilege.

SS$ NOSUCHDEV
Warning. The specified device does not exist in the host system.

Privilege Restrictions:

A user privilege is required to allocate a spooled device.

Notes:

1. When a process calls the Assign I/O Channel ($ASSIGN) system
service to assign a channel to a nonshareable device, such as
a terminal or line printer, the device is implicitly
allocated to the process.

2. This service can only be used to allocate devices that exist
on the host system.

For an example of how to use this service, and a description of the
allocation of devices by generic device names, see Section 3.4,
"Input/Output Services."

4-7

SYSTEM SERVICE DESCRIPTIONS

$ASCEFC

4.4 $ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

The Associate Common Event Flag Cluster system service causes a named
common event flag cluster to be associated with a process for the
execution of the current image and assigned a process-local cluster
number for use with other event flag services. If the named cluster
does not exist but the process has suitable privilege, the service
creates the cluster.

Macro Format:

$ASCEFC efn, name ,[prot] ,[perm]

High-Level Language Format:

efn

name

prot

perm

SYS$ASCEFC(efn ,name, [prot] ,[perm])

number of any event flag in the common cluster to be associated.
The flag number must be in the range of 64 through 9S for cluster
2 and 96 through 127 for cluster 3.

address of a character string descriptor pointing to the 1- to
IS-character text name string for the cluster. The name is
implicitly qualified by the group number of the process issuing
the associate request.

protection indicator controlling group access to the common event
flag cluster. A value of 0 (the default) indicates that any
process in the creator's group .may access the cluster. A value
of 1 indicates that access is restricted to processes executing
with the creator's UIC.

permanent indicator. If perm is equal to 1, the common event
cluster is marked permanent.

If perm is equal to 0, the cluster is temporary;
default value.

this is the

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The cluster name string or string descriptor cannot be read by

the caller.

SS$_EXQUOTA
The process has exceeded its timer queue entry quota; this quota
controls the creation of temporary common event flag clusters.

SS$ INSFMEM
- Insufficient system dynamic memory is available to

service and the process has disabled resource wait
Set Resource Wait Mode ($SETRWM) system service.

4-8

complete the
mode with the

,)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

SS$ ILLEFC
- An illegal event flag number was specified. The cluster number

must be in the range of event flags 64 through 127.

SS$_IVLOGNAM
The cluster name string has a length of 0 or has more than 15
characters.

SS$_NOPRIV
The process either does not have the privilege
permanent cluster; or, the protection applied
cluster by its creator prohibits association.

to create a
to an existing

Privilege Restrictions:

The user privilege PRMCEB is required to create a permanent
common event flag cluster.

Resources Required/Returned:

Creation of temporary common event flag clusters uses the
process's quota for timer queue entries (TQELM); the creation of
a permanent cluster does not effect the quota. The quota is
restored to the creator of the cluster when all processes
associated with the cluster have disassociated.

Notes:

1. When a process associates with a common event flag cluster,
that cluster's reference count is increased by 1. The
reference count is decreased when a process disassociates the
cluster either explicitly with the Disassociate Common Event
Flag Cluster ($DACEFC) system service, or implicitly, at
image exit.

Temporary clusters are automatically deleted when their
reference count goes to 0; permanent clusters must be
explicitly marked for deletion with the Delete Com~on Event
Flag Cluster ($DLCEFC) system service.

2. Since this service automatically creates the common event
flag cluster if it does not already exist, cooperating
processes need not be concerned with which process executes
first to create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it
regardless of the order in which they call the service.

The initial state for all event flags in a newly-created
common event flag cluster is O.

3. If a process has already associated a cluster number with a
named common event flag cluster and then issues another call
to $ASCEFC with the same cluster number, the service
disassociates the number from its first assignment before
associating it with its second.

For an example of the $ASCEFC system service and descriptions of
services that manipulate event flags, see Section 3.1, "Event Flag
Services."

4-9

SYSTEM SERVICE DESCRIPTIONS

$ASCTIM

4.5 $ASCTIM - CONVERT BINARY TIME TO ASCII STRING

The Convert Binary Time to ASCII String system service converts an
absolute or delta time from 64-bit system time format to an ASCII
str ing. The formats of the str ings r,et'Urned are descr ibed in Note 2,
below.

Macro Format:

$ASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

High-Level Language Format:

SYS$ASCTIM([timlen] ,timbuf ,[timadr] ,[cvtflg])

timlen
address of a word to receive the length of the output string
returned.

timbuf
address of a character string descriptor pointing to the buffer
to receive the converted string. The buffer length specified in
the descriptor, together with the CVTFLG argument, controls what
information is returned. See Note 3, below.

timadr
address of the 64-bit time value to be converted. If no address
is specified, or is specified as 0 (the default), the current
date and time are returned. A positive time value represents an
absolute time. A negative time value represents a delta time.
If a delta time is specified, it must be less than 10,000 days.

cvtflg
conversion indicator. A value of 1 causes only the hour, minute,
second, and hundredth of second fields to be returned, depending
on the length of the buffer. A value of 0 (the default) causes
the full date and time to be returned, depending on the length of
the buffer.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$!VTIME
- The specified delta time is equal to or greater than 10,000 days.

Notes:

--1. The $ASCTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
ex~eption condition if the input time value cannot be read or
the output buffer or buffer length cannot be written.

4-10

)

)

,
)

)

)

\
/

SYSTEM SERVICE DESCRIPTIONS
$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

2. The ASCII strings returned have the following formats:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of values

dd 2 day of month 1 - 31
- 1 hyphen

mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

- 1 hyphen
yyyy 4 year 1858 - 9999

blank 1 blank

hh 2 hour 00 - 23
: 1 colon

mm 2 minutes 00 - 59
: 1 colon

ss 2 seconds 00 - 59 . 1 period
cc 2 hundredths 00 - 59

of seconds

dddd 4 number of 0000 - 9999
days

3. Some possible combinations of buffer length specification and
CVTFLG arguments, and their results, are shown below:

Buffer Length CVTFLG Information
Time Value Specified Argument Returned

Absolute 24 0 date and time

Absolute 11 0 date

Absolute 11 1 time

Delta 17 0 days and time

Delta 11 1 time

For an example of the $ASCTIM system service, see
and Time Conversion Services." riG

Section 3.6,

: ..• ~. t_J~._·.'.:) \1 C~t"\
,. 1O-i-

"Timer

4-11

SYSTEM SERVICE DESCRIPTIONS

$ASSIGN

4.6 $ASSIGN - ASSIGN I/O CHANNEL

The Assign I/O Channel system service (1) provides a device with an
I/O channel so that input/output operations can be performed on the
device, or (2) establishes a logical link with a remote node on a
network.

Macro Format:

$ASSIGN devnam ,chan, [acmode] ,[mbxnam]

High-Level Language Format:

SYS$ASSIGN (devnam ,chan ,[acmode] ,[mbxnam])

devnam

chan

address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character ln the string is an
underline character (), the name is considered a physical device
name. Otherwise, a sIngle level of logical name translation is
performed and the equivalence name, if any, is used.

If the device name contains a double colon (::), the system
assigns a channel to the device NETO: and performs an access
function on the network.

address of a word to receive the channel number assigned.
-----"

acmode
access mode to be associated with the channel.
access mode is maximized with the access mode of
operations on the channel can only be performed
more privileged access modes.

mbxnam

The specified
the caller. I/O
from equal and

address of a character string descriptor pointing to the logical
name string for the mailbox to be associated with the device, if
any. The mailbox receives status information from the device
driver, as described in Note 2, below.

An address of 0 implies no mailbox; this is the default value.

Return Status:

SS$ NORMAL
'- Service successfully completed.

SS$ REMOTE
- Service successfully completed. A logical link is established

with the target on a remote node.

SS$_ACCVIO
The device or mailbox name string or string descriptor cannot be
read, or the channel number cannot be written, by the caller.

4-12

)
/

)

.1

)

)
/

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN - ASSIGN I/O CHANNEL

SS$ DEVALLOC
- Warning. The device is allocated to another process.

SS$ DEVNOTMBX
- A mailbox name has been specified for a device that is not a

mailbox.

SS$_EXQUOTA
The target of the assignment is on a remote node and the process
has insufficient buffer quota to allocate a network control
block.

SS$_INSFMEM
The target of the assignment is on a remote node and there is
insufficient system dynamic memory to complete the request.

SS$_IVDEVNAM
No device name was specified or the device or mailbox name string
contains invalid characters. If the device name is a target on a
remote node, this status code indicates that the Network Connect
Block has an invalid format.

SS$_IVLOGNAM
The device or mailbox name string has a length of 0, or has more
than 63 characters.

SS$_NOIOCHAN
No I/O channel is available for assignment.

SS$ NOLINKS
- No logical network links are availab.1e.

SS$ NOPRIV
- The process does not have the privilege to perform network

operations.

SS$ NOSUCHDEV
- Warning. The specified device or mailbox does not exist.

SS$ NOSUCHNODE
- The specified network node is nonexistent or unavailable.

SS$ REJECT
- The network connect was rejected

remote node; or, the target
confirm could be issued.

Resources Required/Returned:

by NSP or by the partner at the
image exited before the connect

System dynamic memory is required if the target device is on a
remote system.

4.-13

Notes:

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN - ASSIGN I/O CHANNEL

1. For details on how to use $ASSIGN in conjunction with network
operations, see the DECnet-VAX User's Guide.

2. Only the owner of a device can associate a mailbox with the
device (the owner is the process that has allocated the
device, either implicitly or explicitly). Then, the device
driver can send messages containing status information to the
mailbox, as in the following cases:

• If the device is a terminal, a message indicates dialup,
hangup, or the reception of unsolicited input.

• If the target is on a network, the message may indicate
the network connect or initiate, or whether the line is
down.

• If the device is a line printer, the message indicates
that the printer is offline.

For details on the message format and the information
returned, see the VAX/VMS I/O User's Guide.

3. Channels remain assigned until they are explicitly deassigned
with the Deassign I/O Channel ($DASSGN) system service, or
until the image that assigned the channel exits.

4. The $ASSIGN service establishes a path to a device, but does
not check whether the caller can actually perform
input/output operations to the device. Privilege and
protection restrictions may be applied by the device drivers.
For details on how the system controls access to devices, see
the VAX/VMS I/O User's Guide.

For examples of how to use $ASSIGN to assign channels for input/output
operations, see Section 3.4, "Input/Output Services."

4-14

)

)

)

I
-,/

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$BINTIM

4.7 $BINTIM - CONVERT ASCII STRING TO BINARY TIME

The Convert ASCII String to Binary Time system service converts ~n
ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule
Wakeup ($SCHDWK) system services.

Macro Format:

$BINTIM timbuf ,timadr

High-Level Language Format:

SYS$BINTIM(timbuf ,timadr)

timbuf
address of a character string
containing the absolute or
required formats of the ASCII
below. .

descriptor pointing to the buffer
delta time to be converted. The

strings are described in the Notes,

If a delta time is specified, it must be less than 10,000 days.

timadr
address of a quadword that is to receive the converted time in
64-bi t format.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ IVTIME
- The syntax of the specified ASCII string is invalid, or the time

component is out of range.

Notes:

1. The $BINTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input buffer or buffer descriptor
cannot be read or the output buffer cannot be written.

4-15

SYSTEM SERVICE DESCRIPTIONS
$BINTIM - CONVERT ASCII STRING TO BINARY TIME

2. The required ASCII input strings have the format:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time:dddd hh:mm:ss.cc

Length
Field (Bytes) Contents Range of values

dd 2 day of month 1 - 31
- 1 hyphen Required syntax

mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

- 1 hyphen Required syntax
yyyy 4 year 1858 - 9999

blank n blank Required syntax (one
or more blanks)

hh 2 hour 00 - 23
: 1 colon Required syntax

mm 2 minutes 00 - 59
: 1 colon Required syntax

ss 2 seconds 00 - 59 . 1 period Required syntax
cc 2 hundredths 00 - 99

of ·seconds

dddd 4 number of 0000 - 9999
days (in
24-hour
uni ts)

3. The following syntax rules apply to the coding of the ASCII
input string:

• Any of the fields of the date and time can be omitted.

•

For absolute time values, the $BINTIM service supplies
the current system date and time for nonspecified fields.
Trailing fields can be truncated. If leading fields are
omitted, the punctuation (hyphens, blan~s~ colons,
periods) must be specified. For example, the string

12:00:00.00

results in an absolute time of 12:00 on the current day.

For delta time values, the $BINTIM service defaults
nonspecified fields to O. Trailing fields can be
truncated. If leading fields are omitted from the time
value, the punctuation (blanks, colons, periods) must be
specified. For example, the string

o :: 10

results in a delta time of 10 seconds.

For both absolute and delta time values, there can be any
number of leading blanks, and any number of blanks
between fields normally delimited by bl~nks. However,
there can be no embedded blanks within either the date or
time fields.

4-16

.)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$BRDCST

4.8 $BRDCST - BROADCAST

The Broadcast system service writes a message to one or more
terminals.

Macro Format:

$BRDCST msgbuf, [devnam]

High-Level Language Format:

SYS$BRDCST{msgbuf, [devnam])

msgbuf
address of a character string descriptor pointing to the text of
the message to be broadcast. The maximum length of the message
is 250 bytes.

devnam
address of a character string descriptor pointing to the name of
the terminal that is to receive the message. The string may be
either a physical device name or a logical name. If the first
character in the string is an underscore character (), the name
is ·considered a physical device name. Otherwise, a sIngle level
of logical name translation is performed and the equivalence
name, if any, is used.

If this argument is omitted, or specified as 0, then the message
is broadcast to all terminals.

If the first longword in the descriptor contains a 0, the message
is sent to all terminals that are currently allocated to
processes.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The message buffer or buffer descriptor, or the device name

string or string descriptor, cannot be read by the caller.

SS$ DEVOFFLINE
- The specified terminal is offline, has disabled broadcast message

reception, has enabled passall mode, or is not a terminal.

SS$_EXQUOTA
The process has exceeded its buffer space quota and has disabled
resource wait mode with the Set Resource wait Mode ($SETRWM)
system service.

SS$_INSFMEM
Insufficient
request and
Set Resource

system dynamic memory is available to complete the
the process has disabled resource wait mode with the
wait Mode ($SETRWM) system service.

4-17

SYSTEM SERVICE DESCRIPTIONS
. $BRDCST - BROADCAST

SS$ NOPRIV
- The process does not have the privilege to broadcast messages.

SS$ NOSUCHDEV
- Warning. The specified terminal does not exist, or it cannot

receive the message.

Privilege Restrictions:

The user priviLege OPER is required to broadcast a message to
more than one terminal, or to broadcast a message to a terminal
that is allocated to any other user.

Resources Required/Returned:

This service requires system dynamic memory, and uses the
process's buffered I/O byte count quota (BYTLM) to buffer the
message while the service executes.

Notes:

1. The service does not return control to the caller until all
specified terminals have received the broadcast message.

2. The message is displayed at all specified terminals
immediately, regardless of the current state of the terminal
(reading or writing). Each terminal is then returned to the
state it was in prior to the reception of the message. The
message is preceded and followed by a carriage return/line
feed.

However, a terminal cannot receive a broadcast message ·if it
is not in use·as an interactive terminal.

4-18

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CANCEL

4.9 $CANCEL - CANCEL I/O ON CHANNEL

The Cancel I/O On Channel system service cancels all pending I/O
requests on a specific channel. In general, this includes all I/O
requests that are queued as well as the request currently in progress.

Macro Format:

$CANCEL chan

High-Level Language Format:

SYS$CANCEL(chan)

chan
number of the I/O channel on which I/O is to be canceled.

Return Stc:ltus:

SS$ NORMAL
- Service successfully completed.

SS$ EXQUOTA
- The process has exceeded its

disabled resource wait mode
($SETRWM) system service.

quota for direct I/O and has
with the Set Resource wait Mode

SS$_INSFMEM
Insufficient system dynamic memory is available to cancel the
I/O, and the process has disabled resource wait mode with the Set
Resource wait Mode ($SETRWM) system service.

SS$_IVCHAN
An invalid channel was specified, that is, a channel number of 0
or a number larger than the number of channels available.

SS$_NOPRIV
The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

I/O can be canceled only from an access mode equal to or more
privileged than the access mode from which the original channel
assignment was made.

Resources Required/Returned:

The Cancel I/O On Channel system service requires system dynamic
memory and uses the process's direct I/O limit (DIOLM) quota.

4-19

Notes:

SYSTEM SERVICE DESCRIPTIONS
$CANCEL - CANCEL I/O ON CHANNEL

1. When a request currently in progress is canceled, the driver
is notified immediately. Actual cancellation mayor may not
occur immediately depending on the logical state of the
driver. When cancellation does occur, the same action as
that taken for queued requests is performed:

a. The specified event flag is set.

b. The first word of the I/O status block, if specified, is
set to SS$_CANCEL.

c. The AST, if specified, is queued.

Proper synchronization between this service and the actual
canceling of I/O requests requires the issuing process to
wait for I/O completion in the normal manner and then note
that the I/O has been canceled.

2. If the I/O operation is a virtual I/O operation involving a
disk or tape ACP, the I/O cannot be canceled. In the case of
a magnetic tape, however, cancellation may occur if the
device driver is hung.

3. Outstanding I/O requests are automatically canceled at image
exit.

For an example of the $CANCEL system service and additional
information on system services that perform device-dependent I/O
operations, see Section 3.4, "Input/Output Services."

4-20

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CANEXH

4.10 $CANEXH - CANCEL EXIT HANDLER

The Caricel Exit Handler system service deletes an exit control block
from the list of cont~ol blocks for the c~lling access mode. Exit
control blocks are declared by the Declare Exit Handler ($DCLEXH)
system service, and are queued ~ccording to access mode in a last-in
first-otit order. .

Macro Format:

$CANEXH [desblk]

High-Level Language Format:

SYS$CANEXH([desblk])

desblk
address of
canceled.
blocks are

Return Status:

SS$ NORMAL

the control block describing the exit handler to be
If not specified, or specified as 0, all exit control

canceled for the current access mode.

- Service successfully completed.

SS$ ACCVIO
- The first longword of the exit control block or the first

longword of a previous exit control block in the list cannot be
read by the caller, or the first longword of the preceding
control block cannot be written by the caller.

SS$ NOHANDLER
- Warning. The exit handler specified does not exist.

4-21

SYSTEM SERVICE DESCRIPTIONS

$CANTIM

4.11 $CANTIM - CANCEL TIMER REQUEST

The Cancel Timer Request system service cancels all or a selected
subset of the Set Timer requests previously issued by the current
image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) system service.
If more than one timer request was given the same request
identification, they are all canceled.

Macro Format:

$CANTIM [reqidt] , [acmode]

High-Level Language Format:

SYS$CANTIM([reqidt] , [acmode])

reqidt
request identification of the timer request(s) to be canceled. A
value of 0 (the default) indicates that all timer requests are to
be canceled.

acmode
access mode of the request(s) to be canceled. The access mode is
maximized with the access mode of the caller. Only those timer
requests issued from an access mode equal to or less privileged
than the resultant access mode are canceled.

Return Status:

SS$ NORMAL
- Service successfully completed.

Privilege Restrictions:

Timer requests ~an be canceled only from access modes equal to Or
more privileged than the access mode from which the requests were
issued.

Resources Required/Returned:

Note:

Canceled timer requests are restored to the process's quota for
timer queue entries (TQELM quota).

Outstanding timer request~ are automatically canceled at image
exit.

For an example of the $CANTIM system service, and additional
information on timer scheduled requests, see Section 3.6, "Timer and
Time Conversion Services."

4-22

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CANWAK

4.12 $CANWAK - CANCEL WAKEUP

The Cancel Wakeup system service removes all scheduled wakeup requests
for a process from the timer queue, including those made by the caller
or by other processes. Scheduled wakeup requests are made with the
Schedule Wakeup ($SCHDWK) system service.

Macro Format:

$CANWAK [pidadr] ,[prcnam]

High-Level Language Format:

SYS$CANWAK ([pidadr] ,[prcnamJ)

pidadr
address of a longword containing the process identification of
the process for which wakeups are to be canceled.

prcnam
address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by th~
group number of the process issuing the cancel wakeup request.

If ~either a pr66ess identification nor a process name is specified,
scheduled wakeup requests for the caller are canceled. For details on
how the service interprets the PIDADR and PRCNAM arguments, see Table
3-3. Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
-Service suc~essfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

the process identification cannot be written, by the caller.

SS$_IVLOGNAM
The process name string has a length of 0, or has more than 15
characters.

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

process identification was specified.

SS$_NOPRIV
The process does not have the privilege to cancel wakeups for the
specified process.

4-23

SYSTEM SERVICE DESCRIPTIONS
$CANWAK - CANCEL WAKEUP

Privilege Restrictions:

User privileges are required to cancel scheduled wakeup requests
for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned:

Canceled wakeup requests are restored to the process's AST limit
quota (ASTLM).

Notes:

1. Pending wakeup requests issued by the current image are
automatically canceled at image exit.

2. This service only cancels wakeup requests that have .been
scheduled~ it does not cancel wakeup requests made with the
Wake Process ($WAKE) system service.

For an example of the $CANWAK system service, see Section 3.6, nTimer
and Time Conversion Services." For more information on process
hibeination and waking, see Section 3.5, "Process Control Services."

4-24

')
/

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CLREF

4.13 $CLREF - CLEAR EVENT FLAG

The Clear Event Flag system service sets an event flag in a local or
common event flag cluster to O.

Macro Format:

$CLREF efn

High-Level Language Format:

SYS$CLREF(efn)

efn
number of the event flag to be cleared.

Return Status:

SS$ WASCLR
- Service successfully completed. The specified event flag was

previously O.

SS$_WASSET
Service successfully completed. The specified event flag was
previously 1.

SS$_ILLEFC
An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

Note:

For an Qxample of the $CLREF system service, see Section 3.1,
"Event Flag Services."

4-25

SYSTEM SERVICE DESCRIPTIONS

$CMEXEC

4.14 $CMEXEC - CHANGE TO EXECUTIVE MODE

The Change to Executive Mode system service allows a process to change
its access mode to executive, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format:

$CMEXEC routin ,[arglst]

High-Level Language Format:

SYS$CMEXEC(routin ,[arglst])

rout in
address of the routine to be executed iri executive mode.

arglst
address of the argument list to be supplied to the routine, if
any.

Return Sta.tus:

SS$ NOPRIV
- The process does not have the privilege to change mode to

executive.

All other values returned are from the routine executed.

privilege Restrictions:

A process can call this service if:

• It has the user privilege CMEXEC.

• It is currently executing in either executive or kernel mode.

The $CMEXEC system service uses standard procedure calling
conventions to pass control to the specified routine. If no
argument list is specified, the argument pointer (AP) contains a
0, unless it is modified by the caller. The routine must exit
with a RET instruction.

4-26

)

)

)

)

,
\

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CMKRNL

4.15 $CMKRNL - CHANGE TO KERNEL MODE

The Change to Kernel Mode system service allows a process to change
its access mode to kernel, execute a specified routine, and then
return to the access .mode in effect before the call was issued.

Macro Format:

$CMKRNL routin, [arglst]

High-Level Language Format:

SYS$CMKRNL(routin , [arglst])

rout in
address of the routine to be executed in kernel mode.

arglst
address of the argument list to be supplied to the routine,
any.

Return Status:

SS$NOPRIV

'.f= 1 ...

- The process does not have the privilege to change mode to kernel.

All other values returned are from the routine executed.

Privilege Restrictions:

A process can call this service if:

Note:

• It has the user privilege CMKRNL.

• It is currently executing in either executive or kernel mode.

The $CMKRNL system service uses standard procedure calling
conventions to pass control to the specified routine. If ~o
argument list is specified, the argument pointer (AP) contains a
0, unless it is modified by the caller. The routine must exit
with a RET instruction.

4-27

SYSTEM SERVICE DESCRIPTIONS

$CNTREG

4.16 $CNTREG - CONTRACT PROGRAM/CONTROL REGION

The Contract Program/Control Region system service deletes a specified
number of pages from the current end of the program or control region
of a process's virtual address space. The deleted pages become
inaccessible; any references to them cause access violations.

Macro Format:

$CNTREG pagcnt, [retadr] ,[acmode] ,[region]

High-Level Language Format:

SYS$CNTREG(pagcnt ,[retadr] ,[acmode] ,[region])

pagcnt
number of pages to be deleted from th~ current end of the program
or control region.

retadr
address of a 2-1ongword array to receive the virtual addresses of
the starting page and ending page of the deleted area.

acmode
access mode of the
specified access
caller.

region

owner of the pages to be deleted. The
mode is maximized with the access mode of the

region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be contracted, and a value of 1
indicates that the control region (PI region) is to be
contracted.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The return address array cannot be written by the caller.

SS$ ILLPAGCNT
- The specified page count was less than 1.

SS$ PAGOWNVIO
- A page in the specified range is owned by a more privileged

access mode.

4-28

)

)

)

)

)

)

)

Notes:

SYSTEM SERVICE DESCRIPTIONS
$CNTREG - CONTRACT PROGRAM/CONTROL REGION

1. If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages were deleted, both
longwords in the return address array contain a-I.

2. The $CNTREG system service can delete pages only from the
current end of the process's program or control region. ~o
delete a specific range of pages in either region, use the
Delete virtual Address Space ($DELTVA) system service.

For an example of the $CNTREG system service and additional details on
page creation and deletion, see Section 3.8.2, "Increasing and
Decreasing Virtual Address Space."

4-29

SYSTEM SERVICE DESCRIPTIONS

$CRELOG

4.17 $CRELOG - CREATE LOGICAL NAME

The Create Logical Name system service inserts
equivalence name into the process, group,
table. If the logical name already exists in
the new definition supersedes the old.

a logical name and its
or system logical name

the respective table,

Macro Format:

$CRELOG [tblflg] ,lognam ,eqlnam , [acmode]

High-Level Language Format:

SYS$CRELOG([tblflg] ,lognam ,eqlnam , [acmode])

tblflg
logical name table number. A value of 0 indicates the system
table (this is the default value), 1 indicates the group table,
and 2 indicates the process logical name table.

lognam
address of a character string descriptor pointing to the logical
name string. C ~ ML:>e..)

eqlnam
address of a character string descriptor pointing to
equivalence name string.

the

acmode
access
Access
table.
mode of

mode to be associated with the logical name table entry.
modes only qualify names in the process logical name
The specified access mode is maximized with the access
the caller.

Return Status:

SS$ NORMAL
- Service successfully completed. A new name was entered in the

specified logical name table.

SS$_SUPERSEDE
Service successfully completed. A new equivalence name replaced
a previous equivalence name in the specified logical name table.

SS$ ACCVIO
- The logical name or equivalence name string or string descriptor

cannot be read by the caller.

SS$ INSFMEM
- Insufficient system dynamic memory is available to allocate a

group or system logical name table entry or the process has
exceeded its limit for process logical name table entries. The
code is only returned if the process has disabled resource wait
mode with the Set Resource wait Mode ($SETRWM) system service.

4-30

)
/

)

)

)

)

)

)

)

SS$ IVLOGNAM

SYSTEM SERVICE DESCRIPTIONS
$CRELOG - CREATE LOGICAL NAME

- The logical name or equivalence name string has a length of 0, or
has more than 63 characters.

SS$ IVLOGTAB
- An invalid logical name tabl~ number was specified.

SS$ NOPRIV
- The process does not have the privilege to place an entry in the

specified logical name table.

Privilege Restrictions:

The user privileges GRPNAM
entries in the system
respectively.

and SYSNAM are required
and group logical name

to place
tables,

Resources Required/Returned:

Note:

1. Up to 5 pages of memory are available in the control region
of a process's virtual address space to store names in the
process logical name table.

2. Creation of logical names for the group and system logical
name tables requires system dynamic memory.

Logical names can also be created from the command stream, with
the ASSIGN, DEFINE, ALLOCATE, and MOUNT commands.

For examples of the $CRELOG system service, and
name translation and deletion, see Section
Services."

details on logical
3.3, "Logical Name

4-31

SYSTEM SERVICE DESCRIPTIONS

$CREMBX

4.18 $CREMBX - CREATE MAILBOX AND ASSI.GN CHANNEL

The Create Mailbox and Assign Channel system service creates a virtual
mailbox device named MBn: and assigns an I/O channel to it. The
system provides the unit number, n, when it creates the mailbox.

tvlacro Format:

$CREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk]
,[acmode] ,[lognam]

High-Level Language Format:

SYS$CREMBX([prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk]
,[acmode] ,[lognam])

prmflg

chan

permanent indicator. A value of 1
mailbox is to be created. The
entered in the system logical name
default) indicates a temporary
specified, is entered in the group

indicates that a permanent
logical name, if specified, is
table. A value of 0 (the
mailbox. The logical name, if
logical name table.

address of a word to receive the channel number assigned.

maxmsg
number indicating the maximum size of messages that can be sent
to the mailbox. If not specified, or specified as 0, the system
provides a default value.

bufquo
number of bytes of system dynamic memory
buffer messages sent to the mailbox.

'this value must be less than or equal
quota. If not specified, or specified
a default value.

promsk

that can be used to
For a temporary mailbox,
to the process buffer

as 0, the system provides

numeric value representing the protection mask for the mailbox.

The mask contains four 4-bit fields:

15 11 7 3. a

I WORLD I GROUP I OWNER I SYSTEM I

Bits read from right to left in each field, when clear, indicate
that read, write, extend and delete privileges, in that order,
are granted to the particular category of user.

Only read and write privileges are meaningful for mailbox
protection.

If not specified, or specified as 0, read and write privileges
are granted to all users.

4-32

)

)

\

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

acmode
access mode to be associated with
mailbox is assigned. The access
access mode of the caller.

lognam

the channel to which the
mode is maximized with the

address of a character string descriptor pointing to the logical
name string for the mailbox. The logical name is entered into
the group logical name table (if it is a temporary mailbox) or
the system logical name table (if it is a permanent mailbox). In
either case, the MBn: name is entered as the equivalence name
(the first character in the equivalence name string is an
underline character []). Processes can use the logical name to
assign I/O channels to the mailbox.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ SUPERSEDE
- Service successfully completed. A new equivalence name replaced

a previous equivalence name for the mailbox logical name.

SS$_ACCVIO
The logical name string or string descriptor cannot be read, or
the channel number cannot be written, by the caller.

SS$_EXQUOTA
The process has exceeded its buffered I/O byte count quota.

SS$ INSFMEM
- Insufficient system dynamic memory is available to complete the

service.

SS$_IVLOGNAM
The logical name string has a length of 0 or has more than 63
characters.

SS$ NOIOCHAN
- No I/O channel is available for assignment.

SS$ NOPRIV
- The process does not have the privilege to create either a

temporary or a permanent mailbox.

Privilege Restrictions:

The user privileges TMPMBX and PRMMBX are required to create
temporary and permanent mailboxes, respectively.

4-33

SYSTEM SERVICE DESCRIPTIONS
$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

Resources Required/Returned:

1. System dynamic memory is required for the allocation of a
device data base for the mailbox and for an entry in the
logical name table, if a logical name is specified.

2. When a temporary mailbox is created, the process's buffered
I/O byte count (BYTLM) quota is reduced by the amount
specified in the BUFQUO argument. The size of the mailbox
unit control block, and the logical name (if one is
specified) are also subtracted from the quota. The quota is
returned to the process 'when the mailbox is deleted.

Notes:

1. After a mailbox is created, the creating process and other
processes can assign additional channels to it by calling the
Assign I/O Channel ($ASSIGN) system service. The system
maintains a reference count of the number of channels
assigned to a mailbox; the count is decreased whenever a
channel is deassigned with the Deassign I/O Channel ($DASSGN)
system service or when the image that assigned the channel
exits. If it is a temporary mailbox, it is deleted when
there are no more channels assigned. Permanent mailboxes
must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) system service.

2. A mailbox is treated as a shareable device;
however, be mounted or allocated.

it cannot,

3. Mailboxes are assigned sequentially increasing unit numbers
(from 1 to a maximum of 65,535) as they are created. When
all unit numbers have been used, the system starts numbering
again at unit 1.

4. A process can obtain the unit number of the created mailbox
by calling the Get I/O Channel Information ($GETCHN) system
service.

5. Default values for the maximum message size and the buffer
quota (an appropriate multiple of the message size) are
determined for a specific system during system generation.

For an example of mailbox creation and input/output operations to it,
see Section 3.4.13, "Mailboxes."

4-34

)

)

)

~.)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$CREPRC

4.19 $CREPRC - CREATE PROCESS·

The Create Process system service allows a process to create another
process. The created process can be either a subprocess or a detached
process.

A detached process is a fully-independent process. For example, the
process that the system creates when a user logs in is a detached
process. A subprocess, on the other hand, is related to its creator
in a tree like structure; it receives a portion of the creating
process's resource quotas and must terminate before the creating
process. The specification of the UIC argument controls whether the
created process is a subprocess or a detached process.

Macro Format:

$CREPRC [pidadr] ,[image] ,[input] ,[output] ,[error]
,[prvadr] ,[quota] ,[prcnam] ,[baspri] ,[uic]
,[mbxunt] ,[stsflg]

High-Level Language Format:

SYS$CREPRC ([pidadr] ,[image] ,[input] ,[output] ,[error]
,[prvadr] ,[quota] ,[prcnam] ,[baspri] ,[uic]
,[mbxunt] ,[stsflg])

pidadr

image

input

address of a longword to receive the process identification
number assigned to the created process.

address of a character string descriptor pointing to the file
specification of the image to be activated in the created
process. The image name can have a maximum of 6~ characters.

address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYS$INPUT in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

output

error

address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYS$OUTPUT in the logical name table for the created process.
The equivalence name string can have a maximum of 63 characters.

address of a character string descriptor pointing to the
equivalenGe name string to be associated with the logical name
SYS$ERROR in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

prvadr
address of a 64-bit mask defining privileges for the created
process. The mask is formed by ORing bit settings corresponding
to ~pecific privileges. The $PRVDEF macro defines the following
symbolic names for the bit settings:

4-35

Name

PRV$V ALLSPOOL
PRV$V-BUGCHK
PRV$V-CMEXEC
PRV$V-CMKRNL
PRV$V-DETACH
PRV$V-DIAGNOSE
PRV$V-EXQUOTA
PRV$V-GROUP
PRV$V:=GRPNAM

PRV$V LOG IO
PRV$V-MOUNT
PRV$V-NETMBX
PRV$V=:NOACNT

PRV$V OPER
PRV$V-PHY IO
PRV$V:=PRMCEB

PRV$V PRt<lGBL
PRV$V-PRMMBX
PRV$V-PSWAPM
PRV$V-SETPRI
PRV$V-SETPRV
PRV$V-SYSGBL
PRV$V:=SYSNAM

PRV$V TMPMBX
PRV$V-VOLPRO
PRV$V:=WORLD

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

Pr ivilege

Allocate a spooled device
Make bug check error log entries
Change mode to executive
Change mode to kernel
Create detached processes
Diagnose devices
Exceed quotas
Group process control
Place name in group logical
name table
Perform logical I/O operations
Issue mount volume QIO
Create a network device
Create processes for which no accounting is
done
All operator privileges
Perform physical I/O operations
Create permanent common
event flag clusters
Create permanent global sections
Create permanent mailbox~s
Change process swap mode
Set any process priority
Set any process privileges
Create system global sections
Place name in system
logical name table
Create temporary mailboxes
Override volume protection
World process control

The user privilege SETPRV is required
privileges higher than one's own.
this privilege, the mask is minimized
of the creating process, that is, any
not have are not granted but no error

to grant a process any
If the caller does not have
with the current privileges
privileges the creator does
status code is returned.

quota
address of a list of values assigning resource quotas to the
created process. If no address is specified, or the address is
specified as 0, the system supplies default values for the
resource quotas.

The format of the quota list and
quota values are described in
quotas, their defaults, and their
Section 4.19.2.

considerations for specifying
Section 4.19.1. The specific

minimum values, are listed in

prcnam
address of a character string descriptor pointing to a 1- to
IS-character process name string to be assigned to the created
process. The process name is implicitly qualified by the group
number of the caller, if a subprocess is created, or by the group
number in the UIC argument, if a detached process is created.

baspri
numeric value indicating the base priority to be assigned to the
created process. The priority must be in the range of a to 31,
where 31 is the highest priority level and a is the 10west.
Normal priorities are in the range a through 15, and
time-critical priorities are in the range 16 through 31.

4-36

)

"~I

)

)

)

)
./

)

)

uic

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

If not specified, the base priority for the created process is 2.

The user privilege ALTPRI is required to
than one's own. If the caller does not
specified base priority is compared with
and the lower of the two values is used.

set a priority higher
have this privilege, the

the caller's priority

numeric value representing the user identification code (UIC) of
the created process. This argument also indicates whether a
process is a subprocess or a detached process.

If not specified, or specified as 0 (the default), it indicates
that the created process is a subprocess; the subprocess has the
same UIC as the creator. ~

If a nonzero value is specified, it indicates that the created
process is a detacheft process. The specified value is
interpreted as a 32=6it octal number, with two 16-bit fields:

bits 0-15 member number
bits 16-31 group number

The user privilege DETACH is required to create a detached
process.

number of a mailbox to receive a termination message when
created process is deleted. If not specified, or specified
(the default), the system sends no termination message· when

mbxunt
unit
the
as 0
it deletes the process. The format of the message is described
in Note 2, below.

stsflg
32-bit status flag indicating options selected for the created
pr6cess. The flag bits, when set, have the following meanings:

Bit

0
1
2
3
4
5

6

7

8-31

Return Status:

SS$ NORMAL

Meaning

Disable resource wait mode
Enable system service failure exception mode
Inhibit process swapping (PSWAPM privilege required)
Do not perform accounting (NOACNT privilege required)
Batch (non-interactive) process
Force process to hibernate before it executes the
image
Provide detached process executing LOGIN image with
authorization file attributes of the creator; do not
check authorization file
Process is a network connect object (NETMBX privilege
required)
Reserved. These bits must be O.

- Service successfully completed.

SS$ ACCVIO
- The caller cannot read a specified input string or

descriptor, the privilege list, or the. quota list.
caller cannot write the process identification.

4-37

string
Or, the

SS$ DUPLNAM

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

- The process name specified duplicates one already specified
within that group.

SS$ EXQUOTA
- 1. The process has exceeded its quota for the creation of

subprocesses.

2. A quota value specified for the creation of a subprocess
exceeds the creator's corresponding quota: or, the quota is
deductible and the remaining quota for the creator would be
less than the minimum.

SS$_INSFMEM
Insufficient system dynamic memory is available to
service and the process has disabled resource wait
Set Resource wait Mode ($SETRWM) system service.

SS$_IVLOGNAM

complete the
mode with the

The specified process name has a length of 0 or has more than 15
characters.

}

SS$_IVQUOTAL ')
The quota list is not in the proper format.

SS$ IVSTSFLG
- A reserved status flag was set.

SS$ NOPRIV
- The caller has violated one of the privilege restrictions listed

below.

Privilege Restrictions:

User privileges are required to:

1. Create detached processes (DETACH privilege)

2. Set a created subprocess's base priority higher than one's
own (ALTPRI privilege)

3.

4.

Grant a process user privileges that the caller does not have
(SETPRV privilege)

Disable either process swap
accounting functions (NOACNT
process

mode (PSWAPM privilege) or
privilege) for the created

5. Create a network connect object (NETMBX privilege)

Resources Required/Returned:

1. The number of subprocesses that a process
controlled by the subprocess quota (PRCLM):
is returned when a subprocess is deleted.

can create is
the quota amount

2. The Create Process system service requires system dynamic
memory.

4-38

)

)

)

)

)

3.

Notes:

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

When a subprticess is created, certain of the quotas
to it either specifically or by default are deducted
quotas of the creator l and may be returned to the
when the subprocess is deleted. Sections 4.19.1
4.19.3 describe how quotas are determined in
creation.

granted
from the
creator
through
process

1. Some error conditions are not detected until the created
process executes. These conditions include an invalid or
nonexistent image; invalid SYS$INPUT, SYS$OUTPUT, or
SYS$ERROR logical name equivalences; and inadequate quotas
or insufficient privilege to execute the requested image.

2. If a mailbox unit is specified, the mailbox is not used until
the created process actually terminates. At that time, a
$ASSIGN system service is issued for the mailbox in the
context of the ter~inating process and an accounting message
is sent to the mailbox. If the mailbox no longer exists,
cannot be assigned, or is full, the error is treated as if no
mailbox had been specified.

The message is sent before the process rundown is initiated
but after the process name has been set to nUll. Thus, a
significant interval of time can occur between the sending of
the termination message and the final deletion of the
pro·cess.

To receive the message, the caller must issue a read to the
mailbox. When the I/O completes, the second longword of the
I/O status block, if one is specified, contains the process
identification of the deleted process.

Symbolic names for offsets of fields within the accounting
message are defined in the $ACCDEF macro. The offsets, their
symbolic names, lengths, and the contents of each field are
listed below.

Offset

o
2
4
8

12
16

24

32
44

4&

52
56
60

Name

ACC$W_MSGTYP

ACC$L FINALSTS
ACC$L:=PID

ACC$Q_TERMTIME

ACC$T_ACCOUNT

ACC$T USERNAME
ACC$L:=CPUTIM

ACC.$L_PAGEFLTS

ACC$L PGFLPEAK
ACC$L-WSPEAK
ACC$L:=BIOCNT

Length

word
word
longword
longword
longword
quadword

8 bytes

12 bytes
longword

longword

longword
longword
longword

4-39

Contents

MSG$ DELPROC
not used
Exit status code
Process identification
Not used
Current time in system
format at process
termination
Account name for
process, blank filled
User name, blank filled
CPU time used by the
process, in
10-millisecond units
Number of page faults
incurred by the process
in its lifetime
Peak paging file usage
Peak working set S1ze
Count of buffered I/O
operations performed by
the process

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

Offset Name Length Contents

64 ACC$L DIOCNT longword Count of direct I/O - operations performed by
the process

68 ACC$L_VOLUMES longword Count of volumes mounted
by the process

72 ACC$Q_LOGIN quadword Time . in system format
that process logged in

80 ACC$L_OWNER longword Process identification
of owner

The length of the termination message is equated to the
constant ACC$K_TERMLEN.

3. All subprocesses created by a process must terminate before
the creating process can be deleted. If subprocesses exist
when their creator is deleted, they are automatically
deleted.

For examples of subprocess creation, termination mailboxes, and system
services that control the execution of processes, see Section 3.5,
"Process Control Services."

4.19.1 Format of the Quota List

The system defines specific resources that are controlled by quotas.
A quota limits the use of a particular system resource by a process.

The quota list addressed by the QUOTA argument of the $CREPRC system
service consists of consecutive quota values contained in longwords,
each preceded by a byte that indicates the quota type.

The $PQLDEF macro defines symbolic names for the quotas in the format:

PQL$_type

The quota list is terminated by the type code PQL$_LISTEND. For
example, a quota list may be specified as:

OLIST: .BYTE F'OL$_F'RCLM LIMIT NUMBER OF SUBPROCESSES
.LONG 2 MAX :::: 2 SUBF'ROCESSES
.BYTE F'm.$_ASTLM LIMIT NUMBER OF ASTS
.LONG 6 MAX :::: 6 OUTSTANDING ASTS
.BYTE F'OL$_LISTEND END OF ~UOTA LIST

4.19.2 Quota Descriptions

The individual quota types are described below. Each description also
indicates the following characteristics of the quota:

• Minimum value. A process cannot be created if it does not
have a quota equal to or greater than this minimum.

• Default value. If the quota list does not specify a value
for a particular quota, the system assigns the process this
default value.

4-40

)

\

}

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

• Deductible/Non-deductible. When a subprocess is created, the
value specified for a deductible quota is subtracted from the
current quota value of the creator. These quotas are
returned to the creating process when the subprocess is
deleted. Non-deductible quotas are not subtracted.

Quotas are never deducted from the creator when a detached
process is created.

Note that the minimum and default values listed are no~ necessarily
those provided at your installation; they are, however, the values
recommended for general use.

Section 4.19.3 describes how these characteristics may affect quota
assignments.

PQL$ ASTLM
-AST limit. This quota restricts both the number of outstanding

AST routines specified in system service calls that accept an AST
address and the number of scheduled wakeup requests that can be
issued.

Minimum: 2
Defaul t: 10
Non-deductible

PQL$ BIOLM
-Buffered I/O limit. This quota limits the number of outstanding

system-buffered I/O operations. A buffered I/O operation is one
which uses an intermediate buffer from the system pool rather
than a buffer specified in a process's $QIO request.

Minimum: 2 "'" ,~

Default: 6
Non-deductible

PQL$ BYTLM
-Buffered I/O byte count quota. This quota limits the amount of

system space that can be used to buffer I/O operations or to
create temporary mailboxes.

Minimum:
Default:
Deductible

PQL$ CPULM

1024
10240

-CPU time limit. This quota can be used to limit the total amount
of CPU time used by a process. If the quota is specified as 0,
there is no CPU time limit; the creating process, however, must
have unlimited CPU time itself in order to grant the created
process unlimited time.

If specified, the CPU time limit must be specified in units of 10
milliseconds. This quota is consumable; when the time limit has
been used, the process is deleted. If a subprocess is given
limited CPU time, the amount of time used is not returned to the
creator when the subprocess is deleted.

Min:i:mum: 0
Default: 0
Deductible

4-41

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

PQL$ DIOLM
-Direct I/O quota. This quota limits the number of outstanding
direct I/O operations. A direct I/O operation is one for which
the system locks the pages containing the associated I/O buffer
in memory for the duration of the I/O operation.

Minimum: 2
Default: 6
Non-deductible

PQL$ FILLM
-Open file quota. This quota limits the number of files that a

process can have open at one time.

Minimum: 2
Default: 20
Deductible

PQL$ PGFLQUOTA
-Paging file quota. This quota limits the number of pages that

can be used to provide secondary storage in the paging file for a
process's execution.

Minimum: 256
Default: 10000
Deductible

PQL$ PRCLM
-Subprocess quota. This quota limits the number of subprocesses a

process can create.

Minimum:
Default:
Deductible

PQL$ TQELM

o
8

-Timer queue entry quota. This quota limits both the number of
timer queue requests a process can have outstanding and the
creation of temporary common event flag clusters.

Minimum:
Default:
Deductible

PQL$ WSDEFAULT

o
8

-Default working set size. This quota defines the number of pages
in the default working set for any image executed by the process.
The maximum size that can be specified for this quota is
determined by the working set size quota.

Minimum: 10
Default: 100
Non-deductible

PQL$ WSQUOTA
-Working set size

which an image
Working Set Limit

Minimum: 10
Default: 200
Non-deductible

quota; This quota limits the maximum size to
can expand its working set size with the Adjust
($ADJWSL) system service.

4-42

)
/.

)

)

)

)

)

)

\
J

SYSTEM SERVICE DESCRIPTIONS
$CREPRC - CREATE PROCESS

4.19.1 Quota Values

Values specified in the quota list are not necessarily the quotas that
will actually be assigned to the created process. The $CREPRC system
service performs the following steps to determine the quota values
that will be assigned:

1. It constructs a default quota list for the process being
created, assigning it the default values for all q~otas.

2. It reads the specified quota list, if any,
corresponding items in the default list.
contains multiple entries for a quota,
specification is used.

and updates the
If the quota list
only the last

3. For each item in the updated quota list, it compares the
quota value with the minimum value required for the quota and
uses the larger value.

If a subprocess is being created:

1. The resulting value is compared with the current value of
the corresponding quota .of the creator. If the value
exceeds the creator's quota, the status code SS$ EXQUOTA
is returned and the subprocess is not created.

2. If the quota is
resulting value
that the creator
quota. required.
returned and the

a deductible quota, it deducts the
from the creator's quota and verifies

will still have at least the minimum
If not, the status codeSS$ EXQUOTA is

subprocess is not created. -

If a detached
not compared
Moreover, the
value exceeds

process is created, the resulting values are
with the creator's, nor are quotas deducted.

service does not check that a specified quota
the maximum allowed by the system.

4-43

SYSTEM SERVICE DESCRIPTIONS

$CRETVA

4.20 $CRETVA - CREATE VIRTUAL ADDRESS SPACE

The Create Virtual Address Space system service adds a range of pages
to a process's virtual address space for the execution of the current
image.

Macro Format:

$CRETVA inadr , [retadr] , [acmode]

High-Level Language Format:

inadr

SYS$CRETVA(inadr , [retadr] , [acmodel)

address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be created. If the starting
and ending virtual addresses are the same, a single page is
created. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually created.

acmode
access mode and protection for the new pages. The specified
access mode is maximized with the caller's access mode. The
protection of the pages is read/write for the resultant access
mode and those more privileged.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The input address array cannot be read, or the return address

array cannot be written, by the caller.

SS$_EXQUOTA
The process has exceeded its paging file quota.

SS$ INSFWSL
- The process's working set limit is not large enough to

accommodate the increased size of the virtual address space.

SS$_NOPRIV
A page in the specified range is in the system address space.

SS$ PAGOWNVIO
- A page in the specified range already exists and can not be

deleted because it is owned by a more privileged access mode than
that of the caller.

SS$_VASFULL
The process's virtual address space is full; no space is
available in the page tables for the requested pages.

4-44

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$CRETVA - CREATE VIRTUAL ADDRESS SPACE

Resources Required/Returned:

The processes paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes:

1. Pages are created starting at the address contained in the
first longword of the location addressed by the parameter
INADR and ending with the second longword. The ending
address can be lower than the starting address. The return
address array indicates the byte addresses of the pages
created.

2. If an error occurs while creating pages, the return array, if
requested, indicates the pages that were successfully created
before the error occurred. If no pages were created, both
longwords of the return address array contain a -1.

3. Each page to be created is first deleted, if necessary, and
then reinitialized to a demand-zero page.

The Expand Program/Control Region ($EXPREG) also adds pages to a
process's virtual address space. For additional details on page
creation and deletion, see Section 3.8.2, "Increasing and Decreasing
virtual Address Space."

4-45

SYSTEM SERVICE DESCRIPTIONS

$CRMPSC

4.21 $CRMPSC - CREATE AND MAP SECTION

The Create and Map Section system service identifies a disk file for
use as a global section or a private section and optionally makes the
correspondence between virtual blocks in the file and pages in the
caller's virtual address space. If the section already exists, the
service maps it. Depending on the actual operation requested, certain
arguments are required or optional. Table 4-1 summarizes how the
$CRMPSC system service interprets the arguments passed to it, and
under what circumstances it requires or ignores arguments.

Macro Format:

$CRMPSC [inadr] , [retadr] , [acmode] , [flags] , [gsdnam] , [ident]
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc]

High-Level Language Format:

inadr

SYS$CRMPSC ([inadr] f [retadr] , [acmode] , [flags] , [gsdnam] , [ident]
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc])

address of a 2-10ngword array containing the starting and ending
virtual addresses in the process's virtual address space into
which the section is to be mapped. If the starting and ending
virtual addresses are the same, a single page is mapped. Only
the virtual page number portion of the virtual addresses is used;
the low-order 9 bits are ignored.

If this argument is not specified, or specified as 0, the section
is not mapped.

retadr
address
virtual
actually

of a 2-10ngword array to receive the starting and ending
addresses of the pages into which the section was
mapped.

acmode
access mode to be the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller.

flags
mask defining the section type and characteristics. Flag bit
settings may be ORed together to override default attributes.
The $SECDEF macro defines symbolic names for the flag bits in the
mask. Their meanings, and the default values they override, are:

Flag

SEC$M GBL
SEC$M-CRF
SEC$M::::DZRO

SEC$M WRT
SEC$M-PERM
SEC$M::::SYSGBL

Meaning

Global section
Pages are copy-an-reference
Pages are demand-zero pages

Read/write section
Permanent
System global section

4-46

Default Attribute

Private section
Pages are shared
Pages are not zeroed

when copied
Read-only
Temporary
Group global section

)

)

)

)

')

)

)

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC - CREATE AND MAP SECTION

gsdnam .

ident

address of a character string descriptor pointing to the 1- to
IS-character text name strihg for the global section~ For group
globa~ sections, the global section name is implicitly qualified
by the group number of the process creating the global section.

address of a quadword indicating the version number of a
section, and, for processes mapping to an existing
section, the criteria for matching the identification.

global
global

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits. Values
for these fields can be assigned by installation convention to
differentiate versions of global sections. If no version number
is specified when a section is created, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its low-order 3 bits, the
matching criteria. The valid values, symbolic names by which
they can be specified, and their meanings are:

Value/Name

o SEC$K MATALL
1 S.EC$K=MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section

The match control field is ignored when a section is created. If
no address is specified, or is specified as 0 (the default), the
version number and match control fields default to O.

relpag

chan

relative page number within the section of the first page in the
section to be mapped. If not specified, or specified as 0 (the
default), the global section is mapped beginning with the first
virtual block in the file.

number of the channel on which the file has been accessed. The
file must have been accessed with an RMS $OPEN macro; the file
options parameter (FOP) in the FAB must indicate a user file open
(UFO keyword). The access mode at which the channel was opened
must be the same or less privileged than the access mode of the
caller.

pagcnt

vbn

number of pages in the section. The specified page count is
compared with the number of pages in the section file; if they
are different, the lower value is used. If the page count is not
specified, or specified as 0 (the default) the size of the
sectiun file is used.

virtual block number in the file that marks the beginning of the
section. If not specified, or specified as 0 (the default) the
section is created beginning with the first virtual block in the
file.

4-47

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC - CREATE AND MAP SECTION

prot

pfc

numeric value representing the protection mask to be applied to
the global section.

The mask contains four 4-bit fields:'

15 11 7 3 0

I WORLD I GROUP I OWNER I SYSTEM I

Bits read from right to left in each field, when clear, indicate
that read, write, execute, and delete privileges, in that order,
are granted to the particular category of user.

Only read and write privileges are meaningful for global section
protection.

If not specified, or specified as 0, read and write privileges
are granted to all users.

page fault cluster size. If specified, the cluster size
indicates how many pages are to be brought into memory when a
page fault occurs for a single page.

Return Status:

SS$ NORMAL
- Service successfully completed. The specified global section

already existed and has been mapped.

SS$_CREATED
Service successfully completed. The specified global section did
not previously exist and has been created.

SS$_ACCVIO
The input address array or
descriptor cannot be read,
written, by the caller.

the global section name or name
or the return address array cannot be

SS$_ENDOFFILE
Warning. The starting virtual block number specified is beyond
the logical end-of-file.

SS$_GPTFULL
There is no more room in the system global page table to set up
page table entries for the section.

SS$_GSDFULL
There is no more room in the system space allocated to maintain
control information for global sections.

SS$_EXQUOTA
The process exceeded its paging file quota while creating
copy-on-reference pages.

SS$_INSFWSL
The process's working set limit is not large enough to
accommodate the increased size of the address space.

4-48

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC -CREATE AND MAP SECTION

Table 4-1
Arguments for the $CRMPSC System Service

Create and
Map Global l

Create and
Map Global Map Private

Argument Section Section Section

INADR Optiona1 2 Required Required

RETADR Optional Optional Optional

ACMODE Optional Optional Optional

FLAGS
SEC$M GBL Required Ignored ---
SEC$M-CRF Optional Not used Optional
SEC$M-DZRO Optional Not used Optional
SEC$M-WRT Optiona1 2 Optional Optional
SEC$M-PERM Optional Not used Not used
SEC$M:SYSGBL Optional Optional Not used

GSDNAM Required Required Not used

IDENT Optional Optional Not used

RELPAG Optional Optional Not used

CHAN Required Required

PAGCNT Required Required

VBN Optional Optional

PROT Optional Not used

PFC Optional Optional

1 The Map Global Section ($MGBLSC) system service maps an existing
global section.
2 If the $CRMPSC system service is called to create, but not map, a
global section., the global section must be permanent.

SS$ IVCHAN
- An invalid channel number was specified, that is a channel number

of 0 or a number larger than the number of channels available.

SS$ IVCHNLSEC
- The channel number specified is currently active.

SS$ IVLOGNAM
-The specified global section name has a length of 0, or has more

than 15 characters.

SS$_IVSECFLG .
An invalid flag has been specified. Either a reserved flag has
been set, or one requiring a user privilege.

SS$_IVSECIDCTL
The match control field of the global section identification is
invalid.

4-49

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC - CREATE AND MAP SECTION

SS$ NOPRIV
- The process does not have the privilege to create a system global

section or a permanent group global section.

A page in the input address range is in the system address space.

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$_PAGOWNVIO
A page in the specified input address range is owned by a more
privileged access mode.

SS$_SECTBLFUL
There are no entries . available in the system global section
table.

SS$_VASFULL
The process's virtual address space is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions:

The user privilegeSYSGBL is required to create a system global
section; the PRMGBL privilege is required to create a permanent
global section.

Resources Required/Returned:

The process's working set limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section. If the section pages are
copy-on~reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes:

L When the $CRMPSC system service maps a section, it calls the
Create Virtual Address Space ($CRETVA) system service to add
the pages specified by the INADR argument to the process's
virtual address space. The specified virtual addresses can
be in the program (PO) region or the control (PI) region.

If a global section is of an unknown size, a process can
obtain the virtual address of the first available page in its
program or control region from the Get Job/Process
Information ($GETJPI) system service and use the address
returned as the starting address in the input address array.
The ending address may be a very high address (if the section
is to be mapped in the program region) or a very low address
(if mapped in the control region). The $CRMPSC system
service returns the virtual addresses of the pages created in
the RETADR argument, if specified. The section is mapped
from a low address to a high address, regardless of whether
the section is mapped in the program or control region.

4-50

)

)

)
/

)

)

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC - CREATE AND MAP SECTION

2. If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

If the global section is permanent, it is not deleted if the
mapping operation fails.

For examples of the creation and mapping of private and global
sections, see Section 3.8.6, "Sections."

4-51

SYSTEM SERVICE DESCRIPTIONS

$DACEFC

4.22 $DACEFC - DISASSOCIATE COMMON EVENT'FLAG CLUSTER

The Disassociate Common Event Flag Cluster system service releases the
calling process's association with a common event flag cluster.

Macro Format:

$DACEFC efn

High-Level Language Format:

efn

SYS$DACEFC(efn)

number of any event flag in the common cluster to be
disassociated. The flag number must be in the range of 64
through 95 for cluster 2 and 96 through 127 for cluster 3.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ILLEFC
- An illegal event flag number was specified. The number must be

in the range of event flags 64 through 127.

Notes:

1.

2.

The count of processes associated with the cluster is
decreased for each process that disassociates. When the
image that associated with a cluster exits, the system
performs an implicit disassociate for the cluster. When the
count of processes associated with a temporary cluster or a
permanent cluster marked for deletion reaches zero, the
cluster is automatically deleted.

If a process issues this service specifying an
cluster with which it is not associated,
completes successfully.

event flag
the service

For an example of the $DACEFC system service and a description of the
creation and association of common event flag clusters, see Section
3.1.4, "Common Event Flag Clusters."

4-52

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$DALLOC

4.23 $DALLOC - DEALLOCATE DEVICE

The Deallocate Device system service deal locates a previously
allocated device. Exclusive use by the issuing process is
relinquished and other, processes can assign or allocate the device.

Macro Format:

$DALLOC [devnam] ,[acmode]

High-Level Language Format:

SYS$DALLOC([devnam] ,[acmode])

devnam
address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character ~n the string is an
underline character (), the name is considered a physical device
name. Otherwise, a sIngle level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unles~ the name is that
of the host system.

If no device name is specified, all devices allocated by the
process from access modes equal to or less privileged than that
specified are deallocated.

acmode
access mode
performed.
the caller.

Return Status:

SS$ NORMAL

on behalf of which the deal location is to be
The access mode is maximized with the access mode of

- Service successfully completed.

SS$ ACCVIO
- The device name string or string descriptor cannot be read by the

caller.

SS$_DEVASSIGN
Warning. The device cannot be deallocated because the process
still has channels assigned to it.

SS$_DEVNOTALLOC
Warning. The device is not allocated to the requesting process.

SS$ IVDEVNAM
- No device name string was specified or the device name string

contains invalid characters.

SS$_IVLOGNAM
The device name string has a length of 0 or has more than 63
characters.

4-53

I

SS$ NOPRIV

SYSTEM SERVICE DESCRIPTIONS
$DALLOC - DEALLOCATE DEVICE

- The device was allocated from a more privileged access mode.

SS$ NOSUCHDEV
- Warning. The specified device does not exist in the host system.

Privilege Restrictions:

An allocated device can be deallocated only from access modes
equal to or more privileged than the access mode from which the
original allocation was made.

Notes:

1. A process cannot deallocate a device at any time. If, at the
time of deallocation, the issuing process has one or more I/O
channels assigned to the device, the device remains
allocated.

2. The system automatically deal locates all devices that were
allocated at user mode at image exit.

3. If an attempt is made to deallocate a mailbox, success is
returned but no operation is performed.

For an example of how to use this service and additional notes on
devicie allocation, see Section 3.4.9, "Device Allocation."

4-54

\
)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$DASSGN

4.24 $DASSGN - DEASSIGN I/O CHANNEL

The Deassign I/O Channel system service releases an I/O channel
acquired for input/output operations with the Assign I/O Channel
($ASSIGN) system service.

Macro Format:

$DASSGN chan

High-Level Language Format:

SYS$DASSGN(chan)

chan
number of the I/O channel to be deassigned.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ IVCHAN
- An invalid

number of
available.

channel number was
o or a number

specified~ that is, a channel
larger than the number of channels

SS$_NOPRIV
The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

An I/O channel can be deassigned only from an access mode equal
to or more privileged than the access mode from which the
original channel assignment was made.

Notes:

1. When a channel is deassigned, any outstanding I/O requests on
the channel are canceled. If a file is open on the specified
channel, the fi~e is closed.

2. If a mailbox was associated with the device when the channel
was assigned, the linkage to the mailbox is cleared if there
are no more channels assigned to the mailbox.

3. If the I/O channel
network link is
channel assignment
see the DECnet~VAX

was assigned for a network operation, the
disconnected. For more information on
and deassignment for network operations,
User's Guide.

4-55

SYSTEM SERVICE DESCRIPTIONS
$DASSGN - DEASSIGN I/O CHANNEL

4. If the specified channel is the last channel assigned to a
device that has been marked for dismounting, the device is
dismounted.

5. I/O channels are automatically deassigned at image exit.

For an example of the
information on channel
Channels."

$DASSGN system
assignment, see

4-56

service
Section

and additional
3.4.1, "Assigning

)

)

)
-"

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$OCLAST

4.25 $DCLAST - DECLARE AST

The Declare AST system service queues an AST for the calling or for a
less privileged access mode. For example, a routine executing in
supervisor mode can declare an AST for either supervisor or user mode.

Macro Format:

$DCLAST astadr , [astprm] , [acmode]

High-Level Language Format:

SYS$DCLAST(astadr , [astprm] , [acmode])

astadr
address of the entry mask of the AST service routine.

astprm
value to be passed to the AST routine as an argument, if any.

acmode
access mode for which the AST is to be declared. This access
mode is maximized with the access mode of the caller. The
resultant mode is the access mode for which the AST is declared.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ EXQUOTA
- The process has exceeded its AST limit quota.

SS$ INSFMEM
- Insufficient system dynamic memory is available to complete the

service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

Resources Required/Returned:

Note:

1. The Declare AST system service requires system dynamic
memory.

2. This service us~s the process's AST limit quota (ASTLM).

The $DCLAST system service does not validate the address of the
AST service routine. If an illegal address, for example, an
address of 0, is specified, an access violation occurs when the
AST'service routine is given control.

For an example of the $DCLAST system service and notes and coding
conventions for AST service routines, see Section 3.2, "Asynchronous
System Trap (AST) Services."

4-57

SYSTEM SERVICE DESCRIPTIONS

$OCLCMH

4.26 $DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

Declare Change Mode or Compatibility Mode Handler ($DCLCMH) system
service establishes the address of a routine to receive control when
(1) a Change Mode to User or Change Mode to Supervisor instruction
trap occurs, or (2) a compatibility mode fault occurs.

Macro Format:

$DCLCMH addres, [prvhnd] ,[type]

High-Level Language Format:

SYS$DCLCMH(addres ,[prvhnd] ,[type])

addres
address of a routine to receive control when a change mode trap
or a compatibility mode fault occurs. An address of 0 clears a
previously declared handler.

prvhnd

type

address of a longword to receive the address of a previously
declared handler.

type indicator~ If specified as 0 (the default), a change mode
handler is declared for the access mode at which the request is
issued. If specified as 1, a compatibility mode handler is
declared.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The longword to receive the address of the previous change mode

handler cannot be written by the caller.

Notes:

1. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It
allows a routine that executes in supervisor mode to be
called from user mode. The change mode handler is declared
from supervisor mode; when the process is then executing in
user mode and issues a Change Mode to Supervisor instruction,
the change mode handler receives control, and executes in
supervisor mode.

2. Compatibility mode handlers are used by the operating system
to bypass normal condition handling procedures when an image
executing in compatibility mode incurs a compatibility mode
exception.

4-58

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

3. When the change mode or compatibiiity mode handler receives
control, the stack pointer points to the change mode code
specified in the change mode instruction or the compatibility
exception type code. On exit, the handler must remove the
code from the stack, then relinquish control with an REI
instruction.

4. A change mode handler can be declared only from user or
supervisor modes.

4-59

SYSTEM SERVICE DESCRIPTIONS

$DCLEXH

4.27 $DCLEXH - DECLARE EXIT HANDLER

The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. Image exit normally
occurs when the image currently executing in a process returns control
to the operating system. Image exit may also occur when the Exit
($EXIT) or Force Exit ($FORCEX) system services are called.

Macro Format:

$DCLEXH desblk

High-Level Language Format: ,

SYS$DCLEXH(desblk)

desblk
address of a control block describing the exit handler. The exit
control block has the format~

31

I

forward link

exit handler address

0

address to store reason for exit

additional arguments
for eXit handler,

if any

The system fills in the first longword.

Return Status:

SS$ NORMAL
- Service successfully completed.

8 7 o

I n

I

SS$ ACCVIO
- The first longword of the exit control block cannot be written hy

the caller.

SS$_NOHANDLER
Warning. No exit handler control block address was specified;
or, the address specified is o.

4-60

)

)

)

)

)

)

Notes:

SYSTEM SERVICE DESCRIPTIONS
$DCLEXH - DECLARE EXIT HANDLER

1. Exit handlers are described by exit control blocks. The
operating system maintains a separate list of these control
blocks for user, supervisor, and executive modes. The
$DCLEXH system service adds the description of an exit
handler to the front of one of these lists. The actual list
to which the eiitcontrol block is added is determined by the
access mode of the caller.

2.

This service can only be called from user, supervisor, and
executive modes.

At image exit, the exit handlers declared from user mode are
called first; they are called in the reverse order from
which they were declared.

Each exit handler is executed only once; it must be
redeclared before it can be executed again. The exit
handling routine is called as a normal procedure with the
argument list specified in the 3rd through nth longwords of
the exit control block. The first argument is the address of
a longword to r.eceive a system status code indicating the
reason for exit; the system always fills in this longword
before calling the exit handler.

3. The Cancel Exit Handler ($CANEXH) removes an exit control
block from the list.

For an example of an exit control block and a description of the
action the system takes when an image exits, see Section 3.5.6, "Image
Exit."

4-61

SYSTEM SERVICE DESCRIPTIONS

$DEllOG

4.28 $DELLOG - DELETE LOGICAL NAME

The Delete Logical Name system service deletes a logical name and its
equivalence name from the process, group, or system logical name
table.

Macro Format:

$DELLOG [tblflg] ,[lognam] ,[acmode]

High-Level Language Format:

SYS$DELLOG ([tblflg] ,[lognam] ,[acmode])

tblflg
logical name table number. A value of ° (the default)
the system table, 1 indicates the group table, and 2
the process table.

lognam

indicates
indicates

address of a character string descriptor pointing to the logical
name string. If omitted, all logical names the process is
privileged to delete in the specified table are deleted.

acmode
access mode associated with the process logical name table entry.
The specified access mode is maximized with the access mode of
the caller; only the logical name entered at the resulting
access mode is deleted. This argument is used only for deleting
names from the process logical name table.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The lqgical name string or string descriptor cannot be read by

the caller.

SS$_IVLOGNAM
The logical name string has a length of 0, or has more than 63
characters.

SS$ IVLOGTAB
- An invalid logical name table number was specified.

SS$ NOLOGNAM
- Either (1) the specified logical name does not exist in the

specified logical name table, or (2) the specified logical name
exists in the process logical name table but the entry was made
from a more privileged access mode.

SS$_NOPRIV
The process does not have the privilege to delete an entry from
the specified logical name table.

4-62

)

)

)

)

)

)

')

)

)

SYSTEM SERVICE DESCRIPTIONS
$DELLOG -DELETE LOGICAL NAME

Privilege Restrictions:

The user privileges GRPNAM and SYSNAM are required to
names from the group and system logical name
respectively.

Resources Required/Returned:

delete
tables,

1. Deletion of a logical name from the group or system table
returns storage to system dynamic memory.

2. When a logical name is deleted from the process logical name
table, the number of bytes in the control region of the
process's virtual address space required to maintain the
table entry become available for other process logical name
table entries.

Notes:

1. Logical names can be deleted from the command stream with the
DEASSIGN command.

2. Names in the process logical name table that are qualified by
user mode are automatically deleted at image exit.

For an example of the $DELLOG system service and additional details on
logical name creation and translation, see Section 3.3, "Logical Name
Services."

4-63

SYSTEM SERVICE DESCRIPTIONS

·$DELMBX

4.29 $DELMBX - DELETE MAILBOX

The Delete Mailbox system service marks a permanent mailbox for
deletion. The actual deletion of the mailbox and o£ its associated
logical name assignment occur when no more I/O channels are assigned
to the mailbox.

Macro Format:

$DELMBX chan

High-Level Language Format:

SYS$DELMBX(chan)

chan
number of the chann~l assigned to the mailbox.

Return Status:

SS$ NORMAL
- Service successfully compLeted.

SS$ DEVNOTMBX
- The specified channel is not assigned to a mailbox.

SS$ IVCHAN
- An invalid

number of
available.

SS$_NOPRIV

channel number was specified, that is, a channel
o or a number larger than the number of channels

The specified channel is not assigned to a device, the process
does not have the privilege to delete a permanent mailbox, or the
access mode of the caller is less privileged than the access mode
from which the channel was assigned.

Privilege Restrictions:

1. The user privilege PRMMBX is required to delete a permanent
mailbox.

2. A mailbox can be deleted only from an access mode equal to or
more privileged than the access mode from which the mailbox
channel was assigned.

4-64

}
/

)

)

)

)

)

)

)

)

Notes:

SYSTEM SERVICE DESCRIPTIONS
$DELMBX - DELETE MAILBOX

1. Temporary mailboxes are automatically deleted when their
reference count goes to zero.

2. The $DELMBX system service does not deassign the channel
assigned by the caller, if any. The caller must deassign the
channel with the Deassign I/O Channel ($DASSGN) system
service.

For information on the creation and use of mailboxes, see Section
3.4.13, "Mailboxes."

4-65

SYSTEM SERVICE DESCRIPTIONS

$DELPRC

4.30 $DELPRC - DELETE PROCESS

The Delete Process system service allo·ws a process to delete itself or
another process.

Macro Format:

$DELPRC [pidadr] ,[prcnam]

High-Level Language Format:

SYS$DELPRC ([pidadr] ,[prcnam])

pidadr
address of a longword containing the process identification of
the process to be deleted.

prcnam
address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the delete.

If neither a process identification nor a process name is specified,
the caller is deleted and control is not returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

the process identification cannot be written, by the caller.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource wait Mode ($SETRWM) system service.

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

process identification was specified.

SS$_NOPRIV
The process does not have the privilege to delete the specified
process.

4-66

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$DELPRC - DELETE PROCESS

Privilege Restrictions:

User privileges are required to delete:

• Other processes in the same group (GROUP privilege)

• Any process in the system (WORLD privilege)

Resources Required/Returned:

1. The Delete Process system service requires system dynamic
memory.

2. Deductible resource quotas granted to subprocesses are
returned to the creator when the subprocesses are deleted.

Notes:

1. When a subprocess is deleted, a termination message is sent
to its creator, provided that the mailbox to receive the
message still exists and the creating process has access to
the mailbox. The termination message is sent before the
final rundown is initiated; thus, the creator may receive
the message before the process deletion is complete.

2. Due to the complexity of the required rundown operations, a
significant time interval occurs between a delete request and
the actual disappearance of the process. The Delete Process
service, however, returns immediately after initiating the
rundown operation. If subsequent delete requests are issued
for a process currently being deleted, the requests return
immediately with a return status code indicating successful
completion.

For a complete list of the actions performed by the
deletes a prociess, see Sections 3.5.6, "Image
"Process Deletion."

4-67

system, when it
Exit" and 3.5.7,

SYSTEM SERVICE DESCRIPTIONS

$DELTVA

4.31 $DELTVA - DELETE VIRTUAL ADDRESS SPACE

The Delete
addresses
completion
references

Virtual Address Space system service deletes a range of
from a process's virtual address space. Upon successful
of the service, the deleted pages are inaccessible; any
to them cause access violations.

Macro Format:

$DELTVA inadr, [retadr] , [acmode]

High-Level Language Format:

inadr

SYS$DELTVA(inadr , [retadr] , [acmode])

address of a 2-1ongword array containing the starting and ending
virtual addresses of the pages to be deleted. If the starting
and ending virtual addresses are the same, a single page is
deleted. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-1ongword array to receive the starting and ending
virtual addresses of the pages actually deleted.

acmode
access mode on behalf of which the service is to be performed.
The specified access mode is maximized with the access mode of
the caller. The resultant access mode is used to determine
whether the caller can actually delete the specified pages.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The input address array cannot be read, or the return address

array cannot be written, by the caller.

SS$-NOPRIV
- A page in the specified range is in the system address space.

SS$ PAGOWNVIO
- A page in the specified range is owned by an access mode more

privileged than the access mode of· the caller.

Privilege Restrictions:

Pages can only be deleted from access modes equal to or more
privileged than the access mode of the owner of the pages.

4-68

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$DELTVA - DELETE VIRTUAL ADDRESS SPACE

Notes:

1. The $DELTVA system service deletes pages starting at the
address contained in the second longword of the INADR array
and ending at the address in the first longword. Thus, if
the same address array is used for the Create Virtual Address
Space ($CRETVA) as for the $DELTVA system service, the pages
are deleted in the reverse order from which they were
created.

2. If any of the pages in the specified range have already been
deleted or do not exist, the service continues as if the
pages were successfully deleted.

3. If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages are deleted, both
longwords in the return address array contain a-I.

For an example of the $DELTVA system service
information on page creation and deletion, see
"Increasing and Decreasing Virtual Address Space."

4-69

and additional
Section 3.8.2,

SYSTEM SERVICE DESCRIPTIONS

$DGBLSC

4.32 $DGBLSC - DELETE GLOBAL SECTION

The Delete Global Section system service marks an existing permanent
global section for deletion. The actual deletion of the global
section takes place when all processes that have mapped the global
section have deleted the mapped pages.

Macro Format:

$DGBLSC [flags] ,gsdnam ,[ident]

High-Level Language Format:

flags

SYS$DGBLSC([flags] ,gsdnam ,[ident])

mask indicating global section characteristics. The only
significant bit used for the deletion of global sections is the
group/system flag. If this argument is specified as 0 (the
default), it indicates that the global section is a group global
section; if specified as SEC$M SYSGBL, it indicates a system
global section. -

gsdnam

ident

address of a character string descriptor pointing to the 1- to
IS-character text name of the global section to be deleted. For
group global sections, the global section name is implicitly
qualified by the group number of the caller.

address of a quadword indicating the version number of the global
section to delete and the matching criteria to be applied.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the low-order 3 bits, the
matching criteria. The valid values, symbolic names by which
they can be specified, and their meanings are listed below:

Value/Name

o SEC$K MATALL
1 SEC$K:MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section.

If no address is specified,or is specified as 0 (the default),
the version number and match control fields default to O.

4-70

)

)

)

)

)

)

Return Status:

SS$ NORMAL

SYSTEM SERVICE DESCRIPTIONS
$DGBLSC - DELETE GLOBAL SECTION

- Service successfully completed.

SS$ ACCVIO
- The global section name or name descriptor or the section

identification field cannot be read by the caller.

SS$_IVLOGNAM
The global section name has a length of 0, or has more than 15
characters.

SS$_IVSECFLG
An invalid flag has been specified. Either a reserved flag has
been set, or one requiring a user privilege.

SS$_IVSECIDCTL
The section identification match control field is invalid.

SS$ NOPRIV
- The caller does not have the privilege to delete a system global

section, or does not have read/write access to a group global
section.

SS$_NOSUCHSEC
Warning. The specified global section does not exist.

Privilege Restrictions:

The user privileges SYSGBL and PRMGBL are required to delete
system and permanent global sections, respectively.

Notes:

1. After a global section has been marked for deletion, any
process that attempts to map it receives the warning return
status code SS$_NOSUCHSEC.

2. Temporary global sections are automatically deleted when the
count of processes using the section goes to O.

3. This service does not unmap a section from a process's
virtual address space. When a process no longer requires use
of a section, it can unmap the section by calling the Delete
Virtual Address Space ($DELTVA) system service to delete the
pages to which the section is mapped.

For information on the creation and use of sections, see Section
3.8.6, "Sections."

4-71

SYSTEM SERVICE DESCRIPTIONS

$DLCEFC

4.33 $DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

The Delete Common Event Flag Cluster system service marks a permanent
common event flag cluster for deletion. The cluster is actually
deleted when no more processes are associated with it.

Macro Format:

$DLCEFC name

High-Level Language Format:

name

SYS$DLCEFC(name)

address of a character string descriptor pointing to the 1- to
IS-character text name of the cluster. The name is implicitly
qualified by the group number of the caller.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ IVLOGNAM
- The cluster name string has a length of 0, or has more than 15

characters.

SS$ NOPRIV
The process does not have the privilege to delete a permanent
common event flag cluster.

Privilege Restrictions:

The user privilege PRMCEB is required to delete permanent common
event flag clusters.

Notes:

1. The ~DLCEFC system service does not perform an implicit
disassociate request for the caller. A process disassociates
with a cluster by calling the Disassociate Common Event Flag
Cluster ($DACEFC) system service. The system performs an
implicit disassociate for the cluster at image exit.

2. If the cluster has already been deleted or does not exist,
the $DLCEFC service returns the status code SS$_NORMAL.

For an example of creating and using a common event flag cluster, see
Section 3.1.4, "Common Event Flag Clusters."

4-72

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$EXIT

4.34 $EXIT - EXIT

The Exit system service is used by the operating system to initiate
image rundown when the current image in a process completes execution.
Control normally returns to the command interpreter.

Macro Format:

$EXIT [code]

High-Level Language Format:

code

SYS$EXIT ([code])

longword value to be saved in the process header as the
completion status of the current image. If not specified in a
macro call, a value of I is passed as the completion code. This
value can be tested at the command level to provide conditional
command execution.

Return Status:

Note:

No status codes are returned by this service because control is
not returned to the caller; rather, an exit to the command
interpreter is performed.

For a complete list of the actions taken by the system at image
exit, see Section 3.5.6, "Image Exit."

4-73

SYSTEM SERVICE DESCRIPTIONS

$EXPREG ,
S1;~t.A/')

"
4.35 $EXPREG - EXPAND PROGRAM/CONTROL REGION

The Expand Program/Control Region system service adds a
number of new virtual pages to a process's program region
region for the execution of the current image. Expansion
the current end of that region's virtual address space.

Macro Format:

$EXPREG pagcnt, [retadr] , [acmode] , [region]

High-Level Language Format:

SYS$EXPREG (pagcnt , [retadr] , [acmode] , [region])

pagcnt

specified
or control
occurs at

number of pages to add to the current end of the program or
control region.

retadr
address of a 2-1ongword array to receive the starting and ending
virtual addresses of the pages actually added.

acmode
access mode and protection for the new
access mode is maximized with the access
protection of the pages is read/write for
mode and more privileged access modes.

pages. The specified
mode of the caller. The

the specified access

region
region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be expanded. A value of 1
indicates that the control region (PI region) is to be expanded.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- ~he return address array cannot be written by the caller.

SS$ EXQUOTA
- The process exceeded its paging file quota •

. SS$ ILLPAGCNT
- The specified page count was less than 1.

SS$ INSFWSL
- The process's working set limit is not large

accommodate the increased virtual address space.
enough to

SS$_VASFULL
The process's virtual address space is full; no space is
available in the process page table for the requested regions.

4-74

~)

)

)

)

)

)

)

)

)
./

SYSTEM SERVICE DESCRIPTIONS
$EXPREG - EXPAND PROGRAM/CONTROL REGION

Resources Required/Returned:

The process's paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes:

1. The new pages, which were previously inaccessible to the
process, are created as demand-zero pages.

2. Because the bottom of the user stack is normally located a~
the end of the control region, expanding the control region
is equivalent to expanding the user stack. The effect is to
increase the available stack space by the specified number of
pages.

3. The starting address returned is always the first available
page in the designated region; therefore, the ending address
is smaller than the starting address when the control region
is expanded and is larger than the starting address when the
program region is expanded.

4. Ifan error occurs while adding pages, the return address
array, if requested, indicates the pages that were
successfully added before the error occurred. If no pages
were added, both longwords of the return address array
contain a-I.

5. The information returned in the location addressed by the
RETADR argument, if specified, can be used as the input range
to the Delete Virtual Address Space ($DELTVA) system service~
Pages can also be deleted with the Contract Program/Control
Region ($CNTREG) system.service.

For an example of the $EXPREG system service
information on creating and deleting pages, see
"Increasing and Decreasing Virtual Address Space."

4-75

and additional
Section 3.8.2,

SYSTEM SERVICE DESCRIPTIONS

$FAO

4.36 $FAO - FORMATTED ASCII OUTPUT

The Formatted ASCII Output system service converts binary values into
ASCII characters and returns the converted characters in an output
string. It can be used to:

• Insert variable character string data into an output string

• Convert binary values into the ASCII representations of their
decimal, hexadecimal, or octal equivalents and substitute the
results into an output string.

Sections 4.36.2 through 4.36.5 provide syntactical notes, lists of
valid FAO directives and parameters, and examples of using FAO.

Macro Format:

$FAO ctrstr, [outlen] ,outbuf , [pI] , [p2] •.. , [pn]

High-Level Language Format:

SYS$FAO (ctstr , [outlen] ,outbuf , [pI] , [p2] ... , [pnl)

ctrstr
address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the
output string and FAO directives.

outlen
address of a word to receive the actual length of the output
string returned.

outbuf
address of a character string descriptor pointing to the output
buffer. The fully formatted output string is returned in this
buffer.

pI - pn
directive parameters contained in longwords. Dep~nding on the
directive, a parameter may be a value that is to be converted,
the address of the string that is to be inserted, or a length or
argument count. Each directive in the control string may require
a corresponding parameter or parameters.

Return Status:

SS$ BUFFEROVF
- Service successfully completed. The formatted output string

overflowed the output buffer and has oeen truncated.

SS$_NORMAL
Service successfully completed.

SS$ BADPARAM
- An invalid directive was specified in the FAO control string.

4-76

)

)
/

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Notes:

1. The $FAO S macro form uses a PUSHL instruction for all
parameters (Pl through Pn) coded on the macro instruction;
if a symbolic address is specified, it must be preceded with
a pound sign (#) character or loaded into a register.

2. A maximum of 20 parameters can be specified on the $FAO macro
instruction. If more than 20 parameters are required, use
the $FAOL macro.

3. The $FAO system service executes at the access mode of the
caller and does not check whether address arguments are
accessible before it executes. Therefore, an access
violation causes an exception condition if an input field
cannot be read or an output field cannot be written. Note
that an access violation can occur if an invalid length is
specified for an argument, or if an FAO parameter is coded
incorrectly.

4.36.1 $FAOL - Formatted ASCII Output with List Parameter

The Formatted ASCII Output
alternate way to specify
system service.

Macro Format:

with List Parameter macro provides an
input parameters for a call to the $FAO

$FAOL ctrstr ,[outlenJ ,outbuf ,prmlst

High-Level Language Format:

SYS$FAOL (ctrstr ,[outlenJ ,outbuf ,prmlst)

ctrstr
address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the
output string and conversion directives.

outlen
address of a word to receive the actual length of the output
string returned.

outbuf
address
buffer.
buffer.

prmlst

of a character string descriptor pointing to the output
The fully formatted output string is returned in this

address of the parameter list of longwords to be used as Pl
through Pn.

The parameter list may be a data structure that already exists in
a program and from which certain values are to be extracted.

Return Status:

Same as for $FAO system service.

4-77

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

4.36.2 FAO Directives

An FAO directive has the format:

!DD

(exclamation mark) indicates that the following character or
characters are to be interpreted as an FAO directive.

DD is a 1- or 2-character code indicating the action that FAO is
to perform. Each directive may require one or more input
parameters on the call to $FAO. All directive codes for FAO
must be specified in uppercase letters.

Optionally, a directive may include:

• A repeat count

• An output field length

A repeat count is coded as follows:

!n(DD)

where n is a decimal value instructing FAO to repeat the directive for
the specified number of parameters.

An output field length is specified as follows:

!lengthDD

where "length" is a decimal value instructing FAO to place the output
resulting from a directive into a field of "length" characters in the
output string.

A directive may contain both a repeat count and an output length, as
shown below:

!n(lengthDD)

Repeat counts and output field lengths may be specified as variables,
by using a # (number sign) in place of an absolute numeric value. If
a # is specified for a repeat count, the next parameter passed to FAO
must contain the count. If a # is specified for an output field
length, the next parameter must contain the length value.

If a variable output field length is specified with a repeat count,
only one length parameter is required; each output string will have
the specified length.

4.36.3 FAO Control String and Parameter Processing

An FAO control string may be any length and may contain any number of
FAO directives. The only restriction is on the use of the!
character (ASCII code A X2l) in the control string. If a literal! is
required in the output string, the directive!! provides an escape.

4-78

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

When FAO processes a control string, each character that is not part
of a directive is written into the output buffer. When a directive is
encountered, it is validated; if it is not a valid directive, FAO
terminates and returns an error status code. If the directive is
valid, and if it requires one or more parameters, the next consecutive
parameters specified are analyzed and processed.

FAO reads parameters from the argument list; it does not check the
number of arguments it has been passed. If there are not enough
parameters coded in the argument list, FAO will continue reading past
the end of the list. It is your responsibility, when coding a call to
$FAO, to ensure that there are enough parameters to satisfy the
requirements of all the directives in the control string.

4.36.4 Summary of FAO Directives and Output Field Length Defaults

Table 4-2 summarizes the FAO directives, and lists the parameter(s)
required by each directive. Table 4-·3 summarizes how FAO determines
the length of each output field in the control string as it processes
directives and substitutes character strings in the control string
while formatting the output buffer.

Examples in Section 4.36.5 describe in more detail how to use FAO.

4-79

Directive

Character String

SYSTEM SERVICE DESCRIPTIONS
$FAO -FORMATTED ASCII OUTPUT

Table 4-2
Summary of FAO Directives

Function

Substitution

Parameter (s)l

!AC Inser.ts a counted ASCII string Address of the string;
the first byte must
contain the length

!AD Inserts an ASCII string i) Length of string
2) Address of string

!AF Inserts an ASCII string; 1) Length of string
Replaces all nonprintable 2) Address of string
ASCII codes with periods (.)

!AS Inserts an ASCII string Address of quadword
character string
descriptor pointing
to the string

Numeric Conversion (zero-filled)

JOB Converts a byte to octal Value to be converted to
lOW Converts a word. to octal ASCII representation
!OL Converts a longword to octal

For byte or word
!XB Converts a byte to hexadecimal conversion, FAO uses only
!XW Converts a word to hexadecimal the low-order byte or
!XL Converts a longword to hexadecimal word of the longword

parameter
!ZB Converts an unsigned decimal byte
!ZW Converts an unsigned decimal word
!ZL Converts an unsigned decimal longword

Numeric Conversion (blank-filled)

!UB Converts an unsigned decimal byte Value to be converted to
LUW Converts an unsigned decimal word ASCII representation
LUL Converts an unsigned decimal longword

!SB Converts a signed decimal byte For byte or word
!SW Converts a signed decimal word conversion, FAO uses only
!SL Converts a signed decimal longword the low-order byte or

word of the longword
parameter

1 If a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters
required by' the directive.

4-80

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Table 4-2 (Cont.)
Summary of FAO Directives

Directive Function Parameter(s)l

Output String Formatting

!/ Inserts new· line (CR/LF) None

! Inserts a tab -
! " Inserts a form feed

! ! Inserts an exclamation mark

!%S Inserts the letter S if most recently
converted numeric value is not 1

!%T Inserts the system time Address of a quadword time
value to be converted to
ASCII . If 0 is specified,
the current system time is
used.

!%D Inserts the system date and time

!n< Defines output field width of n None
1> characters. All data and

directives within delimiters are left-
j ustif ied and blank-filled within
the field

!n*c Repeats the specified character in the
output string n times

Parameter Interpretation

!- Reuses last parameter in the list None

!+ Skips the next parameter in the list

1 If a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters
required by the directive.

4-81

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

Table 4-3
How FAO Determines Output Field Lengths and Fill Characters

Action When Explicit Action When Explicit
Conversion Default Length Output Field Length is Output Field Length is

/Substitution Type of Output Field Longer than Default Shorter than Default

Hexadecimal
Byte 2 (zero-filled) ASCII result is right- ASCII result is
Word 4 (zero-f illed) justified and blank- truncated on the
Longword B (zero-filled) filled to the specified left

length

Octal Hexadecimal or octal
Byte 3 (zero-filled) output is always zero-
Word 6 (zero-filled) filled to the default
Longword 11 (zero-f illed) output field length then

blank-f illed to specified
length

Signed or Unsigned As many characters ASCII result is right- Signed and unsigned
Decimal as necessary justified and blank-filled decimal' output fields

to the specified length are completely filled
with asterisks{*)

Unsigned Zero-filled As many characters ASCII result is right-
Decimal as necessary justified and zero-filled

to the specified length

ASCII String Length of input ASCII string is left- ASCII string is
Substitution character string justified and blank-filled truncated on the

to the specified length right

4-82

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

4.36.5 FAO Examples

Each of the examples on the following pages shows an FAO control
string with several directives, parameters defined as input for the
directives, and the calls to $FAO to format the output strings. The
numbered examples illustrate:

l. $FAO macro, !AC, !AS, lAD, and 1/ directives

2. $FAO macro, I I .. , and !AS directives, repeat count, output
field length

3. $FAO macro, !UL, !XL, !SL directives

4. $FAOL macro, !UL, !XL, !SL directives

5. $FAOL macro, lUB, lXB, lSB directives

6. $FAO macro, !XW, 1 ZW, !- directives, repeat count, output
field length

7. $FAOL m~cro, !AS, !UB, !%S, !- directives, variable repeat
count

8. $FAO macro, !n*c (repeat character), !%D directives

9. $FAO macro, !%D and !%T (with output field lengths), !n*
(with variable repeat count)

10. $FAO macro, ! < and ! > (define field width), lAC, and ! UL
directives

Each example is accompanied by notes, under the heading "Results".
These notes show the output string created by the call to $FAO and
describe in more detail some c·onsiderations for using directives. The
sample output strings show delta characters (~) in all places where
FAO output contains multiple blanks.

Each of the examples refers to the following output fields (these
fields are not shown in the data areas for each example):

FAODESC:.LONG
• LONG

FAOBUF: .BLKB
FAOLEN: ~BLKW

.BLKW

80
FAOBUF
80
1
1

iOUTPUT BUFFER DESCRIPTOR
iADDRESS OF BUFFER
i80-CHARACTER BUFFER
iRECEIVE LENGTH OF. OUTPUT
iRESERVE WORD FOR $QIO

These examples assume that each call to $FAO will be followed by a
call to $QIO or to $OUTPUT to write the output string produced by FAO.
The $QIO system service (and the $OUTPUT macro) require that the
length be specified as a longword; therefore, an extra word is
provided following the word defined to receive the length of the
output string returned by $FAO.

4-83

I Example 11

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 1

SLEEPSTR: DESCRIPTOR (l/SAILORS: lAC lAS lAD> ;CONTROL STRING

WINKEN: .ASCIC IWINKENI
BLINKEN: DESCRIPTOR (BLINKEN>
NOD: .ASCII INODI

;COUNTED ASCII STRING
;CHARACTER STRING DESCRIPTOR
;ASCII STRING

NODLEN: .LONG NODLEN-NOD ;LENGTH OF ASCII STRING

; CALL TO $FAO

$FAO_S CTRSTR=SLEEPSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
Pl~tWINKEN,P2=tBLINKEN,P3=NODLEN,P4~tNOD

Results:

$FAO writes the output string into FAOBUF:

(CR><LF>SAILORS: WINKEN BLINKEN NOD

The 1/ directive provides a carriage return/line feed character (shown
as <CR><LF» for terminal output.

The lAC directive requires the address of a counted ASCII string (PI
argument) : the number sign (#) is required to specify the parameter,
so that the PUSHL instruction used by the $FAO macro pushes the
address rather than its contents.

The lAS directive requires the address of a character
descriptor (P2 argument).

string

The lAD directive requires two parameters: the length of the string
to be substituted (P3 argument), and its address (P4 argument).

IExamPle 21

; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 2

NAMESTR: DESCRIPTOR (UNABLE TO LOCATE l3(8AS)l l>

JONES: DESCRIPTOR (JONES>
HARRIS: DESCRIPTOR <HARRIS>
WILSON: DESCRIPTOR (WILSON>

; CALL TO fFAO

;NAME DESCRIPTOR
;NAME DESCRIPTOR
;NAME DESCRIPTOR

;CONTROL STRING

$FAO_S CTRSTR=NAMESTR,OUTLEN=FAOLEN,OUTBUF~FAODESC,­
Pl=tJONES,P2=tHARRIS,P3=tWILSON

Results:

$FAO writes the output string into FAOBUF:

UNABLE TO LOCATE JONESAAAHARRISAAWILSONAAl

The 13(8AS) dir~ctive contains a repeat count: 3 parameters
(addresses of character string descriptors) are required. $FAO
left-justifies each string into a field of 8 characters (the output
field length specified).

The 11 directive supplies a literal 1 in the output.

4-84

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

If the directive were specified without an output field length, that
is,if the directive had been specified as !3(AS), the 3 output fields
would be concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSON!

IExamPles 3, 4, and 51

; CONTROL STRINGS AND INPUT PARAMETERS FOR EXAMPLES 3, 4 AND 5

LONGSTR: ;CONTROL STRING (LONGWORD CONVERSION)
DESCI~ I PTCm <VALUES ! UL (DEC) ! XL (HEX) ! 81... (S 1 GNED):>

BYTESTR: ;CONTROI... STRING (BYTE CONVERSION)
DESCRIPTOR <VALUES !UB (DEC) !XB (HEX) !~;B (!:;:WNED»

VAL:!, :
VAL2:
VAU:

• LONG
• LONG
.L.DNG

200
:'500
.... 40()

; CAL.L TO SFAD (EXAMPL.E 3)

,DECIMAL 20()
; DEC I M{~I... 30()
; NEGA TI VE 4()()

'FAD_S CTRSTR=L.ONGSTR,DUTBUF=FAODESC,DUtL.EN=FADL.EN,­
Pl=VAL1,P2=VAI...2,P3=VAL.3

Results:

$FAO writes the output string:

VAL.UES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The longword value 200 is converted to decimal, the value 300 is
converted to hexadecimal, and the value -400 is converted to signed
decimal. The ASCII results of each conversion are placed in the
appropriate position in the output string.

Note that the hexadecimal output
zero-filled to the left. This
hexadecimal longwords.

string has 8 characters and is
is the default output length for

CAL.L TO SFAD (EXAMPL.E 4)

SFAOL_S CTRSTR=LONGSTR,OUTBUF=FAODESC,OUTLEN=FAOLEN,­
PRMLST::::VAL1

Results:

$FAO writes the output string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The results are the same as the results of example
instead of the $FAO macro, and coding each parameter on
$FAOL macro points to the list of consecutive longwords,
from the list.

4-85

3. However,
the call, the
and FAO reads

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

; CALL TO $FAO (EXAMPL~ 5)

$FAOL_S CTRSTR=BYTESTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
PRMLST=VAL1

Results:

$FAO writes the output string:

VALUES 200 (DEC) 2C (HEX) 112 (SIGNED)

The input parameters are the same as those for Example 4. Hqwever,
the control string (BYTESTR) specifies that byte values are to be
converted. FAO uses the low-order byte of each longword parameter
passed to it. The high-order 3 bytes are not evaluated. Compare
these results with the results of Example 4.

I Example 61
; CONTROL STRING FOR EXAMPLE 6

MULTSTR: DESCRIPTOR <HEX: !2(6XW) ZERO-DEC: !2(-)!2(7ZW»

; CALL TO FAO

$FAO_S CTRSTR=MULTSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
Pl=t10000,P2=t9999

Results:

FAO writes the output string:

HEX:666271066270F ZERO-DEC: 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contain repeat counts and
output lengths. First, FAO performs the !XW directive twice, using
the low-order word of the numeric parameters passed. The output
length specified is 2 characters longer than the default output field
width of hexadecimal word conversion, so 2 spaces are placed between
the resulting ASCII strings.

The !- directive causes FAO to back up over the parameter list. A
rep~at count is specified with the directive, so that FAO skips back
over two parameters; then, it uses the same two parameters for the
!ZW directive. The !ZW directive causes the output string to be
zero-filled to the specified length, in this example, 7 characters.
Thus, there are no blanks between the output fields.

4-86

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

IExample 71
; CONTROL STRING AND INPUT PARAMETERS FOR EXAMPLE 7

ARGSTR: DESCRIPTOR <!AS RECEIVED !UB ARG!ZS: !-!t(4UB»

LISTA: .LONG ORION
.LONG 3
.LONG 10
.LONG 123
.LONG 210

LISTB: .LONG LYRA
.LONG 1
.LONG 255

ORION: DESCRIPTOR <ORION)

LYRA: DESCRIPTOR <LYRA>

; CALLS TO FAO

;ADDRESS OF NAME STRING
;NUMBER OF ARGS IN LIST
; AF~GUMENT 1
;ARGLJMENT 2
;ARGUMENT 3

;ADDRESS OF NAME STRING
9NUMBER OF ARGS IN LIST
;ARGUMENT 1

;PROCESS NAME

;PROCESS NAME

$FAOL_S CTRSTR=ARGSTR,OLJTLEN=FAOLEN,OUTBLJF=FAODESC,­
PRMLST:=LISTA

Results:

$FAOL_S CTRSTR=ARGSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
PRMLSTL,::L I STB

Following the first call to $FAOL shown above, FAO writes the output
string:

ORION RECEIVED 3 ARGS:AAA10 123 210

Following the second call, FAD writes the output string:

LYRA RECEIVED 1 ARG:AA255

In each of the examples, the PRML8T argument points to a different
parameter list; each list contains, in the first longword, the
address ofa character string descriptor. The second longword begins
an argument list, with the number of arguments remaining in the list.
The control string uses this second longword twice: first to output
the value contained in the longword, and then to provide the repeat
count to output the number of arguments in the list (the 1- directive
indicates that FAO should reuse the parameter).

The 1%8 directive provides a conditional plural. When the last value
converted has a value not equal to 1, FAD outputs an "SRi if the
value is a 1 (as in the second example), FAO does not output an "8".

The output field length defines a width of 4 characters for each byte
value converted, to provide spacing between the output fields.

4-87

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

IExamPle 81
; CONTROL STRING FOR EXAMPLE 8

TIMESTR: DESCRIPTOR -'!5*> NOW IS: !%D'

; CALL TeJ iiFAO

Results:

SFAO_S CTRSTR~TIMESTR,OUTLEN~FAOLEN,OUTBUF~FAODESCv~
P:1. ":::D:O

FAD writes the output string:

»»> NOW IS: dd-mmm-wwww hh:mm:ss.cc

where dd-mmm-yyyy is the current day, month, and year, and hh:mm:ss.cc
is the current time of day in hours, minutes,seconds, and hundredths
of seconds.

The !5*> directive requests FAD to write five greater than (»
characters into the output string. Since there is a space after the
directive, FAD also writes a space after the> characters on output.

The !%D directive requires the address of a quadword time value, which
must be in the system time format. However, when the address of the
time value is specified as 0, FAD uses the current date and time. For
information on how to obtain system time values in the required
format, see Section 3.6, "Timer and Time Conversion Services." For a
detailed description of the ASCII date and time string returned, see
the discussion of the Convert Binary Time to ASCII String ($ASCTIM)
system service in this chapter.

1 Example 91
; CONTROL STRING FOR EXAMPLE 9

DAYTIMSTR: DESCRIPTOR <DATE: !11%D!t*_TIME: !5%T>

) CALL TO FAD

Results:

SFAO_S CTRSTR=DAYTIMSTR,OUTLEN=FAOLENpOUTBUF~FAODESCp­
Pl=iO,P2=i5,P3=iO

FAD writes the output string:

In this example, an output length of 11 bytes is specified with the
!%D directive, so that FAD truncates the time from the date and time
string, and outputs only the date.

The !#* directive requests that the underline character () be
repeated the number of times specified by the next parameter. -Since
P2 is specified as 5, 5 underlines are written into the output string.

The !%T directive normally returns the full system time~ in
example, the !5%T directive provides an output length for the
only the hours and minutes fields of the time string are written
the output buffer.

4-88

this
time~
into

)

)

)

)

)

)

)

)

)
/

SYSTEM SERVICE DESCRIPTIONS
$FAO - FORMATTED ASCII OUTPUT

jExample loj

• CONTROL STRING AND PARAMETERS FOR EXAMPLE 10

WIDTHSTR: DESCRIPTOR ~, !25<VAR: !AC VAL: !UL!>TOTAL: !7UL'

VAR1NAME: .ASCIC IINVENTORYI
VAR1: .LONG 334
VAR1TOT:.LONG 6554

VAR2NAME: .ASCIC ISALESI
VAR2: .LONG 280
VAR2TOT:.LONG 10750

; CALLS TO $FAO

;VARIABLE 1 NAME
; CUF~RENT VALUE
;VAR 1 TOTAL

;VAR 2 NAME
;CURRENT VALUE
;VAR 2 TOTAL

$FAO_S CTRSTR=WIDTHSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
Pl=tVAR1NAME,P2=VAR1,P3=VAR1TOT

Results:

$FAO_S CTRSTR=WIDTHSTR,OUTLEN=FAOLEN,OUTBllF~FAODESC,­
Pl=tVAR2NAME,P2=VAR2,P3=VAR2TOT

Following the first call to FAO shown above, FAa writes the output
string:

VAR: INVENTORY VAL: 334~~TOTAL:~~~6554

After the second call, FAa writes the output string:

VAR: SALES VAL: 280~~~~~~TOTAL:~~10750

The !25< directive requests an output field width of 25 characters;
the end of the field is delimited by the !) directive. Within the
field defined in the example above are two directives, !AC and !UL.
The strings sUbstituted by these directives can vary in length, but
the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (P2
argument) and right-justifies the result in a 7-character output
field.

4-89

SYSTEM SERVICE DESCRIPTIONS

$FORCEX

4.37 $FORCEX - FORCE EXIT

The Force Exit system service causes an Exit ($EXIT) system service
call to be issued on behalf of a specified process.

Macro Format:

$FORCEX [pidadr] ,[prcnam] ,[code]

High-Level Language Format:

SYS$FORCEX ([pidadr] ,[prcnam] ,[code})

pidadr
address of a longword containing the process identification of
the process to be forced to exit.

prcnam
address of a character string descriptor pointing to the process
name string. The name ~s implicitly qualified by the group
number of the process issuing the force exit request.

code
longword completion code value to be used as the exit parameter.
If not specified, a value of 0 is passed as the completion code.

If neither
the caller
on how the
Table 3-3.

a process identification nor a process name is specified,
is forced to exit and control is not returned. For details
service interprets the PIDADR and PRCNAM arguments, see
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

the process identification cannot be written, by the caller.

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

process identification was specified.

SS$ NOPRIV
- The pro~ess does not have the privilege to force an e~it for the

specified process.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource wait Mode ($SETRWM) system service.

4-90

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$FORCEX - FORCE EXIT

Privilege Restrictions:

User privileges are required to force an exit for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned:

The Force Exit system service requires system dynamic memory.

Notes:

1. The image executing in the target process follows normal exit
procedures. For example, if any exit handlers have been
specified, they gain control before the actual exit occurs.
Use the Delete Process ($DELPRC) system service if you do not
want a normal exit.

2. When a forced exit is requested for a process, a user mode
AST is queued for the target process. The AST routine
actually causes the Exit system service call to be issued by
the target process. Because the AST mechanism is used, user
mode ASTs must be enabled for the target process, or no exit
occurs until ASTs are re-enabled. The process that called
$FORCEX receives no notification that the exit is not being
performed.

3. The $FORCEX system service completes successfully if a force
exit request is already in effect for the target process but
the exit is not yet completed.

For an example of the $FORCEX system service, and an explanation of
the actions performed by the system when an image exits, see Section
3.5.6, "Image Exit."

4-91

SYSTEM SERVICE DESCRIPTIONS

$GETCHN

4.38 $GETCHN - GET I/O CHANNEL INFORMATI.QN

The Get I/O Channel Information system service returns
about a device to which an I/O channel has been assigned.
information are optionally returned:

information
Two sets of

• The primary device characteristics

• The secondary device characteristics

In most cases the two sets of characteristic information are
identical. However, the two sets provide different information in the
following cases:

• If the device has an associated mailbox, the primary
characteristics are those of the assigned device and the
secondary characteristics are those of the associated mailbox.

• If the device is a spooled device, the primary characteristics
are those of the intermediate device and the secondary
characteristics are those of the spooled device.

• If the device represents a logical link on the network, the
secondary characteristics contain information about the link.

Macro Format:

$GETCHN chan, [prilen] , [pribuf] , [scdlen] , [scdbuf]

High-Level Language Format:

SYS$GETCHN (chan, [prilen] , [pribuf] , [scdlen] , [scdbuf])

chan
number of the I/O channel assigned to the device.

prilen
address of a word to receive the length of the
characteristics.

pribuf

primary

address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.

scdlen
address of a word to receive the length of the secondary
characteristics.

scdbuf
address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

4-92

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$GETCHN - GET I/O CHANNEL INFORMATION

Return Status:

SS$ BUFFEROVF
- Service successfully completed. The device information returned

overflowed the buffer(s) provided and has been truncated.

SS$_NORMAL
Service successfully completed.

SS$ ACCVIO
- A buffer descriptor cannot be read, or a buffer or buffer length

cannot be written, by the caller.

SS$_IVCHAN
An invalid
number of
available.

channel number was specified, that is, a channel
o or a number larger than the number of channels

SS$_NOPRIV
The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions:

The Get I/O Channel Information service can be performed only on
assigned channels and from access modes that are equal to or more
privileged than the access mode from w~ich the original channel
assignment was made.

Note:

The Get I/O Device Information ($GETDEV) system service returns
the same information as the Get I/O Channel Information system
service.

4.38.1 Format of Device Information

The $GETCHN and $GETDEV 9ystem services return information in a
user-supplied buffer. Symbolic names defined in the $DIBDEF macro
represent offsets from the beginning of the buffer. The length of the
buffer is defined in the constant DIB$K_LENGT~.

The field offset names, lengths, and contents are listed below.

Field Name Length (bytes)

DIB$L DEVCHAR 4
DIB$B-DEVCLASS 1
DIB$B-TYPE 1
DIB$W-DEVBUFSIZ 2
DIB$L-DEVDEPEND 4
DIB$W-UNIT 2
DIB$W-DEVNAMOFF 2
DIB$L-PID 4
DIB$L-OWNUIC 4
DIB$W-VPROT 2
DIB$W-ERRCNT 2
DIB$L-OPCNT 4
DIB$W-VOLNAMOFF 2
DIB$W=RECSIZ 2

Contents

Device characteristics
Device class
Device type
Device buffer size
Device dependent information
Unit number
Offset to device name string
Process identification of device owner
UIC of device owner
Volume protection mask
Error count
Operation count
Offset to volume label string
Blocked record size (valid for
magnetic tapes when DIB$W_VOLNAMOFF is
nonzero)

4-93

SYSTEM SERVICE DESCRIPTIONS
$GETCHN - GET I/O CHANNEL INFORMATION

The device name string and volume label string are returned in the
buffer as counted ASCII strings and must be located by using their
offsets from the beginning of the buffer.

Any fields inapplicable to a particular device are returned as ~eros.

For further details on the
device-dependent information
Guide.

contents
returned,

4-94

of this
see the

buffer, and on
VAX/VMS I/O User's

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$GETDEV

4.39 $GETDEV - GET I/O DEVICE INFORMATION

The Get I/O Device Information system service returns information
about an I/O device. This serv~ce allows a process to obtain
information about a device to which the process has not assigned a
channel. It returns the .same information as the Get I/O Channel
Information ($GETCHN) system service, as described in Section 4.38.

Macro Format:

$GETDEV devnam ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf]

High-Level Language Format:

SYS$GETDEV(devnam ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf])

devnam
address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character ~n the string is an
underline character (), the name is considered a physical device
name. Otherwise, a sIngle level of logical name translation is
performed and the equivalence name, if any, is used.

prilen
address of a word to receive the length of the
characteristics.

pribuf

primary

address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.

scdlen
address of a word to receive the length of the secondary
characteristics.

scdbuf
address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

Return Status:

SS$ BUFFEROVF
- Service successfully completed. The device information returned

overflowed the buffer(s) provided and has been truncated.

SS$_NORMAL
Service successfully completed.

SS$ ACCVIO
- A buffer descriptor cannot be read, or a buffer or buffer length

cannot be written, by the caller.

4-95

SS$ IVDEVNAM

SYSTEM SERVICE DESCRIPTIONS
$GETDEV - GET I/O DEVICE INFORMATION

.- No device name was specified, or the device name string has
invalid characters.

SS$_IVLOGNAM
The device name string has a length of a or has more than 63
characters.

SS$ NONLOCAL
- Warning. The device is on a remote system.

SS$ NOSUCHDEV
- warning. The specifi~d device does not exist on the host system.

4-96

\
/

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$GETJPI

4.40 $GETJPI - GET JOB/PROCESS INFORMATION

The Get Job/Process Information system service provides accounting,
status, and identification information about a specified process.

1
Macro Format:

$GETJPI , [pidadrl , [prcnaml ,itmlst",

1
High-Level Language Format:

SYS$GETJPI (, [pidadr 1 , [prcnaml , i tmlst, , ,)

pidadr
address of a longword containing the process identification of
the process for which information is requested.

prcnam
address of a
IS-character
qual if ied by

itmlst
address of a
information
information.
4.40.1. The

character string descriptor pointing to a 1- to
process name string. The process name is implicitly
the group number of the process issuing the request.

list of item descriptors that describe the specific
requested and point to buffers to receive the
The format of the list is described in Section

item codes are listed in Table 4-4.

If neither a process identification nor a process name is specified,
information about the calling process is returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ BADPARAM
- The item list contains

requested information
about another process.

SS$_ACCVIO

an invalid identifier; or, the caller
that is not in the process control block

The item list cannot be read, or the buffer length or buffer
cannot be written, by the caller.

SS$_IVLOGNAM
The process name string has a length of 0, or has more than 15
characters.

1 The first, fifth, sixth,
argument list are not used;

and seventh arguments in the $GETJPI
they are reserved for future use.

4-97

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

process identification was specified.

SS$_NOPRIV
The process does not have the privilege to obtain information
about the specified process.

Privilege Restrictions:

Note:

User privileges are required to obtain information about:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

When a process requests information about 'itself, information
contained in the PCB, in the process header, or in the control
region of the process's virtual address space can be obtained.

When a process requests information about another process, only
information contained in the PCB can be obtained.

4.40.1 Format of Item List for $GETJPI System Service

The item list used for input to the $GETJPI system service consists of
one or more consecutive item descriptors. Each item descriptor in
this list has the format:

31 16 15 o

item code . I buffer length

buffer address

return length address

buffer length
length of the buffer to receive the specified information. All
buffers reserved to receive information should be longwords
unless otherwise indicated in Table 4-4.

item code
symbolic name defining the information to be returned. The
symbolic names have the format:

JPI$_code

These symbolic names are defined in the $JPIDEF macro. The codes
are listed in Table 4-4.

4-98

)

)

).

)'

\ ;:

)

)

buffer address

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

address of the buffer to receive the specified information. If
the buffer is too small for the requested information, $GETJPI
truncates it.

return length address
address of a word to receive
returned. If this address
returned.

the length of
is specified as

the information
0, no length 'is

The list of item descriptors must be terminated by an item code of 0
or a longword of O.

All buffers are zero-filled on return, if necessary.

For example, an item list can be coded as follows to obtain the
process identification and process name of a process:

GETL.IST: .WORD 4 jL.ENGTH OF BUFFER
.WORD .JPI!LPID j F~E(UJEST PHI
.LONG GETPID jADDRESS TO F~ECEIVE ,PIn
.LONG 0 ;DON'T NEED LENGTH RETUF~N

.WORD 15 ;LENGTH OF BUFFER

.WORD JP I $.. PRCNAM jREQUEST PROCESS NAME

.LONG GETPRCNAM ;ADDRESS TO RECEIVE NAME
I.

L.ENGTH .LONG PRCNAM_LEN jADDRESS TO RECEIVE
.LONG 0 jEND OF GETLIST

GETPID: .BLKL 1 jRETURN PID HEFtE
GETPRCNA,M:

.BLKB 15 jRETURN PROCESS NAME H.ERE
PRCNAM_LEN:

.BLKW 1 jRETURN L.ENGTH OF PROCESS NAME

4-99

Item
Identifier

JPI$_ACCOUNT

JPI$_APTCNT

JPI$_ASTACT

JPI$_ASTCNT

JPI$_ASTEN

JPI$_ASTLM

JPI$_BIOCNT

JPI$_BIOLM

JPI$_BUFIO

JPI$_BYTCNT

JPI$_BYTLM

JPI$_CPULIM

JPI$_CPUTIM

JPI$_CURPRIV

JPI$_DFPFC

JPI$_DFWSCNT

JPI$_DIOCNT

JPI$_DIOLM

JPI$_DIRIO

JPI$_EFCS

JPI$_EFCU

JPI$_EFWM

JPI$ EXCVEC

JPI$ FILCNT -

JPI$ FILLM -
JPI$ FINALEXC -

JPI$ FREPOVA -

JPI$ FREPIVA -

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

Table 4-4
Item Codes for Job/Process Information

Data
Type

string

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

address

value

value

address

value

value

Locationl Information Returned

control

PCB

PCB

PCB

PCB

PHD

PCB

PCB

PHD

PCB

PCB

PHD

PHD

PHD

PHD

PHD

PCB

PCB

PHD

PCB

PCB

PCB

control

PCB

PHD

control

PHD

PHD

Account name string (l-S characters)

Active page table count

Access modes with active ASTs

Remaining ASTquota

Access modes with ASTs enabled

AST limi t quota

Remaining buffered I/O quota

Buffered I/O limit quota

Count of process buffered I/O operations

Remaining buffered I/O byte count quota

Buffered I/O byte count limit quota

Limit on process CPU time

Accumulated CPU time (in lO-millisecond tics)

Quadword mask of process's current privileges

Default page fault cluster size

Default working set size

Remaining direct I/O quota

Direct I/O limit quota

Count of direct I/O operations for process

Local event flags 0 through 31

Local event ~lags 32 through 63

Event flag wait mask

Address of a list of exception vectors in the
following order: primary and secondary exception
vectors for kernel mode; primary and secondary
exception vectors for executive mode; primary and
secondary exception vectors for supervisor mode;
primary and secondary exception vectors for user
mode

Remaining open file quota

Open ,file quota

Address of a list of final exception vectors for
kernel, executive, supervisor, then user access
mode

First free page at end of program region

First free page at end of control region

1 In the Location column:

control indicates that the information is in the control region of the process's
virtual address space

PCB indicates that the information is in the process control block
PHD indicates that the information is in the process header

4-100

)

)

)

)

!)

)

)
/

)

Item
Identifier

SYSTEM SERVICE DESCRIPTIONS
$GETJPI - GET JOB/PROCESS INFORMATION

Table 4-4 (Cant.)
Item Codes for Job/Process Information

Data
Type

value

value

Location l Information Returned

PCB Global page count in working set

PCB Group number of UIC

JPI$_GPGCNT

JPI$_GRP

JPI$_LOGINTIM value control Process execution time; returned as 64-bit system
delta time value

JPI$_MEM value

JPI$_OWNER value

JPI$_PAGEFLTS value

JPI$_PGFLQUOTA value

JPI$_PID value

value

value

value

PCB

PCB

PHD

PHD

PCB

PCB

PCB

PHD

JPI$_PPGCNT

JPI$_PRCCNT

JPI$_PRCLM

JPI$_PRCNAM

JPI$_PRI

JPI$_PRIB

JPI$_PROCPRIV

JPI$_STATE

JPI$_STS

JPI$_TMBU

JPI$_TQCNT

JPI$_TQLM

JPI$_UIC

JPI$_USERNAME

JPI$_VIRTPEAK

JPI $_ VOLUMES

JPI$_WSAUTH

JPI$_WSPEAK

JPI$_WSQUOTA

JPI$_WSSIZE

string PCB

value PCB

value PCB

value Control

value PDB

value PCB

value PCB

value PCB

value PHD

v'alue PCB

string control

value control

value control

value PHD

value control

value PHD

value PHD

1 In the Location column:

Member number of UIC

Process identification of process owner "711 (~.o:V
Count of page faults

Paging file quota

Process identification

Process page count in working set

Count of 5upprocesses

Subprocess quota

Process name (1-15 characters)

Current process priority

Process's base priority

Quadword mask of process's default privileges

Process state

Process status

Termination mailbox unit number

Remaining timer queue entry quota

Timer queue entry quota

Process's UIC

User name string (1-12 characters)

Peak virtual address size

Count of currently mounted volumes

Maximum authorized working set size

Working set peak

Working set size quota

Process's current working set size

1'1 '2- (?> () "-)
!i,'7 (2o~

control indicates that the information is in the control region- of the process's
virtual address space

PCB indicates that the information is in the process control block
PHD indicates that the information is in the process header

4-101

[PCSti~31
c.o>q~J f.t

SYSTEM SERVICE DESCRIPTIONS

$GETMSG

4.41 $GETMSG - GET MESSAGE

The Get Message system
message file to the
operating system to
identifications and to

service transfers a message from the system
caller's buffer. This service is used by the

retrieve messages based on unique message
prepare to output them.

Macro Format:

$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

High-Level Language Format:

msgid

SYS$GE'rMSG (msgid ,msglen ,bufadr ,[flags] ,[outadr])

identification of the message to be retrieved. Each message in
the system message file has a unique identification, contained in
the high-order 29 bits of system longword status codes.

msglen
address of a word to receive the ~ength of the string returned.

bufadr

flags

address of a charatter string descriptor pointing to the buffer
to receive the message string. The maximum size of any message
that can be returned is 256 bytes.

mask defining message content. The bits in the mask and their
meanings are:

Bit Value Meaning

0 1 Include text of message
0 Do not include text of message

1 1 Include message identifier
0 Do not include message identifier

2 1 Include severity indicator
0 Do not include severity indicator

3 1 Include facility name
0 Do not include facility name

If this argument is omitted in a MACRO service call, it defaults
to a value of 15, that is, all flags are set and all components
of the message are returned.

4-102

)

)

)

- -"
\,

f

)

)

')
/

outadr

SYSTEM SERVICE DESCRIPTIONS
$GETMSG - GET MESSAGE

address of a 4-byte array to receive the following values:

Contents

o Reserved
1 Count of FAO arguments associated with 'message
2 Use~-specified value in message; if any
3 Reserved

Return Status:

SS$ BUFFEROVF
- Service successfully completed. The string returned overflowed

the buffer provided, and has been truncated.

SS$_MSGNOTFND
Service successfully completed., The message code does not have
an associated message in the file.

SS$ NORMAL
- Service successfully completed.

4.41.1 Message Formats

The message identifications correspond to the symbolic names for
status codes returned by system components, for example SS$_code from
system services, RMS$_code for RMS messages, and so on.

When all bits in the FLAGS argument are set, $GETMSG returns a string
in the format:

facility-severity-msgcode message~text

where:

facili ty

severity

msgcode

message-text

identifies the component of the operating system

is the severity code (the low-order three bits of
the status code)

is the unique message identifier

is the text of the message

For example, if the MSGID argument is specified as:

MSGID=#SS$_DUPLNAM

$GETMSG returns the string:

%SYSTEM-F-DUPLNAM, duplicate process name

4-103

SYSTEM SERVICE DESCRIPTIONS

$GETTIM

4.42 $GETTIM - GET TIME

The Get Time system service furnishes the current system time in
64-bit format. The time is maintained in 100-nanosecond units from
the system base time.

Macro Format:

$GETTIM timadr

High-Level Language Format:

SYS$GETTIM(timadr)

timadr
address of a quadword that is to receive the current time in
64-bi t format.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The quadword to receive the time cannot be written by the call~r.

Note:

For an example of the $GETTIM system service, 'and additional
details on the system time format, see Section 3.6, "Timer and
Time Conversion Services." J _ S""b

4-104

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$HIBER

4.43 $HIBER - HIBERNATE

The Hibernate system service allows a process to make itself inactive
but to remain known to the system so that it can be interrupted, for
example to receive ASTs. A hibernate request is a wait-for-wake-event
request. When a wake is issued for a hibernating process with the
$WAKE system service or a result of a Schedule Wakeup ($SCHDWK) system
service, the process continues execution at the instruction following
the Hibernate call.

1
Macro Format:

High-Level Language Format:

SYS$HIBER

Return Status:

SS$ NORMAL
- Service successfully completed.

Notes:

1. A hibernating process can be swapped out of the balance set
if it is not locked into the balance set.

2.

3.

The wait state caused by this system service can be
interrupted by an asynchronous system trap (AST) if (1) the
access mode at which the AST is to execute is equal to or
more privileged than the access mode from which the hibernate
request was issued and (2) the process is enabled for ASTs at
that, access mode.

When the AST service routine completes execution, the system
re-executes the $HIBER system service on the process's
behalf. If a wakeup request has been issued for the process
during the execution of the AST service routine (either by
itself or another process), the process resumes execution.
Otherwise, it continues to hibernate.

If one or more wakeup requests are issued for the process
while it is not hibernating, the next hibernate call returns
immediately, that is, the process does not hibernate. No
count is maintained of outstanding wakeup requests.

For an example of the $HIBER system service and additional information
on process hibernation, see Section 3.5.5, "Process Hibernation and
Suspension." For an example of scheduled wakeup requests, see Section
3.6.6, "Scheduled Wakeups." /

1 Only the " S" macro form is provided for the Hibernate system
service.

4-105

SYSTEM SERVICE DESCRIPTIONS

$INPUT

4.44 $INPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG

The $INPUT macro is a simplified form of the Queue I/O Request and
wait for Event Flag ($QIOW) system service. This macro queues a
virtual input operation using the IO$_READVBLK function code and waits
for I/O completion.

Macro Format:

chan

$INPUT chan, length ,buffer ,[iosb] ,[efn]

number of the I/O channel assigned to the device from which input
is to be read.

length
length of the input buffer.

buffer

iosb

efn

Note:

address of the input buffer.

address of a quadword I/O status block.

number of the event flag to be set when the request is
The default is event flag O.

complete.

The $INPUT macro has only one form. Arguments must be coded as
for the $name S macro form, but " S" must not be included in the
macro call. -

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes:

See the descriptio'n of the Queue I/O Request ($QIO) system
service.

4-106

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$LCKPAG

4.45 $LCKPAG - LOCK PAGES IN MEMORY

The Lock Pages In Memory system service locks a page or range of pages
in memory. The specified virtual pages are forced into the working
set and then locked in memory. A locked page is not swapped with its
working set. These pages are not candidates for page replacement and
in this sense are locked in the working set as well.

Macro Format:

$LCKPAG inadr ,[retadr] ,[acmode]

High-Level Language Format:

inadr

SYS$LCKPAG (inadr ,[retadr] ,[acmode])

address of a 2-1ongword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page is locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr
address of a 2-1ongword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status:

SS$ WASCLR
- Service successfully completed. All of the specified pages were

previously unlocked.

SS$_WASSET
Service successfully completed. At least one of
pages was previously locked in memory.

the specified

1. The input array cannot be read, or the output array cannot be
written, by the caller.

2. A page in the specified range is inaccessible or does not
exist.

SS$_LCKPAGFUL
The system-defined maximum limit on the number of pages that can
be locked in memory has been reached.

SS$_NOPRIV
The process does not have the privilege to lock pages in memory.

4-107

SYSTEM SERVICE DESCRIPTIONS
$LCKPAG - LOCK PAGES IN MEMORY

Privilege Restrictions:

1. The user privilege PSWAPM is required to lock pages in
memory.

2.

Notes:

The access mode of the
privileged than the
being locked.

caller must be equal to or more
access mode of the owner of the pages

1. If more than one page is being locked, and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

3. Pages that are locked in memory can be unlocked with the
Unlock Pages from Memory ($ULKPAG) system service. Locked
pages are automatically unlocked at image exit.

4-108

)

)

)
./

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$LKWSET

4.46 $LKWSET - LOCK PAGES IN WORKING SET

The Lock Pages in working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set. The specified pages are brought into the
working set if they are not already there and are locked so that they
do not become candidates for replacement.

Macro Format:

$LKWSET inadr , [retadr] , [acmode]

High-Level Language Format:

inadr

SYS$LKWSET(inadr , [retadr] , [acmode])

address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page is locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr
address of a 2-10ngword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status:

SS$ WASCLR
- Service successfully completed. All of the specified pages were

previously unlocked.

SS$_WASSET
Service successfully completed. At least one of the specified
pages was previously locked in the working set.

1. The input address array cannot be read, or the output address
array cannot be written, by the caller.

2. A page in the specified range is inaccessible or nonexistent.

SS$_LKWSETFUL
The locked working set is full. If any more pages are locked,
there will not be enough dynamic pages available to continue
execution.

SS$_NOPRIV
A page in the specified range is in the system address space.

4-109

SYSTEM SERVICE DESCRIPTIONS
$LKWSET - LOCK PAGES IN WORKING SET

Privilege Restrictions:

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages being locked.

Notes:

1. If more than one page is being locked, and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

3. Pages that are locked in the working set can be unlocked with
the Unlock Page from Working Set ($ULWSET) system service.

For an explanation of the relationship between a process's working set
and its virtual address space, see Section 3.8, "Memory Management
Services."

4-110

~)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$MGBLSC

4.47 $MGBLSC - MAP GLOBAL SECTION

The Map Global Section provides a process with access to an existing
global section. Mapping a global section establishes the
correspondence between pages in the process's virtual address space
and the physical pages occupied by the global section.

Macro Format:

$MGBLSC inadr, [retadr] , [acmode] , [flags] ,gsdnam , [ident]
, [relpag]

High-Level Language Format:

inadr

SYS$MGBLSC (inadr , [retadr] , [acmode] , [flags] ,gsdnam , [ident]
, [relpag])

address of a 2-1ongword array containing the starting and ending
virtual addresses in the process's virtual address space into
which the section is to be mapped. The pages can be in the
program (PO) region or the control (PI) region.

If the starting and ending virtual addresses are the same, a
single page is mapped. Only the virtual page number portion of
the virtual addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-1ongword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

acmode

flags

access mode indicating
mapping. The access
the caller.

the owner of the pages created during the
mode is maximized with the access mode of

mask defining the section type and characteristics. Flag bit
settings can be ORed together to override default attributes.
The flag bits for the mask are defined in the $SECDEF macro.
Their meanings, and the default values they override, are:

Flag

SEC$M WRT
SEC$M:SYSGBL

Meaning

Map section read/write
System global section

Default Attribute

Map section read-only
Group global section

gsdnam
address of a character string descriptor pointing to
IS-character text name string for the global section.
global sections, the global section name is implicitly
by the group number of the caller.

4-111

the 1- to
For group
qualified

ident

SYSTEM SERVICE DESCRIP.TIONS
$MGBLSC - MAP GLOBAL SECTION

address of a quadword indicating the version number of the global
section and the criteria for matching the identification.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, in the low-order 3 bits, the
matching criteria. The valid values, symbolic names by which
they can be specified, and their meanings are listed below:

Value/Name

o SEC$K MATALL
1 SEC$K:MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section
Match only if major and minor identifications
match
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor
identification of the global section

If no address is specified, or is specified as 0 (the default),
the version number and match control fields default to O.

relpag
relative page number within the section of the first page to be
mapped. If not specified or specified as a (the default)~ the
global section is mapped beginning with the first virtual block
in the section.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The input address array, the global section name or name

descriptor or section identification field cannot be read, or the
return address array cannot be written, by the caller. .

SS$_EXQUOTA
The process exceeded
copy-on-reference pages.

its paging file quota

SS$_INSFWSL
The process's working set limit is not large
accommodate the increased virtual address space.

SS$_IVLOGNAM

creating

enough to

The global section name has a length of 0, or has more than 15
characters.

SS$ IVSECFLG
- A reserved flag was set.

SS$ IVSECIDCTL
- The match control field of the global section identification is

invalid.

4-112

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC - MAP GLOBAL SECTION

SS$ NOPRIV
- The file protection

created prohibits
the caller.

mask specified when the global section was
the access or the type of access requested by

A page in the input address range is in the system address space.

SS$_NOSUCHSEC
Warning. The specified global section does not exist.

SS$ PAGOWNVIO
- A page in the specified input address range is owned by a more

privileged access mode.

SS$_VASFULL
The process's virtual address space is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions:

The privilege to map a global section, and whether it may be
mapped read/write or read-only, is determined by the protection
mask assigned to the global section when it was created.

Resources Required/Returned:

The process's working set limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space wh~n mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes:

1.

2.

When the $MGBLSC system service maps
calls the Create Virtual Address
servtce to add the pages specified by
the process's virtual address space.

a global section, it
Space ($CRETVA) system
the INADR argument to

If the global section is of an unknown size, the process can
obtain the virtual address of the first available page in the
program or control region from the Get Job/Process
Information ($GETJPI) system service and use the address
returned as the starting address. The ending address may be
a very high address (if the section is to be mapped in the
program region) or a very low address (if mapped in the
control region). The $CRMPSC system service returns the
virtual addresses of the pages created in the RETADR
argument, if specified. The section is mapped from a low
address to a high address, regardless of whether the section
is mapped in the program or control region.

If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

For an example of the $MGBLSC system service, and additional details
on global section creation and use, see Section 3.8.6, "Sections."

4-113

SYSTEM SERVICE DESCRIPTIONS

$NUMTIM

4.48 $NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary
integer date and time values. The numeric time is placed in a
user-specified buffer as illustrated in Figure 4-1.

31 1615 o

month of year year since 0

hour of day day of month

second of minute minute of hour

hundredths of second

Figure 4-1 Format of Numeric Time Buffer

Macro Format:

$NUMTIM timbuf, [timadrj

High-Level Language Format:

SYS$NUMTIM(timbuf , [timadrj)

timbuf
address of a 7-word buffer to receive the date and time
information.

timadr
address of a 64-bit time value to be converted. If not
specified, or specified as 0, the current system time is used. A
positive time value represents an absolute time. A negative time
value indicates a delta time.

Return Status:

SS$_NORMAL
Service successfully completed.

SS$ ACCVIO
- The 64-bit time value cannot be read, or the numeric buffer

specified cannot be written, by the caller.

SS$_IVTIME
The specified delta time is equal to or greater than 10,000 days.

4-114

)

)

)

)

)

Note:

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

If a delta time is specified, the year and month fields of the
information returned are zero. The day field contains the
integer number of days specified by the delta time; it must be
less than 10,000 days.

4-115

SYSTEM SERVICE DESCRIPTIONS

$OUTPUT

4.49 $OUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG

The $OUTPUT macro is a simplified form of the Queue I/O Request and
Wait for Event Flag ($QIOW) system service. This macro performs a
virtual output operation using the IO$ WRITEVBLK function code and
wai ts for I/O completio'n. -

Macro Format:

chan

$OUTPUT chan, length ,buffer ,[iosb] ,[efn]

number of the I/O channel assigned to the device to which
is to be written.

output

length
length of the output buffer.

buffer

iosb

efn

Note:

address of the output buffer.

address of quadword I/O status block.

number of the event flag to be set when the request is
The default is event flag O.

complete.

The $OUTPUT macro has only one form. Arguments must be coded as
for the $name S macro form, but " S" must not be included in the
macro call. -

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes:

See the description of the Queue I/O Request ($QIO) system
service for details.

4-116

)

~)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$PURGWS

4.50 $PURGWS - PURGE WORKING SET

The Purge Working Set system service enables a process to remove pages
from its current working set to reduce the amount of physical memory
occupied by the current image.

Macro Format:

$PURGWS inadr

High-Level Language Format:

inadr

SYS$PURGWS(inadr)

address of a 2-1ongword array containing the starting and ending
virtual addresses of the pages to be potentially purged from the
working set. The $PURGWS system services locates pages within
this range that are in the current working set and removes them.

If the starting and ending virtual addresses are the same, only
that single page is a candidate for purging. Only the virtual
page number portion of the virtual addresses is used; the
low-order 9 bits are ignored.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The input address array cannot be read by the caller.

Note:

To purge the entire working set, the caller can specify a range
of pages from 0 through 7FFFFFFF. The image continues executing,
and pages that are needed are brought back into the working set
as the page faults occur.

4-117

SYSTEM SERVICE DESCRIPTIONS

$PUTMSG

4.51 $PUTMSG - PUT MESSAGE

The Put Message system service is a generalized message formatting and
output routine used by the operating system to write informational and
error messages to user processes.

Macro Format:

$PUTMSG msgvec ,[actrtnj ,[facnamj

High-Level Language Format:

SYS$PUTMSG (msgvec ,[actrtnj ,[facnamj)

msgvec
address of a message argument vector
identifications of messages to be
associated with each message, if any.
vector is described in Section 4.51.1,

that lists the message
output and FAO arguments
The format of the message
below.

actrtn
address of the entry mask of a user-specified action routine to
receive control during message processing. The action routine
receives control after a message is formatted but before it is
actually written to the user. If no address is specified, or
specified as 0 (the default), it indicates that there is no
action routine.

facnam
address of a
name to be
$PUTMSG.

character string descriptor pointing to the facility
used in the first or only message formatted by

If not specified, the default facility name associated with the
message is used in the first message.

Return Status:

SS$ NORMAL
- Service successfully completed.

Note:

The $PUTMSG system service disables AST delivery while it is
executing to prevent recursive entry.

4-118

)

)

)

)

)

)

)

\

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

4~51.1 Format of the Message Argument Vector

The general format of a message argument vector is as shown below.
Messages .with facility codes of either 0 (system status codes) or I
(RMS status codes) vary from the basic format.

31 1615 o

message flags I argument count

first message identification

message flags I FAD count

FAa arguments

next message identification

argument count
specifies the total number of longwords in the message vector.

message flags
specifies a mask defining the portions of the message(s) to be
requested from the $GETMSG system service. If not specified,
$PUTMSG calls $GETMSG requesting that all fields in the message
text be returned. If a mask is specified, it is passed to
$GETMSG as the FLAGS argument. The bits in the mask and their
meanings are:

Bit Value Meaning

0 I Include text of message
0 Do not include text of message

I I Include message identifier
0 Do not include message identifier

2 I Include severity level indicator
0 Do not include severity level indicator

3 I Include facility name
0 Do not include facility name

Bits 4 through 15 must be zeros.

first message identification
32-bit numeric value that uniquely identifies the first, or only,
message. Messages can be identified by symbolic names defined
for system return status codes, RMS status codes, and so on.

FAO count
number of FAO arguments, if any, that follow in the message
vector. The FAO argument count is required for all message
identifiers for which the facility code is other than 0 (the
system) or 1 (RMS). If a message with any other facility code
has no associated FAO arguments, the FAO argument count must be
specified as 0, unless the message identifier is the final item
in the message vector.

4-119

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

message flags
new mask for the $GETMSG flags, defining a new default for all
subsequent messages.

FAO arguments •••
FAO arguments required by the message.

next message identification •••
identification of next associated message, if messages are linked
in a series. $PUTMSG returns the first message with the percent
sign (%) prefix in front of the message. By convention, messages
after the first message in a series are prefixed with a hyphen
(-) .

Message identifications for system status codes, system exception
condition values, and RMS status codes are handled as follows:

1. If the status code is a system message (that is, it has a
facility code of 0), neither an FAO argument count nor FAO
arguments can be specified. Each longword in the list
(following the first message identification) is treated as an
additional message identification.

2. If the message identification is a system exception message
number (for example, SS$_COMPAT), the FAO arguments for the
message must immediately follow the message identification in
the message vector. $PUTMSG determines the count of FAO
arguments from the message number.

Note that the format of the message argument vector for an
exception condition status code is identical to the signal
array argument list passed to a condition handler when the
system signals an exception condition.

3. If the message identification is an RMS status code (that is,
it has a facility code of 1), you must specify a second
longword following the status code in place of the FAO
argument count. This longword i~ reserved for an RMS status
value (STV) for those RMS messages that have status values
associated with them. If the status code has no STV value
associated with it, $PUTMSG ignores the second longword.
$PUTMSG uses the STV value as an FAO argument or as another
message identification, depending on the value- of the RMS
message number.

No FAO arguments can be specified for RMS status codes. If
specified, $PUTMSG treats them as additional message
identifiers.

The following example' shows a message argument vector that requests
$PUTMSG to output:

1. The complete message associated with the system status code
SS$_ABORT

2. The complete message associated with the system status code
RMS$_FNF

VECTOR: • LONG
.LONG
.LONG
.LONG

3
SSt_ABORT
RMSt_FNF
o

;ARGUMENT COUNT
;ABORT MESSAGE
;FILE NOT FOUND MESSAGE
; IGNORED

tPUTMSG_S MSGVEC=VECTOR

4-120

)

)

)

... /)

)

)

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

When this message vector has been processed, the following messages
are written to the current SYS$OUTPUT device (and to SYS$ERROR, if it
is different):

%SYSTEM-F-ABORT, abort
-RMS-E-FNF, file not found

4.51.2 Using the $PUTMSG System Service

$PUTMSG retrieves a message from the system message file by calling
the Get Message ($GETMSG) system service and formats the message by
calling the Formatted ASCII Output ($FAO) system service, if
necessary. If the caller specifies an action routine to receive
control, the action routine is called before $PUTMSG writes each
formatted message to the process's current output device. If the
process's error device is different than the output device, $PUTMSG
writes the message to the error device as well.

4.51.2.1 $GETMSG Processing - The $GETMSG system service returns a
message string based on the numeric status code value passed to it.
The content of the string returned depends on the flags, if any,
specified in the message argument vector. You can request that the
message include or not include the facility name, severity level,
message code, or text. The following example shows a message vector
that requests only the text portion of the message associated with the
system status code SS$_DUPLNAM:

VECTOR: • WORD
.WORD
.LONG

1
~BOOO:I.

SS$._DUPLNAM

If this message vector is specified for a call to $PUTMSG, $PUTMSG
outputs the message:

duplicate process name

$GETMSG uses the facility code in the message identification to obtain
the facility name string to insert in a message. Each system
component has a unique code. The facility code is contained in bits
16 through 27 of the message identification. For example, the system
has facility code of 0, the command interpreter is ,1, the debugger is
2, and so on.

You can override the facility name by specifying the FACNAM argument
to $PUTMSG. For example:

FAC: DESCRIPTOR (HELLO)
VECTOR: .LONG 1

.LONG SS$_NOPRIV

$PUTMSG_S MSGVEC=VECTOR,FACNAM=FAC

This call to $PUTMSG results in the message:

%HELLO~F-NOPRIV, no privile~e for attempted operation

4-121

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

You can modify a facility code in a message
calling $PUTMSG by changing bits 16 through 27.
status code can be specified as follows:

.LONG 2@16!SS$_code

identification before
For example, a system

In this example, the facility number 2 is inserted in the message
identification. You can override the facility name string DEBUG in
the message by specifying message flags in the argument vector to
suppress the facility name, or you can use the FACNAM argument to
$PUTMSG to specify an alternate facility name.

This technique allows you to use shared system message codes that have
associated FAO arguments. If you do not modify the facility number in
the message identifications, you cannot specify FAO arguments.

When a message identification contains an unknown facility code,
$GETMSG places the string NONAME in place of the facility name in the
message string.

4.51.2.2 $FAO Processing - If the string returned by $GETMSG contains
any FAO directives, and if th~ facility code is other than 0 or 1,
$PUTMSG calls the $FAO system service to format the message. $PUTMSG
calls $FAO with the argument count and arguments specified in the
message argument vector.

The FAO argument count, if any, for a message is indicated iry the
message file that defines the message text. The message text itself
contains embedded FAO directives. You can examine the message text to
determine the arguments required by FAO. For example, the message
text associated with the system status code SHR$_BEGIN is defined as:

lAS beginning

This text re<iuires the address of a character string descriptor
pointing to-~he text to be substituted in place of the FAO directive
lAS. (For deta-tls on how to use FAO, and how to specify arguments for
other FAO directives, see the description of the $FAO system service.)

To use $PUTMSG to access and/or output a system shared message that
has FAO arguments associated with it, you must change the facility
code. The following example shows a message vector, including the FAO
argument count and argument, to output the message associated with the
status code SHR$_BEGIN.

VECTOR: ~WORD 3
.WORD ~BOOOI

.LONG 2@16!SHR$_BEGIN

.LONG 1

.LONG NAME

;MESSAGE FLAGS
;MESSAGE IDENTIFICATION
;FAO ARGUMENT COUNT
;FAO ARGUMENT

NAME: DESCRIPTOR <PUTMSG tests>

When $PUTMSG is called with this message vector, it displays the line:

PUTMSG tests besinnin~

Note that the facility code in the message identification is modified
to allow the specific~tion of FAO arguments; and that the message
flags in the second word of the vector suppresses the printing of
facility name, severity level, and message code.

4-122

)

)

/

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG - PUT MESSAGE

4.51.2.3 The Action Routine - The action routine, if any, is called
as a normal procedure each time a message is formatted, but before it
is actually output. The action routine receives as an argument the
address of a character string descriptor pointing to the formatted
message. The action routine can access the message text, scan it~
write it to a user-specified file or device, modify it~ and so on.

On return from the action routine, $PUTMSG examines the completion
code £rom the routine specified in Register O. If the completion code
indicates success (any odd numeric value), $PUTMSG outputs the message
to the current output and error devices. If the completion code
indicates non-success (any even numeric value), $PUTMSG does not
output the message.

4-123

SYSTEM SERVICE DESCRIPTIONS

$QIO
/

4.52 $QIO - QUEUE I/O REQUEST
,

The Queue I/O Request system service initiates an
operation by queueing a request to a channel
specific device. Control returns immediately to the
which can synchronize I/O completion in one of three

input or output
associated with a
issuing process

ways:

1. Specify the address of an AST routine that is to execute when
the I/O completes.

2. Wait for a specified event flag to be set.

3. Poll the specified I/O status block for a completion status.

The event flag and I/O status block, if specified, are cleared before
the I/O request is queued.

Macro Format:)

$QIO [efn] ,chan
,[pI] ,[p2]

,func
, [p3]

,[iosb] , [astadr]
, [p4] , [p5] ,[p6]

, [astprm]

High-Level Language Format:

efn

chan

func

iosb

SYS$QIO([efn] ,chan ,func ,[iosb] , [astadr] , [astprm]
, [pI] , [p2] , [p3] I [p4] , [p5] , [p6])

number of the event flag that is to be set at request completion.
If not specified, it defaults to O.

number of the I/O channel assigned to the device to which the
request is directed.

function code and modifier bits that specify the operation to be
performed. The code is expressed symbolically. For reference
purpose~, the function codes are listed in Appendix A. Complete
details on valid I/O function codes and parameters required by
each are documented in the VAX/VMS I/O User's Guide.

address of a quadword I/O status block that is to receive final
completion status.

astadr
address of the entry mask of an
executed when the I/O completes.
executes at the access mode from
requested.

astprm

AST service routine to be
If specified, the AST routine

which the $QIO service was

AST parameter to be passed to the AST service routine.

n ;J

4-124

/';./

)

)

\ I
/

pI to p6

SYSTEM SERVICE DESCRIPTIONS
$QIO - QUEUE I/O REQUEST

optional device- and function-specific I/O request parameters.

The first parameter may be specified as PI or PIV,
whether the function code requires an address
respectively. If the keyword is not used, PI is
that is, the argument is considered an address.

P2 through Pn are always interpreted as values.

Return Status:

SS$ NORMAL

depending on
or a value,

the default,

- Service successfully completed.
successfully queued.

The I/O request packet was

SS$_ABORT
A network logical link was broken.

SS$ ACCVIO
- The I/O status block cannot be written by the caller.

This status code may also be returned if parameters for
device-dependent function codes are incorrectly specified.

SS$_EXQUOTA
The process has exceeded its buffered I/O quota, direct I/O
quota, or buffered I/O byte count quota and has disabled resource
wait mode with the Set Resource wait Mode ($SETRWM) system
service. Or, the process has exceeded its AST limit quota.

SS$_ILLEFC
An illegal event flag number was specified.

SS$ INSFMEM
- Insufficient system dynamic memory is available to

service and the process has disabled resource wait
Set Resource wait Mode ($SETRWM) system service.

complete the
mode with the

SS$_IVCHAN
An invalid
number of
available.

channel number was specified, that is, a channel
o or a number larger than the number of channels

SS$_NOPRIV
The specified channel does not exist, or was assigned from a more
privileged access mode.

SS$_UNASEFC
The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions:

The Queue I/O Request system service can be performed only on
assigned I/O channels and only from access modes that are equal
to or more privileged than the access mode from which th(
original channel assignment was made.

4-125

SYSTEM SERVICE DESCRIPTIONS
$QIO - QUEUE I/O REQUEST

Resources Required/Returned:

1. Queued I/O requests use the process's quota for buffered
(BIOLM) or direct I/O (DIOLM); the process's buffered
byte ~ount (BYTLM) quota; and, if an AST service routine
specified, the process's AST limit quota (ASTLM).

I/O
I/O
is

2. System dynamic memory is required to construct a data base to
queue the I/O request. Additional memory may be required on
a device-dependent basis.

Notes:

1. The specified event flag is set if the service terminates
without queuing an I/O request.

2. The I/O status block has the format:

31 1615 a

count

I
status

device-dependent information

status
is the completion status of the I/O request.

byte count
is the number of bytes actually transferred.

device and function dependent information
varies according to the device and operation being
performed. The information returned for each device and
function code is documented in the VAX/VMS I/O User's
Guide.

3. Many services return character string data and write the
length of the data returned in a word provided by the caller.
Function codes for the $QIO system service (and the LENGTH
argument of the $OUTPUT system service) require length
specifications in longwords. If lengths returned by other
services are to be used as input parameters for $QIO
requests, a longword should be reserved to ensure that no
error occurs when $QIO reads the length.

4. For information on performing input and output operations on
a network, see the DECnet-VAX Useris Guide.

For examples of the $QIO system service, including the use of event
flags, AST service routines, and an I/O status block, see Section 3.4,
"Input/Output Services."

4-126

)

)

/)

)

\
--,

)

)

)

\

!

SYSTEM SERVICE DESCRIPTIONS

$OIOW

4.53 $QIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT FLAG

The Queue I/O Request and Wait for Event Flag system service combines.
the $QIO and $WAITFR (Wait for Single Event Flag) system services. It
can be used when a program must wait for I/O completion.

Macro Format:

$QIOW [efn]
, [pI]

,chan ,func
,[p2] ,[p3]

,[iosb] ,[astadr]
,[p4] ,[p5] ,[p6]

, [astprm]

High-Level Language Format:

efn

chan

func

iosb

SYS$QIOW([efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm]
, [pI] , [p2] ,[p3] , [p4] ,[p5] , [p6])

number of the event flag that is to be set at request completion.
If not specified, it defaults to O.

number of the I/O channel assigned to the device to which the
request is directed.

function code and modifier bits that specify the operation to be
performed. The code is expressed symbolically.

address of a quadword I/O status block that is to receive final
completion status.

astadr
address of the entry mask of an
executed when the I/O completes.
executes at the access mode from
requested.

astprm

AST service routine to be
If specified, the AST routine

which the $QIO service was

AST parameter to be passed to the AST completion routine.

pI to p6
optional device- and function-specific I/O request parameters.

Return Status, Privilege Restrictions, Resources Required/Returned,
Notes:

See the description of the $QIO system service for details.

4-127

SYSTEM SERVICE DESCRIPTIONS

$READEF

4.54 $READEF - READ EVENT FLAGS

The Read Event Flags system service returns the current status of all
32 event flags in a local or common event flag cluster.

Macro Format:

$READEF efn ,state

High-Level Language Format:

SYS$READEF(efn ,state)

efn
number of any event flag within the cluster to be read. A flag
number of 0 through 31 specifies cluster 0, 32 through 63
specifies cluster 1, and so forth.

stat~

address of a longword to receive the current status of all event
flags in the cluster.

Return Status:

SS$ WASCLR
- Service successfully completed.

clear.

SS$_WASSET

The specified event flag is

Service successfully completed. The specified event flag is set.

SS$ ACCVIO
- The longword that is to receive the current state of all event

flags in the cluster cannot be written by the caller.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

4-128

" .

)

~)

)

)

,
)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$RESUME

4.55 $RESUME - RESUME PROCESS

The Resume Process system service causes a process previously
suspended by the Suspend Process ($SUSPND) system service to resume
execution, or cancels the effect of a subsequent suspend request.

Macro Format:

$RESUME [pidadr] ,[prcnam]

High-Level Language Format:

SYS$RESUME ([pidadr] ,[prcnam])

pidadr
address of a longword containing the process identification of
the process to be resumed.

prcnam
address of a character string descriptor pointing to the 1- to
IS-character process name string. The process name is implicitly
qualified by the group number of the process issuing the resume
request.

If neither a process identification nor a process name is specified,
the resume request is for the caller.' For details on how the service
interprets the PIDADR and PRCNAM arguments, see Table 3-3. Table 3-3
is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

the process identification cannot be written, by the caller.

SS$ IVLOGNAM
- The specified process name has a length of 0, or has more than 15

characters.

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

process identification was specified.

SS$_NOPRIV
The process does not have the privilege to resume the execution
of the specified process.

4-129

SYSTEM SERVICE DESCRIPTIONS
$RESUME - RESUME PROCESS

Privilege Restrictions:

Note:

User privileges are required to resume execution of:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

If one or more resume requests are issued for a process
not suspended, a subsequent suspend request
immediately, that is, the process is not suspended. No
maintained of outstanding resume requests.

that is
completes
count is

For more information on process suspension see Section 3.5.5, "Process
Hibernation and Suspension."

4-130

)

)

)

I

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SCHDWK

4.56 $SCHDWK - SCHEDULE WAKEUP

The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the
Hibernate ($HIBER) system service. A wakeup can be scheduled for a
specified absolute time or for a delta time. Optionally, the request
can specify that the wakeup is to be repeated at fixed intervals.

Macro Format:

$SCHDWK [pidadr] ,[prcnam] ,day tim ,[reptim]

~igh-Level Language Format:

SYS$SCHDWK([pidadr] ,[prcnam] ,day tim ,[reptim])

pidadr
address of a longword containing the process identification of
the process to be awakened.

prcnam
address of a character string descriptor pointing to the 1- to
IS-character process name string~ The process name is implicitly
qualified by the group number of the process issuing the schedule
wakeup request.

day tim
address of a quadword cOhtaining the expiration time in the
system 64-bit time format. A positive time value indicates an
absolute time at which the specified process is to be awakened.
A negative time value indicates an offset (delta time) from the
current time.

reptim
address of a quadword containing the time interval (expressed in
delta time format) at which to repeat the wakeup request. If not
specified, it defaults to 0, which indicates that the request is
not to be repeated. .

If neither a process identification nor a process name is specified,
the scheduled wakeup request is for the caller. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The expiration time, repeat

descriptor cannot be read;
be written, by the caller.

SS$_EXQUOTA

time, process name string or string
or the process identification cannot

The process has exceeded its AST limit quota.

4-131

SS$ INSFMEM

SYSTEM SERVICE DESCRIPTIONS
$SCHDWK - SCHEDULE WAKEUP

Insufficient system dynamic memory is available to allocate a
timer queue entry and the process has disabled resource wait mode
with the Set Resource wait Mode ($SETRWM) system service.

SS$_IVLOGNAM
The process name string has a length of a or has more than 15
characters.

SS$_IVTIME
The specified delta repeat time was a positive value, or was
equal to or greater than 10,000 days. Or, an absolute expiration
time or absolute time plus delta repeat time is less than the
current time.

SS$_NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to schedule a wakeup
request for the specified process.

Privilege Restrictions:

User privileges are required to schedule wakeup requests for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned:

A scheduled wakeup request uses the caller's AST limit quota
(ASTLM) and requires system dynamic memory to allocate a timer
queue entry.

Notes:

1. If one or .more scheduled wakeup requests are issued for a
process that IS not hibernating, a subsequent hibernate
request by the target process completes immediately, that is,
the process does not hibernate. No count is maintained of
outstanding wakeup requests.

2. Scheduled wakeup requests that have not yet been processed
can be canceled with the Cancel Wakeup ($CANWAK) system
service.

For an example of the $SCHDWK system service, and for information on
how to format a system time value for input to this service, see
Section 3.6, "Timer and Time Conversion Services." For more
information on process hibernation and waking, see Section 3.5,
"Process Control Services."

4-132

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETAST

4.57 $SETAST - SET AST ENABLE

The Set AST Enable system service enables or disables the deliVery of
ASTs for the access mode from which the .service call was issued.

Macro Format:

$SETAST enbflg

High-Level Language Format:

SYS$SETAST(enbflg)

enbflg
AST enable indicator.
calling access mode.

Return Status:

SS$ WASCLR

A value of 1 enables AST delivery for
A value of 0 disables AST delivery.

the

- Service successfully completed. AST delivery was previously
disabled for the calling access mode.

SS$_WASSET
Service successfully completed. AST delivery was previously
enabled for the calling access mode.

Notes:

1. When an image is executing in user mode, the system .keeps
ASTs enabled for all higher access modes. If a higher access
mode disables AST delivery, it should reenable ASTs for its
own a~cess mode before returning to a lower access mode.

2. If an AST is queued for an access mode that has disabled AST
delivery, the system cannot deliver ASTs to less privileged
access modes until the access mode reenables AST delivery.

For additional notes on AST delivery and the usage of ASTs, see
Section 3.2, "Asynchronous System Trap (AST) Services."

4-133

SYSTEM SERVICE DESCRIPTIONS

$SETEF

4.58 $SETEF - SET EVENT FLAG

The Set Event Flag system service sets an event flag in a local or
common event flag cluster to 1. Any processes waiting for the event
flag are made runnable.

Macro Format:

$SETEF efn

High-Level Language Format:

SYS$SETEF(efn)

efn
number of the event flag to be set.

Return Status:

SS$ WASCLR
- Service successfully completed. The specified event flag was

previously O.

SS$ WASSET
- Service successfully completed. The specified event flag was

previously 1.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

For an example of the $SETEF system service and more information on
event flags and event flag clusters, see Section 3.1, "Event Flag
Services."

4-134

)

)

)

,)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETEXV

4.59 $SETEXV - SET EXCEPTION VECTOR

The Set Exception Vector system service assigns
address to an exception vector or cancels
assigned to a vector.

a condition handler
an address previously

Macro Format:

$SETEXV [vector] , [addres] , [acmode] , [prvhnd]

High-Level Language Format:

SYS$SETEXV([vector] , [addres] , [acmode] , [prvhnd])

vector
vector number. A value of 0 (the default) indicates that the
primary vector is to be modified. A value of 1 indicates the
secondary vector is to be modified. A value of 2 indicates that
a last chance exception vector is to be modified.

addres
condition handler address. If not specified, or specified as 0,
it indicates that there is no condition handler or that the
vector is to be canceled. If an address is specified, it is the
address of the entry mask of the condition handler.

acmode
access mode for which the exception vector is to be modified.
The access mode of the caller is maximized with the specified
access mode to determine which vector to modify.

prvhnd
address of a longword to receive the previous contents of the
vector.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The longword that is to receive the previous contents of the

vector cannot be written by the caller.

Privilege Restrictions:

A process cannot modify a vector associated with a
privileged access mode.

4-135

more

Notes:

SYSTEM SERVICE DESCRIPTIONS
$SETEXV - SET EXCEPTION VECTOR

1. Exception handlers are normally declared on the procedure
call stack.

2. The primary exception vector and the last chance exception
vector are used by the system debugger. The command
interpreter uses the last chance exception vector.

3. User mode exception vectors are canceled at image exit.

Condition handling, and conventions for coding condition handling
routines, are described in Section 3.7, "Condition Handling Services."

4-136

~)

)

')

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETIMR

4.60 $SETIMR - SET TIMER

The Set Timer system service allows a process to schedule the setting
of an event flag and/or the queuing of an AST at some future time.
The time for the event can be specified as an absolute time or as a
del ta time.

Macro Format:

$SETIMR [efn] ,day tim , [astadr] , [reqidt]

High-Level Language Format:

efn

SYS$SETIMR([efn] ,day tim , [astadr] , [reqidt])

event flag number of the event flag to set when the time interval
expires. If not specified, it defaults to O.

day tim
address of the quadword expiration time. A positive time value
indicates an absolute time at which the timer is to expire. A
negative time value indicates an offset (delta time) from the
current time.

astadr
address of the entry mask of an AST service routine to be called
when the time interval expires. If not specified, it defaults to
0, indicating no AST is to be queued.

reqidt
number indicating a request identification. If not specified, it
defaults to O. A unique request identification can be specified
in each set timer request; or the same identification can be
given to.related timer requests. The identification can be used
later to cancel the timer request(s). If an AST service routine
is specified, the identification is passed as the AST parameter.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The expiration time cannot be read by the caller.

SS$ EXQUOTA
- The process exceeded its quota for timer entries or its AST limit

quota. Or, there is insufficient system dynamic memory to
complete the request and the process has disabled resource wait
mode with the Set Resource wait Mode ($SETRWM) system service.

SS$_ILLEFC
An illegal event flag number was specified.

4-137

SS$ INSFMEM

SYSTEM SERVICE DESCRIPTIONS
$SETIMR - SET TIMER

- Insufficient dynamic memory is available to allocate
queue entry and the process has disabled resource wait
the Set Resource Wait Mode ($SETRWM) system service.

a timer
mode with

SS$_IVTIME
The specified absolute expiration time has already passed, or was
specified as O.

SS$_UNASEFC
The process is not associated with the cluster containing the
specified event flag.

Resources Required/Returned:

l.

2.

Notes:

The Set Timer system service requires dynamic memory.

The Set Timer system service uses the process's quota for
timer Queue entries (TQELM) and, if an AST service routine is
specified, the process's AST limit quota (ASTLM).

1. The access mode of the caller is the access mode of the
request and of the AST.

2. The Convert ASCII String to Binary Time ($BINTIM) system
service converts a specified ASCII string to the quadword
time format required as input to the $SETIMR service.

For examples of the $SETIMR system service, see Section 3.6, "Timer
and Time Conversion Services." For an example of an AST service
routine, see Section 3.2, "AST (Asynchronous System Trap) Services."

4-138

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETPRA

4.61 $SETPRA - SET POWER RECOVERY AST

The Set Power Recovery AST system service establishes a routine to
receive control using the AST mechanism after a power recovery is
detected.

Macro Format:

$SETPRA astadr , [acmode)

High-Level Language Format:

SYS$SETPRA(astadr , [acmode))

astadr
address of the entry mask for a power recovery AST routine. An
address of 0 indicates that power recovery AST notification for
the process is disabled.

acmode
access mode at which the power recovery AST routine is to
execute. The specified access mode is maximized with the access
mode of the caller to determine the access mode to use.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ EXQUOTA
- The process exceeded. its quota for outstanding AST requests.

Resources Required/Returned:

The $SETPRA system service uses the process's AST limit quota
(ASTLM) .

Notes:

1. The AST parameter contains the amount of time that the power
was off, in hundredths of seconds.

2. Only one power recovery AST routine can be specified for a
process. The AST entry point address is cleared at image
exit. A power recovery AST routine is executed only once:
it must specifically re-establish itself to receive control
for multiple power recovery conditions.

3. The entry and exit conventions for the power recovery AST
routine are the same as for all AST service routines. These
conventions are described in Section 3.2, "Asynchronous
System Trap (AST) Services."

4-139

SYSTEM SERVICE DESCRIPTIONS

$SETPRI

4.62 $SETPRI - SET PRIORITY

The Set Priority system service changes a process's base priority.
The system scheduler uses the base priority to determine the order in
which executable processes are to run.

Macro Format:

$SETPRI [pidadr] , [prcnam] ,pri , [prvpri]

High-Level Language Format:

SYS$SETPRI ([pidadr] , [prcnam] ,pri , [prvpri])

pidadr
address of the process identification of the process whose
priority is to be set.

prcnam
- address of a character string descriptor pointing to a 1- to

IS-character process name string. The process name is implicitly
qualified by the group number of the process issuing the set
priority request.

pri
new base priority to be established for the process. The new
priority is contained in bits 0 through 4 of the argument.

Normal priorities are in the range 0 through IS, and
time-critical priorities are in the range 16 through 31.

If the specified priority is higher than the caller's priority,
and if the caller does not have the privilege to set the target
process's priority to a value higher than its own, the caller's
priority is used.

prvpri
address of a longword to receive the previous base priority of
the specified process.

If neither a process identification nor a process name is specified,
the set priority reque&t is for the caller. For details on how the
service interprets the PIDADR and PRCNAM arguments, see Table 3-3.
Table 3-3 is in Section 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

the process identification or previous priority longword cannot
be written, by the caller.

4-140

)

)

)

)

)

)

)

\

SYSTEM SERVICE DESCRIPTIONS
$SETPRI - SET PRIORITY

SS$ IVLOGNAM
- The process name string has a length of 0, or has more than 15

characters.

SS$ NONEXPR
- Warning. The specified process does not exist, or an invalid

p~ocess identification was specified.

SS$_NOPRIV
The process does not have the privilege to set the specified
priority for the specified process.

privilege Restrictions:

~:

User privileges are required to:

• Change the priority for other processes in the same group
(GROUP privilege)

•

•

Change the priority for any other process in the system
(WORLD privilege)

Set any process's priority to a value greater than one's own
initial base priority (ALTPRI privilege)

A process's base priority remains in effect until specifically
changed or until the process is deleted.

4-141

SYSTEM SERVICE DESCRIPTIONS

$SETPRN

4.63 $SETPRN - SET PROCESS NAME

The Set Process Name system service allows a process to establish or
to change its own process name.

Macro Format:

$SETPRN [prcnam]

High-Level Language Format:

SYS$SETPRN([prcnam]l

prcnam
address of a character string descriptor pointing to the 1- to
IS-character process name string. The process name is implicitly
qualified by the group number of the caller. If not specified,
or specified as 0, the process's current name is deleted.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read by

the caller.

SS$_DUPLNAM
The specified process name duplicates one already specified
within that group.

SS$_IVLOGNAM
The specified process name has a length of a or has more than 15
characters.

)

)

Notes:)

1. A process name remains in effect until specifically changed
or until the process is deleted.

2. Process names provide an identification mechanism for
processes executing with the same group number. Processes
can also be identified by process identifications.

For an example of the $SETPRN system service, and details on process
identification and system services providing process control
functions, see Section 3.5, "Process Control Services."

4-142

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETRWM

4.65 $SETRWM - SET RESOURCE WAIT MODE

The set Resource wait Mode system service allows a process to indicate
what action a system service should take when it lacks a system
res'ource required for its execution:

• When resource wait mode is enabled (the default mode), the
service waits until a resource is available and then resumes
execution.

• When resource wait mode is disabled, the service returns
control to the caller immediately with a status code
indicating that a resource is unavailable.

Macro Format:

$SETRWM [watflg]

High-Level Language Format:

SYS$SETRWM([watflg])

watflg
wait indicator. A value -of 0
resources are to be awaited;
resource wait mode. A value of 1
should be returned immediately.

Return Status:

SS$ WASCLR
- Service successfully completed.

previously enabled.

SS$_WASSET
Service successfully completed.
previously disabled.

Notes:

(the default) indicates that
this is the initial setting for
indicates that failure status

Resource wait mode was

Resource wait mode was

1. The following system resources and process quotas are
affected by resource wait mode:

• System dynamic memory

• Direct I/O quota (DIOLM)

• Buffered I/O quota (BIOLM)

• Buffered I/O byte count limit (BYTLM)

2. If resource wait mode is disabled, it remains disabled until
it is explicitly reenabled or until the process is deleted.

4-145

SYSTEM SERVICE DESCRIPTIONS

$SETSFM

4.66 $SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

The Set System Service Failure Exception Mode system service controls
whether a software exception is generated when an error or severe
error status code is returned from a system service call. Initially,
system service failure exceptions are disabled; the caller should
explicitly test for successful completion following a system service
call.

Macro Format:

$SETSFM [enbflg]

High-Level Language Format:

SYS$SETSFM([enbflg])

enbflg
enable indicator. A value of 1 indicates
failure exceptions are to be generated.
default) disables their generation.

Return Status:

SS$ WASCLR

that
A

- Service successfully
previously disabled.

completed. Failure

SS$_WASSET
Service successfully
previously enabled.

Notes:

completed. Failure

system service
value of 0 (the

exceptions were

exceptions were

1. When enabled, system service failure exceptions are generated.
only if the service call originated from user mode. The
$SETSFM system service can be called, however, from any
access mode. If enabled, system service failure exce~tion
mode remains enabled until explicitly disabled or until the
image exits.

2. If failure exceptions are enabled, a condition handler can be
specified in the first longword of the procedure call stack
or with the Set Exception Vector ($SETEXV) system service.
If no condition handler is specified by the user, a default
system handler is used. This condition handler causes the
image to exit and then displays the exit status.

3. The argument list provided to the condition handler has the
code SS$_SSFAIL in the condition name argument of the signal
array.

For an explanation and examples of condition handling routines, the
format of the argument lists passed to the condition handler, and a
discussion of the appropriate actions a condition handler may take,
see Section 3.7, "Condition Handling Services."

4-146

.~
/

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SETSWM

4.67 $SETSWM - SET PROCESS SWAP MODE

The Set Process Swap Mode system service allows a process to control
whether it can be swapped out of the balance set. Once a process is
locked in the balance set, it cannot be swapped out of memory until it
is explicitly unlocked.

Macro Format:

$SETSWM [swpflg]

High-Level Language Format:

SYS$SETSWM([swpflg])

swpflg
swap indicator. A value of 0 (the default) allows the process to
be swapped; this is the initial setting for swap mode. A value
of 1 inhibits swapping.

Return Status:

SS$ WASCLR
- Service successfully completed. The process was not previously

locked in the balance set.

SS$_WASSET
Service successfully completed.
locked in the balance set.

The process was previously

SS$_NOPRIV
The process does not have the privilege to alter its swap mode.

Privilege Restrictions:

The user privilege PSWAPM is required to alter process swap mode.

Notes:

1. If a process is locked in the balance set it remains locked
until explicitly unlocked or until the process is deleted.

2. Specific pages of a process's virtual address space can be
locked in the balance set with the Lock Pages in Memory
($LCKPAG) system service.

4-147

SYSTEM SERVICE DESCRIPTIONS

$SNDACC

4.68 $SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

The Send Message to Accounting Manager system service controls
accounting log activity and allows a process to write an arbitrary
data message into the accounting log file.

Macro Format:

$SNDACC msgbuf ,[chan]

High-Level Language Format:

SYS$SNDACC(msgbuf ,[chan])

msgbuf

chan

address of a character string descriptor pointing to the message
buffer. The types of message and the buffer formats are
described in Section 4.68.2, below.

number of the channel assigned to the mailbox to receive the
reply. If no channel number is specified, or if it is specified
as 0 (the default), it indicates that no reply is desired.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The message buffer or buffer descriptor cannot be read by the

caller.

SS$_BADPARAM
The specified message has a length of 0 or has more than 254
characters.

SS$ DEVNOTMBX
The channel specified is not assigned to a mailbox.

SS$ INSFMEM
Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_IVCHAN
An invalid
number of
available.

SS$_NOPRIV

channel number was specified, that is, a channel
o or a number larger than the number of channels

The caller does not have write access to the specified mailbox.

Privilege Restrictions:

The user privilege OPER is required to create a new log file or
to enable or disable accounting.

4-148

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDACC ~ SEND MESSAGE TO ACCOUNTING MANAGER

Resources Required/Returned:

Note:

The Send Message to Accounting Manager system service requires
system dynamic memory.

The general procedure for coding a call to this service involves
the following steps:

1. Construct the message buffer and place its final length in
the first word of the buffer descriptor.

2. Call the $SNDACC system service.

3. Check the return status code from the service to ensure
successful completion.

4. Issue a read request to the mailbox specified, if any. When
the read completes, check that the operation was successfully
performed.

4.68.1 The Accounting Log File

By default, the system writes a record into the accounting log file
whenever a job terminates. Termination records are written for
interactive users, batch jobs, non-interactive processes, login
failures, and print jobs. The $SNDACC system service allows users to
write additional data into the accounting log and allows privileged
users to disable or enable all accounting or accounting for particular
types of jobs.

Table 4-5 lists the fields in the accounting record and notes which
portionsof the accounting record are written for each type of job.

4.68.2 Format of Messages Sent to the Accounting Manager

The $ACCDEF macro defines symbolic names for the message types, fields
within the accounting record, and job type record codes for selective
accounting.

A message buffer for a message to the accounting manager begins with a
word defining the message type. Some message types require that data
follow the message type code in the buffer. The message types and
data, if any, required by each are listed below.

1. ACC$K_INSMESG

2.

Insert an arbitrary message in the accounting log file. The
message code is followed with any arbitrary data. when the
message is inserted in the accounting log file, the default
header precedes the user-specified data.

Requests that the current log file be closed and a new file
created. Operator privilege is required to create a new log
file. No data is required for the message.

4-149

SYSTEM SERVICE DESCRIPTIONS
$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

3. ACC$K_ENABACC

Enabl~s accounting for all types ,of jobs. Operator privilege
is required to enable accounting. No data is required for
the message.

4. ACC$K_DISAACC

Disables accounting for all types of job. Operator privilege
is required to disable accounting. No data is required for
the message.

5. ACC$K_ENABSEL

Enables accounting for certain types of job. Operator
privilege is required to selectively enable accounting. The
message type code must be followed by one or more bytes
indicating the type of job for which accounting'is to be
enabled:

Code

ACC$K BATTRM
ACC$K-INSMSG
ACC$K-INTTRM
ACC$K-LOGTRM
ACC$K-PRCTRM
ACC$()RTJOB

Job Type

Batch job
Arbitrary messages
Interactive 'job
Login failute termination
Non-interactive process
Print job

The list of job type codes must be terminated with a byte
containing o.

6. ACC$K_DISASEL

Disables accounting for certain types of job. Operator
privilege is required to selectively disable accounting. The
message type code is followed by one or more bytes indicating
the types of job for which accounting is to be disabled. The
codes are listed above, under ACC$K_ENABSEL.

4-150

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Table 4-5
Format of Accounting Log File Records

Accounting Log File Record Header 1

Offset Field Name Length Contents

0 ACC$W MSGTYP word Record type code
2 ACC$W-MSGSIZ word Length of data message
4 ACC$L-FINALSTS longword Final exit status
8 ACC$L-PID longword Process iden t if ica tion

12 ACC$L-JOBID longword Job identification
16 ACC$Q-TERMTIME quadword System time at job termination
24 ACC$T-ACCOUNT 8 bytes Account name (blank-filled)
32 ACC$T=USERNAME 12 bytes User name (blank-filled)

Job Information2

Offset Field Name Length Contents

44 ACC$L CPUTIM longword CPU time in 10-millisecond units
48 ACC$L-PAGEFLTS longword Count of page faults during process lifetime
52 ACC$L-PGFLPEAK longword Peak size of process paging file
56 .ACC$L=WSPEAK longword Peak size of working set
60 ACC$L BIOCNT longword Count of buffered I/O operations performed
64 ACC$L-::DIOCNT longword Count of direct I/O operations performed
68 ACC$L-VOLUMES longword Count of volumes mounted
72 ACC$Q-LOGIN quadword System time at login
80 ACC$L-OWNER longword Process identification of process's owner

ACC$K=TERMLEN constant Length of non-batch job termination message

Batch Job Accounting Information 3

Offset Field Name Length Contents

84 ACC$T JOB NAME 8 bytes Job name (blank-filled)
92 ACC$T-JOB-QUE 16 bytes Queue name (counted .ASCII string)

ACC$K=JOB=LEN constant Length of terminatiorr record for batch jobs

Printer Job Information 4

Offset Field Name Length Contents

48 ACC$L PAGCNT longword Symbiont page count
52 ACC$L-QIOCNT longword Symbiont QIO count
56 ACC$L-GETCNT longword· Symbiont GET count
60 ACC$Q-QUETIME quadword System time that job was queued
68 ACC$T-PRT NAME 8 bytes Name of print job
76 ACC$T-PRT-QUE 12 bytes Name of print queue

ACC$K=PRT=LEN constant Length of print job accounting record

User Data5

Offset Field Name Length Contents

32 ACC$T USER DATA 132 bytes User data written to accounting file
ACC$K=INS_LEN constant Length of user-written accounting file log

record

1

2

Present in all types of log file records.

Present in interactive, non-interactive process, and batch job termination
messages.

3 Present only in batch job termination records.

4 Present only in printer job termination records. The record contains default
header record and CPU time followed by the data listed below.

5 Present in user-written messages.

4-151

SYSTEM SERVICE DESCRIPTIONS
$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

4.68.3 Format of Response from Accounting Manager

If a mailbox is specified, the accounting manager returns a message in
the format:

Bits

0-15

16-31

32-63

Contents

MSG$ ACCRSP indicates that the message is a response
from- the accounting manager. (This symbolic name is
defined in the $MSGDEF macro.)

o

Status code indicating the success of the operation.

If the mailbox cannot handle the message (either because of
insufficient buffer space, or because a message is too long), or if
the mailbox no longer exists when the reply is sent, the response is
lost.

Status Codes Returned in the Mailbox:

SS$ NORMAL
- Request successfully performed.

JBC$ ACMINVOP
-An invalid operation was requested.

JBC$ NOPRIV
-The process does not have the privilege to perform the requested

operation.

These status codes are defined in the $JBCMSGDEF macro.

4-152

)

)

)

)

)

)

)
/

)

)

SYSTEM SERVICE DESCRIPTIONS

$SNDERR

4.69 $SNDERR - SEND MESSAGE TO ERROR LOGGER

The Send Message To Error Logger system service writes an arbitrary
message to the system error log file. The user-specified message is
preceded by the date and time.

Macro Format:

$SNDERR msgbuf

High-Level Language Format:

SYS$SNDERR(msgbuf)

msgbuf
address of character string descriptor pointing to the message to
be inserted in the system error log file.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The message buffer or buffer descriptor cannot be read by the

caller.

SS$_INSFMEM
Insufficient
service and
Set Resource

system dynamic memory is available to complete the
the process has disabled resource wait mode with the
Wait Mode ($SETRWM) system service.

SS$_NOPRIV
The process does not have the BUGCHK privilege.

Privilege Restrictions:

The user privilege BUGCHK is required to send a message to the
error log file.

Resources Required/Returned:

The Send Message To Error Logger system service requires system
dynamic memory.

4-153

SYSTEM SERVICE DESCRIPTIONS

$SNDOPR

4.70 $SNDOPR - SEND MESSAGE TO OPERATOR

The Send Message To Operator system service allows a process to send a
message to one or more terminals designated as operators' terminals
and optionally receive a reply.

Macro Format:

$SNDOPR msgbuf ,[chan]

High-Level Language Format:

SYS$SNDOPR(msgbuf ,[chan])

msgbuf

chi;ln

address of character
buffer. The types
described in Section

string descriptor pointing to
of message and the buffer

4.70.1, below.

the message
formats are

number of the channel assigned to the mailbox to which the reply
is to be sent, if any. A channel number of 0 (the default)
implies no mailbox unit.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The message buffer or buffer descriptor cannot be read by the

caller.

SS$_BADPARAM
The specified message has a length of 0 or has more than 128
bytes.

SS$_DEVNOTMBX
The channel specified is not assigned to a mailbox.

SS$ DEVOFFLINE
- There is no operator designated to receive messages.

SS$ INSFMEM
- Insufficient system dynamic memory is available to

service and the process has disabled resource wait
Set Resource wait Mode ($SETRWM) system service.

complete the
mode with the

SS$_IVCHAN
An invalid
number of
available.

channel number was
o or a number

specified; that is, a channel
larger than the number of channels

SS$_NOPRIV
The process does not have the privilege to send a message to the
operator, the process does not have read/write access to the
specified mailbox, or the channel was assigned from a more
privileged access mode.

4-154

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR - SEND MESSAGE TO OPERATOR

Privilege Restrictions:

The user privilege OPER is required to issue the Send Message To
Operator system service to enable a terminal as an operator's
terminal, reply to or cancel a user's request, or initialize the
operator communication log file.

Resources Required/Returned:

Note:

The Send Message To Operator system service requires system
dynamic memory.

The general procedure for using this service is as follows:

1. Construct the message buffer and place its final length in
the first word of the buffer descriptor.

2. Issue the $SNDOPR system service.

3. Check the return status code from the service to ensure
successful completion.

4. Issue a read request to the mailbox specified, if any. When
the read completes, check that the operation was successfully
performed.

4.70.1 Operator Communication

This service is used by the system to implement the REQUEST and REPLY
commands, which provide communications between users and operators.
An operator establishes a terminal as an operator's console by issuing
the REPLY/ENABLE command, specifying the types of message that will be
handled. Users can then send messages to the operator with the
REQUEST command, optionally requesting replies.

Messages are displayed on a specified operator's terminal in the
format:

Opcom -- time -- User="username" ACNT="acccunt"
[Opccm -- *** REPLY-ID = n ***]
Opcom

If a reply is requested, the operator request is kept active until the
operator responds.

4.70.2 $SNDOPR Message Types and Message Formats

The $OPCDEF macro defines symbolic names for operator message types,
offsets within messages, and return status codes.

4-155

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR - SEND MESSAGE TO OPERATOR

The $SNDOPR system service handles five types of message:

Code Type of Request

Request operator functions

OPC$_RQ_CANCEL Cancel a user request

OPC$_RQ_REPLY Reply to user request

OPC$_RQ_TERME Enable terminal for operator's use

OPC$_RQ_LOGI Initialize log file

Each message type has a different format. The maximum length of any
message is 128 bytes, including message text.

4.70.2.1 OPC$ RQ RQST - Constructs a message to be displayed at an
operator's terminal (REQUEST command). The message format is:

Offset Length

byte

Contents

OPC$_RQ_RQST identifies the
message

type of

Mask indicating which operators will
receive the message. The symbolic names
to create the mask are:

OPC$M NM CENTRL
OPC$M-NM-DEVICE
OPC$M-NM-DISKS
OPC$M-NM-TAPES
OPC$M-NM-PRINT
OPC$M:=NM:=OPERl

OPC$M_NM OPER12

Central operator
Device status information
Disk operator
Tape operator
Printer operator
System manager-defined
operator functions

User-specified message identification to
be used for replying

0-120 bytes Up to 120 bytes of message text

4.70.2.2 OPC$ RQ CANCEL - Notifies an operator that a request is to
be canceled. - -

The message format is the same as for the message type OPC$_RQ_RQST
except that:

• The message type field must contain OPC$_RQ_CANCEL

• The message has no message text.

4-156

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR - SEND MESSAGE TO OPERATOR

4.70.2.3 OPC$ RQ REPLY - Constructs a reply to a user request (REPLY
command). The-message format is:

Offset

OPC$W_MS_OUNIT

OPC$T_MS_ONAME

OPC$L_MS_OTEXT

Length

byte

word

Contents

OPC$_RQ_REPLY identifies the type
message

Ret.urn status:

OPC$ RQSTCMPLTE
OPC$-RQSTABORT
OPC$-RQSTPEND
OPC$:RQSTCAN

Request completed
Request denied
Request pending
Request canceled

of

Identification of message to which reply
is directed

Unit number of terminal

Device name (counted ASCII string)

Reply message text, if any

4.70.2.4 OPC$ RQ TERME - Enables a terminal
(REPLY/ENABLE command). The message format is:

for operator use

Offset

OPC$B MS ENABL
OPC$L:MS:MASK

OPC$W_MS_OUNIT

OPC$T_MS_ONAME

Length

byte

3 bytes
longword

word

Contents

OPC$_RQ_TERME identifies the type
message

of

Masks defining the type of messages for
which the terminal is enabled

Unit number of terminal

Device name (counted ASCII string)

4.70.2.5 OPC$ RQ LOGI - Initializes the log file of operator messages
(REPLY/LOG command). The message format is:

Offset Length Contents

OPC$B_MS_TYPE byte OPC$_RQ_LOGI identifies the type of
message

7 bytes Ignored

OPC$W_MS OUNIT word unit number of terminal

OPC$T_MS_ONAME Device name (counted ASCII string)

4-157

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR - SEND MESSAGE TO OPERATOR

4.70.3 Format of Response from OperatorCornrnunication Manager

When the operator replies to a message, the reply is placed in the
specified mailbox in the format:

Offset Length

word

Contents

MSG$ OPREPLY indicates that the
is a response to an operator's
This symbolic name is defined
$MSGDEF macro.

Return status.

message
request.
in the

OPC$W_MS_STATUS word

OPC$L_MS_RPLYID longword Identification of message for which reply
is made (specified in user request
message)

0-128 bytes Up to 128 bytes of message text taken
from reply

If the mailbox specified to receive the reply cannot handle the reply
message (either because of insufficient buffer space or because the
message is too big), the message is lost.

Status Codes Returned in Mailbox:

OPC$_NOPERATOR
Success. There was no operator enabled to receive the message.

OPC$ RQSTCMPLTE
-Success. The operator completed the request.

OPC$ RQSTPEND
-Success. The operator will perform the request when possible.

OPC$ RQSTABORT
-The operator could not satisfy the request.

OPC$ RQSTCAN
-The caller canceled the request.

4-158

---.~"

)

)

)

)
./

/

)

)

)

)

I .

SYSTEM SERVICE DESCRIPTIONS

$SNDSMB

4.71 $SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

The Send Message To Symbiont Manager system service is used by the
operating system to queue user's print files to a system printer or to
queue command procedure files for detached job execution.

Symbiont manager requests:

• Create and delete queues

• Add or delete files from a queue

• Change the attributes of files in a queue

• Start and restart dequeuing

Macro Format:

$SNDSMB msgbuf , [chan]

High-Level Language Format:

SYS$SNDSMB(msgbuf , [chan])

msgbuf
address of a character string descriptor
buffer. The buffer formats and the
described in Section 4.71.1, below.

pointing to the message
types of messages are

chan
number of the channel assigned to the mailbox to receive the
reply. If no channel number is specified, or if it is specified
as 0 (the default), it indicates that no reply is desired.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The message buffer or buffer descriptor cannot be read by the

caller.

SS$_BADPARAM
The specified message has a length of 0 or has more than 200
characters.

SS$ DEVNOTMBX
- The spec~ified channel is not assigned to a mailbox.

SS$ INSFMEM
- Insufficient system dynamic memory is available to

service and the process has disabled resource wait
Set Resource Wait Mode ($SETRWM) system service.

4-159

complete the
mode with the

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER.

SS$IVCHAN
- An invalid channel number was

number of 0 or a number
available.

specified; that is, a channel
larger than the number of channels

SS$_NOPRIV
The caller does not have write access to the specified mailbox.

Resources Required/Returned:

The Send Message To Symbiont Manager system service requires
system dynamic memory.

Privilege Restrictions:

Note:

There are two levels of privilege involved in symbiont control:

•

•

The user privilege OPER is required to manipulate device
queues, to modify job queues for other users, or increase the
priority of a job within a queue.

A process can manipulate any jobs owned by processes in its
group.

The general procedure for using this service is as follows:

1. Construct the message buffer and place its final length in
the first word of the buffer descriptor.

2. Issue the $SNDSMB system service.

3. Check the return status code from the service to ensure
successful completion.

4. Issue a read request to the mailbox specified, if any. When
the read completes, check that the operation was successfully
performed.

4.71.1 Format of Messages Sent to Symbiont Manager

Messages are variable-length, and their formats
type. Each request type can require from
fields, and can be followed by options.
additional data.

The general message format is:

depend on the request
o to 5 additional data
Some options require

request [queuename] [devname] [fileidl [dirname]
[filename] [jobid] [jobname] [option [opdata] 1

request
16-bit field indicating the request type. The $SMRDEF macro
defines symbolic codes for each request in the format:

ValJd request codes, and required and optional fields for fields
for each, are listed in Table 4-6.

4-160

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

queuename
16-byte queue name. The length of the name must be in the first
byte. A queue name can be a physical device name (for example,
LPAO:), a logical name (for example, SYS$PRINT), Or a designated
name string, such as BATCH or AFTER5.

Some request types require two queue names,
SMR$K_MERGE.

for example

devname
16-byte field containing the name of the device on which the file
resides. The length of the device name must be in the first
byte. The device name is returned by RMS as a counted ASCII
string in the NAM$T DVI field of the auxiliary name block (NAM)
when the file is opened.

fileid
6-byte file identification. RMS returns the file
in the auxiliary name block (NAM) beginning
NAM$W_FID when the file is opened.

identification
at the offset

dirname
6-byte directory name returned by RMS in the name block (NAM) at
the offset NAM$W_DID.

filename

jobid

20-byte field containing the name of a file to be queued. The
first byte in the field must contain the length.

16-bit job header identifying the job. The jobid is returned in
the message queued ~o the mailbox on completion of the operation.

jobname
8-byte blank-filled ASCII name string.

option
byte indicating
$SMRDEF macro
format:

an optional parameter
defines symbolic names

SMP$C_option

for
for

the request. The
the options in the

Valid options for each request type are listed in Table 4-6. The
options, and any data required by each, are listed in Table 4-7.

opdata
any data required by the specified option.

Syntax Notes:

1. Fields within the message buffer must be placed in
consecutive positions in the buffer, with no intervening
blanks.

2. The message length passed to the service indicates the total
length of the buffer. If a byte of binary O's follows an
option or its required data, the message scan is terminated.
Therefore, fixed-length message buffers can be used, with a 0
indicating termination of the option list.

4-161

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

The following example shows an input message buffer for the $SNDSMB
system service:

ADDUST:

DEV:
FIUD:
FILEN:
OPTS:
ADDESC:

.WORD
• BU'::B
.BLKW
.BLKB
.BLKB

.LONG

.LONG

SMR$K ... ADDF I L
1.6
3
20
10

ADDESC-ADDLIST
ADDLIST

;MESSAGE BUFFEH
;REQUEST TYPE TO ADD A FILE
;MOVE DEVICE NAME HERE (COUNTED STRING)
9MOVE FILEID HERE
;MOVE FILENAME HERE
;LEAVE ROOM FOR 10 OPTIONS
;DESCRIPTOR FOR MESSAGE
;LENGTH OF BUFFER
;ADDRESS OF BUFFER

$SNDSMB_S MSGBUF~ADDESC ;ADD FILE TO QUEUE

4-162

)

)

)

)

)

)

)

Request

SMR$K_ABORT

SMR$K_ADDFIL

SMR$K_ALTER

SMR$K_ASSIGN

SMR$K_CLSJOB

SMR$K_CREJOB

SMR$K_DELETE

SMR$K ENTER -

SYSTEM SERVICE DESCRIPTIONS
$~NDSM~~ SEND MESSAGE TO SYMBIONT MANAGER

Table 4-6
Request Types for Symbiont Manager Messages

Function Required Data

Stops printing the current queuename
file and skips to the
next file

Adds a file to a job devname
fileid 1 dirname 2 filename

Changes attributes of a queuename
previously queued job and jobid
requeues the job

Directs a queue to a queuename
specif ic device [devnamel

Closes the job None

Creates a job queuename

Deletes a device queue queuename

Enters a file in a queuename
queue for a device devname

fileid 1
dirname 2
filename

Valid Options

SMO$K_REQUEUE

SMO$K COPIES
SMO$K=BRSTPAG
SMO~K DELETE
SMO$K-DOUBLE
SMO$K-FLAGPAG
SMO$K-NOBRSTPAG
SMO$K-NOFEED
SMO$K-NOFLAGPAG
SMO$K-PAGCNT
SMO$K=PAGHDR

SMO$K FORMTYP
SMO$K-HOLD
SMO$K-JOBCOPY
SMO$K-JOBNAME
SMO$K-JOBPRI
SMO$K LOWER
SMO$K NOLOWER
SMO$K RLSTIM

None

SMO$K FORMTYP
SMO$K-HOLD
SMO$K-JOBPRI
SMO$K=RLSTIM

SMO~K FORMTYP
SMO$K-HOLD
SMO$K-JOBCOPY
SMO$K-JOBPRI
SMO$K-LOWER
SMO$K NOLOWER
SMO$K PARAMS
SMO$K=RLSTIM

None

SMO$K BRSTPAG
SMO$K-COPIES
SMO$K-DELETE
SMO$K-DOUBLE
SMO$K-FLAGPAG
SMO$K-FORMTYP
SMO$K-HOLD
SMO$K-JOBCOPY
SMO$K-LOWER
SMO$K-NOBRSTPAG
SMO$K-NOFEED
SMO$K-NOFLAGPAG
SMO$K-NOLOWER
SMO$K-PAGCNT
SMO$K-PAGHDR
SMO$K-JOBPRI
SMO$K=RLSTIM

1 The dirname field is required only if file is to be deleted after processing.

2 The filename field is optional; it can be used for informational purposes.

4-163

Request

SMR$K_INITIAL

SMR$K_JUSTIFY

SMR$K_MERGE

SMR$K_PAUSE

SMR$K_REDIRECT

SMR$K_RELEASE

SMR$K_RMVJOB

SMR$K_START

SMR$K_STOP

SMR$K_SYNCJOB

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 4-6 (Cant.)
Request Types for Symbiont Manager Messages

Function Required Data

Initializes or reinitializes queuename
a queue

Issues hardware form queuename
feed

Deletes jobs from second queuename~
queue and places them in queuename
first queue

Temporarily suspends current queuename
operation

Redirects second queue to queuename1 2
first queue [queuename 1

Releases a held job for queuename
printing jobid 3

Removes a job from jobid
a queue

Enables printing on a device, queuename
resumes printing on a paused
device, Or restarts printing
on a stopped device

Stops printing on a device queuename
(for a batch job, equivalent
to PAUSE)

Waits for a batch job to queuename
complete [jobid]4

[jobname]

Valid Options

SMO$K CURFORM
SMO$K-DEFBRST
SMO$K-DEFFLAG
SMO$K-DETJOB
SMO$K DISWAP
SMO$K GENDEV
SMO$K GENPRT
SMO$K INIPRI
SMO$K JOBLIM
SMO$K NODEFBRST
SMO$K NODEFFLAG
SMO$K-NOGENDEV
SMO!?K-NOGENPRT
SMO$K NOTRMDEV
SMO!?K TRMDEV

None

None

None

None

None

Norie

SMO!?K CURFORM
SMO$K-DEFBRST
SMO$K-DEFFLAG
SMO!?K-DETJOB
SMO$K-GENDEV
SMO$K-GENPRT.
SMO$K-NEXTJOB
SMO$K-NODEFBRST
SMO$K-NODEFFLAG
SMO$K-NOGENDEV
SMO$K NOGENPRT
SMO$K NOTRMDEV
SMO!?K PAGNUM
SMO$K TOPOFILE
SMO$K TRMDEV

None

1

2

The dirname field required only if file is to be deleted after processing.

The filename field is optional; it can be used for informational purposes.

3 A jobid is optional; if specified as 0 or not specified, the first job in queue
is released.

4 Either the jobid or the jobname must be specified.

4-164

)

)

)

)

)

)
/

)

Option

SMO$K_BRSTPAG·

SMO$K_DEFBRST

SMO$K_DEFFLAG

SMO$K_DELETE

SMO$K_DETJOB

SMO$K_DOUBLE

SMO$K FLAGPAG

SMO$K FORMTYPE

SMO$K INIPRI

SMO$K_JOBCOPY

SMO$K_JOBNAME

SMO$K_NEXTJOB

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 4-7
Options for Symbiont Manager Messages

Function

Specifies that a burst page
should be printed

Specifies the number of
copies of the file to
print

Defines form type currently
on printer

Specifies that queue prints
burst page by default

Specifies that queue prints
flag page by default

Deletes file after printing

Defines queue as a detached
job (batch) queue

Required Data

None

Number of copies (1 byte)

Type of form (1 byte)

None

None

None

None

Disables swapping of all None
batch jobs in queue

Double-spaces printer output None

Specifies that a flag page None
should be printed

Specifies the form type Type of form (1 byte)

Defines the queue as a None
generic device queue

Defines the queue as a None
generic printer file
queue

Holds job until specifically None
released

Specifies initial priority
of batch job

Specifies a repeat count
for the entire job

Specifies maximum number
of jobs in batch queue

Specifies the job name

Specifies priority for
queuing of a job

Specifies that printer
must be equipped with upper­
case and lowercase characters

Terminates current job and
start printing with next
job

4-165

Priority (1 byte)
range: 0 through 15

Repeat count (1 byte)

Number of jobs
(1 byte)

Counted ASCII string
(1 to 8 bytes)

Priority (1 byte)
range: 0 through 31

None

None

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Option

SMO$K_NOBRSTPAG

SMO$K_NODEFBRST

SMO$K_NODEFFLAG

SMO$K_NOFLAGPAG

SMO$K_NOGENDEV

SMO$K_NOGENPRT

SMO$K_NOTRMDEV

SMO$K_RLSTIM

SMO$K_TOPOFILE

Table 4-7 (Cant.)
Options for Symbiont Manager Messages

Function

Specifies that no burst
page should be printed

Specifies that printer
does not generate burst
page by default

Specifies that printer does
not generate flag page
by default .

Cancels automatic
form feed for output

Specifies that no flag page
should be printed

Disallows generic spooling
to the device

Disallows generic printing
on the specified device

Specifies that lowercase
printer is not required

Specifies that device is
not a terminal

Specifies the number of
pages to print

Prints file specification on
the top of each output page

Specifies parameters for a
batch job

Places aborted line
printer job back into
the queue

specifies time to release
a held job

Restarts current job
backspacing or forward
spacing pages

Restarts current job at top
of file

Specifies that device is a
terminal

4-166

Required Data

None

None

None

None

None

None

None

None

None

Numb~r of pages (1 word)

None

One or more counted ASCII
strings terminated by
o (maximum length of
all strings is 63 bytes)

None

Binary absolute time value
(quadword)

Signed 16-bit integer
specifying
plus or minus page count

None

None

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

4.71.2 Format of Response from Symbiont Manager

If a mailbox is specified, the symbiont manager returns to it the
following information:

Bits

0-15

16-31

32-63

Contents

MSG$ 5MBRSP indicates that the message is from the
symbIont manager. (This name is defined in the $MSGDEF
macro.)

jobid

status code indicating the success of the operation.

If the mailbox cannot handle the message (either because of
insufficient buffer space, or because a message is too long), or if
the mailbox no longer exists when the reply is sent, the response is
lost.

Status Codes Returned in Mailbox:

JBC$ NORMAL
-Service successfully completed.

JBC$ ILLDEVNAM
-The device name specified has more than 15 characters.

JBC$ ILLDEVTYP
-The symbiont manager cannot create a queue for the device type

specified.

JBC$ ILLFILNAM
-The filename specified has more than 19 characters.

JBC$ INVREQ
-An invalid request type was specified.

JBC$ NOOPENJOB
-There is no outstanding open print job for the caller.

JBC$ NOPRIV
-The process does not have the privilege to perform the requested

operation.

JBC$ NOQUEHDR
-The symbiont manager has no more space to allocate a queue

header.

JBC$ NOQUESPACE
-The specified device queue is full.

JBC$ NOSUCHJOB
-The specified record was not a print job.

JBC$ NOSUCHQUE
-There is no queue for the specified device.

JBC$ QUENOSTOP
-The specified queue is still active.

4-167

JBC$ SMINVOPR

SYSTEM SERVICE DESCRIPTIONS
$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

-The request type specified is illegal; or, an attempt was made
to start a queue that was already started.

JBC$ SMINVOPT
-A specified option is invalid for the request type.

JBC$ SMINVREQ
-An invalid request type was specified.

JBC$ SMZEROJOB
-A job was released that had no files in it.

JBC$ SYMBDSAB
-The symbiont manager is disabled.

These status codes are defined in the $JBCMSGDEF macro.

4-168

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$SUSPND

4.72 $SUSPND - SUSPEND PROCESS

The Suspend Process system service allows a process to suspend itself
or another process. A suspended process cannot receive ASTs or
otherwise be executed until another process resumes or deletes it.

Macro Format:

$SUSPND [pidadr] , [prcnam]

High-Level Language Format:

SYS$SUSPND ([pidadr] , [prcnam])

pidadr
address of a longword containing the process identification of
the process to be suspended.

prcnam
address of a character string descriptor pointing to the 1- to
IS-character process name string. The process name is implicitly
qualified by the group number of the process issuing the suspend.

If neither a process identification nor a process name is specified,
the caller is suspended. For details on how the service interprets
the PIDADR and PRCNAM arguments, see Table 3-3. Table 3-3 is in
Section 3.5 "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The process name string or string descriptor cannot be read, or

process identification cannot be written, by the caller.

SS$ INSFMEM
Insufficient system dynamic memory is available to
service and the process has disabled resource wait
Set Resource Wait Mode ($SETRWM) system service.

SS$_IVLOGNAM

complete the
mode with the

The specified process name has a length of 0, or has more than 15
characters.

SS$ NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The target
requesting
privilege.

process
process

was not created by the caller and the
does not have group or world process control

4-169

SYSTEM SERVICE DESCRIPTIONS
$SUSPND - SUSPEND PROCESS

Privilege Restrictions:

User privileges are required to suspend:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Resources Required/Returned:

The Suspend Process system service requires system dynamic
memory.

Notes:

1. The suspend process system service completes successfully if
the target process is already suspended.

2. Unless it has pages locked in the balance set, a suspended
process can be removed from the balance set to allow other
processes to execute.

3. The Resume Process ($RESUME) system service allows a
suspended process to continue. If one or more resume
requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately, that is,
the process is not suspended. No count is maintained of
outstanding resume requests.

For more information on process suspension, see Section 3.5.5,
"Process Hibernation and Suspension."

4-170

)

')

)

)
/

)

)
/

)

)

SYSTEM SERVICE DESCRIPTIONS

$TRNLOG

4.73 $TRNLOG - TRANSLATE LOGICAL NAME

The Translate Logical Name system service searches the logical name
tables for a specified logical name and returns an equivalence name
string. The process, group, and system logical name tables are
searched in that order.

The first string match returns the equivalence string into a
user-specified buffer; the search is not recursive.

Macro Format:

$TRNLOG lognam, [rsllen] ,rslbuf , [table] , [acmode] , [dsbmsk]

High-Level Language Format:

SYS$TRNLOG(lognam , [rsllen] ,rslbuf , [table] , [acmode] , [dsbmsk])

lognam
address of a character string descriptor pointing to the logical
name string.

rsllen
address ofa word to receive the length of the translated
equivalence name string.

rslbuf

table

address of a character string descriptor pointing to the buffer
which is to receive the resultant equivalence name string.

address of a byte to receive the number of the logical name table
in which the match was found. A return value of 0 indicates that
the logical name was found in the system logical name table; 1
indicates the group table, and 2 indicates the process table.

acmode
address of a byte to receive the access mode from which the
logical name table entry was made. Data received in this byte is
valid only if the logical name match was found in table 2, the
process logical name table.

dsbmsk
mask in which bits set
logical name tables.
table is not searched;
table is not .searched;
table is not searched.

to 1 disable the search of particular
If bit 0 is set, the system logical name
if bit 1 is set, the group logical name
if bit 2 is set, the process logical name

If no mask is specified, or is specified as 0 (the default), all
three logical name tables are searched.

4-171

SYSTEM SERVICE DESCRIPTIONS
$TRNLOG - TRANSLATE LOGICAL NAME

Return Status:

SS$ NORMAL
- Service successfully completed. The equivalence name string was

placed in the output buffer.

SS$_NOTRAN
Service successfully completed. The input logical name string
was placed in the output buffer because no equivalence name was
found.

SS$_ACCVIO
The logical name string or string descriptor cannot be read, or
the output length, output buffer, or table or access mode field
cannot be written, by the caller.

SS$_IVLOGNAM
The specified logical name string has a length of 0 or has more
than 63 characters.

SS$_RESULTOVF

Note:

The buffer to receive the resultant string has a length of zero,
or it is smaller than the string.

If the first character of a specified logical name is an
underline character (), no translation is performed. However,
the underscore character is removed from the string and the
modified string is returned in the output buffer.

For an example of the $TRNLOG system service, see Section 3.3,
"Logical Name Services."

4-172

)

)

)

)

)

)

)

\

SYSTEM SERVICE DESCRIPTIONS

$ULKPAG

4.74 $ULKPAG - UNLOCK PAGES FROM MEMORY

The Unlock Pages from Memory system service releases the page lock on
a page or range of pages previously locked in memory by the Lock Pages
in Memory ($LCKPAG) service.

Macro Format:

$ULKPAG inadr, [retadr] , [acmode]

High-Level Language Format:

SYS$ULKPAG (inadr , [retadr] , [acmode])

inadr
address of a 2-1ongword array containing the starting and ending
virtual addresses of the pages to be unlocked. If the starting

--aria-endTncr-vTrEU-cnaoore-ss-es-are--the--same,- --a--single- -page ---is - -.
unlocked. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-1ongword array to receive the starting and
virtual addresses of the pages actually unlocked.

encfing

acmode
access mode of the locked pages. The specified access mode is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to unlock the page.

Return Status:

SS$ WASCLR
-Service successfully completed. At least one of the specified

pages was previously unlocked.

SS$_WASSET
Service successfully completed. All of the specified pages were
previously locked.

1. The input array cannot be read, or the output array cannot be
written, by the caller.

2. A page in the specified range is inaccessible or does not
exist.

Privilege Restrictions:

1. The user privilege PSWAPM is required to lock or unlock pages
from memory.

2. The access mode of the caller
privileged than the access
that are to be unlocked.

4-173

must be equal to or more
mode of the owner of the pages

Notes:

SYSTEM SERVICE DESCRIPTIONS
$ULKPAG - UNLOCK PAGES FROM MEMORY

1. If more than one page is being unlocked and it is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.

2. If an error occurs while multiple pages are being unlocked,
the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages
were unlocked, both longwords of the return address array
contain a -1.

3. Locked pages are automatically unlocked at image exit, when
the system deletes the pages.

4-174

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$ULWSET

4.75 $ULWSET - UNLOCK PAGES FROM WORKING SET

The Unlock Pages
specify that a
working set are
replacement like

from Working Set system service allows a process to
group of pages that were previously locked in the
to be unlocked and .become candidates for page

other working set pages.

Macro Format:

$ULWSET inadr, [retadrj , [acmodej

High-Level Language Format:

inadr

SYS$ULWSET (inadr , [retadrj , [acmodej)

address of a 2-10ngword array containing the starting and ending
virtual addresses of the pages to be unlocked. If the starting
and ending virtual address are the same, a single page is
unlocked. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
address of a 2-10ngword array to receive the starting and ending
virtual addresses of the pages actually unlocked.

acmode
access mode on behalf of which the request is being made. The
specified access mode is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to unlock the page.

Return Status:

SS$ WASCLR
- Service successfully completed. At least one of the specified

pages was previously unlocked.

SS$_WASSET
Service successfully completed. All of the specified pages were
previously locked in the working set.

1. The input array cannot be read, or the output array cannot be
written, by the caller.

2. A page in the specified range is inaccessible or does not
exist.

SS$ NOPRIV
A page in the specified range is in the system address space.

4-175

SYSTEM SERVICE DESCRIPTIONS
$ULWSET - UNLOCK PAGES FROM WORKING SET

Privilege Restriction:

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages that are to be
unlocked.

Notes:

1. If more than one page is being unlocked and it is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.

2. If an error occurs while multiple pages are being unlocked,
the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages
were unlocked, both longwords in the return address array
contain a -1.

4-176

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$UNWIND

4.76 $UNWIND - UNWIND CALL STACK

The Unwind Call Stack system service allows a condition handling
routine to unwind the procedure call stack to a specified depth.
Optionally, a new return address can be specified to alter the flow of
execution when the topmost call frame has been unwound.

Macro Format:

$UNWIND [depadr] , [newpc]

High-Level Language Format:

SYS$UNWIND([depadr] , [newpc])

depadr
address of a longword indicating the depth to which the stack is
to be unwound. A depth of 0 indicates the call frame that was
active when the condition occurred, 1 indicates the caller of
that frame, 2 indicates the caller of the caller of the frame,
and so on. If depth is specified as 0 or less, no unwind occurs;
a successful status code is returned. If no address is
specified, the unwind is performed to the caller of the frame
that established the condition handler.

newpc
address to be given control when the unwind is complete.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO
- The call stack is not accessible to the caller.

is detected when the call stack is scanned to
address.

SS$_INSFRAME
There. are insufficient call frames to unwind
depth.

SS$_NOSIGNAL

This condition
modify the return

to the specified

Warning. No
condition.

signal is ~urrently active for an exception

SS$ UNWINDING
- Warning. An unwind is already in progress.

4-177

Note:

SYSTEM SERVICE DESCRIPTIONS
$UNWIND - UNWIND CALL STACK

The actual unwind is not performed immediately.
return addresses in the call stack are modified so
condition handler returns, the unwind procedure is
each frame that is being unwound.

Rather, the
that when the
called from

For an explanation of condition handling and an example of a call to
$UNWIND, see Secti6n 3.7, "Condition Handling Services."

4-178

)

)

)

)

)

)

)

)

)

SYSTEM SERVICE DESCRIPTIONS

$UPDSEC

4.77 $UPDSEC - UPDATE SECTION FILE ON DISK

The Update Section File on Disk system service writes all modified
pag~s in an active private or global section back into the section
file on disk. One or more I/O requests are queued, based on the
number of pages that have been modified.

Macro Format:

$UPDSEC inadr, [retadr] , [acmode] , [updflg] , [efn] , [iosb]
, [astadr] , [astprm]

High-Level Language Format:

inadr

SYS$UPDSEC (inadr , [retadr] , [acmode] , [updflg] , [efn] , [iosb]
, [astadr] , [astprm])

address of a 2-1ongword array containing the starting and ending
virtual addresses of the pages to be potentially written back
into the section file. The $UPDSEC system service locates pages
within this range that were modified and writes only the modified
pages (with contiguous pages, if convenient) back into the
section file on disk.

If the starting and ending virtual addresses are the same, a
single page is a candidate for writing. Only the virtual page
number portion of the virtual addresses is used; the low-order 9
bits are ignored.

retadt
address of a 2-1ongword array to receive the starting and ending
virtual addresses of the first and last pages queued for writing
in the first I/O request.

acmode
access mode on behalf ~f which the service
specified access mode is maximized with
caller. The resultant access mode is used
the caller can actually write the pages.

is performed. The
the access mode of the
to determine whether

updflg

efn

iosb

~pdate indicator for read/write global sections. If specified as
o (the default), all read/write pages in the global section are
updated in the section file on disk, regardless of whether or not
they have been modified. If specified as 1, it indicates that
the caller is the only process that is actually writing the
global section, and that only those pages that were actually
modified by the caller are to be written.

number of an event flag to set when the section file is updated.
If not specified, it defaults to O.

address of a quadword I/O status block that is to· receive the
completion status when the section file has been updated.

4-179

astadr

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC - UPDATE SECTION FILE ON DISK

address of the entry mask of an AST service routine to be
executed when the section file has been updated. If specified,
the AST service routine executes at the acCess mode from which
the section file update waS requested.

astprm
AST parameter to be passed to the AST service routine.

Return Status:

SS$ NORMAL
- Service successfully completed. One or more I/O requests were

queued.

SS$_NOTMODIFIED
Service successfully completed. No pages in the
range were section pages that had been modified;
were queued.

input address
no I/O requests

SS$_ACCVIO
Th~ input address array cannot be read, or the output address
array cannot be written, by the caller.

SS$_EXQUOTA
The process has exceeded its AST limit quota.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ IVSECFLG
- An invalid flag was specified.

SS$ NOPRIV
- A page in the specified range is in the system address space.

SS$ PAGOWNVIO
- A page in the specified range is owned by an access mode more

privileged than the access mode of the caller.

SS$_UNASCEFC
The process is not associated with the cluster containing the
specified event flag.

privilege Restrictions:

Only pages that are owned by the calling or a less privileged
aCCess mode can be updated.

Resources Required/Returned:

The Update section
process's direct
and; if the ASTADR
quota (ASTt.M).

File on Disk system service requires the
I/O limit (DIRIO) to queue the I/O request;
argument is specified, the process's AST limit

4-180

~)

)

)

)

)

/)

)

)

)

Notes:

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC - UPDATE SECTION FILE ON DISK

1. The $UPDSEC system service scans pages starting at the
address contained in the first longword of the location
pointed to by the INADR argument and ending with the address
in the second longword. within this range, pages are
candidates for being updated based on whether they are
read/write page~ that were modified. Unmodified pages that
share a cluster with modified pages are also written. The
ending address can be lower than the starting address.

2. If the $UPDSEC system service returns an error, both
longwords in the return address array contain a -1. In this
case, no I/O completion is indicated, that is, the event flag
is not set, no AST is delivered, and the I/O status block is
not posted.

3. Proper use of this service requires the caller to synchronize
completion of the update request by cheCking the return
status from $UPDSEC. If SS$ NOTMODIFIED is returned, the
caller can continue. If SS$ NORMAL is returned, the caller
should wait for the I/O to complete and then check the status
returned in the I/O status block.

When all I/O is complete, the I/O status block, if specified,
is filled in as follows:

1. The first word contains the completion status of the
output request.

2. If an error occurred in the I/O request, the first bit in
the second ·word is set if a hardware write error
occurred.

3. The second longword contains the virtual address of the
first page that was not written.

4-181

SYSTEM SERVICE DESCRIPTIONS

$WAITFR

4.78 $WAITFR - WAIT FOR SINGLE EVENT FLAG

The Wait for Single Event Flag system service tests a specific event
flag and returns immediately if the flag is set. Otherwise, the
process is placed in a wait state until the event flag is set.

Macro Format:

$WAITFR efn

High-Level Language Format:

SYS$WAITFR(efn)

efn
number of the event flag for which to wait.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

Note:

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST executes is less than or equal to the access mode from
which the wait was issued and (2) the process is enabled for ASTs
at that access mode.

When the AST service routine
repeats the $WAITFR request.
process resumes execution.

completes execution, the system
If the event flag has been set, the

4-182

)

)

)

)

)

)

)

)

\

SYSTEM SERVICE DESCRIPTIONS

$WAKE

4.79 $WAKE - WAKE

The Wake system service activates a process that has placed itself in
a state of hibernation with the Hibernate ($HIBER) system service.

Macro Format:

$WAKE [pidadr] , [prcnam]

High-Level Language Format:

SYS$WAKE{[pidadr] , [prcnam])

pidadr
address of a longword containing the process identification of
the process to be awakened.

prcnam
address of a character string
name string. The name is
number of the process issuing

descriptor pointing to the process
implicitly qualified by the group

the wake.

If neither a process identification nor a process name is
the wake request is for the caller. F6r details on how
interprets the PIDADR and PRCNAM arguments, see Table 3-3.
is in S~ction 3.5, "Process Control Services."

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ACCVIO

specified,
the service
Table 3-3

- The process name string or string descriptor cannot be read, or
the process identification cannot be written, by the caller.

SS$ IVLOGNAM
- The ~pecified process name string has a length of a or has more

than 15 characters.

SS$_NONEXPR
Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to wake the specified
process.

Privilege R~strictions:

User privileges are required to wake:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

4-183

Notes:

SYSTEM SERVICE DESCRIPTIONS
$WAKE - WAKE

1. If one or more wake requests are issued for a process that is
not currently hibernating, a subsequent hibernate request
completes immediately, that is, the process does not
hibernate. No count is maintained of outstanding wakeup
requests.

2. A hibernating process can also be awakened with the Schedule
Wakeup ($SCHDWK) system service.

For an example of the $WAKE system service and a discussion of the
hibernat~/wake mechanism, see Section 3.5, "~rocess Control Services."

4-184

)

)

)

)

)

.
(.... '

lJiI!f

SYSTEM SERVICE DESCRIPTIONS

$WFLAND

4.80 $WFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS

The. Wait for Logical AND of Event Flags system service allows a
process to specify a mask of event flags for which it wishes to wait.
All of the indicated event flags within a specified event cluster must
be set~ otherwi.e, the process is placed in a wait state until they
are all set.

Macro Format:

$WFLAND efn ,mask

High-Level Language Format:

SYS$WFLAND(efn ,mask)

efn
number of any event flag within the cluster being used.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

Note:

The wait state caused by this service can be interrupted by an
asynchronous system trap CAST) if (1) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is enabled for
ASTs at that access mode.

When the AST service routine completes execution, the system
repeats the $WFLAND request. If the specified event flags are
all set, the process resumes execution.

For an example of the $WFLAND system service, see Section 3.1, "Event
Flag Services."

4-185

SYSTEM SERVICE DESCRIPTIONS

$WFLOR

4.81 $WFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

The wait for Logical OR ·of Event Flags system service tests the event
flags specified by a mask within a specified cluster and returns
immediately if any of them is set. Otherwise, the process is placed
in a wait state until at least one of the selected event flags is set.

Macro Format:

$WFLOR efn ,mask

High-Level Language Format:

efn

mask

SYS$WFLOR{efn ,mask)

number of any event flag within the cluster being used.

32-bit mask in which bits set to 1 indicate the event flags of
interest.

Return Status:

SS$ NORMAL
- Service successfully completed.

SS$ ILLEFC
- An illegal event flag number was specified.

SS$ UNASEFC
- The process is not associated with the cluster containing the

specified event flag.

Note: .

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (l) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is &nabled for
ASTs at that access mode.

When the AST service routine completes execution, the system
repeats the $WFLOR request. If any of the event flags has been
set, the process resumes execution.

4'-186

\
I

)

\

)

)

APPENDIX A

SYSTEM SYMBOLIC DEFINITION MACROS

This appendix summarizes system-provided macros that define symbolic
values for use with system services, and lists the symbols defined by
each macro. The macros listed in this appendix are:

Macro

$IODEF

$MSGDEF

$PRDEF

$PRTDEF

$PSLDEF

$SSDEF

Symbols Defined

Symbolic names for I/O function codes

Symbolic names to identify mailbox message senders

Internal processor registers

Symbolic names for hardware protection codes

Processor status longword (PSL) mask and field
definitions, and symbolic names for access modes

Symbolic names for system status codes

The symbolic definitions generated by each of these macros are listed
on the following pages. Definitions generated by the following macros
are listed elsewhere in this manual (consult the Index for page number
references) .

Macro

$ACCDEF

$CHFDEF

$DIBDEF

Symbols Defined

Accounting manager request type
termination message and
information offsets

codes and process
accounting record

Condition handler argument offsets

Device information buffer offsets

$JBCMSGDEF Job controller return status codes

$JPIDEF

$OPCDEF

$PQLDEF

$PRVDEF

$SECDEF

$SMRDEF

Job/process information request type codes

Operator communication manager request type codes,
buffer offsets, and return status codes

Quota types for process creation quota list

User privileges

Attribute flags for private/global section creation
and mapping

Symbiont manager request type and option codes

A-l

SYSTEM SYMBOLIC DEFINITION MACROS

A.l USING SYSTEM SYMBOLS

The default system macro library, STARLET.MLB, contains the macro
definitions for system symbols. When you assemble a source program
that calls any of these macros, the assembler automatically searches
STARLET.MLB for the macro definitions.

Each symbol name has a unique numeric value. To obtain a list of
symbols, in alphabetic order and in numeric order, use the following
procedure:

1. Create a file with the file type of MAR containing the lines:

$:·::·:DEF
.END

GLOBAL

where xx is the prefix of the macro defining the symbols you
need, for example $SSDEF or $MSGDEF.

2. Assemble the file with the MACRO command:

• MACRO file-name

where file-name is the file name of the file containing the
$xxDEF macro call. The input file type defaults to MAR.

3. Link the object module created by the assembler, requesting
the linker to create a full map file:

• LINK/MAP/FULL/NOEXE file-name

~he linker map file, named file-name.MAP, contains a list of
all the symbols defined in the macro, in numeric order.

You can specify more than one macro in the same assembly source file
to obtain the numeric values for more than one set of definitions.

A.2 $IODEF MACRO - SYMBOLIC NAMES FOR I/O FUNCTION CODES

The function codes and function modifiers defined in the $IODEF macro
are grouped according to the devices for which the I/O operation is
requested. For your convenience, the arguments (PI, P2, and so on),
are also listed.

A-2

)

)
/

)

)
/

" I

\

)

)

)

)

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.1 Terminal Driver

Functions Arguments Hodifiers

10$ READVBLK PI - buffer address IO$H NOECHO
IO$-READLBLK P2 - buffer size IO$M-CVTLOW
IO$:READPBLK P3 - timeout IO$H-NOFILTR
10$ READPROHPT P4 - read terminator IO$M:TIMED - block address IO$M PURGE

P5 - prompt string IO$M-DSABLHBX
buffer address l IO$M-TRMNOECHO

P6 - prompt string
buffer size l

IO$ WRITEVBLK PI - buffer address IO$M CANCTRLO
IO$:vVRI TELBLK p2 - buffer size IO$H ENABLHBX
10$ WRITEPBLK P3 - (ignored) IO$M:NOFORHAT - P4 - carriage control

specifier 2

10$ SETHODE PI - characteristics
IO$:SETCHAR buffer address

P2 - (ignored)
P3 - speed specifier
P4 - fill specifier
P5 - par ity flags

10$ SETMODE1IO$M HANGUP (none)
IO$=SETCHAR1IO$M=HANGUP

10$ SETMODE!IO$M CTRLCAST PI - AST service
IO$-SETMODE!IO$M-CTRLYAST routine address
IO$-SETCHAR!IO$M-CTRLCAST P2 - AST parameter
IO$:SETCHAR1IO$M:CTRLYAST P3 - access mode

deliver AST

1
20nly for IO$ READPROMPT
Only for IO$-WRITEBLK and IO$ WRITEVBLK

A.2.2 Disk DLivers

Functions

10$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$=WRITEPBLK

10$ SETMODE
IO$=SE'rCHAR

10$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$=DELETE

Arguments

PI - buffer address
P2 - byte count
P3 - disk address

PI - characteristic buffer
address

PI - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
P5 - attribute list address

~OnlY for
30nly for
Only for

IO$ READPBLK and IO$ WRITEPBLK
IO$-CREATE and IO$ ACCESS
IO$-CREATE and IO$-DELETE

- - A-3

to

Hodifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M=INHSEEKI

IO$_INHRETRY

IO$M CREATE 2
IO$M-ACCESS 2
IO$M=DELETE 3

" :;?'
,'\

\

\

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.3 Magnetic Tape Drivers

Functions Arguments

10$ READVBLK PI - buffer address
IO$-READLBLK P2 - byte count
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$:=WRITEPBLK

10$ SETMODE PI - characteristics buffer -lO$ SETCHAR address -
lO$ CREATE PI - FIB descriptor address
IO$-ACCESS P2 - file name string
lO$ DEACCESS address
IO$-MODIFY P3 - result string length
IO$-ACPCONTROL address

P4 - result string descriptor
address

P5 - attribute list address

10$ SKIPFILE PI - - skip n tape marks

10$ SKIPRECORD PI - - skip n records

10$ MOUNT (none) -
10$ REWIND (none)
IO$-REWINDOFF

10$ WRITEOF (none) -
10$ SENSEt-lODE (none) -
1
20nIy for read functions
30nly for write functions
40nly for 10$ CREATE and 10$ ACCESS
Only for IO$-ACPCONTROL

A.2.4 Line Printer Driver

Functions Arguments

lO$ WRITEVBLK PI - buffer address
IO$:=WRITELBLK P2 - buffer size
10$ WRITEPBLK P3 - (ignored) - P4 - carriage control

specifierl

10$ SETMODE PI - characteristics
IO$:SETCHAR address

buffer

1 Only for IO$_WRITEVBLK and IO$_WRITELBLK

A-4

Modifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M-REVERSEI
IO$M:=INHEXTGAP2

IO$M INHRETRY
IO$M-INHEXTGAP

IO$M CREATE 3
IO$M-ACCESS 3
lO$M:=DMOUNT 4

IO$M_INHRETRY

IO$M_INHRETRY

lO$M INHRETRY
IO$M:=NOWAIT

lO$M INHEXTGAP
IO$M-INHRETRY

IO$M INHRETRY

Modifiers

(none)

(none)

)

)

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.S Card Reader Driver

Functions Arguments Modifiers

10$ READLBLK PI - buffer address IO$M BINARY
1O$-READVBLK P2 - byte count IO$M-PACKED
1O(~READPBLK

10$ SETMODE PI - characteristics (none)
1O$:SETCHAR buffer address

10$ SENSEMODE (none) -

A.2.6 Mailbox Driver

Functions Arguments Modifiers

10$ READVBLK PI - buffer address IO$M NOW
1O$-READLBLK P2 - buffer size
IO$-READPBLK
IO$-WRITEVBLK
1O$-WRITELBLK
IO$:WRITEPBLK

1O$_WRITEOF (none)

10$ SETMODE1IO$M READATTN PI - AST address
IO$:SETMODE1IO$M:WRTATTN PI - AST parameter

) A.2.7 DMCII Driver

Functions Arguments Modifiers

10$ READLBLK PI - buffer address IO$M DSABLMBX I
IO$-READPBLK P2 - message size 1O$M-NOwl
1O$-READVBLK P6 - diagnostic buffer2 IO$M:ENABLMBX3
1O$-WRITELBLK (

1O$-WRITEPBLK
IO$:WRITEVBLK

) 10$ SETMODE PI - characteristics
1O$:SETCHAR buffer address

10$ SETMODE1IO$M ATTNAST PI - AST service
IO$:SETCHAR1IO$M:ATTNAST routine address

P2 - (ignored)
P3 - AST access mode

10$ SETMODE1IO$M SHUTDOWN PI - characteristics
IO$:SETCHAR1IO$M:SHUTDOWN block address

10$ SETMODE1IO$M STARTUP PI - characteristi~s
IO$:SETCHAR1IO$M:STARTUP block address

P2 - (ignored)
P3 - receive message

blocks

)

1
20nly for 10$ READLBLK and 10$ READPBLK
30nly for 10$READPBLK and 10$ WRITEPBLK
Only for 10$_WR1TELBLK and 10$_WR1TEPBLK

A-S

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.8 ACP Interface Driver

Functions Arguments Modifiers

10$ CREATE PI - FIB descriptor address lO$M CREATE I
lO$M-ACCESsl lOS-ACCESS p2 - file name string

IO$-DEACCESS address lO$M-DELETE2
lO$-MODIFY P3 - result string length IO$M:DMOUNT3
IO$-DELETE address
IO$:=ACPCONTROL P4 - result string descriptor

address
P5 - attribute list address

IO$_MOUNT (none)

1 20nly for 10$ CREATE and 10$ ACCESS
30nly for IO$~CREATE and IO$=DELETE
Only for IO$:ACPCONTROL

A.3 $MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM MAILBOX MESSAGES

Symbolic Name

MSG$ TRMUNSOLIC
MSG$-CRUNSOLIC
MSG$-DELPROC
MSG$-SNDSMB
MSG$-DEVOFFLIN
MSG$-TRMHANGUP
MSG$-DEVONLIN
MSG$-OPRQST
MSG$-OPREPLY
MSG$-SMBINI
MSG$-SMBDON
MSG$-SNDACC
MSG$-XM DATAVL
MSG$-XM'"""'SHUTDN
MSG$-XM"'""ATTN
MSG$-INIOPR
MSG$-ABOOPR
I>1SG$-SUSOPR
MSG$-RESOPR
MSG$-DELSMB
MSG$-SMBRSP
MSG$-ACCRSP
MSG$-ABORT
MSG$-CONFIRM
MSG$-CONNECT
MSG$-DISCON
MSG$-EXIT
MSG$-INTMSG
MSG$-PATHLOST
MSG$-PROTOCOL
MSG$-REJECT
MSG$-THIRDPARTY
MSG$:=TIMEOUT

Meaning

Unsolicited terminal data
Unsolicited card reader data
Delete process
Send to symbiont manager
Device offline
Terminal hang up
Device online
Operator request
Operator reply
Symbiont is initiated
Symbiont has finished
Send to accounting manager
Data available (DMC-ll)
Unit shutdown (DMC-ll)
Unit attention (DMC-ll)
Initiate file printing
Abort printing a file
Pause printing a file
Resume printing a file
Symbiont should delete itself
Symbiont response
Accounting manager response
Network partner aborted link
Network connect confirm
Network inbound connect initiate
Network partner disconnected-hangup
Network partner exited prematurely
Network interrupt message; unsolicited data
Network path lost to partner
Network protocol error
Network connect reject
Network third party disconnect
Network connect timeout

A-6

)

)

)

)

)

)

SYSTEM SYMBOLIC DEFINITION MACROS

A.4 $PRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR REGISTERS

Symbolic Name

PR$ KSP
PR$-ESP
PR$-SSP
PR$-USP
PR$-ISP
PR$-POBR
PR$-POLR
PR$-PlBR
PR$-PILR
PR$-SBR
PR$-SLR
PR$-PCBB
PR$-SCBB
PR$-IPL
PR$:-"ASTLVL
PR$-SIRR
PR$-SISR
PR$-MAPEN
PR$-TBIA
PR$-TBIS
PR$-ICCS
PR$-NICR
PR$-rCR
PR$-TODR
PR$-RXCS
PR$-RXDB
PR$-TXCS
PR$-TXDB
PR$-ACCS
PR$-ACCR
PR$-WCSA
PR$-WCSD
PR$-SBIFS
PR$-SBIS
PR$-SaISC
PR$-SBIMT
PR$-SBIER
PR$-SBITA
PR$-SBIQC
PR$:SID

Register

Kernel stack pointer
Executive stack pointer
Supervisor stack pointer
User stack pointer
Interrupt stack pointer
PO base register
PO limit register
PI base register
PI limit register
System base register
System limit register
Process control block base register
System control block base register
Interrupt priority level register
AST level register
Software interrupt request register
Software interrupt summary register
Mapping enable register
Translation buffer invalidate all
Translation buffer invalidate single
Interval clock control status register
Interval clock next interval register
Interval clodk interval count register
Time of day register
Console receiver control status register
Console receiver data buffer register
Console transmit control status register
Console transmit data buffer register
Accelerator control status register
Accelerator reserved
WCS address register
WCS data register
SBI fault status register
SSI silo register
SBI comparator register
SBI maintenance register
SBI error regjster
SBI timeout address register
SBI quadword Glear register
System identification register

A.5 $PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS

Symbolic Name

PRT$C NA
PRT$C-KR
PRT$C-KW
PRT$C-ER
PRT$C-EW
PRT$C-SR
PRT$C-SW
PRT$C-UR
PRT$C-UW
PRT$C-ERKW
PRT$C-SRKW
PRT$C-SREW
PRT$C-URKW
PRT$C-UREW
PRT$C:URSW

Meaning

No access
Kernel read only
Kernel write
Executive read only
Executive write
Supervisor read only
Supervisor write
User read only
User write
Executive read; kernel write
Supervisor read; kernel write
Supervisor read; executive write
User read; kernel write
User read; executive write
user read; supervisor write

A-7

SYSTEM SYMBOLIC DEFINITION MACROS

A.6 $PSLDEF MACRO - PROCESSOR STATUS LONGWORD SYMBOL DEFINITIONS

Symbolic Name

PSL$V TBIT
PSL$S-TBIT
PSL$M-TBIT
PSL$V-IV
PSL$S-IV
PSL$M-IV
PSL$V-FU
PSL$S-FU
PSL$M-FU
PSL$V-DV
PSL$S-DV
PSL$M-DV
PSL$V-IPL
PSL$S-IPL
PSL$V-PRVMOD
PSL$S-PRVMOD
PSL$V-CURMOD
PSL$S-CURMOD
PSL$V-IS
PSL$S-IS
PSL$M-IS
PSL$V-FPD
PSL$S-FPD
PSL$M-FPD
PSL$V-TR
PSL$S-TR
PSL$M-TR
PSL$V-CM
PSL$S-CM
PSL$M:CM

Meaning

TBIT enable field
Length of TBIT enable field
Mask for TBIT enable field
Integer overflow field
Length of integer overflow field
Mask for integer overflow field
Floating undefined field
Length of floating undefined field
Mask for floating undefined field
Divide by zero field
Length of divide by zero field
Mask for divide by zero field
Interrupt priority field
Length of interrupt priority field
Previous processor mode field
Length .of previous processor mode field
Current processor mode field
Length of current processor mode field
Interrupt stack field
Length of interrupt stack field
Mask for interrupt stack field
First part done field
Length of first part done field
Mask for first part done field
Trace trap pending field
Length of trace trap pending field
Mask for trace trap pending field
Compatibility mode field
Length of compatibility mode field
Mask for compatibility mode field

Symbolic Names for Access Modes

Symbolic Name Access Mode Number

PSL$C KERNEL
PSL$C-EXEC
PSL$C-SUPER
PSL$C:USER

Kernel
Executive
Supervisor
User

o
1
2
3

A.7 $SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM STATUS CODES

The $SSDEF macro instruction defines symbolic names for system service
return status codes and for exception condition names. The "Type"
column, below, indicates one of the following:

Success
Warning
Error
Severe
Condition

Meaning

Successful completion
Warning return
Error return
Severe error return
Exception condition

A-8

)

)

\
/

)

)

Status Code

SS$ ABORT
SS$-ACCONFLICT
SS$-ACCVIO
SS$-ACCVIO
SS$:ACPVAFUL

SS$ ARTRES
SS$-ASTFLT
SS$-BADATTRIB
SS$-BADCHKSUM
SS$-BADESCAPE
SS$-BADFILEHDR
SS$-BADFILENAME
SS$-BADFILEVER
SS$-BADIMGHDR
SS$-BADIRECTORY
SS$-BADPARAM
SS$:BADSTACK

SS$ BEGOFFILE
SS$-BLOCKCNTERR
SS$-BREAK
SS$:BUFBYTALI

SS$ BUFFEROVF
SS$-BUGCHECK
SS$-CANCEL
SS$-CHANINTLK
SS$-CLIFRCEXT
SS$-CMODSUPR
SS$-CMODUSER
SS$-COMPAT
SS$:CONTINUE

SS$ CONTROLC
SS$-CONTROLO
SS$-CONTROLY
SS$-CREATED
SS$-CTRLERR
SS$-DATACHECK
SS$-DATAOVERUN
SS$:DEBUG

SS$ DECOVF
SS$-DEVACTIVE
SS$:DEVALLOC

SS$_DEVALRALLOC

SS$DEVASSIGN
SS$-DEVFOREIGN
SS$-DEVICEFULL
SS$-DEVMOUNT
SS$-DEVNOTALLOC
SS$-DEVNOTMBX~
SS$-DEVNOTMOUNT
SS$-DEVOFFLINE
SS$-DIRFULL
SS$-DRVERR
SS$-DUPFILENAME
SS$:DUPLNAM

SYSTEM SYMBOLIC DEFINITION MACROS

Severe
Warning
Severe
Condition
Severe

Condition
Condi tion
Severe
Warning
Severe
Warning
Warning
Warning
Severe
Warning
Severe
Severe

Warning
Warning
Condition
Severe

Success
Severe
Warning
Severe
Warning
Condition
Condition
Condi tion
Success

Success
Success
Success
Success
Severe
Severe
Warning
Condition

Condition
Severe
Warning

Success

Warning
Severe
Warning
Severe
vvarning
Severe
Severe
Severe
Warning
Severe
Warning
Severe

Meaning

Abort
File access conflict
Access violation
Access violation
MTAACP's virtual address space is
full
Reserved arithmetic trap
AST fault
Bad attribute control list
Bad file header checksum
Syntax error in escape sequence
Bad file header
Bad file name syntax
Bad file version number
Bad image header
Bad directory ~ile format
Bad parameter value
Bad stack encountered during
exception dispatch
Beginning of file
Block count error
Breakpoint instruction fault
Device does not support
byte-aligned transfers
Output buffer overflow
Internal consistency failure
I/O operation canceled
Channel usage interlocked
CLI forced exit
Change mode to supervisor trap
Change mode to user trap
Compatibility mode fault
Continue execution at point of
condition
Operation completed under CRTL/C
Output completed under CTRL/O
Operation completed under CTRL/Y
File did not exist; was created
Fatal controller error
write check error
Data overrun
Command interpreter debugger
signal
Decimal overflow
Device active
Device already allocated to
another user
Device already allocated to this
job
Device has channels assigned
Device is mounted foreign
Device full - allocation failure
Device is already mounted
Device not allocated
Device not mailbox
Device not mounted
Device not in configuration
Directory is full
Fatal drive error
Duplicate file name
Duplicate process name

A-9

Status Code

SS$ ENDOFFILE
SS$-ENDOFUSRLBL
SS$-EXQUOTA
SS$-FCPREADERR
SS$-FCPREPSTN
SS$-FCPREWNDERR
SS$-FCPSPACERR
SS$-FCPWRITERR
SS()ILACCERR

SS$ FILALRACC
SS$-FILELOCKED
SS$-FILENUMCHK
SS$-FILESEQCHK
SS$-FILESTRUCT
SS$-FILNOTACC
SS$-FILNOTCNTG
SS$-FILNOTEXP
SS$-FLTDIV
SS$-FLTOVF
SS$-FLTUND
SS$-FORMAT
SS$-GPTFULL
SS$::GSDFULL

SS$ HANGUP
SS$-HEADERFULL
SS $-IDXFILEFULL
SS$-ILLBLKNUM
SS$-ILLCNTRFUNC
SS$-ILLEFC
SS$-ILLIOFUNC
SS$::ILLLBLAST

SS$ ILLPAGCNT
SS$-ILLSEQOP
SS$-ILLSER
SS$-ILLUSRLBLRD
SS$-ILLUSRLBLWT
SS$-INCVOLLABEL
SS$-INSFARG
SS$-INSFMEM
SS$-INSFRAME
SS$-INSFWSL
SS!;>-INTDIV
SS$-INTOVF
SS$-IVADDR
SS$-IVCHAN
SS$::IVCHNLSEC

SS$ IVDEVNAM
SS$'-IVGSDNAM
SS$-IVLOGNAM
SS$-IVLOGTAB
SS$-IVPROTECT
SS$-IVQUOTAL
SS$::IVSECFLG

SS$_IVSECIDCTL

SS$ IVSSQR
SS$::IVSTSFLG

SYSTEM SYMBOLIC DEFINITION MACROS

Warning
Warning
Severe
Warning
Warning
Warning
Warning
Warning
Severe

Severe
Warning
Warning
Warning
Warning
Severe
Severe
Severe
Condition
Condition
Condition
Severe
Severe
Severe

Severe
Warning
Warning
Severe
Severe
Severe
Severe
Warning

Severe
Severe
Severe
Warning
Warning
Severe
Severe
Severe
Severe
Severe
Condition
Condition
S~vere
Severe
Severe

Severe
Severe
Severe
Severe
Severe
Severe
Severe

Severe

Severe
Severe

Meaning

End of file reached
End of user labels
Exceeded quota
File processor read error
File processor reposition error
File processor rewind error
File processor space error
File processor write error
Magnetic tape file access
non-blank
File already accessed on channel
File is deaccess locked
File ID file number check
File ID file sequence number check
Unsupported file structure level
File not accessed on channel
File is not contiguous as required
File not expired
Floating/decimal divide by zero
Floating overflow
Floating underflow
Invalid media format
Global page table full
Global section descriptor table
full
Data set hang-up
File header full
Index file full
Illegal logical block number
Illegal ACP control function
Illegal event flag cluster
Illegal I/O function code
Illegal user label AST control
block address
Illegal page count parameter
Illegal sequential operation
Illegal service call number
Illegal read of user labels
Illegal write of user labels
Incorrect volume label
Insufficient call arguments
Insufficient dynamic memory
Insufficient call frames to unwind
Insufficient working set limit
Integer divide by zero
Integer overflow
Invalid media address
Invalid I/O channel
Invalid channel ~or create and map
section
Invalid device name
Invalid global section name
Invalid logical name
Invalid logical name table number
Invalid page protection code
Invalid quota list
Invalid process/global section
flags
Invalid section identification
match control
Invalid system service request
Invalid status flag

A-IO

\

/)

)

)

)

)

)

)

Status Code

SS$ IVTIME
SS$:LCKPAGFUL

SS$ LENVIO
SS$:LKWSETFUL

SS$ MBFULL
SS$-MBTOOSML
SS$-MCHECK
SS$-MEDOFL
SS$-MSGNOTFOUND
SS$:MTLBLLONG

SS$ MUSTCLOSEFL
SS$-NOAQB
SS$-NODATA
SS$-NOHANDLER
SS$-NOHOMEBLK
SS$-NOIOCHAN
SS$-NOLINKS
SS$-NOLOGNAM
SS$:NOMBX

SS$ NOMOREFILES
SS$-NONEXDRV
SS$-NONEXPR
SS$-NONLOCAL
SS()OPRIV

SS$ NORMAL
SS$-NOSIGNAL
SS$-NOSOLICIT
SS$-NOSUCHDEV
SS$-NOSUCHFILE
SS$-NOSUCHNODE
SS$-NQSUCHSEC
SS$-NOTAPEOP
SS$-NOTFILEDEV
SS$-NOTINTBLSZ
SS $-NOTLABELl-:1T
SS$-NOTMODIFIED
SS$-NOTNETDEV
SS$-NOTRAN
SS$-NOTSQDEV
SS$-OPCCUS
SS$-OPCDEC
SS$-OPINCOMPL
SS$-PAGOWNVIO
SS$-PAGRDERR
SS$-PARITY
SS$-PARTESCAPE
SS$-PFMBSY
SS$-RADRMOD
SS$-REJECT
SS$:REMOTE

SS$ RESIGNAL
SS$-RESULTOVF
SS$-ROPRAND
SS$:SECTBLFUL

SS$ SSFAIL
SS$:SUBRNG

SYSTEM SYMBOLIC DEFINITION MACROS

Severe
Severe

Severe
Severe

Warning
Severe
Severe
Severe
Success
Severe

Warning
Severe
Severe
Warning
Warning
Severe
Severe
Severe
Severe

Warning
Severe
Warning
Warning
Severe

Success
Warning
Severe
Warning
Warning
Severe
Warning
Severe
Severe
Severe
Severe
Success
Severe
Success
Severe
Condition
Condition
Severe
Severe
Condition
Severe
Severe
Severe
Condition
Severe
Success

Warning
Severe
Condition
Severe

Condition
Condition

Meaning

Invalid time
No more pages can be locked in
memory
Address space length violation
Locked portion of working set is
full
Mailbox full
Mailbox is too small for request
Detected hardware error
Medium offline
Message not in system message file
Magnetic tape volume label can be
no more than six characters
Must close file
ACP queue header not found
Mailbox empty
No condition handler found
Horne block not found on volume
No I/O channel available
No slots in logical link vector
No logical name match
No associated mailbox for inbound
connects
No more files
Nonexistent drive
Nonexistent process
Nonlocal device
No privilege for attempted
operation
Normal successful completion
No signal currently active
Interrupt message not solicited
No such device available
No such file
Specified node does not exist
No such (global) section
No tape operator
Device is not file-structured
Block size is greater than 2D48
Not labeled tape
No section pages were modified
Not a network communication device
No string translation performed
Not sequential device
Opcode reserved to customer fault
Opcode reserved to DIGITAL fault
Operation incomplete
Page owner violation
Page read error
Parity error
Partial escape
Page fault monitor in use
Reserved addressing fault
Network connect rejected
Assignment completed on . remote
node
Resignal condition to next handler
Resultant string overflow
Reserved operand fault
Section table (process/global)
full
System service failure exception
Subscript range trap

A-ll

\
Status Code

SS$ SUPERSEDE
SS$-TAPEPOSLOST
SS$-TBIT
SS$-TIMEOUT
SS$-TOOMANYVER
SS$::::TOOMUCHDATA

SS$ UNASEFC
SS$-UNSAFE
SS$-UNWIND
SS$ UNWINDING
SS$-VASFULL
SS$-VECINUSE
SS$-VOLINV
SS$-WAITUSRLBL
SS$-WASCLR
SS$::::WASECC

SS$ WASSET
SS$-WRITLCK
SS$::::WRONGACP

SYSTEM SYMBOLIC DEFINITION MACROS

Success
Severe
Condition
Severe
Warning
Severe

Severe
Severe
Warning
Warning
Severe
Severe
Severe
Warning
Success
Success

Success
Severe
Severe

\

Meaning

Logical name superseded
Magnetic tape position lost
Tbit pending fault
Device timeout
Too many higher file versions
Too much -optional or interrupt msg
data
Unassociated event flag cluster
Drive unsafe
Unwind currently in progress
Unwind already in progress
Virtual address space full
AST vector already enabled
Volume invalid
Waiting for user labels
Previous state was clear
Successful transfer; no data
check
Previous state was set
Write lock error
Wrong ACP for device

A-12

)

}
/

)

)

)

)

APPENDIX B

PROGRAM EXAMPLES

The sample programs presented on the following pages are
self-documenting. Note that these programs do not perform any useful
work; they are intended only to illustrate how to call various system
services.

.TITLE ORION SYSTEM SERVICES TEST
• IDENT 1011

ORION uses the following swstem services:

IASSIGN (Assign liD Channel)
10UTPUT (form of Queue 1/0 ReQuest and Wait For Event Flag)
INUMTIM (Convert Binarw Time to Numeric Time)
IBINTIM (Convert ASCII String to Binarw Time)
ISETIMR (Set Timer)
IWAITFR (Wait for Single Event Flag)
IREADEF (Read Event Flags)
ISETPRN (Set Process Name)

IThis sample program illustrates:

1. Assigning an liD channel to a terminal and writing messages
to the terminal. The device name is specified bw the logical name
terminal. Before ORION is run, the logical name must be assigned
an eauivalence device name.

2. Usins the INUMTIM swstem service to find out whether the
current time is before or after noon. A call to ISETIMR is
made conditionallw if the time is prior to noon.

3. How to obtain a delta time value in the s~stem format to use
as input to the Set Timer (ISETIMR) swstem service.

4. Calls to the Set Timer swstem service.

A. Event flaS - The ISETIMR call is followed bw a wait for the
specified event flas. When the timer expires, the program calls
IREADEF and displaws the current status of the event flag
cluster.

B. AST routine - one AST routine is for a delta time interval.
The other (conditional) is for an absolute time. In either
case, the program continues execution and will be interrupted
when the t i ITt€' r rec~uc~sts aT'S p rCJcessed.

5. An example of terminal input. The program prompts for a character
string to be used as the process name of the current process.
Then it uses this name as input to the ISETPRN s~stem service.

B-1

PROGRAM EXAMPLES

.PAGE

.SBTTl SYMBOLS AND DATA AREAS

Macro librar~ calls

$IODEF
$SSDEF
$READEFDEF

;Define 1/0 function codes
;Define s~stem status values
;Define offsets for $READEF

Local macros defined in private macro librar~

DESCRIPTOR IGenerate character strinS descriptors

.MACRO DESCRIPTOR TEXT,1LABEL1,?LABEL2
.lONG LABEL2-LABELl
.LONG LABELl

LABELl: .ASCII \TEXT\
LABEL2:
.ENDM DESCRIPTOR

MESSAGE ~Output messases formatted by FAD

.MACRO MESSAGE
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

.ENDM MESSAGE

.PSECT RODATA,NOWRT,NOEXE

.SBTTL Read-Onl~ Data Areas

Local Read/Write Data

.LIST MEB

TTNAME: DESCRIPTOR (TERMINAL> ITerminal losical name

FAO control strinss and data for timer (AST and event flas) tests

ASCNOON: DESCRIPTOR (-- 12:00:00.00> INoon in ASCII format

TENSEC: DESCRIPTOR (0 00:00:10> ;Ten seconds delta time in ASCII format

DISPLAYEFN: ;Displaw cluster contents
DESCRIPTOR (CLUSTER 2 CONTENTS: !XL>

TIMSTR: IDisplaw me.saSe after event flas wait
DESCRIPTOR (!/TIMER ENTRY PROCESSED; CLUSTER 2 - !XL>

NOONMSG: IDisplaw me.saSe at noon
.ASCIC II'M YOUR TIME AST ROUTINE; IT'S NOON ••• I

SECMSGDESC: ;Display me.saSe from AST routine
DESCRIPTOR (!/TIME AST ROUTINE; DELTA TIME !XT>

TWENTY: .LONG ;20 seconds delta time

B-2

)

)

)

)

)

)

PROGRAM EXAMPLES

.PAGE

Announcement messa~es

FAOSTR:
DESCRIPTOR (!/ORION: !AC >

;Master control strins
;Name, messa~e

Announcement messages and lengths for outputting

HELLO: .ASCII IHELLO ••• MY NAME IS ORION ••• I
HELLOLEN:

.LONG H~LLOLEN-HELLO

TIMERMSG:
.ASCII IBEGINNING TIMER TESTS ••• I

TIMERLEN:
.LONG TIMERLEN-TIMERMSG

EFNWAITMSG:
.ASCII ITIMER SET; WAIT TEN SECONDSI

EFNWAITLEN:
.LONG EFNWAITLEN-EFNWAITMSG

ASTWAITMSG:
.ASCII ITIMER SET; AST IN 20 SECONDS I

ASTWAITLEN:
.LONG ASTWAITLEN-ASTWAITMSG

; ~rompt for terminal input

PROMPT: .ASCII IENTER 1-15 CHARACTER NAME FOR PROCESS:I
PROMPTLEN:

.LONG PROMPTLEN-PROMPT

Error message control strin~s

ERRSTR formats error message if a system service fails
IOERRSTR formats error message if 1/0 fails
BADASTSTR formats error message if error in AST routine

DESCRIPTOR (!/SYSTEM SERVICE ERROR AT APP. !XL RO=!XL>

IOERRSTR:
DESCRIPTOR (!/I/O ERROR; IOSB !XW>

BADASTSTR:
DESCRIPTOR (BAD AST PARAMETER !UL>

WAKEUP: .ASCII IAWAKENED ••• I
WAKEUPLEN: .LONG WAKEUPLEN-WAKEUP

.PAGE

.PSECT RWDATA,RD,WRT,NOEXE

.SBTTL Read and Write Data Areas

Readlwrite data

FAO control string and buffer for all announcement messages

B-3

FAODESC:
.LONG
.LONG

FAOBUF: • BLKB
FAOLEN: .WORD

.WORD

80
FAOBUF
80
o
o

PROGRAM EXAMPLES

;Descriptor for FAD out~ut buffer
;Address of buffer
;FAO buffer
;Len~th of final strin~. alwa~s
;Need lon~word for $OUTPUT

Buffer to format messa~es from AST routine; a separate output buffer
ensures that if the AST is delivered while another messa~e is bein~
written into the FAD output buffer. no data or messa~e will be lost.

FASTDESC:
.LONG
.LONG

FASTBUF: • BLI<:B
FASTl.EN: • WORD

.WORD

80
FASTBUF
80
o
o

;Descriptor for FAD output buffer

;FAO buffer
;Lensth of final strins. alwa~s
;Need lonsword for $OUTPUT

Receive channel number assiSned to terminal and liD status here

TTCHAN: .BLKW 1 ;Terminal channel

TTIOSB: IIOSB for terminal input
• BU<:W 1. ; Ret'Jrn stat'JS

TTLEN: .BLKW 1 ;LenSth of I/O
.BLKL 1. ;Device char

Arsument list for $NAME_G form of a s~stem service call

READLST:
$READEF EFN=32,STATE~EFNTEST

Buffer to obtain numeric values of c6mponents of time. Since
the onl~ field of interest is the hours field. the remaininS
fields in the buffer are not formatted~

TI MES: • BLKW
HOURS: • BLKW

.BLKW

3
1
3

;Year, month. da~

;Current time in hours
;Remainder of buffer

Buffer for terminal input (will create input descriptor for
$SETPRN s~stem service)

NAMEDESC:
.LONG
.LONG

NAME: .BLKB

;

15
NAME
15

;Fields for timer tests

NOON: • BLK(~ 1

TEN: .BLKQ 1

;Descriptor setup
;Initial size of buffer
;Address of buffer
;Name strins here

;will contain 12:00 noon in s~stem format

;Will contain 10 second delta time

8-4

)

)

)

)

)

)

)

)

PROGRAM EXAMPLES

EFHTEST:
.LONG

EFNTEST2:
.LONG

o

o

;Receive status of event flags

;Status after timer test

Longword to save PC on entrw to error handling subroutine

SAVEPC: .BLKL 1

ORION:

.PAGE

.SBTTL

.PSECT

.WORD

TEST TIMERS WITH EVENT FLAGS AND ASTS
TIMER,EXE,NOWRT

;Entrw mask

Assign an I/O channel to the device specified bw the logical name
TERMINAL and issue a message indicating we're off and running.
Do not perform normal error checking here: instead, let the
command interpreter issue a message based on the status in RO
if the channel assignment fails.

SETUP:
$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN
BLBS
RET

RO,10$;AII okaw, continue
;Otherwise exit with status in RO

$OUTPUT CHAN=TTCHAN.BUFFER=HELLO,LENGTH=HELLOLEN
BSBW ERROR

Call Read Event Flags to get status of event flags before beginning
tests and use FAO to output the contents of local event flag cluster 2

$READEF_G READLST
$FAO_S CTRSTR=DISPLAYEFN,OUTBUF=FAODESC,OUTLEN=FAOLEN,­

Pl=EFNTEST
MESSAGE

Announce start of timer tests

TIMETEST:
$OUTPUT CHAN=TTCHAN,BUFFER=TIMERMSG,LENGTH=TIMERLEN
BSBW ERROR

Call $NUMTIM to find out if it is currentlw AM or PM. If
the program is being run in the AM (anw time), we'll call
$SETIMR to notifw us via an AST when the time rolls over
to afternoon. If it's alreadw PM, skip this setting of
the timer.

$NUMTIM_S TIMBUF=TIMES
BSBW ERROR
CMPW
BGEQ

HOURS,i12
10$

;Before or afternoon?
;After, skip setting timer

Fall through here: format ASCII string representing 12 noon
into swstem auadword time format and ~all $SETIMR with
the address of AST service routine to handle timer reauests.

B-5

PROGRAM EXAMPLES

$BlNTIM_S TlMBUF=ASCNOON,TlMADR=NOON jGet binar~ noon time
BSBW ERROR jError check

$SETlMR_S DAYTlM=NOON,ASTADR=TlMEAST,REQlDT=t12
BSBW ERROR ;Error oheck

Now, ~et a delta time of 10 second~ formatted into a Quadword

10$: $BlNTlM_S TlMBUF=TENSEC,TlMADR=TEN jGet binar~ delta time
BSBW ERROR jError check
$SETlMR_S EFN=t33,DAYTIM=TEN jSet timer (ten seconds)
BSBW ERROR ;Error check

Announce wait for event flaS and wait; then read the
event fla~ cluster and output its contents

$OUTPUT CHAN=TTCHAN,BUFFER=EFNWAITMSG,LENGTH=EFNWAlTLEN
$WAITFR_S EFN=t33 jNow wait
BSBW ERROR ;Error check

Update argument list for $READEF and then call it with new address
to write the cluster into. When complete, format a message and
dis~la~ the contents of the cluster.

MOVAL EFNTEST2,READLST+READEF$_STATE
$READEF_G READLST
BSBW ERROR jError check
$FAO_S CTRSTR=TlMSTR,OUTlEN=FAOLEN,OUTBUF=FAODESC,­

Pl=EFNTEST2
BSBW ERROR ;Error check
MESSAGE

Announce settinS of timer with AST in 20 seconds (us(ng
alternate method of codins delta time). Then, set timer
and continue.

$OUTPUT CHAN=TTCHAN,BUFFER=ASTWAlTMSG,LENGTH=ASTWAlTLEN

$SETlMR_S DAYTlM=TWENTY,ASTADR=TlMEAST,REQlDT=t20
BSBW ERROR jError check

.PAGE
lssu~ a prompt for terminal input: reQuest a name for the current
process and then use the character string entered as the pr6cess
name.

RDNAME:
$OUTPUT CHAN=TTCHAN,BUFFER-PROMPT,LENGTH=PROMPTLEN
BSBW ERROR jError check

$lNPUT CHAN=TTCHAN,BUFFER-NAME,lENGTH=NAMEDESC,­
lOSB=TTIOSB

BSBW ERROR

B-6

)

)

!

)

)

)

)

10$:

MESSAGE

PROGRAM EXAMPLES

TTIOSB,tSSS_NORMAL 11/0 successful?
lOS ;Yes, go on
CTRSTR=IOERRSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
Pl-TTIOSB

BRW RDNAME ,Go trw again
MOVZWL TTLEN,NAMEDESC
SSETPRN_S PRCNAM=NAMEDESC
BSBW ERROR

;Update descriptor length
;Set process name

Hibernate. When ORION is run interactivelw, the terminal is dormant.
When the AST for the Set Timer service is delivered, ORION
will awaken long enough to execute the AST service routine and
then resume execution.

If ORION is run in B subprocess, wakeups can be scheduled for
delta time intervals. Each time it is awakened, ORION displaws a
message and then resumes hibernating.

HIB: $HIBER_S 'For now
SOUTPUT CHAN-TTCHAN,BUFFER=WAKEUP,LENGTH-WAKEUPLEN
BRB HIB
RET

.PAGE

.SBTTL AST ROUTINE TO HANDLE TIMER ENTRIES
TIMEAST:

.WORD
CMPL
BEQL
CMPL
BEQL
BRW

o
t12,4(AP)
lOS
t20,4(AP)
20S
~S

,Entrw mask for timer AST routine
1Is it noon AST?
,Yes, gO do it
,Is it delta time AST?
;Yes, gO do that
'Neither, issue error message

Format message for noon AST

lOS! SFAO_S
BSBW
SOUTPUT
BSBW
RET

CTRSTR=FAOSTR,OUTBUF=FASTDESC,OUTLEN=FASTLEN,Pl=tNOONMSG
ERROR 'Error check
CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
ERROR 'Error check

Format message for 20 second AST

20$: SFAO_S CTRSTR=SECMSGDESC,OUTBUF=FASTDESC,OUTLEN=FASTLEN,-
Pl=tTWENTY

SOUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
RET

Format messase if spurious AST

30S: SFAO_S CTRSTR=BADASTSTR,OUTLEN=FASTLEN,OUTBUF=FASTDESC,-
Pl=4(AP)

SOUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,lENGTH=FASTlEN
RET

.PAGE

.5BTTL ERROR HANDLING ROUTINE

Error handling routine: checks status code in RO.
If low bit set, returns to mainline routine. Otherwise,
displaws ~pproximate PC and RO when swstem service call
encounters an error and issues RET that causes image exit.

B-7

ERROR:
BLBC
RSB

RO,10S

PROGRAM EXAMPLES

;If error, branch
;Otherwise, continue

; Use FAD to format output error messaSe

lOS: MOUl (SP),SAUEPC
SFAO_S CTRSTR=ERRSTR,OUTLEN=FAOLEN,OUTBUF-FAODESC,­

Pl=SAUEPC,P2=RO
BLBC RO,END
SOUTPUT CHAN-TTCHAN,BUFFER-FAOBUF,LENGTH=FAOLEN

END: RET
.END ORION

8-8

)

)

)

)

)

)

PROGRAM EXAMPLES

.TITLE CYGNUS SYSTEM SERVICES TEST PROGRAM
• IDENT lOll

CYGNUS shows examples of the followin~ swstem services:

$TRNLOG
$ASSIGN
$DCLEXH
$CREMBX
$GETCHN
$CREPRC
$FAO
$QIO
$CRELOG
$WAKE
$SETSFM
$WAITFR
$DELLOG
$DASSGN

- Translate Lo~ical Name
- Assi~n 1/0 Channel
- Declare Exit Handler

Create Mailbox
Get 1/0 Channel Device Information
Create Process

- Formatted ASCII Output
Queue 1/0 ReQuest
Create Lo~icBI Name
Wake P !'oces~;
Set Swstem Service Failure Exception Mode
Wait for Sin~le Event Flag
Delete Lo~ical Name
Deassi~n liD Channel

This sample pro~ram illustrates:

I. AssiSnin~ a channel to the current output device bw translatin~
the lo~ical name SYS$OUTPUT.

2. DeclarinS an exit handler to receive control at image exit.
The exit handler ensures that the image exits in a graceful
manner.

3. Creating a mailbox and using the ,GETCHN swstem service
; to obtain the unit number.
;

4. Creating a subprocess and usin~ the mailbox created as a
termination mailbox. When the subprocess terminates, an AST
service routine interprets the messaSe.

5. Placin~ names in the ~roup logical name table.

6. Wakin~ a hibernating subprocess. The subprocess created bw this
program places itself in hibernation after ~ettin~ started.
When awakened, it translates the lo~ical names placed in the
group logical name table •

• PAGE

Swstem macro definitions reQuired bw CYGNUS

$SSDEF
$IODEF
$MSGDEF
$Pt~LDEF

$ACCDEF
$DIBDEF

Local macros:

;Define status codes for returns
;Define 1/0 functions codes for $QIO
;Define names for mailbox messaSes
;Define names for Quota list
;Define names for termination messaSe
;Define names for device information buffer

DESCRIPTOR, to define input character stl'ins descriptors for
swstem service calls

.MACRO DESCRIPTOR TEXT,?LABELI,?LABEL2
.LONG LABEL2-LABELI
.LONG LABEll

LABELl: .ASCII \TEXT\
LABEL2:
.ENDM DESCRIPTOR

B-9

PROGRAM EXAMPLES

MESSAGE, to output messaSes formatted b~ FAO

.MACRO MESSAGE
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

.ENDM MESSAGE

Local macro: GRPNAME, to place 10Sical name/eQuivalence name
pairs in the Sroup losical name table with $CRELOG ind
do error checkins

.MACRO GRPNAME LOGICAL,EQUAL
$CRELOG_S TBLFLG=tl,LOGNAM=LOGICAL,EQLNAM=EQUAL
BSBW ERROR

.ENDM GRPNAME

.PAGE

Read/onl~ data areas

.PSECT RODATA,NOWRT,NOEXE

.LIST MEB

Descriptor for input 10Sical name

OUTPUT: DESCRIPTOR (SYS$OUTPUT>

; Buffers for announcement messages and lensths

HELLO: DESCRIPTOR (CYGNUS ••• HELLO>
HELLOLEN:

.LONG

BYE: • ASCII
BYELEN: • LONG

HEL.LOLEN-HELLD

/CYGNUS EXIT HANDLER ••• /
BYE LEN-BYE

Control strings for output messages formatted b~ FAO and associated
counted ASCII strinss to insert in messages

PRCSTR:
DESCRIPTOR (LYRA CREATED, PID !XL> ;displa~ PID of subprocess

ASTERRSTR:
DESCRIPTOR (!/MAILBOX MESSAGE HAS lAC IXW>

IOERR: .ASCIC ' I/O ERROR'
IDERR: .ASeIC /BAD MSG Inl

PIDERRSTR:

;1/0 error in AST routine
;Mailbox messaSe not termination messaSe

DESCRIPTOR (!/SPURIOUS PROCESS IDIXL IN DELETION MAILBOX>

DONESTR:
DESCRIPTOR (l/LYRA CDMPLETED; STATUS !XL TIME I%T)

BADEXSTR:
DESCRIPTOR (l/EXIT DUE TO ERROR IXL>

Descriptor to define name of imase for subprocess to execute.

8-10

)

)

)

)

)

)

)

PROGRAM EXAMPLES

LYRAEXE:
DESCRIPTOR <LYRA.EXE)

Quota list for subprocess: defines minimal Quotas reQuired for
for the subprocess to execute .and ensures that the creatin~
imaSe will have sufficient Quotas to continue.

QLIST: .BYTE PQL$_BYTLM ; Bufff?r Quota
.LoNG 1024
.BYTE PQL$_ .. FILLM ; Or·en file QIJota
.LoNG 3
.BYTE PQL$_PGFLQUoTA 9Pasins file Quota
.LONG 256
.BYTE PQL$_PRCLM ;Subprocess Iluota
.LONG 1
.BYTE POL$_TQELM ;Timer t1Ueue Quota
.L.oNG 3
.BYTE PQL. $_.L I STEND

LoSical name/eQuivalence name pairs for group table.
Note that one of the names is recursive in the table.

ORION: DESCRIPTOR <ORION)
HUNTER: DESCRIPTOR <HUNTER)
PEGASUS:DESCRIPTOR <PEGASUS)
HORSE: DESCRIPtOR <HORSE>
LYRA: DESCRIPTOR <L.YRA>
HARP: DESCRIPTOR <HARP)
CYG: DESCRIPTOR <CYGNUS)
SWAN: DESCRIPTOR <SWAN)
DUCK: DESCRIPTOR <UGLY DUCKLING)
TAL.E: DESCRIPTOR <FAIRY TALE!>

.PAGE

Read/write data areas

.PSECT RWDATA,RD,WRT,NoEXE

TTCHAN: • BLKW 1 ;Channel number o~ te?minal

; Output buffer to receive ph~sical terminal name

TTNAME: .LoNG
TTADDR: .LONG
TT: .BLKB

63
TT
63

Termination control block

EXITBLoCI, :
.BLKL
.LoNG
.LoNG
.LoNG

ERRPC: • BLKL
STATUS: .BLKL

1
EXITRTN
2
STATUS
1
1

;Descriptor lenSth
;Address of buffer
9Maximum 10Sicai name lenSth

;Exit control block
;S~stem uses this for pointer
'Address of routine
;Number of arSuments for handler
;Address to store status
;Store PC <if error)
;Status code at exit

Fields used for termination mailbox creation, messaSe bufferinS

B-ll

PROGRAM EXAMPLES

EXCHAN: • BLKW
EXITBUF:

.LONG

.LONG
BBUF: .BLKL
ENDBUF:
MBXIOSB:

.BLKW
MBLEN: • BLKW
MBPID: • BLKL

EXITMSG:
.BLKB

1

ENDBUF-BBUF
BBUF
DIB$K_LENGTH

1
1
1

ACC$IC TERMLEN

Receive PID of subprocess here

LYRAPID:
.BLKL :l

.PAGE

;Channel number of mailbox
;Descriptor for channel data
jLensth of buffer
'Address of buffer

;1/0 status block
;Status of I/O completion
,Lensth of operation here
jPID of process deleted

;Buffer for mailbox messaSe

.Output buffers for strinss formatted b~ FAO

FAODESC:
.LONG
.LONG

FAOBUF: • BLKB
FAOLEN: • BLKW

.BLKW

80
FAOBUF
80
1
1

;Descriptor for output buffer
;80-character buffer
;Address
;Buffer
jReceive lensth here
;Need lonsword for $QIO

Need separate FAO buffers for use in AST routine to ensure
that data doesn't set clobbered as~nchronousl~

FASTDESC:
.LONG
.LONG

FASTBUF:.BLKB
FASTLEN:.BLKW

.BLKW

.PAGE

.PSECT
CYGNUS: • WORD

80
FASTBUF
80
1
1

CODE,EXE,RD,NOWRT
o

,Lensth
jAddress
;BIJffer
;Get lensth
;Need lonsword for $QIO

;Entr~ mask

First, translate losical name SYS$OUTPUT to find name of
current output device. If the imase is run interactivel~,
its e~uivalence name is s~stem-defined, and will contain
a 4-b~te header. The proSram must check for the header and update
the descriptor so the device name will be valid for callinS $ASSIGN.

$TRNLOG_S LOGNAM=OUTPUT,RSLLEN=TTNAME,RSLBUF=TTNAME
BSBW ERROR
CMPB TT, t~X1B
BNEQ 10$
SUBL t4,TTNAME
ADDL t4,TTADDR

;First b~te escape1
;No, So ahead
;Subtract 4 from lensth of name
jAdd 4 to address in descriptor

Call $ASSIGN to a.sisn an I/O channel and issue messaSe verif~ins
successful initialization

8-12

)

)

\

)

)

)

)

PROGRAM EXAMPLES

10$: $ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN
BSBW ERROR ;Error check

$OUTPUT CHAN=TTCHAN, BUFFEF,,-=HELLO. LENGTH=HELLOLEN
BSBW ERROR

Declare exit handler to do cleanup operations

$DCLEXH_S DESBLK=EXITBLOCK
BSBW ERROl',

Create a mailbox for subprocess termination messaSe, then
set the unit number of the mailbox bw doins a $GETCHN

MAILBOX:
$CREMBX_S CHAN=EXCHAN,MAXMSG=t120,BUFQUO=t240,PROMSK=tO
BSBW ERROR
$GETCHN_S CHAN=EXCHAN,PRIBUF=EXITBUF
BSBW ERROR

Create the subprocess. Since the losical name SYS$OUTPUT
has ~lready been translated, the same eGuivalence name can be
Siven to LYRA as its logical output device.
LYRA will be able to assign a channel to this device as well.
The MBXUNT argument specifies the name of the mailbox Just
created; the mailbox will receive a message when LYRA exits.

PROCESS:
$CREPRC_S IMAGE=LYRAEXE,PIDADR=LYRAPID,­

MBXUNT=BBUF+DIB$W_UNIT,­
OUTPUT=TTNAME,QUOTA=QLIST

BSBW ERROR

If okaw, format an output messaSe showinS the process id •••

$FAO_S CTRSTR=PRCSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
Pl=LYRAPID

BSBW ERROR
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

Queue an 1/0 reGuest to the mailbox with an AST
to receive notification when LYRA completes.

$QIO_S EFN=t4,CHAN=EXCHAN,FUNC=tIO$_READVBLK,­
ASTADR=EXITAST,IOSB=MBXIOSB,­
Pl=EXITMSG,P2=t120

BSBW ERROR

.PAGE
Place names in the Sroup loSical name table usins the macro GRPNAME.
It will be LYRA's task, when awakened. to translate these
names and displaw the results at the terminal.
Note that translation of the name CYGNUS will reGuire
recursive translation.

8-13

PROGRAM EXAMPLES

PUT_NAMES:
GRPNAME ORION, HUNTER

GRPNAME PEGASUS,HORSE

GRPNAME lYRA,HARP

GRPNAME CYG.SWAN

GRPNAME SWAN,DUCK

GRPNAME DUCK,TALE

After placinS names in the table, wake lYRA, who has been hibernatins,
to perform the 10Sicai name translation.

$WAKE_S PIDADR=lYRAPID
BSBW ERROR

Call ~roSram DRACO (test of FAO examples in Chapter 4)

CALLS to, DRACO

RET ;All finished

.PAGE
AST service routine to read the termination mailbox.
In this example, onl~ one messaSe is actuall~ expected in the mailbox
but the prosram performs all the followins checks:

1. That the I/O completed successfull~.
2. That the messaSe in the mailbox is a process termination messaSe.
3. That the process beins deleted is the subprocess created.

This service routine enables s~stem service failure exception
mode as an error handlins device: if a s~stem service
call fails, an exception condition will occur. CYGNUS
does not declare a condition handler, so the imase
will be forced to terminate, and the s~stem will displa~

; pertinent information about the exception condition.

EXITAST:
.WORDO ; Ent r~ masj(.
$SETSFM_S ENBFLG=tl ;Enable SSFAIl exceptions

Check 10SB to ensure th~t I/O completed successfull~

CMPW
BEQl
$FAO_S

$OUTPUT
BRW

MBXIOSB,tSS$_NORMAl 9Check that I/O was successful
20$ 90ka~, So on
CTRSTR=ASTERRSTR,- 90therwise, format error mss
OUTlEN=FASTlEN,OUTBUF=FASTDESC-
P1=tIOERR, - 91/0 error
P2=MBXIOSB 9Displa~ 10SB
CHAN=TTCHAN,BUFFER=FASTBUF,lENGTH=FASTlEN
50$;Return

Check messaSe t~pe field in mailbox messase to ensure that the messaSe
J is a process termination messase.

B-14

)

)

)

)

)

)

)

)

)

PROGRAM EXAMPLES

CMPW EXITMSG+ACCSW_MSGTYP,tMSGS_DELPROC ;Check message identification
BEQL 30S ;Oka~, go on
SFAO_S CTRSTR=ASTERRSTR,- ;Otherwise, format error message

OUTLEN=FASTLEN.OUTBUF=FASTDESC,-
Pl=tIDERR. - ;Invalid PID error
P2=EXITMSG+ACCSW_MSGTYP ;Print message type code

SOUTPUT CHAN=TTCHAN.BUFFER=FASTBUF,LENGTH=FASTLEN
BRW 50S ;Return

Compare the second longword in the.I~SB with the PID returned
b~ SCREPRC to ensure that the termination message is for LYRA.

CMPL
BNEQ
BRW

SOUTPUT
BRW

LYRAPID,MBPID
35$
40S

;LYRA deletion?
;Yes, go on

CTRBTR=PIDERRBTR,- ;Otherwise, format error
OUTLEN=FABTlEN,OUTBUF=FASTDESC,-
Pi=MBPID ;Displa~ spurious PID
CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
50S ;Return

Format an output message indicating LYRA's final exit status
and the time of da~ at which LYRA terminated.

message

40S: SFAO_S CTRSTR=DONESTR, - ;Format message telling of LYRA's demise
OUTlEN=FASTLEN,OUTBUF=FASTDESC,-
Pl=EXITMSG+ACCSL_FINAlSTS, - ;Get status code
P2=tEXITMSG+ACCSQ_TERMTIME ;and time of deletion

SOUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
50$: SSETSFM_S ENBFLG=tO ;Disable exceptions

RET !Return

.PAGE
This is the exit handler for CYGNUS. It receives control
when CYGNUS exits, either normally, or as a result of
an error condition.

EXITRTN:
.WORD
SOUTPUT
BSBW
BLBS

b !EntrY mask
CHAN=iTCHAN,BUFFER=BYE,LENGTH=BYELEN
ERROR
STATUS,20$;Normal exit, continue

If error. format error message using argument list in
exit control block

lOS; SFAO_S CTRSTR=BADEXSTR.OUTLEN=FAOLEN,OUTBUF=FAODESC,-
Pl=STATU8,P2=ERRPC

BSBW ERROR
.OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN

Common code for both normal and error exit: wait for subprocess
to terminate (if it hasn't already), then delete all names
from the group logical name table.

B-15

$WAITFR_S EFN=t4
BSBW ERROR
$DELLOG_S TBLFLG=tl
BSBW EF<ROR .
$DASSGN_S CHAN=EXCHAN
BSBW ERROR
MOVL STATUS,RO
RET

.PAGE

PROGRAM EXAMPLES

;Wait for termination messaSe

9Delete all names

;DeassiSn mailbox channel

9Restore saved status code
'Exit with status

Common error handlinS routine. This routine checks the
status code in RO; if success, returns to mainline of
?roSram. If there is an error, the PC is placed in the exit
control block so that exit routine can format and displa~
an error messaSe.

ERROR:
BLBC RO,10$
RSB
MOVL (SP),ERRPC
RET
.END CYGNUS

8-16

;Check status code
'Low bit set, So back
;Store PC
'RET will cause imase exit

)

1.
j

-)

)

)

)

)

PROGRAM EXAMPLES

.TITLE LYRA System Services Test

.IDENT 1011

LYRA shows examples of the followins system services!

- Translate Losical Name
- Assisn 1/0 Channel

H:i.bf?rnat€~

STRNLOG
~~ASSIGN
$HIBER
.FAOL Formatted ASCII Output with List Parameter

LYRA is the subprocess created by CYGNUS. After assiSninS a
channel to its current output device, LYRA hibernates. When awakened
by CYGNUS, LYRA translates the 10Sicai names placed in the sroup
losical name table by CYGNUS, and displaws the results of the
translations on the terminal.

When LYRA exits, a termination messaSe is sent to the
mailbox specified by CYGNUS.

Macro library calls

SSSDEF ;Define system status values

L.Dca 1 ilIac I'OS

DESCRIPTOR. constl'ucts input chal'acter stl'inS descriptors

.MACRO DESCRIPTOR TEXT,?LABEL1,?LABEL2
.LBNG LABEL2-LABELI
.LONG LABELl

LABELl: .ASCII \TEXT\
LABEL2:
.ENDM DESCRIPTOR

• MACF:O MESSAGE
SOUTPUT CHAN=TTCHAN,BUFFER~FAL~~
13SBW

.ENDM MESSAGE

. Poc'\GE

.S13TTL Swmbcls and data al'eas

Local data

.PSECT RODATA,NOWRT,NOEXE

.LIST MEB

Losica~ name of 10Sical output device

OUTPUT: ~ESCRIPTOR <SY5S0UTPUT>

113 fi·i",,'-:(·:'OLEN

HELLO: .ASCII ILYRA: INITIALIZING ••• AND SO TO SLEEPI
HELLOLEN:

.LONG HELLOLEN-HELLO

B-17

PROGRAM EXAMPLES

WAKEMSG:
.ASCII ILYRA: OKAY, WILL DO LOGICAL NAME T~ANSLATION ••• I

WAKELEN:
.LONG WAKELEN-WAKEMSG

FAO control strin~ for lo.ical name output messaSe

LOGNAMSTR:
DESCRIPTOR (!/LYRA: !AS IS A !AS)

S Error messa~e control strin~

EF~RSTF~ :
DESCRIPTOR (!/LYRA: SYSTEM SERVICE ERROR AT APP. !XL RO=!XL)

LoSical names to be translated

ORIONLOG:
DESCRIPTOR (ORION)

CYGNUSLOG: .
DESCRIPTOF~ <CYGNUS>

LYRAL.OG:
DESCRIPTOR <LYRA)

PEGASLJSLOG:
DESCRIPTOR (PEGASUS>

.PAGE

Read/wT'i t.e dat.oJ

,PSECT RWDAT~,RD,WRT.NOEXE

; .
Output. buffer for all output formatted bw FAO i:f«' '

FA OLEN : • WORD
.WORD

FAODESC:
.LONG
.LONG

FAOBUF: • BLKB

o
o

80
FAOBUF
80

;Lensth of final strinS, alwaws
;Need 10nSword for $OUTPUT

Word to receive channel number .of terminal

PUTCHAN: • BLI<W 1

Buffers to maintain laSical namele~uivalence name pairs
in routine that performs losical name translation

LOGBUFA:
.LONG
.L.ONG

BUFA: .BLKB
L.OGBUFB:

.LONG

.LONG

63
BUFA
63

63
BUFB

8-18

)

)

)

)

)

)

PROGRAM EXAMPLES

BUFB: .BLKB 63

L OGLEN : .l.ONG o ;Save length of eauivalence name

Parameter list for call to FAOl. (used bw translate routine>

TLIST:
Tl.OGNAM:

.LONG
TEQl.NAM:

.LONG
SAVER3: .L.ONG

o ;Address of lo.ical name descriptor

o
o

;Address of eauivalence descriptor
)Save reaister contents for switch

Longword to store the PC when a swstem service call results in an
error. LYRA checks the low bit of RO following each service call.
If set, L.YRA continues; otherwise. it saves the PC and branches
to an error handling routine that displaws the saved PC and the
content~; of FW.

EF~RPC: ,LONG o ;For address of SSFAIL

I.. YRA: :

,PAGE
.SBTTL
.PSECT
,ENABL..

.WORD

Readw and hibernate
CODE,EXE,RD,NOWRT
LSB

Assign channel to device referred to bw logical name
SYS$OUTPUT, This name was placed in the logical name
table bw CYGNUS (it is also CYGNUS's logical output device>.

20$: $ASSIGN_S DEVNAM=OUTPUT,CHAN=OUTCHAN

30$:

40$:

BLElS
RET
$OUTPUT
BLBS
MOVAL
BRW

RO,30$
;Exit with status

CHAN=OUTCHAN,BUFFER=HELLO,LENGTH=HELLOLEN
RO,40$
30$,ERRPC
ERROR

$HIBER._S '
BLBS RO,50$
MOVAL 40$,ERRPC
BRW ERROR

50$: $OUTPUT CHAN=OUTCHAN,BUFFER=WAKEMSG,LENGTH=WAKELEN

60$:

ElLBS
MOVAL
ElRW

F<0,60$
50$,ERRPC
EI'~ROR

if ASSIGN fails

When awakened, begin translating logical names. To translate the
names, place address of a lo.ical name descriptor in R2 and then
ao to the subroutine that performs the translation. Repeat for
each logical name to translate.

MOVAL.
,JSB
MOVAL
JSEl
MOVAL.
,JSB
MOV~IL

JSB

ORIONLOG,R2
n-;:ANSl..ATE
CYGNIJSLOG, R2
TRANSL.ATE
L YF<AL.OG , R2
TRANSLATE
PEGASUSl..OG,R2
TRANSLATE

8-19

PROGRAM EXAMPLES

All "f'inistu;,>d, retuT'n

!~ET

.PAGE

.SBTTL Subroutine td translate and print lo~ical names

.ENABL LSB

On entrw to this subroutine,
R2 - address o"f' logical name to translate
It use!.: R3 to hold address o"f' "f'inal result b'Jffer

R4 to hold address of intermediate buffer

TRANSLATE:
MOVAL
MOVAL

LOGBUFA,R3
LOGBUFB,R4

;Get addresses of buffers

Initial translation places resultant eGuivalence name in buffer pointed
to bl:! R3

.TRNLOG_S LOGNAM=(R2),RSLLEN=LOGLEN,RSLBUF=(R3)
BLBS
MOVAL
BRW

RO.30$
10$,ERRPC
ERROR

Place len~th of eGuivalence name in "f'irst word of descriptor and use this
descriptor as input for next translation. If SS$_NOTRAN is returned,
then there was no recursion of name. If not, update re~isters to
provide input and output descriptors for translation and repe~t
translation until SS$_NOTRAN is returned.

30$: MOVZWL LOGLEN,(R31 ;Fix len~th in buffer
$TRNLOG_S LOGNAM=(R3),RSLLEN=LOGLEN,RSLBUF=(R4)
BLBS RO,40$
MOVAL 30$,ERRPC
BRW ERROR

."'Q:c;: CMPW RO,ISS$_NOTRAN ;Final'l'
BEQL 50$;YuP, ~o print
MOVL R3,SAVER3 ;Otherwise, switch
MOVL R4,R3
MOVL SAVER3,R4
MOVZWL 163, (R4) ;Restore len~th
BRB 30$;Tr\:l a~ain

Place addresses of lo~ical name and eBuivalence names in FAO parameter list
and call FAO to format output messa~e, then output the messa~e.

MOVL
MOVL
$FAOL_S

BLBS
MOVAL
BRW
$OUTPUT
BLBS
MOVAL
BRW
MOVL
MOVL
RSB

R2,TLOGNAM
R3,TEQLNAM
CTRSTR=LOGNAMSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,­
PRMLST=TLIST
RO,60$
50$,ERRPC
ERROR
CHAN=OUTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
RO,70$
60$,ERRPC
ERROR
t63,LOGBlJFA
163,LOGBUFB

;To main routine

B-20

)

)

)

-)

)

)

)

)

PROGRAM EXAMPLES

.PAGE

.SBTTL Error handlins routine

This routine uses the saved PC and RO to format a messaSe d~scribins
the conditions under which a call to a system service failed.

ERROR:
$FAO_S CTRSTR=ERRSTR,OUTBUF-FAODESC,OUTLEN=FAOLEN,-

Pl=ERRPC,P2=RO
$OUTPUT CHAN-OUTCHAN,BUFFER-FAOBUF,LENGTH=FAOLEN
RET
.END LYRA

B-21

)

)

)

)

)

)

)

APPENDIX C

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.l MACRO FORMS

C.l.l $name_G Form

Format:

label
address of argument list; argument list may be created with
$name macro form.

$name Macro Format:

label: $name argl , ... ,argn

label
symbolic address of the generated argument list.

name
macro name.

argl-argn
arguments to be placed in successive longwords in the argument
list. A longword of zeros is generated for a nonspecified
argument. Arguments can be specified (1) in positional order,
with commas indicating no specified arguments; or (2) using
keyword = argument. If keywords are used, arguments can be
specified in any order.

Argument List Offset Names:

The $name macro automatically defines symbolic names for argument
list of offsets. The offset names can also be defined with the
$name DEF. The symbolic names defined are:

nameS NARGS
number of arguments in list.

name$ keyword
symbolic name for offset of each argument in list.

C-l

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.l.2

Format:

$name_s argl , •.• ,argn

argl - argn
arguments for macro instruction.

Arguments can be specified (1) in positional order, with commas
indicating nonspecified arguments, or (2) using keyword=argument.
If keywords are used, arguments can be specified in any order.

C.2 FORTRAN FORMS

C.2.1 Procedure Call

Format:

call SYS$name(argl, .•• argn)

argl - argn
arguments for system service macro instruction

Arguments must be coded in strict positional order, without
keywords. Commas must be used to indicate the absence of an
argument, including trailing arguments.

C.2.2 Function Reference

Format:

code = SYS$name(argl, .•. argn)

Arguments must be coded as described above. The code and the
system service function must be defined as INTEGER*4 variables.

C-2

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.3 SYSTEM SERVICE MACROS

Adjust Outer Mode Stack Pointer

$ADJSTK [acmode] , [adjust] ,newadr

acmode access mode to adjust stack pointer for

adjust l6-bit signed adjustment value

newadr address of longword to store updated value

Adjust Working Set Limit

$ADJWSL [pagcnt] ,.[wsetlm]

pagcnt = number of pages to add to working set (if positive).

wsetlm

Allocate Device

Number of pages to subtract from working set (if
negative) •

address of longword to receive new working set limit,
or current working set limit if pagcnt not specified.

$ALLOC devnam , [phylen] , [phybuf] , [acmode]

devnam

phylen

phybuf

acmode

address of device name or logical name
descriptor

string

address of word to receive length of physical name

address of physical name buffer descriptor

access mode associated with allocated device

Associate Common Event Flag Cluster

$ASCEFC efn ,name , [prot] , [perm]

efn

name

prot

perm

number of any event flag in the cluster with which to
associate

= address of the text name string descriptor

= protection indicator for the cluster
o -) default, any process in group
1 -) only owner's UIC

= permanent indicator
o -) temporary cluster
1 -) permanent cluster

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Convert Binary Timer to ASCII String

$ASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

timlen = address of a word to receive the number of characters
inserted into the output buffer.

timbuf address of a quadword descriptor describing the
buffer to receive the converted time.

timadr address of the quadword containing the 64-bit time to
be converted to ASCII. If 0, use current time.

cvtflg conversion indicator ° -) return full date and time
I -) return con~erted time only

Assign I/O Channel

$ASSIGN devnam ,chan ,[acmode] , [mbxnam]

devnam = address of device name or logical name
descriptor

string

chan address of word tb receive channel number assigned

acmode

mbxnam

access mode associated with channel

address of mailbox logical name string descriptor, if
mailbox associated with device

Convert ASCII String to Binary Time

$BINTIM timbuf ,timadr

timbuf address oL string descriptor for ASCII time string

timadr = address of quadw.ord to receive 64-bit binary time
value

Absolute time strings are specified in the format:

dd-mmm-yyyy hh:mm:ss.cc

Delta time strings are specified in the format:

dddd hh:mm:ss.cc

Broadcast

$BRDCST msgbuf, [devnam]

msgbuf = address of message buffer string descriptor

devnam = terminal device name string descriptor. If 0, send
message to all terminals. If first word in
descriptor is 0, send message to all allocated
terminals.

C-4

)

)

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Cancel I/O on Channel

$CANCEL chan

chan number of the channel on which I/O is to be canceled

Cancel Exit Handler

$CANEXH [desblk]

desblk = address of exit control block describing exit handler
to be deleted. If 0, delete all.

Cancel Timer Request

$CANTIM [reqidt] , [acmode]

reqidt

acmode

Cancel Wakeup

request identification for request to be canceled.
If 0, all requests canceled.

access mode of requests to be canceled

$CANWAK [pidadr] , [prcnam]

pidadr = address of process identification of process for
which wakeups are. to be canceled

prcnam = address of process name string descriptor

Clear Event Flag

$CLREF efn

efn = number of event flag to be cleared

Change to Executive Mode

$CMEXEC routin, [arglst]

routin = address of the routine to be executed in executive
mode

arglst address of argument list to be supplied to the
routine

Change to Kernel Mode

$CMKRNL routin, [arglst]

routin address of routine to be executed in kernel mode

arglst address of argument list to be supplied to routine

C-5

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Contract Program/Control Region

$CNTREG pagcnt, [retadr] , [acmode] , [region]

pagcnt number of pages to be deieted from end of region

retadr

acmode

address of 2-longword array to receive virtual
addresses of starting and ending page of deleted area

access mode for which service is performed

region region indicator
o -) program (PO) region
I -) control (PI) region

Ct' k v € Irk- ~ ~~.. ---17 f L.-e..-- C. - I ~-
Create Logical Name

$CRELOG [tblflg] ,lognam ,eqlnam , [acmode]

tblflg = logical name table number
o -) system (default)
I -) group table
2 -) process table

lognam address of logical name string descriptor

eqlnam address of equivalence name string descriptor

acmode access mode for logical name (process table only)

Create Mailbox and Assign Channel

$CREMBX [prmflg] ,chan , [maxmsg] , [bufquo] , [promsk] , [acmode]
, [lognam]

prmflg permanent flag
o -) temporary mailbox (default)
I -) permanent mailbox

chan = address of word to receive channel assigned

maxmsg maximum message size that may be received by mailbox

bufquo = number of bytes of dynamic memory that can be used to
buffer mailbox messages

promsk protection mask for mailbox

acmode access mode of created mailbox

lognam addreis of logical name string descriptor for mailbox

C-6

)

)
/

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create Process

$CREPRC

pidadr

image

input

output

error

prvadr

quota

prcnam

baspri

[pidadr]
,[error]
, [baspri]

,[image] ,[input] ,[output]
,[prvadr] ,[quota] ,[prcnam]

,[uic] ,[mbxunt] ,[stsflg]

address of longword in which to return process
identification of created process

address of string descriptor for image name

address of string descriptor for SYS$INPUT logical
name

address of string descriptor for SYS$OUTPUT logical
name

address of string descriptor for SYS$ERROR logical
name

address of quadword privilege list

address of quota list

address of string descriptor for process name

base priority (0-31) to set for new process
default = 2)

(macro

uic user identification code. If 0, create a subprocess

mbxunt

stsflg

mailbox unit for termination message

status and mode flag bits

Bit Meaning

o
1
2
3
4
5
6
7

disable resource wait mode
enable system service failure exception mode
inhibit process swapping
disable accounting messages
batch process
cause created process to hibernate
allow lpgin without authorization file check
process is a network connect object

Create Virtual Address Space

$CRETVA inadr ,[retadr] ,[acmode]

inadr

retadr

acmode

address of 2-1ongword array containing starting and
ending virtual address of pages to be created

address of a 2-1ongword array to receive starting and
ending virtual address of pages actually created

access mode for the· new pages (protection
read/write for acmode and more privileged modes)

C-7

is

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create and Map Section

$CRMPSC

inadr

retadr

acmode

flags

gsdnam

ident

relpag

chan

pagcnt

vbn

prot

pfc

[inadr]
, [ident]
, [pfc]

, [retadr]
, [relpag]

, [acmode] , [flags] , [gsdnam]
, [chan] , [pagcntJ , [vbn] , [prot]

address of 2-longword array containing starting and
ending virtual addresses of space into which section
is to be mapped

address of 2-longword array to receive addresses
actually mapped

access mode of owner of pages

section characteristics

Flag

SEC$M GBL
SEC$M-CRF
SEC$M-DZRO
SEC$M-WRT
SEC$M-PERM
SEC$M:=SYSGBL

Meaning

Global section
Copy-on-reference pages
Demand zero pages
Read/write section
Permanent section
System global section

address of global section name string descriptor

address of quadword containing version identification
and match control

relative page number within section to begin mapping

number of channel on which file is accessed

number of pages in section

virtual block number of beginning of section

protection mask

page fault cluster size

Disassociate Common Event Flag Cluster

$DACEFC efn

efn = number of any event flag in the cluster .to be
disassociated

Deallocate Device

$DALLOC [devnam] , [acmode]

devnam = address of device name string descriptor.
deallocate all devices.

acmode = access mode associated with device

C-8

If 0,

)

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Deassign I/O Channel

$DASSGN chan

chan number of channel to be deassigned

Declare AST

$DCLAST astadr ,[astprm] ,[acmode]

astadr address of entry mask of AST routine

astprm value to be passed to AST routine as an argument

acmode access mode for which the AST is to be declared

Declare Change Mode or Compatibility Mode Handler

$DCLCMH addres, [prvhnd] ,[type]

addres = address of change mode or compatibility mode handler

prvhnd = address of longword to receive previous handler
address

type handler type indicator
o -) change mode handler for current mode
I -) compatibility mode handler

Declare Exit Handler

$DCLEXH· desblk

desblk = address of exit control block containing:

31 8 7

forward link

exit handler address

0 I n

address to store reason for exit

additional arguments

o

if any T I for eXit handler,

L--____ -J

C-9

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Delete Logical Name

Delete

$DELLOG [tblflg] , [lognam] , [acmode]

tblflg = logical name table number
o -) system
1 -) group
2 -) process

lognam address of logical name string descriptor. If
delete all names in the specified table.

acmode access mode of logical name (process table only)

Mailbox

$DELMBX chan

chan channel number assigned to the mailbox

0,

Delete Process

$DELPRC [pidadr] , [prcnam]

pidadr= address of longword containing process identification
of process to be deleted

prcnam address of string descriptor for process name of
process to be deleted.

Delete Virtual Address Space

$DELTVA inadr , [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting
ending virtual addresses of pages to delete

address of 2-longword array to receive starting
ending addresses of pages actually deleted

access mode for which service is performed

Delete Global Section

$DGBLSC [fl ag s] , g sdnam , [iden t]

flags

gsdnam

type of section
o -) group global section
SEC$M_SYSGBL -) system global section

address of global section name string descriptor

and

and

ident address of guadword containing version identification
and match control

Delete Common Event Flag Cluster

$DLCEFC name

name address of text name string descriptor of permanent
cluster

C-lO

)

)

)

)

)

)

)

)

Exit

$EXIT

code

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

[code]

longword to be saved in process header as completion
status of current image (macro default = 1)

Expand Program/Control Region

$EXPREG pagcnt, [retadr] , [acmode] , [region]

pagcnt

retadr

acmode

number of pages to add to end of specified region

address of 2-1ongword
addresses of starting
region

array to receive virtual
and ending pages of expanded

access mode of the new pages

region = region indicator
a -) expand program (PO) region
1 -) expand program (PI) region

Formatted ASCII Output

$FAO

ctrstr

outlen

outbuf

pl •••

ctrstr , [outIen] ,outbuf , (pI] , [p2] ... [pn]

address of string descriptor for ASCII control string

address of word in which to store output string
length

address of output buffer string descriptor

variable number of arguments to FAO

Formatted ASCII Output With List Parameter

$FAOL ctrstr , [outlen] ,outbuf ,prmlst

ctrstr address of string descriptor for control string

outlen address of word to receive output string length

outbuf address of output buffer string descriptor

prmlst address of a list of longword para~eters

Force Exit

$FORCEX [pidadr] , [prcnam] ,[code]

pidadr = address of process identification of procesS to be
forced to exit

prcnam

code

address of process name string descriptor for forced
process

longword completion status for exit service

C-ll

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Get I/O Channel Information

$GETCHN chan , [prilen] , [pribuf] , [scdlen] , [scdbuf]

chan number of a channel assigned to the device

prilen address of word to receive length of primary buffer

pribuf address of primary buffer descriptor

scdlen

scdbuf

address of word to receive length of secondary buffer

address of secondary buffer descriptor

Get I/O Device Information

$GETDEV devnam, [prilen] , [pribuf] , [scdlen] , [scdbuf]

devnam = address of device name or logical name
descriptor

string

prilen address of word to receive length of primary buffer

pribuf address of primary buffer descriptor

scdlen = address of word to receive length of secondary buffer

scdbuf address of secondary buffer descriptor

Get Job/Process Information

$GETJPI , [pidadr] , [prcnam] ,itmlst ",

pidadr address of process identification

prcnam address ot process name string descriptor

itmlst address of a list of item descriptors

First, and fifth through seventh arguments are reserved

)

)

Get MeSSage)

$GETMSG msgid ,msglen ,bufadr , [flags] , [outadr]

msgid = identification of message to be retrieved

msglen

bufadr

addreSs of a word to receive length of string
returned

address of buffer descriptor of buffer to receive
string

C-12

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

flags flag bits for message content (macro default 15)

Bit Value Meaning

0 1 Include text
0 Do not include text

1 1 Include identifier
0 Do not include identifier

2 1 Include severity
0 Do not include severity

3 1 Include component
0 Do not include component

outadr address of 4-byte array to receive

Get Time

Byte

o
1
2
3

$GETTIM timadr

Contents

Reserved
Count of FAO arguments
User value
Reserved

timadr = address of a quadword to receive 64-bit current time
value

Hibernate

$INPUT Macro

$lNPUT chan ,length ,buffer ,[iosb] ,[efn]

chan number of the channel on which I/O is to be performed

length length of the input buffer

buffer address of the input buffer

iosb address of quadword I/O status block

efn = event flag to wait on (default = 0)

Lock Pages in Memory

$LCKPAG inadr ,[retadr] ,[acmode]

inadr address of 2-10ngword array containing starting and
ending addresses of pages to be locked

retadr = address of 2-10ngword array to receive addresses of
pages actually locked

acmode access mode to check against the owner of th~ pages

C-13

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Lock Pages in Working Set

$LKWSET inadr, [retadr] , [acmode]

inadr

retadr

acmode

address of 2-longword array containing starting and
ending virtual addresses of pages to be locked

address ofa 2-longword array to receive starting and
ending virtual addresses of pages actually locked

access mode to be checked against the page owner

Map Global Section

~MGBLSC inadr, [retadr] , [acmode] , [flags]
, [relpag]

,gsdnam , [ident]

inadr

retadr

acmode

flags

gsdnam

ident

address of 2-longword array containing starting and
ending addresses of pages to be mapped

address of 2-longword array to receive
addresses of pages mapped

access mode of owner of mapped pages

virtual

flags overriding default section characteristics

Flag

SEC$M WRT
SEC$M=SYSGBL

Meaning

Read/write section
System global section

address of global section name descriptor

address of guadword containing version identification
and match control

relpag = relative page number ~ithin global section

Convert Time to Numeric

$NUMTIM timbuf, [timadr]

timbuf = address of a 7-word buffer to receive numeric time
information

timadr address of a guadword containing the 64-bit time. If
U, use current time

Buffer format:

31 16 15 o

month of year year since 0

hour of day day of month

second of minute minute of hour

hundredths of second

C-14

)

)

)

)

)

')
/

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

$OUTPUT Macro

$OUTPUT chan, length, buffer, [iosb], [efn]

chan channel on which I/O is directed

length length of the output buffer

buffer address of the output buffer

iosb address of quadword I/O status block

efn event flag number to wait (default = 0)

Purge working Set

$PURGWS inadr

inadr address of 2-longword array containing starting and
ending addresses of pages to be removed

Put Message

Queue

$PUTMSG msgvec , [actrtn] , [facnam]

msgvec address of message argument vector

actrtn address of entry mask of action routine

facnam address of facility name string descriptor

I/O Request

$QIO
$QIOW

efn

chan

func

iosb

astadr

astprm

pl •••

[efn] ,chan ,func ,[iosb] , [astadr] , [astprm]
, [pI] , [p2] , [p3] , [p4] , [pS] , [p6]

=

=

number of event flag to set on completion

number of channel on which I/O is directed

function code specifying action to be performed

address of quadword I/O status block to receive final
completion status information

address of entry mask of AST routine

value to be passed to AST routine as argument

optional device- and function-specific parameters

Queue I/O Request and Wait for Event Flag

See QIO for argument description

C-IS

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Read Event Flag

$READEF efn ,state

efn event flag number of any flag in the cluster to be
read

state address of a longword to receive current state of all
flags in the cluster

Resume Process

$RESUME [pidadr] , [prcnam]

pidadr = address of process identification of process to be
resumed

prcnam = address of process name string descriptor

Schedule Wakeup

$SCHDWK [pidadr] , [prcnam] ,day tim , [reptim]

p{dadr = address of process identification of proc~ss to be
awakened

prcnam address of process name string descriptor

day tim address of guadword containing time to wake

reptim address of guadword containing repeat time interval

Set AST Enable

$SETAST enbflg

enbflg = AST enable indicator
o -) disable ASTs for caller at current access mode
I -) enable ASTs for caller at current access mode

Set Event Flag

$SETEF efn

efn = event flag number of flag to set

Set Exception Vector

$SETEXV [vector] , [addres] , [acmode] , [prvhnd]

vector = vector number
o -) modify primary vector
I -) modify secondary vector
2 -) modify last chance vector

addres = exception handler address (0 indicates
vector)

acmode = access mode for which vector is set

deassign

prvhnd = address of longword to receive previous handler
address

C-16

)

)

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Timer

$SETIMR [efn] ,day tim ,[astadr] ,[reqidt]

efn event flag to set when timer expires

day tim address of quadwora containing 64-bit time value

astadr address of entry mask of AST routine

reqidt request identification of this timer request

Set Power Recovery AST '

$SETPRA astadr ,[acmode]

astadr address of power recovery AST routine

acmode access mode of AST

Set Prior i ty

$SETPRI [pidadr] ,[prcnam] ,pri ,[prvpri]

pidadr = address of process identification of process to set
priority for

prcnam

pri

address of process name string descriptor

= new base priority for the process
background, 16 - 31 are time-critical

o - 15 are

prvpri address of longword to receive previous base priority

Set Process Name

$SETPRN [prcnam]

prcnam address of the process name string descriptor

Set Protection on Pages

$SETPRT inadr, [retadr] ,[acmode] ,prot, [prvprt]

inadr = address of 2-1ongword array containing starting and
ending virtual addresses of pages to change
protection for

retadr address of 2-1ongword array containing starting and
ending addresses of pages which had their protection
changed is returned

acmode = access mode of request

prot = new protection

prvprt address of byte to receive previous protection of
last page changed

C-17

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Resource Wait Mode

$SETRWM [watflg]

watflg = wait indicator
o -) wait for resources
I -) return failure status immediately

Set System Service Failure Mode

$SETSFM [enbflg]

enbflg = enable indicator
o -) disable generation of exception~ on

system service failures
I -) generate exceptions for system service

failures

Set Process Swap Mode

$SETSWM [swpflg]

swpflg = swap indicator
o -) enable swapping
I -) disable swapping (lock in balance set)

Send Message to Accounting Manager

$SNDACC msgbuf, [chan]

msgbuf = address of message buffer string descriptor

chan number of channel assigned to mailbox to receive
reply

Send Message to Error Logger

$SNDElRR msgbuf

msgbuf = address of message buffer string descriptor

Send Message to Operator

$SNDOPR msgbuf , [chan]

msgbuf address of message buffer string descriptor

chan number of channel assigned to mailbox to receive
reply

Send Message to Symbiont Manager

$SNDSMB msgbuf, [chan]

msgbuf = address of message buffer string descriptor

chan number of channel assigned to mailbox to receive
reply

C-IS

-)

)

)

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Suspend Process

$SUSPND [pidadr] ,[prcnam]

pidadr address of process identification of process to
suspend

prcnam address of process name string descriptor

Translate Logical Name

$TRNLOG lognam, [rsllen] ,rslbuf ,[table] ,[acmode] ,[dsbmsk]

lognam address of logical name string descriptor

rsllen

rslbuf

table

acmode

dsbmsk

~ddress of word to receive length of resultant name
string

address of result string buffer descriptor

address of byte to receive logical name table number

address of byte to receive access mode of entry
(process table only)

table search disable mask

Bit Set

a
1
2

Meaning

Do not search system
Do not search group
Do not search process

Unlock Pages From Memory

$ULKPAG inadr, [retadr] ,[acmode]

inadr

retadr

acmode

address of 2-10ngword array containing starting and
ending virtual addresses of pages to be unlocked

address of a 2-10ngword array to receive starting and
ending virtual addresses of pages actually unlocked

access mode to check against the owner of the pages

Unlock Pages From Working Set

$ULWSET inadr ,[retadr] ,[acmode]

inadr address of 2-10ngword array containing starting and
ending virtual addresses of pages to be unlocked

retadr = address of a 2-10ngword array to receive starting and
ending virtual addresses of pages actually unlocked

acmode = access mode to check against the owner of the pages

C-19

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Unwind Call Stack

$UNWIND [depadr] ,[newpc]

depadr = address of number of logical frames to unwind call
stack

newpc change of flow PC

Update Section File on Disk

$UPDSEC inadr ,[retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb]
,[astadr] ,[astprm]

inadr

retadr

acmode

address of 2~longword array containing
ending addresses of the pages to
written

address of 2-longword array to receive
the first and last page queued in
request

starting and
be potentially

addresses of
the first I/O

access mode on behalf of which the service is
performed

updflg = update indicator for writable global sections

efn

o -) write all read/write pages in the section
I -) write all pages modified by the caller

number of event flag to set when the section file is
updated

iosb address of quadword I/O status block)

Wait for

Wake

astadr = address of entry mask of an AST service routine

astprm AST parameter to be passed to the AST service routine

Sing)e Event Flag

$WAITFR efn

efn = event flag number of event to wait for

$WAKE [pidadr] ,[prcnam]

pidadr = address of process identification of process to be
awakened

prcnam address of process name string descriptor

C-20

)

)

)

)

)

)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

wait for Logical AND of Event Flags

$WFL'AND efn ,mask

efn

mask

event flag number of an:y flag wi thin the cluster

32-bit mask of flags that must be set

wait for Logical OR of Event Flags

$WFLOR efn ,mask

efn

mask

event flag number of any flag within the cluster

32-bit mask of flags, any of which must be set

C-2l

,)

)
j

)

)

)

)

$ACCDEF macro,
process termination message

offsets, 4-39
symbols defined, 4-149

$ADJSTK format, 4-3
$ADJWSL format, 4-5
$ALLOC format, 4-6
$ASCEFC format, 4-8
$ASCTIM format, 4-10
$ASSIGN format, 4-12
$BINTIM format, 4-15
$BRDCST format, 4-17
$CANCEL format, 4-19
$CANEXH format, 4-21
$CANTIM format, 4-22
$CANWAK format, 4-23
$CHFDEF macro, 3-67
$CLREF format, 4-25
$CMEXEC format, 4-26
$CMKRNL format, 4-27
$CNTREG format, 4-28
$CRELOG format, 4-30
$CREMBX format, 4-32
$CREPRC format, 4-35
$CRETVA format, 4-44
$CRMPSC format, 4-46
$DACEFC format, 4-52
$DALLOC format, 4-53
$DASSGN format, 4-55
$DCLAST format, 4-57
$DCLCMH format, 4-58
$DCLEXH format, 4-60
$DELLOG format, 4-62
$DELMBX format, 4-64
$DELPRC format, 4-66
$DELTVA format, 4-68
$DGBLSC format, 4-70
$DIBDEF macro,

symbols defined, 4-93
$DLCEFC format, 4-72
$EXIT format, 4-73
$EXPREG format, 4-74
$FAO format, 4-76
$FAOL format, 4-77
$FORCEX format, 4-90
$GETCHN format, 4-92
$GETDEV format, 4-95
$GETJPI format, 4-97
$GETMSG format, 4-102
$GETTIM format, 4-104
$HIBER format, 4-105
$INPUT macro,

example, 3-25
format, 4-106

$IODEF macro, 3-22
symbols defined, A-6

$JBCMSGDEF macro, 4-152, 4-167
$JPIDEF macro, 4-98

symbols defined, .4-100

INDEX

$LCKPAG format, 4-107
$LKWSET format, 4-109
$MGBLSC format, 4-111
$MSGDEF macro, A-7

symbolic names defined, A-7
$nameDEF macro. 2-5
$name_G form of system service

macro, 2-3
example, 2-4

$name_S form of system service
macro, 2-6

example, 2-8
$NUMTIM format, 4-114
$OPCDEF macro, 4-155

symbols defined, 4-155
$OUTPUT macro,

example, 3-25
format, 4-116

$PQLDEF macro, 4-40
symbols defined, 4-41

$PRDEF macro, A-7
symbols defined, A-7

$PRTDEF macro, 4-143
symbols defined, A-7

$PRVDEF macro, 4-36
symbols defined, 4-36

$PSLDEF macro, A-8
symbols defined, A-8

$PURGWS format, 4-117
$PUTMSG format, 4-118
$QIO format, 4-124
$QIOW,

$INPUT and $OUTPUT forms, 3-25
format, 4-127

$READEF format, 4-128
$RESUME format, 4-129
$SCHDWK format, 4-131
$SECDEF macro, 4-46

symbols defined, 4-46, 4-112
$SETAST format, 4-133
$SETEF format, 4-134
$SETEXV format, 4-135
$SETIMR format, 4-137
$SETPRA format, 4-139
$SETPRI. format, 4-140
$SETPRN format, 4-142
$SETPRT format, 4-143
$SETRWM format, 4-145
$SETSFM format, 4-146
$SETSWM format, 4-147
$SMRDEF macro, 4-160

symbols defined, 4-163
$SNDACC format, 4-148
$SNDERR format, 4-153
$SNDOPR format, 4-154
$SNDSMB format, 4-159
$SSDEF macro, 2-11

symbols defined, A-8
$SUSPND format, 4-169

Index-1

INDEX (Cont.)

$TRNLOG format, 4-171
$ULKPAG format, 4-173
$ULWSET format, 4-175
$UNWIND format, 4-177
$UPDSEC format, 4-179
$WAITFR format, 4-182
$WAKE format, 4-183
$WFLAND format, 4-185
$WFLOR format, 4-186

A
Absolute time, 3-56

buffer format, 4-15
Access modes, 1-2

conventions for coding, 2-10,
2-18

effect on AST delivery, 3-14
symbolic names defined, A-8

Accounting file, 4-148
format of records, 4-151

ACP interface driver I/O
function codes, A-6

Addresses,
virtual, 3-79

Adjust Outer Mode Stack Pointer
($ADJSTK) system service,
4-3

Adjust Working Set Limit
($ADJWSL) system service,
4-5

increase working set size, 3-81
Allocate Device ($ALLOC) system

service, 4-6
example, 3-29

Allocation, '
device, 3-28, 4-6

Argument list, 2-2
for AST service routine, 3-12
for system services,

format, 2-2
passed to a condition handler,

3-67
Arguments, 2-17

FORTRAN coding summary, 2-17
Arrays,

argument lists for condition
handlers, 3-68

virtual address, 3~80
ASSIGN command, 3-15
Assign I/O Channel ($ASSIGN)

system serfice, 4-12
example', 3-21

Associate Common Event Flag
Cluster ($ASCEFC) system
service, 4-8

examples, 3-7, 3-9
AST, 3-10

declare, 4-57
example, 3-14

AST (Cont.),
delivery, 3-13
disable/enable delivery, 4-133
execution,

access modes, 3-12
power recovery, 4-139
service routine, 3-12

example, 3-13
services,

general information, 3-10
summary, 1-3

synchronize I/O completion,
3-23

used with timer services,
3-58
example, 3-60

B
Balance set, 3-82, 4-147

swapping, 3-82
Broadcast ($BRDCST) system

service, 4-17

c
Cancel Exit Handler ($CANEXH)

system service, 3-49, 4-21
Cancel I/O On Channel ($CANCEL)

system service, 3-27, 4-19
example, 3-27

Cancel Timer Request ($CANTIM)
system service, 4-22

examples, 3-60
Cancel Wakeup ($CANWAK) system

service, 4-23
cancel wakeup requests, 3-61

Card reader driver I/O func­
tion codes, A-5

Change mode,
handler, 3-64, 4-58
services,

summary, 1-5
to executive, 4-26
to kernel, 4-27

Change to Executive Mode
($CMEXEC) system service,
4-26

Change to Kernel Mode ($CMKRNL)
system service, 4-27

Channel assignment, 3-21, 4-12
mailboxes, 4-32

Character string descriptor,
2-18

FORTRAN coding, 2-18
MACRO coding, 2-9
macro to generate, 2-10

Index-2

")

)

)

)

)

)

)

)

)

INDEX (Cont.)

Clear Event Flag ($CLREF)
system service, 4-25

example, 3-6
Clusters,

event flag, 3-4
Common event flag cluster, 3-7,

4-8 .
for process communication,

3-44
Compatibility mode handler,

3-64, 4-58
Condition handler, 3-63

courses of action, 3-69
declare on call stack, 3-64
example of condition handling

routines, 3-72
search of call stack, 3-66

Condition handling services,
3-63

general information, 3-63
summary, 1-5

Contract Program/Control Region
($CNTREG) system service,
4-28

example, 3-78
Control block,

exit handler, 4-60
Control region, 3-77

contract, 4-28
expand, 4-74

Control string,
FAO,. 4-78

Conventions for coding, 2-11
access modes, 2-11
arguments to system services,

MACRO, 2-8
FORTRAN, 2-16

Convert ASCII String to Binary
Time ($BINTIM) system
service, 4-15

examples, 3-57, 3-58
Convert Binary Time to ASCII

String ($ASCTIM) system
service, 4-10

example, 3-57
Convert Binary Time to Numeric

Time ($NUMTIM) system
service, 4-114

Create and Map Section ($CRMPSC)
system service, 4-46

example of mapping a section,
3-86

Create Logical Name ($CRELOG)
system service, 4-30

example, 3-15
Create Mailbox and Assign

Channel ($CREMBX) system
service, 4-32

examples, 3-34, 3-54

Create Process ($CREPRC) system
service, 4-35

examples, 3-38
Create Virtual Address Space

($CRETVA) system service,
4-44

D
Date,

system format, 3-56
Deallocate Device ($DALLOC)

system service, 3-29, 4-53
Deassign I/O Channel ($DASSGN)

system service, 4-55
example, 3-25

Declare AST ($DCLAST) system
service, 4-57

example, 3-14
Declare Change Mode or Compati­

bility Mode Handler ($DCLCMH)
system service, 4-58

Declare Exit Handler ($DCLEXH)
system service, 4-60

example, 3-50
Default,

arguments for system
services, 2-8, 2-14

disk and directory for
created process, 3-40

Delete Common Event Flag
Cluster ($DLCEFC) system
service, 4-72

Delete Global Section ($DGBLSC)
system service, 4-70

Delete Logical Name ($DELLOG)
system service, 4-62

Delete Mailbox ($DELMBX) system
service, 4-64

Delete Process ($DELPRC) system
service, 3-53, 4-66

Delete Virtual Address Space
($DELTVA) system service,
4-68

example, 3-78
Delete,

common event flag clusters,
3-8, 4-72

mailboxes, 3-33, 4-64
processes, 3-53, 4-66
timer requests, 3-60, 4-22
virtual address space, 3-78,

4-68
Delivery, 3-13

AST,
enable/disable, 4-133

Delta time, 3-56
how to specify, 3-58

Index-3

INDEX (Cont.)

DESCRIPTOR macro, 2-10
Descriptor,

character string,
FORTRAN coding, 2-19
MACRO coding, 2-9

Detached process, 3-41
compared with subprocess,

3-37
Device,

allocate, 3-28, 4-6
assign I/O channel, 3-21, 4-12
deallocate, 3-29, 4-53
information, 4-92, 4-95
names, 3-31
physical names vs. logical

names, 3-29
Directive (FAO),

format, 4-78
summary, 4-80

Disassociate Common Event Flag
Cluster ($DACEFC) system
service, 4-52

example, 3-7
Disk driver I/O function codes,

A-3
Dispatcher,

exception, 3-65
DMCll driver I/O function codes,

A-5

E
Equivalence names, 3-15
Error,

cause exception condition,
2-13

checking,
FORTRAN, 2-22
MACRO, 2-12

logger,
send message to, 4-153

messages,
obtain text, 4-102
output, 4-118

return status codes, 2-11,
2-20

stream defined for process,
3-39

Event flag, 3-4
clearing, 4-25
clusters, 3-4
common clusters, 3-7

associate, 3-7, 4-8
create, 3-7, 4-8
delete, 4-72
disassociate, 4-52

read status of, 4-128

Event flag (Cont.),
services,

general information, 1-3,
3-4

summary, 1-3
setting, 4-134
used with I/O services, 3-23
used with timer services, 3-58

example, 3-59
waits, 3-5, 3-11

Exception, 4-146
caused by system service

failure, 4-146
conditions, 3-63

summary, 3-70
dispatcher, 3-64
vectors, 3-64, 4-135

Exit ($EXIT) system service,
4-73

cause image exit, 3-48
Exit, 4-90

forced, 4-90
handler, 4-60

cancel, 4-21
control block format, 4-60
example, 3-50

image exit, 3-47
Expand Program/Control Region

($EXPREG) system service,
4-74

example, 3-78

F
FAO, 3-31, 4-76

control string, 4-78
directives,

examples, 4-83
format, 4-78
summary, 4-80

Force Exit ($FORCEX) system
service, 4-90

contrast with process
deletion, 3-53

Formatted ASCII Output ($FAO)
system service, 4-76

examples, 3-32, 4-84
Formatted ASCII Output with

List Parameter ($FAOL)
macro, 4-77

example, 4-85
FORTRAN,

Index-4

coding system service calls,
2-14, 2-15

function reference, 2-15
procedure call, 2-15

)

)

)

)

)

)

)

INDEX (Cont.)

Function codes for I/O opera­
tions, 3-22

summary, A-3
Function reference, 2-15

FORTRAN system service call,
2-15

G
Get I/O Channel Information

($GETCHN) system service,
4-92

example, 3-54
Get I/O Device Information

($GETDEV) system service,
4-95

Get Job/Process Information
($GETJPI) system service,
4-97

used for process control,
3-44, 3-86

Get Message ($GETMSG) system
service, 4-102

Get Time ($GETTIM) system
service, 3-57, 4-104

Global sections, 4-70
creating, 4-46
defined, 3-82
deleting, 4-70
group and system, 3-85
mapping, 3-87, 4-46, 4-111
temporary and permanent, 3-85

Group, 3-16
logical name table, 3-16
number,

qualify process names, 3-43
restrict system service

use, 1-2

H
Handler,

change mode, 4-58
compatibility mode, 4-58
condition, 3-63
exit, 3-49, 4-60

cancel, 4-21
Hibernate ($HIBER) system

service, 4-105
example, 3-46

Hibernation, 3-45
compared with suspension,

3-45
schedule wakeup, 3-61

I/O,
$QIO system service, 4-124
$QIOW system service, 4-127
cancel, 3-27, 4-19
channels,

assign, 3-21, 4~12

deassign, 4-55
obtain information, 4-92

device,
obtain information, 4-95

example, 3-26
function codes,

how used, 3-22
summary, A-3

mailboxes,
example, 3-34

services,
general information, 3-21
summary, 1-4

status block, 3-24, 4-126
Image,

exit, 3-47, 4-73
compared with process

deletion, 3-55
exit handlers, 3-49
forced, 3-50, 3-53
rundown, 3-48

force exit, 3-50, 3-53, 4-90
Indicators,

conventions for coding, 2-10,
2-18

Input,
stream defined for process,

3-39
terminal I/O, 3-26
virtual blocks, 4-106

L
Line printer driver I/O

function codes, A-4
Lock Pages in Memory ($LCKPAG)

system service, 4-107
Lock Pages in Working Set

($LKWSET) system service,
4-109

increase program efficiency,
3-81

Lock pages,
memory, 3-82
working set, 3-81

Logical names, 3-15
create, 4-30

example, 3-15

Index-5

INDEX (Con t.)

Logical names (Cant.),
delete,- 3-19, 4-62
process permanent files, 3-19
services,

general information, 3-15
summary, 1-4

tables, 3-16
example, 3-17

translation, 3-18, 4-171
used by I/O services, 3-29
used for process communica-

tion, 3-44

M
Magnetic tape driver I/O

function codes, A-4
Mailbox driver I/O function

codes, A~5
Mailboxes, 3-33, 4-32

creating, 4-32
deleting, 4-64
example of creation and I/O,

3-34
used for process communica­

tion, 3-44
used for process termination

message, 3-54
Map Global Section ($MGBLSC)

system service, 4-111
example, 3-87'

Mapping, 3-87
global sections, 3-87, 4-46,

4-111
sections, 3-83, 3-85

Maximize access mode,
definition, 2-11

Memory,
lock pages, 3-82, 4-107,

4-109
management services,

general information, 3-77
summary, 1-5

unlock pages, 4-173
Messages,

associated with system status
codes, 2-12, 4-102

output,. 4-118

N
NARGS, 2-5
Numeric time buffer format,

4-114

o
Open,

disk file for use as a
section, 3-83

Operator,
send message to, 4-154

Output,
format character strings, 4-76
formatting with$FAO, 3-31
stream defined for process,

3-39
system messages, 4-118
virtual blocks, 4-116

Owner,
of memory page, 3-80

p

Page, 3-77, 3-85
copy-an-reference,

define in section, 3-85
demand-zero,

define in section, 3-85
lock in memory, 4-107
lock in working set, 4-109
protection,

set or change, 4-143
symbolic names, A-7

Paging,
sections, 3-89
working set, 3-81

Parameter,
FAO, 4-78
for AST service routine, 3-13

Print queue,
manipulate, 4-159

Priority,
set or change process, 4-140

Private sections, 3-82
creating and mapping, 4-46

Privilege,
defined by access mode, 1-2
defined for process, 3-41,

4-35
required for process' control,

3-41
to use system services, 1-1

Process,

Index-6

control services,
general information, 3-37
summary, 1-4

creation, 4-35
example, 3-42

deletion, 3-51, 4-66
compared with image exit,

3-55

)

)

-)

)

)

)

)
./

INDEX (Cont.)

Process (Cont.),
detached process, 3-37
identification, 3-42
logical name table, 3-16
name, 3-42

qualified by group number,
3-43

set or change, 4-142
obtain information, 4-97
permanent files, 3-19
resume after suspension,

4-129
set or change priority, 4-140
subprocess, 3-37
suspend, 4-169
termination message format,

4-39
Processor registers,

symbolic names, A-7
Processor status longword,

symbolic field definitions,
A-8

Program region, 3-77, 3-78
contract, 4-28
example of expanding, 3-78
expand, 4-74

Protection,
page, 4-143

Purge Working ($PURGWS) system
service, 4-117

Put Message ($PUTMSG) system
service, 4-118

Q

Queue I/O Request ($QIO) system
service, 4-124

example, 3-22
Queue I/O Request and Wait for

Event Flag ($QIOW) system
service, 4-127

QUotas, 4-40

R
Read Event Flags ($READEF)

system service, 4-128
Resource,

quotas, 1-1, 4-40
wait mode, 2-13

set or change, 4-145
Resume Process ($R:ESUME) system

service, 4-129
Return status codes,

FORTRAN coding, 2-20
MACRO coding, 2-11
obtain system messages, 4-103
summary, A-8

RMS (Record Management Services) ,
3-21

open file for mapping, 3-83

s
Sample programs, B-1
Schedule Wakeup ($SCHDWK)

system service, 4-131
cancel wakeups, 3-61, 4-23
example, 3-61

Search of call stack,
exception dispatcher, 3-66

Sections, 3-82
checkpoint, 3-90, 4-179
creating, 3-83, 4-46
defining extents, 3-84
deleting, 3-90
examples, 3-83, 3-86
global,

deleting, 4-70
mapping, 3-87, 4-111

mapping, 3-85, 4-46
paging, 3-89
private, 3-82, 4-46
unmapping, 3-90
using to share data, 3-89

Send Message to Accounting
Manager ($SNDACC) system
service, 4-148

Send Message to Error Logger
($SNDERR) system service,
4-153

Send Message to Operator
($SNDOPR) system service,
4-154

Send Message to Symbiont
Manager ($SNDSMB) system
service; 4-159

Service routine,
AST, 3-12

Set AST Enable ($SETAST)
system service, 4-133

Set Event Flag ($SETEF) system
service, 3-6, 4-134

Set Exception Vector ($SETEXV)
system service, 3-64, 4-135

Set Power Recovery AST
($SETPRA) system service,
4-139

Set Priority ($SETPRI) system
service, 4-140

Set Process Name ($SETPRN)
system service,· 4-142

Set Process Swap Mode ($SETSWM)
s"c;tem service, 4-147

example, 3-82
Set Protection on Pages

($SETPRT) system service,
4-143

Index-7

INDEX (Cont.)

Set Resource Wait Mode
($SETRWM) system service,
4-145

Set System Service Failure
Exception Mode ($SETSFM)
system service, 4-146

example, 2-13
Set Timer ($SETIMR) system

service, 4-137
example with AST, 3-10
example with event flag,

3-5
examples, 3-60

Stack pointer,
modifying, 4-3

Subprocess,
deletion, 3-53
example of creating, 3-38

Suspend Process ($SUSPND)
system service, 4-169

Suspension, 3-47
compared with hibernation,

3-45
Swap mode,

disable, 3-82
Swapping, 3-82

disallow process swapping,
3-82

process from balance set,
3-82

Symbiont manager,
format of messages, 4-160
send message to, 4-159

Symbolic names, 2-11
obtain numeric values, A-2
page protection, A-7
processor registers, A-7
system status codes,

summary, A-9
use in error checking, 2-11

Synchronize I/O completion,
I/O status block (IOSB), 3-24

System logical name table, 3-16
System service failure

exception mode, 3-63
exception condition, 2-13
set or change, 4-146

T
Table,

logical name, 3-16
Terminal driver I/O function

codes, A-3
Terminal, 3-21

assign channel, 3-21
broadcast messages to, 4-17

Termination mailbox, 3-53
example, 3-54
message format, 4-39

Time,
ASCII format,

absolute time buffer, 4-15
$ASCTIM, 3-57

convert to ASCII, 4-10
convert to binary, 3-57, 4-15
convert to binary integer

values, 3-.61
buffer format, 4-114

system format, 3-56
obtain, 4-104

Timer and time conversion
services, 3-56

general information, 3-56
summary, 1-4

Timer requests, 3-58
cancel, 3-60, 4-22
setting, 4-135

Translate Logical Name ($TRNLOG)
system service, 4-171

Translate,
logical name, 3-18, 4-171

u
.Unlock Pages from Memory

($ULKPAG) system service,
4-173

Unlock Pages from Working Set
($ULWSET) system service,
4-175

Unwind Call Stack ($UNWIND)
system service, 4-177

example, 3-75
Unwinding the call stack, 3-74
Update Section File on Disk

($UPDSEC) system service,
4-179

User privileges, 1-1

v
VAX-ll MACRO,

coding system service calls,
$name macro, 2-3
$name_G form, 2-3
$name_S form, 2-6

Virtual address space, 3-77,

Index-8

3-78, 3-79
add and delete addresses, 3-79
add pages, 4-44, 4-74
delete pages, 4-28, 4-68
layout, 3-77, 3-78
mapping sections into, 3-85
specifying arrays, 3-80

)

)

)

)

)

)

)

)

w
Wait for Logical AND of Event

Flags ($WFLAND) system
service, 4-185

examples, 3-6, 3-9
Wait for Logical OR of Event

Flags ($WFLOR) system
service, 4-186

Wait for Single Event Flag
($WAITFR) system service,
4-182

example, 3-9
Wait,

event flag, 3-5
I/O, 3-25

INDEX (Cont.)

Wait (Cont.),
resource wait mode, 2-13

. set or change, 4-145
Wake ($WAKE) system service, 4-183

example, 3-46
Wakeup a hibernating process,

3-46
timer scheduled, 3-61, 4-131

cancel, 4-23
Working set, 3-81

lock pages, 3-81
paging, 3-81
purge, 4-117
size,

changing, 3-81, 4-5
unlock pages, 4-175

Index-9

)

)

)

,)

)

)

.
Q)
r:::

.~
..r:::
C)

)
r:::
0

·0
....
:l
U

Q)
on
C
Q)

0..

)

VAX/VMS
System Services
Reference Manual
AA-D018A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvemen~.

Did you find errors in this manual? If so, specify the error and the
Page number •

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) ____________________ ~ ____________ ___

Name ______________________________ ~ _________ Date ______________________ ___

Organization ______________________ ~ ____________________________________ __

Street __ __

City ___________________________ State _____________ Zip Code __ ~~-------
or

Country

- - Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

IIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the
United States

-I

I

- - - - - -I

I

I

I

I.

)

)

)

)

